WorldWideScience

Sample records for barium halide nanocrystals

  1. Lanthanide doped strontium-barium cesium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  2. Seed-mediated growth of palladium nanocrystals: The effect of pseudo-halide thiocyanate ions

    Science.gov (United States)

    Zhang, Ling; Niu, Wenxin; Xu, Guobao

    2011-02-01

    In synthesis in a solution phase, adsorbates such as halides can interact selectively with different metal crystal facets and affect the final morphology of nanocrystals. Pseudo-halide thiocyanate ions (SCN-) can also adsorb on the metal surface, but they have never been used for the synthesis of shape-controlled colloidal metal nanocrystals. In this study, we first investigated the effect of SCN- on the morphology of palladium nanocrystals through a seed-mediated growth method. The presence of 1 µM SCN- in the growth solutions could lead to the formation of palladium polyhedra: truncated rhombic dodecahedra enclosed by twelve {110}, eight {111} and six {100} facets. The products were nanocubes enclosed with six {100} facets if cetyltrimethylammonium bromide (CTAB) was the only capping agent. Meanwhile, the mechanism of the effect of SCN- on the morphology of Pd nanocrystals is discussed.In synthesis in a solution phase, adsorbates such as halides can interact selectively with different metal crystal facets and affect the final morphology of nanocrystals. Pseudo-halide thiocyanate ions (SCN-) can also adsorb on the metal surface, but they have never been used for the synthesis of shape-controlled colloidal metal nanocrystals. In this study, we first investigated the effect of SCN- on the morphology of palladium nanocrystals through a seed-mediated growth method. The presence of 1 µM SCN- in the growth solutions could lead to the formation of palladium polyhedra: truncated rhombic dodecahedra enclosed by twelve {110}, eight {111} and six {100} facets. The products were nanocubes enclosed with six {100} facets if cetyltrimethylammonium bromide (CTAB) was the only capping agent. Meanwhile, the mechanism of the effect of SCN- on the morphology of Pd nanocrystals is discussed. Electronic supplementary information (ESI) available: Additional SEM, TEM and XRD data. See DOI: 10.1039/c0nr00622j

  3. Metal halide solid-state surface treatment for nanocrystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  4. Synthesis of Barium Lithium Fluoride Nanocrystals Using Reverse Micelles as Microemulsion

    Institute of Scientific and Technical Information of China (English)

    Rui Nian HUA; De Min XIE; Chun Shan SHI

    2004-01-01

    Barium lithium fluoride nanocrystals were synthesized in cetyltrimethylammonium bromide (CTAB)/ 2-octanol/ water microemulsion systems. The impurity peaks in XRD patterns were not determined. The result of SEM confirmed that the average sizes and shape of the BaLiF3 nanocrystals. The formation of BaLiF3 and particles size were strongly affected by water content. With increasing water content and reaction times, the size of the particle increases. Meanwhile, the solvent was also found to play a key role in the synthesis of the BaLiF3 nanocrystals.

  5. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    Science.gov (United States)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  6. Barium rare earth fluoride nanocrystals: high temperature solution synthesis, characterization and luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jia Liping; Yan Bing, E-mail: byan@tongji.edu.cn; Zhang Qiang [Tongji University, State Key Lab of Water Pollution and Resource Reuse, Department of Chemistry (China)

    2013-04-15

    A high temperature solution system with BaCO{sub 3}/RECl{sub 3}{center_dot}xH{sub 2}O in oleic acid/1-octadecene has been developed to prepare barium rare earth fluoride nanocrystals: tetragonal phase of BaREF{sub 5} (RE = Pr, Nd, Eu, Tb, Dy, Tm, Lu, Y), pure cubic phase Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb), and BaREF{sub 5} (RE = Ce, Gd) colloidal nanocrystals. In addition, it is proved that the functionalization of these nanocrystals by means of doping with Eu, Tb, and Yb, Er/Tm ion pair can obtain red, green, and visible-to-the-naked-eye green/blue upconversion emissions.

  7. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Li-Ping; Zhang, Qiang [Department of Chemistry, Tongji University, Shanghai 200092 (China); State Key Laboratory of Pollution Control and Resource Reuse (Tongji University) (China); Yan, Bing, E-mail: byan@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); State Key Laboratory of Pollution Control and Resource Reuse (Tongji University) (China)

    2014-07-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF{sub 5} (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd{sup 3+}, Eu{sup 3+}, Tb{sup 3+}) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba{sub 2}LaF{sub 7}:Yb, Tm(Er), Ba{sub 2}REF{sub 7}:Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed.

  8. Kinetic and structural analyses for the formation of anatase nanocrystals in barium titanoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Youn; Sung, Yun-Mo, E-mail: ymsung@korea.ac.kr

    2015-10-25

    Transparent barium titanoborate glass-ceramics bearing TiO{sub 2} (anantase) nanocrystals were prepared by the conventional melt-quenching and subsequent heat treatment of 35BaO–xTiO{sub 2}–110B{sub 2}O{sub 3} (in mol) (x = 20, 25, and 30) glasses. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results clearly reveal the formation of highly-crystalline anatase nanocrystals in glass matrices. The average crystal size ranges from ∼10 to 20 nm according to TiO{sub 2} contents. Non-isothermal kinetic analyses were performed to understand the crystallization behavior of each glass using differential scanning calorimetry (DSC) scan curves. With the increase of TiO{sub 2} contents in the glass, the crystallization peak temperature of TiO{sub 2} decreases, while the activation energy for crystallization increases. We propose a possible mechanism for the formation of TiO{sub 2} nanocrystals based upon kinetic analysis results and structural changes in barium titanoborate glass matrices according to TiO{sub 2} contents. The nanocrystalline glass-ceramics show ∼60–75% visible light transmittance and sharp UV-light absorption edges at ∼387 nm, corresponding to the energy band gap of anatase (3.2 eV). They show apparent photocatalytic properties and ∼70% of methylene blue solution was decomposed within 180 min. - Highlights: • The first report on the TiO{sub 2} nanocrystal formation mechanism in borate glasses. • TiO{sub 2} seems not to be involved in the borate glass network forming. • Crystallization temperature increases and activation E decreases with TiO{sub 2} content. • Increasing number of non-bridging oxygens affect the crystallization kinetics. • UV-light blocking and photocatalytic properties were identified for glass-ceramics.

  9. Obtaining the highly pure barium titanate nanocrystals by a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Ashiri, Rouholah, E-mail: ro_ashiri@yahoo.com; Heidary Moghadam, Ali; Ajami, Reza

    2015-11-05

    Purity and synthesis temperature of nanocrystals are key challenges facing the scientific community. Herein a novel solid-state approach to synthesize fine BaTiO{sub 3} nanocrystals with narrow size distribution using a high-speed ball-milling process is reported. In order to improve the kinetics of this reaction, the starting materials, BaCO{sub 3} and TiO{sub 2}, were milled for 10 h before mixing and initiating the synthesis reaction. The contribution of this step to the BaTiO{sub 3} formation is analyzed by XRD diffractometry and FE-SEM techniques. It was found that the use of the mechanically activated starting materials favors the decomposition of BaCO{sub 3} at low temperatures and improves the Ba{sup 2+} diffusion through the formed BaTiO{sub 3} layer. In consequence, very fine BaTiO{sub 3} nanocrystals free from the secondary phases were obtained at a lower temperature in contrast to the previous works. - Highlights: • Very fine BaTiO{sub 3} nanocrystals were obtained at a lower temperature. • Method is able to obtain highly-pure BTO nanocrystals. • The approach is simple, and useful for large-scale production purposes.

  10. Nanocrystal formation using laser irradiation on Nd3+ doped barium titanium silicate glasses

    International Nuclear Information System (INIS)

    Highlights: ► We compare two methods to produce glass–ceramic, furnace and laser irradiation. ► We study the spectroscopic properties of the glass ceramic created by both methods. ► A spectral mapping shows the area converted from glass to glass–ceramic by the laser. ► XRD, electronic microscopy and AFM confirm the spectral mapping conclusions. -- Abstract: Two different thermal treatments were used to create nanocrystals from a precursor glass. The glass whose composition is Ba2TiSi2O8 and doped with 3% of Nd3+ was prepared using the melt quenching method. A conventional thermal treatment in an electrical furnace was used to obtain transparent glass ceramic samples, which contain Fresnoite nanocrystals with an average size of 35 nm. Moreover, these nanocrystals were obtained in a localized area of the precursor glass by irradiating with a continuous Ar+ laser. Evidence of the changes induced by laser irradiation was confirmed by optical spectroscopic, X-ray diffraction, scanning electron and atomic force microscopy

  11. Optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)], E-mail: patharo@ull.es; Lahoz, F. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Platas, J. [Dep. of Fisica Fundamental II, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Caceres, J.M. [Dep. of Edafologia y Geologia, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Perez, S. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Marrero-Lopez, D. [Dep. of Quimica Inorganica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Capuj, N. [Dep. of Fisica Basica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Martin, I.R. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)

    2008-05-15

    Measurements of the optical properties of Er{sup 3+} ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} (SBN) doped with Er{sup 3+} ions with a mean size of {approx}50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er{sup 3+} ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency.

  12. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange.

    Science.gov (United States)

    Hoffman, Jacob B; Schleper, A Lennart; Kamat, Prashant V

    2016-07-13

    All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics. PMID:27322132

  13. Analysis of the optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals using time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalska, D.; Haro-Gonzalez, P. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Martin, I.R. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Malta Consolider Team, La Laguna, Tenerife (Spain); Caceres, J.M. [Universidad de La Laguna, Departamento de Edafologia y Geologia, La Laguna, Tenerife (Spain)

    2010-06-15

    This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er{sup 3+} ions. The melt-quenching method was applied to fabricate the glasses with composition SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er{sup 3+} ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er{sup 3+} ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm. (orig.)

  14. Silicon nanocrystal inks, films, and methods

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  15. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), stomach, and ... pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque ...

  16. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    Science.gov (United States)

    Anderson, Nicholas Charles

    3P complex of cadmium chloride. Nuclear magnetic resonance spectroscopy supports complete cleavage of the X-type carboxylate ligands. Combined with measurements of the Se:Cd:Cl ratio using Rutherford backscattering spectrometry, these studies support a structural model of nanocrystals where chloride ligands terminate the crystal lattice by balancing the charges of excess Cd2+ ions. The adsorption of dative phosphine ligands leads to nanocrystals who's solubility is afforded by reversibly bound and readily exchanged L-type ligands, e.g. primary amines and phosphines. The other halides (Br and I) can also be used to prepare Bu 3P-bound, halide-terminated CdSe nanocrystals, however these nanocrystals are not soluble after exchange. The change in binding affinity of Bu 3P over the halide series is briefly discussed. Next, we report a series of L-type ligand exchanges using Bu3P-bound, chloride-terminated CdSe nanocrystals with several Lewis bases, including aromatic, cyclic, and non-cyclic sulfides, and ethers; primary, secondary, and tertiary amines and phosphines; tertiary phosphine chalcogenides; primary alcohols, isocyanides, and isothiocyanides. Using 31P nuclear magnetic resonance spectroscopy, we establish a relative binding affinity for these ligands that reflects electronic considerations but is dominated primarily by steric interactions, as determined by comparing binding affinity to Tolmann cone angles. We also used chloride-terminated CdSe nanocrystals to explore the reactivity of ionic salts at nanocrystal surfaces. These salts, particularly [Bu3P-H]+[Cl]-, bind nanocrystals surfaces as L-type ligands, making them soluble in polar solvents such as acetonitrile. This information should provide insight for rational ligand design for future applications involving metal chalcogenide nanocrystals. The strongest ligand, primary n-alkylamine, rapidly displace the Bu3P from halide-terminated CdSe nanocrystals, leading to amine-bound nanocrystals with higher dative

  17. The Silver Halides

    Science.gov (United States)

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  18. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  19. Photofragmentation of metal halides

    International Nuclear Information System (INIS)

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0+ and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0+ state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  20. Nanocrystal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tisdale, William; Prins, Ferry; Weidman, Mark; Beck, Megan

    2016-11-01

    A method of preparing monodisperse MX semiconductor nanocrystals can include contacting an M-containing precursor with an X donor to form a mixture, where the molar ratio between the M containing precursor and the X donor is large. Alternatively, if additional X donor is added during the reaction, a smaller ratio between the M containing precursor and the X donor can be used to prepare monodisperse MX semiconductor nanocrystals.

  1. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... barium into a bedpan or nearby toilet. A health care professional may give you an enema to flush out the rest of the barium. An x-ray technician and a radiologist perform a lower gastrointestinal (GI) series at a ...

  2. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.

    Science.gov (United States)

    Stewart, Robert J; Grieco, Christopher; Larsen, Alec V; Maier, Joshua J; Asbury, John B

    2016-04-01

    The electronic properties of organo-halide perovskite absorbers described in the literature have been closely associated with their morphologies and processing conditions. However, the underlying origins of this dependence remain unclear. A combination of inorganic synthesis, surface chemistry, and time-resolved photoluminescence spectroscopy was used to show that charge recombination centers in organo-halide perovskites are almost exclusively localized on the surfaces of the crystals rather than in the bulk. Passivation of these surface defects causes average charge carrier lifetimes in nanocrystalline thin films to approach the bulk limit reported for single-crystal organo-halide perovskites. These findings indicate that the charge carrier lifetimes of perovskites are correlated with their thin-film processing conditions and morphologies through the influence these have on the surface chemistry of the nanocrystals. Therefore, surface passivation may provide a means to decouple the electronic properties of organo-halide perovskites from their thin-film processing conditions and corresponding morphologies. PMID:26966792

  3. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    The authors discuss a new barium tantalum sulphide, Ba3Ta2S8, prepared by sulphurization of a mixture of BaCO3 and Ta2O5. The electron and powder X-ray diffraction patterns of the compound are indexed on the basis of a monoclinic cell with lattice constants. A structure model is proposed. The refinement based on the powder X-ray diffraction intensities is performed

  4. PREPARATION OF HALIDES OF PLUTONIUM

    Science.gov (United States)

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  5. On Barium Oxide Solubility in Barium-Containing Chloride Melts

    Science.gov (United States)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-08-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl2-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl2-MCl systems.

  6. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    Science.gov (United States)

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  7. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.;

    2008-01-01

    and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was rated...... qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P ... barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5%) polyps

  8. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  9. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    A new barium tantalum sulphide has been synthesized by the reaction of CS2 with a mixture of BaCO3 and Ta2O5. The chemical analysis of the compound was performed for 3 components (Ba, Ta and S), and the chemical composition was found to be BaTa2S5. The powder X-ray diffraction peaks were indexable on the basis of a hexagonal cell with lattices constants of a=3.32A, c=25.13A. However, the electron diffraction measurements show that the structure is more complex than that observed by powder X-ray diffraction. The compound indicates metallic behavior and Pauli paramagnetism

  10. Abundance analysis of barium and mild barium stars

    CERN Document Server

    Smiljanic, R; Silva, L

    2007-01-01

    High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the FeI and FeII lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant Eps Vir as the standard star. The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity. Contrary to this suggestion, we found in this work no evidence for barium and mild barium to have a different range in metallicity. However, comparing the ratio of abundances of heavy to light s-process elements, we found some evidence that they do not share the same neutron exposure parameter. The exact mechanism controlling this difference is still not clear. As a by-product of this analysis we identify two normal red giants misclass...

  11. METHOD OF PREPARING METAL HALIDES

    Science.gov (United States)

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  12. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  13. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  14. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  15. Radiochemical synthesis of pure anhydrous metal halides

    Science.gov (United States)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  16. Preparation of cerium halide solvate complexes

    Science.gov (United States)

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  17. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  18. Doping semiconductor nanocrystals.

    Science.gov (United States)

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  19. Semiconductor Nanomaterials and Nanocrystals

    Directory of Open Access Journals (Sweden)

    N.V. Stetsyk

    2015-06-01

    Full Text Available This article introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This work also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important application.

  20. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    Science.gov (United States)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  1. Saucy-Marbet Rearrangements of Alkynyl Halides in the Synthesis of Highly Enantiomerically Enriched Allenyl Halides

    OpenAIRE

    Tang, Yu; Shen, Lichun; Dellaria, Becky J.; Richard P. Hsung

    2008-01-01

    A stereospecific Saucy-Marbet rearrangement of alkynyl halides is described here. These rearrangements provide an entry to highly enantiomerically enriched allenyl bromides and chlorides through excellent chirality transfer and the reservation of optical integrity of alkynyl halides.

  2. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Science.gov (United States)

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  3. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Science.gov (United States)

    2010-07-01

    ... trialkylamine halides. 721.4095 Section 721.4095 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  4. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  5. Radioisotope barium sulphate gauge MZB-2

    International Nuclear Information System (INIS)

    A method and the gauge for measuring content of barium sulphate are described. The gauge is intended for fast determination of barium sulphate in barite ore and in output products of the enrichment process. The measuring range 60-100% of BaSO4, accuracy ±1% and measuring time 60 s were reached. The barium sulphate gauge is used in barite mine ''Boguszow'' in Poland. (author)

  6. The problem of the barium stars

    Science.gov (United States)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  7. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full Text Available We describe a case of bilateral inhalation and alveolarisation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-oesophageal cleft. We review the literature on barium aspiration, its consequences and make recommendations for management.

  8. ONE CASE REPORT OF ACUTE POISONING BY BARIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    GE Qin-min; BIAN Fan; WANG Shu-yun; SHEN Sheng-hui

    2009-01-01

    @@ Most barium poisoning cases were caused by oral intake by mistake. Recent years, barium carbonate poisoning has been rare to be reported. Here we reported a case of acute barium carbonate toxication taken orally on purpose.

  9. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    Science.gov (United States)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  10. Simultaneous control of nanocrystal size and nanocrystal{nanocrystal separation in CdS nanocrystal assembly

    Indian Academy of Sciences (India)

    Sameer Sapra; D D Sarma

    2005-10-01

    We report an easy, one pot synthesis to prepare ordered CdS nanocrystals with varying inter-particle separation and characterize the particle separation using x-ray diffraction at low and wide angles.

  11. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  12. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers a

  13. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  14. Synthesis of barium titanium oxide from barium sulphate and anatase. Study of equimolar mixtures under different atmospheres

    International Nuclear Information System (INIS)

    To enable the ceramization of a barium sulphate-rich radioactive waste the synthesis of barium titanium oxide is studied by using anatase and barium sulphate. As a function of the calcination atmosphere, helium (or air) and Ar/H2, two reactions are studied. A mechanism of barium titanium oxide synthesis in helium (or in air) is proposed

  15. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  16. Developments in nanocrystal memory

    Directory of Open Access Journals (Sweden)

    Ting-Chang Chang

    2011-12-01

    Full Text Available Flash nonvolatile memory has been widely applied in portable electronic products. However, traditional flash memory is expected to reach physical limits as its dimensions are scaled down; the charges stored in the floating gate can leak out more easily through a thin tunneling oxide, causing a serious reliability issue. In order to solve this problem, discrete nanocrystal memory has been proposed and is considered to be a promising candidate for the next generation of nonvolatile memories due to its high operation speed, good scalability, and superior reliability. This paper reviews the current status of research in nanocrystal memory and focuses on its materials, fabrication, structures, and treatment methods to provide an in-depth perspective of state-of-the-art nanocrystal memory.

  17. PREPARATION OF ALKYL HALIDES VIA ORGANOTELLURIUMS

    OpenAIRE

    チカマツ, キヨフミ; オオツボ, テツオ; オグラ, フミオ; ヤマグチ, ハチロウ; Kiyofumi, CHIKAMATSU; Tetsuo, OTSUBO; Fumio, OGURA; Hachiro, YAMAGUCHI

    1982-01-01

    The conversion of phenyltelluroalkanes to haloalkanes was studied in connection with the homologation of alkyl halides. Similar reactions of 1,1-bis(phenyltelluro)alkanes provided a new synthetic method of aldehydes.

  18. Toxicity of organometal halide perovskite solar cells

    Science.gov (United States)

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  19. Copper Catalyzed Oceanic Methyl Halide Production

    OpenAIRE

    Robin Kim, Jae Yun; Rhew, Robert

    2014-01-01

    Methyl halides are found in all of Earth’s biomes, produced naturally or through manmade means. Their presence in the atmosphere is problematic, as they catalyze depletion of stratospheric ozone. To understand the full environmental impact of these compounds, it is important to identify their chemical cycling processes. Iron increases methyl halide production in soils and oceans, yet copper’s influence remains unknown despite its similar chemical oxidation properties to iron. I experimentally...

  20. Neutral Barium Cloud Evolution at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    李磊; 徐荣栏

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, we study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260km.This can be divided into oxidation, oxidation plus photoionization and photoionization regions.

  1. Small barium rail gun for plasma injection.

    Science.gov (United States)

    Kiwamoto, Y

    1980-03-01

    A small rail gun with a barium electrode can be operated at higher than one shot per second to produce more than 2x10(16) barium ions with energy 10-20 eV. The operation of the gun takes advantage of the external magnetic field for cross-field plasma injection into a trap. Up to 7 kG of the magnetic field examined, the gun performance improves with the increased magnetic field strength.

  2. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  3. Venous barium embolization, a rare, potentially fatal complication of barium enema: 2 case reports

    International Nuclear Information System (INIS)

    Venous embolization of barium has been recognized for 4 decades as one of the most dreaded complications of barium enema. Fortunately, the condition is extremely rare. In this report, the radiographic findings in 2 cases of venous embolization (one involving the portal vein and one systematic) are described, and ways to decrease the risk of this complication are discussed. (author)

  4. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  5. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  6. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  7. Cellular Uptake of Drug Nanocrystals

    OpenAIRE

    Seybold, Alexandra R; Li, Tonglei; Chen, Yan

    2014-01-01

    Systemic toxicity and poor solubility of existing chemotherapeutic drugs piqued an interest in the use of nanocrystals for chemotherapy. To increase cytotoxicity, surface coating of nanocrystals is of interest to enhance tumor targeting and reduce treatment toxicity. As such, we tested in this project various coated paclitaxel nanocrystals on cancer cells for determining the efficacy of surface coating. An IC50 assay was chosen to determine the cytotoxicity of surface-coated paclitaxel nanocr...

  8. The Antimicrobial Action of Silver Halides in Calcium Phosphate

    OpenAIRE

    Kalniņa, D; Gross, K; Onufrijevs, P.; Daukšta, E; Nikolajeva, V; Stankeviciute, Z; Kareiva, A.

    2015-01-01

    Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could ...

  9. Method for recovering hydrocarbons from molten metal halides

    Science.gov (United States)

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  10. 40 CFR 721.575 - Substituted alkyl halide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  11. The Einstein nanocrystal

    CERN Document Server

    Bertoldi, D S; Miranda, E N

    2016-01-01

    We study the simplest possible model of nanocrystal consisting in a simple cubic lattice with a small number of atoms (NA ~ 10-10^3), where each atom is linked to its nearest neighbor by a quantum harmonic potential. Some properties (entropy, temperature, specific heat) of the nanocrystal are calculated numerically but exactly within the framework of the microcanonical ensemble. We find that the presence of a surface in the nanocrystal modifies the thermostatistic properties to a greater extent than the small number of atoms in the system. The specific heat Cv behaves similarly to the Einstein solid, with an asymptotic value for high temperatures that differs from that of the Dulong-Petit law by a term of the order of NA^(-1/3) and that can be explained easily in terms of the surface. The entropy is non-additive, but this is due to the presence of the surface and we show that the additivity is recovered in the thermodynamic limit. Finally, we find that, when calculations follow the canonical ensemble, results...

  12. Harmonic dynamical behaviour of thallous halides

    Indian Academy of Sciences (India)

    Sarvesh K Tiwari; L J Shukla; K S Upadhyaya

    2010-05-01

    Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.

  13. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    . In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles of natural......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...... selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...

  14. Coherent Dark Resonances in Atomic Barium

    CERN Document Server

    Dammalapati, U; Jungmann, K; Willmann, L

    2007-01-01

    The observation of dark-resonances in the two-electron atom barium and their influence on optical cooling is reported. In heavy alkali earth atoms, i.e. barium or radium, optical cooling can be achieved using n^1S_0-n^1P_1 transitions and optical repumping from the low lying n^1D_2 and n^3D_{1,2} states to which the atoms decay with a high branching ratio. The cooling and repumping transition have a common upper state. This leads to dark resonances and hence make optical cooling less inefficient. The experimental observations can be accurately modelled by the optical Bloch equations. Comparison with experimental results allows us to extract relevant parameters for effective laser cooling of barium.

  15. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  16. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol

    2003-09-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  17. Refractory oxides containing aluminium and barium

    OpenAIRE

    Davies T.J.; Biedermann M.; Q-G. Chen; Emblem H. G.; Al-Douri W. A.

    1998-01-01

    Oxides containing aluminium and barium, optionally with chromium, are refractory with several possible industrial uses. A gel precursor of an oxide having the formula BaO.n(Al2xCr2yO3), where 1barium salt with a solution of an aluminium salt or a solution of an aluminium salt and a chromium III salt, then forming a gel which was fired to obtain the desired oxide. Filaments may be drawn as the gel is forming or extr...

  18. Electronic structure of nanograin barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    DENG Xiangyun; WANG Xiaohui; LI Dejun; LI Longtu

    2007-01-01

    The density of states and band structure of 20 nm barium titanate(BaTiO3,BT)ceramics are investigated by first-principles calculation.The full potential linearized augmented plane wave(FLAPW)method is used and the exchange correlation effects are treated by the generalized gradient approximation(GGA).The results show that there is substantial hybridization between the Ti 3d and O 2p states in 20 nm BT ceramics and the interaction between barium and oxygen is typically ionic.

  19. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  20. Surface modification of cellulose nanocrystals

    Science.gov (United States)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  1. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  2. Synthesis and characterization of BaCeO3 nanocrystals viasolvothermal-based method

    Institute of Scientific and Technical Information of China (English)

    XU Chao; ZHU Junwu; YANG Xujie; LU Lude; WANG Xin

    2008-01-01

    A facile approach to preparing well-dispersed nanocrystals of BaCeO3 was developed by a combination of solvothermal and annealing processes. The precursor consisted of amorphous BaCO3 and CeO2, and the conversion of the precursor to crystalline BaCeO3 nanocrystals occurred upon heat treatment at a relatively low temperature. The as-processed BaCeO3 had an orthorhombic structure and the average size of such crystals was approximately 80 nm. The obtained products were characterized by Fourier Transform Infrared (FT-IR), X-Ray Diffraction (XRD), Laser Raman Spectroscopy (LRS), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectrometry (EDS), and Transmission Electron Microscopy (TEM). This preparation process could also be used to synthesize doped barium cerate complex oxides BaCe0.95M0.05O3-d (M=Y, Nd, Gd, and Sm).

  3. The Additive Coloration of Alkali Halides

    Science.gov (United States)

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  4. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  5. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full...

  6. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  7. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  8. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  9. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos

    2011-07-01

    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  10. Electronic states of lead salt nanocrystal and nanocrystal assemblies

    Science.gov (United States)

    Yang, Jun

    With the development of new synthetic methods, semiconductor nanocrystals of various morphologies and dimensions have been created. This changes their electro-optical properties, and brings new questions in understanding. At the same time, more and more research is now focused on nanocrystal assemblies, in particular nanocrystal superlattices with atomically coherent lattices, with the potential for various optoelectronic device applications. This thesis examines, in both theory and experiment, a number of nanocrystal systems, with the stress on dimensionality and morphology. In particular, in 1D and 2D systems, due to the anisotropic quantum connenment, the electrons and holes will form a tightly bond excitons, even at room temperature, in contrast to 0D and 3D systems, where either quantum connenment or coulomb interaction completely dominates. We'll also look into nanocrystal assemblies, both amorphous and atomically coherent, and study the effect of the inherent disorder in the structure on their electronic properties, with the goal of charge transportation through delocalized states. Last, we'll examine the ne structure in these nanocrystals.

  11. Direct Phasing of Nanocrystal Diffraction

    OpenAIRE

    Elser, Veit

    2013-01-01

    Recent experiments at free-electron laser x-ray sources have been able to resolve the intensity distributions about Bragg peaks in nanocrystals of large biomolecules. Information derived from small shifts in the peak positions augment the Bragg samples of the particle intensity with samples of its gradients. Working on the assumption that the nanocrystal is entirely generated by lattice translations of a particle, we develop an algorithm that reconstructs the particle from intensities and int...

  12. Infrared spectra of FHF - in alkali halides

    Science.gov (United States)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  13. Lanthanide-halide based humidity indicators

    Science.gov (United States)

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  14. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.

  15. Process and composition for drying of gaseous hydrogen halides

    Science.gov (United States)

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  16. Iridium-catalyzed intramolecular [4 + 2] cycloadditions of alkynyl halides

    OpenAIRE

    Andrew Tigchelaar; William Tam

    2012-01-01

    Iridium-catalyzed intramolecular [4 + 2] cycloadditions of diene-tethered alkynyl halides were investigated by using [IrCl(cod)]2 as catalyst, and dppe was found to be the most suitable phosphine ligand for the reaction. No oxidative insertion of the iridium into the carbon–halide bond was observed, and the reactions proceeded to provide the halogenated cycloadducts in good yield (75–94%). These results are the first examples of cycloadditions of alkynyl halides using an iridium c...

  17. Production of translationally cold barium monohalide ions

    OpenAIRE

    DePalatis, M. V.; Chapman, M.S.

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  18. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  19. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    OpenAIRE

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides w...

  20. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  1. Making and Breaking of Lead Halide Perovskites.

    Science.gov (United States)

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  2. Organic Nanocrystals for Nanomedicine and Biophotonics

    OpenAIRE

    Baba, Koichi; Kasai, Hitoshi; Nishida, Kohji; Nakanishi, Hachiro

    2010-01-01

    In this chapter we described three topics; first, we explained how to prepare the organic nanocrystals in aqueous dispersion system using the reprecipitation method. Second, we referred the recent our achievements of organic nanocrystals in nanomedicine and biophotonics. Third, we remarked the future direction of organic nanocrystals in nanomedicine and biophotonics. We believe that our organic nanocrystals technology, recent results, and ideas will be helpful especially for biochemist, bioph...

  3. Semiconductor nanocrystal-based phagokinetic tracking

    Science.gov (United States)

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  4. Linearly arranged polytypic CZTSSe nanocrystals

    Science.gov (United States)

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  5. [Emissions of methyl halides from coastal salt marshes: A review].

    Science.gov (United States)

    Xie, Wen-xia; Zhao, Quan-sheng; Cui, Yu-qian; Du, Hui-na; Ye, Si-yuan

    2015-11-01

    Methyl halides are the major carrier of halogens in the atmosphere, and they play an important role in tropospheric and stratospheric ozone depletion. Meanwhile, methyl halides can act as greenhouse gases in the atmosphere, and they are also environmentally significant because of their toxicity. Coastal salt marshes, the important intertidal ecosystems at the land-ocean interface, have been considered to be a large potential natural source of methyl halides. In this paper, the research status of the natural source or sink of methyl halides, the mechanisms of their emission from coastal salt marshes and affecting factors were summarized. In view of this, the following research fields need to be strengthened in the future: 1) Long time-scale and large region-range researches about the emission of methyl halides and the evaluation of their source and sink function, 2) Accurate quantification of contribution rates of different plant species and various biological types to fluxes of methyl halides, 3) Further researches on effects of the tidal fluctuation process and flooding duration on methyl halides emission, 4) Effects of the global change and human activities on methyl halides emission. PMID:26915215

  6. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  7. Silver nanoparticles and silver ions stabilized in NaCl nanocrystals

    Science.gov (United States)

    Flores-López, N. S.; Cortez-Valadez, M.; Moreno-Ibarra, G. M.; Larios-Rodríguez, E.; Torres-Flores, E. I.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Ramírez-Rodríguez, L. P.; Arizpe-Chávez, H.; Castro-Rosas, J.; Ramirez-Bon, R.; Flores-Acosta, M.

    2016-10-01

    This study presents a two-step synthesis of nanoparticles and the stabilization process of Ag ions in the matrix of NaCl nanocrystals. Ag+ ions are incorporated to NaCl with a new and attractive method that can be easily used for the different types of alkaline halides. The nanoparticles with predominant size found between 10 and 15 nm were stabilized on the surface and/or interior of NaCl nanocrystals using, in the first stages, the ionic-exchange property of zeolite A4. The optical properties of the materials were characterized through optical absorption, leading to well defined absorption bands located in the wave length values between 217-275 nm and 350-770 nm approximately, for Ag+ and AgNp, respectively. The antibacterial property of Ag ions and nanoparticles stabilized in NaCl was analyzed against gram-negative Escherichia Coli and Klebsiella bacteria. In order to quantify the antibacterial effect of Ag ions and nanoparticles the inhibition ratio was used as a parameter on the bacteria colonies grown in culture medium by conventional methods. Ag+ ions that were stabilized in NaCl nanocrystals show a mayor inhibition ratio in contact with Klebsiella bacteria, conversely Ag nanoparticles showed better results in contact with E. coli.

  8. Direct Phasing of Nanocrystal Diffraction

    CERN Document Server

    Elser, Veit

    2013-01-01

    Recent experiments at free-electron laser x-ray sources have been able to resolve the intensity distributions about Bragg peaks in nanocrystals of large biomolecules. Information derived from small shifts in the peak positions augment the Bragg samples of the particle intensity with samples of its gradients. Working on the assumption that the nanocrystal is entirely generated by lattice translations of a particle, we develop an algorithm that reconstructs the particle from intensities and intensity gradients. Unlike traditional direct phasing methods that require very high resolution data in order to exploit sparsity of the electron density, our method imposes no constraints on the contrast other than positivity and works well at low resolution. We demonstrate successful reconstructions with simulated P1 lysozyme nanocrystal data down to a signal-to-noise ratio of 2 in the intensity gradients.

  9. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  10. Research Update: Luminescence in lead halide perovskites

    Science.gov (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  11. Ultraviolet absorption spectra of mercuric halides.

    Science.gov (United States)

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  12. Elastic Properties of Potassium Halides under Pressure

    Institute of Scientific and Technical Information of China (English)

    K.Haddadi; L.Louail; D.Maouche

    2008-01-01

    The moderate-pressure elastic properties of potassium halides KX (X=F, CI, Br) was studied theoretically using the density functional theory (DFT) with normconserving pseudopotentials method. The phase transfor- mation from the B1 phase (NaCl-type structure) to the denser B2 phase (CsCl-type structure) occurred at 7.7, 3.46 and 2.96 GPa for KF, KCl and KBr, respectively. The elastic stiffness coefficients and bulk modulus of these materials were calculated as function of hydrostatic pressure and compared with both the experimental and theoretical values.

  13. Studies of rare gas halide lasers

    OpenAIRE

    Hogan, Daniel Christopher.; Webb, Colin E.; Dr. C. E. Webb

    1983-01-01

    This thesis presents the results of a study of the mechanisms responsible for limiting the laser pulse duration obtainable in xenon chloride lasers which are excited by UV-preionized, self-sustained gas discharges. The xenon chloride laser system, the principal emission band of which is centred around 308 nm, belongs to the class of high pressure gas lasers known as 'rare-gas halides'(RGH). RGH lasers are now well known for their high peak power output at a number of wavelen...

  14. Computational Screening of Mixed Metal Halide Ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    selected by a Genetic Algorithm (GA), relying on biological principles of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. In this project we are searching for improved mixed materials with optimal desorption temperature and kinetics. We apply DFT calculations on mixed compounds...

  15. Europium-doped barium bromide iodide

    Energy Technology Data Exchange (ETDEWEB)

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  16. Barium dithionate as an EPR dosemeter.

    Science.gov (United States)

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  17. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  18. Barium enema findings of milk allergy in infants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyoung Ju; Kim, Mi Jeong; Lee, Hee Jung [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention.

  19. Grain Growth Kinetics of BaTiO3 Nanocrystals During Calcining Process

    Science.gov (United States)

    Song, Xiao-lan; He, Xi; Yang, Hai-ping; Qu, Yi-xin; Qiu, Guan-zhou

    2008-06-01

    BaTiO3 nanocrystals were synthesized by sol-gel method using barium acetate (Ba(CH3COO)2) and tetra-butyl titanate (Ti(OC4H9)4) as raw materials. Xerogel precursors and products were characterized by means of thermogravimetric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). The influence of the calcination temperature and duration on the lattice constant, the lattice distortion, and the grain size of BaTiO3 nanocrystals was discussed based on the XRD results. The grain growth kinetics of BaTiO3 nanocrystals during the calcination process were simulated with a conventional grain growth model which only takes into account diffusion, and an isothermal model proposed by Qu and Song, which takes into account both diffusion and surface reactions. Using these models, the pre-exponential factor and the activation energy of the rate constant were estimated. The simulation results indicate that the isothermal model is superior to the conventional one in describing the grain growth process, implying that both diffusion and surface reactions play important roles in the grain growth process.

  20. Electronic Structure of Semiconductor Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews our recent development of the use of the large-scale pseudopotential method to calculate the electronic structure of semiconductor nanocrystals, such as quantum dots and wires, which often contain tens of thousands of atoms. The calculated size-dependent exciton energies and absorption spectra of quantum dots and wires are in good agreement with experiments. We show that the electronic structure of a nanocrystal can be tuned not only by its size,but also by its shape. Finally,we show that defect properties in quantum dots can be significantly different from those in bulk semiconductors.

  1. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  2. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  3. Barium appendicitis: A single institution review in Japan

    Science.gov (United States)

    Katagiri, Hideki; Lefor, Alan Kawarai; Kubota, Tadao; Mizokami, Ken

    2016-01-01

    AIM To review clinical experience with barium appendicitis at a single institution. METHODS A retrospective review of patients admitted with a diagnosis of acute appendicitis, from January 1, 2013 to December 31, 2015 was performed. Age, gender, computed tomography (CT) scan findings if available, past history of barium studies, pathology, and the presence of perforation or the development of complications were reviewed. If the CT scan revealed high density material in the appendix, the maximum CT scan radiodensity of the material is measured in Hounsfield units (HU). Barium appendicitis is defined as: (1) patients diagnosed with acute appendicitis; (2) the patient has a history of a prior barium study; and (3) the CT scan shows high density material in the appendix. Patients who meet all three criteria are considered to have barium appendicitis. RESULTS In total, 396 patients were admitted with the diagnosis of acute appendicitis in the study period. Of these, 12 patients (3.0%) met the definition of barium appendicitis. Of these 12 patients, the median CT scan radiodensity of material in the appendix was 10000.8 HU, ranging from 3066 to 23423 HU (± 6288.2). In contrast, the median CT scan radiodensity of fecaliths in the appendix, excluding patients with barium appendicitis, was 393.1 HU, ranging from 98 to 2151 HU (± 382.0). The CT scan radiodensity of material in the appendices of patients with barium appendicitis was significantly higher than in patients with nonbarium fecaliths (P < 0.01). CONCLUSION Barium appendicitis is not rare in Japan. Measurement of the CT scan radiodensity of material in the appendix may differentiate barium appendicitis from routine appendicitis.

  4. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  5. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  6. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1S0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  7. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  8. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  9. Coprecipitation of europium with barium sulphate

    International Nuclear Information System (INIS)

    The distribution behaviour of the trivalent europium ion at a micro-component scale, between barium sulphate and aqueous solution, was studied at ambient temperature. Experiments were carried out using radioactive tracers. Results indicate an enrichment of the micro component in the solid phase relative to the solution. The effects of the concentrations of the micro and macro-elements on the coprecipitation have been examined. Europium distribution coefficient DEu increases from 1.1 ± 0.2 to 3.2 ± 0.4 when initial europium concentration decreases from more than 17 x 10-5 to 1.4 x 10-5 M, in sulphuric media with SO42- in excess or CBa2+/CSO42- Eu. The coprecipitation of europium with barium sulphate as a heterovalent solid-solution is described by heterogeneous model obeying the Doerner and Hoskins logarithmic partition law. The weaker partition coefficients lower than unity (λ = 0.25 when CEu(III) ∼ 1.4 x 10-5 M and λ = 0.13 when CBa2+/CSO42- -5 ≤ CEu(III) = 153.5 x 10-5 M) lead to crystals increasingly enriched in the trace element. (orig.)

  10. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  11. Nanocrystals Research for Energy Efficient and Clean Energy Technologies:

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Sandra J

    2013-12-17

    Efforts centered on: nanocrystal photovoltaic fabrication, ultrafast dynamics and aberration-corrected STEM characterization of II-VI core, core/shell and alloyed nanocrystals, and fundamental investigation and applications of ultrasmall white light-emitting CdSe nanocrystal.

  12. Electrospinnability of bionanocomposites with high nanocrystal loadings: The effect of nanocrystal surface characteristics.

    Science.gov (United States)

    Naseri, Narges; Mathew, Aji P; Oksman, Kristiina

    2016-08-20

    This paper deals with the effect of solution properties and nanoparticle surface chemistry on the spinnability of a chitosan/polyethylene oxide (PEO) with high concentration (50wt%) of chitin and cellulose nanocrystals and the properties of the resultant nanocomposite fibers/fiber mats. Electrospinning dispersions with cellulose nanocrystals having sulphate surface groups showed poor spinnability compared to chitin nanocrystals with amide and amino groups. Chitin nanocrystal based dispersions showed good spinnability and continuous fiber formation whereas cellulose nanocrystal system showed discontinuous fibers and branching. The viscosity and surface tension are shown to impact this behavior, but conductivity did not. Poor spinnability observed for cellulose nanocrystal based fibers was attributed to the coagulation of negatively charged cellulose nanocrystals and positively charged chitosan. The study showed that the nanocrystal surface charge and interactions with the chitosan/PEO matrix have a significant impact on the spinnability of bionanocomposites. PMID:27178953

  13. Strengthening mechanism of steels treated by barium-bearing alloys

    Institute of Scientific and Technical Information of China (English)

    Zhouhua Jiang; Yang Liu

    2008-01-01

    The deoxidation, desulfurization, dephosphorization, microstructure, and mechanical properties of steels treated by barium-bearing alloys were investigated in laboratory and by industrial tests. The results show that barium takes part in the deoxidation reaction at the beginning of the experiments, generating oxide and sulfide compound inclusions, which easily float up from the molten steel, leading to the rapid reduction of total oxygen content to a very low level. The desulfurization and dephosphorization capabilities of calcium-bearing alloys increase with the addition of barium. The results of OM and SEM observations and mechanical property tests show that the structure of the steel treated by barium-bearing alloys is refined remarkably, the iamellar thickness of pearlitic structure decreases, and the pearlitic morphology shows clustering distribution. Less barium exists in steel substrate and the enrichment of barium-bearing precipitated phase mostly occurs in grain boundary and phase boundary, which can prevent the movement of grain boundary and dislocation during the heat treatment and the deformation processes. Therefore, the strength and toughness of barium-treated steels are improved by the effect of grain-boundary strengthening and nail-prick dislocation.

  14. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  15. Designed microstructures in textured barium hexaferrite

    Science.gov (United States)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  16. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    Science.gov (United States)

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  17. Chemical composition of Eu2+ luminescence in the barium hexaaluminates

    International Nuclear Information System (INIS)

    This paper consists of two parts. In the first part the chemical composition of two kinds of barium hexaaluminate (one poor and one rich in barium) is explained using the local electroneutrality concept. In the second part a reinvestigation of the Eu2+ luminescence in these compounds is reported. The emission spectrum of each of the two compounds shows a blue and a green emission bank. The blue emission bank is ascribed to Eu2+ ions at barium sites, whereas the green emission band is identified with Eu2+ ions incorporated at aluminum sites within spinel blocks of the structure

  18. Barium concentration in grain of Aegilops and Triticum species

    Directory of Open Access Journals (Sweden)

    Denčić Srbislav S.

    2015-01-01

    Full Text Available The aim of this study was to evaluate the concentration of barium in grain of various Aegilops and Triticum species with different genomes. The studied species differed significantly with respect to the concentration of barium. The grain of wild diploid Aegilops speltoides, the donor of B genome, contained significantly higher Ba concentration than all other analyzed genotypes. Wild and cultivated tetraploid wheats (Triticum diciccoides, Triticum dicoccon, Triticum turgidum and Triticum durum had the lowest Ba concentration in grain. The modern cultivated hexaploid varieties presented substantial variation in grain concentration of barium. The highest Ba concentration (3.42 mg/kg occurred in Serbian winter wheat variety Panonnia.

  19. Stable, free-standing Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, I.D.; Xu, Q.; Liao, C.Y.; Yi, D.O.; Beeman, J.W.; Liliental-Weber, Z.; Yu, K.M.; Zakharov, D.N.; Ager III, J.W.; Chrzan,D.C.; Haller, E.E.

    2005-01-28

    Free-standing Ge nanocrystals that are stable under ambient conditions have been synthesized in a two-step process. First, nanocrystals with a mean diameter of 5 nm are grown in amorphous SiO{sub 2} by ion implantation followed by thermal annealing. The oxide matrix is then removed by selective etching in diluted HF to obtain free-standing nanocrystals on a Si wafer. After etching, nanocrystals are retained on the surface and the size distribution is not significantly altered. Free-standing nanocrystals are stable under ambient atmospheric conditions, suggesting formation of a self-limiting native oxide layer. For free-standing as opposed to embedded Ge nanocrystals, an additional amorphous-like contribution to the Raman spectrum is observed and is assigned to surface reconstruction-induced disordering of near-surface atoms.

  20. Metal halide perovskites for energy applications

    Science.gov (United States)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  1. Structure of barium sodium trimetaphosphate trihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Averbuch-Pouchot, M.T.; Durif, A.

    1987-03-15

    BaNaP/sub 3/O/sub 9/ . 3H/sub 2/O, M/sub r/=451.29, triclinic, Panti 1, a=7.067(3), b=9.071(3), c=9.906(4) A, ..cap alpha..=116.46(5), ..beta..=95.97(5), ..gamma..=74.03(5)/sup 0/, V=546.4 A/sup 3/, Z=2, D/sub m/ not measured, D/sub x/=2.743 Mg m/sup -3/, lambda(Mo K..cap alpha..)=0.7107 A, ..mu..=4.28 mm/sup -1/, F(000)=428, T=293 K, R=0.028 for 3775 independent reflexions. The P/sub 3/O/sub 9/ ring anions and the water molecules build up a three-dimensional network through hydrogen bonds. Inside this network barium and sodium have respectively nine- and sevenfold coordinations.

  2. Analysis of europium doped luminescent barium thioaluminate

    Institute of Scientific and Technical Information of China (English)

    张东璞; 喻志农; 薛唯; 章婷; 丁瞾; 王武育

    2010-01-01

    Europium-doped barium thioaluminate sputtering target was synthesized by powder sintering method and thin film was deposited by radio frequency(RF) sputtering.X-ray diffractometer(XRD) pattern indicated that the main compound of the target was BaAl4S7.Oxygen was the main impurity which led to the formation of BaAl2O4.It was shown that both BaAl4S7 and BaAl2S4 were contained in the as-grown thin films and a 471.7 nm emission peak in the PL spectra appeared due to a combination of BaAl4S7:Eu2+ and BaAl2S4:Eu2...

  3. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  4. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.M. [Genetic Engineering and Biotechnology Research Institute (GEBRI), Minufiya University, Sadat City (Egypt); El-Shahawi, M.S. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)]. E-mail: mohammad_el_shahawi@yahoo.co.uk; Abdel-Azeem, M. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)

    2006-01-12

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 {+-} 0.4 mV/decade of activity within the concentration range 5 x 10{sup -5} to 10{sup -1} M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 {+-} 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices.

  5. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    International Nuclear Information System (INIS)

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 ± 0.4 mV/decade of activity within the concentration range 5 x 10-5 to 10-1 M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 ± 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices

  6. The Karlsruhe 4π barium fluoride detector

    International Nuclear Information System (INIS)

    A new experimental approach has been implemented for accurate measurements of neutron capture cross sections in the energy range from 5 to 200 keV. The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre. The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time reslution is 500 ps and the peak efficiency 90% at 1 MeV. The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum. Neutrons are produced via the 7Li(p,n)7Be reaction using the pulsed proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energies. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm. The combination of short primary flight path, a 10 cm inner radius of the spherical BaF2 shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. (orig./HSI)

  7. Solar induced growth of silver nanocrystals

    OpenAIRE

    Thøgersen, Annett; Muntingh, Georg

    2012-01-01

    The effect of solar irradiation on plasmonic silver nanocrystals has been investigated using Transmission Electron Microscopy and size distribution analysis, in the context of solar cell applications for light harvesting. Starting from an initial collection of spherical nanocrystals on a carbon film whose sizes are log-normally distributed, solar irradiation causes the nanocrystals to grow, with one particle reaching a diameter of 638 nm after four hours of irradiation. In addition some of th...

  8. Silicon Nanocrystal Films for Electronic Applications

    OpenAIRE

    Lechner, Robert

    2009-01-01

    With respect to potential applications as a printable semiconductor material, the optical, structural, and electronic properties of silicon nanocrystal layers before and after two different methods of thermal post-processing are investigated in this work. Liquid dispersions of gas-phase grown silicon nanocrystals in ethanol were produced by a ball milling dispersion method which can be used to form porous nanocrystal layers by spin coating. Evidence for a large degree of surface segregation o...

  9. Silver-catalyzed coupling reactions of alkyl halides with indenyllithiums

    OpenAIRE

    Someya, Hidenori; Yorimitsu, Hideki; Oshima, Koichiro

    2010-01-01

    Coupling reactions of tertiary and secondary alkyl halides with indenyllithiums proceeded effectively in the presence of a catalytic amount of silver bromide to provide tertiary- and secondary-alkyl-substituted indene derivatives in good yields.

  10. Novel Silver Cobaltacarborane Complexes with a Linearly Bridging Halide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Seo; Bae, Hye Jin; Do, Youngkyu [KAIST, Daejeon (Korea, Republic of); Park, Youngwhan [LG Chem/Research Park, Daejeon (Korea, Republic of); Go, Min Jeong; Lee, Junseong [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-10-15

    The structural versatility of halides mainly originates from their coordinating abilities of adopting a bridging bond between two or more metal atoms, as well as a terminal bond. Moreover, a halide bridging bond angle is so flexible that thermodynamic stability can be endowed with proper geometry, which conceptually varies from acute to right, obtuse, and linear. In spite of innumerable reports on molecular metal halides, examples of the linearly bridging fashion are very scarce. The reason for the rarity of the linear M. X. M arrangement can be easily explained by the VSEPR (Valence Shell Electron Pair Repulsion) concept. The linear M. X. M formation has only been achieved by adopting a macrocyclic chelate ligand, which is structurally demanding, so that the VSEPR repulsions among lone-pair electrons on the halide atom could be overcome.

  11. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  12. Multicolored luminescent CdS nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The observation of efficient blue, green, orange and red luminescence from CdS nanocrystals made by using a reverse micelle method was reported. The blue luminescence about 480 nm is attributed to the radiative recombination of electron-hole pairs.The red luminescence around 650 nm is due to the radiative recombination of the exciton trapped in the nanocrystal surface defect states. The combination of different portion of band-edge emission and surface trap state emission results in green and orange luminescence for the nanocrystals. The CdS nanocrystals with efficient multicolored luminescence may find potential application in full color displays and biolabelings.

  13. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    Science.gov (United States)

    Zhao, Yixin; Zhu, Kai

    2016-02-01

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. PMID:26645733

  14. Theory of the late stage of radiolysis of alkali halides

    OpenAIRE

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of Vt centers (self-trapped ...

  15. A NOVEL HYDROTHERMAL SYNTHESIS METHOD FOR BARIUM FERRITE

    Institute of Scientific and Technical Information of China (English)

    Kang Li; Hongchen Gu; Qun Wei

    2004-01-01

    In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 ℃ using barium chloride (BaCl2), ferrous chloride (FeCl2) and potassium nitrate (KNO3) as the starting materials. Both particle size and saturation magnetization (Ms) increase with increasing hydrothermal reaction temperature, while the intrinsic coercivity (iHc) peaks at 685 Oe at 230 ℃. Morphology progress from the barium ferrite precursor particles to the barium hexaferrite particles has been monitored with increasing hydrothermal reaction time at 230 ℃ in the autoclave.

  16. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    Institute of Scientific and Technical Information of China (English)

    Pankaj; Gupta; Uma; Debi; Saroj; Kant; Sinha; Kaushal; Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract(GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence,a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities.

  17. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  18. Peritonite por bário Barium peritonitis

    Directory of Open Access Journals (Sweden)

    Gerson Alves Pereira Júnior

    1999-10-01

    Full Text Available We report a case of a 49 years-old man who underwent a barium meal examination for an epigastric pain. A perforated gastric ulcer with barium extravasation into peritoneal cavity was seen on X-rays. During an emergency laparotomy, a perforated pyloric ulcer was noted, along with barium contamination in the peritoneal cavity. The ulcer was closed with an omental patch and an extensive peritoneal lavage with saline was performed. During the postoperative period, the patient developed signs of peritonitis and underwent a new laparotomy was at the 9th day showing a subfrenic abscess with a large barium contamination. The patient presented septic shock and multiple organ failure. dying on the 21th day.

  19. Size Controlled Synthesis of Germanium Nanocrystals: Effect of Ge Precursor and Hydride Reducing Agent

    Directory of Open Access Journals (Sweden)

    Darragh Carolan

    2015-01-01

    Full Text Available Germanium nanocrystals (Ge NCs have attracted increasing attention as a promising alternative to II–VI and IV–VI semiconductor materials as they are cheap, “green,” electrochemically stable, and compatible with existing CMOS processing methods. Germanium is a particularly attractive material for optoelectronic applications as it combines a narrow band gap with high carrier mobilities and a large exciton Bohr radius. Solution-phase synthesis and characterisation of size monodisperse alkyl-terminated Ge NCs are demonstrated. Ge NCs were synthesised under inert atmospheric conditions via the reduction of Ge halide salts (GeX4 by hydride reducing agents within inverse micelles. Regulation of NC size is achieved by variation of germanium precursor and the strength of hydride reducing agents used. UV-Visible absorbance and photoluminescence spectroscopy showed strong significant quantum confinement effects, with moderate absorption in the UV spectral range, and strong emission in the violet with a marked dependence on excitation wavelength.

  20. Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs.

    Science.gov (United States)

    Meyns, Michaela; Perálvarez, Mariano; Heuer-Jungemann, Amelie; Hertog, Wim; Ibáñez, Maria; Nafria, Raquel; Genç, Aziz; Arbiol, Jordi; Kovalenko, Maksym V; Carreras, Josep; Cabot, Andreu; Kanaras, Antonios G

    2016-08-01

    Cesium lead halide (CsPbX3, X = Cl, Br, I) nanocrystals (NCs) offer exceptional optical properties for several potential applications but their implementation is hindered by a low chemical and structural stability and limited processability. In the present work, we developed a new method to efficiently coat CsPbX3 NCs, which resulted in their increased chemical and optical stability as well as processability. The method is based on the incorporation of poly(maleic anhydride-alt-1-octadecene) (PMA) into the synthesis of the perovskite NCs. The presence of PMA in the ligand shell stabilizes the NCs by tightening the ligand binding, limiting in this way the NC surface interaction with the surrounding media. We further show that these NCs can be embedded in self-standing silicone/glass plates as down-conversion filters for the fabrication of monochromatic green and white light emitting diodes (LEDs) with narrow bandwidths and appealing color characteristics. PMID:27454750

  1. Synthesis of methyl halides from biomass using engineered microbes.

    Science.gov (United States)

    Bayer, Travis S; Widmaier, Daniel M; Temme, Karsten; Mirsky, Ethan A; Santi, Daniel V; Voigt, Christopher A

    2009-05-13

    Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.

  2. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    International Nuclear Information System (INIS)

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe12O19/Fe3O4 nanocomposites form after a 20 h milling due to the partial reduction of BaFe12O19. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites including iron nano-crystals forms by

  3. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M.J., E-mail: mj.molaee@merc.ac.ir [Materials and Energy Research Center, P.O. Box: 31787-316, Karaj (Iran, Islamic Republic of); Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands); Ataie, A.; Raygan, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Picken, S.J. [Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites

  4. Lead sulphide nanocrystal photodetector technologies

    Science.gov (United States)

    Saran, Rinku; Curry, Richard J.

    2016-02-01

    Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.

  5. Electrorheological behavior of rare earth-doped barium titanate suspensions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Doping Y, La, Ce into barium titanate is found to be able to improve its electrorheological (ER) effect in DC electrical field. The yield stress of a typical doped barium titanate/silicone oil suspension is approximately 3.2 -*7〗kPa at 3.5 -*7〗kV/mm, which is 10 times larger than that of pure barium titanate/silicone oil suspensions. The ER effect increases with the decrease of ionic radius of rare earth (RE) dopant when RE concentration remains constant, and the suspensions exhibit a relatively high shear stress when Y, La, Ce mole fractions are 15%, 10%~15%, and 5%, respectively. Dielectric measurements show that the suitable doping with RE element increases dielectric loss of barium titanate and causes very marked dielectric relaxation at low frequency. By measuring X-ray diffraction patterns of doped barium titanate, it is considered that the occurrence of lattice distortion or defects may be responsible for the change of dielectric properties which results in the improvement of ER effect of barium titanate in DC electrical field.

  6. Lifetime Measurement for 6snp Rydberg States of Barium

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; WANG Lei; YANG Hai-Feng; LIU Xiao-Jun; LIU Hong-Ping

    2011-01-01

    @@ We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states.This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence.The lifetimes determined with our method for barium Rydberg 6snp(n=37-59)series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J.Phys.B 14(1981)4489, 29(1996)655]on experiments.%We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states. This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence. The lifetimes determined with our method for barium Rydberg 6snp (n=37-59) series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J. Phys. B 14 (1981) 4489, 29 (1996) 655] onexperiments.

  7. Seasonal variations in halides in marine brown algae from Porbandar and Okha coasts (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y.S.

    percentage of enrichment factor) of halides shows that the tissue concentration of each halide was independent of other halides accumulation. The extent of bioaccumulation could be related to intrinsic property such as x space (spectroscopic electronegativity...

  8. Emission efficiency limit of Si nanocrystals

    NARCIS (Netherlands)

    Limpens, R.; Luxembourg, S.L.; Weeber, A.W.; Gregorkiewicz, T.

    2016-01-01

    One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use

  9. Structure Map for Embedded Binary Alloy Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  10. Biomaterials supported CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Balu, Alina M. [Institute of Physical Chemistry ' Ilie Murgulescu' , Spl. Independentei 202, 060021 Bucharest (Romania); Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Campelo, Juan M. [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Luque, Rafael, E-mail: q62alsor@uco.es [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain); Rajabi, Fatemeh [Department of Science, Payame Noor University, PO Box 878, Qazvin (Iran, Islamic Republic of); Romero, Antonio A. [Departamento de Quimica Organica, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV, Km 396, Universidad de Cordoba, E-14014 Cordoba (Spain)

    2010-11-01

    CdS quantum dot materials were prepared through a simple room temperature deposition of CdS nanocrystals on biomaterials including starch and chitosan. Materials obtained were found to contain differently distributed CdS nanocrystals on the surface of the biopolymers, making them potentially interesting for biomedical applications as contrast agents and/or in photocatalysis.

  11. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  12. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  13. Copper selenide nanocrystals for photothermal therapy.

    Science.gov (United States)

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-01

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications. PMID:21553924

  14. Leachability of barium-radium sulphate sludges

    International Nuclear Information System (INIS)

    This paper presents results from the first phase of a research program designed to examine the leachability of radium-226 from barium-radium sulphate sludges. Batch leaching tests were performed. Results showed that liquid:solid contact time was relatively unimportant; radium in the sludge was stable in the presence of deionized water with a slight increase in the amount leached per gram of sludge occurring at higher liquid:solid ratios. Not unexpectedly, low and high values of leachant pH increased radium leaching. Both monovalent and divalent salt solutions also increased leaching; however, dissolved radium-226 activity levels in the leachate decreased as leachant molarity increased. For divalent salts this can be explained by the common ion effect; for monovalent salts it is opposite to results expected from solubility considerations. The interpretation of all results is complicated by the fact that in most tests, the amount of radium-226 present in the leachate was lower than the calculated contribution from the mother liquour present with the sludge. This apparent ability of the sludge to absorb radium from solution may be related to dissolution and reprecipitation of the sludge during the leaching tests

  15. Color silver halide hologram production and mastering

    Science.gov (United States)

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  16. Exploiting the colloidal nanocrystal library to construct electronic devices

    Science.gov (United States)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  17. The diagnostic value of barium enema in acute appendicitis

    International Nuclear Information System (INIS)

    Acute appendicitis is the most common acute surgical condition of the abdomen. When the clinical presentation is atypical, barium enema has proven to be safe and useful in confirming the diagnosis and reducing the negative surgical exploration. However, the performance of barium enema in acute appendicitis has known contraindication primarily because of fear of leakage by perforation of the inflamed appendix. This study using barium enema as a diagnostic aid in acute appendicitis with atypical clinical presentation was performed to further support the previously noted efficacy and safety of this procedure. The results were as followings: 1. In case of acute appendicitis with atypical clinical presentation, the use of barium enema as a diagnostic aid increased the accuracy of diagnosis and decreased the negative surgical exploration. In women between 11 to 50 years old age, especially, it played important role differentiating appendicitis from nonsurgical acute abdomen. 2. The results of the study were 92.31% in sensitivity, 7.69% in false positive, 6.9% in false negative, and 10.26% in negative appendectomy. 3. None of case of leakage of barium by perforation of the inflamed appendix was noted, therefore, barium enema was thought to be safe as a diagnostic aid in acute appendicitis. 4. A simple partial or non filling of appendix without other associated positive finding could not exclude appendicitis, therefore, close clinical observation was necessary. 5. The positive findings of barium enema and their sensitivity were as followings: 1. Non filling of appendix: 90% 2. Partial filling of appendix: 91.7% 3. Displacement or a local impression on terminal ileum: 100%

  18. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  19. Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals.

    Science.gov (United States)

    Mittal, Mona; Jana, Atanu; Sarkar, Sagar; Mahadevan, Priya; Sapra, Sameer

    2016-08-18

    A few approaches have been employed to tune the band gap of colloidal organic-inorganic trihalide perovskites (OTPs) nanocrystals by changing the halide anion. However, to date, there is no report of electronic structure tuning of perovskite NCs upon changing the organic cation. We report here, for the first time, the room temperature colloidal synthesis of (EA)x(MA)1-xPbBr3 nanocrystals (NCs) (where, x varies between 0 and 1) to tune the band gap of hybrid organic-inorganic lead perovskite NCs from 2.38 to 2.94 eV by varying the ratio of ethylammonium (EA) and methylammonium (MA) cations. The tuning of band gap is confirmed by electronic structure calculations within density functional theory, which explains the increase in the band gap upon going toward larger "A" site cations in APbBr3 NCs. The photoluminescence quantum yield (PLQY) of these NCs lies between 5% to 85% and the average lifetime falls in the range 1.4 to 215 ns. A mixture of MA cations and its higher analog EA cations provide a versatile tool to tune the structural as well as optoelectronic properties of perovskite NCs. PMID:27494515

  20. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    Science.gov (United States)

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. PMID:27174223

  1. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    Science.gov (United States)

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.

  2. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Science.gov (United States)

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  3. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)

  4. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.;

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide. This is...

  5. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  6. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  7. Deoxidation Behavior of Alloys Bearing Barium in Molten Steel

    Institute of Scientific and Technical Information of China (English)

    LI Yang; JIANG Zhou-hua; JIANG Mao-fa; WANG Jun-wen; GU Wen-bing

    2003-01-01

    The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K. The total oxygen contents of molten steel, the distribution, size and morphology of deoxidation products in the steel were surveyed. The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed. The results show that applying alloy bearing barium to the pipe steel, very low total oxygen contents can be obtained, and deoxidation products, which easily float up from molten steel, can be changed into globular shape and uniformly distributed in steel. The equilibrium time of total oxygen is about 25 min, and the terminal total oxygen contents range from 0.002 0 % to 0.002 2 % after treating with SiCa wire. The best deoxidizers are SiAlBaCa and SiAlBaCaSr.

  8. Economically dissolving barium sulfate scale with a chelating agent

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.E.

    1977-06-21

    A composition is described for dissolving a barium sulfate scale from a subterranean or other relatively remote location into which fluid can be flowed. Fluid is flow-flowed into the remote location so that a stream of fluid contacts and flows along the surface of the scale. The composition and flow rate of the fluid are adjusted so that (1) the scale is contacted by a stream of aqueous solution in which each portion contains enough dissolved aminopolyacetic acid salt chelating agent to dissolve barium sulfate, and (2) substantially all upstream portions of the scale are contacted by a succession of portions of the aqueous liquid which are substantially unsaturated with respect to dissolved barium-chelant complex. (5 claims)

  9. Progress in the study of drug nanocrystals.

    Science.gov (United States)

    Shi, Jing; Guo, Fei; Zheng, Aiping; Zhang, Xiaoyan; Sun, Jianxu

    2015-12-01

    The poor water solubility of many candidate drugs remains a major obstacle to their development and clinical use, especially for oral drug delivery. Nanocrystal technology can improve the solubility and dissolution rates of many poorly water-soluble drugs very effectively, significantly improving their oral bioavailability and decreasing the food effect. For this reason, this technology is becoming a key area of drug delivery research. This review presents much of the recent progress in nanocrystal drug pharmaceuticals, including the characteristics, composition, preparation technology, and clinical applications of these drugs. Finally, the effect of nanocrystal technology on insoluble drugs is quantified and described. PMID:26817271

  10. Radiation dose in mass screening for gastric cancer with high-concentration barium sulphate compared with moderate-concentration barium sulphate

    International Nuclear Information System (INIS)

    Full text: Recently, high-concentration barium sulfate has been developed and is used in many medical facilities. This study compared radiation dose using high-concentration and moderate-concentration barium sulfate. The dose was evaluated with an experimental method using a gastric phantom and with a clinical examination. In the former, the dose and X-ray tube load were measured on the phantom with two concentrations of barium sulfate. In the latter, the fluoroscopic dose-area product (DAP), the radiographic DAP and their sum, the total DAP, were investigated in 150 subjects (112 males, 38 females) treated with both concentrations of barium sulfate. The effective dose was calculated by the software of PCXMC in every case. The results of the experimental evaluation indicated that the effective dose and X-ray tube load were greater with high-concentration barium sulfate than with moderate-concentration barium sulfate (p < 0.05). The results of the clinical evaluation indicated that the fluoroscopic DAP was greater with moderate-concentration barium sulfate than with high-concentration barium sulfate (p < 0.05), but the radiographic DAP was quite the reverse, so the total DAP and effective dose were almost same with both concentrations of barium sulfate. We conclude that high-concentration barium sulfate does not increase radiation dose in mass screening for gastric cancer.

  11. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  12. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2010-06-28

    ... International Trade Administration Barium Chloride From the People's Republic of China: Continuation of... China: Final Results of Expedited Third Sunset Review of Antidumping Duty Order, 74 FR 55814 (October 29... Barium Chloride From China, 75 FR 33824 (June 15, 2010), and Barium Chloride from China (Inv. No....

  13. The adhesiometer: a simple device to measure adherence of barium sulfate to intestinal mucosa.

    Science.gov (United States)

    Salomonowitz, E; Frick, M P; Cragg, A H; Lund, G

    1984-04-01

    A simple, inexpensive device assessing barium sulfate adherence to alimentary tract mucosa was tested in an animal study using pigs and dogs. Interaction of gastric, intestinal, and colonic mucosal lining with three different barium preparations was studied. In both pigs and dogs, barium adherence to gastric mucosa was significantly stronger when compared with colonic mucosa. PMID:6608230

  14. Photoionization and Photoelectric Loading of Barium Ion Traps

    OpenAIRE

    Steele, A. V.; Churchill, L. R.; Griffin, P. F.; Chapman, M. S.

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading t...

  15. Equations of state for barium in high-pressure phases

    International Nuclear Information System (INIS)

    The universal equation of state with an arbitrary reference point presented by the author (Fang Zheng-Hua 1998 Phys. Rev. B 50 16 238) is applied successfully to the analysis of the experimental compression data of barium in different structural phases (I, II, and V). The comparison given in this paper shows that this equation suits for the isothermal compression behaviour of barium in the high-pressure phases (II and V) better than the Birch-Murnaghan equation. The applicability of equations of state for solids in high-pressure phases is also discussed. (author)

  16. Kinetics of thermal decomposition of barium zirconyl oxalate

    International Nuclear Information System (INIS)

    Kinetics of the thermal decomposition of anhydrous barium zirconyl oxalate and a carbonate intermediate have been studied. Decomposition of the anhydrous oxalate, though it could be explained based on a contracting-cube model, is quite complex. Kinetics of decomposition of the intermediate carbonate Ba2Zr2O5CO3 is greatly influenced by thermal effects during its formation. (α-t) curves are sigmoidal and obey a power law equation followed by first order decay. Presence of carbon in the vacuum-prepared carbonate has a strong deactivating effect. Decomposition of the carbonate is accompanied by growth in particle size of the product barium zirconate. (Author)

  17. Photoionization and Photoelectric Loading of Barium Ion Traps

    CERN Document Server

    Steele, A V; Churchill, L R; Griffin, P F

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.

  18. Esophageal intramural pseudodiverticulosis characterized by barium esophagography: a case report

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-05-21

    Abstract Introduction Esophageal intramural pseudodiverticulosis is a rare condition characterized by the dilatation of the submucosal glands. Case presentation We present a case of esophageal intramural pseudodiverticulosis in a 72-year-old Caucasian man who presented with dysphagia and with a background history of alcohol abuse. An upper gastrointestinal endoscopy of our patient showed an esophageal stricture with abnormal mucosal appearances, but no malignant cells were seen at biopsy. Appearances on a barium esophagram were pathognomonic for esophageal intramural pseudodiverticulosis. Conclusion We demonstrate the enduring usefulness of barium esophagography in the characterization of abnormal mucosal appearances at endoscopy.

  19. Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors

    Science.gov (United States)

    Lv, Longfei; Xu, Yibing; Fang, Hehai; Luo, Wenjin; Xu, Fangjie; Liu, Limin; Wang, Biwei; Zhang, Xianfeng; Yang, Dong; Hu, Weida; Dong, Angang

    2016-07-01

    All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets combined with their unique 2D geometry and large lateral dimensions make them ideal building blocks for building functional devices. To demonstrate their potential applications in optoelectronics, photodetectors based on CsPbBr3 nanosheets are fabricated, which exhibit high on/off ratios with a fast response time.All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets

  20. Chemical abundance analysis of 19 barium stars

    Science.gov (United States)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  1. Size-Dependent Raman Shifts for nanocrystals.

    Science.gov (United States)

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-04-22

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size.

  2. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  3. Gas phase grown silicon germanium nanocrystals

    Science.gov (United States)

    Mohan, A.; Tichelaar, F. D.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.

    2016-09-01

    We report on the gas phase synthesis of highly crystalline and homogeneously alloyed Si1-xGex nanocrystals in continuous and pulsed plasmas. Agglomerated nanocrystals have been produced with remarkable control over their composition by altering the precursor GeH4 gas flow in a continuous plasma. We specially highlight that in the pulsed plasma mode, we obtain quantum-sized free standing alloy nanocrystals with a mean size of 7.3 nm. The presence of Si1-xGex alloy particles is confirmed with multiple techniques, i.e. Raman spectroscopy, XRD (Xray diffraction) and HRTEM (high resolution transmission electron microscopy) studies, with each of these methods consistently yielding the same composition. The nanocrystals synthesized here have potential applications in band-gap engineering for multijunction solar cells.

  4. Size-effect of germanium nanocrystals

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan;

    2011-01-01

    Different sizes of Ge nanocrystals embedded in a SiO2 matrix were formed by PECVD, and analyzed by TEM. Size effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect.......Different sizes of Ge nanocrystals embedded in a SiO2 matrix were formed by PECVD, and analyzed by TEM. Size effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect....

  5. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  6. Medical imaging scintillators from glass-ceramics using mixed rare-earth halides

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Ding, Yong; Elder, Eric; Nadler, Jason H.

    2016-10-01

    Recent years have seen greater interest in developing new luminescent materials to replace scintillator panels currently used in medical X-ray imaging systems. The primary areas targeted for improvement are cost and image resolution. Cost reduction is somewhat straightforward in that less expensive raw materials and processing methods will yield a less expensive product. The path to improving image resolution is more complex because it depends on several properties of the scintillator material including density, transparency, and composition, among others. The present study focused on improving image resolution using composite materials, known as glass-ceramics that contain nanoscale scintillating crystallites formed within a transparent host glass matrix. The small size of the particles and in-situ precipitation from the host glass are key to maintaining transparency of the composite scintillator, which ensures that a majority of the light produced from absorbed X-rays can actually be used to create an image of the patient. Because light output is the dominating property that determines the image resolution achievable with a given scintillator, it was used as the primary metric to evaluate performance of the glass-ceramics relative to current scintillators. Several glass compositions were formulated and then heat treated in a step known as "ceramization" to grow the scintillating nanocrystals, whose light output was measured in response to a 65 kV X-ray source. Performance was found to depend heavily on the thermal history of the glass and glass-ceramic, and so additional studies are required to more precisely determine optimal process temperatures. Of the compositions investigated, an alumino-borosilicate host glass containing 56mol% scintillating rare-earth halides (BaF2, GdF3, GdBr3, TbF3) produced the highest recorded light output at nearly 80% of the value recorded using a commercially-available GOS:Tb panel as a reference.

  7. Cellulose nanocrystals: synthesis, functional properties, and applications

    Directory of Open Access Journals (Sweden)

    George J

    2015-11-01

    Full Text Available Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. Keywords: sources of cellulose, mechanical properties, liquid crystalline nature, surface modification, nanocomposites 

  8. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    Science.gov (United States)

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  9. Method for calcining nuclear waste solutions containing zirconium and halides

    Science.gov (United States)

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  10. Kinetic Studies of the Solvolysis of Two Organic Halides

    Science.gov (United States)

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  11. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  12. A new mechanism for radiation damage processes in alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  13. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  14. Halide glass containing trivalent uranium ions and its fabrication process

    International Nuclear Information System (INIS)

    This halide glass, showing an optical attenuation -1 in the near infrared from 2.2 to 304 micrometers, is prepared with a glass containing uranium ions as U4+ and/or U5+ reduced by ionizing radiations in U3+. Application is made to the fabrication of optical fibers and lasers doped with trivalent uranium

  15. Theory of the late stage of radiolysis of alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocati

  16. Iron-catalysed Negishi coupling of benzyl halides and phosphates.

    Science.gov (United States)

    Bedford, Robin B; Huwe, Michael; Wilkinson, Mark C

    2009-02-01

    Iron-based catalysts containing either 1,2-bis(diphenylphosphino)benzene or 1,3-bis(diphenylphosphino)propane give excellent activity and good selectivity in the Negishi coupling of aryl zinc reagents with a range of benzyl halides and phosphates.

  17. Surface modification of cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Neng; DING Enyong; CHENG Rongshi

    2007-01-01

    In order to improve the dispersibility of cellulose nanocrystal(CNC) particles,three difierent grafted reactions of acetylation,hydroxyethylation and hydroxypropylation were introduced to modify the CNC surface.The main advantages of these methods were the simple and easily controlled reaction conditions,and the dispersibility of the resulting products was distinctly improved.The properties of the modified CNC were characterized by means of Fourier transform infrared spectroscopy(FT-IR),13 C nuclear magnetic resonance(NMR),transmission electron microscopy(TEM)and thermogravimetric analyses(TGA).The results indicated mat after desiccation,the modification products could be dispersed again in the proper solvents by ultrasonic treatments,and the diameter of their particles had no obvious changes.However,their thermal degradation behaviors were quite different.The initial decomposition temperature of the modified products via hydroxyethylation or hydroxypropylation was lower than that of modified products via acetylation.

  18. A luminescent nanocrystal stress gauge

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  19. Synthesis of Nanocrystalline Barium Ferrite in Ethanol/Water Media

    Institute of Scientific and Technical Information of China (English)

    M.Montazeri-Pour; A.Ataie

    2009-01-01

    Nanocrystalline particles of barium ferrite magnetic material have been prepared by co-precipitation route using aqueous and non-aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 and subsequent drying-annealing treatment. Water and ethanol/water mixture with volume ratio of 3:1 were used as solvents in the process. Coprecipitated powders were annealed at various temperatures for 1 h. FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), DTA/TGA (differential thermal analy-sis/thermogravimetric analysis) and SEM (scanning electron microscopy) techniques were used to evaluate powder particle characteristics. DTA/TGA results confirmed by those obtained from XRD indicated that the formation of barium ferrite occurs in sample synthesized in ethanol/water solution at a relatively low temperature of 631℃. Nano-size particles of barium ferrite with mean particle size of almost 75 and 100 nm were observed in the SEM micrographs of the samples synthesized in ethanol/water solution after annealing at 700 and 800℃ for 1 h, respectively.

  20. CNO and F abundances in the barium star HD 123396

    CERN Document Server

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  1. Removal of barium and radium from groundwater. Environmental research brief

    International Nuclear Information System (INIS)

    A research project was undertaken to investigate processes for removing barium and radium from drinking water. Special emphasis was placed on ion exchange processes that can be used without adding large concentrations of sodium to the water. The wastes from radium and barium removal processes were also characterized, and processes suitable for treatment of ion-exchange brines were evaluated. The report discusses two ion-exchange processes that can be used for barium and radium removal accompanied by either partial or no hardness removal. The calcium-form, strong-acid ion-exchange resin can be used for barium and radium removal without significant change in hardness or the concentration of other salts. This resin can be regenerated with CaC12 brine. The radium-selective complexer (RSC) will remove radium without altering hardness or other salt concentration. The capacity of this resin for waters with low total dissolved solids (TDS) (<1000 to 2000 mg/L TDS) is in excess of 30,000 pCi/dry g; however, if the TDS is increased to about 40,000 mg/L, the capacity drops to 200 to 300 pCi/dry g. Thus using this resin to remove radium from spent brine does not appear feasible

  2. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Lai-Sheng Wang

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  3. Synthesis and characterization of luminescent oxide nanocrystals

    Science.gov (United States)

    Seo, Sooyeon

    Oxide nanocrystals with controlled geometries exhibit unique shape dependent optical and structural properties. Shape-controlled synthesis of rare earth doped gadolinium oxide (Gd2O3: Eu3+, Tb3+ or Er3+) and zinc gallate (ZnGa2O 4:Eu3+) nanocrystals by non-hydrolytic high temperature (˜300°C) methods are reported. Various shapes of Gd2O 3 nanocrystals were synthesized, including spheres and plates and advanced shapes such as curved rods and triangles. The nanocrystal shape was shown to be a function of the synthesis parameters, such as metal precursors (acetate, acetyl acetonate, chloride or octanoate) and surfactant type (tri-octyl phosphine oxide-TOPO, or hexadecanediol-HDD) and concentration (metal precursor: surfactant molar ratios of 1:2 to 1:5), as well as heating rate (5-25°C/min.) between pre-heat (200°C) and reaction (290°C) temperatures. The effects of these parameters upon nanocrystal shape were explained based on nucleation and growth of oxide nanocrystals. The photoluminescence intensity from Gd 2O3:Eu3+ was shown to increase as the concentration of dopant incorporated into the nanocrystals increased. The doping efficiency, defined to be the percentage of dopant incorporated into the nanocrystals, ranged from 0.57-6.1 mol%, was a function of shape of the Gd2O 3: Eu3 and was discussed in terms of the rate of reaction, product yield and crystal structure. To be used for labeling biomolecules such as DNA, RNA, or proteins, water soluble luminescent nanocrystals are required. Doped Gd2O 3 nanocrystals prepared by the non-hydrolytic hot solution method are hydrophobic and are not soluble in water due to organic surfactant encapsulation. A general strategy to convert hydrophobic luminescent nanocrystals (e.g. Gd 2O3) to water soluble particles by over-coating the hydrophobic surface with amphiphilic polymers is reported. Specifically, octylamine modified surfaces were coated with poly (acrylic acid) and water dispersions of Gd 2O3: Eu3+ were still

  4. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A. [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  5. A simple synthesis and characterization of CuS nanocrystals

    Indian Academy of Sciences (India)

    Ujjal K Gautam; Bratindranath Mukherjee

    2006-02-01

    Water-soluble CuS nanocrystals and nanorods were prepared by reacting copper acetate with thioacetamide in the presence of different surfactants and capping agents. The size of the nanocrystals varied from 3–20 nm depending on the reaction parameters such as concentration, temperature, solvent and the capping agents. The formation of nanocrystals was studied by using UV-visible absorption spectroscopy.

  6. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    Science.gov (United States)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  7. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    Directory of Open Access Journals (Sweden)

    Dale L. Huber

    2012-05-01

    Full Text Available Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m, which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

  8. Electrolytic systems and methods for making metal halides and refining metals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  9. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    Science.gov (United States)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  10. Large methyl halide emissions from south Texas salt marshes

    Directory of Open Access Journals (Sweden)

    R. C. Rhew

    2014-06-01

    Full Text Available Coastal salt marshes are natural sources of methyl chloride (CH3Cl and methyl bromide (CH3Br to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  11. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  12. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Directory of Open Access Journals (Sweden)

    Linfan Cui

    2015-07-01

    Full Text Available In this study, highly efficient silver halide (AgX-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl, silver bromide (AgBr and silver iodide (AgI, were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar‐ ticles was determined by the reaction time and ratio of the reagents, which were monitored by UV-vis spectra. The as- prepared AgX nanoparticles exhibited different photoca‐ talytic properties. This shows the differences for the photodegradation of methyl orange and Congo red dyes. In addition, the AgCl nanoparticle-based photocatalyst exhibited the best photocatalytic property among all three types of AgX nanoparticles that are discussed in this study. Therefore, it is a good candidate for removing organic pollutants.

  13. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    Science.gov (United States)

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  14. Alkali halide microstructured optical fiber for X-ray detection

    International Nuclear Information System (INIS)

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed

  15. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    Directory of Open Access Journals (Sweden)

    Bijay Shrestha

    2015-12-01

    Full Text Available We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1 as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields.

  16. Study of methyl halide fluxes in temperate and tropical ecosystems

    OpenAIRE

    Blei, Emanuel

    2010-01-01

    CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective natural sources is incomplete leading to large uncertainties in their global budgets. Beside the issue of quantification, characterisation of possible sources is needed to assist modelling of future environmental change impacts on these sources and hence the s...

  17. Semiphysical development of holograms recorded in silver halide emulsions

    Science.gov (United States)

    Banyasz, Istvan; Belendez, Augusto; Pascual, Inmaculada V.; Fimia, Antonio

    2000-10-01

    In the course of experiments on measurement of the effects of processing on nonlinear characteristics of silver halide holograms recorded in Agfa-gevaert 8E75HD emulsions we found that, under certain circumstances, the AAC developer acted as a semi-physical developer instead of the normal chemical developing action. The developed and fixed holograms were of low optical density (carbonate of purest grade with that of for analysis grade of the same company.

  18. Influence of the Print Run on Silver Halide Printing Plates

    Directory of Open Access Journals (Sweden)

    Tomislav Cigula

    2010-09-01

    Full Text Available The most common printing technique today is lithography. The difference between printing and nonprinting areason a printing plate is accomplished by opposite physical and chemical properties of those areas (MacPhee, 1998.The printing areas are made of photoactive layer that attracts oil and chemical substances with oil solvent – printinginks. The nonprinting areas are made of aluminium-oxide which attracts water based substances – the fountainsolution.There are many of various types of photoactive layer which are used for production of offset printing plates, amongothers is silver halide layer. The usage of the silver halide technology in the graphic reproduction is not a novelty.The filmmaking phase is based on the usage of the silver halide as the photographically active ingredient, for instance,AgBr (silver bromide. The new, digital plate making technology (Computer to Plate, CtP eliminates thefilmmaking phase and therefore enables control of the printing plate’s exposure made by computer. CtP technologyeliminates the filmmaking phase, but it also results with the reduction of needed material quantities and requiredtime for the production (Limburg, 1994; Seydel, 1996.In this paper the basis of the graphic reproduction by using the silver halide digital printing plates was described.The changes of the AgX copying layer and the surface of the aluminium base in the printing process have beenobserved. The surface characteristics were determined by measuring the relevant surface roughness parameters. Inaddition, measurements of coverage values on the prints, detailed at smaller print run, were conducted.Results showed that surface changes on the printing plate are changing during printing process and that thesechanges influence transfer of the printing ink on the printing substrate. These measurements proved to be of greatinterest in the graphic reproduction as they enable us to determine consistency of the printing plates during theprinting

  19. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Science.gov (United States)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  20. HYBRID AND CHARACTERISTIC OF POLYANILINE- BARIUM TITANATE NANOCOMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polyaniline-barium titanate (PAn-BaTiO3) ultrafine composite particles were prepared by the oxidative polymerization of aniline with H2O2 while barium titanate nanoparticles were synthesized with a sol-gel method. The infrared spectrogram shows that the polymerization of PAn in the hybrid process of PAn-BaTiO3 is similar with the polymeric process of pure aniline, and there is interaction of PAn and BaTiO3 in the PAn-BaTiO3. SEM and TEM results show that the average diameter of the composite particles is 1.50 μm and the diameters of BaTiO3 nanoparticles are 5-15 nm in the composite particle. The electrical conductivity of the ultrafine composite particles is transformable from 100 to 10-11S/cm by equilibrium doping or dedoping method using various concentration of HCl or NaOH solutions.

  1. The crystal growth of barium flouride in aqueous solution

    Science.gov (United States)

    Barone, J. P.; Svrjcek, D.; Nancollas, G. H.

    1983-06-01

    The kinetics of growth of barium flouride seed crystals were investigated in aqueous solution at 25°C using a constant composition method, in which the supersaturation and ionic strength were maintained constant by the addition of titrants consisting of barium nitrate and potassium flouride solutions. The rates of reaction, studied over a range of supersaturation (σ ≈ 0.4 to 1.0), were interpreted in terms of crystal growth models. A spiral growth mechanism best describes the data, and scanning electron microscopy indicates a three-dimensional growth. In the presence of inorganic additives such as phosphate, however, induction periods precede a morphological two-dimensional crystallization. Coulter Counter results show little crystal agglomeration.

  2. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Directory of Open Access Journals (Sweden)

    Olusegun Sholiyi

    2014-07-01

    Full Text Available This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3–6 μm for coarse and 0.8–1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM. The Thru, Reflect, Line (TRL calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  3. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    Science.gov (United States)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  4. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  5. Thermophysical properties of americium-containing barium plutonate

    International Nuclear Information System (INIS)

    Polycrystalline specimens of americium-containing barium plutonate have been prepared by mixing the appropriate amounts of (Pu0.91Am0.09)O2 and BaCO3 powders followed by reacting and sintering at 1600 K under the flowing gas atmosphere of dry-air. The sintered specimens had a single phase of orthorhombic perovskite structure and were crack-free. Elastic moduli were determined from longitudinal and shear sound velocities. Debye temperature was also determined from sound velocities and lattice parameter measurements. Thermal conductivity was calculated from measured density at room temperature, literature values of heat capacity and thermal diffusivity measured by laser flash method in vacuum. Thermal conductivity of americium-containing barium plutonate was roughly independent of temperature and registered almost the same magnitude as that of BaPuO3 and BaUO3. (author)

  6. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, A V [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  7. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  8. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  9. Gold nanocrystals with DNA-directed morphologies.

    Science.gov (United States)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology. PMID:27633935

  10. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  11. Gold nanocrystals with DNA-directed morphologies

    Science.gov (United States)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  12. Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia coli

    OpenAIRE

    Gupta, Amit; Maynes, Maria; Silver, Simon

    1998-01-01

    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.

  13. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles

    OpenAIRE

    Weix, Daniel J.

    2015-01-01

    Conspectus Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C–H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, th...

  14. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  15. Thermoelectric power of barium up to 8 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, G.; Divakar, C.; Singh, A.K.

    1987-01-15

    The present measurements indicate that the thermoelectric power (TEP) of barium at room temperature and pressure is 15 ..mu..V K/sup -1/, and decreases with increasing pressure, reaching about 4 ..mu..V K/sup -1/ just before the bcc..-->..hcp transition. The TEP shows a discontinuous increase at the bcc..-->..hcp transition beyond which it continues to decrease with increasing pressure.

  16. Acute barium intoxication following ingestion of soap water solution

    Directory of Open Access Journals (Sweden)

    Nandita Joshi

    2012-01-01

    Full Text Available We present a rare case in which a young girl ingested a solution of a hair-removing soap. The ingestion resulted in profound hypokalemia and severe acidosis leading to flaccid paralysis, respiratory arrest and ventricular arrhythmias. Ultimately the patient made complete recovery. The soapwas found to contain barium sulfide. The degree of paralysis and acidosis appeared to be directly related to serum potassium levels.

  17. Barium ferrite powders prepared by milling and annealing

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-05-01

    Full Text Available Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatment.Design/methodology/approach: The milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material inside the container during which their collisions occur. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The distribution of powder particles was determined by a laser particle analyzer. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950 °C enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force (HC for mixture of powders annealed at 950 °C for 10, 20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. The arithmetic mean of diameter of Fe2O3 and BaCO3 mixture powders after 30 hours of milling is about 6.0 μm.Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable components to produce sintered and elastic magnets with polymer matrix.Originality/value: The results of tested barium ferrite investigations by different methods confirm their utility in the microstructure and magnetic properties analysis of powder materials.

  18. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  19. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    Science.gov (United States)

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes. PMID:27111427

  20. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  1. Magnetic relaxation of diluted and self-assembled cobalt nanocrystals

    Science.gov (United States)

    Zhang, X. X.; Wen, G. H.; Xiao, Gang; Sun, Shouheng

    2003-04-01

    We have studied the magnetic relaxation of monodispersed 4 nm cubic ɛ-cobalt nanocrystals in both randomly oriented and pre-aligned assemblies. The blocking temperature TB, for the closely packed Co nanocrystal assemblies, is 30% higher than that of the highly diluted and well-dispersed Co nanocrystal-organic composites. This increase is attributed to the strong magnetic dipole interaction induced from the close packing of the nanocrystals. It is found that the frequency-dependent susceptibility data, obtained from the diluted samples, can be fitted to the half-circle Argand Diagrams, indicating a single barrier (or very narrow energy distribution) of the nanocrystals. This agrees well with the physical observation from TEM that the nanocrystals are monodispersed. The long time magnetic relaxation measurements reveal that energy barrier distribution in a pre-aligned nanocrystal assembly is significantly different from that in a randomly oriented one.

  2. Role of hexadecapole interaction in proton rich barium isotopes

    International Nuclear Information System (INIS)

    From the systematic analysis of the experimental data on proton rich barium isotopes, it is observed that nuclei in the region z ≥ 50 and N≤82 are the transitional nuclei as they show a shape transition from spherical to deformed shape. An interesting feature of the observed yrast spectra in barium isotopic mass chain is the systematic variation of E2+, E4+ and E6+ excitation energy states from 120Ba to 136Ba. It is observed that these states follow a systematic decreasing trend as move away from 136Ba towards 120Ba. The isotopes 120-128Ba can be taken to be quasi-deformed nuclei having E4+/E2+ ratio larger than 2.7. Based on the systematics of low-lying states and the experimental data of quadrupole moments and B(E2) transition probabilities, the stable barium isotopes range from the approximately spherical 138Ba to l30Ba which is close to the deformed 120-128Ba isotopes. The purpose of the paper is to determine the importance of octupole-octupole and hexadecapole- hexadecapole parts of the two body interaction in reproducing the observed nuclear structure properties of 120-136Ba isotopes

  3. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 oC. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba0.8Sr0.2TiO3) nanoparticles (BST) in the temperature range of 100-130 oC. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  4. Preparation of Nanoparticles of Barium Ferrite from Precipitation in Microemulsions

    International Nuclear Information System (INIS)

    Magnetic nanoparticles of barium ferrite (BaFe12O19) have been synthesized using a microemulsion mediated process. The aqueous cores of water-in-oil microemulsions were used as constrained microreactors for the precipitation of precursor carbonate and hydroxide particles. These precursors were then calcined at 925 deg. C for 12 h, during which time they were transformed to the hexagonal ferrite. The pH of reaction was varied between 5 and 12, and it was found that the fraction of non-magnetic hematite (α-Fe2O3) in the particles varied with the pH of reaction, thus affecting the magnetic properties of the particles. The same precursor particles were also prepared by bulk co-precipitation reaction for comparison. It was found that the microemulsion derived nanoparticles of barium ferrite had both higher intrinsic coercivity (Hc) and saturation magnetization (σs) than the particles derived from bulk co-precipitation. Particles were analyzed by electron microscopy, X-ray diffraction, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The best barium ferrite particles produced by the microemulsion synthesis method yielded an intrinsic coercivity of 4310 Oe and a saturation magnetization of 60.48 emu/g

  5. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  6. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    Science.gov (United States)

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition. PMID:26791587

  7. Simplified assessment of segmental gastrointestinal transit time with orally small amount of barium

    International Nuclear Information System (INIS)

    Objective: To determine the effectiveness and advantage of small amount of barium in the measurement of gastrointestinal transmission function in comparison with radio-opaque pallets. Methods: Protocal 1: 8 healthy volunteers (male 6, female 2) with average age 40 ± 6.1 were subjected to the examination of radio-opaque pellets and small amount of barium with the interval of 1 week. Protocol 2: 30 healthy volunteers in group 1 (male 8, female 22) with average age 42.5 ± 8.1 and 50 patients with chronic functional constipation in group 2 (male 11, female 39) with average age 45.7 ± 7.8 were subjected to the small amount of barium examination. The small amount of barium was made by 30 g barium dissolved in 200 ml breakfast. After taking breakfast which contains barium, objectives were followed with abdominal X-ray at 4, 8, 12, 24, 48, 72, 96 h until the barium was evacuated totally. Results: Small amount of barium presented actual chyme or stool transit. The transit time of radio-opaque pallets through the whole gastrointestinal tract was significantly shorter than that of barium (37 ± 8 h vs. 47 ± 10 h, P < 0.05) in healthy people. The transit times of barium in constipation patients were markedly prolonged in colon (61.1 ± 22 vs. 37.3 ± 11, P < 0.01) and rectum (10.8 ± 3.7 vs. 2.3 ± 0.8 h, P < 0.01) compared with unconstipated volunteers. Transit times in individual gastrointestinal segments were also recorded by using small amount of barium, which allowed identifying the subtypes of constipation. Conclusion: The small amount barium examination is a convenient and low cost method to provide the most useful and reliable information on the transmission function of different gastrointestinal segments and able to classify the subtypes of slow transit constipation

  8. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  9. High Resolution Computed Tomography Appearences of late sequelae of Barium Aspiration in an asymptomatic young child

    International Nuclear Information System (INIS)

    Barium aspiration is a well-known complication of upper gastro-intestinal studies. Consequences of aspiration are generally insignificant and leave no permanent changes in the lung parenchyma. However, large quantities of high density barium, if aspirated, lead to silent interstitial changes and fibrosis. High-resolution computed tomography HRCT appearances of lung changes have been demonstrated in adults; few such reports are available in the pediatric literature. We report a case of a child who aspirated barium 3 months before this presentation. The HRCT appearances of barium aspiration are presented with a review of the literature. (author)

  10. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  11. BARIUM SULPHATE ABSORPTION AND THE SERUM DIAGNOSIS OF SYPHILIS.

    Science.gov (United States)

    Noguchi, H; Bronfenbrenner, J

    1911-02-01

    The so-called syphilitic antibodies can be removed from a serum by means of absorption with barium sulphate. The removal is due either to an adsorption or a mechanical absorption. The activity of the syphilitic antibodies is thereby unimpaired. The readiness with which the absorption is accomplished with barium sulphate varies considerably with different syphilitic sera. That barium sulphate exerts the same absorbing effect upon non-syphilitic serum components is made evident by the interfering property which the latter manifest in the absorption experiment of the syphilitic antibodies. The selective removal of the serum components, other than the syphilitic antibodies, by means of barium sulphate absorption is, therefore, impossible. On the other hand, a partial removal of these components, with but little removal of the syphilitic antibodies, may be effected when the content of a given serum is poor in syphilitic antibodies and comparatively rich in the indifferent serum components. But this is impossible if the conditions are reversed. The main reasons why some negative syphilitic sera may be so modified by the barium sulphate treatment as to give positive reactions, are explained below, but these apply only to those methods in which inactivated serum is employed. The inactivation reduces the antibody content to about one-fourth to one-fifth of the original. When the serum is very rich in antibodies, this does not affect the result of the fixation test. But when the amount of the antibodies is small, the process of inactivation creates conditions quite unexpected. It may produce such a condition that a given amount of the serum contains, after inactivation, only one or two antibody units, while the other serum components remain undiminished. Here one must not lose sight of the vital fact that these apparently indifferent serum constituents are not at all indifferent in the fixation processes. They may possess affinities which are similar to those of complement

  12. 铝酸钡与氢氧化钡脱硫过程比较%Comparison of Barium Aluminate and Barium Hydroxide Desulfurization Process

    Institute of Scientific and Technical Information of China (English)

    张念炳; 黎志英; 丁彤

    2012-01-01

    The seed precipitation liquor was desulfurized with barium aluminate and barium hydroxide respectively. The desulfurization slag was characterized by XRD analysis, and the desulfurization process was compared. The results show that barium hydroxide exceeds barium aluminate with better desulfurization in terms of effect, speed and duration. In the desulfurization process with barium aluminate, 2BaO · Al2O3 · 5H2O is firstly produced in the reaction of barium aluminate with alkali, and then it reacts with sodium sulfate and sodium carbonate. To compare, Ba(OH)2 · 8H2O directly reacts with sodium sulfate and sodium carbonate in the desulfurization process with barium hydroxide. Both of desulfurization reaction processes can be described with "shrinking core model".%用铝酸钡和氢氧化钡对种分母液进行脱硫试验,对脱硫渣进行XRD分析,并比较脱硫过程.结果表明,氢氧化钡的脱硫效果更好,脱硫完成时间更短,速率更快;铝酸钡先与碱液反应生成2BaO·Al2O3·5H2O,再与硫碱和碳碱反应,而氢氧化钡直接与硫碱和碳碱反应,脱硫过程均可用未反应核模型描述.

  13. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O' Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  14. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  15. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  16. Tunneling spectroscopy of semiconductor nanocrystals in superlattices

    NARCIS (Netherlands)

    Grandidier, B.; Overgaag, K.; Delerue, C.; Vanmaekelbergh, D.A.M.

    2008-01-01

    Colloidal semiconductor nanocrystals (NCs) are quantum-size-effect tunable and processible from organic or aqueous solution onto rigid or flexible substrates, thus making them quite appealing for the fabrication of low-cost electronic devices. While these devices are expected to consist of NC solids

  17. Tungsten and barium transport in the internal plasma of hollow cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2009-06-01

    The effect of tungsten erosion, transport, and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from 8200 h and 30 352 h ion engine wear tests. Erosion and subsequent redeposition of tungsten in the electron emission zone at the downstream end of the insert reduce the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  18. Formal Nucleophilic Boryl Substitution of Organic Halides with Silylborane/Alkoxy Base System

    OpenAIRE

    Yamamoto, Eiji; Izumi, Kiyotaka; Horita, Yuko; Ukigai, Satoshi; Ito, Hajime

    2014-01-01

    Boryl substitution of organohalides with a silylborane and alkoxy bases is described. This reaction can be applied to various functionalized aryl halides. Alkyl and alkenyl halides, and even sterically congested aryl bromides also provided the corresponding borylated products in high yields. Mechanistic studies indicated that neither trace transition-metal impurities nor aryl radical species involved in this reaction.

  19. Temperature effects in the absorption spectra and exciton luminescence in ammonium halides

    International Nuclear Information System (INIS)

    Warm-up behavior of the first maximum exciton absorption bands in ammonium halides is explored. Under phase transition occurs offset of bands, bound both with changing a parameter of lattice, and efficient mass of exciton. Warm-up dependency of quantum leaving a luminescence of self-trapped excitons in ammonium halides is measured. (author)

  20. Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016).

    Science.gov (United States)

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics. PMID:27442971

  1. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  2. Microstructure of polymer composite with barium ferrite powder

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2008-12-01

    Full Text Available Purpose: The aim of the paper is the microstructure characterization of commercial BaFe12O19 powder and its composite material in polymer matrix; XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods were applied.Design/methodology/approach: The Rietveld method appeared to be very useful in the verification of the qualitative phase composition and in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phase analysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure. The morphology of barium ferrite powders and a fracture surface of the examined composite material was analyzed using the scanning electron microscope.Findings: The X-ray diffraction analysis enabled the identification of BaFe12O19 and Fe2O3 phases in examined material. Basing on Rietveld and Toraya methods the determination of lattice parameters, crystallite size and the lattice distortion was performed. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles are of irregular shapes and different sizes.Research limitations/implications: Maked researches are limited only to characterization the microstructure of commercial material, because obtained results will be helpful to prepare barium ferrite powders by mechanical alloying and subsequent annealing in the future. As prepared BaFe12O19 powders will be used as the starting material for magnets bonded with polymer material.Originality/value: The obtained results of investigations by different methods of structure analysis confirm their useful in the microstructure analysis of powder materials.

  3. Barium Swallow Findings in the Evaluation of Patients with Dysphagia

    Directory of Open Access Journals (Sweden)

    Amirhosein Hashemi Attar

    2011-05-01

    Full Text Available Background/Objective: Dysphagia is a subjective"nsensation of difficulty in swallowing that has a wide"nrange of etiologies from psychosomatic disorders"nto high grade neoplasms. In this study we evaluated"nbarium swallow findings of patients with dysphagia."nPatients and Methods: We evaluated 200 patients"n(117 men, 83 women; mean age, 49.6 years with"ncomplaint of dysphagia. Fluoroscopic barium"nswallow was done for all the patients and they were"nreviewed for primary peristalsis (presence or absence,"nAbstracts"nS62 Iran J Radiol 2011, 8 (Supp.1"nAbstracts"nimpaired lower esophageal sphincter, esophageal dilatation, delayed emptying of barium, nonperistaltic contractions, stricture and filling defects. Clinical and in some cases endoscopic or manometric follow up was done for all patients."nResults: We had 134 (67% normal barium swallow"nexams with uncomplicated clinical courses. Sixty"nsix patients (33% had abnormal imaging findings"nincluding stricture in 24 patients (12%, filling defect"nin 12 patients (6% and mucosal abnormality in 14"n(7% patients (six cases of mucosal irregularity, three"ncases of mucosal ulceration and five cases of mucosal"nherniation, Bird's beak sign in three patients (1.5%,"ntertiary spasm in six patients (3% and hiatal hernia in"nseven patients (3.5%."nConclusion: In the majority of patients with dysphagia,"nbarium swallow is the only paraclinical study needed"nto plan proper treatment. If radiographic findings are"nequivocal, endoscopy or manometry may be required"nfor more certain diagnosis.

  4. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  5. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    David T. Moore

    2014-08-01

    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  6. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    Science.gov (United States)

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes.

  7. Silylaryl Halides Can Replace Triflates as Aryne Precursors.

    Science.gov (United States)

    Mesgar, Milad; Daugulis, Olafs

    2016-08-01

    Silylaryl bromides and iodides can be prepared in one step from commercially available starting materials. Arynes can be generated from these compounds under conditions nearly identical to those employed for silylaryl triflates. Three distinct transformations, ortho-arylation of N-tritylanilines, intermolecular addition of arynes to amides, and reaction of ureas with arynes, were shown to be successful for the new aryne precursors. The main advantage of silylaryl halides relative to silyl aryl triflates is their one-step preparation from commercially available starting materials. PMID:27415183

  8. A new mechanism for radiation damage processes in alkali halides

    OpenAIRE

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface o...

  9. Thermal conductivity of halide solid solutions: measurement and prediction.

    Science.gov (United States)

    Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice

    2014-09-14

    The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed. PMID:25217938

  10. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    Science.gov (United States)

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes. PMID:26560862

  11. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    Science.gov (United States)

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  12. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei; Smith, Rachel; Jun, Young-wook; Kisielowski, Christian; Dahmen, Ulrich; Alivisatos, A. Paul

    2009-02-09

    It is conventionally assumed that the growth of monodisperse colloidal nanocrystals requires a temporally discrete nucleation followed by monomer attachment onto the existing nuclei. However, recent studies have reported violations of this classical growth model, and have suggested that inter-particle interactions are also involved during the growth. Mechanisms of nanocrystal growth still remain controversial. Using in situ transmission electron microscopy, we show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles. Surprisingly, an initially broad size distribution of the nanocrystals can spontaneously narrow. We suggest that nanocrystals take different pathways of growth based on their size- and morphology-dependent internal energies. These observations are expected to be highly relevant for other nanocrystal systems.

  13. Structural, dynamical, and transport properties of the hydrated halides: How do At− bulk properties compare with those of the other halides, from F− to I−?

    OpenAIRE

    Réal, Florent; Severo Pereira Gomes, Andre; Guerrero Martínez, Yansel Omar; Galland, Nicolas; Vallet, Valérie; Masella, Michel; Ayed, Tarah

    2016-01-01

    International audience The properties of halides from the lightest, uoride (F−), to the heaviest, astatide (At−), have been studied in water using a polarizable force- eld approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force- eld explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force- eld parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-o...

  14. Synthesis and applications of heterostructured semiconductor nanocrystals

    Science.gov (United States)

    Khon, Elena

    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their

  15. Barium strontium titanate powders prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nm, calculated using Rietveld refinement, is in a good agreement with results of HRTEM

  16. A barium-rich binary central star in Abell 70

    CERN Document Server

    Boffin, Henri M J; Frew, D J; Acker, A; Köppen, J; Moffat, A F J; Parker, Q A

    2011-01-01

    We have found the central star of Abell 70 (PN G038.1-25.4, hereafter A 70) to be a binary consisting of a G8 IV-V secondary and a hot white dwarf. The secondary shows enhanced Ba II and Sr II features, firmly classifying it as a barium star. The nebula is found to have Type-I chemical abundances with helium and nitrogen enrichment, which combined with future abundance studies of the central star, will establish A 70 as a unique laboratory for studying s-process AGB nucleosynthesis.

  17. Strain engineered barium strontium titanate for tunable thin film resonators

    Energy Technology Data Exchange (ETDEWEB)

    Khassaf, H.; Khakpash, N. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Sun, F. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Sbrockey, N. M.; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S. [Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  18. K-shell fluorescence yields of barium and lanthanum

    International Nuclear Information System (INIS)

    K-shell fluorescence yields for barium and lanthanum have been measured adopting simple 2π geometrical configuration and employing a weak 57Co radioactive source. A scintillation spectrometer with an NaI(Tl) detector of dimensions 44.5 mm diameterx50 mm thickness was employed for the detection and measurement of radiation. The results obtained are in good agreement with the best-fitted values of and also with the other experimental values, indicating that our simple method can be extended to determine fluorescence parameters of high Z materials.

  19. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin;

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...... experiments BBO is popular because of low dispersion and a high damage threshold. The main attractive property of ultrafast cascading is that the induced cascading nonlinearity nI 2, casc can be negative, i.e. generate a self-defocusing Kerr-like nonlinearity. However, the material Kerr nonlinearity nI 2...

  20. The Kerr nonlinearity of the beta-barium borate crystal

    OpenAIRE

    Bache, Morten; Guo, Hairun; Zhou, Binbin; Zeng, Xianglong

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experiments BBO is popular because of low dispersion and a high damage threshold. The main attractive property of ultrafast cascading is that the induced cascading nonlinearity nI 2, casc can be negative, i.e...

  1. Control on Crystal Forms of Ultrafine Barium Carbonate Particles and Study on its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Barium carbonate particles were prepared by using homogeneous precipitation method and co-precipitation method respectively. Through adding different crystalline controlling modifiers, Barium carbonate particles in five different shapes including linear, needle-like, pillarlike, sphere-like and dumbbell-like were synthesized. These particles were characterized by SEM and XRD, and their synthetic mechanism was discussed in this paper.

  2. Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetite nanocomposite

    NARCIS (Netherlands)

    Molaei, M.J.; Ataie, A.; Raygan, S.; Picken,n S.J.

    2011-01-01

    In this research, barium ferrite /magnetite nanocomposites synthesized via a mechano-chemical route. Graphite was used in order to reduce hematite content of barium ferrite to magnetite to produce a magnetic nanocomposite. The effects of processing conditions on the powder characteristics were inves

  3. Acute respiratory failure caused by aspiration of high density barium: A case report

    International Nuclear Information System (INIS)

    Accidental aspiration of barium contrast medium during the upper gastrointestinal study can occur in patients with swallowing disorder, especially in the elderly patients. We experienced a case of respiratory failure followed by death within a few hours in 85 year-old patient after barium aspiration

  4. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus;

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  5. Synthesis and Surface Modification of CdTe Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CdTe nanocrystals were prepared in aqueous solution via the reaction between Cd2+ and NaHTe in the presence of mercaptoacetic acid. Interactions between CdTe nanocrystals and phenylalanine were formed via electrostatic/coordinate self-assembly. The photoluminescence intensity of CdTe nanocrystals was improved obviously. The interaction mechanism was discussed and was considered to be surface passivation.

  6. Microscopic Theory of Cation Exchange in CdSe Nanocrystals

    OpenAIRE

    Ott, Florian D.; Spiegel, Leo L.; Norris, David J.; Erwin, Steven C.

    2014-01-01

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We used density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key...

  7. Experimental Determination of the Fluorescence Quantum Yield of Semiconductor Nanocrystals

    OpenAIRE

    Agnès Maître; Pham Thu Nga; Paul Benalloul; Laurent Coolen; Vu Duc Chinh; Catherine Schwob; Julien Laverdant; Carlos Barthou; Willy Daney de Marcillac

    2011-01-01

    International audience Many studies have considered the luminescence of colloidal II-VI nanocrystals, both in solution at a collective scale and at an individual scale by confocal microscopy. The quantum yield is an important figure of merit for the optical quality of a fluorophore. We detail here a simple method to determine the quantum yield of nanocrystals in solution as a function of the absorption. For this purpose, we choose rhodamine 101 as a reference dye to measure the nanocrystal...

  8. Shape Control and Functional Properties of Copper Chalcogenide Colloidal Nanocrystals

    OpenAIRE

    Li, Wenhua

    2013-01-01

    The high quality CuxS nanocrystals were synthesized (Chapter 3) and the profound understanding and skills to prepare colloidal nanocrystals has been obtained and improved. It revealed a very simple synthetic route not only for the systematic investigation on the size control of the copper sulfide nanodisks but also for studying the influence of different stoichiometric ratios on the shape of copper sulfide nanocrystals. An increase of the precursor concentration in the growth solution resulte...

  9. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  10. Growth Mechanisms of CdS Nanocrystals in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Loredana Latterini

    2012-06-01

    Full Text Available CdS nanocrystals were prepared in water-in-oil microemulsions. The nanocrystal properties, absorption and luminescence spectra and size distributions, were monitored at different times after mixing the microemulsions of the two precursors to obtain information on their growth mechanism. In particular, CdS nanocrystals were prepared using water-in-heptane or water-in-nonane microemulsions. The results obtained from the investigation of nanocrystals prepared using heptane as the organic phase, confirmed that nanocrystal nucleation is fast while their growth is determined by droplet exchange content rate. Size distribution histograms obtained from the sample at early time points after mixing presented a bimodal population having average sizes of 3.0 ± 0.1 and 5.8 ± 0.1 nm, thus indicating that surface process controls the nanocrystal growth. With longer reaction times the occurrence of water droplet coalescence is likely responsible for the formation of nanocrystal agglomerates. Using a water-in-nonane microemulsion, the droplet exchange rate can be modified, thus leading to smaller CdS nanocrystals. However, the development of structural defects cannot be excluded, as evidenced by the luminescence spectra of the suspension. In general, aging of the nanocrystal in the pristine microemulsion resulted in the development of cubic semiconductor nanostructures.

  11. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    CERN Document Server

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  12. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Science.gov (United States)

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications. PMID:27336412

  13. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    Science.gov (United States)

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them. PMID:27100910

  14. Dislocation unpinning model of acoustic emission from alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  15. Ruthenium and hafnium abundances in giant and dwarf barium stars

    CERN Document Server

    Allen, D M

    2007-01-01

    We present abundances for Ru and Hf, compare them to abundances of other heavy elements, and discuss the problems found in determining Ru and Hf abundances with laboratory gf-values in the spectra of barium stars. We determined Ru and Hf abundances in a sample of giant and dwarf barium stars, by the spectral synthesis of two RuI (4080.574A and 4757.856A) and two HfII (4080.437A and 4093.155A) transitions. The stellar spectra were observed with FEROS/ESO, and the stellar atmospheric parameters lie in the range 4300 < Teff/K < 6500, -1.2 < [Fe/H] <= 0 and 1.4 <= log g < 4.6. The HfII 4080A and the RuI 4758A observed transitions result in a unreasonably high solar abundance, given certain known uncertainties, when fitted with laboratory gf-values. For these two transitions we determined empirical gf-values by fitting the observed line profiles of the spectra of the Sun and Arcturus. For the sample stars, this procedure resulted in a good agreement of Ru and Hf abundances given by the two availa...

  16. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  17. Materials Synthesis Of Barium Hexa ferrite Used Local Natural Resources

    International Nuclear Information System (INIS)

    The magnetic materials of barium hexa ferrites, Ba O.6Fe2O3 successfully synthesized by powder metallurgy method used local natural resources from materials waste of steel fabrication (HSM, CRM), waste of polymer fabrication (LK) as well as iron sands (PBA). These waste as well as iron sands were the main resources of iron oxide, Fe2O3. The barium oxide used in this experiments are from BaCO3 product of Merck, and BaCO4 which is commercially available in the market as barite. Phase identification by x-ray diffraction technique show the synthesized magnetic materials are agreed with the available commercial product, (SUMI). The energy product maximum (BH)max measured by vibrating sample magnetometer (VSM) for the samples used HSM-, CRM- and BaCO3 as basic materials are 1.141 MGOe and 1.136 MGOe while SUMI is 1.142 MGOe. However for the samples made from LK-, PBA- used of BaCO3 or CRM- with barite, the energy product maximum (BH)max are relatively lower than commercial product

  18. Microstructure of composite material with powders of barium ferrite

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2006-04-01

    Full Text Available Purpose: The aim of the present work is the microstructure characterization of commercial powder BaFe12O19 (as-prepared and composite material with BaFe12O19 powders and polymer matrix, using XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods.Design/methodology/approach: The morphology of barium ferrite powders and a fracture surface of the examined composite material was realized by using the scanning electron microscope. The methods of X-ray diffraction were used for the qualitative phase analysis. The parameters of diffraction line profiles were determined by PRO-FIT Toraya procedure.Findings: The X-ray diffraction analysis permitted on identification the BaFe12O19 and Fe2O3 phases in an examined material. Basing on Toraya method is determination of: lattice parameters, crystallite size (D and the lattice distortion (. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles have irregular shapes and dimensions.Research limitations/implications: For future research the X-ray analysis should be performed by the Rietveld method, which allows to characterization the microstructure of tested material and verification of its qualitative phase composition.Originality/value: The applied Toraya method of structure analysis appeared to be very useful in the microstructure analysis.

  19. Redox processes in highly yttrium-doped barium titanate

    International Nuclear Information System (INIS)

    The changes of microstructure occurring during oxidation of the reduced form of yttrium-doped barium titanate (Ba1-xYx?Ti1-x4+Tix3+O3) have been studied. Samples were sintered under reduction conditions at PO2=10-4Pa and oxidized by annealing at high temperatures (1150 and 1350 deg. C) in air. Depending on yttrium concentration, the oxidation of the reduced form of the yttrium-doped BaTiO3 caused precipitation of the phase Ba6Ti17O40 or the phases Ba6Ti17O40 and Y2Ti2O7. The precipitates had well-defined orientational relationships with the perovskite matrix. Oxidation of the reduced form of doped barium titanate results in formation of the phase Ba1-xYx?Ti1-x/44+(VTi-bar )x/4O3 responsible for increase in the resistance of outer grain layers, which lie between grain boundaries and grain

  20. Thermal expansion behaviour of barium and strontium zirconium phosphates

    Indian Academy of Sciences (India)

    P Srikari Tantri; K Geetha; A M Umarji; Sheela K Ramasesha

    2000-12-01

    Ba1.5–SrZr4P5SiO24 compounds with = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to R$\\bar{3}$ space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), with = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly, = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign. = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials.

  1. Luminescence simulations of ensembles of silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, Ross; Meldrum, Al [Department of Physics, University of Alberta, Edmonton (Canada)

    2009-05-15

    The luminescence of silicon nanocrystals (NCs) has attracted a great deal of interest due to the numerous potential photonic applications of light-emitting silicon. However, the excitation mechanisms and cluster-cluster interactions in densely-packed ensembles, as well as the recombination processes that influence the emission spectrum and lifetime are not yet well understood. In order to generate a more complete picture of the controlling parameters in the luminescence, a dynamic Monte Carlo model that incorporates several key physical processes for luminescent nanocrystal ensembles is developed. The model simulates Forster-type multipole energy transfer, tunnelling interactions, radiative decay and non-radiative trapping in physically realistic (lognormal) distributions of silicon NCs. The results of the simulation illustrate the effects of the NC size distribution, homogeneous and inhomogeneous broadening, NC packing density, and non-radiative trapping on the ensemble luminescence spectrum. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  3. End-functionalization of cellulose nanocrystals

    OpenAIRE

    Lundahl, Meri

    2014-01-01

    Regioselective modification of nanocelluloses can have intriguing applications in self-assembled material synthesis. In this thesis, cellulose nanocrystals (CNC) were selectively functionalized at their reducing ends with thiol and maleimide groups. For thiol end-functionalization, a protocol was developed based on NHS/EDC-catalyzed coupling of NaClO2-oxidized CNCs with NH2 (CH2)6 SH in water. Maleimide end-functionalization was achieved by reacting end-thiolated CNCs (CNC SH) with a homobifu...

  4. Nanocrystal formulation for poorly soluble drugs

    OpenAIRE

    Liu, Peng

    2013-01-01

    Poorly soluble drugs are often a challenging problem in drug formulation. Reducing the particle size of the drug to a nano-scale leads to an increased surface area-to-volume ratio, increased dissolution velocity and adhesiveness, and improved in vivo performance of poorly soluble drugs. Wet media milling is one of the most popular techniques to prepare the nanocrystals. The aim of this thesis was to optimize the preparation conditions and characterization methods of nanosuspensions for poorly...

  5. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  6. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, D L [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  7. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites.

    Science.gov (United States)

    Li, Chonghea; Lu, Xionggang; Ding, Weizhong; Feng, Liming; Gao, Yonghui; Guo, Ziming

    2008-12-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF2) without perovskite structure and six systems (RbF-PbF2, CsF-BeF2, KCl-FeCl2, TlI-MnI2, RbI-SnI2, TlI-PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. PMID:19029699

  8. Investigation of change regularity of energy states of Mn2+ in halides

    International Nuclear Information System (INIS)

    Data on 4E, 4A1 (4G) and 4T1 (4G) energy states of Mn2+ ion in some halides have been obtained and analyzed. With use of the dielectric theory of the chemical bond for complex crystals, several chemical bond parameters were calculated. The change regularity of the energy states of Mn2+ in halides has been studied. The results show that the covalence, the coordination number and the radius of the central ion are the main factors influencing the energy states of Mn2+ ion in halides. The relationships between these factors and the energy state 4T1 (4G), the energy difference ΔE (ΔE=4E, 4A1 (4G)→4T1 (4G)) of Mn2+ ion in halides were established: E=2.0898+0.8618 exp (−F/0.2431); ΔE=0.3201+0.9713⁎F. These relationships allow us to predict the position of energy state 4T1 (4G) and the energy difference ΔE of Mn2+ in halides. This work can be significant for further understanding the luminescent properties of Mn2+ and can be used to develop new Mn2+-doped phosphors. - Highlights: ► Relationship between F and energy state 4T1(4G) of Mn2+ in halides was set up. ► Relationship between F and energy difference ΔE of Mn2+ in halides was set up. ► Site occupation of Mn2+-doped halides with two or more cations can be made clear. ► Energy state 4T1(4G) and emission band of Mn2+ in halides can be predicted.

  9. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  10. Preparation of Barium Titanate Nanopowder through Thermal Decomposition of Peroxide Precursor and Its Formation Mechanism

    Institute of Scientific and Technical Information of China (English)

    PENG, Yangxi; CHEN, Qiyuan; LIU, Shijun

    2009-01-01

    H_2TiO_3 was dissolved in the mixture of hydrogen formed peroxide and ammonia under the pH range of 8-10 with a transparent yellow solution formed. When an equivalent mole of Ba~(2+) solution was added into the yellow solution, the precipitate produced was the peroxide precursor of barium titanate. The cubic nanopowder of barium titanate was obtained when the precipitate was washed, stoved, and then calcined at 600 ℃ for 1 h. The peroxide precursor of barium titanate and barium titanate nanopowder prepared were characterized to be BaTi(H_2O_2)_2O_3 by TGA-DTA, XRD, TEM, SEM, and XREDS. The peroxide precursor of barium titanate was determined to be BaTi(H_2O_2)_2O_3. The particle size of the barium titanate nanopowder, the calcined product of BaTi(H_2O_2)_2O_3, was in the range of 20-40 nm. A formation mechanism of the barium titanate nanopowder through thermal decomposition of its peroxide precursor was proposed and then validated.

  11. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m1/2. - Abstract: The effects of substitution of Ba2+ by Sr2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba1−xSrxFe12O19, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  12. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  13. Mild Palladium-Catalyzed Cyanation of (Hetero)aryl Halides and Triflates in Aqueous Media

    OpenAIRE

    Cohen, Daniel T.; Buchwald, Stephen L.

    2015-01-01

    A mild, efficient, and low-temperature palladium-catalyzed cyanation of (hetero)aryl halides and triflates is reported. Previous palladium-catalyzed cyanations of (hetero)aryl halides have required higher temperatures to achieve good catalytic activity. This current reaction allows the cyanation of a general scope of (hetero)aryl halides and triflates at 2–5 mol % catalyst loadings with temperatures ranging from rt to 40 °C. This mild method was applied to the synthesis of lersivirine, a reve...

  14. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  15. Wideband and enhanced microwave absorption performance of doped barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Pingyuan; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Ju, Kui [Guizhou Institute of Metallurgy and Chemical Engineering, Guiyang 550002 (China); Li, Shengnan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2015-07-01

    To achieve stronger microwave attenuation and larger bandwidth in electromagnetic absorber, the nickel ions (Ni{sup 2+}) and manganese ions (Mn{sup 2+}) were employed to partially replace the cobalt ions (Co{sup 2+}) in BaCoTiFe{sub 10}O{sub 19}, and the doped barium hexaferrite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19}) powders were synthesized via the sol–gel combustion method. Subsequently, the microwave absorbing composites were prepared by mixing the ferrite powders with the paraffin. The X-ray diffraction (XRD) patterns of the doped ferrites confirmed the formation of the M-type barium ferrite, and no other types of barium ferrite could be found. Based on the electromagnetic parameters measured by the vector net-analyzer, it was found that the composite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19}) possessed a minimum reflection loss of −52.8 dB at 13.4 GHz with a matching thickness of 1.8 mm and the bandwidth below −15 dB was 5.8 GHz. Moreover, the maximum attenuation of Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could reach −69 dB when its thickness was 1.8 mm, and also the bandwidth less than −20 dB was ranging from 13.2 GHz to 18 GHz. Thus, Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could be the good microwave absorbers, which have great potentials to be applied in the high frequency fields of the microwave absorbing materials. - Highlights: • The Co was first time substituted by Mn–Ni in ferrites. • The substituted ferrites had good microwave absorption. • The doped ferrites had broad bandwidth and low reflection loss.

  16. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Directory of Open Access Journals (Sweden)

    FarrokhTakin E

    2013-06-01

    Full Text Available Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy Abstract: The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 µg/mL on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 µg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment

  17. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  18. Microscopic insight into nuclear structure properties of proton-rich barium isotopes

    International Nuclear Information System (INIS)

    Variation after projection (VAP) calculations with Hartree-Bogoliubov (HB) Ansatz have been carried out for A=120-136 barium isotopes. In this framework, the yrast spectra with Jmaxπ=10+, B(E2) transition probabilities, quadrupole (β2) and hexadecapole (β4) deformation parameters for even-even barium isotopes have been obtained. The results of the calculation give an indication that it is important to include the hexadecapole-hexadecapole component of the two-body interaction for obtaining various nuclear structure quantities in these barium isotopes. (author)

  19. Application of barium fluoride for sulfur selective extraction at X-ray spectroscopic analysis of steel

    International Nuclear Information System (INIS)

    In order to increase the sensitivity of X-ray spectroscopic identification of sulphur in steels the application of barium fluoride for selective extraction of sulphate ions was proposed by authors of present work. The influence of concentration of sulphate ions, iron, nickel, chromium and titanium cations as well as acidity of solutions on the coefficient of distribution of sulphate ions in the system barium fluoride-water was studied. The distribution coefficients were calculated, the completeness of extraction was calculated as well. It is defined that sulphate ions from solutions containing cations of heavy metals and other anions can be extracted by means of barium fluoride.

  20. Barium ferrite nanoparticles prepared by self-propagating low-temperature combustion method and its characterization

    Indian Academy of Sciences (India)

    P M Prithviraj Swamy; S Basavaraja; Vijayanand Havanoor; N V Srinivas Rao; R Nijagunappa; A Venkataraman

    2011-12-01

    The barium ferrite particles were prepared using a self-propagating low-temperature combustion method using polyethylene glycol (PEG) as a fuel. The process was investigated with simultaneous thermogravimetric-differential thermal analysis (TG–DTA). The crystalline structure, morphology and the magnetic properties of the barium ferrite particles were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and SQUID susceptometer. The results show that the ignition temperature of PEG is lower compared with other combustion methods and gives nanocrystalline barium ferrite.

  1. Experimental Determination of the Fluorescence Quantum Yield of Semiconductor Nanocrystals

    Directory of Open Access Journals (Sweden)

    Agnès Maître

    2011-06-01

    Full Text Available Many studies have considered the luminescence of colloidal II–VI nanocrystals, both in solution at a collective scale and at an individual scale by confocal microscopy. The quantum yield is an important figure of merit for the optical quality of a fluorophore. We detail here a simple method to determine the quantum yield of nanocrystals in solution as a function of the absorption. For this purpose, we choose rhodamine 101 as a reference dye to measure the nanocrystal fluorescence quantum yield. The influence of the concentration on quantum yield is therefore studied for both the reference and the solutions of nanocrystals and is found to be critical for the acuity of the method. Different types of nanocrystals are studied to illustrate different quantum yield evolutions with the concentration.

  2. Synthesis of tungsten carbide nanocrystals and their electrochemical properties

    Institute of Scientific and Technical Information of China (English)

    Jianghua ZENG; Dingsheng YUAN; Yingliang LIU; Jingxing CHEN; Sanxiang TAN

    2009-01-01

    Tungsten carbide (WC) nanocrystals have been prepared by a solvothermal method with Mg as the reductant and WO3 and anhydrous ethanol as the precursors. The effects of time and temperature on the synthesis of WC were investigated and a probable formation mechanism was discussed. The obtained WC nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spec-troscopy and electrochemical methods. Hexagonal close-packed WC was successfully synthesized when the temperature was as low as 500°C. The content of carbon was more than that of W, indicating that the composition of the treated sample was C and WC only. The diameters of WC nanocrystals were ranged from 40 nm to 70 nm and the nanocrystals were dispersed on carbon films. The electrochemical measurements reveal that WC nanocrystals obviously promote Pt/C electrocatalytic ability for the oxygen reduction reaction.

  3. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.

    Science.gov (United States)

    Chen, D; Lawton, D; Thompson, M R; Liu, Q

    2012-09-01

    This study investigated the effectiveness of cellulose nanocrystals derived from potato peel waste as a reinforcement and vapor barrier additive. The nanocrystals were derived from cellulosic material in the potato peel by alkali treatment and subsequently acid hydrolysis. TEM images revealed the average fiber length of the nanocrystals was 410 nm with an aspect ratio of 41; its aspect ratio being considerably larger than cotton-derived nanocrystals prepared using similar reaction conditions. Cellulose nanocrystals (CNC)-filled polyvinyl alcohol (PVA) and thermoplastic starch (TPS) films were prepared by solution casting method to maintain uniform dispersion of the 1-2% (w/w) filler content. An increase of 19% and 33% (starch composite) and 38% and 49% (PVA composite) in tensile modulus was observed for the 1% and 2% CNC-reinforced composites, respectively. Water vapor transmission measurements showed a marginal reduction of water permeability for the PVA composite, whereas no effect was observed for the thermoplastic starch composite.

  4. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  5. Optimizing Silicon Oxide Embedded Silicon Nanocrystal Inter-particle Distances.

    Science.gov (United States)

    van Sebille, Martijn; Allebrandi, Jort; Quik, Jim; van Swaaij, René A C M M; Tichelaar, Frans D; Zeman, Miro

    2016-12-01

    We demonstrate an analytical method to optimize the stoichiometry and thickness of multilayer silicon oxide films in order to achieve the highest density of non-touching and closely spaced silicon nanocrystals after annealing. The probability of a nanocrystal nearest-neighbor distance within a limited range is calculated using the stoichiometry of the as-deposited film and the crystallinity of the annealed film as input parameters. Multiplying this probability with the nanocrystal density results in the density of non-touching and closely spaced silicon nanocrystals. This method can be used to estimate the best as-deposited stoichiometry in order to achieve optimal nanocrystal density and spacing after a subsequent annealing step. PMID:27492439

  6. Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications.

    Science.gov (United States)

    Yang, Jiwoong; Choi, Moon Kee; Kim, Dae-Hyeong; Hyeon, Taeghwan

    2016-02-10

    Colloidal nanocrystals have been intensively studied over the past three decades due to their unique properties that originate, in large part, from their nanometer-scale sizes. For applications in electronic and optoelectronic devices, colloidal nanoparticles are generally employed as assembled nanocrystal solids, rather than as individual particles. Consequently, tailoring 2D patterns as well as 3D architectures of assembled nanocrystals is critical for their various applications to micro- and nanoscale devices. Here, recent advances in the designed assembly, film fabrication, and printing/integration methods for colloidal nanocrystals are presented. The advantages and drawbacks of these methods are compared, and various device applications of assembled/integrated colloidal nanocrystal solids are discussed. PMID:26707709

  7. Giant photostriction in organic-inorganic lead halide perovskites

    Science.gov (United States)

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  8. Theoretical study of the scandium and yttrium halides

    Science.gov (United States)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1988-01-01

    The X1Sigma(+) ground states and a3Delta excited states of the diatomic halides of Sc and Y are characterized theoretically, using the SDCI coupled-pair functional method and the state-averaged CASSCF method to determine the spectroscopic constants and related properties. The techniques employed are discussed, and the results are presented in extensive tables. The dissociation energies are given as D0 = 6.00 eV for ScF, 4.55 eV for ScCl, 3.90 eV for ScBr, 6.72 eV for YF, 5.36 eV for YCl, and 4.74 eV for YBr.

  9. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    Science.gov (United States)

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities. PMID:26631361

  10. Quasielastic neutron scattering study of silver selenium halides

    CERN Document Server

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  11. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Science.gov (United States)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  12. Games people play with interstitials (in alkali halides)

    International Nuclear Information System (INIS)

    A survey is given of the various ways in which interstitial halogen atoms produced by ionising radiation can be trapped in alkali halides. First, the fundamental interstitial halogen atom center, the H-center, is discussed. Then, interstitial centers trapped by, or in the neighbourhood of, various impurities are presented. Particular attention is given to trapping by the following impurities: foreign halogen ions, foreign alkali ions or pairs of both. The discussion is limited to a description of the production and the models of these H-type centers and little is said about their sometimes interesting physical properties. A few speculations are offered why certain interstitial centers have not yet been observed. The models of a few paramagnetic diinterstitial centers are also presented

  13. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems......, respectively, with a Debye-Hückel term for electrostatic interactions. In a second approach of the model, additional parameters for interactions of ion pairs in the KT-UNIFAC are introduced as a correction to get better agreement with data. Structural parameters of ions used in the framework of UNIFAC...

  14. Theory of freezing of alkali halides and binary alloys

    International Nuclear Information System (INIS)

    Using the basic equations of classical statistical mechanics relating the singlet densities rho1 and rho2 of a binary system to the three partial direct correlation functions csub(ij), a theory of freezing is developed. Though the theory is set up for arbitrary concentration, we focus on the freezing of the alkali halides. In particular, we show that periodic solutions of the equations for rho1 and rho2 can coexist with homogeneous solutions. The difference in free energy between periodic and homogeneous phases is built up in terms of (i) the volume difference and (ii) the Fourier components of rho1, rho2 and csub(ij). To lowest order, it is stressed that the freezing transition is determined by the charge-charge structure factor at the principal peak and by the compressibility. (author)

  15. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brendel' , V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  16. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Science.gov (United States)

    Brendel', V. M.; Bukin, V. V.; Garnov, Sergei V.; Bagdasarov, V. Kh; Denisov, N. N.; Garanin, Sergey G.; Terekhin, V. A.; Trutnev, Yurii A.

    2012-12-01

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation.

  17. Two-photon pumped lead halide perovskite nanowire lasers

    CERN Document Server

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  18. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  19. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1,3p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  20. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  1. A buffer gas cooled beam of barium monohydride

    Science.gov (United States)

    Iwata, Geoffrey; Tarallo, Marco; Zelevinsky, Tanya

    2016-05-01

    Significant advances in direct laser cooling of diatomic molecules have opened up a wide array of molecular species to precision studies spanning many-body physics, quantum collisions and ultracold dissociation. We present a cryogenic beam source of barium monohydride (BaH), and study laser ablation of solid precursor targets as well as helium buffer gas cooling dynamics. Additionally, we cover progress towards a molecular magneto-optical trap, with spectroscopic studies of relevant cooling transitions in the B2 Σ <--X2 Σ manifold in laser ablated molecules, including resolution of hyperfine structure and precision measurements of the vibrational Frank-Condon factors. Finally, we examine the feasibility of photo dissociation of trapped BaH molecules to yield optically accessible samples of ultracold hydrogen.

  2. Optical-induced absorption tunability of Barium Strontium Titanate film

    Science.gov (United States)

    Luo, Chunya; Ji, Jie; Yue, Jin; Rao, Yunkun; Yao, Gang; Li, Dan; Zeng, Ying; Li, Renkui; Xiao, Longsheng; Liu, Xinxing; Yao, Jianquan; Ling, Furi

    2016-10-01

    The absorption tunability of 100 nm thickness of ferroelectric Barium Strontium Titanate (Ba0.5Sr0.5TiO3) thin films with different densities of pumped optical field is measured by terahertz time-domain spectroscopy in the range of 0.2 THz - 1.2 THz at 19 °C. Experimental results show that the absorption coefficient of BST film is approximately at 5000 cm-1-20000 cm-1 in the range of 0.2 THz - 1.2 THz and the absorption coefficient reached up to 16% when we applied the optical field up to 600 mW. The theoretical calculations reveal that increasing photoexcitation fluences is responsible for the increasing of transmission change in the conduction current density cause the absorption coefficient varied.

  3. Infrared Spectroscopic Characterization of Calcium and Barium Hydrazone Complexes

    Directory of Open Access Journals (Sweden)

    *A. Adeniyi

    2013-06-01

    Full Text Available Hydrazones have attracted considerable interest on account of their biological activities. Introduction of calcium and barium metal ions into m- and p-nitrobenzoic hydrazones is expected to modify these biological properties for enhanced activity and versatility. The ligands were synthesized from the parent acids. The complexes have been characterized using C, H and N microanalyses and IR spectrometry. The IR spectral data of the ligands and complexes revealed bonding via the C=O and C=N groups. The suggested metal to ligand stoichiometries are: [M (m-NBHx]Cl2.yH2O, x, y = 1 and 4 for M = Ca; x, y = 2 and 3 for M = Ba respectively. [M(p-NBHx]Cl2.yH2O, x, y = 1 and 12 for M = Ca; x, y = 1 and 3 for M = Ba respectively. The structural deductions are tentative pending future X-ray structural studies.

  4. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    Science.gov (United States)

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  5. Pulsating aurora induced by upper atmospheric barium releases

    Science.gov (United States)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  6. Bronchography in dogs. Comparative study with two barium sulphate solutions

    International Nuclear Information System (INIS)

    Two solutions of barium sulphate, 60 and 30% w/v, were compared with the ''overflow'' Bronchographic method. Two groups of eight healthy adult does of both sexes, weighing 7 to 18 kg were used for the study. The dogs were anaesthetised with thiopentone sodium 2% (20 mg/kg iv). After intubation, each dog received contrast medium by a catheter connected to a syringe, in a 9 mi dose. Two series of two x-rays plates were taken in left lateral recumbent, 3 and 6 min after administering the contrast medium and in ventrodorsal projection, 30 sec. later. The x-ray plates obtained were analysed and compared intra and inter group considering the advance speed of the contrast medium, the radiographic density and outlines. Adverse reactions were controlled

  7. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  8. Synthesis and optical study of barium magnesium aluminate blue phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeet, Suninder, E-mail: suninder.jeet@thapar.edu; Pandey, O. P., E-mail: oppandey@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala (147003), Punjab (India); Sharma, Manoj, E-mail: manojnarad@sggswu.org [Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib(146406), Punjab (India)

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  9. Study on a flexoelectric microphone using barium strontium titanate

    Science.gov (United States)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  10. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  11. The Structure and Thermodynamics of Alkali Halide Vapors.

    Science.gov (United States)

    Hartley, John George

    A comprehensive set of electron diffraction experiments were performed on 16 of the alkali halides in the vapor phase. A 40kev electron beam was scattered from the vapor effusing out of the nozzle of a temperature controlled gas cell. The resulting data were analyzed at the University of Edinburgh with the program ED80. This resulted in values for the bond lengths of monomers and the dimers, the bond angle of the dimers and the monomer-dimer ratios. In several cases, it was possible to further refine the data to obtain information on the mean amplitudes of vibration. As a check on the accuracy of the results, the monomer bond distances obtained by electron diffraction were compared to values obtained previously by microwave spectroscopy. The average monomer bond length r_{a} is corrected to obtain the equilibrium bond distance r_{e}. This value is then compared to the value of r_{e } obtained from microwave spectroscopy and found to be in excellent agreement. The bond lengths and angles of the dimers were compared against model calculations. While no one model was found to accurately predict the dimer structure parameters of all of the alkali halides, the Rittner model of Gowda et al was found to accurately predict the structure of six of the dimers. Thermodynamical calculations were performed on the model data which resulted in theoretical curves of the monomer-dimer ratios. Comparison of these curves with the experimental monomer-dimer ratio permits an evaluation of the model vibration frequencies. The enthalpy of formation of the dimer, Delta H_sp{2}{f}(298) is examined with regard to the size of the variation necessary to bring about agreement of the experimental and model monomer-dimer ratios.

  12. Phase space investigation of the lithium amide halides

    International Nuclear Information System (INIS)

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li3(NH2)2I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li7(NH2)6Cl. • New low-chloride phase maintained improved H2 desorption properties of Li4(NH2)3Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH2). It was found that the lithium amide iodide Li3(NH2)2I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li7(NH2)6Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li4(NH2)3Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li7(NH2)6Cl was observed. In comparison to LiNH2, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li4(NH2)3Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful

  13. Barium and carbon fluxes in the Canadian Arctic Archipelago

    Science.gov (United States)

    Thomas, Helmuth; Shadwick, Elizabeth; Dehairs, Frank; Lansard, Bruno; Mucci, Alfonso; Navez, Jacques; Gratton, Yves; Prowe, Friederike; Chierici, Melissa; Fransson, Agneta; Papakyriakou, Tim N.; Sternberg, Erika; Miller, Lisa A.; Tremblay, Jean-ÉRic; Monnin, Christophe

    2011-09-01

    The seasonal and spatial variability of dissolved Barium (Ba) in the Amundsen Gulf, southeastern Beaufort Sea, was monitored over a full year from September 2007 to September 2008. Dissolved Ba displays a nutrient-type behavior: the maximum water column concentration is located below the surface layer. The highest Ba concentrations are typically observed at river mouths, the lowest concentrations are found in water masses of Atlantic origin. Barium concentrations decrease eastward through the Canadian Arctic Archipelago. Barite (BaSO4) saturation is reached at the maximum dissolved Ba concentrations in the subsurface layer, whereas the rest of the water column is undersaturated. A three end-member mixing model comprising freshwater from sea-ice melt and rivers, as well as upper halocline water, is used to establish their relative contributions to the Ba concentrations in the upper water column of the Amundsen Gulf. Based on water column and riverine Ba contributions, we assess the depletion of dissolved Ba by formation and sinking of biologically bound Ba (bio-Ba), from which we derive an estimate of the carbon export production. In the upper 50 m of the water column of the Amundsen Gulf, riverine Ba accounts for up to 15% of the available dissolved Ba inventory, of which up to 20% is depleted by bio-Ba formation and export. Since riverine inputs and Ba export occur concurrently, the seasonal variability of dissolved Ba in the upper water column is moderate. Assuming a fixed organic carbon to bio-Ba flux ratio, carbon export out of the surface layer is estimated at 1.8 ± 0.45 mol C m-2 yr-1. Finally, we propose a climatological carbon budget for the Amundsen Gulf based on recent literature data and our findings, the latter bridging the surface and subsurface water carbon cycles.

  14. Brillouin function characteristics for La-Co substituted barium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chuanjian, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yang, Yan [Department of Communication and Engineering, Chengdu Technological University, Chengdu 611730 (China)

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  15. Methods for synthesizing alane without the formation of adducts and free of halides

    Science.gov (United States)

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  16. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  17. Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide

    Institute of Scientific and Technical Information of China (English)

    Yi Min HU; Yu ZHANG; Jian Lin HAN; Cheng Jian ZHU; Yi PAN

    2003-01-01

    A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide 1 with benzyl halides 2 afforded the corresponding dihydropyrroles 3 in moderate to excellent yields.

  18. Space-dependent self-diffusion processes in molten copper halides: a molecular dynamics study

    OpenAIRE

    Alcaraz Sendra, Olga; Trullàs Simó, Joaquim

    2001-01-01

    This work is concerned with single ion dynamics in molten copper halides (CuI and CuCl) which exhibit fast ionic conduction before melting. The self-dynamic structure factor of the two ionic species in each melt have been calculated by molecular dynamics simulations and the corresponding effective wavelength-dependent self-diffusion coefficients have been studied. The results have been compared with those obtained for molten alkali halides (KCl and RbCl).

  19. Atomistic simulation of ion solvation in water explains surface preference of halides

    OpenAIRE

    Caleman, C.; Hub, J. S.; van Maaren, P.; van der Spoel, D

    2011-01-01

    Water is a demanding partner. It strongly attracts ions, yet some halide anions—chloride, bromide, and iodide—are expelled to the air/water interface. This has important implications for chemistry in the atmosphere, including the ozone cycle. We present a quantitative analysis of the energetics of ion solvation based on molecular simulations of all stable alkali and halide ions in water droplets. The potentials of mean force for Cl-, Br-, and I- have shallow minima near the surface. We demons...

  20. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  1. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    OpenAIRE

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were gen...

  2. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    OpenAIRE

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles w...

  3. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    OpenAIRE

    Bretschneider, Simon A.; Jonas Weickert; James A. Dorman; Lukas Schmidt-Mende

    2014-01-01

    The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We...

  4. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  5. Langmuir-Blodgettry of nanocrystals and nanowires.

    Science.gov (United States)

    Tao, Andrea R; Huang, Jiaxing; Yang, Peidong

    2008-12-01

    Although nanocrystals and nanowires have proliferated new scientific avenues in the study of their physics and chemistries, the bottom-up assembly of these small-scale building blocks remains a formidable challenge for device fabrication and processing. An attractive nanoscale assembly strategy should be cheap, fast, defect tolerant, compatible with a variety of materials, and parallel in nature, ideally utilizing the self-assembly to generate the core of a device, such as a memory chip or optical display. Langmuir-Blodgett (LB) assembly is a good candidate for arranging vast numbers of nanostructures on solid surfaces. In the LB technique, uniaxial compression of a nanocrystal or nanowire monolayer floating on an aqueous subphase causes the nanostructures to assemble and pack over a large area. The ordered monolayer can then be transferred to a solid surface en masse and with fidelity. In this Account, we present the Langmuir-Blodgett technique as a low-cost method for the massively parallel, controlled organization of nanostructures. The isothermal compression of fluid-supported nanoparticles or nanowires is unique in its ability to achieve control over nanoscale assembly by tuning a macroscopic property such as surface pressure. Under optimized conditions (e.g., surface pressure, substrate hydrophobicity, and pulling speed), it allows continuous variation of particle density, spacing, and even arrangement. For practical application and device fabrication, LB compression is ideal for forming highly dense assemblies of nanowires and nanocrystals over unprecedented surface areas. In addition, the dewetting properties of LB monolayers can be used to further achieve patterning within the range of micrometers to tens of nanometers without a predefined template. The LB method should allow for easy integration of nanomaterials into current manufacturing schemes, in addition to fast device prototyping and multiplexing capability. PMID:18683954

  6. Characterization and growth dynamics of barium titanate crystallite on nanometer scale

    Institute of Scientific and Technical Information of China (English)

    Sen Wang; Yue Zhang; Zhen Ji; Yousong Gu; Yunhua Huang; Cheng Zhou

    2005-01-01

    Barium titanate powder on nanometer scale was synthesized by means of co-precipitation. The thermal mass loss, crystal grain growth and phase transition of the barium titanate nanometer powder were investigated by TG (Thermogravimetric)-DTA (Differential scanning calorimetric) and XRD (X-ray powder diffractometer) at different heat treatment temperatures. The results show that amorphous barium titanate powder can transfer into tetragonal symmetry structure after heat treatment. When the heat treatment temperature is below 900℃, the grains grow rapidly because the activation energy at low temperature is greatly less than that at high temperature. By controlling theheat treatment temperature, the optimization of the barium titanate crystallite size and formation of tetragonal phase can be realized.

  7. A study of magneto-crystalline alignment in sintered barium hexaferrite fabricated by powder injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Zlatkov, B.S. [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan-Strasse 2, 2700 Wiener Neustadt (Austria); Nikolic, M.V. [Institute for Multidisciplinary Research, Kneza Viseslava 1, 11000 Beograd (Serbia)], E-mail: mariavesna@cms.bg.ac.yu; Aleksic, O. [Institute for Multidisciplinary Research, Kneza Viseslava 1, 11000 Beograd (Serbia); Danninger, H.; Halwax, E. [Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060 Wien (Austria)

    2009-02-15

    Barium hexaferrite permanent magnets were produced by powder injection molding. Starting barium hexaferrite powder was prepared from a Fe{sub 2}O{sub 3} and BaCO{sub 3} powder mixture by calcination followed by milling. The feedstock for powder injection molding was prepared by mixing barium hexaferrite powder with a low viscosity binder. Magnetic alignment was achieved by applying a high intensity magnetic field to the melted feedstock during the injection process. Green samples (with and without magnetic alignment) were subjected to solvent debinding and subsequent thermal debinding followed by sintering. Sintering conditions were optimized in order to achieve a maximum energy product value. Magneto-crystalline aligning in barium hexaferrite was studied on both green and sintered samples using X-ray diffraction, scanning electron microscope (SEM) and magnetic measurements (hysteresisgraphs). All measurements were made both in a parallel and perpendicular direction to the aligning magnetic field. The obtained results confirmed magneto-crystalline alignment.

  8. Photonic devices and systems embedded with nanocrystals

    Science.gov (United States)

    Demir, Hilmi Volkan; Soganci, Ibrahim Murat; Mutlugun, Evren; Tek, Sumeyra; Huyal, Ilkem Ozge

    2006-10-01

    We review our research work on the development of photonic devices and systems embedded with nanocyrstals for new functionality within EU Phoremost Network of Excellence on nanophotonics. Here we report on CdSe/ZnS nanocrystal-based hybrid optoelectronic devices and systems used for scintillation to enhance optical detection and imaging in the ultraviolet range and for optical modulation via electric field dependent optical absorption and photoluminescence in the visible. In our collaboration with DYO, we also present photocatalytic TiO II nanoparticles incorporated in solgel matrix that are optically activated in the ultraviolet for the purpose of self-cleaning.

  9. Spontaneous emission in the ellipsoidal nanocrystals

    Institute of Scientific and Technical Information of China (English)

    K.K.Pukhov

    2009-01-01

    The equation was presented for the spontaneous emission rate Anano of the two-level optical centers in the subwavelength ellipsoidal nanocrystals embedded in a dielectric medium.An important result was that the ratio Anano/Abulk could be estimated without recourse to a particular local-field model.On the ground of this equation the expression was derived for linestrength of electric-dipole transition in trivalent rare-earth ions.The applicability of the Judd-Ofelt equation for nanoparticles was discussed.

  10. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    Science.gov (United States)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  11. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    Science.gov (United States)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  12. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium.

    Science.gov (United States)

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E

    2015-11-01

    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.

  13. Study of the immunoisolating effects of barium-alginate microencapsulation on rat islets allograft survival

    Institute of Scientific and Technical Information of China (English)

    Mei Zhang; Chao Liu; Cuiping Liu; Youwen Qin; Zhaosun Zhen

    2005-01-01

    Objective: To evaluate the immunoisolating effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets were transplanted under the kidney capsule or intraperitoneally into Wistar rat with STZ-induced diabetes. The blood glucose and insulin secretion of grafts were observed. Graft function was tested by oral rats was associated with normal glucose and insulin profiles in response to OGTT. Conclusion: Microencapsulation with barium-alginate membrane can prolong islet survival and protect islets against allorejection.

  14. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    OpenAIRE

    Koralewska, J.; Piotrowski, K; B. Wierzbowska; A. Matynia

    2008-01-01

    Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma) with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow ...

  15. Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

    OpenAIRE

    Trivedi, Mahendra; Nayak, Gopal

    2015-01-01

    Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffr...

  16. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  17. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.

    Science.gov (United States)

    Knowles, Kathryn E; Hartstein, Kimberly H; Kilburn, Troy B; Marchioro, Arianna; Nelson, Heidi D; Whitham, Patrick J; Gamelin, Daniel R

    2016-09-28

    Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.

  18. Synthesis of nonstoichiometric M-type barium ferrite nanobelt by spark plasma sintering method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wenyu; ZHANG Qingjie; TANG Xinfeng; CHENG Haibin

    2005-01-01

    This study investigated the feasibility of ultrafast crystallization of M-type barium ferrite when the coprecipitation precursors in stoichiometric proportions as BaFe12O19, Fe(OH)3 and BaCO3 nanoparticles, had been heated by spark plasma sintering (SPS) process. The results show that SPS method may realize the ultrafast crystallization of M-type barium ferrite, absolutely prevent the crystallization of intermediate phase α-Fe2O3, and significantly decrease the crystallization temperature of M-type barium ferrite. The sintered samples obtained at 800℃ by sintering the precursors for 10 minutes are a kind of multiphase ferrites composed of major phase M-type barium ferrite and trace amount of BaFe0.24Fe0.76O2.88. It is discovered that M-type barium ferrites in the holes of the sintered samples are in nanobelt microstructure about 100-300 nm in width and several micrometers in length. These M-type barium ferrite nanobelts are non-stoichiometric and may be expressed as BaFe12+Xo19+1.5x (-4.77≤x≤6.50). Their composistions suggest completely random Fe-rich or Ba-rich domains.

  19. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough

    Directory of Open Access Journals (Sweden)

    Carlos Shuler Nin

    2013-12-01

    Full Text Available OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough.METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons.RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6% of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6% of the patients, whereas the treatment was ineffective in 1 (8.4%. We observed no complications related to barium swallow, such as contrast aspiration.CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies.

  20. Reactivity of TEMPO anion as a nucleophile and its applications for selective transformations of haloalkanes or acyl halides to aldehydes

    OpenAIRE

    Inokuchi, Tsutomu; Kawafuchi, Hiroyuki

    2004-01-01

    Sodium 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO−Na+), generated by reduction of TEMPO· with sodium naphthalenide in THF, reacted with alkyl halides or acyl halides to produce O-alkylated or acylated TEMPOs, which were in turn oxidized with mCPBA or reduced with DIBAL-H to afford the corresponding aldehydes, thus accomplishing a new protocol for the halides-carbonyls conversion.

  1. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jesse H. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Surendranath, Yogesh [Univ. of California, Berkeley, CA (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-07-20

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentration in porous semiconductor thin films.

  2. Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings

    Science.gov (United States)

    Wills, Andrew Wilke

    Semiconductor nanocrystals are an intriguing class of materials because of their size-tunable properties. This makes them promising for future optoelectronic devices such as solar cells and light emitting diodes. Realization of these devices, however, requires precise control of the flow of electricity through the particles. In bulk semiconductors, this is achieved by using materials with few unintentional defects, then intentionally adding particular defects or dopants to alter the semiconductor's electronic properties. In contrast, the addition of electrically active dopants has scarcely been demonstrated in semiconductor nanocrystals, and charge transport is hindered by the barrier of electron hopping between particles. The goal of this thesis, therefore, is to discover new methods to control charge transport in nanocrystals. It divides into three major thrusts: 1) the investigation of the doping process in semiconductor nanocrystals, 2) the invention of new synthetic methods to incorporate electrically active dopants into semiconductor nanocrystals, and 3) the invention of a new nanocrystal surface coating that aids processing of nanocrystals into devices but can be removed to enhance charge transport between particles. The first objective is achieved by the comparison of four different precursors that have been used to dope Mn into nanocrystals. Experiments show that dimethylmanganese incorporates efficiently into ZnSe nanocrystals while other precursors are less efficient and sometimes lower the quality of the nanocrystals produced. The second goal is met by the application of a core-shell synthetic strategy to the incorporation of non-isovalent impurities (Al and In) into CdSe nanocrystals. By separating the three steps of nucleation, dopant binding, and growth, each step can be optimized so that doping is achieved and high quality particles are produced. Detailed characterization shows dopant incorporation and local environment, while transistor

  3. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  4. Synthesis and characterization of cuprous selenide nanocrystals at room temperature

    Institute of Scientific and Technical Information of China (English)

    Tai Shan Li; Shao Pu Liu; Zhao Xia Lu; Zhong Fang Liu

    2007-01-01

    A simple method has been developed to prepare cuprous selenide nanocrystals by the reaction of copper nitrate trihydrate with selenium and sodium mercaptoacetate in aqueous ammonia system. Cu2Se nanocrystals were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), electron diffraction (ED), fluorescence spectrum and ultraviolet-visible absorption spectrum. Cu2Se nanocrystals showed berzelianite structure with 20-40 nm in length and 10-20 nm in width. A possible mechanism is also discussed.

  5. Colloidal nanocrystal synthesis and the organic-inorganicinterface

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Alivisatos, A. Paul

    2005-05-12

    Colloidal nanocrystals are nanometer-sized, solution-grown inorganic particles stabilized by a layer of surfactants attached to their surface. The inorganic cores exhibit useful properties controlled by composition as well as size and shape, while the surfactant coating ensures that these structures are easy to fabricate and process. It is this combination of features that makes colloidal nanocrystals attractive and promising building blocks for advanced materials and devices. But their full potential can only be exploited if we achieve exquisite control over their composition, size, shape, crystal structure and surface properties. Here we review what is known about nanocrystal growth and outline strategies for controlling it.

  6. Steroid Nanocrystals Prepared Using the Nano Spray Dryer B-90

    Science.gov (United States)

    Baba, Koichi; Nishida, Kohji

    2013-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrystals have recently been considered as a novel type of drug formulation for drug delivery systems, this study will be useful for nano-medical applications. PMID:24300400

  7. Steroid nanocrystals prepared using the nano spray dryer B-90.

    Science.gov (United States)

    Baba, Koichi; Nishida, Kohji

    2013-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrystals have recently been considered as a novel type of drug formulation for drug delivery systems, this study will be useful for nano-medical applications. PMID:24300400

  8. Steroid Nanocrystals Prepared Using the Nano Spray Dryer B-90

    Directory of Open Access Journals (Sweden)

    Kohji Nishida

    2013-01-01

    Full Text Available The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrystals have recently been considered as a novel type of drug formulation for drug delivery systems, this study will be useful for nano-medical applications.

  9. Terahertz and Gigahertz Emission from an All-Silicon Nanocrystal

    Science.gov (United States)

    Vach, Holger

    2014-05-01

    Based on first-principles calculations, we predict the use of pure silicon nanocrystals as nano-oscillators in the giga- and terahertz region. Small- and large-amplitude, one-dimensional vibrations are observed. The former are spontaneously excited thermally at frequencies around 3 THz. Large-amplitude vibrations originate from oscillations between the inversion geometries of the nanocrystal and can be caused either classically by an external excitation or by quantum tunneling. The latter causes a ground-state splitting of 4.2 GHz, suggesting the use of the proposed nanocrystals as laser elements in a configuration analogous to that of the ammonia maser.

  10. Double-Diffusive Convection During Growth of Halides and Selenides

    Science.gov (United States)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  11. Excess Barium as a Paleoproductivity Proxy: A Reevaluation

    Science.gov (United States)

    Eagle, M.; Paytan, A.

    2001-12-01

    Marine barite may serve as a proxy to reconstruct past export production (Dymond, 1992). In most studies sedimentary barite accumulation is not measured directly, instead a parameter termed excess barium (Baexs), also referred to as biogenic barium, is used to estimate the barite content. Baexs is defined as the total Ba concentration in the sediment minus the Ba associated with terrigenous material. Baexs is calculated by normalization to a constant Ba/Al ratio, typically the average shale ratio. This application assumes that (1) all the Ba besides the fraction associated with terrigenous Al is in the form of barite (the phase related to productivity) (2) the Ba/Alshale is constant in space and time (3) all of the Al is associated with terrigenous matter. If these assumptions are invalidated however, this approach lead to significant errors in calculating export production rates. To test the validity of the use of Baexs as a proxy for barite we compared the Baexs in a wide range of core top sediments from different oceanic settings to the barite content in the same cores. We found that Baexs frequently overestimated the Ba fraction associated with barite and in several cases significant Baexs was measured in the cores where no barite was observed. We have also used a sequential leaching protocol (Collier and Edmond 1984) to determine Ba association with organic matter, carbonates, Fe-Mn hydroxides and silicates. While terrigenous Ba remains an important fraction, in our samples 25-95% of non-barite Ba was derived from other fractions, with Fe-Mn oxides contributing the most Ba. In addition we found that the Ba/Al ratio in the silicate fraction of our samples varied considerably from site to site. The above results suggest that at least two of the underlying assumptions for employing Baexs to reconstruct paleoproductivity are not always valid and previously published data from (Murray and Leinen 1993) indicate that the third assumption may also not hold in every

  12. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  13. STUDY ON THE CATIONIC POLYMERIZATION OF 1,3-PENTADIENE INITIATED BY AlCl3/ALKYL HALIDE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    PENG Yuxing; LIU Jialin; DAI Hansong; CUN Linfeng

    1996-01-01

    The cationic polymerizations of 1, 3-pentadiene were initiated by AlCl3 in n-hexane at 30℃ in the presence of alkyl halides, i.e., tert-butyl chloride, tert-butyl bromide and isobutyl chloride. The effects of these halides on the polymer yield, molecular weight,crosslinking reaction, cyclization and polymer microstructure, have been investigated. Two main side reactions, crosslinking and cyclization, were suppressed and reduced by the addition of the halides. The proportion of 1, 4 units of polymer chains was increased by the presence of the halides, which reduced the polymer yield and the molecular weight of polymers.

  14. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    Science.gov (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  15. Effects of isoelectronic and halide surfactants on compound semiconductors

    Science.gov (United States)

    Howard, Alexander David

    Isoelectronic surfactants Sb, Bi, and N, have proven to increase the doping efficiency of Zn while concurrently reducing the unintentional impurities C, Si, and S in GaP. Additionally, surfactant Sb and N have demonstrated that altering the incorporation efficiency in GaP is also possible with a surfactant surface coverage of less than one. Halide surfactants Br and Cl were shown to systematically destroy ordering in GaInP. Furthermore, a distinct correlation between increasing surfactant Br or Cl in the vapor and surface roughness was evident. This work is presented in three main sections. First, surfactants Sb and Bi, from the pyrolysis of TMSb and TMBi, were examined to determine the effect on Zn doping in GaP. The data demonstrate that the incorporation of Zn can be increased by an order of magnitude in GaP to a value of approximately 1020 cm-3, the highest value reported to date. Additionally, these same surfactants lead to significant decreases in carbon contamination during growth. At high growth temperatures, the reduction can be as large as 100 x in GaP. Second, the role of steps versus the singular surface between steps was studied by using a surfactant fractional surface coverage of less than one. When surfactant Sb was used, the Zn concentration was increased and C was reduced. However, there was no discernable change in incorporation efficiency over the entire range of surfactant Sb studied. Interestingly, surfactant N showed a linear increase in the Zn doping the with amount of surfactant present during growth resulting in an increase of 2 x at the highest flow rate used. Third, halide surfactants Br and Cl, carbon-tetrabromide and carbon-tetrachloride, were studied for their effects on ordering in GaInP. Bromine systematically decreased the amount of CuPt ordering observed by photoluminescence and transmission electron microscopy. Both surfactants Br and Cl were shown to significantly increase the surface roughness, which is postulated to be the

  16. Enthalpy of formation of (In, Gd)-doped barium cerate

    Energy Technology Data Exchange (ETDEWEB)

    Matskevich, N.I., E-mail: nata.matskevich@yandex.ru [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation); Karlsruhe Institute of Technology, Institute of Solid State Physics, D-76334 Karlsruhe (Germany); Wolf, Th. [Karlsruhe Institute of Technology, Institute of Solid State Physics, D-76334 Karlsruhe (Germany); Adelmann, P.; Semerikova, A.N.; Anyfrieva, O.I. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-09-10

    Highlights: • BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85} was prepared by solid-state reaction. • The standard formation enthalpy was determined. • The stabilization energy (Δ{sub st}H°) was calculated. • Δ{sub st}H° of BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85} is higher than BaCe{sub 0.7}Nd{sub 0.2}In{sub 0.1}O{sub 2.85} and BaCeO{sub 3}. - Abstract: Solution enthalpies of barium cerate doped by gadolinium and indium and a mixture of BaCl{sub 2} + 0.7CeCl{sub 3} + 2GdCl{sub 3} + 0.1InCl{sub 3} have been measured in 1 mol dm{sup −3} HCl with 0.1 mol dm{sup −3} KI. For the first time the standard molar formation enthalpy of BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85} has been determined by solution calorimetry as follows: Δ{sub f}H° (298.15 K) = −1615.84 ± 9.01 kJ mol{sup −1}. The stabilization energy for above-mentioned compound has been calculated as well. It has been shown that barium cerate doped gadolinium and indium has higher stabilization energy than BaCe{sub 0.7}Nd{sub 0.2}In{sub 0.1}O{sub 2.85} and BaCeO{sub 3}. The reaction enthalpy with CO{sub 2} interaction has been calculated for BaCe{sub 0.7}Gd{sub 0.2}In{sub 0.1}O{sub 2.85}.

  17. The influence of dopant distribution on the optoelectronic properties of tin-doped indium oxide nanocrystals and nanocrystal films

    Science.gov (United States)

    Lounis, Sebastien Dahmane

    Colloidally prepared nanocrystals of transparent conducting oxide (TCO) semiconductors have emerged in the past decade as an exciting new class of plasmonic materials. In recent years, there has been tremendous progress in developing synthetic methods for the growth of these nanocrystals, basic characterization of their properties, and their successful integration into optoelectronic and electrochemical devices. However, many fundamental questions remain about the physics of localized surface plasmon resonance (LSPR) in these materials, and how their optoelectronic properties derive from their underlying structural properties. In particular, the influence of the concentration and distribution of dopant ions and compensating defects on the optoelectronic properties of TCO nanocrystals has seen little investigation. Indium tin oxide (ITO) is the most widely studied and commercially deployed TCO. Herein we investigate the role of the distribution of tin dopants on the optoelectronic properties of colloidally prepared ITO nanocrystals. Owing to a high free electron density, ITO nanocrystals display strong LSPR absorption in the near infrared. Depending on the particular organic ligands used, they are soluble in various solvents and can readily be integrated into densely packed nanocrystal films with high conductivities. Using a combination of spectroscopic techniques, modeling and simulation of the optical properties of the nanocrystals using the Drude model, and transport measurements, it is demonstrated herein that the radial distribution of tin dopants has a strong effect on the optoelectronic properties of ITO nanocrystals. ITO nanocrystals were synthesized in both surface-segregated and uniformly distributed dopant profiles. Temperature dependent measurements of optical absorbance were first combined with Drude modeling to extract the internal electrical properties of the ITO nanocrystals, demonstrating that they are well-behaved degenerately doped semiconductors

  18. Mechanism of Phase Transformation and Formation of Barium Hexaferrite Doped with Rare-Earths in Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    甘树才; 洪广言; 张军; 车平; 唐娟

    2003-01-01

    The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and γ-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.

  19. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  20. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  1. Colonic diverticulosis: evaluation with double contrast barium enema

    International Nuclear Information System (INIS)

    To evaluate the pattern of colonic diverticulosis according to age and sex, and recent trend. The authors retrospectively reviewed 120 cases of colonic diverticulosis in 1,020 patients who had undergone a double contrast barium enema examination between January 1st, 1993, and December 31st, 1995, and analyzed the frequency, size, multiplicity and anatomical site, according to age and sex. Diverticulum size was classified into one of three groups : less than 5mm, 5-10mm, over 10mm in diameter. The overall incidence of colonic diverticulosis was 120 cases among 1,020 patients(11.8%) with an incidence 5.3 times higher in males than in females. Peak incidence was in the fifth decade, with 19 cases (15.8%) among males, and after the sixth decade, with four cases(3.3%) among females. Mean age was 57.7 years. Diverticulum size of 5-10mm in diameter was predominant (2% of cases); average diameter was 5-6mm. The incidence of colonic diverticulosis was 5.1 times more frequent in the right colon (101 cases) than in the left (20 cases). The overall incidence of colonic diverticulosis has continually increased; in addition it has also recently increased slightly in left-sided colon. This is thought to be due to various factors, both congenital and acquired, including longer life with good health care, constipation, irritable bowel syndrome, stress and the tendency of eating patterns to more closely resemble those of the west

  2. Abundance analysis of s-process enhanced barium stars

    Science.gov (United States)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  3. Structural and magnetic properties of barium-gadolinium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Litsardakis, G. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: Lits@eng.auth.gr; Manolakis, I. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Serletis, C. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Efthimiadis, K.G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2007-03-15

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba{sub 1-x}Gd{sub x})O.5.25Fe{sub 2}O{sub 3} (x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe{sub 2}O{sub 3}) and GdFeO{sub 3} were detected in the remaining samples. Coercivity (H{sub c}) shows remarkably high values, {approx}293kA/m for x=0.20 and 0.30 with a maximum of 322kA/m for x=0.25. Specific saturation magnetization ({sigma}{sub sat}) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  4. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    Science.gov (United States)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  5. Properties of barium strontium titanate at millimeter wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Nurul [Department of Physics, Universiti Putra Malaysia (Malaysia); Free, Charles [Department of Engineering and Design, University of Sussex (United Kingdom)

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  6. Properties of barium strontium titanate at millimeter wave frequencies

    International Nuclear Information System (INIS)

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application

  7. Combustion synthesis, characterization and luminescence properties of barium aluminate phosphor

    Institute of Scientific and Technical Information of China (English)

    AH Wako; FB Dejene; HC Swart

    2014-01-01

    The blue-green emitting Eu2+and Nd3+ doped polycrystalline barium aluminate (BaAl2O4:Eu2+,Nd3+) phosphor, was pre-pared by a solution-combustion method at 500 ºC without a post-annealing process. The characteristic variation in the structural and luminescence properties of the as-prepared samples was evaluated with regards to a change in the Ba/Al molar ratio from 0.1:1 to 1.4:1. The morphologies and the phase structures of the products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the optical properties were investigated using ultra-violet (UV) and photoluminescence (PL) spectroscopy, respectively. The XRD and TEM results revealed that the average crystallite size of the BaAl2O4:Eu2+,Nd3+ phosphor was about 70 nm. The broad-band UV-excited luminescence of the phosphors was observed atλmax=500 nm due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The PL results indi-cated that the main peaks in the emission and excitation spectrum of phosphor particles slightly shifted to the short wavelength due to the changes in the crystal field due to the structure changes caused by the variation in the quantity of the Ba ions in the host lattice.

  8. Colonic diverticulosis: evaluation with double contrast barium enema

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jae Kook; Lee, Jong Koo; Yun, Eun Joo; Moon, Hee Jung; Shin, Hyun Ja [Korea Veterans Hospital, Seoul (Korea, Republic of)

    1997-02-01

    To evaluate the pattern of colonic diverticulosis according to age and sex, and recent trend. The authors retrospectively reviewed 120 cases of colonic diverticulosis in 1,020 patients who had undergone a double contrast barium enema examination between January 1st, 1993, and December 31st, 1995, and analyzed the frequency, size, multiplicity and anatomical site, according to age and sex. Diverticulum size was classified into one of three groups : less than 5mm, 5-10mm, over 10mm in diameter. The overall incidence of colonic diverticulosis was 120 cases among 1,020 patients(11.8%) with an incidence 5.3 times higher in males than in females. Peak incidence was in the fifth decade, with 19 cases (15.8%) among males, and after the sixth decade, with four cases(3.3%) among females. Mean age was 57.7 years. Diverticulum size of 5-10mm in diameter was predominant (2% of cases); average diameter was 5-6mm. The incidence of colonic diverticulosis was 5.1 times more frequent in the right colon (101 cases) than in the left (20 cases). The overall incidence of colonic diverticulosis has continually increased; in addition it has also recently increased slightly in left-sided colon. This is thought to be due to various factors, both congenital and acquired, including longer life with good health care, constipation, irritable bowel syndrome, stress and the tendency of eating patterns to more closely resemble those of the west.

  9. Barium in landscape components of the western Transbaikal region

    Science.gov (United States)

    Kashin, V. K.

    2015-10-01

    Barium concentrations in parent materials, soils, and plants of the forest-steppe, steppe, and dry steppe landscapes of the Transbaikal region have been studied. The average concentration of this element in rocks and soils of this region exceeds its clarke by 1.8-2.1 times. A positive correlation between the contents of Ba in soils, soil-forming rocks, and plants has been found. The concentration of Ba in soils does not correlate with the soil pH and humus content. Distribution patterns of Ba in the soil profiles have been characterized. With respect to the coefficient of the biological uptake by plants, Ba is assigned to the group of low accumulation (0.55-0.65) for mineral soils and of strong accumulation (6.0) for alluvial bog soils. Average concentrations of Ba in the steppe, meadow, and cultivated vegetation of the region are 1.9-2.3 times higher in comparison with the average concentration of this element in plants of the continents. The biological migration of Ba is most active in meadow landscapes, whereas steppe landscapes are characterized by the least active biological migration of this element.

  10. Abundance analysis of s-process enhanced barium stars

    CERN Document Server

    Mahanta, Upakul; Goswami, Aruna; Duorah, Kalpana

    2016-01-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ~ 42000) of these objects spanning a wavelength range from 4000 to 6800 A, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature T_eff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] > 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars wit...

  11. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    Science.gov (United States)

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application. PMID:27227427

  12. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  13. Electron–phonon coupling in hybrid lead halide perovskites

    Science.gov (United States)

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  14. Superconducting state in bromium halide at high pressure

    Science.gov (United States)

    Szczȩśniak, R.; Zemła, T. P.; Szczȩśniak, D.

    2016-08-01

    The thermodynamic properties of the superconducting state in bromium halide (HBr) compound have been analyzed in the framework of the Eliashberg formalism. In particular, for the range of the pressure (p) from 140 GPa to 200 GPa, it has been shown that the critical temperature increases significantly: TC(p) ∈ K, whereas the Coulomb pseudopotential (μ⋆) is equal to 0.1. Together with the increase of p, the values of the thermodynamic parameters such as: the ratio of the energy gap at the temperature of zero Kelvin to the critical temperature (RΔ ≡ 2 Δ (0) /kB TC), the ratio of the specific heat jump at the critical temperature to the electronic specific heat of the normal state (RC ≡ ΔC (TC) /CN (TC)), and the ratio related to the thermodynamic critical field (RH ≡TC CN (TC) / HC2 (0)) increasingly deviate from the predictions of the BCS model: RΔ(p) ∈ , RC(p) ∈ , and RH(p) ∈ . It should be noted that the increase of μ⋆ visibly lowers TC and significantly reduces the difference between the results of the Eliashberg and BCS theory.

  15. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  16. Synthetic and structural chemistry of amidinate-substituted boron halides.

    Science.gov (United States)

    Hill, Nicholas J; Findlater, Michael; Cowley, Alan H

    2005-10-01

    The following new amidinate-substituted boron halides are reported: [PhC{N(SiMe(3))}(2)]BCl(2)(6), [MeC{NCy}(2)]BCl(2)(10), [Mes*C{NCy}(2)]BCl(2)(11), [MeC{N(i)Pr}(2)]BCl(2)(12), and [FcC{NCy}(2)]BBr(2)(13). Compound 6 was prepared via the trimethylsilyl chloride elimination reaction of BCl(3) with N,N,N'-tris(trimethylsilyl)benzamidine, and compounds 10-12 were prepared by salt metathesis between the lithium amidinates [RC(NR')(2)]Li and BX(3). Compound 13 was prepared via the insertion of 1,3-dicyclohexylcarbodiimide into the B-C bond of ferrocenyldibromoborane FcBBr(2). The molecular structures of 6, 10, 11, 13 and the known compound [PhC{N(SiMe(3))}(2)]BBr(2)(1) were established by single-crystal X-ray diffraction. PMID:16172649

  17. Effects of halides on reaction of nucleosides with ozone.

    Science.gov (United States)

    Suzuki, Toshinori; Kaya, Eriko; Inukai, Michiyo

    2012-01-01

    Ozone (O(3)), a major component of photochemical oxidants, is used recently as a deodorizer in living spaces. It has been reported that O(3) can directly react with DNA, causing mutagenesis in human cells and carcinogenesis in mice. However, little is known about the effects of coexistent ions in the reaction of O(3). In the present study, we analyzed the effects of halides on the reaction of O(3) with nucleosides using reversed-phase high-performance liquid chromatography with ultraviolet detection. When aqueous O(3) solution was added to a nucleoside mixture in potassium phosphate buffer (pH 7.3), the nucleosides were consumed with the following decreasing order of importance: dGuo > Thd > dCyd > dAdo. The effects of addition of fluoride and chloride in the system were slight. Bromide suppressed the reactions of dGuo, Thd, and dAdo but enhanced the reaction of dCyd. The major products were 5-hydroxy-2'-deoxycytidine, 5-bromo-2'-deoxycytidine, and 8-bromo-2'-deoxyguanosine. The time course and pH dependence of the product yield indicated formation of hypobromous acid as the reactive agent. Iodide suppressed all the reactions effectively. The results suggest that bromide may alter the mutation spectrum by O(3) in humans. PMID:22646086

  18. Phase holograms in silver halide emulsions without a bleaching step

    Science.gov (United States)

    Belendez, Augusto; Madrigal, Roque F.; Pascual, Inmaculada V.; Fimia, Antonio

    2000-03-01

    Phase holograms in holographic emulsions are usually obtained by two bath processes (developing and bleaching). In this work we present a one step method to reach phase holograms with silver-halide emulsions. Which is based on the variation of the conditions of the typical developing processes of amplitude holograms. For this, we have used the well-known chemical developer, AAC, which is composed by ascorbic acid as a developing agent and sodium carbonate anhydrous as accelerator. Agfa 8E75 HD and BB-640 plates were used to obtain these phase gratings, whose colors are between yellow and brown. In function of the parameters of this developing method the resulting diffraction efficiency and optical density of the diffraction gratings were studied. One of these parameters studied is the influence of the grain size. In the case of Agfa plates diffraction efficiency around 18% with density emulsion, whose grain is smaller than that of the Agfa, diffraction efficiency near 30% has been obtained. The resulting gratings were analyzed through X-ray spectroscopy showing the differences of the structure of the developed silver when amplitude and transmission gratings are obtained. The angular response of both (transmission and amplitude) gratings were studied, where minimal transmission is showed at the Braggs angle in phase holograms, whilst a maximal value is obtained in amplitude gratings.

  19. Coordination Chemistry Dictates the Structural Defects in Lead Halide Perovskites.

    Science.gov (United States)

    Rahimnejad, Sara; Kovalenko, Alexander; Forés, Sergio Martí; Aranda, Clara; Guerrero, Antonio

    2016-09-19

    We show the influence of species present in precursor solution during formation of lead halide perovskite materials on the structural defects of the films. The coordination of lead by competing solvent molecules and iodide ions dictate the type of complexes present in the films. Depending on the processing conditions all PbIS5 (+) , PbI2 S4, PbI3 S3 (-) , PbI4 S2 (2-) , PbI5 S2 (3-) , PbI6 (4-) and 1D (Pb2 I4 )n chains are observed by absorption measurements. Different parameters are studied such as polarity of the solvent, concentration of iodide ions, concentration of solvent molecules and temperature. It is concluded that strongly coordinating solvents will preferentially form species with a low number of iodide ions and less coordinative solvents generate high concentration of PbI6 (-) . We furthermore propose that all these plumbate ions may act as structural defects determining electronic properties of the photovoltaic films.

  20. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    Science.gov (United States)

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application.

  1. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films.

    Science.gov (United States)

    Li, Cheng; Zhong, Yu; Luna, Carlos Andres Melo; Unger, Thomas; Deichsel, Konstantin; Gräser, Anna; Köhler, Jürgen; Köhler, Anna; Hildner, Richard; Huettner, Sven

    2016-01-01

    Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL) characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH₃NH₃PbI3-xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM) layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices. PMID:27548128

  2. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  3. Robust quantum anomalous Hall effect in ferromagnetic transition metal halides

    CERN Document Server

    Huang, Chengxi; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2016-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of robust intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb)2Te3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that RuI3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ~360 K using Monte-Carlo simulation, is above room temperature and higher than most of two-dimensional ferromagnetic thin films. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our wor...

  4. Experimental and theoretical optical properties of methylammonium lead halide perovskites.

    Science.gov (United States)

    Leguy, Aurélien M A; Azarhoosh, Pooya; Alonso, M Isabel; Campoy-Quiles, Mariano; Weber, Oliver J; Yao, Jizhong; Bryant, Daniel; Weller, Mark T; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R F

    2016-03-28

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS). PMID:26477295

  5. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran (Iran, Islamic Republic of); Fereshteh, Zeinab [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered.

  6. Structure of the nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    The crystallization of fluoro-silicate glasses obtained using high-purity SiO2, AlO1.5, CdF2, PbF2, ZnF2, and ErF3 has been investigated. Upon heat treatment, PbF2 nanocrystals form which host most of the Er3+ ions. The major peaks obtained by x-ray diffraction suggest that the nanocrystals are fluorite structured, but the low volume fraction of nanocrystals and line broadening due to their small size mean that unambiguous identification of the crystal structure is impossible. Therefore, atomistic simulation techniques have been performed to investigate the mechanism of incorporation of Er3+ in the PbF2 nanocrystals and polycrystalline (1-x)PbF2-xErF3 ceramics have been fabricated to study the expected phase assemblage

  7. Radiative decay rates of impurity states in semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V. [ITMO University, 197101 Saint Petersburg (Russian Federation); Rukhlenko, Ivan D. [ITMO University, 197101 Saint Petersburg (Russian Federation); Monash University, Clayton Campus, Victoria 3800 (Australia)

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  8. Radiative decay rates of impurity states in semiconductor nanocrystals

    Directory of Open Access Journals (Sweden)

    Vadim K. Turkov

    2015-10-01

    Full Text Available Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  9. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    Science.gov (United States)

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  10. Metal-insulator transition in films of doped semiconductor nanocrystals.

    Science.gov (United States)

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  11. Drug nanocrystals: A way toward scale-up.

    Science.gov (United States)

    Raghava Srivalli, Kale Mohana; Mishra, Brahmeshwar

    2016-07-01

    Drug nanocrystals comprise unique drug delivery platforms playing a significantly important and distinctive role in drug delivery and as such, the industry and academia are spending a lot of their time and money in developing the nanocrystal products. The current research works in this field depict a vivid shift from lab scale optimization studies to scale up focused studies. In this emerging scenario of nanocrystal technology, a review on some exemplary and progressing research studies with either scalability as their objective or upscaling as their future scope may smoothen the future upscaling attempts in this field. Hence, this paper reviews the efforts of such research works as case studies since an analysis of such research studies may input certain beneficial knowledge to carry out more scale up based research works on nanocrystals. PMID:27330370

  12. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  13. Gastrointestinal tract labeling for MDCT of abdomen: Comparison of low density barium and low density barium in combination with water

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Kavita; Shah, Zarine K.; Sainani, Nisha; Uppot, Raul; Sahani, Dushyant V. [Massachusetts General Hospital and Harvard Medical School, Department of Abdominal Imaging and Intervention, Boston, MA (United States)

    2008-05-15

    The purpose of the study was to compare the quality of stomach and small bowel marking/labeling using 1,350 ml of low-density barium alone (Volumen) with 900 ml of low-density barium and 450 ml of water for 16-MDCT scans of the abdomen and pelvis and assess cost benefits with the two protocols. In this IRB approved study, 80 consecutive patients scheduled for routine CECT (contrast-enhanced CT) of the abdomen-pelvis were studied. Patients were randomized into two groups and were administered either 1,350 ml of VoLumen (two bottles at 20-min intervals, one half bottle at 50 min and the last half on the table) or 900 ml of Volumen (two bottles at 20-min intervals and 450 ml water on the table). Portal venous phase scanning (detector collimation = 0.625 mm, speed = 18.75 mm, thickness = 5 mm) was subsequently performed. Images were reconstructed in axial and coronal plane at the CT console. Two blinded readers used a pre-designed template to assess distension and wall characteristics of the stomach and small bowel on a 5-point scale. Median scores with the two protocols were compared using the Wilcoxon rank sum test. The stomach and small bowel labeling was rated fair to optimal in all patients and did not differ significantly in the two protocols. The mean scores for distension of the small bowel and stomach were comparable. Inter-observer agreement for bowel labeling was found to be excellent (k 0.81). With the use of coronal images there was increased reader confidence in tracing the small bowel with both protocols. Acceptance for two bottles of Volumen and water was greater among patients as compared to three bottles of VoLumen. Use of two bottles of Volumen and water combination cost less than three bottles of Volumen. Stomach and small bowel labeling with administration of 900 ml of Volumen followed by 450 ml of water is cost effective and compares well to 1,350 ml of Volumen alone. (orig.)

  14. Skylab-barium alpha and beta L = 6 field-line tracing experiments

    International Nuclear Information System (INIS)

    Events SKYLAB-BARIUM ALPHA (27 November 1973) and BETA (4 December 1973) were shaped-charge barium field-line tracing experiments near L approximately equal to 6, conducted jointly by the Los Alamos Scientific Laboratory and the University of Alaska Geophysical Institute. Image-orthicon and pulsed intensified auroral cameras provided data for triangulating the fast ion streaks. Using the POGO 10-68, epoch 1965.0, field-line model with Mead-Fairfield corrections for the outer field, the triangulated positions of the fast ion streak were projected down to the 100 km altitude northern conjugate surface. The projected positions moved toward magnetic east with a velocity of 725 m/sec for both SKYLAB-BARIUM ALPHA and BETA. Assuming only an E x B/B2 force, this drift velocity is consistent with an electric field toward magnetic south of 39 mV/m. Radiometric analysis of the filtered, intensified auroral camera records gave observed peak radiance values of about 2 x 10-11 watts/cm2-Sr in the 455.4 nm line of Ba+. The barium in the portion of the ion streak for which radiometric data were obtained had initial injection velocities of 9.5 to 13.5 km/sec in both events. This portion of the ion streak for both SKYLAB-BARIUM ALPHA and BETA contained approximately 4 x 1023 ions compared to the 6.4 x 1024 atoms contained in the barium liner. Ion inventory estimates are based on a solution of the statistical equilibrium equations. Corrections have been made in the ion inventory calculations for Doppler shifts of the solar spectrum as received in the rest frame of the high-velocity barium ions

  15. Accelerating the transit time of barium sulphate suspensions in small bowel examinations

    International Nuclear Information System (INIS)

    Purpose: To determine whether hyperosmolar and effervescent agents proven individually to accelerate transit time in the barium small bowel examination have an additive effect when combined, surpassing that of either agent alone. Materials and methods: One hundred and forty-nine patients were randomised to four groups. Three hundred milliliters of barium sulphate alone was given to the first group. Fifteen milliliters of iodinated hyperosmolar contrast agent (Gastrografin, meglumine/sodium diatrizoate, Schering) was given in addition to barium sulphate to the second group while six packets of effervescent granules (Carbex, Ferring) were added for the third group. The final group was given a combination of both additives and barium sulphate. The time taken following ingestion for the contrast column to reach the caecum, as assessed by frequent interval fluoroscopy, was recorded. A subgroup of 32 patients were selected randomly from the four groups, 8 from each and assessed for quality of examination. Statistical assessments were made using Kruskal-Wallis and Mann-Whitney tests. Results: One hundred and nineteen patients were analysed after exclusions. The addition of accelerant to barium sulphate, both individually and in combination significantly reduced the small bowel transit time (p < 0.001). No significant difference existed between the additives when used with barium alone. The combined group had significantly faster transit times compared to the hyperosmolar group (p = 0.02). Differences between combined and effervescent groups tended towards significance (p = 0.09). No significant difference existed between groups when examination quality was assessed. Conclusion: These results suggest that the addition of combined effervescent and hyperosmolar agents to the barium suspension may significantly shorten the small bowel transit time without adversely affecting examination quality. This has implications for patient acceptability of the examination as well as

  16. An 8-year review of barium studies in the diagnosis of gastroparesis

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.A. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Levine, M.S. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)], E-mail: marc.levine@uphs.upenn.edu; Rubesin, S.E.; Laufer, I. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2008-04-15

    Aim: To determine the utility of barium studies for diagnosing gastroparesis in patients with nausea, vomiting, or other related symptoms. Materials and methods: Radiology files revealed gastroparesis without gastric outlet obstruction on upper gastrointestinal tract barium studies in 50 patients with nausea, vomiting, and other related symptoms. Original reports and images were reviewed to determine whether gastric peristalsis was decreased/absent and to investigate gastric dilatation, fluid or debris, and delayed emptying of barium. Twenty patients (40%) had nuclear gastric emptying studies. Medical records were reviewed to determine the presentation, treatment, and course. The diagnosis of gastroparesis was considered accurate if patients with gastroparesis on barium studies responded to treatment. Results: Forty-six patients (92%) had predisposing factors for gastroparesis, including narcotics and diabetes. Forty-five patients (90%) presented with nausea or vomiting, and 40 patients (80%) had one or more other symptoms, including bloating, early satiety, postprandial fullness, and abdominal pain. Barium studies revealed decreased gastric peristalsis in 46 (92%) of the 50 patients and absent peristalsis in four (8%); 46 patients (92%) had additional findings, including gastric dilatation in 30 (60%), delayed emptying of barium in 27 (54%), debris in 28 (56%; bezoars in three), and retained fluid in 13 (26%). Thirteen (65%) of 20 patients with nuclear gastric emptying studies had delayed emptying of solids and seven (35%) had normal emptying. Thirty-five (83%) of 42 patients treated for gastroparesis had symptomatic improvement versus two (25%) of eight patients not treated. Conclusion: Patients with nausea, vomiting, or other related symptoms who have gastroparesis without gastric outlet obstruction on barium studies can be treated for this condition on the basis of the clinical and radiographic findings.

  17. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  18. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent

    International Nuclear Information System (INIS)

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  19. 氯化钡除杂制取高纯氢氧化钡%Preparation of high purity barium hydroxide by impurity - removed barium chloride

    Institute of Scientific and Technical Information of China (English)

    翁贤芬; 毛逢银; 何琳; 李莉

    2009-01-01

    Removal technology of strontium and iron from crude barium chloride raw material were studied.Optimization of process conditions of strontium and iron removal were discussed.When crude barium chloride stiring and dissolving the mixture at 60 ℃ for 40 min,impurities of stromtium and calcuim can be removed and mass fraction of strontium in the obatined solid barium chloride was below 1×10-4.Then add oxydol (H2O2) at proportion of 100 g raw materials per 8 mL H2O2,and add active carbon and small quantity of sodium hydroxide.Finally,iron could be get rid of when pH was controlled below 10.Mass fraction of iron in barium hydroxide product was less than 1×10-5 when using the iron - removed barium chaloride as raw material.Therefore,purified barium chloride by this method can be used to produce purity barium hydroxide.%研究了粗氯化钡原料中锶和铁杂质的脱除工艺,探讨了脱除锶和铁的优化工艺条件.在粗氯化钡原料中加入去离子水,液固质量比为0.25: 1,在60 ℃下搅拌溶解40 min,可除去锶和钙杂质,所得氯化钡固体中锶质量分数低于1×10-4.在氯化钡溶液中加入双氧水,每100 g原料中加入双氧水8 mL,加入活性炭和少量氢氧化钠,控制pH低于10时,可除去铁杂质,用除铁后的氯化钡制取氢氧化钡,产品中铁质量分数低于1×10-5.用除杂后的氯化钡可制得高纯氢氧化钡.

  20. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  1. Steroid Nanocrystals Prepared Using the Nano Spray Dryer B-90

    OpenAIRE

    Kohji Nishida; Koichi Baba

    2013-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrysta...

  2. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    OpenAIRE

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death ‘apoptosis’ is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer’s disease and Parkinson’s disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh a...

  3. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  4. How Fast Should Polymer/Drug Nanocrystal Dispersions Be Frozen?

    Science.gov (United States)

    Lee, Jonghwi; Park, Chul Ho

    2006-03-01

    Recent advances in nanoparticle technologies have significantly enhanced the oral and parenteral delivery of poorly water-soluble active pharmaceutical ingredients (APIs). However, reports have been limited on the various drying procedures to convert a liquid nanocrystal dispersions into solid dosage forms. The solid dosage form should consist of nanocrystals that can readily reconstitute into their original size upon dissolution in water. Herein, the freeze drying process of nanocrystal dispersions was examined at varying freezing rates (speed of freezing interface). As freezing rate decreases, more particle-particle aggregation developed. A critical freezing rate, below which the dried nanocrystals cannot be re-dispersed, was identified based on the plot of the particle size of reconstituted nanocrystals versus freezing rate. Freeze drying at a freezing rate near the critical value produces dry powders of bimodal particle size distribution after re-dispersion. In addition, API concentration was found to significantly affect the critical freezing rate and therefore the re-dispersibility of dry powders. The concept of critical freezing rate is critical for the development of solid dosage forms of liquid nanocrystal dispersions. [1] J. Lee, Drug nano- and microparticles processed into solid dosage forms: physical properties, J. Pharm. Sci., 92(10) (2003) 2057-2068.

  5. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  6. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  7. CuIn(S,Se){sub 2}thin film solar cells from nanocrystal inks: Effect of nanocrystal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Grayson M.; Guo Qijie [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Agrawal, Rakesh, E-mail: agrawalr@purdue.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Hillhouse, Hugh W., E-mail: h2@uw.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Department of Chemical Engineering, University of Washington, Seattle WA 98105 (United States)

    2011-10-31

    CuIn(S,Se){sub 2} thin film solar cells are fabricated by selenizing CuInS{sub 2} nanocrystals synthesized using a variety of copper and indium precursors. Specifically, copper and indium acetates, acetylacetonates, iodides, chlorides and nitrates are investigated to determine the effect of precursors on electronic properties and device performance. Nanocrystal synthesis with each of these precursors can be optimized to yield similar nanocrystal composition, size and structure. In addition, dense chalcopyrite CuIn(S,Se){sub 2} thin films with micron sized grains at the surface are formed upon selenization regardless of precursor type. Surprisingly, solar cells fabricated from each nanocrystal ink have roughly the same carrier concentrations of 10{sup 16} to 10{sup 17} cm{sup -3} in the absorber layer and achieve active area efficiencies of approximately 5%.

  8. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates.

    Science.gov (United States)

    Li, Yingjie; Qiao, Xianliang; Zhang, Ya-Nan; Zhou, Chengzhi; Xie, Huaijun; Chen, Jingwen

    2016-10-01

    The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment. PMID:27393965

  9. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    Science.gov (United States)

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients.

  10. Flexible and fragmentable tandem photosensitive nanocrystal skins

    Science.gov (United States)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  11. Terahertz Properties of Cellulose Nanocrystals and Films

    Science.gov (United States)

    Carnio, B. N.; Ahvazi, B.; Elezzabi, A. Y.

    2016-03-01

    Terahertz (THz) radiation properties of cellulose nanocrystal (CNC) films, a CNC powder, and a dissolving pulp film are examined using THz time-domain spectroscopy. The relative permittivity (real component) of the CNC samples are found to vary between 1.78 and 3.81, over the frequency range of 0.2-1.5 THz, despite the fact that they are made from the same linear chain of glucose monomers. The results show that the permittivity is strongly dependent on the source from which the CNC glucose monomers are extracted, as well as on the drying process used. The THz loss tangent (0.043 < tan( δ) < 0.145), absorption coefficient (3.5 cm-1 < α < 63.7 cm-1), and growth-varying permittivity, combined with other appealing thermal and mechanical characteristic of CNC, make such material attractive for use in both passive and potential THz bandwidth electronic components.

  12. Silicon nanocrystal-noble metal hybrid nanoparticles.

    Science.gov (United States)

    Sugimoto, H; Fujii, M; Imakita, K

    2016-06-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. PMID:27121127

  13. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. PMID:26076611

  14. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-02-10

    Natural rubber (NR) latex particles were oxidized using KMnO4 as oxidant to promote the insertion of hydroxyl groups in the surface polyisoprene chains. Different degrees of oxidation were investigated. Both unoxidized and oxidized NR (ONR) latex were used to prepare nanocomposite films reinforced with cellulose nanocrystals (CNCs) by casting/evaporation. The oxidation of NR was carried out to promote chemical interactions between the hydroxyl groups of ONR with those of CNCs through hydrogen bonding. The effect of the degree of oxidation of the NR latex on the rheological behavior of CNC/NR and CNC/ONR suspensions, as well as on the mechanical, swelling and thermal properties of ensuing nanocomposites was investigated. Improved properties were observed for intermediate degrees of oxidation but they were found to degrade for higher oxidation levels. PMID:26686118

  15. Freestanding doped silicon nanocrystals synthesized by plasma

    International Nuclear Information System (INIS)

    Freestanding silicon nanocrystals (Si NCs) have recently gained great popularity largely due to their easily accessible surface and flexible incorporation into device structures. In the past decade plasmas have been increasingly employed to synthesize freestanding Si NCs. As freestanding Si NCs move closer to applications in a variety of fields such as electronics, thermoelectrics and lithium-ion batteries, doping becomes more imperative. Such a context explains the current great interest in plasma-synthesized doped freestanding Si NCs. In this work we review the synthesis of freestanding doped Si NCs by plasma. Doping-induced structural, electronic, optical and oxidation properties of Si NCs are discussed. We also review the applications of plasma-synthesized doped freestanding Si NCs that have been demonstrated so far. The development of freestanding doped Si NCs synthesized by plasma in the future is envisioned. (review article)

  16. 2011 Clusters, Nanocrystals & Nanostructures Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Lai-Sheng Wang

    2011-07-29

    Small particles have been at the heart of nanoscience since the birth of the field and now stand ready to make significant contributions to the big challenges of energy, health and sustainability. Atomic clusters show exquisite size-dependent electronic and magnetic properties and offer a new level of control in catalyses, sensors and biochips; functionalised nanocrystals offer remarkable optical properties and diverse applications in electronic devices, solar energy, and therapy. Both areas are complemented by a raft of recent advances in fabrication, characterization, and performance of a diversity of nanomaterials from the single atom level to nanowires, nanodevices, and biologically-inspired nanosystems. The goal of the 2011 Gordon Conference is thus to continue and enhance the interdisciplinary tradition of this series and discuss the most recent advances, fundamental scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. A single conference covering all aspects of nanoscience from fundamental issues to applications has the potential to create new ideas and stimulate cross fertilization. The meeting will therefore provide a balance among the three sub-components of the conference, true to its title, with a selection of new topics added to reflect rapid advances in the field. The open atmosphere of a Gordon conference, emphasizing the presentation of unpublished results and extensive discussions, is an ideal home for this rapidly developing field and will allow all participants to enjoy a valuable and stimulating experience. Historically, this Gordon conference has been oversubscribed, so we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Given the

  17. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    International Nuclear Information System (INIS)

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 μA). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 μm isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  18. SALT reveals the barium central star of the planetary nebula Hen 2-39

    CERN Document Server

    Miszalski, B; Jones, D; Karakas, A I; Köppen, J; Tyndall, A A; Mohamed, S S; Rodríguez-Gil, P; Santander-García, M

    2013-01-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceeding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here we present evidence for a barium star in the PN Hen 2-39. The polluted giant is very similar to that found in WeBo 1. It is a cool (Teff=4250 +/- 150 K) giant enhanced in carbon ([C/H]=0.42 +/- 0.02 dex) and barium ([Ba/Fe]=1.50 +/- 0.25 dex). A spectral type of C-R3 C_24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars, however the barium enhancement and likely binary status mea...

  19. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  20. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G. [University of Otago, Department of Radiology, Christchurch (New Zealand); Butler, A.P. [University of Otago, Department of Radiology, Christchurch (New Zealand); University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Scott, N.J.A. [University of Otago, Department of Medicine, Christchurch (New Zealand); Cook, N.J. [Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Butzer, J.S. [Karlsruhe Institute of Technology, Physics Department, Karlsruhe (Germany); Schleich, N. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Firsching, M. [Friedrich Alexander University, Physics Department, Erlangen (Germany); Grasset, R.; Ruiter, N. de [University of Canterbury, Hitlab NZ, Christchurch (New Zealand); Campbell, M. [European Organisation for Nuclear Research, Physics Section, Geneva (Switzerland); Butler, P.H. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand)

    2010-09-15

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 {mu}A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 {mu}m isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  1. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    Energy Technology Data Exchange (ETDEWEB)

    Desgreniers, Serge [Laboratoire de Physique des Solides Denses, Université d' Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Tse, John S., E-mail: John.Tse@usask.ca [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2 (Canada); State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun (China); Matsuoka, Takahiro [SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Ohishi, Yasuo [SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Li, Quan; Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun (China)

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  2. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    OpenAIRE

    Aiichiro Nagaki; Yuki Uesugi; Yutaka Tomida; Jun-ichi Yoshida

    2011-01-01

    The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  3. Copper(I)-catalyzed carbon-halogen bond-selective boryl substitution of alkyl halides bearing terminal alkene moieties

    OpenAIRE

    Iwamoto, Hiroaki; Kubota, Koji; Yamamoto, Eiji; Ito, Hajime

    2015-01-01

    The selective boryl substitution of alkyl halides bearing terminal C=C double bonds has been achieved using a copper(I)/tricyclohexylphosphine or copper(I)/o-diphenylphosphinophenol catalyst. This reaction represents a useful complementary approach to conventional procedures for the hydroboration of C=C double bonds or the borylative cyclization of alkyl halides bearing terminal alkenes.

  4. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    OpenAIRE

    Nagaki, Aiichiro; Uesugi, Yuki; Tomida, Yutaka; Yoshida, Jun-ichi

    2011-01-01

    The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  5. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki

    2011-08-01

    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  6. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency of metal halide ballasts.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of metal halide ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts...

  7. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  8. Radiation doses to children during modified barium swallow studies

    International Nuclear Information System (INIS)

    There are minimal data on radiation doses to infants and children undergoing a modified barium swallow (MBS) study. To document screening times, dose area product (DAP) and effective doses to children undergoing MBS and to determine factors associated with increased screening times and effective dose. Fluoroscopic data (screening time, DAP, kVp) for 90 consecutive MBS studies using pulse fluoroscopy were prospectively recorded; effective dose was calculated and data were analyzed for effects of behavior, number of swallow presentations, swallowing dysfunction and medical problems. Mean effective dose for the entire group was 0.0826 ± 0.0544 mSv, screening time 2.48 ± 0.81 min, and DAP 28.79 ± 41.72 cGy cm2. Significant differences were found across three age groups (≤1.0, >1.0-3.0 and >3.0 years) for effective dose (mean 0.1188, 0.0651 and 0.0529 mSv, respectively; P < 0.001), but not for screening time or DAP. Effective dose was correlated with screening time (P 0.007), DAP (P < 0.001), number of swallow presentations (P = 0.007), lower age (P = 0.017), female gender (P = 0.004), and height (P < 0.001). Screening time was correlated with total number of swallow presentations (P < 0.001) and DAP (P < 0.001). Screening times, DAP, effective dose, and child and procedural factors associated with higher effective doses are presented for children undergoing MBS studies. (orig.)

  9. Radiation doses to children during modified barium swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Kelly A. [University of Queensland, Discipline of Paediatrics and Child Health, School of Medicine, Herston, Queensland (Australia); McMahon, Sandra M. [SpeechNet Speech Pathology Services, Brisbane (Australia); Long, Gillian; Bunch, Judith A. [Royal Children' s Hospital, Department of Medical Imaging, Herston (Australia); Pandeya, Nirmala [Queensland Institute of Medical Research, Herston (Australia); Coakley, Kerry S. [Biomedical Technology Services, Royal Brisbane and Women' s Hospital, Herston (Australia); Chang, Anne B. [Royal Children' s Hospital, Department of Respiratory Medicine, Herston (Australia)

    2007-03-15

    There are minimal data on radiation doses to infants and children undergoing a modified barium swallow (MBS) study. To document screening times, dose area product (DAP) and effective doses to children undergoing MBS and to determine factors associated with increased screening times and effective dose. Fluoroscopic data (screening time, DAP, kVp) for 90 consecutive MBS studies using pulse fluoroscopy were prospectively recorded; effective dose was calculated and data were analyzed for effects of behavior, number of swallow presentations, swallowing dysfunction and medical problems. Mean effective dose for the entire group was 0.0826 {+-} 0.0544 mSv, screening time 2.48 {+-} 0.81 min, and DAP 28.79 {+-} 41.72 cGy cm{sup 2}. Significant differences were found across three age groups ({<=}1.0, >1.0-3.0 and >3.0 years) for effective dose (mean 0.1188, 0.0651 and 0.0529 mSv, respectively; P < 0.001), but not for screening time or DAP. Effective dose was correlated with screening time (P = 0.007), DAP (P < 0.001), number of swallow presentations (P = 0.007), lower age (P = 0.017), female gender (P = 0.004), and height (P < 0.001). Screening time was correlated with total number of swallow presentations (P < 0.001) and DAP (P < 0.001). Screening times, DAP, effective dose, and child and procedural factors associated with higher effective doses are presented for children undergoing MBS studies. (orig.)

  10. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  11. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part I. Transmission holographic optical elements.

    Science.gov (United States)

    Kim, J M; Choi, B S; Kim, S I; Kim, J M; Bjelkhagen, H I; Phillips, N J

    2001-02-10

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE's). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE's recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE's.

  12. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    Directory of Open Access Journals (Sweden)

    Sourish Chatterjee

    2013-11-01

    Full Text Available Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of CMH lamp demands the use of current control device in the lamp circuit and perfect matching of lamp ballast combination is required for efficient lamp operation. The electrical and photometric performance of two sets of commercial 70 watt CMH lamp and intregated ballast units were measured to investigate their compatibility for optimum lamp operation. The measured data were utilized to develop an electrical model for lamp ballast combination. Using this model a compatibility index is proposed which can be used for assessment of lamp performance.

  13. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Cao, Runan; Xu, Fei [Department of Physics, Shanghai University, Shanghai 200444 (China); Da, Peimei; Zheng, Gengfeng [Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Lu, Jian, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China)

    2016-01-11

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  14. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  15. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.

    Science.gov (United States)

    Song, Qing; Zhang, Z John

    2004-05-19

    By combining nonhydrolytic reaction with seed-mediated growth, high-quality and monodisperse spinel cobalt ferrite, CoFe(2)O(4), nanocrystals can be synthesized with a highly controllable shape of nearly spherical or almost perfectly cubic. The shape of the nanocrystals can also be reversibly interchanged between spherical and cubic morphology through controlling nanocrystal growth rate. Furthermore, the magnetic studies show that the blocking temperature, saturation, and remanent magnetization of nanocrystals are solely determined by the size regardless the spherical or cubic shape. However, the shape of the nanocrystals is a dominating factor for the coercivity of nanocrystals due to the effect of surface anisotropy. Such magnetic nanocrystals with distinct shapes possess tremendous potentials in fundamental understanding of magnetism and in technological applications of magnetic nanocrystals for high-density information storage. PMID:15137781

  16. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  17. Use of the barium enema in the diagnosis of necrotizing enterocolitis

    Energy Technology Data Exchange (ETDEWEB)

    Uken, P.; Smith, W.; Franken, E.A.; Frey, E.; Sato, Y.; Ellerbroek, C.

    1988-01-01

    Necrotizing enterocolitis (NEC) is associated with considerable morbidity and mortality in infants. The diagnosis relies heavily upon radiographic and clinical features. Failure to accurately diagnose NEC is associated with a risk of complications and death, however overdiagnosis also causes both morbidity and mortality as well as excessive medical costs. This report documents the use of barium enema to evaluate suspected clinical or radiographic NEC in 31 premature infants with ambiguous clinical and radiographic signs. The enema was normal in 26 infants and no treatment for NEC was given. Only one of these infants developed signs of NEC subsequent to the examination. Five infants had radiographic evidence of colitis including small ulcerations, spasm, intramural extravasation of barium and mucosal irregularity. Two of the five positive cases are pathologically documented. The barium enema can represent a significant improvement in the specificity of the diagnosis of NEC. Its greatest value is in the exclusion of NEC in ambiguous cases.

  18. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    International Nuclear Information System (INIS)

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting

  19. TiO2 ceramic varistor modified with tantalum and barium

    International Nuclear Information System (INIS)

    The non-linear current (I)-voltage (V) characteristics of titanium dioxide doped with small quantities of tantalum and barium (99.9 TiO2 + 0.1 Ta and 99.4 TiO2 + 0.1 Ta + 0.5 Ba, all are in at.%) were investigated. These samples have the non-linear coefficient (α) values of (20-30) with high breakdown voltages (E B ∼ 400-700 V mm-1). The pentavalent tantalum acts as donor and increases the electronic conductivity. The higher electrical conductivity and decrease in the breakdown field strength with barium addition is attributed to higher density. The acceptor like surface states formed by barium ions segregate to grain boundaries due size misfit to thereby modifying the electrical barrier characteristics of grain boundaries

  20. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)