WorldWideScience

Sample records for barium borosilicate glasses

  1. Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Yenchai, Chadet; Laopaiboon, Raewat

    2012-07-01

    The attenuation coefficients of barium-bismuth-borosilicate glasses have been measured for gamma-ray photon energies of 662, 1173 and 1332 keV using a narrow beam transmission geometry. These coefficients were then used to obtain the values of mass attenuation coefficients, effective atomic number, effective electron density and mean free path. Good agreement has been observed between experimental and theoretical values of these parameters. From the obtained results it is reported here that from the barium-bismuth-borosilicate glasses are better shields to gamma-radiations in comparison to the standard radiation shielding concretes from the shielding point of view. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system. The obtained results reveal that the formation of non-bridging oxygens occurs at higher concentration of Bi2O3.

  2. Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Reza; Yousefinia, Hassan [Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Moghaddam, Alireza Khorrami [Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2017-02-15

    In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  3. An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells

    Science.gov (United States)

    Hsu, Jen-Hsien; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Crouch, Ray; Baird, Rob

    2014-12-01

    An alkali-free, alkaline earth borosilicate glass (designated G102) has been developed as a viscous sealant for use with solid oxide fuel cells (SOFCs). The glass possesses the requisite viscosity, electrical resistivity, and thermal and chemical stability under SOFC operating conditions to act as a reliable sealant. Sandwich seals between aluminized stainless steel and a YSZ/NiO-YSZ bilayer survived 148 thermal cycles (800 °C to room temperature) in both oxidizing and reducing atmospheres at a differential pressure of ∼3.4 kPa (0.5 psi) without failure. For sandwich seals that were held at 800 °C for up to 2280 h in air, G102 resisted crystallization, there were limited interactions at the G102/YSZ interface, but BaAl2Si2O8 crystals formed at the glass/metal interface because of the reaction between the glass and the aluminized steel. Sandwich seals that were intentionally cracked by thermal shock resealed to became hermetic upon reheating to temperatures as low as 744 °C.

  4. The effects of sulfate content on crystalline phase, microstructure, and chemical durability of zirconolite−barium borosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lang, E-mail: lang.wu@163.com [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xin; Li, Huidong; Teng, Yuancheng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Peng, Long [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2016-09-15

    The effects of sulfate content on structure and chemical durability of barium borosilicate glass-ceramics were studied. The results show that the glass-ceramics with 0–1.10 mol% SO{sub 3} possess mainly CaZrTi{sub 2}O{sub 7}-2M phase along with a small amount of CaZrTi{sub 2}O{sub 7}-3T and ZrO{sub 2} phases. The hexagonal CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface of glass-ceramics. For the samples with 1.24–1.55 mol% SO{sub 3}, the main crystalline phases are CaTiSiO{sub 5} and CaZrTi{sub 2}O{sub 7}-2M in the bulk, while a separate sulfate layer containing Na{sub 2}SO{sub 4} and BaSO{sub 4} is observed on the surface. X-ray fluorescence analysis indicates that about 2/3 of the SO{sub 3} originally added has been lost by volatility. The normalized mass loss (NL{sub i}) for Na, B, Ca elements remains almost unchanged (∼10{sup −2} g/m{sup 2}) after 7 days for the samples with 0–1.10 mol% SO{sub 3}. The NL{sub i} for both Na and B increases gradually after 7 days when the SO{sub 3} content is 1.24 mol%. - Highlights: • Strip-shaped CaZrTi{sub 2}O{sub 7}-2M and plate-like CaTiSiO{sub 5} crystals crystallize in the bulk. • CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface for samples with 0–1.10 mol% SO{sub 3}. • A separate sulfate layer crystallizes on the surface when SO{sub 3} exceeds solubility.

  5. Investigation of optical, structural properties of Eu3+ by Mn2+ in barium alumino borosilicate glasses

    Science.gov (United States)

    Lakshmi, P. Vijaya; Rao, T. G. V. M.; Neeraja, K.; Krishna Reddy, D. V.; Rami Reddy, M.

    2016-12-01

    The Mn2+ ions doped Eu2O3sbnd BaOsbnd Al2O3sbnd B2O3sbnd SiO2 glasses are synthesized by conventional melt quenching method. The effect of Mn2+ ions on spectroscopic, structural properties of Eu3+ ions in glass networks is analysed. An analysis of XRD traces evidently suggests the glassy nature of the prepared samples. The UV-Vis absorption and the luminescence spectra have been used to study the variations in the optical character of Eu3+ ions. In luminescence spectra five bands can be observed at about 578, 590, 612, 653 and 702 nm as a result of transitions of Eu3+ ions from 5D0→7F0, 1, 2, 3, 4 respectively. By gradual increment of MnO mol% in the glass matrix, the strong variation in the intensity of emission band are observed at about 612 nm (5D0→7F2). The non-radiative energy transfer (Mn2+ ↔ Eu3+) and concentration quenching are observed in the prepared glasses. The ESR spectra exhibit a sixtet hyperfine structure centered at g = ∼2.0047 which suggests that manganese ions predominantly occupy octahedral positions.

  6. The application of fluorinated aromatic dimethacrylates to experimental light-cured radiopaque composite resin, containing barium-borosilicate glass filler--a progress in nonwaterdegradable properties.

    Science.gov (United States)

    Tanaka, J; Inoue, K; Masamura, H; Matsumura, K; Nakai, H; Inoue, K

    1993-06-01

    This study investigated the durability, especially the nonwaterdegradable qualities, of experimental light-cured composite resin containing barium-borosilicate glass filler. For this purpose, Bis-GMA, a typical component of base monomer in conventional composite resin, was replaced by Bis-GMA-F which is water-repellent. After over 20,000 thermal cycles, the composite resin containing Bis-GMA retained only 60 approximately 70% of its initial compressive, diametral tensile, flexural strength and flexural elastic modulus. However, the experimental composite resin containing Bis-GMA-F as a resin matrix showed no loss of compressive, diametral tensile strength or flexural elastic modulus, although flexural strength showed some deterioration. It was considered that the difference between Bis-GMA-F and Bis-GMA, as resin matrix, caused variation in the characteristics of water sorption.

  7. Topological Principles of Borosilicate Glass Chemistry

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, J. C.; Youngman, R. E.

    2011-01-01

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household...... and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical...... earthborosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragility, and hardness. The modeling approach enables an understanding of the microscopic mechanisms governing macroscopic properties. The implications of the glass topology are discussed...

  8. Topological Principles of Borosilicate Glass Chemistry

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, J. C.; Youngman, R. E.

    2011-01-01

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household and labor......Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household...... and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical...... in terms of both the temperature and thermal history dependence of the atomic bond constraints and the influence on relaxation behavior. We also observe a nonlinear evolution of the jump in isobaric heat capacity at the glass transition when substituting SiO2 for B2O3, which can be accurately predicted...

  9. Topological principles of borosilicate glass chemistry.

    Science.gov (United States)

    Smedskjaer, Morten M; Mauro, John C; Youngman, Randall E; Hogue, Carrie L; Potuzak, Marcel; Yue, Yuanzheng

    2011-11-10

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical mechanical model of boron speciation in which addition of network modifiers leads to a competition between the formation of nonbridging oxygen and the conversion of boron from trigonal to tetrahedral configuration. Using this model, we derive a detailed topological representation of alkali-alkaline earth-borosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragility, and hardness. The modeling approach enables an understanding of the microscopic mechanisms governing macroscopic properties. The implications of the glass topology are discussed in terms of both the temperature and thermal history dependence of the atomic bond constraints and the influence on relaxation behavior. We also observe a nonlinear evolution of the jump in isobaric heat capacity at the glass transition when substituting SiO(2) for B(2)O(3), which can be accurately predicted using a combined topological and thermodynamic modeling approach.

  10. Additive manufacturing of borosilicate glass (Conference Presentation)

    Science.gov (United States)

    Luo, Junjie; Goldstein, Jonathan T.; Urbas, Augustine M.; Bristow, Douglas A.; Landers, Robert G.; Kinzel, Edward C.

    2017-02-01

    Glasses including have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of borosilicate glasses. Compared to soda-lime glasses, borosilicate glasses have improved coefficient of thermal expansion (CTE) and are widely used because of thermal shock resistance. In this work, borosilicate glass filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the workpiece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed glass as well as the residual stress trapped in the glass. The transparency of glass allows residual stress to be measured using a polariscope. The effect of the substrate as well and substrate temperature are analyzed. We show that if fracture due to thermal shock can be avoided during deposition, then the residual stress can be relieved with an annealing step, removing birefringence. When combined with progress toward avoiding bubble entrapment in printed glass, we show the AM approach has the potential to produce high quality optically transparent glass for optical applications.

  11. Damage Development in Confined Borosilicate and Soda-Lime Glasses

    Science.gov (United States)

    2011-07-11

    Elmira, NY). BF is a borosilicate glass manufactured by Schott Glass using a float process. SP float glass is a crystal clear, soda-lime glass . This...2005. 22 21. ASTM £494, "Technique for Measuring Ultrasonic Velocity in Materials", July 2001. 22. Schott Glass , Borofloat 33 Thermal Properties...21945 Damage Development in Conf"med Borosilicate and Soda-Lime Glasses Kathryn A. Dannemann1, Charles E. Anderson. Jr. 1, Sidney Chocron1, James

  12. Topological Principles of Borosilicate Glass Chemistry - An Invited Talk

    DEFF Research Database (Denmark)

    Mauro, J.C.; Smedskjær, Morten Mattrup; Youngman, R. E.

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. We investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR...... and thermal history dependence of the atomic bond constraints and the influence on relaxation behavior....

  13. Using of borosilicate glass waste as a cement additive

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weiwei [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Tao, E-mail: sunt@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Li, Xinping [Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Mian [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Lu, Yani [Urban Construction Institute, Hubei Engineering University, Xiaogan, Hubei 432000 (China)

    2016-08-15

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  14. Er3+-Yb3+ codoped borosilicate glass for optical thermometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Infrared to green up-conversion emissions centered at the wavelengths of about 524 and 550 nm of the Er3+-Yb3+ codoped borosilicate glass are recorded,using a 978 nm semiconductor laser diode(LD) as an excitation source.The fluorescence intensity ratio(FIR) of the green up-conversion emissions at about 524 and 550 nm in the Er3+-Yb3+ codoped borosilicate glass has been studied as a function of temperature over the temperature range of 295-873 K.The maximum sensitivity and the temperature resolution derived from the FIR of the green up-conversion emissions are approximately 0.0038 K-1 and 0.2 K,respectively.It is demonstrated that the prototype optical temperature sensor based on the FIR technique from the green up-conversion emissions in the Er3+-Yb3+ codoped borosilicate glass plays a major role in temperature measurement.

  15. Relaxation Behaviour of Lithium-Borosilicate Glasses

    Directory of Open Access Journals (Sweden)

    D. B. Thombre

    2014-01-01

    Full Text Available Three systems of lithium borosilicate (LBS glasses namely SI 42.5Li2O: (57.5-x B2O3: xSiO2, SII 42.5Li2O: xB2O3 :( 57.5-x SiO2 where x=0, 5, 10, 20, and 30, and SIII (100-2x Li2O: xB2O3: xSiO2 where x=30, 28.75, 27.5, 25, and 22.5, are prepared using conventional melt quenching technique. Functional dependence of conductivity on temperature in the range from 523- 673K and frequency in the range from 10Hz to 13 MHz is studied. In order to analyze electrical conductivity the microscopic parameters such as ionic jump distance and barrier height are necessary. These parameters can be understood properly on the basis of the models proposed by Almond and Elliott. As frequency increases from 1MHz to 13MHz, the Tmin shifts towards low temperature side. According to this model the charge transfer is a thermally activated process and provides a correlation between the barrier height (W and the hopping length (R. The fitting of conductivity data into Almond-West type power law behavior σ = σ(o + Aωs yielded power law exponent(s. Electrical conductivity data fitted well in Elliott’s model, which is true only for amorphous materials. The temperature dependence of frequency exponent s exhibits a minimum (smin at a particular temperature (Tmin . . From the scaling behavior of the ac conductivity it is seen that all the curves scaled better, suggesting that s is temperature independent. It is observed that smin shifts to lower temperature, which shows that electrical conductivity of glassy solid electrolytes is the manifestation of ionic dynamic processes. The superposition of the reduced conductivity at all temperatures shows relaxation mechanism is temperature independent. Analysis of modulus formalism with a distribution of relaxation times using KWW stretched exponential function, the stretching exponent, β, is depend on temperature. The analysis of the temperature variation of the M″ peak indicates the relaxation process is thermally activated

  16. Topological Principles of Borosilicate Glass Chemistry - An Invited Talk

    DEFF Research Database (Denmark)

    Mauro, J.C.; Smedskjær, Morten Mattrup; Youngman, R. E.

    measurements, we present a two-state statistical mechanical model of boron speciation in which addition of network modifiers leads to a competition between the formation of nonbridging oxygen and the conversion of boron from trigonal to tetrahedral configuration. Using this model, we derive a detailed......Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. We investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR...... and thermal history dependence of the atomic bond constraints and the influence on relaxation behavior....

  17. Using of borosilicate glass waste as a cement additive

    Science.gov (United States)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  18. Crystal growth in zinc borosilicate glasses

    Science.gov (United States)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  19. Ultrafast laser fabrication of submicrometer pores in borosilicate glass.

    Science.gov (United States)

    An, Ran; Uram, Jeffrey D; Yusko, Erik C; Ke, Kevin; Mayer, Michael; Hunt, Alan J

    2008-05-15

    We demonstrate rapid fabrication of submicrometer-diameter pores in borosilicate glass using femtosecond laser machining and subsequent wet-etch techniques. This approach allows direct and repeatable fabrication of high-quality pores with diameters of 400-800 nm. Such small pores coupled with the desirable electrical and chemical properties of glass enable sensitive resistive-pulse analysis to determine the size and concentration of macromolecules and nanoparticles. Plasma-enhanced chemical vapor deposition allows further reduction of pore diameters to below 300 nm.

  20. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...... with different methods from Tg to the melt. The measured data were fitted and the activation energies calculated. Simple exponential behaviour was found only in very narrow temperature ranges. The effect of B2O3 in sodium borosilicate glasses and melts is discussed in comparison with sodium silicate glasses...

  1. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes.

  2. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani, E-mail: kashwani@barc.gov.in [Bhabha Atomic Research Centre, Radioanalytical Chemistry Division (India); Nayak, C.; Rajput, P. [Bhabha Atomic Research Centre, Atomic and Molecular Physics Division (India); Mishra, R. K. [Bhabha Atomic Research Centre, Waste Management Division (India); Bhattacharyya, D. [Bhabha Atomic Research Centre, Atomic and Molecular Physics Division (India); Kaushik, C. P. [Bhabha Atomic Research Centre, Waste Management Division (India); Tomar, B. S. [Bhabha Atomic Research Centre, Radioanalytical Chemistry Division (India)

    2016-12-15

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with {sup 181}Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency (ω{sub Q}) and asymmetry parameter (η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  3. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    Science.gov (United States)

    Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.

    2016-12-01

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  4. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Cicero-Herman, C.A.; Workman, P. [Westinghouse Savannah River Co., Aiken, SC (United States); Poole, K.; Erich, D.; Harden, J. [Clemson Environmental Technologies Laboratory, Anderson, SC (United States)

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  5. Behaviour of ruthenium dioxide particles in borosilicate glasses and melts

    Science.gov (United States)

    Pflieger, Rachel; Lefebvre, Leila; Malki, Mohammed; Allix, Mathieu; Grandjean, Agnès

    2009-06-01

    Ruthenium-glass systems are formed during the vitrification of nuclear waste. They are also widely used in micro-electronics because of their unique electrical properties. However, the interaction of this element with the glass matrix remains poorly understood. This work focuses on a RuO 2 particles-nuclear alumino-borosilicate glass system in which the electrical conductivity is known to vary considerably with the RuO 2 content and to become electronic above about 0.5-0.7 vol.% RuO 2 [R. Pflieger, M. Malki, Y. Guari, J. Larionova, A. Grandjean, J. Am. Ceram. Soc., accepted for publication]. Some RuO 2 segregation was observed in SEM/TEM investigations but no continuous chain of RuO 2 particles could be seen. Electron relays between the particles are then necessary for a low-rate percolation, such as the nanoclusters suggested by Adachi et al. [K. Adachi, S. Iida, K. Hayashi, J. Mater. Res. 9 (7) (1994) 1866; K. Adachi, H. Kuno, J. Am. Ceram. Soc. 83 (10) (2000) 2441], which could consist in dissolved ruthenium. Indeed, several observations made here clearly indicate the presence of dissolved ruthenium in the glass matrix, like the modification of the glass density in presence of RuO 2 particles or the diffusion-limited growth of RuO 2 particles in the melt.

  6. Morphological study of borosilicate glass surface irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  7. Surface Devitrification and the Growth of Cristobalite in Borofloat® (Borosilicate 8330) Glass

    NARCIS (Netherlands)

    Mogulkoc, Berker; Knowles, Kevin M.; Jansen, Henri V.; Brake, ter Marcel; Elwenspoek, Miko C.

    2010-01-01

    Borofloat® (borosilicate 8330) glass is an important type of inorganic glass, both scientifically and commercially. During prolonged heat treatment of this glass above its glass transition temperature of 525°C, heterogeneous nucleation, and growth of cristobalite crystals occur. The kinetics and mor

  8. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  9. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Science.gov (United States)

    Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146

  10. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    O' Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  11. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    DEFF Research Database (Denmark)

    Cheng, Shaodong; Yang, Guang; Zhao, Yanqi;

    2015-01-01

    developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which...... fraction in glasses. In addition, the boron speciation of a CeO2 doped potassium borosilicate glass has been analyzed by using the time-resolved EELS spectra. The results clearly demonstrate that the BO4 to BO3 transformation induced by the electron beamirradiation can be efficiently suppressed by doping...

  12. Modelling the evaporation of boron species. Part 1: Alkali-free borosilicate glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Cook, S.; O'Connor, R.; Simon, J.

    2011-01-01

    A laboratory test facility has been used to measure the boron evaporation rates from borosilicate glass melts. The impact of furnace atmosphere composition and glass melt composition on the temperature dependent boron evaporation rates has been investigated experimentally. In Part 1 of this paper th

  13. Modelling the evaporation of boron species. Part 1: Alkali-free borosilicate glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Cook, S.; O'Connor, R.; Simon, J.

    2011-01-01

    A laboratory test facility has been used to measure the boron evaporation rates from borosilicate glass melts. The impact of furnace atmosphere composition and glass melt composition on the temperature dependent boron evaporation rates has been investigated experimentally. In Part 1 of this paper th

  14. Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors

    Science.gov (United States)

    Siegmund, O. H. W.; McPhate, J. B.; Tremsin, A. S.; Jelinsky, S. R.; Hemphill, R.; Frisch, H. J.; Elam, J.; Mane, A.; Lappd Collaboration

    2012-12-01

    Borosilicate glass micro-capillary array substrates with 20 μm and 40 μm pores have been deposited with resistive, and secondary electron emissive, layers by atomic layer deposition to produce functional microchannel plates. Device formats of 32.7 mm and 20 cm square have been fabricated and tested in analog and photon counting modes. The tests show amplification, imaging, background rate, pulse shape and lifetime characteristics that are comparable to standard glass microchannel plates. Large area microchannel plates of this type facilitate the construction of 20 cm format sealed tube sensors with strip-line readouts that are being developed for Cherenkov light detection. Complementary work has resulted in Na2KSb bialkali photocathodes with peak quantum efficiency of 25% being made on borosilicate glass. Additionally GaN (Mg) opaque photocathodes have been successfully made on borosilicate microchannel plates.

  15. Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O.H.W., E-mail: ossy@ssl.berkeley.edu [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Tremsin, A.S.; Jelinsky, S.R.; Hemphill, R. [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); Frisch, H.J. [Enrico Fermi Institute, 5640 S. Ellis Avenue University of Chicago, Chicago, IL 60637 (United States); Elam, J.; Mane, A. [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL 60439 (United States); Collaboration: LAPPD Collaboration

    2012-12-11

    Borosilicate glass micro-capillary array substrates with 20 {mu}m and 40 {mu}m pores have been deposited with resistive, and secondary electron emissive, layers by atomic layer deposition to produce functional microchannel plates. Device formats of 32.7 mm and 20 cm square have been fabricated and tested in analog and photon counting modes. The tests show amplification, imaging, background rate, pulse shape and lifetime characteristics that are comparable to standard glass microchannel plates. Large area microchannel plates of this type facilitate the construction of 20 cm format sealed tube sensors with strip-line readouts that are being developed for Cherenkov light detection. Complementary work has resulted in Na{sub 2}KSb bialkali photocathodes with peak quantum efficiency of 25% being made on borosilicate glass. Additionally GaN (Mg) opaque photocathodes have been successfully made on borosilicate microchannel plates.

  16. Characterization of MEMS-on-tube assembly: reflow bonding of borosilicate glass (Duran ®) tubes to silicon substrates

    NARCIS (Netherlands)

    Mogulkoc, B.; Jansen, H.V.; Berenschot, J.W.; Brake, ter H.J.M.; Knowles, K.M.; Elwenspoek, M.C.

    2009-01-01

    Reflow bonding of borosilicate glass tubes to silicon wafers is a technology which has significant potential for microfluidic applications. The borosilicate glass tubes are designed to be used as an interface and package for wafer-level microfluidic devices. The strength of the resulting package has

  17. Monte Carlo Simulations of Coupled Diffusion and Surface Reactions during the Aqueous Corrosion of Borosilicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Pierce, Eric M.; Ryan, Joseph V.

    2015-01-01

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75-x) mol% SiO2 (12.5+x/2) mol% B2O3 and (12.5+x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditions at a surface-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick’s 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.

  18. Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.T.; Ho, S.S.; Yan, B.H. [National Central Univ. (Taiwan). Dept. of Mechanical Engineering

    2001-07-01

    The borosilicate glass serves as the substrates of the micro sensors owing to their excellent anodic bonding properties. To build up the electrical through channel and connect the internal system with the environment, micro holes should be drilled on the substrates. This investigation describes a novel process that combines micro electrical discharge machining (micro EDM) and electrochemical discharge machining (ECDM) to drill micro holes on the borosilicate glass plate. Experimental investigation of the novel process includes fabrication of micro tools via micro EDM and machining characteristics of the borosilicate glass by ECDM. This study also analyzes the basic material removal mechanism in the ECDM process. Four stages are identified in the ECDM process via rapid photography. Etching reaction is important in the machining mechanism of ECDM through SEM and EDX analysis. Unlike conventional EDM, the key reason for improving material removal rate and surface roughness is the etching reaction in the ECDM process. Also discussed herein are the effects of machining parameters, such as applied voltage, electrolytes, concentration of electrolytes, and temperature of electrolytes in ECDM. Furthermore, machining time, hole expansion and the surface roughness of inner holes are measured to assess hole quality. This novel process can improve material removal rate and surface roughness to 1.5 mm/min and 0.08 {mu}m, Ra. Experimental results demonstrate that this process is excellent for fabricating micro holes on the borosilicate glass for MEMS. (orig.)

  19. Properties of Sodium Borosilicate Glasses/Al2O3 Sintered Composites Containing Fluorides

    National Research Council Canada - National Science Library

    RYU, Bong-gi; YASUI, Itaru

    1993-01-01

      The preparation of sodium borosilicate glass-alumina composites has been studied and the effects of the addition of NaF and AlF3 on the thermal and dielectric properties of the sintered composites has been examined...

  20. Reflow bonding of borosilicate glass tubes to silicon substrates as fluidic interconnects

    NARCIS (Netherlands)

    Mogulkoc, Berker

    2010-01-01

    The subject of the thesis was the use of borosilicate glass tubes as an interface to waferlevel microfluidic devices. The tubes are compatible with the standard fluidic connectors and can be used as a package for the so-called MEMS-on-a-tube assembly. The connections are produced by the brief reflow

  1. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  2. High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)

    1994-03-01

    Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively.

  3. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    Science.gov (United States)

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering.

  4. Luminescence properties of Tb(3+)-doped borosilicate scintillating glass under UV excitation.

    Science.gov (United States)

    Zuo, Chenggang; Zhou, Zhihua; Zhu, Ligang; Xiao, Anguo; Chen, Yuandao; Zhang, Xiangyang; Zhuang, Yongbing; Li, Xiaoyang; Ge, Qizhi

    2015-08-05

    Transparent Li₂O-BaO-La₂O₃-Al₂O₃-B₂O₃-SiO₂ glasses doped with Tb(3+) ion were prepared by high temperature melting method. Luminescence properties of Tb(3+)-doped borosilicate glasses have been investigated by transmission, excitation, emission and luminescence decay measurements. The transmission spectrum shows the glass has good transmittance in the visible region. Under the 236 nm UV excitation the intense green emission from (5)D₄ level is observed in Tb(3+)-doped borosilicate glass, comparable in intensity to the violet-blue emission starting from the (5)D₃ level. The green emission intensity of Tb(3+) ion firstly increases and then decreases with the decreasing B₂O₃/SiO₂ ratio in glass matrix. (5)D₄→(7)FJ (J=6, 5, 4 and 3) transitions of Tb(3+) ion in borosilicate glass are greatly enhanced with increasing concentration of Tb(3+) through the cross relaxation [Tb(3+) ((5)D₃)+Tb(3+) ((7)F6)→Tb(3+) ((5)D₄)+Tb(3+) ((7)F₀)] between two Tb(3+) ions. Luminescence decay time of 2.13 ms is obtained for the emission transitions starting from (5)D₄ level in 2.5Li₂O-20BaO-20La₂O₃-2.5Al₂O₃-20B₂O₃-35SiO₂-0.5Tb₄O₇ glass. The results show that Tb(3+)-doped borosilicate glasses would be potential candidates for scintillating material for static X-ray imaging. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Surface Morphology and Structure of Double-Phase Magnetic Alkali Borosilicate Glasses

    Science.gov (United States)

    Andreeva, N. V.; Naberezhnov, A. A.; Tomkovich, M. V.; Nacke, B.; Kichigin, V.; Rudskoy, A. I.; Filimonov, A. V.

    2016-11-01

    The surface morphology of double-phase magnetic alkali borosilicate glasses of four types obtained by induction melting is studied by the methods of atomic-force and scanning electron microscopy. The distribution of elements over the surface and the elemental composition of the glasses are determined. It is shown that a dendritic system of interrelated channels required for formation of porous matrixes with controlled mean pore diameter may be obtained in these objects depending on the heat treatment mode.

  6. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  7. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Science.gov (United States)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  8. New insight into nanoparticle precipitation by electron beams in borosilicate glasses

    Science.gov (United States)

    Sabri, M. M.; Möbus, G.

    2017-06-01

    Nanoprecipitation in different oxide glasses by means of electron irradiation in transmission electron microscopy (TEM) has been compared in this study. Upon irradiation, groups or patterns of nanoparticles with various morphologies and sizes were formed in borosilicate glasses, loaded with zinc, copper, and silver. The study successfully includes loading ranges for the target metal from doping level (1%) over medium level (20%) to majority phase (60%). It is found that particle patterning resolution is affected by parallel processes of amorphous phase separation, glass ablation, and delocalised precipitation. In addition, via an in-situ study, it is confirmed that by heating alone without irradiation, no precipitate nanoparticles form.

  9. In-vitro bioactivity of zirconia doped borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, Rajkumar; Azeem, P. Abdul, E-mail: rk.satyaswaroop@gmail.com, E-mail: drazeem2002@yahoo.com [Department of Physics, National Institute of Technology, Warangal-506004 (India)

    2015-06-24

    Glass composition 31B{sub 2}O{sub 3}-20SiO{sub 2}-24.5Na{sub 2}O-(24.5-x) CaO-xZrO{sub 2} x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that, in-vitro bioactivity of glasses decreased with increasing zirconia incorporation.

  10. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China); Zhao, Shichang [Department of Orthopedic Surgery, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Xiao, Wei [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Xue, Jingzhe [Department of Chemistry, Tongji University, Shanghai 200092 (China); Shen, Youqu [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Zhou, Jie; Huang, Wenhai [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China); Rahaman, Mohamed N. [Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States); Zhang, Changqing, E-mail: shzhangchangqing@163.com [Department of Orthopedic Surgery, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Deping, E-mail: wdpshk@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 2001804 (China)

    2016-01-01

    Copper doped borosilicate glasses (BG–Cu) were studied by means of FT-IR, Raman, UV–vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B–O bond of BO{sub 4} groups at 980 cm{sup −1}, while they decrease that of BO{sub 2}O{sup −} groups at 1440–1470 cm{sup −1} as shown by Raman spectra. A negative shift was observed from {sup 11}B and {sup 29}Si NMR spectra. The {sup 11}B NMR spectra exhibited a clear transformation from BO{sub 3} into BO{sub 4} groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG–Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering. - Highlights: • Agglutination effect of Cu{sup 2+} and charge balance of agglomerate lead to more stable glass. • Lower degradability and lower ions release were found in BG-Cu scaffolds. • Excellent angiogenesis and sustain Cu{sup 2+} release were endowed by doping Cu.

  11. Laser Induced Damage Studies in Borosilicate Glass Using nanosecond and sub nanosecond pulses

    CERN Document Server

    Rastogi, Vinay; Munda, D S

    2016-01-01

    The damage mechanism induced by laser pulse of different duration in borosilicate glass widely used for making confinement geometry targets which are important for laser driven shock multiplication and elongation of pressure pulse, is studied. We measured the front and rear surface damage threshold of borosilicate glass and their dependency on laser parameters. In this paper, we also study the thermal effects on the damage diameters, generated at the time of plasma formation. These induced damage width, geometries and microstructure changes are measured and analyzed with optical microscope, scanning electron microscope and Raman spectroscopy. The results show that at low energies symmetrical damages are found and these damage width increases nonlinearly with laser intensity. The emitted optical spectrum during the process of breakdown is also investigated and is used for the characterization of emitted plasma such as plasma temperature and free electron density. Optical emission lines from Si I at 500 nm, Si ...

  12. Profile Control of a Borosilicate-Glass Groove Formed by Deep Reactive Ion Etching

    CERN Document Server

    Akashi, T

    2008-01-01

    Deep reactive ion etching (DRIE) of borosilicate glass and profile control of an etched groove are reported. DRIE was carried out using an anodically bonded silicon wafer as an etching mask. We controlled the groove profile, namely improving its sidewall angle, by removing excessively thick polymer film produced by carbonfluoride etching gases during DRIE. Two fabrication processes were experimentally compared for effective removal of the film : DRIE with the addition of argon to the etching gases and a novel combined process in which DRIE and subsequent ultrasonic cleaning in DI water were alternately carried out. Both processes improved the sidewall angle, and it reached 85o independent of the mask-opening width. The results showed the processes can remove excessive polymer film on sidewalls. Accordingly, the processes are an effective way to control the groove profile of borosilicate glass.

  13. Reaction of chromalumozirconium refractory with alkali-free borosilicate glass melt

    Energy Technology Data Exchange (ETDEWEB)

    Popov, O.N.; Frolova, V.P.

    1985-03-01

    The corrosion mechanism of chromalumozirconium refractory synthesized on the base of the Cr/sub 2/O/sub 3/-Al/sub 2/O/sub 3/-ZrO/sub 2/-SiO/sub 2/ system by the alkali-free borosilicate ''E'' glass melt is investigated. It is estalished that in the process of refractory destruction the diffusion zonality is formed in it being a reflection of comparative migration activity of refractory components.

  14. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.

    Science.gov (United States)

    McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A

    2012-11-20

    The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.

  15. Er3+–Al2O3 nanoparticles doping of borosilicate glass

    Indian Academy of Sciences (India)

    Jonathan Massera; Laeticia Petit; Joona Koponen; Benoit Glorieux; Leena Hupa; Mikko Hupa

    2015-09-01

    Novel borosilicate glasses were developed by adding in the glass batch Er3+–Al2O3 nanoparticles synthetized by using a soft chemical method. A similar nanoparticle doping with modified chemical vapour deposition (MCVD) process was developed to increase the efficiency of the amplifying silica fibre in comparison to using MCVD and solution doping. It was shown that with the melt quench technique, a Er3+–Al22O3 nanoparticle doping neither leads to an increase in the Er3+ luminescence properties nor allows one to control the rare-earth chemical environment in a borosilicate glass. The site of Er3+ in the Er3+–Al2O3 nanoparticle containing glass seems to be similar as in glasses with the same composition prepared using standard raw materials. We suspect the Er3+ ions to diffuse from the nanoparticles into the glass matrix. There was no clear evidence of the presence of Al2O3 nanoparticles in the glasses after melting.

  16. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    C R Gautam; Devendra Kumar; Om Parkash

    2010-04-01

    The infrared spectra (IR) of various glass compositions in the glass system, [(PbSr1–)O.TiO2]– [2SiO2.B2O3]–[BaO.K2O]–[La2O3], were recorded over a continuous spectral range (400–4000 cm-1) to study their structure systematically. IR spectrum of each glass composition shows a number of absorption bands. These bands are strongly influenced by the increasing substitution of SrO for PbO. Various bands shift with composition. Absorption peaks occur due to the vibrational mode of the borate network in these glasses. The vibrational modes of the borate network are seen to be mainly due to the asymmetric stretching relaxation of the B–O bond of trigonal BO3 units. More splitting is observed in strontium-rich composition.

  17. Internal modification of poly(dimethylsiloxane) microchannels with a borosilicate glass coating.

    Science.gov (United States)

    Orhan, J-B; Parashar, V K; Flueckiger, J; Gijs, M A M

    2008-08-19

    We report on an original technique for the in situ coating of poly(dimethylsiloxane) (PDMS) microchannels with borosilicate glass, starting from an active nonaqueous and alkali-free precursor solution. By chemical reaction of this active solution inside the microchannel and subsequent thermal annealing, a protective and chemically inert glass borosilicate coating is bonded to the PDMS. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and nuclear magnetic resonance spectroscopy of the active solution show that it is composed of a silicon oxide network with boron connectivity. Thermal gravimetric analysis demonstrates the absence of organic content when curing is done above 150 degrees C. The borosilicate nature of the glass coating covalently bonded to the PDMS is demonstrated using ATR-FTIR spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy and scanning electron microscopy show a smooth and crack-free coating. The latter is used as an efficient protective barrier against diffusion in PDMS of fluorescent rhodamine B dye that is dissolved either in water or in toluene. Moreover, the coating prevents swelling and consequent structural damage of the PDMS when the latter is exposed to harsh chemicals such as toluene.

  18. Barium-borate-flyash glasses: As radiation shielding materials

    Science.gov (United States)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  19. Structural investigations of bismuth lead borosilicate glasses under the influence of gamma irradiation through ultrasonic studies

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Laopaiboon, Raewat

    2012-04-01

    The ultrasonic velocity measurements for different compositions of irradiated bismuth lead borosilicate glasses xBi2O3-(50-x)PbO-20B2O3-30SiO2 (x=2, 4, 6, 8, and 10 mol.%) were performed at room temperature using pulse-echo technique. Densities of glass samples were measured by Archimedes' principle using n-hexane as the immersion liquid. The results from the studies show that ultrasonic velocity, elastic moduli, Poisson's ratio, microhardness, and the Debye temperature increase with increasing bismuth oxide content and increasing gamma-radiation dose (3-12 Gy).

  20. Reactions of chromium-aluminum-zirconium refractory with a molten alkali-free borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Popov, O.N.; Frolova, V.P.

    1985-08-01

    The authors consider the scope for using KhTs-45 refractory containing in mass % 45.0 Cr2O3, 5.0 Al2O3, 32.5 ZrO2, 16.0 SiO2, and 1.5 Na2O for melting alkali-free borosilicate glass E, and they also present some experimental results on the corrosion of the refractory in contact with the molten glass and on the contact mineral formation. They conclude that during the attack on the refractory diffusion zoning is formed, which reflects the relative component migration activities.

  1. Simulation of cooling and solidification of three-dimensional bulk borosilicate glass: effect of structural relaxations

    Science.gov (United States)

    Barth, N.; George, D.; Ahzi, S.; Rémond, Y.; Joulaee, N.; Khaleel, M. A.; Bouyer, F.

    2014-02-01

    The modeling of the viscoelastic stress evolution and specific volume relaxation of a bulky glass cast is presented in this article and is applied to the experimental cooling process of an inactive nuclear waste vitrification process. The concerned borosilicate glass is solidified and cooled down to ambient temperature in a stainless steel canister, and the thermomechanical response of the package is simulated. There exists a deviant compression of the liquid core due to the large glass package compared to standard tempered glass plates. The stress load development of the glass cast is finally studied for different thermal load scenarios, where the cooling process parameters or the final cooldown rates were changed, and we found a great influence of the studied cooldown rates on the maximum stress build-up at ambient temperature.

  2. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    Science.gov (United States)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  3. Structural, linear and third-order nonlinear optical properties of Cu nanocrystal in sodium borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jiasong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Chen, Zhaoping; Zhao, Haijun; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2013-09-01

    Highlights: • The NBS glass containing different Cu concentrations were prepared by sol–gel method. • High dispersion and narrow distribution of Cu nanocrystals were in the form of glass. • The optical absorption spectra exhibited the typical SPR for Cu in the wavelength range of 550–600 nm. • The third-order optical properties were investigated by Z-scan technique. -- Abstract: Cu nanocrystals embedded in sodium borosilicate glass of varied Cu contents from 0.5 to 1.5 wt% have been successfully prepared through a sol–gel process. According to the results of X-ray diffraction (XRD) and the energy dispersive X-ray spectrometry (EDS), the metal Cu nanocrystals in cubic crystal system were well distributed inside glass matrix. Fourier Transform Infrared (FTIR) indicated the sodium borosilicate matrix had no major structural change for gels with different Cu contents. The optical absorption peaks due to the surface plasmon resonance of Cu particles were observed in the wavelength range of 550–600 nm. The absorption peak showed a red-shift trend with increasing Cu contents from 0.5 to 1.5 wt%. Transmission electron microscopy (TEM) revealed the existence of spherical Cu nanocrystals in the matrix. The diameter of Cu nanocrystals varied from 1 to 3.5 nm. Furthermore, the third-order nonlinear optical properties were investigated by Z-scan technique at 800 nm. Experimental results indicated the Cu nanocrystals have obvious positive refractive nonlinearities and reverse saturated absorption performance.

  4. The effect of melt infiltration of borosilicate glass on biaxial flexural strength of porcelain-veneered zirconia

    Science.gov (United States)

    Joo, Kyu Ji; Song, Kyung Woo; Jung, Jong Hyun; Ahn, Hyo Jin; Park, Il Song; Lee, Min Ho; Bae, Tae Sung

    2011-08-01

    To evaluate the effect of melt infiltration on the biaxial flexural strength of porcelain-bonded zirconia, borosilicate glasses were used in this study. Presintered yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) blocks were milled and used for disc specimens. Prior to veneering of porcelain, the infiltration of borosilicate glass on zirconia was performed at 1,100 °C for 1 h. After a biaxial flexural test with the crosshead speed of 0.1 mm/min, fractured surfaces and interfaces between zirconia and veneer porcelain were observed with a Scanning Electron Microscope (SEM). The fracture strength of sintered zirconia and veneer porcelain was significantly increased by the melt infiltration of borosilicate glass (P porcelain increased slightly. The sintered zirconia group showed a smooth fracture surface containing many pores, but the glass-infiltrated zirconia group showed a rough fracture surface.

  5. Leach behavior of high-level borosilicate glasses under deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  6. Leach behavior of high-level borosilicate glasses under deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  7. Preparation and luminescence properties of Eu3+ doped oxyfluoride borosilicate glass ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Yanhong; ZHAO Li; ZHANG Yongming; MA Jing

    2012-01-01

    Oxyfluoride borosilicate glass with the molar composition of60SiO2-15B2O3-15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized by a traditional glass melting method.Glass ceramics containing CaF2 nanocrystals were preparcd by heat treating the glass samples at a temperature in the range of 620-680℃.The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature incrcasing.The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix,and increased with the heat treatment temperature increasing.The left edge of excitation band shifted to shorter wavelength in the glass ceramics.The local environments of Eu3+ ions in the glass and glass ceramics were different.

  8. Structural and crystallization behavior of (Ba,Sr)TiO3 borosilicate glasses

    Science.gov (United States)

    Yadav, Avadhesh Kumar; Gautam, C. R.; Gautam, Arvind; Mishra, Vijay Kumar

    2013-10-01

    Various glass samples were prepared by melt quench technique in the glass system [(Ba1- x Sr x ) TiO3]-[2SiO2-B2O3]-[K2O] doped with 1 mole% of La2O3. Infrared spectra show the number of absorption peaks with different spliting in the wave number range from 450 to 4000 cm-1. Absorption peaks occurs due to asymetric vibrational streching of borate by relaxation of the bond B-O of trigonal BO3. Raman spectra show the Raman bands due to ring-type metaborate anions, symmetric breathing vibrations BO3 triangles replaced by BO4 tetrahedra, and symmetric breathing vibrations of six-member rings. The differential thermal analysis of a glass sample corresponding to composition x = 0.0 shows crystallization temperature at 847°C and glass transition temperature at 688°C. X-ray diffraction (XRD) pattern of glass ceramic samples shows the major crystalline phase of BaTiO3 whereas pyrochlore phases of barium titanium silicate. Scanning electron micrographs confirm the results of XRD as barium titanate is major crystalline phase along with pyrochlore phase of barium titanium silicate.

  9. Synthesis, Structural and Optical Investigations of (Pb, BiTiO3 Borosilicate Glasses

    Directory of Open Access Journals (Sweden)

    Chandkiram Gautam

    2014-01-01

    Full Text Available A new series of lead bismuth titanate borosilicate glasses with addition of one percent lanthanum oxide have been synthesized using melt-quench technique. X-ray diffraction patterns have been recorded to confirm the amorphous nature of the prepared glass samples. The synthesized glasses have been characterized by using various spectroscopic techniques such as UV-visible, infrared, and Raman spectroscopy. UV-visible measurements were recorded in the wavelength range from 200 to 1100 nm whereas IR and Raman spectroscopic measurements were recorded over a continuous wavenumber range from 400 to 5000 cm−1 and 1000 to 2000 cm−1 respectively. The different absorption peaks/bands were formed in IR spectral patterns. The spectral bands appear towards the lower wavenumber sides due to the Bi and Pb, content while the bands appear towards the higher wavenumber sides due to the formation of diborate and triborate network units.

  10. Microscopy and strength of borosilicate glass-to-Kovar alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Chanmuang, C. [Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)], E-mail: chutimunta@hotmail.com; Naksata, M. [Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chairuangsri, T. [Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jain, H.; Lyman, C.E. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015-3195 (United States)

    2008-02-15

    The microstructural basis of the strength of borosilicate glass-to-Kovar alloy joints has been investigated where the alloy was preoxidised at 750 deg. C for 10 min in air. X-ray diffraction revealed that the oxide scale consisted of hematite and magnetite. Glass was bonded to the alloy by melting at 1000 deg. C for 15 min under two conditions: (a) ambient atmosphere and (b) vacuum (360 mbar). Scanning and transmission electron microscopy revealed an iron oxide interlayer in the joint bonded under normal atmosphere. Dendritic fayalite nucleated on the iron oxide interlayer and grew into the glass. In the joint made under vacuum, neither the interlayer nor the fayalite phase was observed. In both cases, Co and Ni in the alloy were not involved in the chemical bonding. The joint formed under vacuum had a higher bonding strength of 4.3 MPa, compared to 3.6 MPa for the joint bonded under ambient atmosphere.

  11. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest.

    Science.gov (United States)

    Kilymis, D A; Delaye, J-M

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO2 content of the glass, which promotes densification due to the open structure of SiO4 tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  12. Water leaching of borosilicate glasses: experiments, modeling and Monte Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-15

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  13. Aqueous corrosion of borosilicate glasses: experiments, modeling and Monte-Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-01

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  14. EVALUATION OF IMPURITY EXTREMES IN A PLUTONIUM-LOADED BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J; Kevin Fox, K; Charles Crawford, C; Ned Bibler, N; Elizabeth Hoffman, E; Tommy Edwards, T

    2007-11-12

    A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for the disposition of excess weapons-useable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990s. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt % Pu and to be tolerant of a range of impurities. To confirm the results of previous testing with surrogate Pu feeds containing impurities, four glass compositions were selected for fabrication with actual plutonium oxide and impurities. The four compositions represented extremes in impurity type and concentration. The homogeneity and durability of these four compositions were measured. The homogeneity of the glasses was evaluated using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). The XRD results indicated that the glasses were amorphous with no evidence of crystalline species in the glass. The SEM/EDS analyses did show the presence of some undissolved PuO{sub 2} material. The EDS spectra indicated that some of the PuO{sub 2} crystals also contained hafnium oxide. The SEM/EDS analyses showed that there were no heterogeneities in the glass due to the feed impurities. The durability of the glasses was measured using the Product Consistency Test (PCT). The PCT results indicated that the durability of Pu impurity glasses was comparable with Pu glasses without impurities and significantly more durable than the Environmental Assessment (EA) glass used as the benchmark for repository disposition of high-level waste (HLW) glasses.

  15. Preparation and Optical Properties of Er3+ -Doped Gadolinium Borosilicate Glasses

    Institute of Scientific and Technical Information of China (English)

    Sun Jiangting; Zhang Jiahua; Chen Baojiu; Lu Shaozhe; Ren Xinguang; Wang Xiaojun

    2005-01-01

    Er3+-doped Gd2 O3 -SiO2 -B2 O3 -Na2O glasses were prepared, and formation range of glass of Gd2 O3 -SiO2 -B2O3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO2 is 0~50%(molar fraction), Gd2O3 is 0~30%(molar fraction) and B2 O3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO2 and 30% Gd2O3 , or at the contents of 60%(molar fraction) SiO2 and 30%(molar fraction) B2O3. There is no glass phase formed in other glass components. Glass forming ability for Gd2O3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt(2,4,6) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σepeak product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er3+-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.

  16. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

  17. Pyrolysis of arylglycol-[beta]-propylphenyl ether lignin model in the presence of borosilicate glass fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Ken-ichi (Institute of Agricultural and Forest Engineering, University of Tsukuba, Ibaraki (Japan))

    1994-12-01

    Two [beta]-aryl ether type model compounds, guaiacylglycol- and veratrylglycol-[beta]-propyl-phenyl ethers, were copyrolyzed with borosilicate glass fibers. The results provided a better understanding of the effect of copyrolysis with the fibers on the yields of lignin-derived products from lignocellulosics.The observed products indicated the following reactions occurring in the models; (1) cleavage of the C[alpha]-aromatic ring bond, (2) cleavage of the [beta]-ether bond, (3) cleavage of the C[alpha]-C[beta] bond, (4) [alpha],[beta]-dehydration, and (5) demethylation, and others. Of these reactions, reactions (1), (2) and (4) were the main pyrolysis reactions and fully explained the increase in the total yield of lignin-derived pyrolysis products from Japanese red pine (Pinus densiflora Sieb. et Zucc.) in the presence of borosilicate glass fibers. Reaction (1) was a particularly characteristic reaction in copyrolysis with the fibers. Important reactions relating to the increase in the total yield of lignin-derived pyrolysis products were reproduced on the models used

  18. Surface layers on a borosilicate nuclear waste glass corroded in MgCl 2 solution

    Science.gov (United States)

    Abdelouas, Abdesselam; Crovisier, Jean-Louis; Lutze, Werner; Grambow, Bernd; Dran, Jean-Claude; Müller, Regina

    1997-01-01

    Surface layers on the French borosilicate nuclear waste glass, R7T7, corroded in MgCl 2 solution were studied to determine the composition, structure and stability of crystalline phases. The characteristics of the phases constituting the surface layer varied with the parameter {S}/{V} × t , the glass surface area ( S) to solution volume ( V) ratio, times time ( t). At low {S}/{V} × t values (intermediate {S}/{V} × t value (2800 d/m; 5.5 y) the surface layer contained hydrotalcite-, chlorite- and saponite-type phases. At the highest {S}/{V} × t value (10 7 d/m; 463 d) the major phases were saponite, powellite, barite and cerianite solid solutions. About 95% of the uranium and > 98% of the neodymium released from the glass were precipitated in the surface layer. In the 463 day experiment, 86% of the neodymium in the surface layer was in solid solution with powellite, the rest with saponite. Uranium was contained exclusively in saponite. High {S}/{V} ratios, typical of disposal conditions for vitrified high-level radioactive waste, favor retention of actinides in fairly insoluble corrosion products. Observation of similar corrosion products on natural glasses as on nuclear waste glasses lend support to the hypothesis that the host phases for actinides observed in the laboratory are stable over geological periods of time.

  19. Intrinsic dosimetry. Properties and mechanisms of thermoluminescence in commercial borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-10-01

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container, this method has the potential to provide enhanced pathway information regarding the history of the container and its radioactive contents. The latest in a series of experiments designed to validate and demonstrate this newly developed tool are reported. Thermoluminescence (TL) dosimetry was used to measure dose effects on raw stock borosilicate container glass up to 70 days after gamma ray, x-ray, beta particle or ultraviolet irradiations at doses from 0.15 to 20 Gy. The TL glow curve when irradiated with 60Co was separated into five peaks: two relatively unstable peaks centered near 120 and 165°C, and three relatively stable peaks centered near 225, 285, and 360°C. Depending on the borosilicate glass source, the minimum measurable dose using this technique is 0.15-0.5 Gy, which is roughly equivalent to a 24 hr irradiation at 1 cm from a 50-165 ng source of 60Co. Differences in TL glow curve shape and intensity were observed for the glasses from different geographical origins. These differences can be explained by changes in the intensities of the five peaks. Electron paramagnetic resonance (EPR) and multivariate statistical methods were used to relate the TL intensity and peaks to electron/hole traps and compositional variations.

  20. In vitro bioactivity and cytocompatibility of porous scaffolds of bioactive borosilicate glasses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; FU HaiLuo; LIU Xin; YAO AiHua; WANG DePing; HUANG WenHai; ZHAO Ying; JIANG XinQuan

    2009-01-01

    The bioactive borosilicate scaffolds (R2O-RO-B2O3-SiO2-P2O5) with four different contents of borate were fabricated by replication technique. The bioactivity,degradability and the cytotoxicity of the scaffolds were studied in this paper. The porosity of the scaffolds was found to be 73%-80%,and the pore size was in the range of 200-300 μm. The porous scaffolds immersed in 0.02 mol. L-1 K2HPO4 solution were transformed into hydroxyapatite. And it is notable that the D-AIk-2B,D-AIk-3B-scaffolds were covered by hydroxyapatite layers after 7 h-immersion,which proved their high bioactivity. In the cell adhesion test,cells could be seen growing well on the scaffolds,showing stretched morphology and obvious pseudopodia,and only the high cumulative concentration of B ions released from the D-AIk-3B-scaffold samples had an inhibition effect on cell proliferation. But the inhibition effect could be alleviated by diluting the extract solution to a certain concentration (dilution ratio:1:8). Therefore,after suitable pretreatment,the porous borosilicate bioactive glass scaffold can be e desirable candidate for bone tissue engineering.

  1. Mechanism of RuO2 crystallization in borosilicate glass: an original in situ ESEM approach.

    Science.gov (United States)

    Boucetta, Hassiba; Podor, Renaud; Stievano, Lorenzo; Ravaux, Johann; Carrier, Xavier; Casale, Sandra; Gossé, Stéphane; Monteiro, Amélie; Schuller, Sophie

    2012-03-19

    Ruthenium, a fission product arising from the reprocessing of spent uranium oxide (UOX) fuel, crystallizes in the form of acicular RuO(2) particles in high-level waste containment glass matrices. These particles are responsible for significant modifications in the physicochemical behavior of the glass in the liquid state, and their formation mechanisms are a subject of investigation. The chemical reactions responsible for the crystallization of RuO(2) particles with acicular or polyhedral shape in simplified radioactive waste containment glass are described. In situ high-temperature environmental scanning electron microscopy (ESEM) is used to follow changes in morphology and composition of the ruthenium compounds formed by reactions at high temperature between a simplified RuO(2)-NaNO(3) precursor and a sodium borosilicate glass (SiO(2)-B(2)O(3)-Na(2)O). The key parameter in the formation of acicular or polyhedral RuO(2) crystals is the chemistry of the ruthenium compound under oxidized conditions (Ru(IV), Ru(V)). The precipitation of needle-shaped RuO(2) crystals in the melt might be associated with the formation of an intermediate Ru compound (Na(3)Ru(V)O(4)) before dissolution in the melt, allowing Ru concentration gradients. The formation of polyhedral crystals is the result of the direct incorporation of RuO(2) crystals in the melt followed by an Ostwald ripening mechanism.

  2. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses

    Science.gov (United States)

    Singh, Vishwanath P.; Badiger, N. M.; Chanthima, N.; Kaewkhao, J.

    2014-05-01

    Gamma-ray exposure buildup factor (EBF) values and neutron shielding effectiveness of bismuth borosilicate (BBS) glass systems in composition (50-x)SiO2:15B2O3:2Al2O3:10CaO:23Na2O:xBi2O3 (where x=0, 5, 10, 15 and 20 mol%) were calculated. The EBF values were computed for photon energy 0.015-15 MeV up to penetration depths of 40 mfp (mean free path) by the geometrical progression (G-P) method. The EBF values were found dependent upon incident photon energy, penetration and bismuth molar concentration. In low- and high-energy photon regions, the EBF values were minimum whereas maximum in the intermediate-energy region. The fast neutron removal cross sections for energy 2-12 MeV were calculated by the partial density method. The BBS glass with 20 mol% Bi2O3 is found to be superior gamma-ray and neutron transparent shielding. The EBF values of the BBS glasses were compared with steel-magnetite concrete and lead. The investigation was carried out to explore the advantages of the BBS glasses in different radiation shielding applications.

  3. Evolutions of Molecular Oxygen Formation and Sodium Migration in Xe Ion Irradiated Borosilicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Zhang, Duofei F.; Lv, Peng; Zhang, Jiandong; Du, Xing; Yuan, Wei; Nan, Shuai; Zhu, Zihua; Wang, Tieshan

    2016-07-23

    The modifications of a commercial borosilicate glass induced by Xe ion irradiation have been studied by Raman spectroscopy and ToF-SIMS depth profiling. A decrease in the average Si–O–Si angle, an increase in the population of three-membered rings and an increase of the glass polymerization are evidenced. The molecular oxygen appears in the irradiated glasses after the irradiation fluence reaches approximately 1015 ions/cm2. The O2 concentration decreaseswith the depth of irradiated glass at the ion fluence of 2 × 1016 ions/cm2. A sodiumdepleted layer at the surface and a depleted zone at around the penetration depth of 5 MeV Xe ions are observed. The thickness of the sodium depleted layer increases with the irradiation fluence. Moreover, comparing with previous results after electron and Ar ion irradiation, it can be concluded that the nuclear energy deposition can partially inhibit the formation of molecular oxygen and increase the threshold value of electron energy deposition for the molecular oxygen formation.

  4. Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jiasong, E-mail: jiasongzhong@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Xin [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Lu, Hongwei; Wang, Xin; Zhang, Suling [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2014-09-01

    Highlights: • The Sb nanoparticles doped in Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2} glass were prepared by sol–gel methods. • Obtained glass was investigated by structural and optical measurements. • The glass was crystalline with a rhombohedral structure of Sb. • An absorption peak centered on 566 nm has been observed in doping glass. • The third-order optical nonlinearity was investigated by femtosecond Z-scan technique. - Abstract: Sb nanoparticles have been successfully prepared from SbCl{sub 3} in sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by sol–gel method, involving metallic sodium as sodium source, boric acid as boron source and SiO{sub 2} come from hydrolysis of tetraethoxysilane. The feasibility of process conditions were analyzed by using Fourier Transform Infrared (FT-IR), thermal gravimetric (TG), and nuclear magnetic resonance (NMR). X-ray diffraction (XRD) study revealed that the rhombohedral structure of metal Sb have formed in the glass. The particle was found to be spherical shaped and highly monodispersed with an average size of about 32.63 nm as analyzed from transmission electron microscopy (TEM). The surface plasmon resonance (SPR) of Sb nanoparticle was studied from the UV–Vis absorption. The nonlinear optical properties were studied by using the Z-scan technique with a Ti:sapphire laser at 800 nm. Results showed that the third-order optical nonlinear susceptibility χ{sup (3)} of the glass was determined to be 4.85 × 10{sup −11} esu.

  5. Radioactive waste processing: Borosilicate glasses and synthetic rocks. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The biliography contains citations concerning radioactive waste processing and disposal by incorporation in borosilicate glasses and synthetic rock materials. Formulations, leach tests and evaluations, melting characteristics, phase determinations, scaled-up processes, and process variables are considered. The Synroc process, and general preparation and evaluation studies are also included. Waste vitrification in materials other than borosilicates and synthetic rocks, and waste fixation using cements and bitumens are discussed in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Experimental and computed results investigating time-dependent failure in a borosilicate glass

    Science.gov (United States)

    Chocron, Sidney; Barnette, Darrel; Holmquist, Timothy; Anderson, Charles E.; Bigger, Rory; Moore, Thomas

    2017-01-01

    Symmetric plate-impact tests of borosilicate glass were performed from low (116 m/s) to higher (351 m/s) velocities. The tests were recorded with an ultra-high-speed camera to see the shock and failure propagation. The velocity of the back of the target was also recorded with a PDV (Photon Doppler Velocimeter). The images show failure nucleation sites that trail the shock wave. Interestingly, even though the failure wave is clearly seen, the PDV never detected the expected recompression wave. The reason might be that at these low impact velocities the recompression wave is too small to be seen and is lost in the noise. This work also presents a new way to interpret the signals from the PDV. By letting part of the signal travel through the target and reflect on the impact side, it is possible to see the PDV decrease in intensity with time, probably due to the damage growth behind the shock wave.

  7. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, ON, M5S 3G4 (Canada)

    2007-04-15

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials.

  8. Suppression of surface crystallization on borosilicate glass using RF plasma treatment

    Science.gov (United States)

    Yoo, Sunghyun; Ji, Chang-Hyeon; Jin, Joo-Young; Kim, Yong-Kweon

    2014-10-01

    Surface crystallization on a commercial grade borosilicate glass wafer, Borofloat® 33, is effectively prevented against 3 h of thermal reflow process at 850 °C. Surface plasma treatment with three different reactive gases, CF4, SF6, and Cl2, has been performed prior to the annealing. The effect of plasma treatment on surface ion concentration and nucleation of cristobalite were examined through optical microscope and x-ray photoemission spectroscopy. The dominant cause that suppresses crystallization was verified to be the increase of surface ion concentration of alumina during the plasma treatment. Both CF4 and SF6 treatment of no less than 30 s showed significant efficacy in suppressing crystallization by a factor of more than 112. Average surface roughness and the optical transparency were also enhanced by a factor of 15 and 3, respectively, compared to untreated sample.

  9. Study of optical properties of borosilicate glass doped with Ytterbium as a function of the concentration

    Directory of Open Access Journals (Sweden)

    Filippe de Carvalho Bernardino

    2015-05-01

    Full Text Available Rare Earth elements have been studied for different scientific areas due to its excellent spectroscopic and magnetic properties with possible application for construction of different optical and electric devices (MARTINS, 2005; LOURENÇO et al., 2011. In this work, it is studied the optical properties of Ytterbium (Yb3+ ions embedded in a lead-borosilicate glass matrix synthesized by the melting method, using the optical absorption and photoluminescence techniques. The Yb3+ ions were chosen to dope the glass matrix because it has an energy level scheme more simplified compared with other Rare-Earth ions, with only two energy levels, making it very attractive for the construction of high efficiency optical devices. Increasing the annealing temperature as well as the ion concentration in the matrix leads to a shift of the optical band gap of the matrix to higher energies. We believe that this shift (blue-shift can be associated with the nanocrystallization process of the glass matrix SBP (SiO2, B2O3, PbO2. The reduction of radiative lifetime with increasing ion concentration in matrix was studied using the Stokowski empirical relation, in which, it studies processes of energy transfer as a function of Rare-Earth concentration.

  10. Sintering and foaming of barium silicate glass powder compacts

    Science.gov (United States)

    Mueller, Ralf; Reinsch, Stefan; Agea-Blanco, Boris

    2016-10-01

    The manufacture of sintered glasses and glass-ceramics, glass matrix composites and glass-bounded ceramics or pastes is often affected by gas bubble formation. Against this background, we studied sintering and foaming of barium silicate glass powders used as SOFC sealants using different powder milling procedures. Sintering was measured by means of heating microscopy backed up by XPD, DTA, Vacuum Hot Extraction (VHE) and optical and electron microscopy. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the powder compacts were uniaxially pressed and sintered in air, the milling atmosphere sig¬ni¬ficantly affected foaming. The strength of this effect increased in the order Ar ? N2 encapsulated CO2, even for powders milled in Ar and N2. Results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. Foaming could be substantially reduced by milling in water and 10 wt% HCl.

  11. Sintering and foaming of barium silicate glass powder compacts

    Directory of Open Access Journals (Sweden)

    Ralf Mueller

    2016-10-01

    Full Text Available The manufacture of sintered glasses and glass-ceramics, glass matrix composites and glass-bounded ceramics or pastes is often affected by gas bubble formation. Against this background, we studied sintering and foaming of barium silicate glass powders used as SOFC sealants using different powder milling procedures. Sintering was measured by means of heating microscopy backed up by XPD, DTA, Vacuum Hot Extraction (VHE and optical and electron microscopy. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the powder compacts were uniaxially pressed and sintered in air, the milling atmosphere sig¬ni¬ficantly affected foaming. The strength of this effect increased in the order Ar  N2 < air < CO2. Conformingly, VHE studies revealed that the pores of foamed samples predominantly encapsulated CO2, even for powders milled in Ar and N2. Results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. Foaming could be substantially reduced by milling in water and 10 wt% HCl.

  12. Structural and luminescent investigation of Eu{sup 3+} doped lead borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Reddi; Babu, A. Mohan, E-mail: mohanphy57@gmail.com; Jaidass, N. [School of Advanced Sciences, V I T University, Vellore, Tamil Nadu (India); Department of Physics, C R Engineering College, Tirupati, Andhra Pradesh (India); Rao, N. Madhusudhana; Moorthy, C. Krishna [School of Advanced Sciences, V I T University, Vellore, Tamil Nadu (India); Ramamoorthy, L. [Department of Physics, C R Engineering College, Tirupati, Andhra Pradesh (India)

    2016-05-06

    Lead borosilicate (LBS) glasses incorporated with europium (Eu{sup 3+}) ions were synthesized using various chemical constituents. The structure of the glass matrix has been studied by experimental techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), optical absorption (OA) and photoluminescence (PL) spectroscopy. From the XRD spectrum, several crystalline phases of LBS glass host were identified. The FTIR spectrum of the LBS glass host was recorded to investigate the local structural and functional groups. Due to the different characteristic nature of the Eu{sup 3+} ion, the absorption bands were observed from the ground ({sup 7}F{sub 0}) and the first excited ({sup 7}F{sub 1}) states. Further, Judd-Ofelt theory has been applied to compute the intensity parameters (Ω{sub λ}, λ = 2, 4 and 6) from the absorption intensities of {sup 7}F{sub 0} → {sup 5}D{sub 2} and {sup 7}F{sub 0} → {sup 5}L{sub 6} transitions, respectively. Characteristic emission bands are observed at 578, 592, 613,653 and 701 nm corresponding to {sup 5}D{sub 0} → {sup 7}F{sub 0}, {sup 7}F{sub 1}, {sup 7}F{sub 2}, {sup 7}F{sub 3} and {sup 7}F{sub 4} transitions, respectively. The radiative and laser characteristic parameters like stimulated emission cross-section (σ{sub e}) and branching ratios (β{sub R}) of the {sup 5}D{sub 0} excited level are computed. From the magnitude of stimulated emission cross-section (σ{sub e}) and branching ratios (β{sub R}) obtained for {sup 5}D{sub 0} → {sup 7}F{sup 2} transition revealed that, Eu{sup 3+}: LBS glasses are suitable for good laser action in the visible region.

  13. The influence of ZnO incorporation on the aqueous leaching characteristics of a borosilicate glass

    Science.gov (United States)

    Vance, E. R.; Gregg, D. J.; Karatchevtseva, I.; Griffiths, G. J.; Olufson, K.; Rees, Gregory J.; Hanna, John V.

    2017-10-01

    With increasing ZnO content, short term aqueous durability enhancement of all elements in borosilicate glasses containing 1.0 and 3.85 wt% ZnO was evident in 7-day PCT-B tests. In 14-day MCC-1 type leach tests conducted at 90 °C, surface alteration was very clear in the undoped glass via the formation of strongly altered amorphous material which tended to spall off the surface. No sign of crystallinity was detected by grazing incidence X-ray diffraction or electron microscopy of the surface layers and the surface material was very rich in silica. For the ZnO-bearing glasses, significant growth of particles following PCT leaching for 7 days was observed, due to a build-up of surface ZnO-containing Si-rich material and possible agglomeration. This alteration layer was also observed in MCC-1 type experiments in which cross-section SEM-EDS data were obtained. Raman, infrared and 11B and 29Si MAS NMR spectroscopy showed only slight changes in boron speciation on the addition of up to 9.1 wt% ZnO. Bulk positron annihilation lifetime spectra (PALS) of glasses containing 0-3.85 wt% ZnO could be analysed with three distinct lifetimes and also showed only slight differences. These results indicate that the basic glass structure was essentially not influenced by the ZnO content and that the passivation of the alteration layer is promoted by ZnO content.

  14. Liquidus Temperature of High-Level Waste Borosilicate Glasses with Spinel Primary Phase

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Crum, Jarrod V.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Robert W. Smith; David W. Shoesmith

    2000-01-01

    Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310?C. Component additions increased the TL (per mass%) as Cr2O3 261?C, NiO 85?C, TiO2 42?C, MgO 33?C, Al2O3 18?C, and Fe2O3 18?C and decreased the TL (per mass%) as Na2O -29?C, Li2O -28?C, K2O -20?C, and B2O3 -8?C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

  15. Substituted Borosilicate Glasses with Improved Osteogenic Capacity for Bone Tissue Engineering.

    Science.gov (United States)

    Fernandes, João S; Gentile, Piergiorgio; Crawford, Aileen; Pires, Ricardo A; Hatton, Paul V; Reis, Rui L

    2017-03-27

    Borosilicate bioactive glasses (BBGs) have shown the capacity to promote higher formation of new bone when compared with silicate bioactive glasses. Herein, we assessed the capacity of BBGs to induce osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) as a function of their substituted divalent cations (Mg(2+), Ca(2+), Sr(2+)). To this purpose, we synthesized BBG particles by melt quenching. The cell viability, proliferation, and morphology (i.e., PrestoBlue(®), PicoGreen(®), and DAPI and Phalloidin stainings, respectively), as well as protein expression (i.e., alkaline phosphatase, ALP; osteopontin, OP; and osteocalcin, OC), of BM-MSCs in contact with BBGs were evaluated for 21 days. We observed an enhanced expression of bone-specific proteins (ALP, OP, and OC) and high mineralization of BM-MSCs under BBG-Mg and BBG-Sr-conditioned osteogenic media for concentrations of 20 and 50 mg/mL with low cytotoxic effects. Moreover, BBG-Sr, at a concentration of 50 mg/mL, was able to increase the mineralization and expression of the same bone-specific proteins even under basal medium conditions. These results indicated that the proposed BBGs improved osteogenic differentiation of BM-MSCs, therefore showing their potential as relevant biomaterials for bone tissue regeneration, not only by bonding to bone tissue but also by stimulating new bone formation.

  16. Low temperature sintering and performance of aluminum nitride/borosilicate glass

    Institute of Scientific and Technical Information of China (English)

    Hong-sheng ZHAO; Lei CHEN; Nian-zi GAO; Kai-hong ZHANG; Zi-qiang LI

    2009-01-01

    Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sin-tered at 950 ℃ with AlN and SiO2-B2O3-ZnO-Al2O3-Li2O glass as starting materials. We characterized and analyzed the variation of the microstructure, bulk density, porosity, dielectric constant, thermal conductivity and thermal expansion coefficient (TEC) of the ceramic samples as a function of AlN content. Results show that AlN and SiO2-B2O3-ZnO-Al2O3-Li2O glass can be sintered at 950 ℃, and ZnAl2O4 and Zn2SiO4 phase precipitated to form glass-ceramic. The performance of the ceramic samples was de-termined by the composition and bulk density of the composites. Lower AlN content was found redounding to liquid phase sin-tering, and higher bulk density of composites can be accordingly obtained. With the increase of porosity, corresponding decreases were located in the dielectric constant, thermal conductivity and TEC of the ceramic samples. When the mass fraction of AlN was 40%, the ceramic samples possessed a low dielectric constant (4.5~5.0), high thermal conductivity (11.6 W/(m·K)) and a proper TEC (3.0×10K-1, which matched that of silicon). The excellent performance makes this kind of low temperature co-fired ce-ramic a promising candidate for application in the micro-electronics packaging industry.

  17. VARIABILITY STUDY TO DETERMINE THE SOLUBILITY OF IMPURITIES IN PLUTONIUM-BEARING, LANTHANIDE BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Elizabeth Hoffman, E; Charles Crawford, C; Tommy Edwards, T; David Best, D; James Marra, J

    2007-09-26

    This study focuses on the development of a compositional envelope that describes the retention of various impurities in lanthanide borosilicate (LaBS) glass for vitrification and immobilization of excess, defense-related plutonium. A limited amount of impurity data for the various plutonium sources is available and projections were made through analysis of the available information. These projections were used to define types and concentrations of impurities in the LaBS glass compositions to be fabricated and tested. Sixty surrogate glass compositions were developed through a statistically designed approach to cover the anticipated ranges of concentrations for several impurity species expected in the plutonium feeds. An additional four glass compositions containing actual plutonium oxide were selected based on their targeted concentrations of metals and anions. The glasses were fabricated and characterized in the laboratory and shielded cells facility to determine the degree of retention of the impurity components, the impact of the impurities on the durability of each glass, and the degree of crystallization that occurred, both upon quenching and slow cooling. Overall, the LaBS glass system appears to be very tolerant of most of the impurity types and concentrations projected in the plutonium waste stream. For the surrogate glasses, the measured CuO, Ga{sub 2}O{sub 3}, Na{sub 2}O, NiO, and Ta{sub 2}O{sub 5} concentrations fell very close to their target values across the ranges of concentrations targeted in this study for each of these components. The measured CaO and PbO concentrations were consistently higher than the targeted values. The measured Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations were very close to the targets except for the one highest targeted value for each of these components. A solubility limit may have been approached in this glass system for K{sub 2}O and MgO. The measured Cl{sup -}, F{sup -}, SeO{sub 2} and SO{sub 4}{sup 2

  18. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  19. Characteristics of borosilicate waste glass form for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    Basic data, required for the design and the performance assessment of a repository of HLW, suchas the chemical composition and the characteristics of the borosilicate waste glass have been identified according to the burn-ups of spent PWR fuels. The diemnsion of waste canister is 430mm in diameter and 1135mm in length, and the canister should hold less than 2kwatts of heat from their decay of radionuclides contained in the HLW. Based on the reprocessing of 5 years-cooled spent fuel, one canister could hold about 11.5wt.% and 10.8wt.% of oxidized HLW corresponding to their burn-ups of 45,000MWD/MTU and 55,000MWD/MTU, respectively. These waste forms have been recommanded as the reference waste forms of HLW. The characteristics of these wastes as a function of decay time been evaluated. However, after a specific waste form and a specific site for the disposal would be selected, the characteristics of the waste should be reevaluated under the consideration of solidification period, loaded waste, storage condition and duration, site circumstances for the repository system and its performance assessment.

  20. Ultrafast opacity in borosilicate glass induced by picosecond bursts of laser-driven ions

    CERN Document Server

    Dromey, B; Adams, D; Prasad, R; Kakolee, K F; Stefanuik, R; Nersisyan, G; Sarri, G; Yeung, M; Ahmed, H; Doria, D; Dzelzainis, T; Jung, D; Kar, S; Marlow, D; Romagnani, L; Correa, A A; Dunne, P; Kohanoff, J; Schleife, A; Borghesi, M; Currell, F; Riley, D; Zepf, M; Lewis, C L S

    2014-01-01

    Direct investigation of ion-induced dynamics in matter on picosecond (ps, 10-12 s) timescales has been precluded to date by the relatively long nanosecond (ns, 10-9 s) scale ion pulses typically provided by radiofrequency accelerators1. By contrast, laser-driven ion accelerators provide bursts of ps duration2, but have yet to be applied to the study of ultrafast ion-induced transients in matter. We report on the evolution of an electron-hole plasma excited in borosilicate glass by such bursts. This is observed as an onset of opacity to synchronised optical probe radiation and is characterised by the 3.0 +/- 0.8 ps ion pump rise-time . The observed decay-time of 35 +/- 3 ps i.e. is in excellent agreement with modelling and reveals the rapidly evolving electron temperature (>10 3 K) and carrier number density (>10 17cm-3). This result demonstrates that ps laser accelerated ion bursts are directly applicable to investigating the ultrafast response of matter to ion interactions and, in particular, to ultrafast pu...

  1. Helium mobility in SON68 borosilicate nuclear glass: A nuclear reaction analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Bès, R., E-mail: rene.bes@cnrs-orleans.fr [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Sauvage, T. [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Université d’Orléans, Faculté des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orléans cedex 2 (France); Peuget, S. [CEA/DEN/VRH/DTCD/SECM/LMPA Marcoule (France); Haussy, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Chamssedine, F. [Université Libanaise, Faculté des Sciences V, Nabatiyeh (Lebanon); Oliviero, E. [CSNSM, CNRS/IN2P3 and Université Paris-Sud, Bât. 104-108, F-91405 Orsay (France); Fares, T. [CEA/DEN/VRH/DTCD/SECM/LMPA Marcoule (France); Vincent, L. [Institut d’Electronique Fondamentale, CNRS and Université Paris-Sud, UMR 8622, F-91405 Orsay (France)

    2013-11-15

    The {sup 3}He behavior in the non active R7T7 type borosilicate glass called SON68 has been investigated using the implantation method to introduce helium in the material. Nuclear Reaction Analysis (NRA) was performed to follow the helium concentration depth profile evolution as a function of annealing time and temperature. In addition, in situ Transmission Electron Microscopy (TEM) has been implemented to study the formation of helium bubbles during both implantation and annealing processes. Numerical modeling with two different approaches is proposed and discussed to investigate the helium mobility mechanisms. Our study reveals for helium incorporation by implantation at low temperature the presence of several helium populations with disparate diffusivities. The most mobile helium fraction would be attributed to atomic diffusion. The corresponding activation energy value (0.61 eV) extracted from Arrhenius graphs is in good agreement with literature data. The results also highlight that the damages associated to helium sursaturation are the source of small helium clusters formation, with a reduced mobility instead of the atomic mobility measured by the infusion technique. Small cavities that support this assumption have been observed by TEM at low temperature.

  2. Supported TiO2 on Borosilicate Glass Plates for Efficient Photocatalytic Degradation of Fenamiphos

    Directory of Open Access Journals (Sweden)

    A. El Yadini

    2014-01-01

    Full Text Available Supported titanium dioxide (TiO2 was investigated for the photodegradation of the insecticide fenamiphos in water. The photocatalyst was immobilised on borosilicate glass plates and the kinetics of degradation were studied in a stirred tank reactor under UV irradiation. Two types of TiO2, for example, Millennium PC500 (100% anatase and Degussa P25 (80% anatase, 20% rutile, were used. Their activities have been based on the rates of insecticide disappearance. Experiments were investigated to evaluate the effect of pH and initial concentrations of fenamiphos as well as catalyst doses on the photocatalytic degradation of fenamiphos. Kinetic parameters were experimentally determined and an apparent first-order kinetic was observed. For photolysis process of fenamiphos, two photoproducts were identified and characterized using high performance liquid chromatography/mass spectrometry (HPLC/MS. The plausible mechanism of photolysis involved is the oxidation of sulfonamide group. In presence of photocatalyst TiO2, photodegradation was observed. Under identical conditions, Degussa P25 shows higher photocatalytic activity in regard to PC500 Millennium and complete degradation was observed after 180 min.

  3. Reinforcement of poly-L-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering

    OpenAIRE

    Fernandes, João S.; Gentile, Piergiorgio; Martins, Margarida Isabel Barros Coelho; Neves, N. M.; Miller, Cheryl; Crawford, Aileen; Pires, R. A.; Hatton, Paul; Reis, R. L.

    2016-01-01

    Herein, for the first time, we combined poly-L-lactic acid (PLLA) with a strontium borosilicate bioactive glass (BBG-Sr) using electrospinning to fabricate a composite bioactive PLLA membrane loaded with 10% (w/w) of BBG-Sr glass par- ticles (PLLA-BBG-Sr). The composites were characterised by scanning electron microscopy (SEM) and microcomputer tomography (μ-CT), and the results showed that we successfully fabricated smooth and uniform fibres (1â 3 μm in width) with a homogeneous distribut...

  4. Color-converted remote phosphor prototype of a multiwavelength excitable borosilicate glass for white light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Tian Hua; Liu Ji-Wen; Qiu Kun; Song Jun; Wang Da-Jian

    2012-01-01

    We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes.This glass can be excited from 394 nm-peaked near ultraviolet light,466 nm-peaked blue light,to 534 nm-peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400-700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss.In particular,when assembling this glass for commercial white light-emitting diodes,the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average,making this variety of glass promising for inorganic "remote-phosphor" color conversion.

  5. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Othman, H.A. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt); Eltabey, M.M. [Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shibin El-Kom, Menoufia (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Ibrahim, Samia E.; El-Deen, L.M. Sharaf; Elkholy, M.M. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt)

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO{sub 3} and BO{sub 4} are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100–100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization M{sub S} and coercive field H{sub C} were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of M{sub S} and H{sub C} increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  6. Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2008-11-01

    Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3÷1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

  7. Tungsten-doped vanadium dioxide thin films on borosilicate glass for smart window application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhangli, E-mail: zligthuang@foxmail.com [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Changhong, E-mail: ch_chen@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lv, Chaohong; Chen, Sihai [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-05

    Highlights: ► Tungsten-doped VO{sub 2} (W–VO{sub 2}) films with different annealing conditions were fabricated. ► W-VO{sub 2} films were found to exhibit a semiconductor-metal transition at 34 °C. ► The W atoms have been successfully doped into VO{sub 2} film and exist as W{sup 6+} in the films. ► W-VO{sub 2} films possess excellent infrared switching efficiency, i.e. 33%. -- Abstract: Tungsten-doped VO{sub 2} (W–VO{sub 2}) thin films with low metal–semiconductor transition temperature (T{sub t}) of 34 °C were grown on borosilicate glass substrates by reactive ion beam sputtering at room-temperature (RT) followed by a post annealing process. In order to investigate the thermal process effect, four samples S1–S4 were annealed at different temperatures of 490, 530, 570 and 610 °C, respectively. X-ray photoelectron spectroscope and Raman measurements demonstrate that the tungsten atoms have been successfully doped into VO{sub 2} films. Unlike VO{sub 2} thin films which should be annealed at critical temperature, well crystallized W–VO{sub 2} films can be annealed in a wide temperature range, i.e. 530–570 °C, as revealed by both electrical and optical property investigations. Besides, the infrared (IR) transmittance measured below/above T{sub t} illustrates that W–VO{sub 2} films possess excellent switching efficiency, i.e. 33% at 2500 nm for S3. Above all, the near RT phase transition, RT deposition, easy control of annealing process and high IR switching efficiency make the W–VO{sub 2} thin film a promising material for application of smart windows.

  8. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Science.gov (United States)

    Othman, H. A.; Eltabey, M. M.; Ibrahim, Samia. E.; El-Deen, L. M. Sharaf; Elkholy, M. M.

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na2O-B2O3-SiO2) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO3 and BO4 are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100-100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization MS and coercive field HC were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of MS and HC increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  9. Substrate temperature and strain during sputter deposition of aluminum on cast borosilicate glass in a Gemini Observatory coating chamber.

    Science.gov (United States)

    Sebag, Jacques; Andrew, John; Neill, Douglas; Warner, Michael

    2010-08-20

    Temperature and strain measurements obtained during coating of spin-cast borosilicate samples are presented here with an analysis of these results. These tests were performed for the Large Synoptic Survey Telescope (LSST) project to verify the possible use of sputtering deposition of optical coating on its large 8.4m diameter primary-tertiary mirror. Made of spin-cast borosilicate glass, the working stress of the mirror's nonpolished surfaces is 100 psi (0.69 MPa), resulting in a local temperature difference limit of 5 degrees C. To ensure representative environmental conditions, the tests were performed in the Gemini Observatory coating chamber located in Hawaii, whose design was utilized to develop the LSST coating chamber design. In particular, this coating chamber is equipped with linear magnetrons built with cooled heat shields directly facing the mirror surface. These measurements have demonstrated that it will be safe for the LSST to use a magnetron sputtering process for coating its borosilicate primary-tertiary mirror.

  10. 信息动态%Spectral Analysis of Ho3+ -doped and Ho3+, Yb3+, Er3+ Co-doped Up-conversion Luminescence Borosilicate Glass

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A series of holmium ions doped borosilicate glass, including Ho3+ -doped, Ho3+/ Er3+ -doped, Ho3+/ Y Yb3+-doped and Ho3 Yb3 YEr3+ -doped galss, have been prepared by high-temperature melting. The up-conversion excitation spectra and emission spectra of the samples decrease. The analysis result reveals that both the intensities of excitation spectra and emission spectra were weaken with the Ho3+ concentration. The spectral intensities of Ho3+/Yb3+ -doped borosilicate glass increase with the increase of Ho3+ concentration because of the sensitization of Yb3+. The excitation and emission spectra intensities of Ho3+/Yb3 +/Er3+-doped borosilicate glass are weak, and the reason is the energy transfers from Ho3+ ions to Er3+ ions through energy resonant transfer process. Meanwhile the luminescence mechanism of broadband emission peaked at 550 nm is analyzed.

  11. Multi-wavelength excitable europium-doped borosilicate glasses for orange-red emission: composition-induced structure and valence variation

    Institute of Scientific and Technical Information of China (English)

    QIU Kun; TIAN Hua; SONG Jun; MAO Zhiyong; WANG Dajian

    2012-01-01

    Europium-doped borosilicate glasses were prepared by melt-quenching procedure in the air.The mixed valence of Eu2+ and Eu3+was identified by photoluminescence spectrum and electron paramagnetic resonanoe (EPR).The existence of mixed valence was observed owing to the unequivalent substitution and de-polymerization network of the as-prepared borosilicate glasses.The variation of the glass composition in B2O3/BaO ratios changed the stability of the Eu3+ ions distinctly.In particular,as-prepared borosilicate glasses exhibited a tri-wavelength light excitable spectra centered at 397,466 and 534 nm to give the broadened orange-red emission at around 592 and 617 nm,due to supersensitive transitions of Eu3+ ions.This simultaneous tri-wavelength excitation happened to correspond with the emitting wavelength from near ultraviolet,blue AllnGaN chips and that from YAG:Ce3+.The total quantum yield (QY) of the Eu-doped glasses under 466nm excitation was evaluated to be 10%,potentially providing a versatile combination with the europium-doped borosilicate glasses for red component addition to improve the quality of white light.

  12. Recovery of palladium, cesium, and selenium from heavy metal alkali borosilicate glass by combination of heat treatment and leaching processes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2017-06-05

    Highlights: • A separation technique of both noble and less noble metal from glass is studied. • Via reductive heat treatment, 80% of palladium is extracted in liquid bismuth. • Sodium–potassium-rich materials with cesium and selenium are phase separated. • From the materials, over 80% of cesium and selenium are extracted in water. - Abstract: Reductive heat-treatment and leaching process were applied to a simulated lead or bismuth soda-potash-borosilicate glass with palladium, cesium, and selenium to separate these elements. In the reductive heat treatment, palladium is extracted in liquid heavy metal phase generated by the reduction of the heavy metal oxides, whereas cesium and selenium are concentrated in phase separated Na–K-rich materials on the glass surface. From the materials, cesium and selenium can be extracted in water, and the selenium extraction was higher in the treatment of the bismuth containing glass. The chemical forms of palladium in the glass affected the extraction efficiencies of cesium and selenium. Among the examined conditions, in the bismuth glass treatment, the cesium and selenium extraction efficiencies in water were over 80%, and that of palladium in liquid bismuth was over 80%.

  13. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  14. Electrical properties of thick film capacitors based on barium titanate glass formulations

    Energy Technology Data Exchange (ETDEWEB)

    Leppaevuori, S.; Uusimaeki, A.; Hannula, T.

    1981-12-18

    We carried out an investigation of the effects of the glass content of the dielectric layer of thick film capacitors with a barium titanate glass formulation on the capacitance density, loss factor and breakdown voltage of the capacitors. These effects were studied by varying the firing temperature and glass content of the dielectric paste and by using different types of electrode paste. The characteristics of a test capacitor were also measured.

  15. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Science.gov (United States)

    Kim, Miae; Heo, Jong

    2015-12-01

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca2Nd8-xCex(SiO4)6O2] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca-silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca-silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10-6 g m-2 for Ce ion and 2.19·10-6 g m-2 for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing.

  16. Effect of composition and temperature on viscosity and electrical conductivity of borosilicate glasses for Hanford nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.; Piepel, G.F.; Smith, D.E.; Redgate, P.E.; Schweiger, M.J.

    1993-04-01

    Viscosity and electrical conductivity of 79 simulated borosilicate glasses in the expected range of compositions to be produced in the Hanford Waste Vitrification Plant were measured within the temperature span from 950 to 1250[degree]C. The nine major oxide components were SiO[sub 2], B[sub 2]O[sub 3], Li[sub 2]O, Na[sub 2]O, CaO, MgO, Fe[sub 2]O[sub 3], Al[sub 2]O[sub 3], and ZrO[sub 2]. The test compositions were generated statistically. The data were fitted by Fulcher and Arrhenius equations with temperature coefficients being multilinear functions of the mass fractions of the oxide components. Mixture models were also developed for the natural logarithm of viscosity and that of electrical conductivity at 1150[degree]C. Least squares regression was used to obtain component coefficients for all the models.

  17. Study of Au/Cr multilayer thin-film surface morphology, structure and constituents on borosilicate glass, and quartz surfaces

    Science.gov (United States)

    Lavoie, John; Kemble, Eric; Senevirathne, Indrajith

    2014-03-01

    Au/Cr/substrate multilayer thin films have a wide area of applications in both industry and proof of concept investigations in device engineering. Borosilicate glass and quartz are used for substrate materials. Typically, Cr deposition on substrates give rise to Stanski-Krastonov (SK) like growth while Frank-van der Merwe (FM) like growth is desired in many engineering applications. A thermal evaporator is used to deposit Cr with a thickness of ~ 100nm on the previously mentioned substrates. The additional Au layer is then deposited via magnetron sputter deposition at 100mtorr at low deposition rates (~ 1ML/min) onto the Cr thin film. These systems were then annealed using different temperatures for various durations. After annealing these systems were characterized via Atomic Force Microscopy (AFM) probes for surface topography and structure. Further, the ambient contamination and elemental distribution/diffusion at annealing was investigated via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).

  18. Study of the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Chen Bin; Yu Bing-Kun; Yan Xiao-Na; Qiu Jian-Rong; Jiang Xiong-Wei; Zhu Cong-Shan

    2004-01-01

    This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB2O4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB2O4 crystals is also produced. Further studies demonstrate that LT phase BaB2O4 crystals are formed in the HT phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.

  19. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses; Solubilite des elements aux degres d'oxydation (3) et (4) dans les verres de borosilicate. Application aux actinides dans les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cachia, J.N

    2005-12-15

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si{sub 3}N{sub 4} addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  20. Lead-barium fluoroborate glass ceramics doped with Nd3+ or Er3+

    Science.gov (United States)

    Petrova, O. B.; Sevostjanova, T. S.; Anurova, M. O.; Khomyakov, A. V.

    2016-02-01

    Lead-barium fluoroborate glasses in the PbF2-BaF2-B2O3, PbF2-BaO-B2O3, and PbO- BaF2-B2O3 systems doped with rare-earth ions (Nd3+ or Er3+) are synthesized and studied. It is shown that, based on these glasses, it is possible to produce transparent glass ceramics with fluoride crystalline phases, including ceramics with one crystalline phase of the fluorite structure. The spectral and luminescent properties of the doped glasses, glass ceramics, and polycrystalline complex fluorides containing Pb, Ba, and rare ions are studied.

  1. RHENIUM SOLUBILITY IN BOROSILICATE NUCLEAR WASTE GLASS IMPLICATIONS FOR THE PROCESSING AND IMMOBILIZATION OF TECHNETIUM-99 (AND SUPPORTING INFORMATION WITH GRAPHICAL ABSTRACT)

    Energy Technology Data Exchange (ETDEWEB)

    AA KRUGER; A GOEL; CP RODRIGUEZ; JS MCCLOY; MJ SCHWEIGER; WW LUKENS; JR, BJ RILEY; D KIM; M LIEZERS; P HRMA

    2012-08-13

    The immobilization of 99Tc in a suitable host matrix has proved a challenging task for researchers in the nuclear waste community around the world. At the Hanford site in Washington State in the U.S., the total amount of 99Tc in low-activity waste (LAW) is {approx} 1,300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW sodium borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of previously established similarities in ionic radii and other chemical aspects. The glasses containing target Re concentrations varying from 0 to10,000 ppm by mass were synthesized in vacuum-sealed quartz ampoules to minimize the loss of Re by volatilization during melting at 1000 DC. The rhenium was found to be present predominantly as Re7 + in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be {approx}3,000 ppm (by mass) using inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of alkali perrhenate crystalline inclusions detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). Assuming justifiably substantial similarities between Re7 + and Tc 7+ behavior in this glass system, these results implied that the processing and immobilization of 99Tc from radioactive wastes should not be limited by the solubility of 99Tc in borosilicate LAW glasses.

  2. Silver diffusion and coloration of soda lime and borosilicate glasses, Part 1: Effect on the transmission and coloration of stained glasses

    Directory of Open Access Journals (Sweden)

    ABDELLAH CHORFA

    2012-03-01

    Full Text Available Using the conventional method of coloration, soda lime and borosilicate glasses have been painted. Once stained, these glasses were heat treated at temperatures close to their transition temperatures (Tg. A parametric study was carried out in order to determine at first the effect of the silver concentration in the stain spread on glass. In addition, it was studied the effect of the heat treatment duration and the chemical composition of the painted glasses on the formation and size of the silver nanoparticles, the silver diffusion depth and also the glasses coloration. The characterization was made using UV-Vis spectroscopy, Raman confocal spectroscopy, SEM, EDX Technique and Abbe Refractometer. The obtained results shows that the coloration intensity of both glass types painted by the conventional method differs and depends essentially on the proportion of alkali ions in the glass. Moreover, it was found that the effect of the silver concentration in the stain is primordial and the heat treatment duration has a limited effect.

  3. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    Science.gov (United States)

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  4. Study of optical absorption and photoluminescence of quantum dots of CdS formed in borosilicate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitender; Verma, A; Pandey, P K; Bhatnagar, P K; Mathur, P C [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Liu, W; Tang, S H [Department of Physics, National University of Singapore, 119243 (Singapore)], E-mail: jitender_does@yahoo.co.in

    2009-06-15

    Optical absorption and photoluminescence (PL) measurements have been made on the quantum dots (QDs) of CdS grown in a borosilicate glass matrix using a two-step annealing technique. The absorption measurements, made in the energy range of 1.3-3.2 eV, indicate the presence of nonradiative trap centers located in the forbidden gap at an energy level near 1.5 eV. The origin of these traps is attributed to the impurities present in the glass matrix. The PL measurements have been made at an excitation energy of 2.75 eV and it is concluded that the origin of PL is not due to either direct recombination of electrons and holes or deep traps, but that it is the shallow traps which are responsible for the observed PL. The shallow traps are attributed to sulfur vacancies formed at the glass-QD interface. The reason for the observed decrease in PL peak intensity with the increase of annealing time is due to the decrease of surface to volume ratio for QDs of higher size.

  5. Luminescence of Er3+ Doped Titanium Barium Glass Microsphere under 514 nm Excitation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The titanium barium glass microspheres doped with Er2O3 were designed and prepared. The components of the glass sample were 25TiO2-27BaCO3-8Ba(NO3)2-5ZnO2-10CaCO3-5H3BO3-10SiO2-7water glass-3Er2O3 (%, mass fraction). The emission spectra of titanium barium glass matrix and the titanium barium glass microsphere under 514 nm excitation were measured with micro-Raman spectrometer. Whispering gallery modes in the emission spectra from a 31 μm glass microsphere were observed. Many regularly spaced, sharp peaks appeared in the emission spectra of the Er2O3-doped glass microsphere. The wavelength separation between the two adjacent peaks is 1.92 nm for the 31 μm microsphere. According to the Lorenz-Mie formula, the calculated value of the wavelength separation between the two adjacent peaks is 1.95 nm. The observed resonances could be assigned by using the well-known Lorenz-Mie formula.

  6. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.

    Science.gov (United States)

    Zhao, Shichang; Wang, Hui; Zhang, Yadong; Huang, Wenhai; Rahaman, Mohamed N; Liu, Zhongtang; Wang, Deping; Zhang, Changqing

    2015-03-01

    There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Determination of the free enthalpies of formation of borosilicate glasses; Determination des enthalpies libres de formation des verres borosilicates. Application a l'etude de l'alteration des verres de confinement de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Y

    2000-07-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  8. Structural and thermal studies of modified silica-strontium-barium glass from CRT

    Science.gov (United States)

    Grelowska, I.; Kosmal, M.; Reben, M.; Pichniarczyk, P.; Sitarz, M.; Olejniczak, Z.

    2016-12-01

    Glasses were prepared by conventional melting method from 100 g batches. The influence of alumina and calcium oxide on the crystallization process of silica-strontium-barium glass from Cathode Ray Tube (CRT) were studied by means of 27Al MAS NMR and FTIR spectroscopy. This made possible to determine the influence of additives, e.g. blast furnace slag and cement dust on the structural changes of glasses (changes in the spectra shapes). The introduction of waste modifiers into the glass structure leads to the breaking of Al-O-Si and Si-O-Si bonds what causes the depolymerization of the glass network. From the FTIR spectra the narrowing of the bands at 1022 and 1027 cm-1 was observed, which may indicate on the ordering of glass network. Appearance of alumina in coordination 4 was confirmed by NMR investigations. The effects of compositional variation, thermal treatment on the nature, type and stability field of crystallizing phases and microstructure formed in CaO and/or Al2O3 silica-strontium-barium glasses were described using DTA/DSC method. Thermal characteristics of glasses like the transition temperature Tg, the temperature for the crystallization Tc, thermal stability parameter were determined. The crystalline phase was determined by the X-ray diffractometry. The microstructure of the samples was studied by SEM technique. Analysis of the local atomic interactions in the structure of glasses has been used to explain the course of the crystallization.

  9. Influence of cooling rate on cracking and plastic deformation during impact and indentation of borosilicate glasses.

    Science.gov (United States)

    Zehnder, Christoffer; Bruns, Sebastian; Peltzer, Jan-Niklas; Durst, Karsten; Korte-Kerzel, Sandra; Möncke, Doris

    2017-03-01

    The influence of a changing glass topology on local mechanical properties was studied in a multi-technique nanomechanical approach. The glass response against sharp contacts can result in structural densification, plastic flow or crack initiation. Using instrumented indentation testing, the mechanical response was studied in different strain rate regimes for a sodium-boro-silicate glass (NBS) exhibiting altering structures due to varying processing conditions. Comparison with data from former studies as well as with literature data on other glass structures helped to elucidate the role of the borate and silicate sub-networks and to understand the overall mechanical properties of the mixed glass systems. A peculiarity of some of the NBS glasses tested in this study is the fact that the connectivity of the borate and silicate entities depends on the sample’s thermal history. While the influence on macroscopic material properties such as E and H is minor, the onset of cracking indeed is influenced by those structural changes within the glass. Rapidly quenched glass shows an improved crack resistance, which is even more pronounced at high strain rates. Studies on various processing conditions further indicate that this transition is closely related to the cooling rate around Tg. The strain rate dependence of cracking is discussed in terms of the occurrence of shear deformation and densification.

  10. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gin, Stephane [CEA Marcoule, DTCD SECM, Bagnols-sur-Ceze (France); Inagaki, Yaohiro [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoda (Japan)

    2013-12-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  11. Energy transfer and NIR emission in rare earth tri-doped barium lanthanum fluoro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, J. Suresh; Pavani, K.; Graca, M.P.F.; Soares, M.J. [Department of Physics and I3N, University of Aveiro (Portugal); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2014-09-15

    Barium lanthanum fluoro tellurite (BLFT) glasses doped with rare earth ions (ErF{sub 3}, PrF{sub 3} and YbF{sub 3}) both singly or in combinations were prepared by melt-quench technique and analysed spectroscopically. The prepared glasses were found to be mechanically strong and transparent. Optical absorption and NIR fluorescence were measured to the highly transparent and stable glass samples. Judd-Ofelt parameters and radiative properties were estimated for the single rare earth doped BLFT glasses using the optical absorption spectra. NIR fluorescence is measured using laser excitation. From the NIR emission spectra, energy transfer among the rare earth ions is analysed in the rare earth tri-doped BLFT glasses. These rare earth tri-doped BLFT glasses are found to be highly useful for the multi- wavelength emission in the NIR region for opto-electronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. High-level nuclear waste borosilicate glass: A compendium of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C.; Bates, J.K.; Ebert, W.L.; Feng, X.; Mazer, J.J.; Wronkiewicz, D.J. (Argonne National Lab., IL (United States)); Sproull, J. (Westinghouse Savannah River Co., Aiken, SC (United States)); Bourcier, W.L. (Lawrence Livermore National Lab., CA (United States)); McGrail, B.P. (Battelle Pacific Northwest Lab., Richland, WA (United States))

    1992-01-01

    With the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided. Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized.

  13. High-level nuclear waste borosilicate glass: A compendium of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C.; Bates, J.K.; Ebert, W.L.; Feng, X.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Sproull, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States); McGrail, B.P. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1992-12-01

    With the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided. Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized.

  14. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  15. Kinetic and structural analyses for the formation of anatase nanocrystals in barium titanoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Youn; Sung, Yun-Mo, E-mail: ymsung@korea.ac.kr

    2015-10-25

    Transparent barium titanoborate glass-ceramics bearing TiO{sub 2} (anantase) nanocrystals were prepared by the conventional melt-quenching and subsequent heat treatment of 35BaO–xTiO{sub 2}–110B{sub 2}O{sub 3} (in mol) (x = 20, 25, and 30) glasses. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results clearly reveal the formation of highly-crystalline anatase nanocrystals in glass matrices. The average crystal size ranges from ∼10 to 20 nm according to TiO{sub 2} contents. Non-isothermal kinetic analyses were performed to understand the crystallization behavior of each glass using differential scanning calorimetry (DSC) scan curves. With the increase of TiO{sub 2} contents in the glass, the crystallization peak temperature of TiO{sub 2} decreases, while the activation energy for crystallization increases. We propose a possible mechanism for the formation of TiO{sub 2} nanocrystals based upon kinetic analysis results and structural changes in barium titanoborate glass matrices according to TiO{sub 2} contents. The nanocrystalline glass-ceramics show ∼60–75% visible light transmittance and sharp UV-light absorption edges at ∼387 nm, corresponding to the energy band gap of anatase (3.2 eV). They show apparent photocatalytic properties and ∼70% of methylene blue solution was decomposed within 180 min. - Highlights: • The first report on the TiO{sub 2} nanocrystal formation mechanism in borate glasses. • TiO{sub 2} seems not to be involved in the borate glass network forming. • Crystallization temperature increases and activation E decreases with TiO{sub 2} content. • Increasing number of non-bridging oxygens affect the crystallization kinetics. • UV-light blocking and photocatalytic properties were identified for glass-ceramics.

  16. Ultrasonic and structural features of some borosilicate glasses modified with heavy metals

    Indian Academy of Sciences (India)

    YASSER B SADDEEK

    2017-06-01

    A quaternary glass system Na$_{1.4}$B$_{2.8}$Si$_x$Pb$_{0.3−x}$O$_{5.2+x}$, with $0 \\lt x \\lt 0.3$, was prepared and studied by Fourier transform infrared spectroscopy, density and ultrasonic techniques to debate the issue of the role of SiO2 in the structureof lead alkali borate glasses. The results indicate that SiO2 generates an abundance of bridging oxygen atoms, [BO$_4$] and [SiO$_4$] structural units and changes the bonds B–O–B and Pb–O–B to Si–O–Si and B–O–Si. The latter bonds have higher bond strength and higher average force constant than the former bonds. Therefore, the glass structure becomes contractedand compacted, which decreases its molar volume and increases its rigidity. This concept was asserted from the increase in the ultrasonic velocity, Debye temperature and elastic moduli with the increase of SiO2 content. The present compositional dependence of the elastic moduli was interpreted in terms of the electron–phonon anharmonic interactions and the polarizationof Si$^{4+}$ cation. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model.

  17. Emission properties of Ce3+ centers in barium borate glasses prepared from different precursor materials

    Science.gov (United States)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro

    2017-10-01

    The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.

  18. On the Morphology of the SDS Film on the Surface of Borosilicate Glass

    Directory of Open Access Journals (Sweden)

    Zih-Yao Shen

    2017-05-01

    Full Text Available Surfactant films on solid surfaces have attracted much attention because of their scientific interest and applications, such as surface treatment agent, or for micro- or nano-scale templates for microfluidic devices. In this study, anionic surfactant sodium dodecyl sulfate (SDS solutions with various charged inorganic salts was spread on a glass substrate and dried to form an SDS thin film. Atomic force microscopy (AFM was employed to observe the micro-structure of the SDS thin film. The effects of inorganic salts on the morphology of the SDS film were observed and discussed. The results of experiments demonstrated that pure SDS film formed patterns of long, parallel, highly-ordered stripes. The existence of the inorganic salt disturbed the structure of the SDS film due to the interaction between the cationic ion and the anionic head groups of SDS. The divalent ion has greater electrostatic interaction with anionic head groups than that of the monovalent ion, and causes a gross change in the morphology of the SDS film. The height of the SDS bilayer measured was consistent with the theoretical value, and the addition of the large-sized monovalent ion would lead to lowering the height of the adsorbed structures.

  19. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  20. Europium Structural Effect on a Borosilicate Glass of Nuclear Interest: Combining Experimental Techniques with Reverse Monte Carlo Modelling to Investigate Short to Medium Range Order

    Science.gov (United States)

    Bouty, O.; Delaye, J. M.; Peuget, S.; Charpentier, T.

    In-depth understanding of the effects of actinides in borosilicate glass matrices used for nuclear waste disposal is of great importance for nuclear spent fuel reprocessing cycle and fission products immobilization. This work carried out on ternary simplified glasses (Si, B, Na) doped respectively with 1 mol. % and 3.85 mol. % europium, presents a comprehensive study on the behaviour of trivalent europium taken as a surrogate of trivalent actinides. Neutron scattering, Wide Angle X- ray Scattering, Nuclear Magnetic Resonance, Raman Spectroscopy and Reverse Monte Carlo simulations were performed. For both glasses, it was found that europium coordination number was around 6 ± 0.2, revealing an octahedral spatial configuration. Europium species accommodates in both silicate and borate site distributions but preferentially in the silicate network. Europium induces a IVB/IIIB ratio decrease and a silicate network polymerization according to NMR 29Si chemical shift and Raman spectra evolution.

  1. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    Science.gov (United States)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-20

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  2. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    Science.gov (United States)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  3. Crystallization behavior of a barium titanate tellurite glass doped with Eu3+ and Er3+

    Science.gov (United States)

    Ferreira, Elivelton Alves; Cassanjes, Fábia Castro; Poirier, Gael

    2013-04-01

    The main objective of this work has been to investigate the crystallization behavior of the glass composition 70TeO2-15BaO-15TiO2 doped with Eu3+ and Er3+ in order to check the possibility of obtaining transparent glass-ceramics containing rare earth-doped BaTiO3 nanocrystals. Glass samples with the ternary composition 70TeO2-15BaO-15TiO2 were synthesized by the melt-quenching method and doped with 0.1% of Eu3+ and Er3+. Thermal properties were investigated by DTA and heat-treatments were applied between Tg and Tx to induce the controlled crystallization of these glasses. One-step and two-step heat treatments were tested and the final glass-ceramics characterized by X-ray diffraction and UV-Vis absorption. It has been shown that transparent glass-ceramics can be obtained after heat-treatment but barium titanate BaTiO3 is hardly precipitated without coprecipitation of another crystalline phase identified as an isostructure of lanthanum tellurate. In addition, the crystalline volume fraction is relatively small in these transparent samples. Finally, Gold doping has been shown to be very effective to promote a volume nucleation and preferential crystallization of BaTiO3 over the other crystalline phases.

  4. Acquisition of rheological and calorimetric properties of borosilicate glass to determine the free energy of formation; Determination des energies libres de formation des verres borosilicates par des mesures calorimetriques et viscosimetriques

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Y. [CEA Valrho, (DCC/DRRV/SCD), 30 - Marcoule (France)]|[Institut de Physique du Globe de Paris, Dept. des Geomateriaux, 75 - Paris (France); Advocat, Th. [CEA Valrho, (DCC/DRRV/SSCD), 30 - Marcoule (France)

    2000-07-01

    No fundamental thermodynamic data, such as the entropy {delta}{sub f}S T) and enthalpy {delta}{sub f}H T) of formation are currently available for nuclear borosilicate glasses. They are necessary to assess the glass thermodynamic stability in water, one of the most important potential long-term glass alteration vectors. Three glass composition ranges were investigated: - 8 compositions ranging from a ternary B{sub 2}O{sub 3}-SiO{sub 2}--Na{sub 2}O (BSN) glass to the simulated SON 68 industrial glass for containment of high active nuclear wastes after reprocessing spent uranium oxide fuel from light water reactors. The basic BSN glass was gradually modified with the additives: Al{sub 2}O{sub 3}, CaO, ZrO{sub 2}, Ce{sub 2}O{sub 3}, Li{sub 2}O and Fe{sub 2}O{sub 3}, and non-radioactive surrogate fission product oxides. - A second using another BSN ternary glass to which Al{sub 2}O{sub 3}, MgO and a group of non-radioactive surrogate fission product oxides, representative of natural uranium GCR fuel, were added. - A third range consisting of various BSN ternary glass compositions. All the glass specimens were fabricated by melting the oxides, carbonates anal nitrates at 1273 to 1473 K in a platinum crucible. Experimental methods based on calorimetry and viscosimetry techniques were used to determine the heat capacity Cp of each glass composition, a necessary parameter in addition to the known heat capacities of the basic glass component oxides, for calculating {delta}{sub f}S T) and {delta}{sub f}S T). The heat capacity Cp was measured between 273 K and 1480 K through a combination of three experimental devices: a low-temperature adiabatic calorimeter, a differential scanning calorimeter, and an ice calorimeter. The glass configuration entropy S{sup conf}(T{sub g}) necessary to obtain the glass entropy of formation (Eqn.(3)) was determined from tile glass rheological properties. A low-temperature viscosimeter was used to measure the strain {epsilon} of a glass specimen

  5. Properties of sodium borosilicate glasses/Al2O3 sintered composites containing fluorides. Gan Fukkabutsu hokei san natoriumu garasu to alumina fukugo shoketsutai no bussei

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Bonggi; Yasui, I. (The Univ. of Tokyo, Tokyo (Japan). Inst. of Industrial Science)

    1993-06-01

    Glass/alumina sintered composites were synthesized from sodium borosilicate glass powder containing fluorides like AlF3 and NaF3, and Al2O3, and change in material properties was examined. Glass compositions of B2O3 and Na2O greatly affected the crystal phase and material properties. Nephelin crystal phase was extracted by the reaction of Na2O, NaF2, SiO2 and Al2O3 when B/Na<1. Coefficient of thermal expansion increased with the increase of Na/Si ratio. The residual amount of fluorides of sintered materials in nitrogen atmosphere was higher than that of air, and differed with the type of fluoride. The F[sup -] of NaF is bonded with Si of glass network and forms quiet stable glass structure, whereas, F[sup -] of AlF3 reacts with Si[sup 4+] forming SiF4 which is vaporized. Sintering temperature and dielectric constant of sintered materials containing fluoride was lower than the sintered materials without fluorides addition, however, at a sintering temperature range of 100 to 150[degree]C, it was inferred that this was because of the increase in voids due to SiF4 formed in the reaction. 16 refs., 17 figs., 3 tabs.

  6. Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms

    Science.gov (United States)

    Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.

    2017-04-01

    Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration

  7. Localized devitrifiation in Er{sup 3+}-doped strontium barium niobate glass by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P.; Martin, I.R.; Lahoz, F.; Gonzalez-Perez, S. [Universidad de La Laguna, Departamento de Fisica Fundamental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Capuj, N.E. [Universidad de La Laguna, Departamento de Fisica Basica, La Laguna, Tenerife (Spain); Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain)

    2008-12-15

    Localized devitrifiation in strontium barium niobate glass doped with Er{sup 3+} under laser irradiation has been carried out. The samples of this study have been fabricated by the melt quenching method and doped with 5% mol of Er{sup 3+}. A 1.5-W cw Ar laser was focused on the sample to obtain devitrifiation of the glass. Evidence of the changes induced by the Ar laser has been observed through the analysis of the photoluminescence of the Er{sup 3+} ions. The transitions corresponding to {sup 2}H{sub 11/2}{yields}{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}{yields}{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}{yields}{sup 4}I{sub 15/2} have been studied to analyze structure changes. Microluminescence measurements have been carried out to spatially select positions inside and outside the irradiated area. We have observed changes in the emission bands corresponding to these transitions. The emission bands from Er{sup 3+} ions in the irradiated zone show a resolved structure while they are broadened outside that area. These changes in the optical properties of the Er{sup 3+} ions indicate that the Ar-laser irradiation has produced a change in the local structure of the material. These results show that a localized devitrifiation has been produced after the laser action and the transition from glass to glass ceramic has been completed. (orig.)

  8. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Majjane, Abdelilah [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Chahine, Abdelkrim, E-mail: abdelkrimchahine@gmail.com [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Et-tabirou, Mohamed [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Echchahed, Bousselham [Laboratoire d' Electrochimie, Corrosion et Environnement, Université Ibn Tofail, Faculté des Sciences, Kénitra (Morocco); Do, Trong-On [Département de génie chimique, Université Laval, G1K 7P4 (Canada); Breen, Peter Mc [Département de chimie, Université Laval, G1K 7P4 (Canada)

    2014-01-15

    Barium vanadophosphate glasses, having composition 50BaO–xV{sub 2}O{sub 5}–(50 − x)P{sub 2}O{sub 5}, (x = 0–50 mol%), were prepared by conventional melt quench method. Density, molar volume and glass transition temperature (T{sub g}) were measured as a function of V{sub 2}O{sub 5} content. Structural investigation was done using XPS and FTIR spectroscopy. First, substitution of the P{sub 2}O{sub 5} by the V{sub 2}O{sub 5} in the metaphosphate 50BaO–50P{sub 2}O{sub 5} glass increases the density and T{sub g} and decreases the molar volume. When the amount of V{sub 2}O{sub 5} increases, all these properties show a reverse trend. XPS measurement found in the O1s, P2p, and V2p core level spectra indicate the presence of primarily P–O–P, P–O–V and V–O–V structural bonds, the asymmetry in the P 2p spectra indeed arises from the spin-orbit splitting of P 2p core level, and more than one valence state of V ions being present. IR spectroscopy reveals the depolymerization of the phosphate glass network by systematic conversion of metaphosphate chains into pyrophosphate groups and then orthophosphate groups. Even though metaphosphate to pyrophosphate conversion is taking place due to breaking of P–O–P linkages, formation of P–O–V and P–O–Ba linkages provide cross linking between short P-structural units, which make the glass network more rigid. Above 10–20 mol% V{sub 2}O{sub 5} content, network is highly depolymerized due to the formation of orthophosphate units and V–O–V bridge bonds, resulting in poor cross-linking, making the glass network less rigid. - Highlights: • Barium–vanadium–phosphate glasses. • Structure has been investigated by XPS and IR spectra. • Variation in structure and properties with substitution of V{sub 2}O{sub 5} for P{sub 2}O{sub 5}. • Conversion of metaphosphate to pyrophosphate and finally to orthophosphate. • Substitution of P–O–P linkages by P–O–V, P–O–Ba and V–O–V linkages.

  9. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant

    Directory of Open Access Journals (Sweden)

    Nibedita Sasmal

    2016-03-01

    Full Text Available In this study, the influence of CeO2, Nd2O3, Sm2O3 and Gd2O3 on various properties of the melt-quench route derived SrO–CaO–ZnO–B2O3–SiO2 glass have been investigated. Both the precursor glasses and heat treated glasses are characterized by dilatometry, differential scanning calorimetry (DSC, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transformed infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The density and coefficient of thermal expansion of the glasses varies in the range 3.557–3.804 g cm−3 and 10.5–11.2 × 10−6 K−1 (50–800 °C respectively. Decrease in crystallization tendency with increase in cationic field strength of the ions is well supported by the increasing crystallization activation energy of the glasses calculated by Kissinger, Augis–Bennett and Ozawa models. XPS study revealed the presence of both Ce3+ and Ce4+ ions and an increase in characteristic binding energy of the respective rare earth elements from their core level studies. The Knoop hardness of the glasses varies in the range 6.03–6.28 GPa. The glass transition, glass softening and crystallization temperature; density and hardness of the glasses increased with increase in cationic field strength of the incorporated ions. The thermomechanical properties of the Gd2O3 containing glass advocate its applicability as the most promising sealant in solid oxide fuel cell.

  10. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant

    OpenAIRE

    Nibedita Sasmal; Mrinmoy Garai; Basudeb Karmakar

    2016-01-01

    In this study, the influence of CeO2, Nd2O3, Sm2O3 and Gd2O3 on various properties of the melt-quench route derived SrO–CaO–ZnO–B2O3–SiO2 glass have been investigated. Both the precursor glasses and heat treated glasses are characterized by dilatometry, differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The density and coefficient of ...

  11. Effect of focusing condition on molten area characteristics in micro-welding of borosilicate glass by picosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, I.H.W.; Okamoto, Y.; Okada, A.; Takekuni, T. [Okayama University, Graduate School of Natural Science and Technology, Okayama (Japan); Sakagawa, T. [Kataoka Corporation, Yokohama (Japan)

    2016-05-15

    The characteristics of the molten area are attributed not only by laser energy condition but also the focusing condition. In this study, a picosecond pulsed laser of 1064 nm in wavelength and 12.5 ps in pulse duration was used as a laser source for joining glass material. Influence of focusing condition on micro-welding of glasses was experimentally investigated by using an objective lens with and without spherical aberration correction, and its molten area was characterized. The usage of objective lens with spherical aberration correction led to a larger molten area inside the bulk material of glass even under the same pulse energy, which related to the efficient micro-welding of glass materials. In addition, an optical system with the spherical aberration correction led to a stable absorption of laser energy inside the bulk glass material, stabilizing the shape of molten area, which resulted in the reliable weld joint. On the other hand, breaking strength of the specimens with spherical aberration correction was higher than that without spherical aberration correction. Therefore, it is concluded that the focusing condition with spherical aberration correction led to the larger and stable molten area, which resulted in higher joining strength in micro-welding of glass materials. (orig.)

  12. Volatility mechanisms of borosilicate glasses and molten glasses of nuclear interest structural effects; Mecanismes de volatilite des verres et des fontes borosilicates d'interet nucleaire influence de la structure

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, L

    1998-04-23

    This work is devoted to the study of the mechanisms which control the volatility of the reference glass used for the confinement of radioactive waste. It was conducted on simplified compositions, in the SiO{sub 2}-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-{alpha}Na{sub 2}O-(1-alpha)Li{sub 2}O-CaO system.The structural approach carried out by NMR, from room temperature up to 1500 deg.C, shows a strong increase in the mobility of alkalis above Tg. A rapid exchange between B{sup III} and B{sup IV} sites near 700 deg.C, and the change of coordination number B{sup IV-} B{sup III} near 1100 deg.C, also seem to take place. The analysis of the vapor phase, carried out by High Temperature Mass Spectrometry coupled to Knudsen cells, reveals the presence between 780 deg.C and 830 deg.C of NaBO{sub 2}(g), LiBO{sub 2}(g) and Na{sub 2}(BO{sub 2})2(g). The calculation of the partial pressure of each species shows that the total pressure of simplified glasses is dominated by the contribution of sodium. To study the volatility of glasses at higher temperature, equipment using the Transpiration method was used. The analysis of the deposits indicate the presence at 1060 deg.C of the species quoted previously. The vaporization rate and the vapor density were determined for each composition studied in a saturated state. Thus, we show that the volatility of the reference glass can be simulated by that of a simplified glass. For {alpha}=1, the kinetic of vaporization between 1060 deg.C and 1200 deg.C reveals an evaporation from the surface associated with a mechanism of diffusion in the molten glass. This is similar to the volatility of the reference glass at 1060 deg.C. To finally explain these mechanisms on a microscopic basis, we develop a model of molecular interactions. Between 780 deg.C and 830 deg.C, these mechanisms are controlled by a strong attraction between Na{sub 2}O and Li{sub 2}O, which maintains the total vapor pressure on a quasi-constant lever up to {alpha}=0.27. (author)

  13. Effects of alpha radiation on hardness and toughness of the borosilicate glass applied to radioactive wastes immobilization; Efectos de la radiacion alfa en la dureza y tenacidad de un vidrio borosilicato utilizado para inmovilizacion de residuos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Miguel Oscar; Bernasconi, Norma B. Messi de; Bevilacqua, Arturo Miguel; Arribere, Maria Angelica; Heredia, Arturo D.; Sanfilippo, Miguel [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1999-11-01

    Borosilicate german glass SG7 samples, obtained by frit sintering, were irradiated with different fluences of thermal neutrons in the nucleus of a nuclear reactor. The nuclear reaction {sup 10} B(n,{alpha}){sup 7} Li, where the {sup 10} B isotope is one of the natural glass components, was used to generate alpha particles throughout the glass volume. The maximum alpha disintegration per unit volume achieved was equivalent to that accumulated in a borosilicate glass with nuclear wastes after 3.8 million years. Through Vickers indentations values for microhardness, stress for 50% fracture probability (Weibull statistics) and estimation of the toughness were obtained as a function of alpha radiation dose. Two counterbalanced effects were found: that due to the disorder created by the alpha particles in the glass and that due to the annealing during irradiation (temperature below 240 deg C). Considering the alpha radiation effect, glasses tend decrease Vickers hardness, and to increase thr 50% fracture probability stress with the dose increase. (author) 11 refs., 6 figs., 2 tabs.

  14. OXYGEN BUBBLE DEVELOPMENT ON A PLATINUM ELECTRODE IN BOROSILICATE GLASS MELT BY THE EFFECT OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Jiri Matej

    2014-10-01

    or on alternating reduction and re-forming of oxidic layer on the electrode in the transition range, has been suggested. Start of bubble evolution at low alternating current density has also been observed in simple sodium-calcium-silicate glass melt. A relation between bubble release and platinum corrosion caused by reduced silicon has been suggested

  15. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo(6+) to Mo(5+) during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  16. Luminescence Properties of Eu/Tm/Tb-doped Borosilicate Glass%Eu/Tm/Tb掺杂硼硅酸盐玻璃的发光性能

    Institute of Scientific and Technical Information of China (English)

    石冬梅; 赵营刚

    2016-01-01

    Eu/Tm/Tb-doped singly, doubly and triply borosilicate glasses were prepared using a conventional melting-quenching method. The luminescent properties of Eu/Tm/Tb-doped samples under the UV excitation were investigated in detail by measuring the excitation and emission spectra and calculating CIE chromaticity coordinates. The results show that the sharp emission peak centered at 459 nm originating from 1 D2→3 F4 of Tm3+ is observed, and the characteristic emission intensity centered at 437 nm ascribing to the broad peak of Eu2+, 589 nm( 5 D0→7 F1 ) and 612 nm( 5 D0→7 F2 ) of Eu3+ is reduced due to the energy transfer from Eu3+,Eu2+ to Tm3+ ion. Red, green and blue light can be observed in Eu/Tm/Tb-doped triply samples simultaneously under the excitation of 377 nm. The luminescent intensity and color of borosilicate glasses might be changed by adjusting Eu2 O3 content, and the sample with CIE chromaticity coordinates(0. 33, 0. 386 7)are obtained.%采用熔融淬冷法制备了性能优越的Eu/Tm/Tb单掺、双掺和三掺的硼硅酸盐玻璃。测试了样品的激发和发射光谱,计算了CIE色坐标,研究了紫外激发下Eu/Tm/Tb掺杂的硼硅酸盐玻璃的发光性能。结果表明:在361 nm激发下,随着Tm3+加入到Eu2O3掺杂的硼硅酸盐样品中,观察到Tm3+的459 nm(1D2→3F4)锐线特征发射峰,同时由于Eu3+,Eu2+→Tm3+的能量传递的存在降低了Eu2+的437 nm宽带峰及Eu3+的589 nm(5 D0→7 F1)和612 nm(5 D0→7 F2)的特征发射峰强度。在377 nm激发下,Eu/Tm/Tb三掺样品能够同时出现红、绿和蓝光。调节 Eu2O3的含量能有效改变发光玻璃的发光强度和颜色,最终得到色坐标为(0.33,0.3867)的发光玻璃。

  17. Effect of TiO2 on the optical, structural and crystallization behavior of barium borate glasses

    Science.gov (United States)

    Marzouk, M. A.; ElBatal, F. H.; ElBatal, H. A.

    2016-07-01

    Collective characterizations of prepared binary barium borate glass (50 mol % BaO - 50 mol % B2O3) together with samples containing increasing added TiO2 contents (5% → 30%) were carried out by optical and FT infrared absorption measurements. FT infrared and X-ray diffraction analysis were done for heat treated glass - ceramic derivatives prepared through two step regime process. Optical spectra of the glasses reveal the presence of titanium ions mainly in the tetravalent state imparting additional UV band beside strong UV absorption due to trace iron impurity. IR spectral studies indicate the presence of triangular and tetrahedral borate groups through the modification of BaO to some BO3 to BO4 groups beside the presence of titanium ions as interfering or overlapping TiO4 or Bsbnd Osbnd Ti groupings in the glassy network. Crystalline X-ray diffraction results indicate the separation of crystalline barium borate of the composition (2BaO.5 B2O3) as a main constituent together with some crystalline alkali titanates confirming the role of TiO2 of both as nucleating agent beside acting as structural forming through reaction with alkali oxides to form crystalline titanates. The optical band gap values reveal progressive decrease and increase of Urbach energy with TiO2 content and the same for the refractive index values and all these parameters are correlated with the proposed changes in the glass constitution with the introduction of TiO2. The additional thermal expansion measurements indicate the peculiar characteristic negative expansion up to 300 °C and after which an increase in the coefficient of thermal expansion is identified with the increase in temperature. The thermal parameters are also correlated with the modification of the glass structure by the introduction of titanium ions.

  18. Optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)], E-mail: patharo@ull.es; Lahoz, F. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Platas, J. [Dep. of Fisica Fundamental II, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Caceres, J.M. [Dep. of Edafologia y Geologia, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Perez, S. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Marrero-Lopez, D. [Dep. of Quimica Inorganica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Capuj, N. [Dep. of Fisica Basica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Martin, I.R. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)

    2008-05-15

    Measurements of the optical properties of Er{sup 3+} ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} (SBN) doped with Er{sup 3+} ions with a mean size of {approx}50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er{sup 3+} ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency.

  19. Influence of gel morphology on the corrosion kinetics of borosilicate glass: calcium and zirconium effect; Influence de la morphologie du gel sur la cinetique d'alteration des verres borosilicates: role du calcium et du zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C

    2008-12-15

    This study is related to the question of the long-term behaviour of the nuclear waste confinement glass. A glass alteration layer (known as the 'gel'), formed at the glass surface in contact with water, can limit the exchanges between the glass and the solution. We studied five oxide based glasses SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO-ZrO{sub 2}. Two series of glasses were synthesized by substituting CaO for Na{sub 2}O and ZrO{sub 2} for SiO{sub 2}. The leaching showed that the presence of Ca improves the reticulation of the vitreous network, inducing a decrease in the final degree of corrosion and the presence of Zr prevents the hydrolysis of silicon, which leads to a decrease of the initial dissolution rate. However, the introduction of Zr delays the drop of the alteration rate and leads to an increase in the alteration degree. In order to explain this unexpected behaviour, the gel morphology was investigated by small angle X-ray scattering. These experiments showed that the restructuring of porous network during the glass alteration process is limited by the increase of the Zr-content. Then, the restructuring of gel is at the origin of the major drop in the alteration rate observed for the low Zr-content glasses. Besides, both time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) that provides an evaluation of extraneous element penetration into the gel pores and neutron scattering with index matching showed that the porosity closed during the corrosion in the glass without zirconia, but remained open in the high Zr-content glasses. These experiments, associated to simulations by a Monte Carlo method, establish a relationship between the morphologic transformations of gel and the alteration kinetics. (author)

  20. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices; Effets d'irradiations sur la structure de verres borosilicates - comportement a long terme des matrices vitreuses de stockage des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, J. de

    2007-09-15

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu{sup 3+} and Nd{sup 3+}). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10{sup 13} at.cm{sup -2}, which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  1. Lanthanide-activated Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China); Wan, Zhongyi; Zhou, Yang [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Yan, E-mail: chenyan@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Hua; Lu, Hongwei; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China)

    2015-03-15

    Highlights: • Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na{sub 5}Gd{sub 9}F{sub 32} lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na{sub 5}Gd{sub 9}F{sub 32} lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb{sup 3+}/Er{sup 3+} ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties.

  2. Mechanisms of wear in single- and two-phase materials: Final report. [Cu, Pb, Al/sub 2/O/sub 3/, Pb borosilicate glass, SiC (Pb-Cu), (Pb-Al/sub 2/O/sub 3/), (glass-Cu), (glass-Al/sub 2/O/sub 3/)

    Energy Technology Data Exchange (ETDEWEB)

    Macmillan, N.H.

    1987-11-01

    A comparative study has been made of the rolling-tumbling-sliding wear and solid particle erosion behavior of four single-phase materials (Cu, Pb, Al/sub 2/O/sub 3/, and a lead borosilicate glass and of series of ductile-ductile (Pb-Cu), ductile-brittle (Pb-Al/sub 2/O/sub 3/), brittle-ductile (glass-Cu), and brittle-brittle (glass-Al/sub 2/O/sub 3/) composites prepared from them. The same irregularly shaped 600 ..mu..m WC-8 wt.% Co abrasive particles were used throughout this work. Additional erosion measurements have been made on Danto Koruntz, Abresist, and sintered ..cap alpha..-SiC, using similar particles. Some subtle influences of erosive particle wear are documented for the first time, and the inadequacy of the currently available theoretical models to describe the influence of microstructure on erosion is exposed. 77 refs., 154 figs.

  3. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    Science.gov (United States)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  4. Sealing Glass of Barium-Calcium-Aluminosilicate System for Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Piao Jinhua; Sun Kening; Zhang Naiqing; Chen Xinbing; Zhou Derui

    2007-01-01

    Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800~850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The thermal expansion coefficient (TEC) decreased with lower Ba2+ content and higher Ca2+ content, but the glass transition temperature and crystallization temperature increased greatly with an increase in Ca2+ content and a decrease in Ba2+ content, when the other components in the sealant were invariable. The TEC of the sealant with Ba2+ content of 25.4% was 10.8×10-6 K-1 (temperature range from 25 to 850 ℃), and its softening temperature was 950 ℃. The TEC of the sealant accorded well with that of La0.9Sr0.1Ga0.8Mg0.2O3-б(LSGM) with a mismatch of only 3%. The sealant had superior stability and compatibility with the LSGM electrolyte during the process of operation in SOFC. The weight loss of the sealant with Ba2+ content of 25.4% was approximately zero after heat-treated at 800 ℃ for 500 h in H2 and O2 atmosphere, respectively.

  5. 球磨时间对硼硅玻璃基复相陶瓷性能的影响%Effects of grinding time on properties of borosilicate glass composite ceramics

    Institute of Scientific and Technical Information of China (English)

    王杰; 周洪庆; 韦鹏飞; 张一源; 曾风

    2011-01-01

    Low-temperature sintering borosilicate glass composite ceramics were prepared by the borosilicate glass powders with different grinding time and alumina powders. The effects of grinding time on the tape casting, sintering properties and dielectric properties (at 10 MHz) of prepared composite ceramic were investigated by XRD and SEM. The results show that the particle sizes, sintering temperature, permittivity and dielectric loss all decrease, while the density increases, as the grinding time increases. The sample grinded for 90 min and sintered at 850 ℃ possess better properties: a density of about 3.22 g · cm-3, a relative permittivity of 7.92 and a dielectric loss of 1.2 × 10-4 at 10 MHz.%采用经过不同球磨时间制备的硼硅玻璃与氧化铝复合,低温烧结制备了硼硅玻璃/氧化铝系复相陶瓷.利用XRD和SEM,研究了硼硅玻璃粉料球磨时间对流延成型及所制复相陶瓷的烧结性能、介电性能(10MHz)的影响.结果表明:随着球磨时间增加,粉料粒径减小,硼硅玻璃复相陶瓷烧结温度降低,密度增加,介电常数和介质损耗降低.球磨90 min在850℃烧结的试棒性能较佳:密度为3.22 g·cm-3,10 MHz下的相对介电常数和介质损耗分别为7.92和1.2×10-4.

  6. Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas J. [The Pennsylvania State University, Department of Material Science and Engineering, Materials Research Institute, University Park, PA (United States); Science and Technology Division, Corning Incorporated, Corning, NY (United States); Pantano, Carlo G. [The Pennsylvania State University, Department of Material Science and Engineering, Materials Research Institute, University Park, PA (United States)

    2014-08-15

    In addition to inducing second-order nonlinear properties, significant structural and compositional alteration can be imparted to glass surfaces during the process of thermal poling. In this work, we focus on how thermal poling affects a structurally complex, nominally alkali-free boroaluminosilicate display glass composition. We provide evidence for electrolysis of the glass network, characterized by the migration of both cations (Ba{sup 2+}, Na{sup +}) and anions (O{sup -}, F{sup -}) towards opposing electrode interfaces. This process results in oxidation of the positively biased electrode and forms a network-former rich, modifier-depleted glass surface layer adjacent to the anodic interface. The modified glass layer thickness is qualitatively correlated to the oxidation resistance of the electrode material, while extrinsic ions such as H{sup +}/H{sub 3}O{sup +} at not found in the depletion layer to compensate for the migration of modifier cations out of the region. Rather, FTIR spectroscopy suggests a local restructuring of the B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} network species to accommodate the charge imbalance created by the exodus of network-modifying cations, specifically the conversion of tetrahedral B(4) to trigonal B(3) as Ba or Na ions are removed from B-related sites in the parent network. The resultant poling-induced depletion layer exhibits enhanced hydrolytic resistance under acidic conditions, and the IR spectra are substantially unlike those produced by acid leaching the same glass. (orig.)

  7. ZrO2对高硼硅玻璃高温粘度和表面张力的影响%Effect of ZrO2 on Viscosity and Surface Tension of Borosilicate Glass

    Institute of Scientific and Technical Information of China (English)

    刘尧龙; 陆平; 程金树

    2016-01-01

    Due to the high melting temperature ,borosilicate glass erode refractory strongly .ZrO2 dissolved into the glass change viscosity and surface of mother glass , which also bring about many and various product defects .In this paper , a small amount of ZrO 2 were introduced into the mother glass .High temperature viscosity was tested by the rotating method and high temperature surface tension was tested by the sessile drop method .The results indicate that viscosity of the glass above 1530 ℃almost no change and viscosity of the glass below 1530 ℃ greatly increase with increasing ZrO 2 content .At same time , surface tension is increasing mono-tonically .Surface tension reduce as the temperature increases .%高硼硅玻璃由于熔化温度高,对耐火材料侵蚀严重,ZrO2溶解到玻璃中后使其高温粘度和表面张力发生变化,是产生玻璃缺陷的重要原因之一。通过在母体玻璃中引入少量ZrO2,采用旋转粘度法测试玻璃的高温粘度,采用静滴法测试玻璃的高温表面张力。结果表明,随着含量的增加,ZrO2对玻璃在1530℃以上的粘度影响不大,但可使1530℃以下的粘度有较大提高。玻璃的高温表面张力随着ZrO2含量的增加单调递增,随着温度的升高而降低。

  8. Structural and crystallisation study of a rare earth alumino borosilicate glass designed for nuclear waste confinement; Etude de la structure et du comportement en cristallisation d'un verre nucleaire d'aluminoborosilicate de terre rare

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, A

    2007-09-15

    This work is devoted to the study of a rare earth alumino borosilicate glass, which molar composition is 61,81 SiO{sub 2} - 3,05 Al{sub 2}O{sub 3} - 8,94 B{sub 2}O{sub 3} - 14,41 Na{sub 2}O - 6,33 CaO - 1,90 ZrO{sub 2} - 3,56 Nd{sub 2}O{sub 3}, and envisaged for the immobilization of nuclear wastes originating from the reprocessing of high discharge burn up spent fuel. From a structural viewpoint, we investigated the role of the modifier cations on the arrangement of the glass network through different modifications of the glass composition: variation of the Na/Ca ratio and modification of the nature of the alkali and alkaline earth cations. The NMR and Raman spectroscopic techniques were useful to determine the distribution of modifier cations among the glass network and also to cast light on the competition phenomena occurring between alkali and alkaline earth cations for charge compensation of [AlO{sub 4}]{sup -} and [BO{sub 4}]{sup -} species. The neodymium local environment could be probed by optical absorption and EXAFS spectroscopies which enabled to better understand the insertion mode of Nd{sup 3+} ions among the silicate domains of the glass network. Concerning the crystallization behavior we were interested in how the glass composition may influence the crystallization processes and especially the formation of the apatite phase of composition Ca{sub 2}Nd{sub 8}(SiO{sub 4}){sub 6}O{sub 2}. In particular, this work underlined the important role of both alkaline earth and rare earth cations on the crystallization of the apatite phase. (author)

  9. Structure and properties of barium tin boro-phosphate glass systems with very low photoelastic constant

    Science.gov (United States)

    Itadani, M.; Tricot, G.; Doumert, B.; Takebe, H.; Saitoh, A.

    2017-08-01

    Glasses in the BaO-SnO-P2O5-B2O3 system were prepared and evaluated in order to formulate preform glasses suitable for the fabrication of fiber cores with a very low photoelastic constant. A first glass system (I: xBaO-(60-x)SnO-40P2O5) was designed with a constant P2O5 content and various BaO contents (0-40 mol. %). Introduction of 3 mol. % of B2O3 to enhance the glass stability leads to the second glass system (II: x'BaO-(57-x')SnO-40P2O5-3B2O3) with 33-38 mol. % BaO. The structure of both systems was investigated by 1D/2D magic-angle spinning nuclear magnetic resonance, Raman, and Fourier transform infrared spectroscopic techniques. 31P NMR showed the presence of Q2 and Q1 units in the first system and correlation 11B/31P NMR indicated that boron enters into the network as B(OP)4 structural units. The photoelastic constant was determined and the stability of the best formulations as well as their refractive index dispersion was established. The drawing temperature and isothermal heating time (without crystal precipitation) parameters were also accurately measured by using experimental time-temperature-transition. Considering that the refractive indices of the core and the cladding materials must match, detailed core and cladding compositions for a fiber enabling single-mode waveguide transmission were proposed.

  10. Formation Mechanism of Multilayered Structure on Surface of Bioactive Borosilicate Glass%硼硅酸盐生物玻璃表面多层结构的形成机理

    Institute of Scientific and Technical Information of China (English)

    姚爱华; 林健; 段祥; 黄文旵; Rahaman Mohamed N

    2008-01-01

    A conversion process of a bioactive borosilieate glass to a muhilayered structure in aqueous phosphate solution was described. Microstructure, morphology and composition of the reaction product were studied using XRD,SEM and EDS analysis. It was shown that a muhilayered structure, consisting of alternating hydroxyapatite(HA) and amorphous SiO2 layers, was formed on the surface of the borosilicate glass. The formation mechanism of the muhilayered microstructure was also suggested. Compared with previous work, it was indicated that conversion kinetics and mierostructure development of conversion products mainly depended on the composition of the bioactive glass and the concentration of phosphate solution.%描述了硼硅酸盐生物活性玻璃在体外含磷溶液中的转变过程,并采用XRD、SEM和EDS对反应产物的微观结构、形貌和成分进行了分析.结果显示,产物为多层结构,由羟基磷灰石和无定型SiO2层交替排列而成.此外,提出了一个定性模型来解释层状结构的形成机制.研究证实,反应动力学及反应产物的微观结构主要取决于生物活性玻璃的成分和含磷溶液的浓度.

  11. LTCC processed CoTi substituted M-type barium ferrite composite with BBSZ glass powder additives for microwave device applications

    Science.gov (United States)

    Wang, Yu; Liu, Yingli; Li, Jie; Liu, Qian; Zhang, Huaiwu; Harris, Vincent. G.

    2016-05-01

    Hexagonal magnetoplumbite ferrites typically have sintering temperatures above 1100∘C in order to stabilize a single phase compound, which is much higher than the melting point of silver leading to device fabrication challenges. Application of low temperature co-fired ceramics (LTCC) technologies may prove effective in decreasing the sintering temperature of hexagonal ferrites. Ferrite powders combined with glass frit powder is an effective pathway to lowering the sintering temperature. Here, hexagonal M-type barium ferrite (i.e., Ba(CoTi)1.5Fe9O19) ceramics, combined with BBSZ glass powder as a sintering aid were synthesized. Co and Ti ions where used to substitute for Fe cations in order to modify the magnetic anisotropy field. The density, microstructure, magnetic properties and complex permeability are reported. The BBSZ glass addition was shown to improve the densification and magnetic properties of the barium ferrite. The densification of the BaM ferrite Ba(CoTi)1.5Fe9O19 was further enhanced by the glass additive at low firing temperatures of below 900∘C because of the formation of a liquid phase. Complex permeability of ferrites sintered at 900∘C was also influenced by the BBSZ addition and the resonance frequency was shown to decrease with increased amounts of the glass modifier.

  12. LTCC processed CoTi substituted M-type barium ferrite composite with BBSZ glass powder additives for microwave device applications

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-05-01

    Full Text Available Hexagonal magnetoplumbite ferrites typically have sintering temperatures above 1100∘C in order to stabilize a single phase compound, which is much higher than the melting point of silver leading to device fabrication challenges. Application of low temperature co-fired ceramics (LTCC technologies may prove effective in decreasing the sintering temperature of hexagonal ferrites. Ferrite powders combined with glass frit powder is an effective pathway to lowering the sintering temperature. Here, hexagonal M-type barium ferrite (i.e., Ba(CoTi1.5Fe9O19 ceramics, combined with BBSZ glass powder as a sintering aid were synthesized. Co and Ti ions where used to substitute for Fe cations in order to modify the magnetic anisotropy field. The density, microstructure, magnetic properties and complex permeability are reported. The BBSZ glass addition was shown to improve the densification and magnetic properties of the barium ferrite. The densification of the BaM ferrite Ba(CoTi1.5Fe9O19 was further enhanced by the glass additive at low firing temperatures of below 900∘C because of the formation of a liquid phase. Complex permeability of ferrites sintered at 900∘C was also influenced by the BBSZ addition and the resonance frequency was shown to decrease with increased amounts of the glass modifier.

  13. Effect of sulfur addition and heat treatment on electrical conductivity of barium vanadate glasses containing iron

    Energy Technology Data Exchange (ETDEWEB)

    Hassaan, M.Y., E-mail: myhassaan@yahoo.com [Al-Azhar University, Faculty of Science, Physics Department, 11884 Cairo (Egypt); Ebrahim, F.M.; Mostafa, A.G. [Al-Azhar University, Faculty of Science, Physics Department, 11884 Cairo (Egypt); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Suez Canal University, Faculty of Science, Physics Department, Suez (Egypt)

    2011-09-15

    Highlights: {yields} Selected glasses of V{sub 2}O{sub 5}-BaO-5Fe{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. {yields} Glass ceramic nanocrystals are important because of their physical properties which are not obtainable in other classes of materials. {yields} Crystal and grain sizes are the most significant structural parameters in electronic nanocrystalline glassy phases. {yields} These phases have very high electrical conductivity, hence glass-ceramic nanocrystals are expected to be used, for example, as a gas sensor. - Abstract: Six glass samples with a composition of 75V{sub 2}O{sub 5} + 10BaO + 15Fe{sub 2}O{sub 3} mol%, with 0, 10, 15, 20, and 25 wt% of sulfur were prepared by using a quenching method. The samples were measured by XRD, DSC, TEM, Moessbauer spectrometry and D.C. conductivity. The prepared samples were heat treated at temperature close to their crystallization temperatures for 1 h, and then the previous measurements were repeated. The results showed that the treatment process caused the formation of V{sub 2}O{sub 5} and FeVO{sub 4} nanocrystals with size of 17-25 nm dispersed in the glass matrix. The addition of sulfur reduced only the vanadium ions to V{sup 4+}, while it was found that iron ions were Fe{sup 3+} only. D.C. conduction enhanced due to the small polaron or electron hopping from V{sup 4+} to V{sup 5+} ions. The heat treated samples exhibit much higher conductivity and much lower activation energy than the as-prepared glasses. The heat treated samples showed decreased thermal stability with the addition of sulfur. This considerable enhancement of electrical conductivity after nanocrystallization referred to the formation of extensive and dense network of electronic conduction paths which are situated between V{sub 2}O{sub 5} nanocrystals and their surfaces.

  14. Barium and calcium borate glasses as shielding materials for x rays and gamma rays

    DEFF Research Database (Denmark)

    Singh, H.; Singh, K.; Sharma, G.;

    2003-01-01

    Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out...

  15. Barium boron aluminum silicate glass system for solid state optical gas sensors

    Science.gov (United States)

    Da Silva, M. J.; Karczewski, J.; Jasinski, P.; Chrzan, A.; Kalinowski, P.; Szymczewska, D.; Jasinski, G.

    2016-11-01

    Recent increasing demand for new eco-friendly materials and for low cost fabrication process for use in optical sensors field, raise concern about alternative materials for this application. We have designed two glass-ceramics compositions from the quaternary ROAl2O3- SiO2-B2O3(R=Ba) alkali-earth aluminum silicate system, labeled B72 and B69, with high refractive index (>1.6), large values of Abbe number (94.0 and 53.0, respectively), and free of lead and arsenic. We present an analysis and discussion of experimental optical properties, thermal and thermo-chemical stability along with important properties such as transition temperature (Tg), onset of crystallization (Tx) as well transport properties as ionic conductivity behavior in the quaternary glass-ceramic system containing boron for use as optical sensors. Complex Impedance Spectra (Bode Plot) and Potentiodynamic Polarization curves (Tafel plots) measurements were carried out in the temperature range of 600 to 850°C. The most probable conductivity mechanism is a thermally activated process of mobile ions overcoming a potential barrier (EA), according to the Arrhenius regime. Here we report that charge transfer is caused by the flux of electrons, in the region of elevated temperatures (>700°C), and is affected by immiscibility of crystals, nucleation and growth type, that causes phase separation. We found conductivity (σ) values from 10-9 to 10-5 S/cm at temperatures between 700 and 850°C. Our results highlight a need for research on ion mobility in the glassy network above the transition range, and the effect cause by metastable immiscibility in the alkaline-earth glasses are exposed. The two glass compositions B72 and B69 can be tailored by proper use as glassy optical sensor.

  16. Influence of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Bourhis, Kevin, E-mail: k.bourhis@argolight.com [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Massera, Jonathan [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Petit, Laeticia; Ihalainen, Heikki [nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Fargues, Alexandre; Cardinal, Thierry [CNRS, Université de Bordeaux, ISM, 351Cours de la Libération, F-33405 Talence (France); Hupa, Leena; Hupa, Mikko [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Dussauze, Marc; Rodriguez, Vincent [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); Boussard-Plédel, Catherine; Bureau, Bruno; Roiland, Claire [Equipe Verres et Céramiques, UMR-CNRS 6226, Inst. des Sciences chimiques de Rennes, Université de Rennes 1, 35042 Rennes CEDEX (France); Ferraris, Monica [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2015-03-15

    Highlights: • Reorganization of the glass structure induced by the addition of P{sub 2}O{sub 5} or Al{sub 2}O{sub 3}. • Emission properties related to the presence of P or Al in the Er{sup 3+} coordination shell. • Declustering observed upon addition of P{sub 2}O{sub 5}. • No declustering upon addition of Al{sub 2}O{sub 3}. - Abstract: The effect of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} addition in Er-doped borosilicate glasses on the physical, thermal, optical, and luminescence properties is investigated. The changes in these glass properties are related to the glass structure modifications induced by the addition of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3}, which were probed by FTIR, {sup 11}B MAS NMR and X-ray photoelectron spectroscopies. Variations of the polymerization degree of the silicate tetrahedra and modifications in the {sup [3]}B/{sup [4]}B ratio are explained by a charge compensation mechanism due to the formation of AlO{sub 4}, PO{sub 4} groups and the formation of Al-O-P linkages in the glass network. From the absorption and luminescence properties of the Er{sup 3+} ions at 980 nm and 1530 nm, declustering is suspected for the highest P{sub 2}O{sub 5} concentrations while for the highest Al{sub 2}O{sub 3} concentrations no declustering is observed.

  17. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua, E-mail: nzhangh@aliyun.com [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); China Institute of Atomic Energy, P.O. Box 275-93, 102413 Beijing (China); Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-07-15

    Highlights: • Spinel crystallization incorporates ZnO from base glass, displacing Mg and Ni. • Raman spectroscopy demonstrates significant impact on glass structure by addition of ZnO to base glass. • Addition of ZnO reduces glass dissolution rate at early time periods (up to 28 days). - Abstract: Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na{sub 2}O/Li{sub 2}O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn{sub 0.60}Ni{sub 0.20}Mg{sub 0.20})(Cr{sub 1.37}Fe{sub 0.63})O{sub 4}. The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q{sup 3} species, which we attribute to Si–O–Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na{sub 2}O/Li{sub 2}O base glass up to 28 days, due to

  18. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  19. Modifications induced in the structural and optical properties of bismuth sodium borosilicate glass thin films by 120 MeV Ag{sup 7+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Ravneet, E-mail: ravneet_383@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143 005 (India); Singh, Surinder [Department of Physics, Guru Nanak Dev University, Amritsar 143 005 (India); Pandey, O.P. [School of Physics and Materials Science, Thapar University, Patiala 147 004 (India)

    2013-06-15

    The composition of the glass is Bi{sub 2}O{sub 3} (20%)–Na{sub 2}O (15%)–B{sub 2}O{sub 3} (50%)–SiO{sub 2} (15%) was prepared by conventional melt quench method. To study the effect of heavy ion irradiation on the glass network and structural units, thin films of the glass have been prepared by electron beam gun evaporation. The prepared films are irradiated using 120 MeV Ag{sup 7+} ions in the fluence range of 1 × 10{sup 12}–3 × 10{sup 13} ions cm{sup −2}. The optical and structural properties were investigated using UV–visible absorption spectroscopy and Fourier Transform Infrared (FTIR) spectroscopic techniques. A significant decrease in the band gap is observed after irradiation which is indicative of the fact that radiation has caused compaction in the glass structure.

  20. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    Science.gov (United States)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  1. The Structure, Dielectric and Energy Storage Properties of Strontium Barium Niobate-Based Glass-Ceramics Doped with La2O3

    Science.gov (United States)

    Xiu, Shaomei; Xiao, Shi; Shen, Bo; Zhai, Jiwei

    2017-07-01

    In this work, the effect of La2O3 content on the phase evolution, microstructure, dielectric properties and energy storage properties of the strontium barium niobate (SBN)-based glass-ceramics were studied. The results show that the La3+ is easily incorporated into the tetragonal tungsten bronze structured phase, and La2O3 doped into the BSN-glass-ceramics, as a grain growth inhibitor, can have an evident effect on the grain size reduction and crystallization. The microstructure of the SBN-glass-ceramics becomes denser and more uniform with increasing La2O3 content. The remanent polarization of all samples is extremely low. The dielectric constant of the SBN-glass-ceramics obviously is decreased, while the breakdown strength is increased with the increment of La2O3 content. When La2O3 content in the SBN-glass-ceramics is 0.2 mol.%, the theoretical energy storage density is at the maximal level of 7.2 J/cm3. In addition, the energy discharging efficiency and discharging speed of the SBN-glass-ceramics with different La2O3 content were evaluated. With La2O3 content increasing, the energy discharging efficiency gradually increased.

  2. Phase Separation and Crystallization in soda-lime borosilicate glass enriched in MoO{sub 3} studied by in situ Raman spectroscopy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, M.; Schuller, S.; Advocat, T. [CEA Valrho, DEN/DTCD/SCDV, Laboratoire d' Etude de Base sur les Verres, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Caurant, D.; Majerus, O. [Laboratoire de Chimie de la Matiere Condensee de Paris- LCMCP - UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris - ENSCP, Paristech, 75231 Paris (France); Ligny, D. de [Laboratoire de Physico-Chimie des Materiaux Luminescents- LPCML - UMR-CNRS 5620, Universite Claude Bernard Lyon1, 69622 Villeurbanne (France)

    2008-07-01

    Phase separation and crystallisation processes may arise in molten glass when the MoO{sub 3} content exceeds its solubility limit. Molybdenum combined with other elements such as alkali and alkaline-earth may form crystalline molybdates, known as 'yellow phases' in nuclear glasses. In order to establish the sequence of phase separation and crystallization processes occurring during the cooling of the melt, a non-radioactive simplified glass composition was chosen in the SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO system, with 2 mol.% MoO{sub 3}. Various cooling scenarios were tested: cooling by air blowing, quenching between two copper plates and cooling on metallic plate. The resulting glass specimens were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy in temperature. These observations made it possible to determine the sequence and the appearance temperature of phenomena upon cooling: first, a phase separation occurs, (small droplets dispersed in the molten glass) followed by molybdates crystallization inside the droplets. (authors)

  3. Why neutron guides may end up breaking down? Some results on the macroscopic behaviour of alkali-borosilicate glass support plates under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boffy, R.; Kreuz, M. [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9 (France); Beaucour, J., E-mail: beaucour@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9 (France); Köster, U. [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9 (France); Bermejo, F.J. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, E-20886 Madrid (Spain)

    2015-09-01

    In this paper we report on a first part of a study on the mechanisms leading to brittle fracture in neutron guides made of glass as structural element. Such devices are widely used to deliver thermal and cold neutron beams to experimental lines in most large neutron research facilities. We present results on macroscopic properties of samples of guide glass substrates which are subjected to neutron irradiation at relatively large fluences. The results show a striking dependence of some of the macroscopic properties such as density, shape or surface curvature upon the specific chemical composition of a given glass. The relevance of the present findings for the installation of either replacement guides at the existing facilities or for the deployment of instruments for ongoing projects such as the European Spallation Source is briefly discussed.

  4. 硼硅酸盐玻璃薄片CO2激光反向弯曲研究%Study on Borosilicate Glass Sheet Reverse Bending with CO2 Laser

    Institute of Scientific and Technical Information of China (English)

    吴东江; 牛方勇; 张强; 郭东明

    2009-01-01

    Experiments of borosilicate glass sheet reverse bending by CO2 CW- laser were successfully presented, and suitable processing parameters of reverse bending were given for specimen with thickness of 150μm. The influences of scanning number and specimen width on bending results were investigated, and then experimental phenomenon was analyzed by comparing with the forward bending. In view of the suitable processing parameters and experimental results, the buckling mechanism can be sited as the laser forming mechanism responsible for reverse bending of glass sheet. The reverse bending progress increases the flexibility of laser forming and provides a new way in machining for intricate parts.%利用CO2连续激光对厚度为150μm的硼硅酸盐玻璃薄片进行了反向弯曲试验,得到了适合反向弯曲的激光加工工艺参数.研究了激光扫描次数及玻璃样品宽度对反向弯曲效果的影响,并就相关试验现象结合正向弯曲成形进行了比较分析.综合考虑实现反向弯曲成形的工艺参数及试验结果,初步确定激光加工玻璃薄片实现反向弯曲的机理为翘曲机理.反向弯曲技术进一步增加了激光弯曲成形的柔性化,为复杂零件的加工提供了新的解决途径.

  5. Erbium-doped borosilicate glasses containing various amounts of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3}: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Bourhis, Kevin [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Massera, Jonathan [Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, FI-33720 Tampere (Finland); BioMediTech, Tampere (Finland); Petit, Laeticia, E-mail: laeticia.petit@nlight.net [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Koponen, Joona [nLIGHT Corporation, Sorronrinne 9, FI-08500 Lohja (Finland); Fargues, Alexandre; Cardinal, Thierry [CNRS, Université de Bordeaux, ISM, 351 Cours de la Libération, F-33405 Talence (France); Hupa, Leena; Hupa, Mikko [Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku (Finland); Dussauze, Marc; Rodriguez, Vincent [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr Schweitzer, F-33608 Pessac (France); Ferraris, Monica [Politecnico di Torino, DISAT, Istituto di Ingegneria e Fisica dei Materiali, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2015-10-15

    Highlights: • Er{sup 3+} doped borosilicate glasses were processed with different compositions and characterizations. • An increase in the SiO{sub 2} content leads to a silicate-rich environment around the Er{sup 3+} site. • An increase in the SiO{sub 2} content decreases the Er{sup 3+} absorption cross-section at 980 nm. • Glasses with 60 mol% of SiO{sub 2} exhibit a stronger emission intensity at 1530 nm than glasses with x = 50. • Highest 1.5 μm emission intensity was achieved for the Al and P containing glass with 60 mol% of SiO{sub 2}. - Abstract: The influence of the silica content on several properties of Er-doped borosilicate glasses in the presence of various amounts of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} has been investigated. The introduction of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} are responsible for structural modifications in the glass network through a charge-compensation mechanism related to the formation of negatively-charged PO{sub 4} and AlO{sub 4} groups or through the formation of AlPO{sub 4}-like structural units. In this paper, we show that an increase in the SiO{sub 2} content leads to a silicate-rich environment around the Er{sup 3+} site, resulting in an increased dependence of the Er{sup 3+} ions optical and luminescence properties on the P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} concentration. The highest emission intensity at 1.5 μm was achieved for the glass with an equal proportion of P and Al in the glass system with 60 mol% of SiO{sub 2}.

  6. 涂敷含硼硅玻璃SiC涂层的C/SiC复合材料空气氧化行为%Oxidation behaviors of C/SiC composites coated with SiC coatings containing borosilicate glass

    Institute of Scientific and Technical Information of China (English)

    曹素; 刘永胜; 左新章; 张立同; 成来飞

    2011-01-01

    以2D C/SiC复合材料为基底,采用聚合物裂解工艺(Polymer plyen)制备了含硼硅玻璃SiC自愈合涂层.利用扫描电镜对含硼硅玻璃SiC涂层的2D C/SiC复合材料氧化前后的微结构形貌进行了分析.研究了含硼硅玻璃SiC涂层的C/SiC复合材料在静态空气中700℃、1000℃和1200℃下的氧化行为,并分析了涂层层数对C/SiC复合材料氧化行为的影响.结果表明:含硼硅玻璃SiC涂层在该温度下形成的玻璃相可以较好地封填表面缺陷(裂纹和孔洞);并且随温度升高及涂层层数增加,试样在氧化过程中质量减少率降低,氧化后的强度保持率提高.%SiC self-healing coatings containing borosilicate glass were prepared by polymer plyen on the 2D C/SiC composites. The microstructure morphologies of the 2D C/SiC composites with SiC coating containing borosilicate glass before and after oxidation were analyzed by SEM. The oxidation behaviors of the C/SiC composites with SiC coating containing borosilicate glass were studied at 700 ℃, 1000 ℃ and 1200 ℃ in static air and the oxidation behaviors resulted by different layers were analyzed. The results show that the glass phase produced by the SiC coating containing borosilicate glass can seal the defections (cracks and pores) existed in the coating, and with increasing the temperature and number of the coating layers, the C/SiC composites have lower mass loss during the oxidation and higher strength retention after oxidized.

  7. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia; Zhang, Yong; Song, Xiaozhen; Zhang, Qian; Yang, Dongliang; Chen, Yongzhou [Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2015-12-15

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Electromagnetic response of the three-layer construction on the basis of barium hexaferrite and a foam glass

    Science.gov (United States)

    Suslyaev, V.; Kazmina, O.; Kuleshov, G.; Korovin, E.; Dorozhkin, K.; Lebedeva, E.

    2017-01-01

    This paper contains results of study of the frequency dependence of reflection coefficient of the ceramic surface coated with the construction consisting of following layers: metal, composite on the basis of ferrite with hexagonal structure, and foam glass. It is shown that foam glass layer reduces significantly the reflecting characteristics of the construction.

  9. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  10. Effect of ZnO and CaO on Alkali Borosilicate Glass Waste-form Immobilizing Simulated Mixed HLW%ZnO 和 CaO对模拟高放废液硅酸盐玻璃固化体性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    张华; N.C.Hyatt; J.R.Stevens; R.Hand

    2015-01-01

    针对有些高放废液含有较多Fe、Cr、Ni过渡金属元素,在玻璃固化工艺过程中易于形成晶体,导致熔融玻璃体的黏度增加、化学稳定性变差以及工艺过程中易出现出料口堵塞等问题,研究了废物包容量为15%和20%、添加ZnO (5.6%)和CaO (1.75%)的配方对形成的4种玻璃固化体的物理性能(密度、硬度、断裂韧性)、化学性能(产品一致性测试和蒸汽腐蚀测试)和结构(X射线衍射析晶分析、拉曼光谱分析)的影响。研究分析显示,提高废物包容量至20%以及添加ZnO和CaO均可促进硼硅酸盐玻璃固化体网络结构的稳定性和化学稳定性,并增强玻璃体的密度,提高硬度;但玻璃固化体的高温黏度升高,断裂韧性下降。%Since the transit metals ,such as Fe ,Cr and Ni ,contained in some kinds of mixed HLW ,can likely to form crystal ,increase the melt viscosity ,destroy the chemi‐cal durability and block the discharge port .T he results obtained from investigating four glass waste‐forms ,including the alkali borosilicate glass matrix and alkali borosilicate glass matrix doped with 5.6% ZnO and 1.75% CaO in base matrixes ,immobilizing the simulated mixed HLW with 15% and 20% waste loadings aiming to determinate the effect of ZnO on the alkali borosilicate glass chemical durability with waste loading increasing ,were presented in this paper .Glass samples were characterized with XRD and Raman spectroscopy .The chemical durability was investigated using the standard protocols PCT and VHT .The XRD analysis results show that spinel crystal appears and grows in glass samples at the waste loading in 20% without ZnO addition and waste loading in 15% and 20% added ZnO .T he Raman spectroscopy analysis results indicate that ZnO and CaO can enhance the glass network connective ,and the chemical durability test results display that the addition of ZnO and CaO can improve the short term

  11. Effect of rare-earth additions on the structure and dielectric energy storage properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3}-based barium boronaluminosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Shaomei; Xiao, Shi; Zhang, Wenqin; Xue, Shuangxi; Shen, Bo, E-mail: shenbo@tongji.edu.cn; Zhai, Jiwei, E-mail: apzhai@tongji.edu.cn

    2016-06-15

    Ba{sub x}Sr{sub 1-x}TiO{sub 3}-based barium boroaluminosilicate (BST-BBAS) glass-ceramics added with La{sub 2}O{sub 3}, Gd{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} were fabricated through the melting method followed by controlled crystallization, respectively. The X-ray diffraction and the field emission scanning electron microscopy were investigated the phase composition and microstructure for the BST-BBAS glass-ceramics added with rare-earth additions, then the temperature-dependent dielectric properties and the voltage-withstand measurements were applied to study the effect of rare-earth additions on the dielectric energy storage density. These results show that the certain content of rare-earth additions can optimize the microstructure and phase structure effectively. And with the decrease of ionic radiuses of rare-earth elements, the microstructure of the glass-ceramics become more uniform. When added with 0.5 mol% Yb{sup 3+}, the theoretical energy storage density of the BST-BBAS glass-ceramics gets the largest value of 3.5 J/cm{sup 3} which is about 1.8 times compared to the undoped one. - Highlights: • A certain content of Yb{sub 2}O{sub 3} can restrain the formation of BaSi{sub 2}O{sub 5}and SiO{sub 2} phases. • The addition of rare earth can optimize the microstructure. • With 0.5 mol% Yb{sup 3+}, the dielectric energy storage density got the largest value of 3.5 J/cm{sup 3}.

  12. Temperature effects on structure and dynamics in borate and borosilicate liquids: High-resolution and high-temperature NMR results

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, J.F.; Ellsworth, S.E. [Stanford Univ., Stanford, CA (United States)

    1996-09-01

    The fictive temperature dependence of the relative abundances of three- and four-coordinated boron was investigated in several sodium borate and borosilicate glasses using high-resolution {sup 11}B nuclear magnetic resonance (NMR). In the compositions with low sodium/boron ratios, no effect was observed, but in the borosilicates, the fraction of the tetrahedral species decreased significantly as the fictive temperature increased because of the higher content of nonbridging oxygens. In situ, high-temperature magic-angle spinning NMR demonstrated the exchange of the two species at a rate comparable to the shear relaxation rate, indicating a close link between B-O bond breaking and viscous flow.

  13. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gad-Allah, Tarek A., E-mail: tareqabdelshafy@yahoo.ca [Water Pollution Research Department, National Research Centre, Cairo 12311 (Egypt); Margha, Fatma H. [Department of Glass Research, National Research Centre, Cairo 12311 (Egypt)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ► Precipitation of photoactive phases by using controlled heat-treatment. ► Conservation of transparency along with photoactivity. ► Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UV–visible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  14. Ultra-lightweight borosilicate gas-fusion mirror for cryogenic testing

    Science.gov (United States)

    Voevodsky, Michael; Wortley, Richard W.

    2003-12-01

    Hextek Corporation (Hextek) is under contract to fabricate an ultra-lightweight borosilicate mirror using its Gas-Fusion technology for cryogenic testing at NASA MSFC. Not widely known, borosilicate glass has a CTE approaching zero at the proposed cryogenic operating temperature of 30-35 degrees Kelvin. The mirror specifications are for a 250 mm diameter closed-back honeycomb sandwich mirror, slumped to a 2500 mm ROC, and a target areal density of 15 kg/m2. The paper/presentation will review the proposal objectives, technical data, and the prototype mirror. Expected significance to NASA include dramatic schedule enhancement and cost reduction for ultra-lightweight mirrors in sizes up to and beyond 1 meter for operation at cryogenic temperatures.

  15. Role of Al coordination in barium phosphate glasses on the emission features of Ho{sup 3+} ion in the visible and IR spectral ranges

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, T.; Kalpana, T.; Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, A.P. (India); Veeraiah, N., E-mail: nvr8@rediffmail.co [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, A.P. (India)

    2010-03-15

    The glasses of the composition (39-x)BaO-xAl{sub 2}O{sub 3}-60P{sub 2}O{sub 5}:1.0Ho{sub 2}O{sub 3} (in mol%) with x value ranging from 1.0 to 4.0 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al{sup 3+} ions from tetrahedral to octahedral with increase in the concentration of Al{sub 2}O{sub 3} up to 3.0 mol%. Optical absorption and fluorescence spectra (in the visible and NIR regions) of these glasses have been recorded at room temperature. The Judd-Ofelt theory could successfully be applied to characterize the absorption and luminescence spectra of Ho{sup 3+} ions in these glasses. From the luminescence spectra, various radiative properties like transition probability A, branching ratio beta{sub r}, the radiative lifetime tau{sub r} and emission cross-section sigma{sup E} for various emission levels of these glasses have been evaluated. The radiative lifetime of the {sup 5}S{sub 2}->{sup 5}I{sub 8} (green emission) transition has also been measured. The variations observed in these parameters have been discussed in the light of varying co-ordinations (tetrahedral and octahedral positions) of Al{sup 3+} ions in the glass network. The influence of hydroxyl groups on the luminescence efficiency of the transition {sup 5}S{sub 2}->{sup 5}I{sub 8} has also been discussed. Finally the optimum concentration of Al{sub 2}O{sub 3} for getting maximum luminescence output has also been identified and reported.

  16. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  17. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  18. Barium periostitis: an intraoral complication following barium swallow.

    Science.gov (United States)

    Stanton, David C; Seeger, Douglas; Robinson, Brian T

    2007-05-01

    Barium is used with great frequency for various gastrointestinal radiographic studies. Complications arising from the use of barium are uncommon and can range from peritonitis, pneumonitis, vascular intravasation, allergic reactions, and even "barium appendicitis." We report a case of an unusual complication, periostitis, from the use of barium in a 46-year-old male.

  19. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  20. Volume changes in glass induced by an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gavenda, Tadeáš, E-mail: gavendat@vscht.cz [Department of Glass and Ceramics, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague (Czech Republic); Gedeon, Ondrej [Department of Glass and Ceramics, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague (Czech Republic); Jurek, Karel [Institute of Physics, Academy of the Czech Republic, Na Slovance 2, CZ-182 21 Prague (Czech Republic)

    2014-03-01

    Three glasses (float, borosilicate float and Schott D263 glasses) were irradiated by 50 keV electron beams with doses within the range of 0.21–318.5 kC/m{sup 2}. Volume changes induced by electron bombarding were monitored by means of Atomic Force Microscopy. Incubation doses, related to mobility of alkali ions, were measured. Low doses showed compaction of all glasses while higher doses revealed volume inflation, except for borosilicate float glass. Both surfaces of float glass were irradiated and significant differences between them were found.

  1. Volume changes in glass induced by an electron beam

    Science.gov (United States)

    Gavenda, Tadeáš; Gedeon, Ondrej; Jurek, Karel

    2014-03-01

    Three glasses (float, borosilicate float and Schott D263 glasses) were irradiated by 50 keV electron beams with doses within the range of 0.21-318.5 kC/m2. Volume changes induced by electron bombarding were monitored by means of Atomic Force Microscopy. Incubation doses, related to mobility of alkali ions, were measured. Low doses showed compaction of all glasses while higher doses revealed volume inflation, except for borosilicate float glass. Both surfaces of float glass were irradiated and significant differences between them were found.

  2. Phase Stability Determinations of DWPF Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  3. Penetration Physics of Armor Glass

    Science.gov (United States)

    2009-11-30

    Penetration Response of Borosilicate Glass during Short Rod Impact”, Proc. 23rd Int. Symp. Ballistics, 2, 1251-1258, Graficas Couche, Madrid, Spain (2007...glass”, Proc. 23rd Int. Symp. Ballistics, 2, 1049-1056, Graficas Couche, Madrid, Spain (2007). 8D. R. Curran, “Comparison of Mesomechanical and

  4. Near net-shape fabrication of hydroxyapatite glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2004-01-01

    Near net-shape fabrication of hydroxyapatite (HA) glass composites has been attempted by infiltrating a glass into porous HA performs. Main efforts were put to develop glasses that are chemically compatible with HA at elevated temperatures. After extensive investigations in the phosphate and borosil

  5. Controlling barium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, R.

    Even though for several years success has been realized in controlling barium sulfate scale deposition in relatively shallow, low pressure oil wells--by squeezing an organic phosphonate scale inhibitor into the producing zone--barium sulfate scale depositon in deep, high pressure/high temperature wells usually meant an expensive workover operation. A case history of a deep (16,000 ft) well in St. Mary Parish, Louisiana, and the scale inhibitor squeeze operation are described. Based on the successful results obtained in treating this well, a generalized treating procedure for combating downhole scale deposition in high pressure/high temperature gas wells is presented. Formation squeezing with such an inhibitor represents a significant breakthrough for the oil and gas industry.

  6. Structure and texture of heat-treated lithium borosilicate xerogel

    Energy Technology Data Exchange (ETDEWEB)

    Touati, F. [Unite des Materiaux, Institut National de Recherche Scientifique et Technique, Route Touristique de Soliman B.P.95, 2050 Hammam-Lif Tunis (Tunisia) and Laboratoire de Chimie de la Matiere Condensee, Institut Preparatoire aux Etudes d' Ingenieur de Tunis, 2 Rue Jawaher Lel Nehru 1008 Montfleury-Tunis (Tunisia)]. E-mail: Fathi.Touati@fss.rnu.tn; Sediri, F. [Laboratoire de Chimie de la Matiere Condensee, Institut Preparatoire aux Etudes d' Ingenieur de Tunis, 2 Rue Jawaher Lel Nehru 1008 Montfleury-Tunis (Tunisia); Faculte des Sciences de Tunis, Universite Tunis-ElManar, Tunis (Tunisia); Gharbi, N. [Laboratoire de Chimie de la Matiere Condensee, Institut Preparatoire aux Etudes d' Ingenieur de Tunis, 2 Rue Jawaher Lel Nehru 1008 Montfleury-Tunis (Tunisia)

    2007-02-15

    Monolithic and transparent lithium borosilicate gels were obtained by using a cationic surfactant. The textural and structural properties of the pyrolysed xerogel at different temperatures were studied by IR, DTA-TG, X-ray, SEM and BET techniques. The obtained results show that the samples remain amorphous and mesoporous when the samples were heat treated below 600 deg. C. It is interesting to notice that Li{sup +} does not establish a bond with the borosilicate network in this range temperature. Above this temperature, the crystallinity starts associated with the largest decreases of specific surface area and pore volume.

  7. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  8. On barium oxide solubility in barium-containing chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V. [Ural Federal Univ., Yekaterinburg (Russian Federation). Inst. of High Temperature Electrochemistry

    2016-11-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl{sub 2}-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl{sub 2}-MCl systems.

  9. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    Science.gov (United States)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  10. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  11. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  12. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...

  13. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    Directory of Open Access Journals (Sweden)

    Kurt G Vandervoort

    Full Text Available Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the

  14. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    Science.gov (United States)

    Vandervoort, Kurt G; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  15. Patch electrode glass composition affects ion channel currents.

    OpenAIRE

    Furman, R E; Tanaka, J C

    1988-01-01

    The influence of patch electrode glass composition on macroscopic IV relations in inside-out patches of the cGMP-activated ion channel from rod photoreceptors was examined for a soda lime glass, a Kovar sealing glass, a borosilicate glass, and several soft lead glasses. In several glasses the shape or magnitude of the currents changed as the concentration of EGTA or EDTA was increased from 200 microM to 10 mM. The changes in IV response suggest that, at low concentrations of chelator, divalen...

  16. Effects of neodymium and gadolinium on weathering resistance of ZnO-B2O3-SiO2 glass

    Institute of Scientific and Technical Information of China (English)

    李雄伟; 李梅; 王觅堂; 柳召刚; 胡艳宏; 田俊虎

    2014-01-01

    The ZnO-B2O3-SiO2 glass doped with Nd2O3 and Gd2O3 was prepared by high temperature melt cooling method. The standard sample of the zinc borosilicate glass was placed in the constant temperature and humidity chamber in order to simulate the atmospheric corrosion process. The surface of the weathered glass was analyzed by scanning electron microscope and energy disper-sive spectrometry and the filtrate was analyzed by inductively coupled plasma-atomic emission spectrometry. The results showed that humidity was the most important factor influencing weathering; the morphology of glass surface of altered layer and the product on the surface was observed; the corroding degree of the zinc borosilicate glass doped with Nd or Gd was significantly lighter than that of the base glass.Adding rare earth Nd or Gd in the zinc borosilicate glass could suppress Na, Zn, Si ion release in weathering.

  17. GLASSES CONTAINING IRON (II III) OXIDES FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HEO J; XU K; CHOI JK; HRMA PR; UM W

    2011-11-07

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as {approx} 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to {approx}50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  18. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... COMMISSION Barium Chloride From China Determination On the basis of the record\\1\\ developed in the subject... order on barium chloride from China would be likely to lead to continuation or recurrence of material... Barium Chloride from China: Investigation No. 731-TA-149 (Third Review). By order of the...

  19. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.

    2008-01-01

    qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P

  20. Barium titanate nanocomposite capacitor FY09 year end report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  1. Preparation and the Third-Order Optical Nonlinearities of the Sodium Borosilicate Glass Doped with In2S3 Quantum Dots%In2S3量子点玻璃的制备及其三阶非线性光学性质

    Institute of Scientific and Technical Information of China (English)

    赵海军; 陈兆平; 向卫东; 钟家松; 杨昕宇; 郭玉清; 梁晓娟; 黄海宇; 罗洪艳; 赵秀丽

    2012-01-01

    In2S3 quantum dots glass has been synthesized by both sol-gel and atmosphere control methods in this paper. The microstructures of In2S3 quantum dots in the glass was characterized by means of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersion X-ray spectra (EDX), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). Meanwhile, the third-order nonlinear optical properties of the glass were measured in detail by the femtosecond Z-scan technique at a wavelength of 800 nm. The results showed that In2S3 quantum dots had formed in the glass, and the sizes of these In2S3 quantum dots having the tetragonal crystalline structure range from 12 nm to 20 nm, the glass exhibited the excellent third-order nonlinear optical properties, and the third-order nonlinear optical refractive index y, absorption coefficient β and susceptibility x (3) of the glass were determined to be -2.04×l0-18 m2 ·W-1 8.26×l0-12 m·W-1, and 1.61×10"20 m2·V"2, respectively.%本文利用溶胶-凝胶法结合气氛控制合成了含In2S3量子点玻璃.利用X射线粉末衍射仪(XRD),X射线光电子能谱(XPS),透射电子显微镜(TEM),X射线能量色散谱(EDX),高分辨透射电子显微镜(HRTEM)以及选区电子衍射(SAED)对In2S3量子点在玻璃中的微结构进行了表征,同时,利用飞秒Z-scan技术详细地研究了该玻璃在800 nm处的三阶非线性光学性质.结果表明,尺寸分布在12~20 nm之间的In2S3四方晶系纳米晶已经在玻璃中形成,并且,该玻璃展示出了优异的三阶非线性光学性能,其三阶非线性光学折射率γ、吸收系数β和和极化率x(3)分别为-2.04× 10-18 m2·W-1,8.26×10-12 m·W-1,和1.61×10-20 m2·V-2.

  2. Healing of lithographically introduced flaws in glass and glass containing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ackler, H.D.

    1992-12-01

    The morphological evolution of cylindrical pores or channels'' and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al[sub 2]O[sub 3]with [approx]5--10% intergranular glass, 96% Al[sub 2]O[sub 3] bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO[sub 2] had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.

  3. Healing of lithographically introduced flaws in glass and glass containing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ackler, H.D.

    1992-12-01

    The morphological evolution of cylindrical pores or ``channels`` and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al{sub 2}O{sub 3}with {approx}5--10% intergranular glass, 96% Al{sub 2}O{sub 3} bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO{sub 2} had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.

  4. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  5. Rhenium volatilization in waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2015-09-15

    Highlights: • Re did not volatilize from a HLW feed until 1000 °C. • Re began to volatilize from LAW feeds at ∼600 °C. • The vigorous foaming and generation of gases from salts enhanced Re evaporation in LAW feeds. • The HLW glass with less foaming and salts is a promising medium for Tc immobilization. - Abstract: We investigated volatilization of rhenium (Re), sulfur, cesium, and iodine during the course of conversion of high-level waste melter feed to glass and compared the results for Re volatilization with those in low-activity waste borosilicate glasses. Whereas Re did not volatilize from high-level waste feed heated at 5 K min{sup −1} until 1000 °C, it began to volatilize from low-activity waste borosilicate glass feeds at ∼600 °C, a temperature ∼200 °C below the onset temperature of evaporation from pure KReO{sub 4}. Below 800 °C, perrhenate evaporation in low-activity waste melter feeds was enhanced by vigorous foaming and generation of gases from molten salts as they reacted with the glass-forming constituents. At high temperatures, when the glass-forming phase was consolidated, perrhenates were transported to the top surface of glass melt in bubbles, typically together with sulfates and halides. Based on the results of this study (to be considered preliminary at this stage), the high-level waste glass with less foaming and salts appears a promising medium for technetium immobilization.

  6. CT-Guided Percutaneous Transthoracic Localization of Pulmonary Nodules Prior to Video-Assisted Thoracoscopic Surgery Using Barium Suspension

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nyoung Keun; Park, Chang Min; Kang, Chang Hyun; Jeon, Yoon Kyung; Choo, Ji Yung; Lee, Hyun Ju; Goo, Jin Mo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To describe our initial experience with CT-guided percutaneous barium marking for the localization of small pulmonary nodules prior to video-assisted thoracoscopic surgery (VATS). From October 2010 to April 2011, 10 consecutive patients (4 men and 6 women; mean age, 60 years) underwent CT-guided percutaneous barium marking for the localization of 10 small pulmonary nodules (mean size, 7.6 mm; range, 3-14 mm): 6 pure ground-glass nodules, 3 part-solid nodules, and 1 solid nodule. A 140% barium sulfate suspension (mean amount, 0.2 mL; range, 0.15-0.25 mL) was injected around the nodules with a 21-gauge needle. The technical details, surgical findings and pathologic features associated with barium localizations were evaluated. All nodules were marked within 3 mm (mean distance, 1.1 mm; range, 0-3 mm) from the barium ball (mean diameter, 9.6 mm; range, 8-16 mm) formed by the injected barium suspension. Pneumothorax occurred in two cases, for which one needed aspiration. However, there were no other complications. All barium balls were palpable during VATS and visible on intraoperative fluoroscopy, and were completely resected. Both the whitish barium balls and target nodules were identifiable in the frozen specimens. Pathology revealed one invasive adenocarcinoma, five adenocarcinoma-in-situ, two atypical adenomatous hyperplasias, and two benign lesions. In all cases, there were acute inflammations around the barium balls which did not hamper the histological diagnosis of the nodules. CT-guided percutaneous barium marking can be an effective, convenient and safe pre-operative localization procedure prior to VATS, enabling accurate resection and diagnosis of small or faint pulmonary nodules.

  7. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full Text Available We describe a case of bilateral inhalation and alveolarisation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-oesophageal cleft. We review the literature on barium aspiration, its consequences and make recommendations for management.

  8. INFLUENCE OF BARIUM OXIDE ADDITIONS ON PORTLAND CLINKER

    National Research Council Canada - National Science Library

    Zezulova, Anezka

    2016-01-01

    ... that the radiation shielding capability of cement can be improved by incorporation of barium. This work deals with the influence of barium oxide, added in the form of barium carbonate and sulphate, on the formation and properties of Portland clinker...

  9. ONE CASE REPORT OF ACUTE POISONING BY BARIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    GE Qin-min; BIAN Fan; WANG Shu-yun; SHEN Sheng-hui

    2009-01-01

    @@ Most barium poisoning cases were caused by oral intake by mistake. Recent years, barium carbonate poisoning has been rare to be reported. Here we reported a case of acute barium carbonate toxication taken orally on purpose.

  10. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Amarendra Kumar

    2016-06-01

    Full Text Available In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm. Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

  11. sup 1 sup 1 B nutation NMR study of powdered borosilicates

    CERN Document Server

    Woo, A J; Han, D Y

    1998-01-01

    In this work, we applied the 1D sup 1 sup 1 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO sub 2 -B sub 2 O sub 3). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D sup 1 sup 1 B nutation NMR experiment. The sup 1 sup 1 B NMR parameters, quadrupole coupling constants (e sup 2 qQ/h) and asymmetry parameters (eta), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.

  12. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  13. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  14. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full review... revocation of the antidumping duty order on barium chloride from China would be likely to lead...

  15. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  16. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers a

  17. STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES

    Directory of Open Access Journals (Sweden)

    Chocholoušek J.

    2013-06-01

    Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.

  18. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2012-08-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6-7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate-adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: Black-Right-Pointing-Pointer Highly ordered 2D-hexagonal mesoporous borosilicate. Black-Right-Pointing-Pointer Nonionic Pluoronic P123 templated mesoporous material. Black-Right-Pointing-Pointer Adsorption of organic dyes at the mesopore surface. Black-Right-Pointing-Pointer Controlled release of dyes under physiological pH and temperature. Black-Right-Pointing-Pointer Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  19. In situ bending and recovery characterization of hollow glass nanoneedle based on nanorobotic manipulation

    Science.gov (United States)

    Li, Dengfeng; Yang, Lijun; Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Shen, Yajing

    2017-09-01

    Glass nanoneedles are important tools for injecting drugs and other materials into living cells. Although we know a great deal about the mechanical properties of glass structures at the millimeter scale, relatively little is known at the nanoscale. Here we investigate the mechanical performance of hollow glass nanoneedles by nanorobotic in situ manipulation inside SEM. Quartz and borosilicate nanoneedles fabricated from glass capillaries are assembled on the nanorobotic characterization system inside SEM and their behaviors during bending and recovery are studied in situ. The result indicates the glass nanoneedle could present a large elastic bending deformation (>90°). Specifically, the quartz nanoneedle takes on larger bending strength and its deformation can recover totally. In contrast, the borosilicate nanoneedle presents more flexible and still 20% of deformation is remained after 3 months. These results not only enhances our basic understanding on nanoglass materials but also provides references for practical nanomanipulation applications.

  20. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  1. Radium/Barium Waste Project

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  2. Magneto optical trapping of Barium

    CERN Document Server

    De, S; Jungmann, K; Willmann, L

    2008-01-01

    First laser cooling and trapping of the heavy alkaline earth element barium has been achieved based on the strong 6s$^2$ $^1$S$_0$ - 6s6p $^1$P$_1$ transition for the main cooling. Due to the large branching into metastable D-states several additional laser driven transitions are required to provide a closed cooling cycle. A total efficiency of $0.4(1) \\cdot 10^{-2}$ for slowing a thermal atomic beam and capturing atoms into a magneto optical trap was obtained. Trapping lifetimes of more than 1.5 s were observed. This lifetime is shortened at high laser intensities by photo ionization losses. The developed techniques will allow to extend significantly the number of elements that can be optically cooled and trapped.

  3. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: April 9, 2010. FOR FURTHER INFORMATION CONTACT:...

  4. Raman signature modification induced by copper nanoparticles in silicate glass

    OpenAIRE

    2005-01-01

    International audience; Composite materials formed by metal nanoclusters embedded in glasses/glazes have been produced for centuries (Roman hematinum and Renaissance alassonti, Coptic lustre-painted glass and Islamic lustre ceramics). Comparisons were drawn from Raman analyses of alkali borosilicate glasses coloured by copper as “blue” Cu2+ (peak absorption at 750 nm), as “colourless” Cu+, and as “opaque red” Cu0 (peak absorptions at ~420 and 570 nm). In particular, Raman analyses of copper-r...

  5. Mesoscale Phase Field Modeling of Glass Strengthening Under Triaxial Compression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Sun, Xin

    2016-09-30

    Recent hydraulic bomb and confined sleeve tests on transparent armor glass materials such as borosilicate glass and soda-lime glass showed that the glass strength was a function of confinement pressure. The measured stress-strain relation is not a straight line as most brittle materials behave under little or no confinement. Moreover, borosilicate glass exhibited a stronger compressive strength when compared to soda-lime glass, even though soda-lime has higher bulk and shear moduli as well as apparent yield strength. To better understand these experimental findings, a mesoscale phase field model is developed to simulate the nonlinear stress versus strain behaviors under confinement by considering heterogeneity formation under triaxial compression and the energy barrier of a micro shear banding event (referred to as pseudo-slip hereafter) in the amorphous glass. With calibrated modeling parameters, the simulation results demonstrate that the developed phase field model can quantitatively predict the pressure-dependent strength, and it can also explain the difference between the two types of glasses from the perspective of energy barrier associated with a pseudo-slip event.

  6. Neutral Barium Cloud Evolution at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    李磊; 徐荣栏

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, we study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260km.This can be divided into oxidation, oxidation plus photoionization and photoionization regions.

  7. A critical study on borosilicate glassware and silica-based QMA's in nucleophilic substitution with [{sup 18}F]fluoride: influence of aluminum, boron and silicon on the reactivity of [{sup 18}F]fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Svadberg, A., E-mail: anders.svadberg@uit.n [University of Tromso, Institute of Pharmacy, Department of Pharmaceutics and Biopharmaceutics, N-9037 Tromso (Norway); Clarke, A.; Dyrstad, K.; Martinsen, I. [GE Healthcare MDx R and D, Nycoveien 2, NO-0401 Oslo (Norway); Hjelstuen, O.K. [University of Tromso, Institute of Pharmacy, Department of Pharmaceutics and Biopharmaceutics, N-9037 Tromso (Norway); GE Healthcare MDx R and D, Nycoveien 2, NO-0401 Oslo (Norway)

    2011-02-15

    Leachables of borosilicate glassware and silica-based anion exchange columns (QMAs) may influence nucleophilic substitution with [{sup 18}F]fluoride ([{sup 18}F]F{sup -}). Aluminum, boron and silicon, all constituents of borosilicate glass, were found as water soluble leachables in a typical PET synthesis setup. Relevant ranges of the leachable quantities were studied based on an experimental design, in which species of the three elements were added to the labeling of the precursor for anti-1-amino-3-[{sup 18}F]fluorocyclobutyl-1-carboxylic acid ([{sup 18}F]FACBC). Levels of 0.4-2 ppm aluminum as AlCl{sub 3} had a strong negative influence on labeling yield while 4-20 ppm of boron as KBO{sub 2} and 50-250 ppm of silicon as Na{sub 2}SiO{sub 3} did not have a significant impact. Interesting interaction effects between the elements were observed, where particularly KBO{sub 2} reduced the negative effect of AlCl{sub 3} on labeling yield. It can be concluded that leachables of borosilicate glassware easily can influence nucleophilic substitution with n.c.a. [{sup 18}F]F{sup -} and give variable yields.

  8. A critical study on borosilicate glassware and silica-based QMA's in nucleophilic substitution with [18F]fluoride: influence of aluminum, boron and silicon on the reactivity of [18F]fluoride.

    Science.gov (United States)

    Svadberg, A; Clarke, A; Dyrstad, K; Martinsen, I; Hjelstuen, O K

    2011-02-01

    Leachables of borosilicate glassware and silica-based anion exchange columns (QMAs) may influence nucleophilic substitution with [(18)F]fluoride ([(18)F]F(-)). Aluminum, boron and silicon, all constituents of borosilicate glass, were found as water soluble leachables in a typical PET synthesis setup. Relevant ranges of the leachable quantities were studied based on an experimental design, in which species of the three elements were added to the labeling of the precursor for anti-1-amino-3-[(18)F]fluorocyclobutyl-1-carboxylic acid ([(18)F]FACBC). Levels of 0.4-2 ppm aluminum as AlCl(3) had a strong negative influence on labeling yield while 4-20 ppm of boron as KBO(2) and 50-250 ppm of silicon as Na(2)SiO(3) did not have a significant impact. Interesting interaction effects between the elements were observed, where particularly KBO(2) reduced the negative effect of AlCl(3) on labeling yield. It can be concluded that leachables of borosilicate glassware easily can influence nucleophilic substitution with n.c.a. [(18)F]F(-) and give variable yields.

  9. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  10. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  11. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  12. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  13. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  14. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  15. Abundance analysis of Barium stars

    Institute of Scientific and Technical Information of China (English)

    Guo-Qing Liu; Yan-Chun Liang; Li-Cai Deng

    2009-01-01

    We obtain the chemical abundances of six barium stars and two CH subgiant stars based on the high signal-to-noise ratio and high resolution Echelle spectra. The neu- tron capture process elements Y, Zr, Ba, La and Eu show obvious overabundances relative to the Sun, for example, their [Ba/Fe] values are from 0.45 to 1.27. Other elements, in- cluding Na, Mg, A1, Si, Ca, Sc, Ti, V, Cr, Mn and Ni, show comparable abundances to the Solar ones, and their [Fe/H] covers a range from -0.40 to 0.21, which means they belong to the Galactic disk. The predictions of the theoretical model of wind accretion for bi- nary systems can explain the observed abundance patterns of the neutron capture process elements in these stars, which means that their overabundant heavy-elements could be caused by accreting the ejecta of AGB stars, the progenitors of present-day white dwarf companions in binary systems.

  16. Contributions of vitreous natural analogs to the investigation of long-term nuclear glass behavior; Apports des analogues naturels vitreux a la validation des codes de prediction du comportement a long terme des verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Techer, I

    1999-07-01

    This study assesses the extend of the analogy between the alteration behavior in water and in a moist clay environment of aluminosilicate volcanic glass and alumino-borosilicate nuclear containment glass. Basaltic glass alteration in water initially occurs by hydrolysis processes with an activation energy on the order of 73 kJ.mol{sup -1}. As the reaction progresses, the alteration rate drops by over four orders of magnitude from the initial rate r{sub 0}, The alteration kinetics are not governed by the alteration solution chemistry alone, the glass alteration film appears to have a major role as a diffusion barrier limiting the transfer of reaction species and products. All these aspects highlight the behavioral analogy between basaltic glass and nuclear borosilicate glass in aqueous media. Conversely, the alteration reaction of obsidian-type volcanic glass involves other mechanisms than those governing the dissolution of borosilicate glass. Basaltic glass alteration is also examined in the presence of a clay environmental material, in a study of the natural basaltic glass and argillaceous pelites system of the Salagou basin in southern France, in an approach combining mineralogical, chemical and isotopic data to assess the interactions between a basaltic glass and the argillaceous pelites. Laboratory leach test results with basaltic glass and measured data for the Salagou glass in its natural environment are modeled using a code implementing a kinetic law coupling diffusive transfer of dissolved silica with a reaction affinity law. (author)

  17. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  18. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    Science.gov (United States)

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  19. Preparation and Optical Investigations of [(Sr1-xBixTiO3]-[2SiO2B2O3]-[CeO2] Glasses

    Directory of Open Access Journals (Sweden)

    Chandkiram Gautam

    2014-01-01

    Full Text Available We are reporting synthesis and structural and optical investigation of strontium bismuth titanate borosilicate glasses with addition of one mole percent cerium oxide (CeO2. Glasses were synthesized by conventional rapid melt quench method. XRD studies of the glass samples confirm the amorphous nature. Infrared absorption spectra various strontium bismuth titanate borosilicate glass samples having glass system 60[(Sr1-xBixTiO3]-39[2SiO2B2O3]-1[CeO2] (x=0.0,0.1,0.2,0.4 were recorded over a continuous spectral range from 400 to 4000 cm−1. IR spectra were analyzed to determine and differentiate of various vibrational modes in the structural change. Raman spectroscopy of all glass samples was also carried out in the wave number range from 200 to 2000 cm−1.

  20. Coherent Dark Resonances in Atomic Barium

    CERN Document Server

    Dammalapati, U; Jungmann, K; Willmann, L

    2007-01-01

    The observation of dark-resonances in the two-electron atom barium and their influence on optical cooling is reported. In heavy alkali earth atoms, i.e. barium or radium, optical cooling can be achieved using n^1S_0-n^1P_1 transitions and optical repumping from the low lying n^1D_2 and n^3D_{1,2} states to which the atoms decay with a high branching ratio. The cooling and repumping transition have a common upper state. This leads to dark resonances and hence make optical cooling less inefficient. The experimental observations can be accurately modelled by the optical Bloch equations. Comparison with experimental results allows us to extract relevant parameters for effective laser cooling of barium.

  1. Improved spectrophotometric analysis of barium styphnate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N E; Blasi, J A

    1983-01-01

    A spectrophotometric procedure to determine the purity of barium styphnate monohydrate based upon the absorbance of the styphnate ion at 326 and 413.3 nm has been developed. The purity is determined by comparing the absorbance of the styphnate ion in barium styphnate and in styphnic acid. Our investigation has shown that the molar absorptivity and lambda maxima of the styphnate ion are quite pH dependent; therefore, the pH is buffered to 6.8 to 7.0 with ammonium acetate. Under these conditions the molar absorptivity is 1.6 x 10/sup 4/ L/mol-cm. Analyses following the procedure in the Navy specification WS13444A using water were found to give low molar absorptivities (1.3 x 10/sup 4/ L/mol-cm) for the styphnic acid calibration resulting in erroneous values for barium styphnate purity.

  2. XPS and ion beam scattering studies of leaching in simulated waste glass containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D.P.; Pronko, P.P.; Marcuso, T.L.M.; Lam, D.J.; Paulikas, A.P.

    1980-01-01

    Glass samples (consisting of 2 mole % UO/sub 3/ dissolved in a number of complex borosilicate simulated waste glasses including Battelle 76-68) were leached for varying times in distilled water at 75/sup 0/C. The glass surfaces were examined before and after leaching using x-ray photoemission spectroscopy and back-scattered ion beam profiling. Leached samples showed enhanced surface layer concentrations of several elements including uranium, titanium, zinc, iron and rare earths. An experiment involving the leaching of two glasses in the same vessel showed that the uranium surface enhancement is probably not due to redeposition from solution.

  3. Effect of Thermal Treatment and Acid Leaching Process on Pore Characteristics of Nanometer Porous Glass

    Institute of Scientific and Technical Information of China (English)

    HAN Jianjun; XU Feng; LIU Jiandang; ZHAO Xiujian

    2007-01-01

    Porous glass was prepared by thermally treating sodium borosilicate glass for different time,the effect of thermal treatment on pore size distribution was discussed and the pore size of the prepared porous glass was measured by scanning electron microscopy (SEM) and differential thermal analysis (DTA). The results show that the optimum porous glass with an average diameter of 80 nm can be prepared by thermal treatment at 600 ℃ for 12 h and then acid treatment for 12 h in 2 mol· L-1 hydrochloric acid solution.

  4. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z. [and others

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.

  5. Survey of glass plutonium contents and poison selection

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.; Ramsey, W.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Ellison, A.J.G.; Shaw, H. [Lawrence Livermore National Laboratory, CA (United States)

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will prevent criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.

  6. New applications of r.f.-sputtered glass films as protection and bonding layers in silicon micromachining

    NARCIS (Netherlands)

    Berenschot, Johan W.; Gardeniers, Johannes G.E.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1994-01-01

    Different r.f-sputtered borosilicate glass films are characterized. Layers sputtered in 100% Ar and annealed in N2 at 550 °C for 3.5 h are found to be best applicable as protection layers in anisotropic etching of Si in KOH solutions and as bonding layers in silicon micromachining. For in situ

  7. Effect of Uniformly and Nonuniformly Coated Al2O3 Nanoparticles over Glass Tube Heater on Pool Boiling

    Directory of Open Access Journals (Sweden)

    Nitin Doifode

    2016-01-01

    Full Text Available Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.

  8. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  9. Electronic structure of nanograin barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    DENG Xiangyun; WANG Xiaohui; LI Dejun; LI Longtu

    2007-01-01

    The density of states and band structure of 20 nm barium titanate(BaTiO3,BT)ceramics are investigated by first-principles calculation.The full potential linearized augmented plane wave(FLAPW)method is used and the exchange correlation effects are treated by the generalized gradient approximation(GGA).The results show that there is substantial hybridization between the Ti 3d and O 2p states in 20 nm BT ceramics and the interaction between barium and oxygen is typically ionic.

  10. Liquid phase sintering of BaTiO/sub 3/ by boric oxide (B/sub 2/O/sub 3/) and lead borate (PbB/sub 2/O/sub 4/) glasses and its effect on dielectric strength and dielectric constant

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.K.; Sharma, M.L. (National Physical Lab., New Delhi (India))

    1989-07-01

    A systematic study on liquid phase sintering of barium titanate ceramics with low melting glasses has been done. Liquid phase sintering of barium titanate with low melting glasses has the potential of reducing the sintering temperature of barium titanate and avoiding the use of expensive metals, (Pt, Pd etc) as electrodes in multilayer capacitors. As regards the effect of this technique on dielectric properties, dielectric strengths is found to increase from and dielectric constant is found to decrease.

  11. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    Science.gov (United States)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  12. Property Data for Simulated Americium/Curium Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, B.J.; Smith, D.E.; Peeler, D.K.; Reamer, I.A.; Vienna, J.D.; Schweiger, M.J.

    1999-10-20

    The authors studied the properties of mixed lanthanide-alumino-borosilicate glasses. Fifty-five glasses were designed to augment a previous, Phase I, study by systematically varying the composition of Ln{sub 2}O{sub 3} and the concentrations of Ln{sub 2}O{sub 3}, SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, and SrO in glass. These glasses were designed and fabricated at the Savannah River Technology Center and tested at the Pacific Northwest National Laboratory. The properties measured include the high-temperature viscosity ({eta}) as a function of temperature (T) and the liquidus temperature (T{sub L}) of Phase II test glasses.

  13. Work Function Calculation For Hafnium- Barium System

    Directory of Open Access Journals (Sweden)

    K.A. Tursunmetov

    2015-08-01

    Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.

  14. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  15. Scattering lengths of calcium and barium isotopes

    NARCIS (Netherlands)

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca

  16. Barium Ferrite Films Grown by Laser Ablation

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; Haan, de P.; Smithers, M.A.; Roesthuis, F.J.G.

    1998-01-01

    Pulsed laser ablation (PLA) has been used to grow barium ferrite films on Al2O3 single crystal substrates. When deposition occurs in an oxidising atmosphere at high temperatures, the films are single BaFe12O19 phase, very well oriented with (001) texture, and exhibit a large perpendicular magnetic a

  17. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium(Ⅲ)

    Science.gov (United States)

    Wang, Fu; Liao, Qilong; Dai, Yunya; Zhu, Hanzhen

    2016-08-01

    Immobilization of gadolinium (Gd), a nonradioactive surrogate for Pu3+, in iron borophosphate glasses/glass-ceramics (IBP glasses/glass-ceramics) has been investigated. The IBP glass containing 4 mol% Gd2O3 is homogeneously amorphous. At higher Gd2O3 concentrations, additional Gd is retained in the glasses as crystalline inclusions of monazite GdPO4 crystalline phase detected with X-ray diffraction. Moreover, Gd2O3 addition increases the Tg of the IBP glasses in glass formation range, which is consistent with the structural modification of the glasses. The structure of the Gd2O3-loaded IBP glasses/glass-ceramics is mainly based on pyrophosphate units. The chemical durability of Gd2O3-loaded IBP glasses/glass-ceramics is comparable to widely used borosilicate glass waste forms and the existence of monazite GdPO4 crystalline phase does not degrade the aqueous chemical durability of the IBP glasses/glass-ceramics. The Gd-loading results imply that the solubility should not be a limiting factor in processing nuclide Pu3+ if the formed crystalline phase(s) have high chemical durability.

  18. Critical review of glass performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.

  19. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  20. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading.

    Science.gov (United States)

    Wittenburg, Gretel; Lauer, Günter; Oswald, Steffen; Labudde, Dirk; Franz, Clemens M

    2014-08-01

    Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications.

  1. Foaming of CRT panel glass powder with Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    composition in question. In this work, we foam panel glass cullet using sodium carbonate (Na2CO3) as a foaming agent, and study the foaming mechanism. When heat treating Na2CO3 powder with cullet powder, Na2CO3 reacts with the glass melt and is decomposed into Na2O and CO2. The released CO2 foams the glass......Recycling of cathode ray tube (CRT) glass remains a challenging task. The CRT glass consists of four glass types fused together: Funnel-, neck-, frit- and panel glass. The three former glasses contain toxic lead oxide, and therefore have a low recycling potential. The latter on the other hand...... is lead-free, but since barium and strontium oxide are present, panel glass is incompatible with most common recycling methods. However, foam glass production is a promising approach for the recycling of panel glass waste, since the process parameters can be changed according to the glass waste...

  2. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  3. Zirconium fluoride glass - Surface crystals formed by reaction with water

    Science.gov (United States)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  4. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  5. Preparation of Long-Lasting Phosphorescence (LLP) Glass-Ceramic Materials

    Institute of Scientific and Technical Information of China (English)

    李成宇; 苏锵; 王淑彬

    2004-01-01

    Three kinds of glass-ceramics, i.e., Mn2+ doped zinc borosilicate, Eu2+, Dy3+ co-doped strontium aluminoborate and Eu2+, Nd3+ co-doped calcium aluminoborate were prepared, whose phosphorescence emission band peaks at 525, 516 and 464 nm, respectively. In preparation of these glass-ceramics the base glasses were gained by heating the mixed starting materials at high temperature to get the transparent glasses; then those glasses were heat-treated and turned to opaque glass-ceramics. X-ray diffraction(XRD) shows that the crystallites are ZnSiO4, SrAl2O4 and α-CaAl2B2O7, respectively. It is a useful way to get new LLP materials by the method reported in this work that may be considered as "from glass to crystal".

  6. Production of translationally cold barium monohalide ions

    CERN Document Server

    DePalatis, M V

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  7. Iron-borosilicate soft magnetic composites: The correlation between processing parameters and magnetic properties for high frequency applications

    Science.gov (United States)

    Gheiratmand, T.; Madaah Hosseini, H. R.; Seyed Reihani, S. M.

    2017-05-01

    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the compaction pressure was led to the decrease of electrical resistivity. By increasing the frequency both real and imaginary parts of permeability decreased. The use of higher content of borosilicate resulted in the lower decreasing slop of permeability. Best combination of density, permeability and electrical resistivity was obtained in the sample with 2 wt% of borosilicate. In addition, the densification of powders with fine particles was more difficult than coarse particles due to the inter particles friction and bridging effects. Furthermore, as the particles size increases the size of open porosities before sintering where the borosilicate could aggregate enhances. This could yields to the increase in the electrical resistivity. The high ratio of surface to the volume in the powders with fine particles results in the developing the demagnetizing fields and subsequently, decreasing the permeability. The highest relative density (99.99% of theoretical density) with best distribution of borosilicate was achieved in the composites produced by spark plasma sintering (SPS). The relaxation frequency, obtained from imaginary part of permeability, was found as 340 Hz in the composites made by SPS.

  8. An international initiative on long-term behavior of high-level nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Gin, Stephane [CEA Marcoule DTCD SECM LCLT, Bagnols/Ceze (France); Abdelouas, Abdessalam [SUBATECH, Nantes (France); Criscenti, Louise J. [Sandia National Laboratories, Albuquerque, NM (United States); Ebert, W. L. [Argonne National Laboratory (ANL), Argonne, IL (United States); Ferrand, Karine [SCK·CEN, Mol (Belgium); Geisler, Thorsten [Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany); Harrison, Mike T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Inagaki, Yaohiro [Kyushu Univ. (Japan). Dept. Appl. Quantum Physics and Nuclear Engineering; Mitsui, Seiichiro [Japan Atomic Energy Agency, Ibaraki (Japan); Mueller, Karl T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental and Molecular Science Lab.; Marra, James C. [Savannah River National Laboratory, Aiken, SC (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States); Pierce, Eric M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schofield, James M. [AMEC, Harwell Oxford (United Kingdom); Steefel, Carl I. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-06-01

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  9. An international initiative on long-term behavior of high-level nuclear waste glass

    Directory of Open Access Journals (Sweden)

    S. Gin

    2013-06-01

    Full Text Available Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives.

  10. Influence of Composition of Sm2O3-Containing Rare Earth Glass on Its Absorption Spectrum

    Institute of Scientific and Technical Information of China (English)

    Zhang Qitu; Wang Tingwei; Meng Xianfeng; Shan Xiaobing; Xu Zhongzi

    2005-01-01

    Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.

  11. Effects of phosphate buffer in parenteral drugs on particle formation from glass vials.

    Science.gov (United States)

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2013-01-01

    The characteristics of inorganic particles generated in glass vials filled with phosphate buffer solutions were investigated. During storage, particles were visually detected in the phosphate buffer solution in particular glass vials which pass compendial tests of containers for injectable drugs. These particles were considered to be different from ordinal glass delamination, which has been reported in a number of papers because the particles were mainly composed of Al, P and O, but not Si. The formation of the particles accelerated at higher storage temperatures. Among the surface treatments tested for the glass vials, sulfur treatment showed a protective effect on the particle formation in the vials, whereas the SiO(2) coating did not have any protective effects. It was found that the elution ratio of Al and Si in the solution stored in the glass vials after the heating was similar to the ratio of Al and Si in borosilicate glass. However, the Al concentration decreased during storage (5°C, 6 months), and consequently, particle formation was observed in the solution. Adding citrate, which is a chelating agent for Al, effectively suppressed the particle formation in the heated solution. When 50 ppb and higher concentrations of Al ion were added to the phosphate buffer solution, the formation of white particles containing Al, P and O was detected. It is suggested that a phosphate buffer solution in a borosilicate glass vial has the ability to form particles due to interactions with the Al that is eluted from the glass during storage.

  12. Analysis of 26 Barium Stars I. Abundances

    CERN Document Server

    Allen, D M; Allen, Dinah M.; Barbuy, Beatriz

    2006-01-01

    We present a detailed analysis of 26 barium stars, including dwarf barium stars, providing their atmospheric parameters (Teff, log g, [Fe/H], vt) and elemental abundances. We aim at deriving gravities and luminosity classes of the sample stars, in particular to confirm the existence of dwarf barium stars. Accurate abundances of chemical elements were derived. Abundance ratios between nucleosynthetic processes, by using Eu and Ba as representatives of the r- and s-processes are presented. High-resolution spectra with the FEROS spectrograph at the ESO-1.5m Telescope, and photometric data with Fotrap at the Zeiss telescope at the LNA were obtained. The atmospheric parameters were derived in an iterative way, with temperatures obtained from colour-temperature calibrations. The abundances were derived using spectrum synthesis for Li, Na, Al, alpha-, iron peak, s- and r-elements atomic lines, and C and N molecular lines. Atmospheric parameters in the range 4300 < Teff < 6500, -1.2 < [Fe/H] < 0.0 and 1.4...

  13. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  14. Glass integrated nanochannel waveguide for concentration measurements

    Science.gov (United States)

    Jardinier, E.; Bucci, D.; Couston, L.; Canto, F.; Magnaldo, A.; Broquin, J.-E.

    2013-03-01

    We present a new integrated optical sensor for absorption spectroscopy in a hostile environment, based on a nanochannel waveguide structure in glass. The nanochannel waveguide is made by bonding two ion-exchanged borosilicate glass wafers, one of them being etched by reactive ion etching to create a 100 nm deep fluidic channel. Typical fluid/light interaction factors of 2.3 % can be achieved inside a 7.4 pL volume of fluid, over a 550 nm bandwidth, surmounting evanescent wave sensors in terms of confinement efficiency and allowing spectrometric measurements. Absorption measurements have been performed on hexahydrate neodymium nitrate in nitric acid solutions of various concentrations leading to a minimum detectable absorption coefficient of 0.57 cm-1, which can be further decreased by implementing low bending-loss spiral-like nanochannel waveguides.

  15. Barium peritonitis following upper gastrointestinal series: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Su Jin; Hwang, Ji Young; Kim, Yong Jin; Hong, Seong Sook [Soonchunhyang University College of Medicine, Seoul Hospital, Seoul (Korea, Republic of)

    2017-06-15

    We report a rare case of barium peritonitis following an upper gastrointestinal (GI) series and its imaging findings in a 74-year-old female. Barium peritonitis is a rare but life-threatening complication of GI contrast investigation. Therefore, clinical awareness of barium peritonitis as a complication of GI tract contrast investigation would help to prevent such a complication and manage the patients properly.

  16. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  17. Microstructured apertures in planar glass substrates for ion channel research.

    Science.gov (United States)

    Fertig, Niels; George, Michael; Klau, Michèle; Meyer, Christine; Tilke, Armin; Sobotta, Constanze; Blick, Robert H; Behrends, Jan C

    2003-01-01

    We have developed planar glass chip devices for patch clamp recording. Glass has several key advantages as a substrate for planar patch clamp devices. It is a good dielectric, is well-known to interact strongly with cell membranes and is also a relatively in-expensive material. In addition, it is optically neutral. However, microstructuring processes for glass are less well established than those for silicon-based substrates. We have used ion-track etching techniques to produce micron-sized apertures into borosilicate and quartz-glass coverslips. These apertures, which can be easily produced in arrays, have been used for high resolution recording of single ion channels as well as for whole-cell current recordings from mammalian cell lines. An additional attractive application that is greatly facilitated by the combination of planar geometry with the optical neutrality of the substrate is single-molecule fluorescence recording with simultaneous single-channel measurements.

  18. Preliminary Investigation of Sulfur Loading in Hanford LAW Glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Hrma, Pavel R.; Buchmiller, William C.; Ricklefs, Joel S.

    2004-04-01

    A preliminary estimate was developed for loading limits for high-sulfur low-activity waste (LAW) feeds that will be vitrified into borosilicate glass at the Hanford Site in the waste-cleanup effort. Previous studies reported in the literature were consulted to provide a basis for the estimate. The examination of previous studies led to questions about sulfur loading in Hanford LAW glass, and scoping tests were performed to help answer these questions. These results of these tests indicated that a formulation approach developed by Vienna and colleagues shows promise for maximizing LAW loading in glass. However, there is a clear need for follow-on work. The potential for significantly lowering the amount of LAW glass produced at Hanford (after the initial phase of processing) because of higher sulfur tolerances may outweigh the cost and effort required to perform the necessary testing.

  19. History and challenges of barium titanate: Part I

    Directory of Open Access Journals (Sweden)

    Vijatović M.M.

    2008-01-01

    Full Text Available Barium titanate is the first ferroelectric ceramics and a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties. Barium titanate is a member of a large family of compounds with the general formula ABO3 called perovskites. Barium titanate can be prepared using different methods. The synthesis method depends on the desired characteristics for the end application. The used method has a significant influence on the structure and properties of barium titanate materials. In this review paper, Part I contains a study of the BaTiO3 structure and frequently used synthesis methods.

  20. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  1. Thermochemical hydrogen production via a cycle using barium and sulfur: reaction between barium sulfide and water

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Conger, W.L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653 to 866/sup 0/C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. The rate of formation of hydrogen can be expressed as: RH2 = 1.07 x 10/sup -2/ exp (-3180/RT) (mol H/sub 2//mol BaS s). Hydrogen sulfide was produced during the initial period of reaction and the quantity of hydrogen sulfide formed during this period decreased as the temperature of reaction was increased.

  2. Effect of host glass matrix on structural and optical behavior of glass-ceramic nanocomposite scintillators

    Science.gov (United States)

    Brooke Barta, M.; Nadler, Jason H.; Kang, Zhitao; Wagner, Brent K.; Rosson, Robert; Kahn, Bernd

    2013-12-01

    Composite scintillator systems have received increased attention in recent years due to their promise for merging the radioisotope discrimination capabilities of single crystal scintillators with the high throughput scanning capabilities of portal monitors. However, producing the high light yield required for good energy resolution has proven challenging as scintillation photons are often scattered by variations in refractive index and agglomerated scintillator crystals within the composite. This investigation sought to mitigate these common problems by using glass-ceramic nanocomposite materials systems in which nanoscale scintillating crystallites are precipitated in a controlled manner from a transparent glass matrix. Precipitating crystallites in situ precludes nanoparticle agglomeration, and limiting crystallite size to 50 nm or less mitigates the effect of refractive index mismatch between the crystals and host glass. Cerium-doped gadolinium bromide (GdBr3(Ce)) scintillating crystals were incorporated into sodium-aluminosilicate (NAS) and alumino-borosilicate (ABS) host glass matrices, and the resulting glass-ceramic structures and luminescence behavior were characterized. The as-cast glass from the ABS system displayed a highly ordered microstructure that produced the highest luminescence intensity (light yield) of the samples studied. However, heat treating to form the glass-ceramic precipitated rare-earth oxide crystallites rather than rare-earth halides. This degraded light yield relative to the unaged sample.

  3. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    Science.gov (United States)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  4. Fabrication of artificial gemstones from glasses: From waste to jewelry

    Science.gov (United States)

    Srisittipokakun, N.; Ruangtaweep, Y.; Horprathum, M.; Kaewkhao, J.

    2014-09-01

    In this review, several aspects of artificial gemstones from glasses have been addressed from the advantages, the fabrication process, the coloration, their properties and finally the use of RHA as the glass former for the simulant gemstones. The silica sources for preparation of glasses were locally obtained from sand and biomass ashes in Thailand. The refractive index, density and hardness values of the glass gemstones reported in these researches had been meet the standard of EU-regulation for crystal. The glass gemstones were fabricated in a variety of colors with some special features such as color changing when exposed under different light sources. Barium was used instead of lead to increase the density and refractive index of the glasses. The developments of high refractive index lead-free glasses are also leave non-toxically impact to our environment.

  5. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials

    Science.gov (United States)

    1988-09-15

    the strength and fatigue characteristics of ZBLAN (zirconium barium-lanthanum-aluminum-sodium fluoride) optical glass fiber obtained from British...Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materlals 12. PERSONAL AUTHOR(S) Carlo G. Pantano 13a. TYPE OF...fluorozirconate glasses . °. DTICS ELEC T E DEC 09 I 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21.-A% RACT SECURITY CLASSIFICATION [BUNCLASSIFIED/UNLIMITED

  6. Bioactive glass/polymer composites for bone and nerve repair and regeneration

    Science.gov (United States)

    Mohammadkhah, Ali

    Bioactive glasses have several attractive properties in hard and soft tissue repair but their brittleness limited their use, as scaffolding materials, for applications in load-bearing hard tissue repair. At the same time, because of their bioactive properties, they are being studied more often for soft tissue repair. In the present work, a new glass/polymer composite scaffold was developed for the repair of load-bearing bones with high flexural strength and without brittle behavior. The new composites have 2.5 times higher flexural strength and ˜100 times higher work of fracture (without catastrophic failure) compared to a similar bare glass scaffold. Also the use of two known bioactive glasses (13-93-B3 and 45S5) was investigated in developing glass/Poly(epsilon-caprolactone) (PCL) composite films for peripheral nerve repair. It was found that a layer of globular hydroxyapatite (HA) formed on both sides of the composites. The borate glass in the composites was fully reacted in SBF and different ions were released into the solution. The addition of bioactive glass particles to the PCL lowered its elastic modulus and yield strength, but the composites remained intact after the 14 day period in SBF at 37°C. Finally, in an effort to design a better bioactive glass, new borosilicate glass compositions were developed that possess advantages of borate and silicate bioactive glasses at the same time. It was found that replacing small amounts of B2O3 with SiO2 improved glass formation, resistance to nucleation and crystallization, and increased the release rate of boron and silicon in vitro. This new borosilicate glass could be a good alternative to existing silicate and borate bioactive glasses.

  7. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  8. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  9. Canonical correlation of waste glass compositions and durability, including pH

    Energy Technology Data Exchange (ETDEWEB)

    Oeksoy, D.; Pye, L.D. (Alfred Univ., NY (United States)); Bickford, D.F.; Ramsey, W.G. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  10. Canonical correlation of waste glass compositions and durability, including pH

    Energy Technology Data Exchange (ETDEWEB)

    Oeksoy, D.; Pye, L.D. [Alfred Univ., NY (United States); Bickford, D.F.; Ramsey, W.G. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-05-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  11. INFLUENCE OF BARIUM OXIDE ADDITIONS ON PORTLAND CLINKER

    Directory of Open Access Journals (Sweden)

    Anezka Zezulova

    2016-12-01

    Full Text Available Nowadays, nuclear power plants are widespread around the world and research is of great interest. Together with nuclear research, shielding of different types of radiation is an important current topic of research aiming at their safety. Portland cement has been an elementary building material for centuries. Since barium is very efficient in shielding different types of radiation, it can be assumed that the radiation shielding capability of cement can be improved by incorporation of barium. This work deals with the influence of barium oxide, added in the form of barium carbonate and sulphate, on the formation and properties of Portland clinker. The structure of burnt clinkers and the ratio of clinker phases were studied by polarizing microscopy and by X-ray diffraction. With increasing barium content, the alite-belite ratio decreases and the content of free lime gradually increases. Moreover, sulphates induce the growth of alite crystals. The ability of barium to be a part of the clinker minerals was observed by scanning electron microscopy. Belite and clinker melt contain the highest amount of barium, but aggregates of barium oxide are formed in the clinker melt. Furthermore, the rate of alite crystallization was studied under isothermal conditions.

  12. Barium enema findings of milk allergy in infants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyoung Ju; Kim, Mi Jeong; Lee, Hee Jung [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention.

  13. [Silica, aluminum, iron, sulfur, and barium in a urinary calculus].

    Science.gov (United States)

    Rodríguez-Miñón Cifuentes, J L; Salvador, E; Bellanato, J; Medina, J A

    1994-05-01

    Presentation of the analytical results by Sweep Microscopy of a small papillary calculus spontaneously eliminated after a nephritic colic. The main component is monohydrate calcium oxalate. When the stone core was analyzed with EDAX, silica, aluminium, iron, sulphur and barium were detected. The origin of these elements is discussed and the presence of barium emphasized as exceptional.

  14. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  15. Scattering lengths of calcium and barium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dammalapati, U.; Willmann, L.; Knoop, S. [Kernfysisch Versneller Instituut (KVI), University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); LaserLaB Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2011-11-15

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed {sup 40}Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.

  16. Europium-doped barium bromide iodide

    Energy Technology Data Exchange (ETDEWEB)

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  17. Preparation and characterization of mesoporous lithium borosilicate material via the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Touati, F., E-mail: Fathi.Touati@fss.rnu.tn [Laboratoire de Chimie de la Matiere Condensee, Universite de Tunis., Institut Preparatoire aux Etudes d' Ingenieur de Tunis, 2 rue Jawaher Lel Nehru 1008 Montfleury-Tunis (Tunisia); Sediri, F. [Laboratoire de Chimie de la Matiere Condensee, Universite de Tunis., Institut Preparatoire aux Etudes d' Ingenieur de Tunis, 2 rue Jawaher Lel Nehru 1008 Montfleury-Tunis (Tunisia); Faculte des Sciences de Tunis, Universite Tunis-Elmanar, Tunis (Tunisia); Gharbi, N. [Laboratoire de Chimie de la Matiere Condensee, Universite de Tunis., Institut Preparatoire aux Etudes d' Ingenieur de Tunis, 2 rue Jawaher Lel Nehru 1008 Montfleury-Tunis (Tunisia)

    2009-05-05

    The lithium borosilicate gels were prepared from the cohydrolysis of the tetraehtylorthosilicate (Si(C{sub 2}H{sub 5}O){sub 4}) and triethylborate (B(C{sub 2}H{sub 5}O){sub 3}) by using an ethanolic solution of tetradecyltrimethylammonium bromide (TTAB) as surfactant. The Li{sup +} ions were introduced from an acidic solution of lithium carbonate (Li{sub 2}CO{sub 3}). Depending on the B/Si, Li/Si and TTAB/Si molar ratios at pH equal to 1 and at room temperature, monolithic and transparent colourless gels were obtained. The structure of the gel was investigated by infrared spectroscopy (IR), {sup 29}Si, {sup 11}B and {sup 7}Li solid-state magnetic resonance (MAS NMR) and by thermal analysis (DTA-TG). The results show the possibility of obtaining a borosilicate network via B-O-Si bonds in which Li{sup +} ions were dispersed. The adsorption-desorption isotherms of the xerogel were characteristic of mesoporous materials. These materials may provide a greater free volume through which conducting ions can move.

  18. Barium appendicitis: A single institution review in Japan

    Science.gov (United States)

    Katagiri, Hideki; Lefor, Alan Kawarai; Kubota, Tadao; Mizokami, Ken

    2016-01-01

    AIM To review clinical experience with barium appendicitis at a single institution. METHODS A retrospective review of patients admitted with a diagnosis of acute appendicitis, from January 1, 2013 to December 31, 2015 was performed. Age, gender, computed tomography (CT) scan findings if available, past history of barium studies, pathology, and the presence of perforation or the development of complications were reviewed. If the CT scan revealed high density material in the appendix, the maximum CT scan radiodensity of the material is measured in Hounsfield units (HU). Barium appendicitis is defined as: (1) patients diagnosed with acute appendicitis; (2) the patient has a history of a prior barium study; and (3) the CT scan shows high density material in the appendix. Patients who meet all three criteria are considered to have barium appendicitis. RESULTS In total, 396 patients were admitted with the diagnosis of acute appendicitis in the study period. Of these, 12 patients (3.0%) met the definition of barium appendicitis. Of these 12 patients, the median CT scan radiodensity of material in the appendix was 10000.8 HU, ranging from 3066 to 23423 HU (± 6288.2). In contrast, the median CT scan radiodensity of fecaliths in the appendix, excluding patients with barium appendicitis, was 393.1 HU, ranging from 98 to 2151 HU (± 382.0). The CT scan radiodensity of material in the appendices of patients with barium appendicitis was significantly higher than in patients with nonbarium fecaliths (P < 0.01). CONCLUSION Barium appendicitis is not rare in Japan. Measurement of the CT scan radiodensity of material in the appendix may differentiate barium appendicitis from routine appendicitis.

  19. Melter Glass Removal and Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  20. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  1. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  2. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  3. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  4. Actinide speciation in glass leach-layers: An EXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Biwer, B.M.; Soderholm, L. [Argonne National Lab., IL (United States); Greegor, R.B. [Boeing Co., Seattle, WA (United States); Lytle, F.W. [EXAFS Co., Pioche, NV (United States)

    1996-12-31

    Uranium L{sub 3} X-ray absorption data were obtained from two borosilicate glasses, which are considered as models for radioactive wasteforms, both before and after leaching. Surface sensitivity to uranium speciation was attained by a novel application of simultaneous fluorescence and electron-yield detection. Changes in speciation are clearly discernible, from U(VI) in the bulk to (UO{sub 2}){sup 2+}-uranyl in the leach layer. The leach-layer uranium concentration variations with leaching times are also determined from the data.

  5. Photowritten gratings in ion-exchanged glass waveguides.

    Science.gov (United States)

    Roman, J E; Winick, K A

    1993-05-15

    The fabrication of an ion-exchanged waveguide beam deflector containing a photowritten grating is described. The planar waveguide was fabricated by thermal K(+) exchange in a borosilicate glass. The grating was written by photobleaching an absorption defect centered at 330 am, which was created by gamma-ray irradiation of the glass. The bleaching was accomplished with the 351-nm line from an argon laser. The device achieved 35% deflection efficiency at 633 nm, which corresponded to a grating with a photoinduced index change of 2.6 x 10(-5). This is to our knowledge the first demonstration of an ion-exchanged glass waveguide device containing a permanent photowritten grating.

  6. Immobilization of Technetium Waste from Pyro-processing Using Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jong; Pyo, Jae-Young; Lee, Cheong-Won [POSTECH, Pohang (Korea, Republic of); Yang, Jae-Hwan; Park, Hwan-Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Vitrification of Tc wastes has been challenging because of the low solubility in the silicate glass and high volatility in the melting process. In previous studies, the measured solubility of Tc and Re was ⁓ 3000 ppm at 1000 .deg. C in low activity waste (LAW) glass. And retention of Tc has been reported within 12 - 77% during the borosilicate vitrification process. Tellurite glasses have been studied for halide waste immobilization due to low melting temperatures (Tm= 600-800 .deg. C) and flexibility of network with foreign ions. Tellurite glasses offered higher halide retention than borosilicate glasses. The structure of pure tellurite (TeO{sub 2}) consists of TeO{sub 4} trigonal bipyramids (tbp), but TeO{sub 4} units are converted to TeO{sub 3} trigonal pyramids (tp) having non-bridging oxygen (NBO) as the modifiers added. Objectives of this study are to investigate the tellurite glasses for Tc immobilization using Re as a surrogate. Retention and waste loading of Re were analyzed during the vitrification process of tellurite glass. We investigated local structures of Re ions in glasses by Raman and X-ray absorption spectroscopies. The tellurite glass was investigated to immobilize the Ca(TcO{sub 4}){sub 2}, surrogated by Ca(ReO{sub 4}){sub 2}. The average of Re retention in tellurite glass was 86%. The 7-day PCT results were satisfied with U.S requirement up to 9 mass% of Ca(ReO{sub 4}){sub 2} content. Re in the tellurite glass exists +7 oxidation state and was coordinated with 4 oxygen.

  7. Strengthening mechanism of steels treated by barium-bearing alloys

    Institute of Scientific and Technical Information of China (English)

    Zhouhua Jiang; Yang Liu

    2008-01-01

    The deoxidation, desulfurization, dephosphorization, microstructure, and mechanical properties of steels treated by barium-bearing alloys were investigated in laboratory and by industrial tests. The results show that barium takes part in the deoxidation reaction at the beginning of the experiments, generating oxide and sulfide compound inclusions, which easily float up from the molten steel, leading to the rapid reduction of total oxygen content to a very low level. The desulfurization and dephosphorization capabilities of calcium-bearing alloys increase with the addition of barium. The results of OM and SEM observations and mechanical property tests show that the structure of the steel treated by barium-bearing alloys is refined remarkably, the iamellar thickness of pearlitic structure decreases, and the pearlitic morphology shows clustering distribution. Less barium exists in steel substrate and the enrichment of barium-bearing precipitated phase mostly occurs in grain boundary and phase boundary, which can prevent the movement of grain boundary and dislocation during the heat treatment and the deformation processes. Therefore, the strength and toughness of barium-treated steels are improved by the effect of grain-boundary strengthening and nail-prick dislocation.

  8. Foaming of waste cathode ray tube panel glass via CaCO3

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    of a TV. In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high quality foam glass from the recycled lead-free glass. We study the influence of foaming...... parameters on the characteristics of foam. CRT panel glass was crushed, milled and sieved below 63 m. CaCO3 was used as a foaming agent and was mixed with glass powders by means of a planetary ball mill. Preliminary results show that milling conditions and particle size have a major influence on the foaming...... process and resulting density of samples. We investigate the influence of foaming agent concentration on the foaming process, foam density, foam porosity and homogeneity. We demonstrate how milling and foaming conditions affect the foam properties for different amounts of CaCO3. A minimum in the density...

  9. Barium concentration in grain of Aegilops and Triticum species

    Directory of Open Access Journals (Sweden)

    Denčić Srbislav S.

    2015-01-01

    Full Text Available The aim of this study was to evaluate the concentration of barium in grain of various Aegilops and Triticum species with different genomes. The studied species differed significantly with respect to the concentration of barium. The grain of wild diploid Aegilops speltoides, the donor of B genome, contained significantly higher Ba concentration than all other analyzed genotypes. Wild and cultivated tetraploid wheats (Triticum diciccoides, Triticum dicoccon, Triticum turgidum and Triticum durum had the lowest Ba concentration in grain. The modern cultivated hexaploid varieties presented substantial variation in grain concentration of barium. The highest Ba concentration (3.42 mg/kg occurred in Serbian winter wheat variety Panonnia.

  10. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  11. Melting Hanford LAW into Iron-Phosphate Glass in a CCIM

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Sharna Rossberg

    2011-09-01

    A vitrification test has been conducted using the cold crucible induction melter (CCIM) test system at the Idaho National Laboratory. The test was conducted to demonstrate the vitrification of a Hanford low activity waste (LAW) that contains relatively large amounts of sulfate and sodium, compared to other radioactive Hanford waste streams. The high sulfate content limits the potential loading of this waste stream in conventional borosilicate glass, so this test demonstrated how this waste stream could be vitrified in an iron-phosphate glass that can tolerate higher levels of sulfate.

  12. Analysis of europium doped luminescent barium thioaluminate

    Institute of Scientific and Technical Information of China (English)

    张东璞; 喻志农; 薛唯; 章婷; 丁瞾; 王武育

    2010-01-01

    Europium-doped barium thioaluminate sputtering target was synthesized by powder sintering method and thin film was deposited by radio frequency(RF) sputtering.X-ray diffractometer(XRD) pattern indicated that the main compound of the target was BaAl4S7.Oxygen was the main impurity which led to the formation of BaAl2O4.It was shown that both BaAl4S7 and BaAl2S4 were contained in the as-grown thin films and a 471.7 nm emission peak in the PL spectra appeared due to a combination of BaAl4S7:Eu2+ and BaAl2S4:Eu2...

  13. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  14. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  15. Structural control of the stability of nuclear waste glasses

    Science.gov (United States)

    Calas, G.; Galoisy, L.; Cormier, L.; Bergeron, B.; Jollivet, P.

    2009-05-01

    Vitrification of liquid high-level radioactive waste in borosilicate glasses has received a great attention in several countries. The fundamental properties of the waste forms are their chemical and mechanical durability. We present an overview of the local structure of inactive analogs of the French nuclear glass, using structural information obtained by a combination of X-ray absorption Fine Structure (XAFS) and Wide Angle X-ray Scattering (WAXS). We will first contrast several classes of elements, such as Zr, Mo or Zn, which give nuclear glasses peculiar positive or adverse properties for the industrial process: enhanced chemical stability, phase separation, crystal nucleation and separation. These properties may be rationalized using Pauling rules, familiar to Mineralogists, as other properties are correctly modelled in simplified glass compositions using molecular dynamics. We will also point out the importance of the melt-to-glass transition and the consequence of the glass structural properties on the resistance of glassy matrices to irradiation. Glass alteration affects the long-term stability of the glass. It is characterized by an amorphous (glass)-amorphous (gel) transformation. Depending on alteration conditions, alteration layers may have or not a protective character, which will influence radionuclide retention over time. We will present the structural modification of the surface chemistry of the glass monoliths during short-term experiments and the evolution towards a gel, which forms progressively at the expense of the glass. The protective character of the gel, observed during glass leaching under near-saturated conditions, will be rationalized by its structural properties.

  16. A NOVEL HYDROTHERMAL SYNTHESIS METHOD FOR BARIUM FERRITE

    Institute of Scientific and Technical Information of China (English)

    Kang Li; Hongchen Gu; Qun Wei

    2004-01-01

    In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 ℃ using barium chloride (BaCl2), ferrous chloride (FeCl2) and potassium nitrate (KNO3) as the starting materials. Both particle size and saturation magnetization (Ms) increase with increasing hydrothermal reaction temperature, while the intrinsic coercivity (iHc) peaks at 685 Oe at 230 ℃. Morphology progress from the barium ferrite precursor particles to the barium hexaferrite particles has been monitored with increasing hydrothermal reaction time at 230 ℃ in the autoclave.

  17. Peritonite por bário Barium peritonitis

    Directory of Open Access Journals (Sweden)

    Gerson Alves Pereira Júnior

    1999-10-01

    Full Text Available We report a case of a 49 years-old man who underwent a barium meal examination for an epigastric pain. A perforated gastric ulcer with barium extravasation into peritoneal cavity was seen on X-rays. During an emergency laparotomy, a perforated pyloric ulcer was noted, along with barium contamination in the peritoneal cavity. The ulcer was closed with an omental patch and an extensive peritoneal lavage with saline was performed. During the postoperative period, the patient developed signs of peritonitis and underwent a new laparotomy was at the 9th day showing a subfrenic abscess with a large barium contamination. The patient presented septic shock and multiple organ failure. dying on the 21th day.

  18. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    Institute of Scientific and Technical Information of China (English)

    Pankaj; Gupta; Uma; Debi; Saroj; Kant; Sinha; Kaushal; Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract(GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence,a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities.

  19. Strength Improvement of Glass Substrates by Using Surface Nanostructures.

    Science.gov (United States)

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-12-01

    Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending strength after surface nanostructure fabrication. Fused silica, exhibited limited strength improvement. Therefore, a 4-μm-deep square notch was fabricated to study the effect of a dominant defect in low defect density glass. The reduced bending strength of fused silica caused by artificial defect increased 65 % in the presence of 2-μm-deep nanostructures, and the fused silica regained its original strength when the nanostructures were 4 μm deep. In fragmentation tests, the fused silica specimen broke into two major portions because of the creation of artificial defects. The number of fragments increased when nanostructures were fabricated on the fused silica surface. Bending strength improvement and fragmentation test confirm the usability of this method for glasses with low defect densities when a dominant defect is present on the surface. Our findings indicate that nanostructure-based strengthening is suitable for all types of glasses irrespective of defect density, and the observed Weibull modulus enhancement confirms the reliability of this method.

  20. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  1. Coastal barium cycling at the West Antarctic Peninsula

    Science.gov (United States)

    Pyle, K. M.; Hendry, K. R.; Sherrell, R. M.; Meredith, M. P.; Venables, H.; Lagerström, M.; Morte-Ródenas, A.

    2017-05-01

    Barium cycling in the ocean is associated with a number of processes, including the production and recycling of organic matter, freshwater fluxes, and phenomena that affect alkalinity. As a result, the biogeochemical cycle of barium offers insights into past and present oceanic conditions, with barium currently used in various forms as a palaeoproxy for components of organic and inorganic carbon storage, and as a quasi-conservative water mass tracer. However, the nature of the oceanic barium cycle is not fully understood, particularly in cases where multiple processes may be interacting simultaneously with the dissolved and particulate barium pools. This is particularly the case in coastal polar regions such as the West Antarctic Peninsula, where biological drawdown and remineralisation occur in tandem with sea ice formation and melting, glacial meltwater input, and potential fluxes from shelf sediments. Here, we use a high-precision dataset of dissolved barium (Bad) from a grid of stations adjacent to the West Antarctic Peninsula in conjunction with silicic acid (Si(OH)4), the oxygen isotope composition of water, and salinity measurements, to determine the relative control of various coastal processes on the barium cycle throughout the water column. There is a strong correlation between Bad and Si(OH)4 present in deeper samples, but nevertheless persists significantly in surface waters. This indicates that the link between biogenic opal and barium is not solely due to barite precipitation and dissolution at depth, but is supplemented by an association between Bad and diatom tests in surface waters, possibly due to barite formation within diatom-dominated phytodetritus present in the photic zone. Sea-ice meltwater appears to exert a significant secondary control on barium concentrations, likely due to non-conservative biotic or abiotic processes acting as a sink for Bad within the sea ice itself, or sea-ice meltwater stimulating non-siliceous productivity that acts

  2. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Chongqing University of Science and Technology, Chongqing 401331 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Xi, Yi [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Peng, Chen [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wan, Buyong; He, Xiaoshan [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China)

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  3. Solar eclipse sign of intussusception on barium enema.

    Science.gov (United States)

    Raveenthiran, V

    2002-01-01

    The colographic appearance of intussusception is variously described as a claw sign, pincer defect, shouldering effect, and coiled-spring pattern. This report adds a new radiographic sign to the list. An end-on view of an intussusception on barium enema shows a ring of contrast resembling a solar eclipse. Familiarity with this bizarre appearance is desirable, lest it may be mistaken for spillage of barium due to a colonic perforation.

  4. INFLUENCE OF BARIUM OXIDE ADDITIONS ON PORTLAND CLINKER

    OpenAIRE

    Anezka Zezulova; Theodor Stanek; Opravil Tomas

    2016-01-01

    Nowadays, nuclear power plants are widespread around the world and research is of great interest. Together with nuclear research, shielding of different types of radiation is an important current topic of research aiming at their safety. Portland cement has been an elementary building material for centuries. Since barium is very efficient in shielding different types of radiation, it can be assumed that the radiation shielding capability of cement can be improved by incorporation of barium. ...

  5. Effect of Kovar alloy oxidized in simulated N2/H2O atmosphere on its sealing with glass

    Institute of Scientific and Technical Information of China (English)

    Dawei Luo; Wenbo Leng; Zhuoshen Shen

    2008-01-01

    The effect of Kovar alloy oxidized in simulated field atmosphere on its sealing with glass was studied in this article. After Kovar plates and pins were preoxidized in N2 with 0℃, 10℃ and 20℃ dew points at 1000℃ for different times, Fe3O4 and Fe2O3 existed in the oxidation products on Kovar surface, and the quantity of Fe2O3 increased with increasing dew point and oxidation time.Then they were sealed with borosilicate glass insulator at 1030℃ for 20 min. The results indicated that the type and quantity of oxidation products would directly influence the quality of glass-to-metal seals. With the increase of oxidation products, gas bubbles in the glass insulator were more serious, the climbing height of glass along the pins was higher, and corrosion of Kovar pins caused from the molten glass was transformed from uniform to the localized.

  6. Electrorheological behavior of rare earth-doped barium titanate suspensions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Doping Y, La, Ce into barium titanate is found to be able to improve its electrorheological (ER) effect in DC electrical field. The yield stress of a typical doped barium titanate/silicone oil suspension is approximately 3.2 -*7〗kPa at 3.5 -*7〗kV/mm, which is 10 times larger than that of pure barium titanate/silicone oil suspensions. The ER effect increases with the decrease of ionic radius of rare earth (RE) dopant when RE concentration remains constant, and the suspensions exhibit a relatively high shear stress when Y, La, Ce mole fractions are 15%, 10%~15%, and 5%, respectively. Dielectric measurements show that the suitable doping with RE element increases dielectric loss of barium titanate and causes very marked dielectric relaxation at low frequency. By measuring X-ray diffraction patterns of doped barium titanate, it is considered that the occurrence of lattice distortion or defects may be responsible for the change of dielectric properties which results in the improvement of ER effect of barium titanate in DC electrical field.

  7. Lifetime Measurement for 6snp Rydberg States of Barium

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; WANG Lei; YANG Hai-Feng; LIU Xiao-Jun; LIU Hong-Ping

    2011-01-01

    @@ We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states.This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence.The lifetimes determined with our method for barium Rydberg 6snp(n=37-59)series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J.Phys.B 14(1981)4489, 29(1996)655]on experiments.%We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states. This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence. The lifetimes determined with our method for barium Rydberg 6snp (n=37-59) series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J. Phys. B 14 (1981) 4489, 29 (1996) 655] onexperiments.

  8. Barium ferrite/epoxy resin nanocomposite system: Fabrication, dielectric, magnetic and hydration studies

    Directory of Open Access Journals (Sweden)

    A. Kanapitsas

    2016-03-01

    Full Text Available Composite systems of epoxy resin and barium ferrite nanoparticles have been prepared, and studied varying the content of the inclusions. Morphology of prepared samples has been examined via scanning electron microscopy and X-ray diffraction spectra, while electrical and magnetic properties were investigated by means of broadband dielectric spectroscopy, and magnetization tests respectively. Finally, water vapor sorption measurements were conducted in order to study the water sorption dynamics of the system. Electron microscopy images revealed the successful fabrication of nanocomposites. Dielectric permittivity increases with filler content, while three relaxation processes were detected in the relative spectra. These processes are attributed to interfacial polarization, glass to rubber transition of the matrix, and re-orientation of polar side groups of the polymer’s chain. Magnetization and magnetic saturation increase with magnetic nano-powder content. Nanocomposites absorb a small amount of water, not exceeding 1.7 wt%, regardless filler content, indicating their hydrophobic character.

  9. Glass Dissolution Parameters: Update for Entsorgungsnachweis

    Energy Technology Data Exchange (ETDEWEB)

    Curti, E

    2003-11-01

    This document provides updated long-term corrosion rates for borosilicate glasses used in Switzerland as a matrix for high-level radioactive waste. The new rates are based on long-term leaching experiments conducted at PSI and are corroborated by recent investigations. The asymptotic rates have been determined through weighted linear regressions of the normalised mass losses, directly calculated from B and Li concentrations in the leaching solutions. Special attention was given to the determination of the analytical uncertainty of the mass losses. The sensitivity of the corrosion rates to analytical uncertainties and to other criteria (e.g. the choice of data points for the regressions) was also studied. A major finding was that the uncertainty of the corrosion rate mainly depends on the uncertainty of the specific glass surface area. The reference rates proposed for safety assessment calculations are 1.5 mg m{sup -2} d{sup -1} for BNFL glasses and 0.2 mg m{sup -2} d{sup -1} for Cogema glasses. The relevance of the proposed corrosion rates for repository conditions is shown based on the analysis of processes and parameters currently known to affect the long-term kinetics of silicate glasses. Specifically, recent studies indicate that potentially detrimental effects, notably the removal of silica from solution through adsorption on clay minerals, are transitory and will not affect the long-term corrosion rate of the Swiss reference glasses. Iron corrosion products are also known to bind silica, but present data are not sufficient to quantify their influence on the long-term rate. (author)

  10. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  11. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  12. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne.......The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  13. The efficacy of steroids for postoperative persistent inflammatory reaction in a patient with barium peritonitis: A case report

    Directory of Open Access Journals (Sweden)

    Hirofumi Kojima

    2017-01-01

    Conclusion: Residual barium in the intraperitoneal cavity causes persistent inflammatory reaction in patients with barium peritonitis. The use of steroids is effective for postoperative persistent inflammation due to the residual barium.

  14. Chemical compositions of four barium stars

    CERN Document Server

    Liang, Y C; Chen, Y Q; Qiu, H M; Zhang, B

    2003-01-01

    Chemical compositions of four barium stars HD 26886, HD 27271, HD 50082 and HD 98839 are studied based on high resolution, high signal-to-noise Echelle spectra. Results show that all of them are disk stars. Their \\alpha and iron peak elements are similar to the solar abundances. The neutron-capture process elements are overabundant relative to the Solar. The heavy-element abundances of the strong Ba star HD 50082 are higher than those of other three mild Ba stars. Its mass is 1.32Msun (+0.28,-0.22Msun), and is consistent with the average mass of strong Ba stars (1.5Msun). For mild Ba star HD 27271 and HD 26886, the derived masses are 1.90Msun (+0.25,-0.20Msun) and 2.78Msun (+0.75,-0.78M_sun), respectively, which are consistent with the average mass of mild Ba stars. We also calculate the theoretical abundances of Ba stars by combining the AGB stars nucleosynthesis and wind accretion formation scenario of Ba binary systems. The comparisons between the observed abundance patterns of the sample stars with the th...

  15. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  16. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    Science.gov (United States)

    Yusufali, C.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.; Sengupta, P.; Dutta, R. S.; Dey, G. K.

    2014-04-01

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al2O3 layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  17. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    Energy Technology Data Exchange (ETDEWEB)

    Yusufali, C., E-mail: yusuf@barc.gov.in; Sengupta, P.; Dutta, R. S.; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Kshirsagar, R. J. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Mishra, R. K.; Kaushik, C. P. [Waste Management Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  18. Physicochemical Properties of Gold Nanostructures Deposited on Glass

    Directory of Open Access Journals (Sweden)

    Zdenka Novotna

    2014-01-01

    Full Text Available Properties of gold films sputtered onto borosilicate glass substrate were studied. UV-Vis absorption spectra were used to investigate optical parameters. XRD analysis provided information about the gold crystalline nanostructure, the texture, and lattice parameter and biaxial tension was also determined by the XRD method. The surface morphology was examined by atomic force microscopy (AFM; chemical structure of sputtered gold nanostructures was examined by X-ray photoelectron spectroscopy (ARXPS. The gold crystallites are preferentially [111] oriented on the sputtered samples. Gold deposition leads to dramatic changes in the surface morphology in comparison to pristine glass substrate. Oxygen is not incorporated into the gold layer during gold deposition. Experimental data on lattice parameter were also confirmed by theoretical investigations of nanoclusters using tight-binding potentials.

  19. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact angles were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.

  20. Silane modification of glass and silica surfaces to obtain equally oil-wet surfaces in glass-covered silicon micromodel applications

    Science.gov (United States)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Mart

    2013-08-01

    Wettability is a key parameter influencing capillary pressures, permeabilities, fingering mechanisms, and saturations in multiphase flow processes within porous media. Glass-covered silicon micromodels provide precise structures in which pore-scale displacement processes can be visualized. The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this study, surface cleaning pretreatments were investigated to determine conditions that yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane (HMDS), while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HMDS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400°C. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscible fluid displacements in the pore network.

  1. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  2. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  3. Modeling of Glass Making Processes for Improved Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Thomas P. Seward III

    2003-03-31

    The overall goal of this project was to develop a high-temperature melt properties database with sufficient reliability to allow mathematical modeling of glass melting and forming processes for improved product quality, improved efficiency and lessened environmental impact. It was initiated by the United States glass industry through the NSF Industry/University Center for Glass Research (CGR) at Alfred University [1]. Because of their important commercial value, six different types/families of glass were studied: container, float, fiberglass (E- and wool-types), low-expansion borosilicate, and color TV panel glasses. CGR member companies supplied production-quality glass from all six families upon which we measured, as a function of temperature in the molten state, density, surface tension, viscosity, electrical resistivity, infrared transmittance (to determine high temperature radiative conductivity), non-Newtonian flow behavior, and oxygen partial pres sure. With CGR cost sharing, we also studied gas solubility and diffusivity in each of these glasses. Because knowledge of the compositional dependencies of melt viscosity and electrical resistivity are extremely important for glass melting furnace design and operation, these properties were studied more fully. Composition variations were statistically designed for all six types/families of glass. About 140 different glasses were then melted on a laboratory scale and their viscosity and electrical resistivity measured as a function of temperature. The measurements were completed in February 2003 and are reported on here. The next steps will be (1) to statistically analyze the compositional dependencies of viscosity and electrical resistivity and develop composition-property response surfaces, (2) submit all the data to CGR member companies to evaluate the usefulness in their models, and (3) publish the results in technical journals and most likely in book form.

  4. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  5. Both barium and calcium activate neuronal potassium currents

    Energy Technology Data Exchange (ETDEWEB)

    Ribera, A.B.; Spitzer, N.C.

    1987-09-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium from the currents produced without cadmium but in the presence of permeant divalent cations. These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 ..mu..M tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, whole blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems.

  6. The fluoroscopic barium enema in colonic polyp detection.

    Science.gov (United States)

    Teefey, S A; Carlson, H C

    1983-12-01

    The results of 1,500 barium enema studies done by vigorous manual palpation under fluoroscopy were reviewed to determine the adequacy of this technique in detecting polyps above the proctoscopic level. Of the 1,500 patients examined, 103 (7%) were diagnosed radiographically as having a total of 149 polyps. Polyps were found at proctoscopy in about 10% of the 1,500 patients. Colonoscopy or surgery was performed on 35 of the 103 patients. Of the 52 polyps discovered during these procedures, only three were missed at fluoroscopic barium enema study, a false-negative rate of 6%. Fourteen patients whose barium enemas initially were reported as negative for polyps or neoplasia had colonoscopy. Two of the 14 patients had positive findings, for a true-negative rate of 86%. If the detection rate of 7% found at barium enema, taking into account an overlap of 10%, is combined with the rate of 7.5% found at proctoscopy, a frequency of about 14% emerges in detecting polyps in the rectum and in the colon. Thus, the fluoroscopic barium enema when combined with proctoscopy is a sensitive method in the detection of colorectal polyps. In addition, it has the advantage of rapid execution and relatively low cost.

  7. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor.

    Science.gov (United States)

    Orlova, A O; Gromova, Yu A; Maslov, V G; Andreeva, O V; Baranov, A V; Fedorov, A V; Prudnikau, A V; Artemyev, M V; Berwick, K

    2013-08-23

    The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

  8. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor

    Science.gov (United States)

    Orlova, A. O.; Gromova, Yu A.; Maslov, V. G.; Andreeva, O. V.; Baranov, A. V.; Fedorov, A. V.; Prudnikau, A. V.; Artemyev, M. V.; Berwick, K.

    2013-08-01

    The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

  9. Study of Structural Properties of Mesoporous Carbon From Fructose with Zinc Borosilicate Activator

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2014-04-01

    Full Text Available Structural properties, including pore structure, functional group of carbon surface, and crystal structure of carbon built by zinc borosilicate (ZBS and ZnCl2 (Z have been investigated in this work. Physically, ZBS and ZnCl2 may act as template of carbon, whereas the Zn(II cation act as chemical activator of carbonization. All precursors of ZBS (silicagel, boric acid, and ZnCl2 may act as catalysts of caramelization. The caramelization was conducted hydrothermally at 85oC and thermally 130oC. The carbonization was conducted at 450oC. The resulted carbons were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively. The solid products were characterized by using nitrogen gas adsorption, infrared spectrophotometry, X-ray diffraction, and Transmition Electron Microscopy. Result of research showed that ZBS built larger mesopore volume, larger pore domination of pore size, more hydrophobic carbon, and more amorf than ZnCl2.

  10. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Karakurt, G., E-mail: karakurt_gokhan@yahoo.fr [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Abdelouas, A. [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Guin, J.-P.; Nivard, M. [Institut de Physique de Rennes, Université de Rennes 1 – UMR 62051 IPR, 263 avenue du Général Leclerc, 35042 Rennes (France); Sauvage, T. [Laboratoire CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradiation), CNRS UPR, 3079 Orléans (France); Paris, M. [Institut des Matériaux Jean ROUXEL, Université de Nantes, UMR 6502 CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03 (France); Bardeau, J.-F. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, avenue Olivier Messiaen, 72085 Le Mans (France)

    2016-07-15

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He{sup +} ions and 7 MeV Au{sup 5+} ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also {sup 11}B and {sup 27}Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO{sub 4} to BO{sub 3} units but also a formation of AlO{sub 5} and AlO{sub 6} species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked

  11. Novel Synthesis of Thallium-Barium - Superconductors

    Science.gov (United States)

    Bayya, Shyam Sundar

    This thesis addresses the processing difficulties associated with the synthesis of double layer superconductors in the Tl-Ba-Ca-Cu-O system and presents some novel processing techniques for their synthesis. Tl-2212 and Tl-2223 superconducting powders were made by a self-propagating high-temperature synthesis (SHS). Preheating of the reactants was necessary to self sustain the reactions. This method produced a higher amount of the Tl-2223 phase as compared to the powders produced from furnace synthesis. A microwave assisted combustion synthesis (MACS) was developed to synthesize Tl-2212 and Tl-2223 powders. A short reaction time in the microwave oven resulted in a high fraction of the Tl-2212 phase. A post-heat treatment was required to synthesize Tl-2212 and Tl-2223 phases of high purity. Synthesis of Tl-2201, Tl-2212 and Tl-2223 by melt quench and glass ceramic processes was attempted. These compositions didn't form glasses on melt quenching, however, a heat treatment resulted in Tl-2201 and Tl-2212 phases from their stoichiometric compositions. A low purity Tl -2223 sample was obtained by this process from its stoichiometric composition. Smaller additions of boric acid or gallia to the batches did not improve the glass formability of the systems. Higher additions of boric acid improved the glass formability but they crystallized binary and complex borates on devitrification. Smaller additions of gallia crystallized the superconducting phases. A molten salt synthesis was developed to prepare Tl-2201 and Tl-2212 superconducting powders. Tl-2212 was found to be stable over a wide composition range. Sodium containing salts were found to deteriorate the superconducting properties. Optimum growth and good electrical properties of Tl-2212 were obtained from the KCl salt. A doctor blade process was used to fabricate grain-oriented ceramic using these powders.

  12. Durability of Alite-calcium Barium Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    LU Lingchao; LU Zeye; LIU Shiquan; WANG Shoude; CHENG Xin

    2009-01-01

    The durability of the cement was mainly studied.Under 1.0 MPa of hydraulic pressure for 8 hours,water could penetrate completely through the sample made by portland cement,but could not penetrate through that by alite-barium sulphoaluminate cement.Under the condition of freezing and thawing cycle,the loss ratio of compressive strength of the cement was only about 17.3%at curing 28 d ages,but the loss of portland cement was as high as 29.5%.Alite-calcium bar-ium sulphoaluminate cement also has an excellent resistance to sulfate attack.The coefficients of resistance to sulfate attack of the cement exceeded 1.0.Meanwhile,the composition and microstructure of the hardened paste of alite-calcium barium sulphoaluminate cement were analyzed by XRD and SEM.

  13. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  14. Deoxidation Behavior of Alloys Bearing Barium in Molten Steel

    Institute of Scientific and Technical Information of China (English)

    LI Yang; JIANG Zhou-hua; JIANG Mao-fa; WANG Jun-wen; GU Wen-bing

    2003-01-01

    The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K. The total oxygen contents of molten steel, the distribution, size and morphology of deoxidation products in the steel were surveyed. The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed. The results show that applying alloy bearing barium to the pipe steel, very low total oxygen contents can be obtained, and deoxidation products, which easily float up from molten steel, can be changed into globular shape and uniformly distributed in steel. The equilibrium time of total oxygen is about 25 min, and the terminal total oxygen contents range from 0.002 0 % to 0.002 2 % after treating with SiCa wire. The best deoxidizers are SiAlBaCa and SiAlBaCaSr.

  15. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2010-06-28

    ... International Trade Administration Barium Chloride From the People's Republic of China: Continuation of... China: Final Results of Expedited Third Sunset Review of Antidumping Duty Order, 74 FR 55814 (October 29... Barium Chloride From China, 75 FR 33824 (June 15, 2010), and Barium Chloride from China (Inv. No....

  16. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  17. Photoionization and Photoelectric Loading of Barium Ion Traps

    CERN Document Server

    Steele, A V; Churchill, L R; Griffin, P F

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.

  18. Esophageal intramural pseudodiverticulosis characterized by barium esophagography: a case report

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-05-21

    Abstract Introduction Esophageal intramural pseudodiverticulosis is a rare condition characterized by the dilatation of the submucosal glands. Case presentation We present a case of esophageal intramural pseudodiverticulosis in a 72-year-old Caucasian man who presented with dysphagia and with a background history of alcohol abuse. An upper gastrointestinal endoscopy of our patient showed an esophageal stricture with abnormal mucosal appearances, but no malignant cells were seen at biopsy. Appearances on a barium esophagram were pathognomonic for esophageal intramural pseudodiverticulosis. Conclusion We demonstrate the enduring usefulness of barium esophagography in the characterization of abnormal mucosal appearances at endoscopy.

  19. Deliberation of Effect to Glass Imprinting Analysis by Williams-Landel-Ferry Equation

    Science.gov (United States)

    Yasui, Manabu; Arai, Masahiro; Takahashi, Masaharu; Ito, Hiroaki; Ino, Tomohiro; Kaneko, Satoru; Hirabayashi, Yasuo; Maeda, Ryutaro

    The Mems-ONE is well known software which simulates thermo-viscoelastic properties in the conduct of nanoimprinting. Assuming the glass materials to be viscoelastic body, the relaxation shear modulus was measured by the creep test, Williams-Landel-Ferry (WLF) equation is applied for expressing the temperature dependence of liquid viscosity. We compared experimental with analytic results used by Mems-ONE with the condition of fixed pressure and time. Thermo-viscoelastic properties of the glass materials were estimated using unidirectional compression creep test based on traditional thermo viscoelastic theory. Glass was Borosilicate Glass (D263, Schott). Glass imprinting was carried out on Glassy Carbon (GC) mold with line & space10 μm patterns fabricated by dicing saw. The machining accuracy is most important thing as the evaluation mold. The glass imprinting temperature consulted thermo-viscoelastic properties of the glass materials. The numerical simulation was carried out on the small portion of mold and glass. The constant value of WLF equation fitting in high temperature translates the master curve of D263 with a high degree of accuracy. It caused the accuracy improvement of analysis result. In addition, we confirm that WLF equation intended to resin can use to the glass imprinting.

  20. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations.

    Science.gov (United States)

    Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M

    2016-09-21

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5-(B2O3)10-(Na2O)15-(CaO)15-(MoO3)2.5 and (SiO2)57.3-(B2O3)20-(Na2O)6.8-(Li2O)13.4-(MoO3)2.5, were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.

  1. Atomic layer deposition of alternative glass microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    O' Mahony, Aileen, E-mail: aom@incomusa.com; Craven, Christopher A.; Minot, Michael J.; Popecki, Mark A.; Renaud, Joseph M.; Bennis, Daniel C.; Bond, Justin L.; Stochaj, Michael E.; Foley, Michael R.; Adams, Bernhard W. [Incom, Inc., 294 Southbridge Road, Charlton, Massachusetts 01507 (United States); Mane, Anil U.; Elam, Jeffrey W. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Ertley, Camden; Siegmund, Oswald H. W. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720 (United States)

    2016-01-15

    The technique of atomic layer deposition (ALD) has enabled the development of alternative glass microchannel plates (MCPs) with independently tunable resistive and emissive layers, resulting in excellent thickness uniformity across the large area (20 × 20 cm), high aspect ratio (60:1 L/d) glass substrates. Furthermore, the use of ALD to deposit functional layers allows the optimal substrate material to be selected, such as borosilicate glass, which has many benefits compared to the lead-oxide glass used in conventional MCPs, including increased stability and lifetime, low background noise, mechanical robustness, and larger area (at present up to 400 cm{sup 2}). Resistively stable, high gain MCPs are demonstrated due to the deposition of uniform ALD resistive and emissive layers on alternative glass microcapillary substrates. The MCP performance characteristics reported include increased stability and lifetime, low background noise (0.04 events cm{sup −2} s{sup −1}), and low gain variation (±5%)

  2. Effects of B2O3 content and sintering temperature on crystallization and microstructure of CBS glass-ceramic coatings

    Science.gov (United States)

    Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang

    2015-11-01

    Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  3. SYNTHESIS AND CHARATERISATION OF RICE HUSK SILICA BASED BOROSILICATE (B2SiO5 CERAMIC BY SOL-GEL ROUTES

    Directory of Open Access Journals (Sweden)

    Simon Sembiring

    2011-07-01

    Full Text Available In this research, borosilicate ceramics were produced from rice husk silica. Preparation of borosilicate ceramics was conducted by mixing boron oxide sol from borax with silica sol extracted from rice husk. The boron oxide was produced by hydrolysis of borax using H2SO4 5%. The samples were synthesized with different compositions, with the ratios of silica to boron oxide are 8:1, 8:2, 8:3 and 8:4. The samples were sintered at 900 °C. Functional groups were examined using FTIR spectroscopic technique. Structural and microstructural characteristics were examined by XRD and SEM, respectively. The chemical resistance of borosilicate is evaluated by gravimetric method using H2SO4, HCl, NaOH and KOH. The FTIR study revealed that the main functional groups are Si-O-Si, B-O-B, and B-O-Si. The x-ray diffraction (XRD study revealed that the main crystalline phases are borosilicate (B2SiO5 and boron oxide (B2O3. SEM investigations clearly demonstrated that the smaller particle size was found with increasing in boron oxide concentration. From the chemical resistance test carried out, it was obtained that the produced borosilicate possessed high resistance to acids and alkalis.

  4. Development Of Porous Glass Fiber Optic Sensors

    Science.gov (United States)

    Macedo, P. B.; Barkatt, Aa.; Feng, X.; Finger, S. M.; Hojaji, H.; Laberge, N.; Mohr, R.; Penafiel, M.; Saad, E.

    A method for producing rugged, continuous porous glass fiber optic sensors was developed. pH and temperature sensors based on this technology have been successfully produced. The sensor portion of the fiber is made porous by selective leaching of a specially formulated borosilicate glass fiber. This results in a strong, monolithic structure where the sensor portion of the fiber remains integrally attached to the rest of the fiber (which acts as a light pipe), essentially eliminating losses at the sensor-light pipe interface. Pore size in the sensor can be controllably varied by modifying heat treatment conditions, making these sensors suitable for chemical concentration measurements in liquids and gases. Appropriate dyes were chemically bonded by silanization to the large interior surface area of the porous sensors to produce the pH and temperature sensors. Cresol red and phenol red were used for pH and pinacyanol chloride was used for temperature sensing. The sensitivity of these devices can be controlled by varying the concentration of the chemically bonded dye and the length of the porous region. Optical absorbance measurements were made in the visible range. The tip of the sensors was coated with a thin, porous layer of gold to reflect the incident light, resulting in a double pass across the porous sensor. Experimental measurements were made over a pH range of 3 to 8 and a temperature range of 28-70 C. These porous glass fiber optic sensors were found to be rugged and reliable due to their monolithic structure and large interior surface area for attachment of active species. A broad range of sensors based on this technology could be developed by using different active species, such as enzymes and other biochemicals, which could be bonded to the interior surface of the porous glass sensor.

  5. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd_2O_3 addition

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred ...

  6. Barium Ferrite Films Grown By Pulsed Laser Ablation

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; Haan, de P.; Roesthuis, F.J.G.

    1998-01-01

    Abstract available only. It is known that barium ferrite (BaFe12019) can grow with perpendicular anisotropy on A1203 a single crystal substrate,' but also on an amorphous substrate by using a ZnO buffer.2 Because of its large magnetic anisotropy which can easily overcome the shape anisotropy of the

  7. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...

  8. Magnetoelastic coupling in epitaxial cobalt ferrite/barium titanate heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gräfe, Joachim; Welke, Martin [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig (Germany); Bern, Francis; Ziese, Michael [Institut für Experimentelle Physik II, Universität Leipzig, Linnéstraße 5, 04103 Leipzig (Germany); Denecke, Reinhard, E-mail: denecke@uni-leipzig.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig (Germany)

    2013-08-15

    Ultra-thin cobalt ferrite films have been synthesised on ferroelectric barium titanate crystals. The cobalt ferrite films exhibit a magnetic response to strain induced by structural changes in the barium titanate substrate, suggesting a pathway to multiferroic coupling. These structural changes are achieved by heating through the phase transition temperatures of barium titanate. In addition the ferromagnetic signal of the substrate itself is taken into account, addressing the influence of impurities or defects in the substrate. The cobalt ferrite/barium titanate heterostructure is a suitable oxidic platform for future magnetoelectric applications with an established ferroelectric substrate and widely tuneable magnetic properties by changing the transition metal in the ferrite film. - Highlights: ► Ultra-thin CoFe{sub 2}O{sub 4} films grown on ferroelectric BaTiO{sub 3} crystals by PLD. ► Magnetic response to structural changes of BaTiO{sub 3} at transition temperatures. ► Significant magneto-elastic coupling of in-plane magnetisation in SQUID experiments. ► Clear distinction between contribution by BaTiO{sub 3} substrate and by CoFe{sub 2}O{sub 4} film.

  9. Heavy ion recoil spectrometry of barium strontium titanate films

    Science.gov (United States)

    Stannard, W. B.; Johnston, P. N.; Walker, S. R.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W.

    1995-05-01

    Thin films of barium strontium titanate have been analysed using heavy ion recoil spectrometry with 77 and 98 MeV 127I ions at the new heavy ion recoil facility at ANSTO, Lucas Heights. New calibration procedures have been developed for quantitative analysis. Energy spectra for each of the elements present reveal interdiffusion that was not previously known.

  10. Excitation energies of barium oxide bands measured in flames

    NARCIS (Netherlands)

    Hurk, J. van der; Hollander, Tj.; Alkemade, C.T.J.

    1975-01-01

    Experiments are described that yield additional information about the excitation energy of visible barium oxide bands appearing in flames. Excitation energy differences are derived directly from the ratios of thermal band intensities as a function of temperature and agree with the value calculated f

  11. CNO and F abundances in the barium star HD 123396

    CERN Document Server

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  12. Barium titanate inverted opals-synthesis, characterization, and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Soten, I.; Miguez, H.; Yang, S.M.; Petrov, S.; Coombs, N.; Tetreault, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry; Matsuura, N.; Ruda, H.E. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2002-01-01

    The engineering of cubic or tetragonal polymorphs of nanocrystalline barium titanate inverted opals has been achieved by thermally induced transformations. Optical characterization demonstrated photonic crystal behavior of the opals. The tuning of the ferroelectric-paraelectric transition around the Curie temperature is shown in this paper. (orig.)

  13. Synthesis of Nanocrystalline Barium Ferrite in Ethanol/Water Media

    Institute of Scientific and Technical Information of China (English)

    M.Montazeri-Pour; A.Ataie

    2009-01-01

    Nanocrystalline particles of barium ferrite magnetic material have been prepared by co-precipitation route using aqueous and non-aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 and subsequent drying-annealing treatment. Water and ethanol/water mixture with volume ratio of 3:1 were used as solvents in the process. Coprecipitated powders were annealed at various temperatures for 1 h. FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), DTA/TGA (differential thermal analy-sis/thermogravimetric analysis) and SEM (scanning electron microscopy) techniques were used to evaluate powder particle characteristics. DTA/TGA results confirmed by those obtained from XRD indicated that the formation of barium ferrite occurs in sample synthesized in ethanol/water solution at a relatively low temperature of 631℃. Nano-size particles of barium ferrite with mean particle size of almost 75 and 100 nm were observed in the SEM micrographs of the samples synthesized in ethanol/water solution after annealing at 700 and 800℃ for 1 h, respectively.

  14. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has requested that the Savannah River National Laboratory (SRNL) provide expert evaluation and experimental work in support of the River Protection Project vitrification technology development. DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. The low-activity waste (LAW) fraction will be partitioned from the high-level waste (HLW). Both the LAW and HLW will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass while conforming to processing requirements and product quality regulations. DOE-ORP has requested that SRNL support the advancement of glass formulations and process control strategies in key technical areas, as defined in the Task Technical and Quality Assurance Plan (TTQAP). One of these areas is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, SRNL provides chemical analysis results for several samples of a simulated LAW glass, designated LAWA44, provided by Pacific Northwest National Laboratory (PNNL) as part of an ongoing development task. The objective of the PNNL task is to determine the durability of this glass using EPA Method 1313, which will include test participants at Vanderbilt University and the University of Sheffield. A report on the compositions of similar glasses (referred to as the EPA-series glasses) was issued in March 2016.

  15. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  16. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  17. Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser.

    Science.gov (United States)

    Eaton, Shane M; Ng, Mi Li; Bonse, Jörn; Mermillod-Blondin, Alexandre; Zhang, Haibin; Rosenfeld, Arkadi; Herman, Peter R

    2008-04-20

    For the first time femtosecond-laser writing has inscribed low-loss optical waveguides in Schott BK7 glass, a commercially important type of borosilicate widely used in optical applications. The use of a variable repetition rate laser enabled the identification of a narrow processing window at 1 MHz repetition rate with optimal waveguides exhibiting propagation losses of 0.3 dB/cm and efficient mode matching to standard optical fibers at a 1550 nm wavelength. The waveguides were characterized by complementary phase contrast and optical transmission microscopy, identifying a micrometer-sized guiding region within a larger complex structure of both positive and negative refractive index variations.

  18. Sulfur incorporation in high level nuclear waste glass: A S K-edge XAFS investigation

    Science.gov (United States)

    Brendebach, B.; Denecke, M. A.; Roth, G.; Weisenburger, S.

    2009-11-01

    We perform X-ray absorption fine structure (XAFS) spectroscopy measurements at the sulfur K-edge to elucidate the electronic and geometric bonding of sulfur atoms in borosilicate glass used for the vitrification of high level radioactive liquid waste. The sulfur is incorporated as sulfate, most probably as sodium sulfate, which can be deduced from the X-ray absorption near edge structure (XANES) by fingerprint comparison with reference compounds. This finding is backed up by Raman spectroscopy investigation. In the extended XAFS data, no second shell beyond the first oxygen layer is visible. We argue that this is due to the sulfate being present as small clusters located into voids of the borosilicate network. Hence, destructive interference of the variable surrounding prohibits the presence of higher shell signals. The knowledge of the sulfur bonding characteristics is essential for further optimization of the glass composition and to balance the requirements of the process and glass quality parameters, viscosity and electrical resistivity on one side, waste loading and sulfur uptake on the other side.

  19. Evaluation of Photocatalytic Active Coatings on Sintered Glass Tubes by Methylene Blue

    Directory of Open Access Journals (Sweden)

    Colin Awungacha Lekelefac

    2013-01-01

    Full Text Available A comparative study between ten different photocatalytic active coatings was done. The effectiveness and photocatalytic activity of the coatings were studied by degradation experiments of methylene blue (MB dye under UV light illumination. The reactor design consisting of sintered glass packed in a borosilicate tube placed between two planar dielectric barrier discharge lamps (Osram Planon is reported for the first time. The coatings consisted of either titania, silica, or zinc on sintered borosilicate glass. The advantage of sol-gel in catalyst preparation was exploited to combine catalyst to act as cocatalyst. TiO2-P25 widely applied in suspension systems was effectively immobilized on sintered glass support with the aid of tetraethylorthosilicate (TEOS solution which acted as support material. Results indicated that TiO2-P25+SiO2, TiO2-P25+SiO2+Pt, and TiOSO4_30,6wt% films showed highest degradation rates close to 100% after 90 min illumination with degradation rates exceeding 50% after 30 minutes. TTIP+Pt showed lowest degradation rate.

  20. Mössbauer study of conductive oxide glass

    Science.gov (United States)

    Matsuda, Koken; Kubuki, Shiro; Nishida, Tetsuaki

    2014-10-01

    Heat treatment of barium iron vanadate glass, BaO - Fe2O3- V2O5, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (ρ) from several MΩcm to several Ωcm. 57Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (Δ) of FeIII, reflecting a structural relaxation, i.e., an increased symmetry of "distorted" FeO4 and VO4 tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu2O -containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. "n-type semiconductor model combined with small polaron hopping theory" was proposed in order to explain the high conductivity.

  1. Mössbauer study of conductive oxide glass

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27

    Heat treatment of barium iron vanadate glass, BaO‐Fe{sub 2}O{sub 3}‐V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (ρ) from several MΩcm to several Ωcm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (Δ) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  2. A novel processing route for carbon nanotube reinforced glass-ceramic matrix composites

    Science.gov (United States)

    Dassios, Konstantinos G.; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2015-03-01

    The current study reports the establishment of a novel feasible way for processing glass- and ceramic- matrix composites reinforced with carbon nanotubes (CNTs). The technique is based on high shear compaction of glass/ceramic and CNT blends in the presence of polymeric binders for the production of flexible green bodies which are subsequently sintered and densified by spark plasma sintering. The method was successfully applied on a borosilicate glass / multi-wall CNT composite with final density identical to that of the full-dense ceramic. Preliminary non-destructive evaluation of dynamic mechanical properties such as Young's and shear modulus and Poisson's ratio by ultrasonics show that property improvement maximizes up to a certain CNT loading; after this threshold is exceeded, properties degrade with further loading increase.

  3. Green-white-yellow tunable luminescence from doped transparent glass ceramics containing nanocrystals

    Science.gov (United States)

    Wang, X. F.; Yan, X. H.; Xuan, Y.; Zheng, J.; He, W. Y.

    2013-10-01

    , , and doped transparent ceramics containing nanocrystals were fabricated by a melt-quenching method and subsequent heating. Tetragonal phase spheres with 20 nm size are homogeneously precipitated among a borosilicate glass matrix. The photoluminescence spectrum of single doped transparent ceramics shows white light emission under 382 nm UV excitation. The emission color of co-doped transparent glass ceramics is tuned from green to white through energy transfer from to , and the emission color of co-doped transparent ceramics is tuned from white to yellow through energy transfer from to . CIE chromaticity and color temperature measurements show that the resulting transparent glass ceramics may be a candidate as a warm-white LED material pumped by a UV InGaN chip.

  4. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates.

    Science.gov (United States)

    Wong, Chee Chung; Agarwal, Ajay; Balasubramanian, N; Kwong, Dim Lee

    2007-04-04

    We realized self-sealing fluidics channels with circular cross-sections having diameters ranging between 30 and 2000 nm on a 200 mm glass wafer through CMOS compatible processes. Lateral voids were narrowed and sealed with non-conformal plasma enhanced chemical vapour deposition (PECVD) of phospho silicate glass (PSG) along silicon oxide trenches on silicon wafers. Leveraging on the reflow properties of PSG, circular profiled-channels were formed after undergoing high temperature annealing. These devices were subsequently transferred onto a borosilicate glass substrate through anodic bonding, and a fully transparent microfluidic device was achieved with the complete removal of the handle silicon substrate. The process offers a means of integrating electrochemical and optical sensing on the same platform, for biological research.

  5. High speed, high strength microwelding of Si/glass using ps-laser pulses.

    Science.gov (United States)

    Miyamoto, Isamu; Okamoto, Yasuhiro; Hansen, Assi; Vihinen, Joma; Amberla, Tiina; Kangastupa, Jarno

    2015-02-09

    A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 µm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

  6. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Chee Chung [Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, 117685, Singapore (Singapore); Agarwal, Ajay [Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, 117685, Singapore (Singapore); Balasubramanian, N [Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, 117685, Singapore (Singapore); Kwong, Dim Lee [Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, 117685, Singapore (Singapore)

    2007-04-04

    We realized self-sealing fluidics channels with circular cross-sections having diameters ranging between 30 and 2000 nm on a 200 mm glass wafer through CMOS compatible processes. Lateral voids were narrowed and sealed with non-conformal plasma enhanced chemical vapour deposition (PECVD) of phospho silicate glass (PSG) along silicon oxide trenches on silicon wafers. Leveraging on the reflow properties of PSG, circular profiled-channels were formed after undergoing high temperature annealing. These devices were subsequently transferred onto a borosilicate glass substrate through anodic bonding, and a fully transparent microfluidic device was achieved with the complete removal of the handle silicon substrate. The process offers a means of integrating electrochemical and optical sensing on the same platform, for biological research.

  7. Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility.

    Science.gov (United States)

    Rahaman, Mohamed N; Li, Yadong; Bal, B Sonny; Huang, Wenhai

    2008-06-01

    The coating of magnesia partially stabilized zirconia (Mg-PSZ) with a bioactive glass was investigated for enhancing the bioactivity and bone-bonding ability of Mg-PSZ orthopedic implants. Individual coatings of three different bioactive glasses were prepared by depositing a concentrated suspension of the glass particles on Mg-PSZ substrates, followed by sintering at temperatures between 750 degrees C and 850 degrees C. Two silicate-based glass compositions (designated 13-93 and 6P68), and a borosilicate glass composition (H12) were investigated. The microstructure and adhesive strength of the coatings were characterized, and the in vitro bioactivity of the glasses was compared by measuring their conversion kinetics to hydroxyapatite in an aqueous phosphate solution at 37 degrees C. The 6P68 glass provided the highest adhesive strength (40 +/- 2 MPa) but showed very limited bioactivity, whereas the H12 glass had lower adhesive strength (18 +/- 2 MPa) but the highest bioactivity. A functionally graded coating, consisting of a 6P68 interfacial layer and an H12 surface layer, was developed to provide a coating with high adhesive strength coupled with rapid in vitro bioactivity.

  8. Characterization of all-glass photonic band gap fiber

    Science.gov (United States)

    Buczynski, Ryszard; Kujawa, Ireneusz; Lusawa, Marzenna; Pysz, Dariusz; Martynkien, Tadeusz; Berghmans, Francis; Nasilowski, Tomasz; Thienpont, Hugo; Stepien, Ryszard

    2008-12-01

    In this paper we report on the fabrication and characterization of a double glass micro-structured fiber with low index core and photonic cladding made of high index micro-rods. Micro rods are made of lead-oxide F2 commercially available glass (SCHOTT Inc.) with a refractive index nD=1.619, while as background we use a borosilicate NC21 glass with a refractive index nD=1.533. The fiber cladding is composed of 8 rings of F2 glass micro rods ordered in hexagonal lattice. A core is created by replacement of seven F2 rods with NC21 rods. A fabricated fiber has a linear filling factor of 0.75 and micro rods diameter of 1.2 μm. A core has a diameter of 3.7 μm while cladding and total fiber diameter are 42,6μm and 120 μm, respectively. Using supercontinuum source we have measured transmission properties of the fabricated fiber. Based on measurements of the fiber samples of 18-80 cm long we have identified two photonic band gaps. Fist band gap is localized in visible range at 610 nm central wavelength. The second broadband photonic band gap is localized in near infrared and it is 80 nm wide at 840 nm central wavelength.

  9. Dilute condition corrosion behavior of glass-ceramic waste form

    Science.gov (United States)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; Zhu, Zihua; Olszta, Matthew J.; Tang, Ming

    2016-12-01

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m-2 d-1 at a flow rate per surface area = 1.73 × 10-6 m s-1. The crystal phases (oxyapatite and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).

  10. Interfacial phenomena in anodic bonding of glass to Kovar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, M.; Ishizaki, K.; Ikeuchi, K.; Ushio, M. [Osaka University, Osaka (Japan). Joining and Welding Research Institute

    1998-05-05

    Interfacial microstructures have been investigated for the anodically-bonded joint of borosilicate glass to Kovar alloy in order to get better insight into its mechanism. SEM observations of the joint interface revealed that the applied field displaced Na and K ions from the anode-side of glass to form depletion layers of these elements. Potassium also showed a pile-up layer following the K depletion layer within the Na depletion layer. Potassium depletion layer appeared as a zone darker than the bulk glass with a clear contrast. The thickness of alkali-depletion layers increased with the increase in bonding time, and then approached a saturation value. From the estimated activation energies of growth of Na and K depletion layers, it is suggested that the growth of Na and K layers is controlled by the diffusion of Na. TEM observations revealed the formation of an amorphous reaction layer of about 0.1 {mu}m thickness, which consisted of complex oxides of iron and silicon. An iron-rich crystalline layer of about 10 nm thickness was also observed between the amorphous reaction layer and the Kovar alloy substrate. The results of the present study are discussed on the basis of elements migration under the influence of electric fields generated in the glass. 19 refs., 14 figs., 3 tabs.

  11. Characterization of the Italian glasses and their interaction with clay

    Energy Technology Data Exchange (ETDEWEB)

    Cantale, C.; Castelli, S.; Donato, A.; Traverso, D.M.; Kaijun, L.

    1989-10-01

    The objective of this research is to select a borosilicate glass composition suitable for the solidification of the HLM stream coming from the treatment of all the high level wastes stored in Italy (MTR, CANDU and ELK RIVER) and to characterize it with reference to geological disposal. This research work is based on a pre-treatment of the waste, in order to concentrate the HLW fraction and to simplify the vitrification process by separating the greater part of the inert salts. After MCE waste pre-treatment, the resulting HLW streams are to be vitrified. Some glass compositions have been prepared and preliminary characterized. The glass named BAZ has been finally selected. The complete characterization of this glass is in progress. This paper presents the results of the physical-chemical and chemical characterizations with reference to the MCC-1 static leach test at 90 C and at a surface area to volume ratio of 10 m/sup minus 1/. Two leaching systems are being used: distilled water and synthetic interstitial claywater.

  12. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis.

    Science.gov (United States)

    Li, Q H; Yang, J C; Li, L; Dong, J Q; Zhao, H X; Liu, S

    2015-03-05

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass.

  13. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage

    CSIR Research Space (South Africa)

    Mulopo, J

    2012-01-01

    Full Text Available Batch regeneration of barium carbonate (BaCO3) from barium sulphide (BaS) slurries by passing CO2 gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO3 recovery in the Alkali...

  14. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    Science.gov (United States)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  15. Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability

    Science.gov (United States)

    Hopf, J.; Kerisit, S. N.; Angeli, F.; Charpentier, T.; Icenhower, J. P.; McGrail, B. P.; Windisch, C. F.; Burton, S. D.; Pierce, E. M.

    2016-05-01

    Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na2O-Al2O3-B2O3-HfO2-SiO2 system (e.g., Na/[Al + B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si

  16. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Science.gov (United States)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  17. Platinoids and molybdenum in nuclear waste containment glasses: a structural study; Les platinoides et le molybdene dans des verres d'interet nucleaires: etude structurale

    Energy Technology Data Exchange (ETDEWEB)

    Le Grand, M. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France)]|[Paris-7 Univ., 75 (France)

    2000-07-01

    This work deals with the structure of borosilicate nuclear glasses and with some relationships between structure and macroscopic properties. Two types of elements which may disturb the industrial process - platinoids (Ru and Pd) and molybdenum - are central to this work. Platinoids induce weak modifications on the structure of the glass, causing a depolymerization of the glassy network, an increase of the {sup [3]}B/{sup [4]}B ratio and a modification of the medium range order around Si between 3.3 and 4.5 angstrom. The modifications of viscosity and density induced by platinoids in the glass are not due to the structural effect of the platinoids. The increase of viscosity is attributed to needle shaped RuO{sub 2}. It can be moderated by imposing reducing conditions during the elaboration of the glass. The slight difference between experimental and calculated densities is due to the increase of the volume percentage of bubbles in the glass with increasing platinoid content. Mo is either present in the glass as molybdic groupings, or mobilized in chemically complex molybdic crystalline phases. The chemical composition and mineralogy of these phases has been obtained using electronic microprobe data and XRD with Rietveld analysis. The distribution of the different elements between the crystalline phases and the glass is strongly influenced by the structural role of the various cations in the glass. The Mo present in the glass appears as MoO{sub 4} tetrahedra, independent of the borosilicate network. The formation of the crystalline phases can be explained by the existence of a precursor in which the MoO{sub 4} tetrahedra are concentrated in rich alkali and earth-alkali bearing areas of the glass. (author)

  18. Stark spectrum of barium in highly excited Rydberg states

    Institute of Scientific and Technical Information of China (English)

    Yang Hai-Feng; Gao Wei; Cheng Hong; Liu Xiao-Jun; Liu Hong-Ping

    2013-01-01

    We present observations of Stark spectra of barium in highly excited Rydberg states in the energy region around n =35.The one-photon excitation concerns the π transition.The observed Stark spectra at electric fields ranging from 0 to 60 V·cm-1 are well explained by the diagonalization of the Hamiltonian incorporating the core effects.From the Stark maps,the anti-crossings between energy levels are identified experimentally and theoretically.The time of flight spectra at the specified Stark states are recorded,where the deceleration and acceleration of barium atoms are observed.This is very consistent with the prediction derived from the Stark maps from the point of view of energy conservation.

  19. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    Science.gov (United States)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  20. HYBRID AND CHARACTERISTIC OF POLYANILINE- BARIUM TITANATE NANOCOMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polyaniline-barium titanate (PAn-BaTiO3) ultrafine composite particles were prepared by the oxidative polymerization of aniline with H2O2 while barium titanate nanoparticles were synthesized with a sol-gel method. The infrared spectrogram shows that the polymerization of PAn in the hybrid process of PAn-BaTiO3 is similar with the polymeric process of pure aniline, and there is interaction of PAn and BaTiO3 in the PAn-BaTiO3. SEM and TEM results show that the average diameter of the composite particles is 1.50 μm and the diameters of BaTiO3 nanoparticles are 5-15 nm in the composite particle. The electrical conductivity of the ultrafine composite particles is transformable from 100 to 10-11S/cm by equilibrium doping or dedoping method using various concentration of HCl or NaOH solutions.

  1. The crystal growth of barium flouride in aqueous solution

    Science.gov (United States)

    Barone, J. P.; Svrjcek, D.; Nancollas, G. H.

    1983-06-01

    The kinetics of growth of barium flouride seed crystals were investigated in aqueous solution at 25°C using a constant composition method, in which the supersaturation and ionic strength were maintained constant by the addition of titrants consisting of barium nitrate and potassium flouride solutions. The rates of reaction, studied over a range of supersaturation (σ ≈ 0.4 to 1.0), were interpreted in terms of crystal growth models. A spiral growth mechanism best describes the data, and scanning electron microscopy indicates a three-dimensional growth. In the presence of inorganic additives such as phosphate, however, induction periods precede a morphological two-dimensional crystallization. Coulter Counter results show little crystal agglomeration.

  2. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  3. Particularities of Radiation Defect Formation in Ceramic Barium Cerate

    Science.gov (United States)

    Khromushin, I. V.; Aksenova, T. I.; Tuseev, T.; Munasbaeva, K. K.; Ermolaev, Yu V.; Ermolaev, V. N.; Seitov, A. S.

    2015-04-01

    The effects of irradiation with electrons, ions of noble gases (Ne, Ar, Kr) and oxygen on the structure and properties of neodymium-doped barium cerate have been studied using the methods of X-ray diffraction analysis, scanning electron and atomic force microscopy, thermal desorption spectroscopy. It was shown that irradiation by low-energy ions of noble gases stimulates the blistering processes on the sample surface, while the high-energy ions contribute to formation of the structures on the irradiated surface that resemble the various stages of spherulitegrowth. The similar structures were not observed in the case of irradiation with high-energy oxygen ions. According to the data on thermal desorption of water and oxygen molecules from the irradiated barium cerate it was supposed that irradiation by the noble gas ions promotes neodymium oxidation state change. It was noticed that the electron irradiation leads to the formation of the nano-sized acicular structures on the cerate surface.

  4. Complex Impedance Studies of Optically Excited Strontium Barium Niobate

    Science.gov (United States)

    2007-11-02

    has a tetragonal tungsten - bronze structure. The unit cell for this structure, illustrated below in Fig. 2.1, consists of ten oxygen octahedra joined...4 Kittel, pp. 373-374. 5 P. B. Jamieson, et al, “Ferroelectric Tungsten Bronze -Type Crystal Structures. I. Barium Strontium Niobate...Oxford, 1987). 2. C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1986). 3. P. B. Jamieson, et al, “Ferroelectric Tungsten

  5. Acute barium intoxication following ingestion of soap water solution

    Directory of Open Access Journals (Sweden)

    Nandita Joshi

    2012-01-01

    Full Text Available We present a rare case in which a young girl ingested a solution of a hair-removing soap. The ingestion resulted in profound hypokalemia and severe acidosis leading to flaccid paralysis, respiratory arrest and ventricular arrhythmias. Ultimately the patient made complete recovery. The soapwas found to contain barium sulfide. The degree of paralysis and acidosis appeared to be directly related to serum potassium levels.

  6. The chemical durability of glass and graphite-glass composite doped with cesium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hamodi, Nasir H., E-mail: nasirhamodi@yahoo.co.uk [School of Mechanical, Aerospace and Civil Engineering (MACE)/University of Manchester, Pariser Building, F-floor, Manchester M13 9PL (United Kingdom); Abram, Timothy J. [School of Mechanical, Aerospace and Civil Engineering (MACE)/University of Manchester, Pariser Building, F-floor, Manchester M13 9PL (United Kingdom); Lowe, Tristan; Cernik, Robert J. [Henry Mosley Imaging Facility, Material Science Centre, University of Manchester, Manchester M13 9PL (United Kingdom); Lopez-Honorato, Eddie [Centro de Investigacion y Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo. Carretera Saltillo-Monterrey km 13.5, 25900 Ramos Arizpe, Coahuila (Mexico)

    2013-01-15

    The role of temperature in determining the chemical stability of a waste form, as well as its leach rate, is very complex. This is because the dissolution kinetics is dependent both on temperature and possibility of different rate-controlling mechanisms that appear at different temperature regions. The chemical durability of Alumina-Borosilicate Glass (ABG) and Glass-Graphite Composite (GGC), bearing Tristructural Isotropic (TRISO) fuel particles impregnated with cesium oxide, were compared using a static leach test. The purpose of this study is to examine the chemical durability of glass-graphite composite to encapsulate coated fuel particles, and as a possible alternative for recycling of irradiated graphite. The test was based on the ASTM C1220-98 methodology, where the leaching condition was set at a temperature varying from 298 K to 363 K for 28 days. The release of cesium from ABG was in the permissible limit and followed the Arrhenius's law of a surface controlled reaction; its activation energy (E{sub a}) was 65.6 {+-} 0.5 kJ/mol. Similar values of Ea were obtained for Boron (64.3 {+-} 0.5) and Silicon (69.6 {+-} 0.5 kJ/mol) as the main glass network formers. In contrast, the dissolution mechanism of cesium from GGC was a rapid release, with increasing temperature, and the activation energy of Cs (91.0 {+-} 5 kJ/mol) did not follow any model related to carbon kinetic dissolution in water. Microstructure analysis confirmed the formation of Crystobalite SiO{sub 2} as a gel layer and Cs{sup +1} valence state on the ABG surface.

  7. Glass for parenteral products: a surface view using the scanning electron microscope.

    Science.gov (United States)

    Roseman, T J; Brown, J A; Scothorn, W W

    1976-01-01

    The scanning electron microscope was utilized to explore the internal surface of glass ampuls and vials used in parenteral products. The surface topography of USP Type I borosilicate glass containers was viewed after exposure to "sulfur," ammonium bifluoride, and sulfuric acid treatments. The scanning electron micrographs showed startling differences in the appearance of the surface regions. "Sulfur treatment" of ampuls was associated with a pitting of the surface and the presence of sodium sulfate crystals. The sulfur treatment of vials altered the glass surface in a characteristically different manner. The dissimilarity between the surface appearances was attributed to the method of sulfur treatment. Ampuls exposed to sulfuric acid solutions at room temperature did not show the pitting associated with the sulfur treatment. Scanning electron micrographs of ammonium bifluoride-treated ampuls showed a relief effect, suggesting that the glass was affected by the bifluoride solution but that sufficient stripping of the surface layer did not occur to remove the pits associated with the sulfur treatment. Flakes emanating from the glass were identified with the aid of the electron microprobe. Scanning electron micrographs showed that these vitreous flakes resulted from a delamination of a thin layer of the glass surface. It is concluded that the scanning electron microscope, in conjunction with other analytical techniques, is a valuable tool in assessing the quality of glass used for parenteral products. The techniques studied should be of particular importance to the pharmaceutical industry where efforts are being made to reduce the levels of particulate matter in parenteral dosage forms.

  8. Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.

    Science.gov (United States)

    Chaudhri, M Munawar

    2015-03-28

    In this article, high-speed photographic investigations of the dynamic crack initiation and propagation in several inorganic glasses by the impact of small spherical and conical projectiles are described. These were carried out at speeds of up to approximately 2×10(6) frames s(-1). The glasses were fused silica, 'Pyrex' (a borosilicate glass), soda lime and B(2)O(3). The projectiles were 0.8-2 mm diameter spheres of steel, glass, sapphire and tungsten carbide, and their velocities were up to 340 m s(-1). In fused silica and Pyrex, spherical projectiles' impact produced Hertzian cone cracks travelling at terminal crack velocities, whereas in soda-lime glass fast splinter cracks were generated. No crack bifurcation was observed, which has been explained by the nature of the stress intensity factor of the particle-impact-generated cracks, which leads to a stable crack growth. Crack bifurcation was, however, observed in thermally tempered glass; this bifurcation has been explained by the tensile residual stress and the associated unstable crack growth. A new explanation has been proposed for the decrease of the included angle of the Hertzian cone cracks with increasing impact velocity. B(2)O(3) glass showed dynamic compaction and plasticity owing to impact with steel spheres. Other observations, such as total contact time, crack lengths and response to oblique impacts, have also been explained.

  9. Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic

    Science.gov (United States)

    Bates, Stephanie L.; Hendry, Katharine R.; Pryer, Helena V.; Kinsley, Christopher W.; Pyle, Kimberley M.; Woodward, E. Malcolm S.; Horner, Tristan J.

    2017-05-01

    We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-'heavy' water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater.

  10. Effects of polyacrylic acid additive on barium sulfate particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Dandan; Jiang, Hongkun; Wang, Jun; Jing, Xiaoyan; Chen, Rongrong [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhu, Wenting [Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin 150081 (China); Han, Shihui [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li, Wanyou [College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China); Wei, Hao, E-mail: weihao7512@126.com [Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-06-01

    In this paper, polyacrylic acid (PAA) was used as a growth modifier to control micron-sized barium sulfate particles via a simple precipitation reaction between sodium sulfate and barium chloride at ambient temperature. The barium sulfate particles were exhibited various morphologies, such as monodisperse spheres, ellipsoids, rose-like aggregates, etc. To better understand the formation mechanisms of the various morphologies of these particles, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) were employed. It was found that the PAA concentration, pH, and Ba{sup 2+} and SO{sub 4}{sup 2−} ions concentrations were the most important parameters controlling the morphology of the BaSO{sub 4} particles. These parameters affected the BaSO{sub 4} morphology by influencing the interactions between the PAA carboxyl groups and inorganic ions and the conformation change of the PAA molecular chains. Moreover, this work attempts to provide a preliminary understanding of the formation of the spherical BaSO{sub 4} particles with the randomly coiled conformation of the polymer. - Highlights: • Polyacrylic acid (PAA) was used as a growth modifier to control micron-sized BaSO{sub 4} particles. • The PAA/BaSO{sub 4} particles were exhibited various morphologies. • Provide a preliminary understanding of the formation mechanism of BaSO{sub 4} particles.

  11. Barium thiolates and selenolates: syntheses and structural principles.

    Science.gov (United States)

    Ruhlandt-Senge, K; Englich, U

    2000-11-17

    The synthesis and structural characterization of a family of barium thiolates and selenolates is described. The thiolates were synthesized by metallation of thiols, the selenolates by reductive insertion of the metal into the selenium-selenium bond of diorganodiselenides. Both reaction sequences were carried out by using barium metal dissolved in ammonia; this afforded barium thiolates and selenolates in good yield and purity. The structural principles displayed in the target compounds span a wide range of solid-state formulations, including monomeric and dimeric species, and separated ion triples, namely [Ba(thf)4(SMes*)2] (1; Mes* = 2,4,6-tBU3C6H2), [Ba(thf)4(SeMes*)2] (2), [Ba([18]crown-6)(hmpa)2][(SeMes*)2] (3), the dimeric [(Ba(py)3(thf)(SeTrip)2)2] (4; py = pyridine, Trip = 2,4.6-iPr3C6H2), and [Ba([18]crown-6)(SeTrip)2] (5). The full range of association modes is completed by [Ba([18]crown-6)(hmpa)SMes*][SMes*] (6) communicated earlier by this group. In the solid state, this compound displays an intermediate ion coordination mode: one anion is bound to the metal, while the second one is unassociated. Together these compounds provide structural information about all three different association modes for alkaline earth metal derivatives. This collection of structural data allows important conclusions about the influence of solvation and ligation on structural trends.

  12. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.Z., E-mail: alezipo@yahoo.co [Universidade Federal de Itajuba- Unifei - Campus Itabira, Rua Sao Paulo, 377, Bairro, Amazonas, CEP 35900-37, Itabira, MG (Brazil); Universidade Estadual Paulista- Unesp - Faculdade de Engenharia de Guaratingueta, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Pedregulho, CEP 12516-410 Guaratingueta, SP (Brazil); Moura, F.; Onofre, T.B. [Universidade Federal de Itajuba- Unifei - Campus Itabira, Rua Sao Paulo, 377, Bairro, Amazonas, CEP 35900-37, Itabira, MG (Brazil); Ramirez, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil)

    2010-10-22

    Research highlights: {yields} Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) {yields} This is a genuine technique to obtain nanoparticles at low temperature and short times {yields} Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 {sup o}C. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}) nanoparticles (BST) in the temperature range of 100-130 {sup o}C. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO{sub 3} as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  13. Glass waste forms for heat-generating Cs{sup +} and Sr{sup 2+} wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Heo, Jong [POSTECH, Pohang (Korea, Republic of); Park, Hwan Seo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Pyro-processing is one of the promising recycling technologies for spent nuclear fuel (SNF) from Light Water Reactors (LWR) in Korea. This processing is able to separate radioactive waste nuclei and reduce heat loading in storage site by extraction of heat generating radioactive nuclei. In this study, we used alumino-borosilicate glasses for the immobilization of Cs{sub 2}O and SrO wastes. Glasses were prepared and their important properties including chemical durability were analyzed. In addition, heat generation and its effect on thermal stability of glasses was examined. Glass waste forms that contain heat-generating Cs{sup +} and Sr{sup 2+} from pyro-processing were synthesized. Basic properties of glasses such as densities, linear expansion coefficients and glass-transition temperatures were similar to those of industrial radioactive waste glass. Analysis on the heat load simulation under the failure of the cooling system indicated that maximum temperature inside the canisters are well below the glass-transition temperature of each glass.

  14. Preparation of nanosized barium zirconate powder by precipitation in aqueous solution

    OpenAIRE

    Boschini, Frédéric; Guillaume, Bernard; Rulmont, André; Cloots, Rudi

    2004-01-01

    Several ways were explored to synthesize barium zirconate by soft chemistry methods in aqueous solution. In the first method the synthesis of barium zirconate was initiated by urea decomposition, through an homogeneous precipitation of barium and zirconium salts followed by a "low temperature" thermal treatment. The kinetic of the reaction and the optimum urea/cation ratio have been determined by means of X-ray diffraction and Inductive Coupled Plasma analyses. It has been demonstrated that a...

  15. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    OpenAIRE

    Mong, B.; Cook, S; Walton, T.; Chambers, C.; Craycraft, A.; Benitez-Medina, C.; Hall, K.; Fairbank Jr., W.; Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Basque, V.; Beck, D.; Breidenbach, M.; Brunner, T.

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fl...

  16. Simplified assessment of segmental gastrointestinal transit time with orally small amount of barium

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Weitang; Zhang, Zhiyong; Liu, Jinbo; Li, Zhen; Song, Junmin; Wu, Changcai [Department of Colorectal Surgery, The First Affiliated Hospital and Institute of Clinical Medicine, Zhengzhou University, 450052 Zhengzhou (China); Wang, Guixian, E-mail: guixianwang@hotmail.com [Department of Colorectal Surgery, The First Affiliated Hospital and Institute of Clinical Medicine, Zhengzhou University, 450052 Zhengzhou (China)

    2012-09-15

    Objective: To determine the effectiveness and advantage of small amount of barium in the measurement of gastrointestinal transmission function in comparison with radio-opaque pallets. Methods: Protocal 1: 8 healthy volunteers (male 6, female 2) with average age 40 ± 6.1 were subjected to the examination of radio-opaque pellets and small amount of barium with the interval of 1 week. Protocol 2: 30 healthy volunteers in group 1 (male 8, female 22) with average age 42.5 ± 8.1 and 50 patients with chronic functional constipation in group 2 (male 11, female 39) with average age 45.7 ± 7.8 were subjected to the small amount of barium examination. The small amount of barium was made by 30 g barium dissolved in 200 ml breakfast. After taking breakfast which contains barium, objectives were followed with abdominal X-ray at 4, 8, 12, 24, 48, 72, 96 h until the barium was evacuated totally. Results: Small amount of barium presented actual chyme or stool transit. The transit time of radio-opaque pallets through the whole gastrointestinal tract was significantly shorter than that of barium (37 ± 8 h vs. 47 ± 10 h, P < 0.05) in healthy people. The transit times of barium in constipation patients were markedly prolonged in colon (61.1 ± 22 vs. 37.3 ± 11, P < 0.01) and rectum (10.8 ± 3.7 vs. 2.3 ± 0.8 h, P < 0.01) compared with unconstipated volunteers. Transit times in individual gastrointestinal segments were also recorded by using small amount of barium, which allowed identifying the subtypes of constipation. Conclusion: The small amount barium examination is a convenient and low cost method to provide the most useful and reliable information on the transmission function of different gastrointestinal segments and able to classify the subtypes of slow transit constipation.

  17. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  18. Sponge-associated bacteria mineralize arsenic and barium on intracellular vesicles

    Science.gov (United States)

    Keren, Ray; Mayzel, Boaz; Lavy, Adi; Polishchuk, Iryna; Levy, Davide; Fakra, Sirine C.; Pokroy, Boaz; Ilan, Micha

    2017-01-01

    Arsenic and barium are ubiquitous environmental toxins that accumulate in higher trophic-level organisms. Whereas metazoans have detoxifying organs to cope with toxic metals, sponges lack organs but harbour a symbiotic microbiome performing various functions. Here we examine the potential roles of microorganisms in arsenic and barium cycles in the sponge Theonella swinhoei, known to accumulate high levels of these metals. We show that a single sponge symbiotic bacterium, Entotheonella sp., constitutes the arsenic- and barium-accumulating entity within the host. These bacteria mineralize both arsenic and barium on intracellular vesicles. Our results indicate that Entotheonella sp. may act as a detoxifying organ for its host. PMID:28233852

  19. BARIUM SULPHATE ABSORPTION AND THE SERUM DIAGNOSIS OF SYPHILIS.

    Science.gov (United States)

    Noguchi, H; Bronfenbrenner, J

    1911-02-01

    The so-called syphilitic antibodies can be removed from a serum by means of absorption with barium sulphate. The removal is due either to an adsorption or a mechanical absorption. The activity of the syphilitic antibodies is thereby unimpaired. The readiness with which the absorption is accomplished with barium sulphate varies considerably with different syphilitic sera. That barium sulphate exerts the same absorbing effect upon non-syphilitic serum components is made evident by the interfering property which the latter manifest in the absorption experiment of the syphilitic antibodies. The selective removal of the serum components, other than the syphilitic antibodies, by means of barium sulphate absorption is, therefore, impossible. On the other hand, a partial removal of these components, with but little removal of the syphilitic antibodies, may be effected when the content of a given serum is poor in syphilitic antibodies and comparatively rich in the indifferent serum components. But this is impossible if the conditions are reversed. The main reasons why some negative syphilitic sera may be so modified by the barium sulphate treatment as to give positive reactions, are explained below, but these apply only to those methods in which inactivated serum is employed. The inactivation reduces the antibody content to about one-fourth to one-fifth of the original. When the serum is very rich in antibodies, this does not affect the result of the fixation test. But when the amount of the antibodies is small, the process of inactivation creates conditions quite unexpected. It may produce such a condition that a given amount of the serum contains, after inactivation, only one or two antibody units, while the other serum components remain undiminished. Here one must not lose sight of the vital fact that these apparently indifferent serum constituents are not at all indifferent in the fixation processes. They may possess affinities which are similar to those of complement

  20. Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces.

    Science.gov (United States)

    Qian, Yuan; Posch, Tjorben; Schmidt, Torsten C

    2011-02-01

    Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal's forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.

  1. 铝酸钡与氢氧化钡脱硫过程比较%Comparison of Barium Aluminate and Barium Hydroxide Desulfurization Process

    Institute of Scientific and Technical Information of China (English)

    张念炳; 黎志英; 丁彤

    2012-01-01

    The seed precipitation liquor was desulfurized with barium aluminate and barium hydroxide respectively. The desulfurization slag was characterized by XRD analysis, and the desulfurization process was compared. The results show that barium hydroxide exceeds barium aluminate with better desulfurization in terms of effect, speed and duration. In the desulfurization process with barium aluminate, 2BaO · Al2O3 · 5H2O is firstly produced in the reaction of barium aluminate with alkali, and then it reacts with sodium sulfate and sodium carbonate. To compare, Ba(OH)2 · 8H2O directly reacts with sodium sulfate and sodium carbonate in the desulfurization process with barium hydroxide. Both of desulfurization reaction processes can be described with "shrinking core model".%用铝酸钡和氢氧化钡对种分母液进行脱硫试验,对脱硫渣进行XRD分析,并比较脱硫过程.结果表明,氢氧化钡的脱硫效果更好,脱硫完成时间更短,速率更快;铝酸钡先与碱液反应生成2BaO·Al2O3·5H2O,再与硫碱和碳碱反应,而氢氧化钡直接与硫碱和碳碱反应,脱硫过程均可用未反应核模型描述.

  2. Temperature-dependent evolution of RbBSi{sub 2}O{sub 6} glass into crystalline Rb-boroleucite according to X-ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Aleksandr A. [Technische Univ. Dresden (Germany). Inst. fuer Strukturphysik; Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Filatov, Stanislav K.; Krzhizhanovskaya, Maria G. [Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation). Dept. of Crystallography; Paufler, Peter [Technische Univ. Dresden (Germany). Inst. fuer Strukturphysik; Bubnova, Rimma S. [Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation). Dept. of Crystallography; Russian Academy of Sciences, St. Petersburg (Russian Federation). Grebenshchikov Institute of Silicate Chemistry; Meyer, Dirk C. [Technische Univ. Dresden (Germany). Inst. fuer Strukturphysik; Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2013-07-01

    The temperature-dependent evolution of the glass into a crystalline phase is studied for a rubidium borosilicate glass of composition 16.7 Rb{sub 2}O . 16.7 B{sub 2}O{sub 3} . 66.6 SiO{sub 2} employing X-ray diffraction (XRD) data. A glass sample was prepared by melt quenching from 1500 within 0.5 hour. The glass sample was step-wise annealed at 13 distinct temperatures from 300 C up to 900 C for 1 h at every annealing step. To investigate changes in the glass structure, angle-dispersive XRD was applied by using an energy-resolving semiconductor detector. The radial distribution functions (RDFs) were calculated at every stage. For polycrystalline states the crystal structure of the samples with different thermal history was refined using the Rietveld method. Comparing correlation distances estimated from RDFs of glass and polycrystalline samples and mean interatomic distances calculated for polycrystalline samples by using atomic coordinates after Rietveld refinement, it is concluded that the borosilicate glass under study is converted into the crystalline state in the temperature range of 625-750 C (i.e. in the temperature range close to the glass transition range 620-695 C as determined by differential scanning calorimetry by using of heating rate of 20 K/min) at an average heating rate of about 0.35 K/min. When the heating rate is increased up to 10 or 20 K/min, the crystallisation temperature shifts sharply up to 831-900 C and 878-951 C, respectively. XRD data give evidence that distinctive traces of cubic RbBSi{sub 2}O{sub 6} appear from glass at about 625 C and a two-phase range exists up to 750 C. After annealing at higher temperatures (800-900 C) the crystal structure practically does not change any more. (orig.)

  3. Separation of lanthanum, hafnium, barium and radiotracers yttrium-88 and barium-133 using crystalline zirconium phosphate and phosphonate compounds as prospective materials for a Ra-223 radioisotope generator

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Teresia [Lynntech Inc., 7610 Eastmark Dr, College Station, TX 77840 (United States); Bestaoui, Naima, E-mail: Naima.Bestaoui@Lynntech.co [Lynntech Inc., 7610 Eastmark Dr, College Station, TX 77840 (United States); Wierzbicki, Melissa; Adams, Todd; Clearfield, Abraham [Lynntech Inc., 7610 Eastmark Dr, College Station, TX 77840 (United States)

    2011-07-15

    Crystalline hybrid organic/inorganic ion exchangers based on zirconium phosphate and phosphonate compounds were evaluated for application in radium-223 generator for radiopharmaceutical applications. Various compositions were synthesized and the selectivity of these materials was determined for inactive lanthanum, hafnium and barium, and radiotracers yttrium-88 and barium-133. The hybrid materials show very efficient lanthanum/barium separation; the response for zirconium phosphate was even better. A small-scale column loaded with pelletized zirconium phosphate compound demonstrated excellent retention of {sup 88}Y and release of {sup 133}Ba.

  4. Mechanisms and application of the Excimer laser doping from spin-on glass sources for USJ fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coutanson, S. [InESS, 23 rue du Loess BP20 CR, F-67037 Strasbourg Cedex 2 (France); Fogarassy, E. [InESS, 23 rue du Loess BP20 CR, F-67037 Strasbourg Cedex 2 (France); Venturini, J. [SOPRA-SA, 26 rue Pierre Joigneaux, 92270 Bois-Colombes (France)

    2006-04-30

    In this work was investigated numerically and experimentally a simple laser doping method employing borosilicate (BSG) glass films as dopant sources which are deposited onto Si by the spin-coating technique. Both short (20 ns) and long (200 ns) pulse duration Excimer laser beams were used to deposit a large amount of energy in short time onto the near-surface region. Under suitable conditions, the irradiation leads to surface melting and dopant incorporation by liquid phase diffusion from the surface. Boron distribution profiles in the two-pulse duration regimes were studied as well as their electrical properties, and the junction formation of less than 25 nm in depth was demonstrated.

  5. Structure and dynamics of iron doped and undoped silicate glasses

    Science.gov (United States)

    Santos, Cristiane N.; Meneses, Domingos D. S.; Echegut, Patrick; Lecomte, Emmanuel

    2010-03-01

    The optical properties of common silicate glass compositions are well known at room temperature. However, their radiative properties and structural evolution of these glasses with temperature are still largely unexplored. In this work we have measured the emissivity of a set of iron doped and undoped silicate and borosilicate glasses over an unprecedented temperature (up to 1700 K) and spectral range (40 -- 20000 cm-1). This was achieved by means of a home-made apparatus composed of a CO2 laser as the heat source, a black-body reference and two spectrometers. The optical functions were assessed using a dielectric function model [1], and the structure and dynamics of the glassy network, as well the absorption of iron species in different redox states were evidenced. We believe that these new data will help to understand the heat transfer in molten silicates. [4pt] [1] D. D. S. Meneses, G. Gruener, M. Malki, and P. Echegut, J. Non-Cryst. Solids 351, 124 (2005)

  6. The effects of CdS processing and glass substrates on the performance of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.; Dugan, K.; Ceekala, V.; Killian, J.; Oman, D.; Swaminathan, R.; Morel, D.L. [Univ. of South Florida, Tampa, FL (United States). Dept. of Electrical Engineering

    1994-12-31

    Cadmium Sulfide films prepared by rf sputtering and close spaced sublimation (CSS) have been used for the fabrication of CdTe/CdS thin film solar cells on borosilicate glass substrates. The CdTe layer was prepared by CSS at high processing temperatures (600 C). CdS films prepared by the chemical bath deposition process (CBD) were deposited on tin oxide coated soda lime glass substrates. For these devices the CSS CdTe films were prepared at low substrate temperatures (< 550 C). Devices prepared at low processing temperatures (CdTe-CSS/CdS-CBD) on soda lime glass substrates exhibited efficiencies in excess of 13% as measured under AM 1.5 conditions at the National Renewable Energy Laboratory.

  7. Fabrication and characterization of MCC approved testing material - ATM-8 glass

    Energy Technology Data Exchange (ETDEWEB)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-8 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuel. Its composition is based upon the simulated HLW glass type 76-68 (Mendel, J.E. et al., 1977, Annual Report of the Characteristics of High-Level Waste Glasses, BNWL-2252, Pacific Northwest Laboratory, Richland, Washington), to which depleted uranium, technetium-99, neptunium-237 and plutonium-239 have been added at moderate to low levels. The glass was requested by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. It was produced by the MCC at the Pacific Northwest Laboratory (PNL) operated for the Department of Energy (DOE) by Battelle Memorial Institute. ATM-8 glass was produced in April of 1984, and is the second in a series of testing materials for NNWSI. This report discusses its fabrication (starting materials, batch and glass preparation, measurement and testing equipment, other equipment, procedures, identification system and materials availability and storage, and characterization (bulk density) measurements, chemical analysis, microscopic examination, and x-ray diffraction analysis. 4 refs., 2 figs., 10 tabs.

  8. Investigation of contact-induced charging kinetics on variably modified glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, G., E-mail: agnellogp@corning.com [Science and Technology Division, Corning Incorporated, Corning, NY 14831 (United States); New York State College of Ceramics at Alfred University, Alfred, NY 14802 (United States); Hamilton, J.; Manley, R.; Streltsova, E. [Science and Technology Division, Corning Incorporated, Corning, NY 14831 (United States); LaCourse, W.; Cormack, A. [New York State College of Ceramics at Alfred University, Alfred, NY 14802 (United States)

    2015-11-30

    Highlights: • Flat glass surfaces with different treatments were assessed for contact charge behavior. • Charging kinetics are believed to be highly dependent on surface reactivity with atmospheric water. • A proton driven model is proposed to account for charge transfer in metal–glass contact systems. - Abstract: The accumulation and dissipation of electrical charge on glass surfaces is of considerable academic and industrial interest. The purpose of the present article, is to report on the differences in charging kinetics of several flat alumina-borosilicate (low alkali content) glass surfaces via a rolling sphere test (RST) [1] that have been physically and/or chemically modified by different approaches and exposed to variable environmental conditions (i.e. relative humidity). Methods used for surface modification include chemical etching (HF based chemistries of variable molarity) and plasma processing/thin film deposition (CH4 via Reactive Ion Etch (RIE) and/or Atmospheric Pressure Plasma Chemical Vapor Deposition (APPCVD)). Trends in glass surface charge rates, along with corresponding surface resistivity, energy and zeta potential measurements indicate that glass surface, and perhaps bulk, chemistry (specifically a surface’ reactivity/affinity with/to water) play critical roles in charge dynamics. Based on the results, we propose an ion-based transfer model facilitated by surface–water molecular interactions as the primary mechanism responsible for contact electrification in glass–metal contact systems.

  9. A statistical approach for identifying nuclear waste glass compositions that will meet quality and processability requirements

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.

    1990-09-01

    Borosilicate glass provides a solid, stable medium for the disposal of high-level radioactive wastes resulting from the production of nuclear materials for United States defense needs. The glass must satisfy various quality and processability requirements on properties such as chemical durability, viscosity, and electrical conductivity. These properties depend on the composition of the waste glass, which will vary during production due to variations in nuclear waste composition and variations in the glass-making process. This paper discusses the experimentally-based statistical approach being used in the Hanford Waste Vitrification Plant (HWVP) Composition Variability Study (CVS). The overall goal of the CVS is to identify the composition region of potential HWVP waste glasses that satisfy with high confidence the applicable quality and processability requirements. This is being accomplished by melting and obtaining property data for simulated nuclear waste glasses of various compositions, and then statistically developing models and other tools needed to meet the goal. 6 refs., 1 fig., 5 tabs.

  10. A completely transparent, adhesively bonded soda-lime glass block masonry system

    Directory of Open Access Journals (Sweden)

    F. Oikonomopoulou

    2015-01-01

    Full Text Available A pioneering, all transparent, self-supporting glass block facade is presented in this paper. Previously realized examples utilize embedded metal components in order to obtain the desired structural performance despite the fact that these elements greatly affect the facade’s overall transparency level. Undeniably, the oxymoron ‘transparency and strength’ remains the prime concern in such applications. In this paper, a new, innovative structural system for glass block facades is described, which demonstrably meets both criteria. The structure is exclusively constructed by monolithic glass blocks, bonded with a colourless, UV-curing adhesive, obtaining thus a maximum transparency. In addition, the desired structural performance is achieved solely through the masonry system, without any opaque substructure. Differing from previous realized projects, solid soda-lime glass blocks are used rather than borosilicate ones. This article provides an overview of the integrated architectural and structural design and discusses the choice of materials. The structural verification of the system is demonstrated. The results show that the adhesively bonded glass block structure has the required self-structural behaviour, but only if strict tolerances are met in the geometry of the glass blocks.

  11. The use of glass powder as a partial Portland cement replacement

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Tydlitát, Vratislav; Scheinherrová, Lenka; Rovnaníková, Pavla; Pavlík, Zbyšek

    2017-07-01

    Finely grinded waste glass powder can become material having suitable properties from the point of view of particle size and pozzolanic activity. Glass powder incorporation into cement paste and cement-based composites can bring improvement in porous structure resulting in increased mechanical strength and durability characteristics. On this account, two types of recycled glass powder are investigated in the presented paper as a possible partial Portland cement substitutes in cement blends. For raw glass powders, basic physical parameters and chemical composition are measured. The studied glass powders are applied as 5, 10 and 20 mass% of Portland cement replacement in cement paste mix composition, whereas water/binder ratio of 0.3 is used for all studied pastes. Fresh paste mixtures are characterized using initial and final setting time measurement. For hardened pastes cured 28 days in water, bulk density, matrix density, total open porosity and mechanical properties represented by flexural and compressive strength are accessed. Portlandite consumption by the pozzolanic reaction is monitored with TGA. The obtained results show effectiveness of a borosilicate glass powder that acts as a pozzolanic active admixture. This resulted in improvement of mechanical characteristics for cement substitution up to 10 mass%.

  12. Subcritical Crack-Growth and Lifetime Behavior of Glass and SiC under Static Load

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Crack initiation and subcritical crack growth in glass sheet and SiC bar specimen under static loading were investigated to study the failure process. It has been demonstrated that the lifetime process of brittle materials involves three possible forms of crack growth: subcritical crack growth,partly subcritical crack growth and instantaneous fracture without subcritical crack growth.Curves of v-K obtained in step-by-step static fatigue tests and in constant loading rate tests showed different trends for borosilicate glass sheet. α-SiC that is generally considered immune to mechanical fatigue effect and environmental attack was also tested under static loading and the lifetime was measured. The results showed that the threshold load to damage effect was over 80% of the initial strength for the SiC.

  13. Tunable Room Temperature Second Harmonic Generation in Glasses Doped with CuCI Nanocrystalline Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Thantu, Napoleon; Schley, Robert Scott; B. L. Justus

    2003-05-01

    Two-photon excited emission centered at 379-426 nm in photodarkening borosilicate glass doped with CuCl nanocrystalline quantum dots at room temperature has been observed. The emission is detected in the direction of the fundamental near-infrared beam. Time- and frequency-resolved measurements at room temperature and 77 K indicate that the emission is largely coherent light characteristic of second harmonic generation (SHG). An average conversion efficiency of ~10-10 is obtained for a 2 mm thick sample. The observed SHG can originate in the individual noncentrosymmetric nanocrystals, leading to a bulk-like contribution, and at the nanocrystal-glass interface, leading to a surface contribution. The bulk-like conversion efficiency is estimated using previously reported values of coherence length (5m) and bulk nonlinear susceptibility. This bulk-like conversion efficiency estimate is found to be smaller than the measured value, suggesting a more prominent surface contribution.

  14. Highly Nonlinear Luminescence Induced by Gold Nanoparticles on Glass Surfaces with Continuous-Wave Laser Illumination

    CERN Document Server

    Wu, Yong; Toro, Ligia; Stefani, Enrico

    2015-01-01

    We report on highly nonlinear luminescence being observed from individual spherical gold nanoparticles immobilized on a borosilicate glass surface and illuminated by continuous-wave (CW) lasers with relatively low power. The nonlinear luminescence shows optical super-resolution beyond the diffraction limit in three dimensions compared to the scatting of the excitation laser light. The luminescence intensity from most nanoparticles is proportional to the 5th--7th power of the excitation laser power and has wide excitation and emission spectra across the visible wavelength range. Strong nonlinear luminescence is only observed near the glass surface. High optical nonlinearity excited by low CW laser power is related to a long-lived dark state of the gold nanoparticles, where the excitation light is strongly absorbed. This phenomenon has potential biological applications in super-resolution and deep tissue imaging.

  15. Irradiation of ionic liquid ion beams on silicon and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuaki, E-mail: m-takeuchi@kuee.kyoto-u.ac.jp; Hamaguchi, Takuya; Ryuto, Hiromichi; Takaoka, Gikan H.

    2013-11-15

    Irradiation of an ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}) ion beam on borosilicate glass and single crystalline Si(100) surface was demonstrated by using an ionic liquid ion source we developed. Surface smoothing on the glass substrates was produced by the irradiations at an acceleration voltage of 4 kV with both positive and negative ion beams, which include cation–anion pairs attached to a single ion of either polarity. Water contact angle measurements and X-ray photoelectron spectroscopy indicated that the surface smoothing was probably caused by surface modification involving nano-ordered chemical etching by Si–F reaction, implantation and deposition of P, N and C.

  16. Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+-Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals

    Science.gov (United States)

    Wang, X. F.; Yan, X. H.; Bu, Y. Y.; Zhen, J.; Xuan, Y.

    2013-08-01

    Dy3+-Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals were fabricated successfully by a melt-quenching method and subsequent heating. X-ray diffraction and transmission electron microscopy analyses show that tetragonal GdSr2F7 nanocrystals are homogeneously precipitated among the borosilicate glass matrix. If excited with 354 nm UV light, the photoluminescence spectrum of Dy3+ single-doped transparent glass ceramics shows white-light emission. With doping of Tm3+, the overall emission color of Tm3+-Dy3+ co-doped transparent glass ceramics can be tuned from white to blue through energy transfer between Dy3+ and Tm3+. CIE chromaticity and color temperature measurements show that the resulting TGCS may be a candidate as a white LED material pumped by a UV InGaN chip.

  17. Glass Fibers: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Edith Mäder

    2017-02-01

    Full Text Available Since the early 1930s, the process of melting glass and subsequently forming fibers, in particular discontinuous fiber glass or continuous glass filaments, evolved into commercial-scale manufacturing.[...

  18. Fabrication and characterization of MCC approved testing material - ATM-12 glass

    Energy Technology Data Exchange (ETDEWEB)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-12 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuels. The composition has been adjusted to match that predicted for HLW type 76-68 glass at an age of 300 y. Radioactive constituents contained in this glass include depleted uranium, {sup 99}Tc, {sup 237}Np, {sup 239}Pu, and {sup 241}Am. The glass was produced by the MCC at the Pacific Northwest Laboratory (PNL). ATM-12 glass ws produced from July to November of 1984 at the request of the Nevada Nuclear Waste Site Investigations (NNWSI) Program and is the third in a series of glasses produced for NNWSI. Most of the glass produced was in the form of cast bars; special castings and crushed material were also produced. Three kilograms of ATM-12 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1150{sup 0}C in a platinum crucible, and formed into stress-annealed rectangular bars and the special casting shapes requested by NNWSI. Bars of ATM-12 were nominally 1.9 x 1.9 x 10 cm, with an average mass of 111 g each. Nineteen bars and 37 special castings were made. ATM-12 glass has been provided to the NNWSI Program, in the form of bars, crushed powder and special castings. As of August 1985 approximately 590 g of ATM-12 is available for distribution. Requests for materials or services related to this glass should be directed to the Materials Characterization Center Program Office, PNL.

  19. Effect of low dose electron beam irradiation on the alteration layer formed during nuclear glass leaching

    Science.gov (United States)

    Mougnaud, S.; Tribet, M.; Renault, J.-P.; Jollivet, P.; Panczer, G.; Charpentier, T.; Jégou, C.

    2016-12-01

    This investigation concerns borosilicate glass leaching mechanisms and the evolution of alteration layer under electron beam irradiation. A simple glass doped with rare earth elements was selected in order to access mechanistic and structural information and better evaluate the effects of irradiation. It was fully leached in initially pure water at 90 °C and at high glass surface area to solution volume ratio (S/V = 20 000 m-1) in static conditions. Under these conditions, the system quickly reaches the residual alteration rate regime. A small particle size fraction (2-5 μm) was sampled in order to obtain a fairly homogeneous altered material enabling the use of bulk characterization methods. External irradiations with 10 MeV electrons up to a dose of 10 MGy were performed either before or after leaching, to investigate respectively the effect of initial glass irradiation on its alteration behavior and the irradiation stability of the alteration layer. Glass dissolution rate was analyzed by regular leachate samplings and the alteration layer structure was characterized by Raman, luminescence (continuous or time-resolved), and 29Si MAS NMR and EPR spectroscopy. It was shown that the small initial glass evolutions under irradiation did not induce any modification of the leaching kinetic nor of the structure of the alteration layer. The alteration process seemed to "smooth over" the created defects. Otherwise, the alteration layer and initial glass appeared to have different behaviors under irradiation. No Eu3+ reduction was detected in the alteration layer after irradiation and the defect creation efficiency was much lower than for initial glass. This can possibly be explained by the protective role of pore water contained in the altered material (∼20%). Moreover, a slight depolymerization of the silicon network of the altered glass under irradiation with electrons was evidenced, whereas in the initial glass it typically repolymerizes.

  20. Glass ceramics containment matrix for insoluble residues coming from spent fuel reprocessing

    Science.gov (United States)

    Pinet, O.; Boën, R.

    2014-04-01

    Spent fuel reprocessing by hydrometallurgical process generates insoluble residues waste streams called fines solution. Considering their radioactivity, fines solution could be considered as Intermediate Level Waste. This waste stream is usually mixed with fission products stream before vitrification. Thus fines are incorporated in glass matrix designed for High Level Waste. The withdrawal of fines from high level glass could decrease the volume of high level waste after conditioning. It could also decrease the reaction time between high level waste and additives to obtain a homogeneous melt and then increase the vitrification process capacity. Separated conditioning of fines in glass matrices has been tested. The fines content targeted value is 16 wt%. To achieve this objective, two types of glass ceramic formulations have been tested. 700 g of the two selected glass ceramics have been prepared using simulated fines. Additives used were ground glass. Melting is achieved at 1100 °C. According to the type of glass ceramic, reducing or oxidizing conditions have been performed during melting. Due to their composition and the melting redox conditions, different phases have been observed. These crystalline phases are typically RuO2, metallic Ru, metallic Pd, MoO2 and CaMoO4. In view of melting these matrices in an in can process the corrosiveness of one of the most oxidizing borosilicate glass ceramic formulation has been tested. This one has been remelted at 1100 °C in inconel 601 pot for 3 days. The oxygen fugacity measurement performed in the remelted glass leads to an oxidizing value, indicating that no significant reaction occurred between the inconel pot and the glass melt had occurred.

  1. Barium Swallow Findings in the Evaluation of Patients with Dysphagia

    Directory of Open Access Journals (Sweden)

    Amirhosein Hashemi Attar

    2011-05-01

    Full Text Available Background/Objective: Dysphagia is a subjective"nsensation of difficulty in swallowing that has a wide"nrange of etiologies from psychosomatic disorders"nto high grade neoplasms. In this study we evaluated"nbarium swallow findings of patients with dysphagia."nPatients and Methods: We evaluated 200 patients"n(117 men, 83 women; mean age, 49.6 years with"ncomplaint of dysphagia. Fluoroscopic barium"nswallow was done for all the patients and they were"nreviewed for primary peristalsis (presence or absence,"nAbstracts"nS62 Iran J Radiol 2011, 8 (Supp.1"nAbstracts"nimpaired lower esophageal sphincter, esophageal dilatation, delayed emptying of barium, nonperistaltic contractions, stricture and filling defects. Clinical and in some cases endoscopic or manometric follow up was done for all patients."nResults: We had 134 (67% normal barium swallow"nexams with uncomplicated clinical courses. Sixty"nsix patients (33% had abnormal imaging findings"nincluding stricture in 24 patients (12%, filling defect"nin 12 patients (6% and mucosal abnormality in 14"n(7% patients (six cases of mucosal irregularity, three"ncases of mucosal ulceration and five cases of mucosal"nherniation, Bird's beak sign in three patients (1.5%,"ntertiary spasm in six patients (3% and hiatal hernia in"nseven patients (3.5%."nConclusion: In the majority of patients with dysphagia,"nbarium swallow is the only paraclinical study needed"nto plan proper treatment. If radiographic findings are"nequivocal, endoscopy or manometry may be required"nfor more certain diagnosis.

  2. Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetite nanocomposite

    NARCIS (Netherlands)

    Molaei, M.J.; Ataie, A.; Raygan, S.; Picken,n S.J.

    2011-01-01

    In this research, barium ferrite /magnetite nanocomposites synthesized via a mechano-chemical route. Graphite was used in order to reduce hematite content of barium ferrite to magnetite to produce a magnetic nanocomposite. The effects of processing conditions on the powder characteristics were inves

  3. Complete sulphate removal from neutralised acidic mine drainage with barium carbonate

    CSIR Research Space (South Africa)

    Swanepoel, H

    2012-03-01

    Full Text Available -barium-calcium) Desalination process which uses barium salts to further reduce the sulphate concentration to acceptable levels with the added advantage that sulphate removal can be controlled due to the low solubility of BaSO4. This paper reports on the results...

  4. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  5. Obtaining of Nanostructured Powders of Barium and Strontium Hexaferrite by the Polymer Precursor Method

    Directory of Open Access Journals (Sweden)

    V.G. Kostishyn

    2015-12-01

    Full Text Available Studied the possibility of obtaining by precursors in the polymer nanostructured powders of barium hexaferrite BaFe12O19 and strontium hexaferrite SrFe12O19. The reagents were used as starting barium nitrate, strontium nitrate and ferric nitrate nonahydrate (III, and polyethylene glycol-400 used this technology as a polymer.

  6. Control on Crystal Forms of Ultrafine Barium Carbonate Particles and Study on its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Barium carbonate particles were prepared by using homogeneous precipitation method and co-precipitation method respectively. Through adding different crystalline controlling modifiers, Barium carbonate particles in five different shapes including linear, needle-like, pillarlike, sphere-like and dumbbell-like were synthesized. These particles were characterized by SEM and XRD, and their synthetic mechanism was discussed in this paper.

  7. Spectroscopic properties of trivalent praseodymium in barium yttrium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Di Bartolo, B. E-mail: dibartob@bc.edurinodiba@attbi.com; Bowlby, B.E

    2003-05-01

    We have conducted a spectroscopic investigation of Pr{sup 3+} in barium yttrium fluoride (BaY{sub 2}O{sub 8}). Two doping concentrations were used: BaY{sub 2}F{sub 8}:Pr{sup 3+} (0.3%) and BaY{sub 2}F{sub 8}:Pr{sup 3+} (1%). The measurements included absorption, luminescence under continuous and pulsed excitations, and thermal effects on some sharp lines. The experimental results were used to characterize this system.

  8. A barium-rich binary central star in Abell 70

    CERN Document Server

    Boffin, Henri M J; Frew, D J; Acker, A; Köppen, J; Moffat, A F J; Parker, Q A

    2011-01-01

    We have found the central star of Abell 70 (PN G038.1-25.4, hereafter A 70) to be a binary consisting of a G8 IV-V secondary and a hot white dwarf. The secondary shows enhanced Ba II and Sr II features, firmly classifying it as a barium star. The nebula is found to have Type-I chemical abundances with helium and nitrogen enrichment, which combined with future abundance studies of the central star, will establish A 70 as a unique laboratory for studying s-process AGB nucleosynthesis.

  9. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  10. Preparation of nanosized barium zirconate powder by thermal decomposition of urea in an aqueous solution containing barium and zirconium, and by calcination of the precipitate

    OpenAIRE

    Boschini, Frédéric; Robertz, B.; Rulmont, André; Cloots, Rudi

    2003-01-01

    The synthesis of barium zirconate was initiated by urea induced homogeneous precipitation followed by a "low temperature" thermal treatment. The kinetic of the reaction and the optimum urea/cation ratio have been determined by means of X-ray diffraction and Inductive Coupled Plasma analyses. It has been demonstrated that an amorphous zirconium hydrated oxide starts to precipitate followed by the precipitation of barium carbonate. A calcination at 1200 degreesC during 2 h gives rise to the for...

  11. Temperature dependence dielectric properties of modified barium titanate-PVB composites

    Science.gov (United States)

    Joshi, N. J.; Rakshit, P. B.; Grewal, G. S.; Shrinet, V.; Pratap, A.

    2013-06-01

    In this work, attempts are made to prepare ceramic polymer-composite followed by characterization of dielectric properties. The Barium Titanate ceramic powders are synthesized using the hydrothermal process. Silane treatment is carried out on Barium Titanate powder to increase its compatibility with polymer, followed with preparation of ceramic-polymer composite. Polyvinyl Butyral (PVB) is used as matrix for preparation of the composites and the concentration of Barium Titanate is increased from 60 to 90 wt%. Dielectric properties such as volume resistivity, dielectric constant, dissipation factor are evaluated. Results indicate that the dielectric constant and dissipation factor vary between 52 to 120 and 0.01 to 0.07; respectively as the relative ratio of polymer and silane modified Barium Titanate is varied. Specifically, at 90 wt% of silane modified Barium Titanate, the highest dielectric constant of 123 along with dissipation factor of 0.07 is obtained.

  12. Barium Tagging in Liquid Xenon for the nEXO Experiment

    Science.gov (United States)

    Kravitz, Scott; nEXO Collaboration

    2016-09-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of xenon-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a MAJORANA particle, as well as measure the absolute neutrino mass scale. In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, barium-136. Barium tagging may be available for a second phase of nEXO operation, allowing for neutrino mass sensitivity beyond the inverted mass hierarchy. Tagging methods for this phase include barium-ion capture on a probe with identification by resonance ionization laser spectroscopy. Inclusion of an argon ion gun in this system allows for improved cleaning and preparation of the barium deposition substrate, with recent results reported in this presentation.

  13. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  14. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  15. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production......Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  16. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  17. Effect of titanium ion substitution in the barium hexaferrite studied by Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Pamela, E-mail: pamela.quiroz-penaranda@tu-ilmenau.de; Halbedel, Bernd [Ilmenau University of Technology, Department of Inorganic-Nonmetallic Materials, Institute of Materials Engineering (Germany); Bustamante, Angel, E-mail: angelbd1@gmail.com [San Marcos National University, Laboratory of Ceramics and Nanomaterials, Faculty of Physical Sciences (Peru); Gonzalez, Juan C. [Materials Science Institute of Sevilla - CSIC, Surfaces Research Group-Interfaces and Thin Films (Spain)

    2011-11-15

    A series of M-type barium hexaferrite has been synthesized in a glass melt by partially substituting the Fe{sub 2}O{sub 3} with TiO{sub 2} for investigation of their structure. The glass melt has the basic composition (mol%): 40 BaO + 33 B{sub 2}O{sub 3} + (27-x) Fe{sub 2}O{sub 3} + x TiO{sub 2} with x = 0, 3.6, 5.4 and 7.2 mol% TiO{sub 2}. The substituted ferrites were studied by means of X-ray diffraction, Moessbauer spectroscopy and vibration sample magnetometer. X-ray diffraction studies revealed that not all samples have a single ferritic phase, a small second phase corresponding to BaTi{sub 6}O{sub 13} was also observed to form. The Moessbauer spectra changed from magnetically ordered (x = 0) to magnetically ordered with strong line broadening. Moreover, the broadening increases with TiO{sub 2} content. The Moessbauer parameters suggested that Ti{sup 4 + } occupies the 2a and 12k crystal sites, and the Ti{sup 4 + } substitution on the 2b and 4f{sub 2} site also occurs at high melt dopings. Therefore, coercivity and saturation magnetization decreased.

  18. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations

  19. Thermal expansion behaviour of barium and strontium zirconium phosphates

    Indian Academy of Sciences (India)

    P Srikari Tantri; K Geetha; A M Umarji; Sheela K Ramasesha

    2000-12-01

    Ba1.5–SrZr4P5SiO24 compounds with = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to R$\\bar{3}$ space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), with = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly, = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign. = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials.

  20. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  1. Liquid-Phase Processing of Barium Titanate Thin Films

    Science.gov (United States)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  2. Direct laser writing of topographic features in semiconductor-doped glass

    Science.gov (United States)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing

  3. Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Vyas, V.; Sampath Kumar, A.; Ali, A.; Prasad, S.; Srivastava, P.; Prasanna Mallick, S.; Ershad, Md.; Prasad Singh, S.; Pyare, R.

    2016-07-01

    Many type of oxide substituted glass-ceramics like strontium, cobalt, barium and titanium have shown bioactivity with improved mechanical properties. The present work reports the in vitro bioactivity and mechanical properties of nickel oxide substituted in bioactive glass-ceramic and results were compared with 45S5 bioactive glass-ceramic. Bioactive glass ceramics were processed through controlled crystallization of their respective bioactive glasses. The formed crystalline phases in bioactive glass-ceramics were identified using X-ray diffraction (XRD) analysis. The formation of HA layer was assessed by immersing them in the simulated body fluid (SBF) for different soaking periods. The formation of hydroxyapatite was confirmed by FTIR spectrometry, SEM and pH measurement. Densities and mechanical properties of the samples were found to increase considerably with an increasing the concentration of nickel oxide. A decrease in glass transition temperature (Tg) with NiO addition showed that the nickel oxide had acted as an intermediate in smaller quantities in the bioactive glass. The cell culture studies demonstrated that the samples containing low concentration of NiO from 0 to 1.65mol% were non-cytotoxic against osteoblast cells. Finally, this investigation clearly concluded that NiO doped bioactive glass would be potential biomaterials for biomedical applications. (Author)

  4. Luminescent borate glass for efficiency enhancement of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steudel, Franziska, E-mail: franziska.steudel@iwmh.fraunhofer.de [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Loos, Sebastian [Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany); Ahrens, Bernd; Schweizer, Stefan [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany)

    2015-08-15

    Rare-earth (RE) doped borate glasses are investigated for their potential as photon down-shifting cover glass for CdTe solar cells. The barium borate base glass is doped with trivalent rare-earth ions such as Sm{sup 3+}, Eu{sup 3+}, and Tb{sup 3+} showing an intense luminescence in the red (Sm{sup 3+}, Eu{sup 3+}) and green (Tb{sup 3+}) spectral range upon excitation in the ultraviolet and blue. Additionally, the glasses are double-doped with two RE ions for a broad-band absorption. The gain in short-circuit current density of CdTe solar cells with different thicknesses of the CdS buffer layer is calculated. Though the single-doped glasses already reveal a slight increase in short-circuit current density, the double-doped glasses allow for higher efficiency gains since a significant broader spectral range is covered for absorption. For a Tb{sup 3+}/Eu{sup 3+} double-doped glass with a RE doping level of 1 at% each, an efficiency increase of 1.32% can be achieved. - Highlights: • Rare-earth doped front glass for high efficiency CdTe solar cells were prepared. • Double-doping allows for higher efficiency gains than single-doping. • Efficiency enhancement of 1.32% can be achieved with Tb{sup 3+}/Eu{sup 3+} doped front glass.

  5. Origin of Chinese ancient glasses——study on the earliest Chinese ancient glasses

    Institute of Scientific and Technical Information of China (English)

    GAN Fuxi; CHENG Huansheng; LI Qinghui

    2006-01-01

    The earliest Chinese ancient glasses before the West Han Dynasty (200 BC) from different regions are studied. The glass samples were unearthed from Hunan, Hubei, Yunnan, Sichuan, Guizhou, Guangdong and Xinjiang of China. The chemical composition of these glasses samples is analyzed by proton induced X-ray emission (PIXE) technique, energy dispersive X-ray fluorescence (EDXRF) method and inductively coupled plasma atomic emission spectrometry (ICP-AES). It is shown that the glass chemical compositions belong to barium-lead silicate BaO-PbO-SiO2, potash soda lime silicate K2O (Na2O)-CaO-SiO2 (K2O/Na2O>1), soda potash lime silicate Na2O (K2O)-CaO-SiO2 (K2O/Na2O<1) and potash silicate K2O-SiO2 glass systems, respectively. The origins of the earliest Chinese ancient glasses are discussed from the archaeological and historical points of view. These four types of Chinese ancient glasses were all made in Chinese territory using local raw materials. The glass preparation technology was related to the Chinese ancient bronze metallurgy and proto-porcelain glaze technology. The glass technology relationship between the East and the West is analyzed at the same time.

  6. Precipitation method for barium metaborate (BaB{sub 2}O{sub 4}) synthesis from borax solution

    Energy Technology Data Exchange (ETDEWEB)

    Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye [Yildiz Technical University, Chem. Eng. Dept., Davutpasa Campus, 34210, Istanbul (Turkey)

    2013-12-16

    In this study, barium metaborate (BaB{sub 2}O{sub 4}, BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β−BaB{sub 2}O{sub 4} single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na{sub 2}B{sub 4}O{sub 7⋅}10H{sub 2}O, BDH) and barium chloride (BaCI{sub 2⋅}2H{sub 2}O, Ba) in the glass-batch reactor with stirring. The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique.

  7. Analysis of the optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals using time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalska, D.; Haro-Gonzalez, P. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Martin, I.R. [Universidad de La Laguna, Departamento de Fisica Fundamental, Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Malta Consolider Team, La Laguna, Tenerife (Spain); Caceres, J.M. [Universidad de La Laguna, Departamento de Edafologia y Geologia, La Laguna, Tenerife (Spain)

    2010-06-15

    This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er{sup 3+} ions. The melt-quenching method was applied to fabricate the glasses with composition SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er{sup 3+} ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er{sup 3+} ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm. (orig.)

  8. Glass-silicon column

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  9. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    Science.gov (United States)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  10. Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation

    Science.gov (United States)

    Fuerbach, A.; Gross, S.; Little, D.; Arriola, A.; Ams, M.; Dekker, P.; Withford, M.

    2016-07-01

    Tightly focused femtosecond laser pulses can be used to alter the refractive index of virtually all optical glasses. As the laser-induced modification is spatially limited to the focal volume of the writing beam, this technique enables the fabrication of fully three-dimensional photonic structures and devices that are automatically embedded within the host material. While it is well understood that the laser-material interaction process is initiated by nonlinear, typically multiphoton absorption, the actual mechanism that results in an increase or sometimes decrease of the refractive index of the glass strongly depends on the composition of the material and the process parameters and is still subject to scientific studies. In this paper, we present an overview of our recent work aimed at uncovering the physical and chemical processes that contribute to the observed material modification. Raman microscopy and electron microprobe analysis was used to study the induced modifications that occur within the glass matrix and the influence of atomic species migration forced by the femtosecond laser writing beam. In particular, we concentrate on borosilicate, heavy metal fluoride and phosphate glasses. We believe that our results represent an important step towards the development of engineered glass types that are ideally suited for the fabrication of photonic devices via the femtosecond laser direct write technique.

  11. Evaluation of the surface strength of glass plates shaped by hot slumping process

    Science.gov (United States)

    Proserpio, Laura; Basso, Stefano; Borsa, Francesco; Citterio, Oberto; Civitani, Marta; Ghigo, Mauro; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Gianpiero; D'Este, Alberto; Dall'Igna, Roberto; Silvestri, Mirko; Parodi, Giancarlo; Martelli, Francesco; Bavdaz, Marcos; Wille, Eric

    2014-08-01

    Hot slumping technology is under development by several research groups in the world for the realization of grazing-incidence segmented mirrors for x-ray astronomy, based on thin glass plates shaped over a mold at temperatures above the transformation point. The performed thermal cycle and related operations might have effects on the strength of the glass, with consequences for the structural design of the elemental optical modules and, consequently, on the entire x-ray optic for large astronomical missions such as IXO and ATHENA. The mechanical strength of glass plates after they underwent the slumping process was tested through destructive double-ring tests in the context of a study performed by the Astronomical Observatory of Brera with the collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire study was done on more than 200 D263 Schott borosilicate glass specimens of dimensions 100 mm×100 mm and a thickness 0.4 mm, either flat or bent at a radius of curvature of 1000 mm through the pressure-assisted hot slumping process developed by INAF-OAB. The collected experimental data have been compared with nonlinear finite element model analyses and treated with the Weibull statistic to assess the current IXO glass x-ray telescope design, in terms of survival probability, when subjected to static and acoustic loads characteristic of the launch phase. The paper describes the activities performed and presents the obtained results.

  12. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Science.gov (United States)

    Tang, Ming; Kossoy, Anna; Jarvinen, Gordon; Crum, Jarrod; Turo, Laura; Riley, Brian; Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1-5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  13. Preparation of Barium Titanate Nanopowder through Thermal Decomposition of Peroxide Precursor and Its Formation Mechanism

    Institute of Scientific and Technical Information of China (English)

    PENG, Yangxi; CHEN, Qiyuan; LIU, Shijun

    2009-01-01

    H_2TiO_3 was dissolved in the mixture of hydrogen formed peroxide and ammonia under the pH range of 8-10 with a transparent yellow solution formed. When an equivalent mole of Ba~(2+) solution was added into the yellow solution, the precipitate produced was the peroxide precursor of barium titanate. The cubic nanopowder of barium titanate was obtained when the precipitate was washed, stoved, and then calcined at 600 ℃ for 1 h. The peroxide precursor of barium titanate and barium titanate nanopowder prepared were characterized to be BaTi(H_2O_2)_2O_3 by TGA-DTA, XRD, TEM, SEM, and XREDS. The peroxide precursor of barium titanate was determined to be BaTi(H_2O_2)_2O_3. The particle size of the barium titanate nanopowder, the calcined product of BaTi(H_2O_2)_2O_3, was in the range of 20-40 nm. A formation mechanism of the barium titanate nanopowder through thermal decomposition of its peroxide precursor was proposed and then validated.

  14. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  15. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  16. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    Science.gov (United States)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  17. Magnetic properties of Ni substituted Y-type barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Won, Mi Hee; Kim, Chul Sung, E-mail: cskim@kookmin.ac.kr [Department of Physics, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temp