WorldWideScience

Sample records for barents sea ecosystem

  1. Ecosystem structure and resilience—A comparison between the Norwegian and the Barents Sea

    Science.gov (United States)

    Yaragina, Natalia A.; Dolgov, Andrey V.

    2009-10-01

    Abundance and biomass of the most important fish species inhabited the Barents and Norwegian Sea ecosystems have shown considerable fluctuations over the last decades. These fluctuations connected with fishing pressure resulted in the trophic structure alterations of the ecosystems. Resilience and other theoretical concepts (top-down, wasp-waste and bottom-up control, trophic cascades) were viewed to examine different response of the Norwegian and Barents Sea ecosystems on disturbing forces. Differences in the trophic structure and functioning of Barents and Norwegian Sea ecosystems as well as factors that might influence the resilience of the marine ecosystems, including climatic fluctuation, variations in prey and predator species abundance, alterations in their regular migrations, and fishing exploitation were also considered. The trophic chain lengths in the deep Norwegian Sea are shorter, and energy transfer occurs mainly through the pelagic fish/invertebrates communities. The shallow Barents Sea is characterized by longer trophic chains, providing more energy flow into their benthic assemblages. The trophic mechanisms observed in the Norwegian Sea food webs dominated by the top-down control, i.e. the past removal of Norwegian Spring spawning followed by zooplankton development and intrusion of blue whiting and mackerel into the area. The wasp-waist response is shown to be the most pronounced effect in the Barents Sea, related to the position of capelin in the ecosystem; large fluctuations in the capelin abundance have been strengthened by intensive fishery. Closer links between ecological and fisheries sciences are needed to elaborate and test various food webs and multispecies models available.

  2. Invasive Crabs in the Barents Sea

    DEFF Research Database (Denmark)

    Kaiser, Brooks; Fernandez, Linda; Kourantidou, Melina

    The recent invasions of the red king crab (RKC) and the snow crab (SC) in the Barents Sea represent the sorts of integrated ecological and economic shifts we may expect as climate change affects arctic seas. Economic incentives and ecological unknowns have combined to change the current...... and potentially future productivity and profitability of the Barents ecosystem in complex and interacting ways. We examine potential ecological-economic trajectories for these crabs’ continued expansions in the Arctic and how the profitability, the joint and national management structures in Norway and Russia...

  3. Formation of Barents Sea Branch Water in the north-eastern Barents Sea

    Directory of Open Access Journals (Sweden)

    Vidar S. Lien

    2013-09-01

    Full Text Available The Barents Sea throughflow accounts for approximately half of the Atlantic Water advection to the Arctic Ocean, while the other half flows through Fram Strait. Within the Barents Sea, the Atlantic Water undergoes considerable modifications before entering the Arctic Ocean through the St. Anna Trough. While the inflow area in the south-western Barents Sea is regularly monitored, oceanographic data from the outflow area to the north-east are very scarce. Here, we use conductivity, temperature and depth data from August/September 2008 to describe in detail the water masses present in the downstream area of the Barents Sea, their spatial distribution and transformations. Both Cold Deep Water, formed locally through winter convection and ice-freezing processes, and Atlantic Water, modified mainly through atmospheric cooling, contribute directly to the Barents Sea Branch Water. As a consequence, it consists of a dense core characterized by a temperature and salinity maximum associated with the Atlantic Water, in addition to the colder, less saline and less dense core commonly referred to as the Barents Sea Branch Water core. The denser core likely constitutes a substantial part of the total flow, and it is more saline and considerably denser than the Fram Strait branch as observed within the St. Anna Trough. Despite the recent warming of the Barents Sea, the Barents Sea Branch Water is denser than observed in the 1990s, and the bottom water observed in the St. Anna Trough matches the potential density at 2000 m depth in the Arctic Ocean.

  4. The Barents Sea, distribution and fate of radioactive contaminants

    International Nuclear Information System (INIS)

    Foeyn, L.; Heldal, H.E.; Svaeren, I.

    1999-01-01

    Possible contamination in the marine food webs of the Barents Sea may be a problem for a rational harvest of the area. Radioactive contamination has in this context a special public impact as even traces of radioactivity seems to be considered by the public to be a real danger. It is therefor of special importance, from a regulatory and fisheries point of view, to accumulate knowledge of the behaviour of radioactive elements in the marine ecosystems of the Barents Sea in order to place this contamination in proper and realistic proportions

  5. Assessment of 137Cs and 90Sr Fluxes in the Barents Sea

    Science.gov (United States)

    Matishov, Gennady; Usiagina, Irina; Kasatkina, Nadezhda; Ilin, Gennadii

    2014-05-01

    the 1990s, 137Cs inflow exceeded outflow in the annual balance, but the opposite pattern is observed nowadays. This tendency of prevailing of 137Cs outflow processes in the Barents Sea may be explained by natural decay and ecosystem self-cleaning of the radioactivity, which has penetrated previously. According to our assumptions, in total, 37400 TBq of 137Cs penetrated, and 26300 TBq of 137Cs were output from the Barents Sea during the period 1950-2010, i.e., 70.2% of this isotope was removed. From the 1960s through the present, the inflow of 90Sr exceeded the outflow. In total, 24800 TBq of 90Sr penetrated, and 19600 TBq of 90Sr were output through the northern and northeastern margins of the Barents Sea, i.e., 79.1% of this isotope was removed. From 1960 through the 1980s, the income/outcome ratio in the Barents Sea was quite stable and constituted 1.4-1.5 for 137Cs and 1.1-1.2 for 90Sr. The increase of the impact of atmospheric precipitation on 137Cs income was up to 42% in 1986 due to the Chernobyl disaster, and the income/outcome ratio increased to 2.6. The atmospheric income of 90Sr in 1986 was minor, and the ratio stayed the same for this isotope.

  6. Assessment of Marine Litter in the Barents Sea, a Part of the Joint Norwegian–Russian Ecosystem Survey

    Directory of Open Access Journals (Sweden)

    Bjørn E. Grøsvik

    2018-03-01

    Full Text Available This study presents a large-scale monitoring of marine litter performed in the joint Norwegian–Russian ecosystem monitoring surveys in the period from 2010 to 2016 and contribute to documentation of the extent of marine litter in the Barents Sea. The distribution and abundance of marine litter were calculated by recordings of bycatch from the pelagic trawling in upper 60 m, from bottom trawling close to the sea floor, and floating marine debris at surface by visual observations. The study is comprehensive regarding coverage and number with registrations from 2,265 pelagic trawls and 1,860 bottom trawls, in addition to surface registration between the stations. Marine litter has been recorded from 301 pelagic and 624 of the bottom trawl catches. In total, 784 visual observations of floating marine debris were recorded during the period. Marine litter has been categorized according to volume or weight of the material types plastic, wood, metal, rubber, glass, paper, and textile. Marine litter is observed in the entire Barents Sea and distribution vary with material densities, ocean currents and depth. Plastic dominated number of observations with marine litter, as 72% of surface observations, 94% of pelagic trawls, and 86% of bottom trawls contained plastic. Observations of wood constituted 19% of surface observations, 1% of pelagic trawls, and 17% of bottom trawls with marine litter. Materials from other categories such as metal, rubber, paper, textile, and glass were observed sporadically. Recordings of wood dominated surface observations (61.9 ± 21.6% by volume and on seafloor (59.4 ± 35.0% by weight, while plastic dominated marine litter observations in upper 60 m depth (86.4 ± 16.5% by weight over these 7 years. Based on recordings and volume or area covered, mean levels of plastic in the upper 60 m of the Barents Sea were found to 0.011 mg m−3 (pelagic and 2.9 kg km−2 at sea floor over the study period. Average levels of marine

  7. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  8. On the role of tides and strong wind events in promoting summer primary production in the Barents Sea

    Science.gov (United States)

    Le Fouest, Vincent; Postlethwaite, Clare; Morales Maqueda, Miguel Angel; Bélanger, Simon; Babin, Marcel

    2011-11-01

    Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s -1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=10 12 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.

  9. 137CS in cod from Barents sea

    International Nuclear Information System (INIS)

    Kellermann, H.-J.; Kanisch, G.; Krueger, A.

    2003-01-01

    After publication of the Yablovkov report about dumping of radioactive waste by the former Soviet Union the Institute for Fishery Ecology has analysed fish from Barents Sea for radioactivity. In all studies 137 Cs concentrations in cod fillet showed a clear dependance from fish length. Results from an analysis of covariance for cod of 70 cm length have minor changes within Barents Sea and indicate a rapid decay to a value as is expected for marine fish which is only influenced by global fallout. (orig.)

  10. Sea-ice thickness from field measurements in the northwestern Barents Sea

    Science.gov (United States)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin

    2017-02-01

    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  11. The Western Barents Sea: where is the Caledonian Deformation Front?

    Science.gov (United States)

    Shulgin, Alexey; Aarseth, Iselin; Faleide, Jan Inge; Mjelde, Rolf; Huismans, Ritske

    2017-04-01

    The basement architecture below the Paleozoic sedimentary basins is still not fully understood in the Western Barents Sea region. It has been proposed that the early Devonian Caledonian orogeny has formed structural framework over which major basins have developed lately. However, the geometry of the Caledonian suture zone (its location, orientation and the extent of the deformation front) is still poorly constrained and is ambiguous in the Barents Sea. The crustal evolution of the Barents Sea and the basin-basement interaction is heavily dependent on the spatial extent and orientation of the Caledonian Deformation Front (CDF). In 2014 an active marine seismic experiment was conducted in the Western Barents Sea. One of the goals of the experiment is to discriminate between two existing models for orientations of the CDF: north-south from the potential fields data, and southwest-northeast from seismic data. We also aim to constrain the location of the CDF offshore northern Norway. We present the joint interpretation of collocated newly collected wide-angle seismic data (Ocean Bottom Seismometers) and reprocessing of the reflection seismic dataset (Multi-channel seismics) collected in the mid 1980's, using modern computational techniques. The two seismic methods provide best resolution at different depth ranges, and in our modeling we combine the results from the two methods to constrain the location of the CDF along transect running Northwest-Southeast across the Western Barents Sea.

  12. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952-2009

    Directory of Open Access Journals (Sweden)

    Emma Lvovna Orlova

    2015-01-01

    Full Text Available Euphausiids play an important role in transferring energy from ephemeral primary producers to fish, seabirds, and marine mammals in the Barents Sea ecosystem. Climatic impacts have been suggested to occur at all levels of the Barents Sea food-web, but adequate exploration of these phenomena on ecologically relevant spatial scales has not been integrated sufficiently. We used a time-series of euphausiid abundance data spanning 58 years, one of the longest biological time-series in the Arctic, to explore qualitative and quantitative relationships among climate, euphausiids, and their predators, and how these parameters vary spatially in the Barents Sea. We detected four main hydrographic regions, each with distinct patterns of interannual variability in euphausiid abundance and community structure. Assemblages varied primarily in the relative abundance of Thysanoessa inermis versus T. raschii, or T. inermis versus T. longicaudata and Meganyctiphanes norvegica. Climate proxies and the abundance of capelin or cod explained 30-60% of the variability in euphausiid abundance in each region. Climate also influenced patterns of variability in euphausiid community structure, but correlations were generally weaker. Advection of boreal euphausiid taxa from the Norwegian Sea is clearly more prominent in warmer years than in colder years, and interacts with seasonal fish migrations to help explain spatial differences in primary drivers of euphausiid community structure. Non-linear effects of predators were common, and must be considered more carefully if a mechanistic understanding of the ecosystem is to be achieved. Quantitative relationships among euphausiid abundance, climate proxies, and predator stock-sizes derived from these time series are valuable for ecological models being used to predict impacts of climate change on the Barents Sea ecosystem, and how the system should be managed.

  13. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    Science.gov (United States)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  14. Barents Sea Monitoring with a SEA EXPLORER Glider

    OpenAIRE

    Field, Michael; Béguery, Laurent; Oziel, Laurent; Gascard, Jean-Claude

    2015-01-01

    International audience; The use of gliders in the Polar Regions offers clever and inexpensive methods for large scale monitoring and exploration. In August and September of 2014, a SEA EXPLORER glider successfully completed a 388 km mission in the central Barents Sea to monitor the physical and biological features over a transect between 72° 30' N and 74° 30' N latitude and between 32° E and 33° E longitude, as part of the European FP7 ACCESS project and in cooperation with the Institute of M...

  15. Winter distribution of euphausiids ( Euphausiacea) in the Barents Sea (2000-2005)

    Science.gov (United States)

    Zhukova, Natalia G.; Nesterova, Valentina N.; Prokopchuk, Irina P.; Rudneva, Galina B.

    2009-10-01

    The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000-2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m 2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn-winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77-79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7-2.4 g m -2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003-2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50'N 50°22'E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s-1960s almost to complete

  16. Regulatory policies for using oil dispersants in the Barents Sea

    Directory of Open Access Journals (Sweden)

    Natalia Belkina

    2015-04-01

    Full Text Available Use of dispersants requires assessment of which environmental values are at stake. In the Barents Sea this issue is of high concern as large oil spills can cause transboundary pollution, affecting the interests of two neighbouring countries. The Joint Contingency Plan in the Barents Sea does not set any specific requirements for use of dispersants and lets Norway and Russia follow their national procedures. The Plan emphasizes that in case of transboundary pollution the decision to use dispersants shall only be undertaken upon common agreement. The paper presents a comparison of the national regulatory approaches of Norway and Russia to using dispersants. The research is based on the analysis of legislative documents and interviews with oil companies, oil spill responders and relevant national authorities. The research reveals that in both countries use of dispersants requires preliminary authorization of the national agencies. In Norway the pre-approval procedure and the algorithm of dispersants involvement in response to a real accident are clearly documented and are regularly tested. This has made the process of approval for using dispersants more efficient. In Russia the lack of practical experience in using dispersants and well-established approval procedures can result in a long and unclear permitting process for each oil spill case. This could seriously hinder the use of dispersants to combat transboundary pollution in the Barents Sea, even if it is considered to be beneficial. We conclude that the development of a harmonized approach for dispersants use in the Barents Sea should be thoroughly assessed.

  17. Change in fish community structure in the Barents Sea.

    Directory of Open Access Journals (Sweden)

    Michaela Aschan

    Full Text Available Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992-2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996-1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.

  18. Halocline water formation in the Barents Sea

    Science.gov (United States)

    Steele, Michael; Morison, James H.; Curtin, Thomas B.

    1995-01-01

    Hydrographic data from the first phase of the Coordinated Eastern Arctic Experiment (CEAREX) are analyzed. The data consist of temperature and salinity measurements made by a ship-based conductivity-temperature-depth (CTD) instrument and by a drifting SALARGOS buoy. These data were collected in the autumn and early winter of 1988-1989 in the northern Barents Sea, mostly in ice-covered conditions and then across the marginal ice zone (MIZ). The data show that relatively warm, salty water of Atlantic origin is modified by air cooling and ice melting to produce lighter water that has properties identical to (lower) halocline water found in the Arctic Ocean. This occurs mostly at the MIZ and to a lesser degree within the ice pack itself. At the MIZ the halocline water subjects underneath the lighter meltwater that resides directly under the ice pack; geostrophic velocity calculations indicate that it then turns eastward and flows toward the Kara Sea, in keeping with previous chemical tracer analyses. A rough calculation reveals that the amount of halocline water formed in this way in the Barents Sea and Fram Strait is 30-50% of that formed by ice growth in eastern Arctic polynyas.

  19. Radioecological studies in the Barents Sea

    International Nuclear Information System (INIS)

    Kellermann, H.J.; Kanisch, G.; Krueger, A.; Vobach, M.

    1999-01-01

    Since 1992 the Institute of Fisheries Ecology has been monitoring radioactivity in fish from Barents Sea, mostly taken as random samples from hauls on board of commercial trawlers in the western part near Bear Island and from Northcap Bank. Soon cod was selected as reference fish because of its widespread existence and because of its always slightly elevated concentrations of 137 Cs compared with other species. Inspecting data referring to the same year but different areas or to the same area but different years, these concentrations in the biological samples show a broad distribution. Statistical data always spread around their mean. That may result from different sources. It can be entirely a random distribution of single values, it can be a not predictable annually or regionally varying influence on the whole ecosystem, or it can be a systematic variations of the investigated objects. All these effects together make it difficult to compare systems based on random samples. Wrong interpretations may follow, which in hypothesis tests are called errors of 1. or 2. type. These errors affect the power of a test

  20. Petroleum Development in Russian Barents sea: Driving Forces and Constraints

    International Nuclear Information System (INIS)

    Moe, Arild; Joergensen, Anne-Kristin

    2000-01-01

    The potential of the Barents Sea for petroleum production has attracted interest for many years. In the Russian sector of this ocean, enormous gas finds and substantial oil resources have now been proven, and the first real licensing for field development in the area has just begun. Despite the area's potential, there are strong conflicts of interest. The report examines the forces alternatively driving and hindering offshore hydrocarbon development in the Russian sector of the Barents Sea. It describes exploration activities beginning during the Soviet period and extending to the present. The status of the major development projects financed in part with foreign capital, and conflicting regional and central government interests involved in such development, is described and evaluated. Coverage includes a discussion of the various regional interests in petroleum activities, with a particular focus on the conversion of naval yards in the area and the emergence of Rosshelf, an oil/gas conglomerate formed to facilitate such conversion. It also reviews the planned licensing rounds and the results of the first round. Finally, it discusses supplies from the Barents Sea in the context of overall Russian energy supply and energy development strategies. (author)

  1. Crustal structure and development of the SW Barents Sea and the adjacent continental margin

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Asbjoern Johan

    1998-12-31

    Because of its expected petroleum potential, the western Barents Sea has been extensively mapped and investigated. The present thesis deals with many aspects of the geological development of this area. The emphasis is on Late Paleozoic structuring, Late Mesozoic basin formation, and early Tertiary margin formation including geodynamical response to the late Cenozoic sedimentation. The thesis begins with a review of the literature on the Late Palaeozoic structural development of the south-western Barents Sea, Svalbard and eastern Greenland. A structural map is developed for the Upper Carboniferous rift system in the southwestern Barents Sea that shows the interference of the northeasterly and the northerly structural grain. A discussion of the Ottar Basin uses a combination of seismic interpretation and gravity modelling to investigate this important structural element of the Upper Palaeozoic rift system. Previous work on Late Mesozoic basin formation in the southwestern Barents Sea is extended by incorporating new seismic reflection data and gravity modelling. Finally, the focus is shifted from the Barents Sea shelf to the continental-ocean transition and the oceanic basin. Gridded free-air gravity data from the ERS-1 enables the construction of a Bouguer gravity map of unprecedented resolution. The relationship between isostacy and gravity was resolved by modelling the thermal structure across the margin. Admittance analysis of the relationship between bathymetry and free-air gravity indicates an elastic thickness of the oceanic Lithosphere of 15-20 km, which is compatible with the depth to the 450{sup o}C isotherm obtained from thermal modelling. It is concluded that the southwestern Barents Sea margin does not deviate in any significant respects from passive rifted margins, except for a very straight and narrow continent-ocean transition zone. 332 refs., 55 figs., 7 tabs.

  2. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter

    International Nuclear Information System (INIS)

    Sato, Kazutoshi; Inoue, Jun; Watanabe, Masahiro

    2014-01-01

    Abnormal sea-ice retreat over the Barents Sea during early winter has been considered a leading driver of recent midlatitude severe winters over Eurasia. However, causal relationships between such retreat and the atmospheric circulation anomalies remains uncertain. Using a reanalysis dataset, we found that poleward shift of a sea surface temperature front over the Gulf Stream likely induces warm southerly advection and consequent sea-ice decline over the Barents Sea sector, and a cold anomaly over Eurasia via planetary waves triggered over the Gulf Stream region. The above mechanism is supported by the steady atmospheric response to the diabatic heating anomalies over the Gulf Stream region obtained with a linear baroclinic model. The remote atmospheric response from the Gulf Stream would be amplified over the Barents Sea region via interacting with sea-ice anomaly, promoting the warm Arctic and cold Eurasian pattern. (letter)

  3. Investigating palaeo-subglacial lakes in the central Barents Sea

    Science.gov (United States)

    Esteves, M.; Shackleton, C.; Winsborrow, M.; Andreassen, K.; Bjarnadóttir, L. R.

    2017-12-01

    In the past decade hundreds of subglacial lakes have been detected beneath the Antarctic Ice Sheet, and several more beneath the Greenland Ice Sheet. These are important components of the subglacial hydrological system and can influence basal shear stress, with implications for ice sheet dynamics and mass balance, potentially on rapid timescales. Improvements in our understanding of subglacial hydrological systems are therefore important, but challenging due to the inaccessibility of contemporary subglacial environments. Whilst the beds of palaeo-ice sheets are easier to access, few palaeo-subglacial lakes have been identified due to uncertainties in the sedimentological and geomorphological diagnostic criteria. In this study we address these uncertainties, using a suite of sedimentological, geomorphological and modelling approaches to investigate sites of potential palaeo-subglacial lakes in the central Barents Sea. Geomorphological signatures of hydraulic activity in the area include large meltwater channels, tunnel valleys, and several interlinked basins. Modelling efforts indicate the potential for subglacial hydraulic sinks within the area during the early stages of ice retreat since the Last Glacial Maximum. In support of this, sedimentological observations indicate the presence of a dynamic glaciolacustrine depositional environment. Using the combined results of the modelling, geomorphology, and sedimentological analyses, we conclude that palaeo-subglacial lakes are likely to have formed on the northwestern banks of Thor Iversenbanken, central Barents Sea, and suggest that numerous other subglacial lakes may have been present beneath the Barents Sea Ice Sheet. Furthermore, we investigate and refine the existing diagnostic criteria for the identification of palaeo-subglacial lakes.

  4. Epibenthic diversity and productivity on a heavily trawled Barents Sea bank (Tromsøflaket

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2017-04-01

    Full Text Available Shallow Arctic banks have been observed to harbour rich communities of epifaunal organisms, but have not been well-studied with respect to composition or function due to sampling challenges. In order to determine how these banks function in the Barents Sea ecosystem, we used a combination of video and trawl/dredge sampling at several locations on a heavily trawled bank, Tromsøflaket – located at the southwestern entrance to the Barents Sea. We describe components of the benthic community, and calculate secondary production of dominant epifaunal organisms. Forty-six epibenthic taxa were identified, and sponges were a significant part of the surveyed benthic communities. There were differences in diversity and production among areas, mainly related to the intensity of trawling activities. Gamma was the most diverse and productive area, with highest species abundance and biomass. Trawled areas had considerably lower species numbers, and significant differences in epifaunal abundance and biomass were found between all trawled and untrawled areas. Trawling seems to have an impact on the sponge communities: mean individual poriferan biomass was higher in untrawled areas, and, although poriferans were observed in areas subjected to more intensive trawling, they were at least five times less frequent than in untrawled areas.

  5. Radionuclide sources in the Barents and Kara Seas

    International Nuclear Information System (INIS)

    Smith, J.N.; Ellis, K.M.; Forman, S.; Polyak, L.; Ivanov, G.; Matishov, D.; Kilius, L.

    1995-01-01

    A study of radionuclide distributions in the Barents Sea sediments was carried out in 1992. The conclusions of the study are as follows: 1) Elevated levels of artificial radionuclides as great as 15,000 Bq/kg for 239,240 Pu, 250 Bq/kg for 137 Cs and 100 Bq/kg for 60 Co were measured in sediments in Chermaya Bay which have been contaminated by several nuclear tests conducted in the 1950s. 2) Sediment-depth distributions of 239,240 Pu and other artificial radionuclides are consistent with results from biodiffusion models that are constrained by 210 Pb sediment-depth distributions. These results indicate that sedimentation rates in Chernaya Bay are low ( 249 Pu/ 239 Pu and 241 Pu/ 239 Pu atom ratios of 0.030 and 0.0012, respectively and a 241 Am/ 239,240 Pu activity ratio of 0.05 (compared to 0.3 in fallout) which provides a method for tracking its dispersion over distances of 100 km into the Barents Sea. 4) Artificial radionuclide levels in sediments and seawater near a sunken barge loaded with radioactive wastes in the Novaya Zemlya trough are similar to background fallout levels in the Kara Sea and provide little evidence for the release of radioactive contaminants from the dumpsite. 7 refs., 4 figs

  6. Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov

    Directory of Open Access Journals (Sweden)

    Gennady G. Matishov

    2014-06-01

    Full Text Available This paper analyses the anomalous hydrometeorological situation that occurred at the beginning of 2012 in the seas of the Russian Arctic and Russian South. Atmospheric blocking in the temperate zone and the extension of the Siberian High to the Iberian Peninsula (known as the Voeikov et al. axis led to a positive anomaly of air and water temperatures and a decrease in the ice extent in the Barents and Kara Seas. At the same time a prolonged negative air temperature anomaly was recorded in central and southern Europe and led to anomalously severe ice conditions in the Sea of Azov. Winter hydrographic conditions in the Barents and Kara Seas are illustrated by a unique set of observations made using expendable bathythermosalinographs (XCTD.

  7. Life history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment.

    Science.gov (United States)

    Wiedmann, Magnus A; Primicerio, Raul; Dolgov, Andrey; Ottesen, Camilla A M; Aschan, Michaela

    2014-09-01

    Under exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history "fast-slow" continuum, where "slow" species (i.e., large, long lived, and late maturing) are expected to be more sensitive to fishing than "fast" ones. We analyze life history traits variation for all common fish species in the Barents Sea and rank fishes along fast-slow gradients obtained by ordination analyses. In addition, we integrate species' fast-slow ranks with ecosystem survey data for the period 2004-2009, to assess life history variation at the community level in space and time. Arctic fishes were smaller, had shorter life spans, earlier maturation, larger offspring, and lower fecundity than boreal ones. Arctic fishes could thus be considered faster than the boreal species, even when body size was corrected for. Phylogenetically related species possessed similar life histories. Early in the study period, we found a strong spatial gradient, where members of fish assemblages in the southwestern Barents Sea displayed slower life histories than in the northeast. However, in later, warmer years, the gradient weakened caused by a northward movement of boreal species. As a consequence, the northeast experienced increasing proportions of slower fish species. This study is a step toward integrating life history traits in ecosystem-based areal management. On the basis of life history traits, we assess the fish sensitivity to fishing, at the species and community level. We show that climate warming promotes a borealization of fish assemblages in the northeast, associated with slower life histories in that area. The biology of Arctic species is still poorly known, and boreal species that now establish in the Arctic are fishery sensitive, which calls for cautious ecosystem management of these areas.

  8. Constraining Earth's Rheology of the Barents Sea Using Grace Gravity Change Observations

    Science.gov (United States)

    van der Wal, W.; Root, B. C.; Tarasov, L.

    2014-12-01

    The Barents Sea region was ice covered during last glacial maximum and experiences Glacial Isostatic Adjustment (GIA). Because of the limited amount of relevant geological and geodetic observations, it is difficult to constrain GIA models for this region. With improved ice sheet models and gravity observations from GRACE, it is possible to better constrain Earth rheology. This study aims to constrain the upper mantle viscosity and elastic lithosphere thickness from GRACE data in the Barents Sea region. The GRACE observations are corrected for current ice melting on Svalbard, Novaya Zemlya and Frans Joseph Land. A secular trend in gravity rate trend is estimated from the CSR release 5 GRACE data for the period of February 2003 to July 2013. Furthermore, long wavelength effects from distant large mass balance signals such as Greenland ice melting are filtered out. A new high-variance set of ice loading histories from calibrated glaciological modeling are used in the GIA modeling as it is found that ICE-5G over-estimates the observed GIA gravity change in the region. It is found that the rheology structure represented by VM5a results in over-estimation of the observed gravity change in the region for all ice sheet chronologies investigated. Therefore, other rheological Earth models were investigated. The best fitting upper mantle viscosity and elastic lithosphere thickness in the Barents Sea region are 4 (±0.5)*10^20 Pas and 110 (±20) km, respectively. The GRACE satellite mission proves to be a useful constraint in the Barents Sea Region for improving our knowledge on the upper mantle rheology.

  9. Splitting of Atlantic water transport towards the Arctic Ocean into the Fram Strait and Barents Sea Branches - mechanisms and consequences

    Science.gov (United States)

    Beszczynska-Möller, Agnieszka; Skagseth, Øystein; von Appen, Wilken-Jon; Walczowski, Waldemar; Lien, Vidar

    2016-04-01

    The heat content in the Arctic Ocean is to a large extent determined by oceanic advection from the south. During the last two decades the extraordinary warm Atlantic water (AW) inflow has been reported to progress through the Nordic Seas into the Arctic Ocean. Warm anomalies can result from higher air temperatures (smaller heat loss) in the Nordic Seas, and/or from an increased oceanic advection. But the ultimate fate of warm anomalies of Atlantic origin depends strongly on their two possible pathways towards the Arctic Ocean. The AW temperature changes from 7-10°C at the entrance to the Nordic Seas, to 6-6.5°C in the Barents Sea opening and 3-3.5°C as the AW leaving Fram Strait enters the Arctic Ocean. When AW passes through the shallow Barents Sea, nearly all its heat is lost due to atmospheric cooling and AW looses its signature. In the deep Fram Strait the upper part of Atlantic water becomes transformed into a less saline and colder surface layer and thus AW preserves its warm core. A significant warming and high variability of AW volume transport was observed in two recent decades in the West Spitsbergen Current, representing the Fram Strait Branch of Atlantic inflow. The AW inflow through Fram Strait carries between 26 and 50 TW of heat into the Arctic Ocean. While the oceanic heat influx to the Barents Sea is of a similar order, the heat leaving it through the northern exit into the Arctic Ocean is negligible. The relative strength of two Atlantic water branches through Fram Strait and the Barents Sea governs the oceanic heat transport into the Arctic Ocean. According to recently proposed mechanism, the Atlantic water flow in the Barents Sea Branch is controlled by the strength of atmospheric low over the northern Barents Sea, acting through a wind-induced Ekman divergence, which intensifies eastward AW flow. The Atlantic water transport in the Fram Strait Branch is mainly forced by the large-scale low-pressure system over the eastern Norwegian and

  10. Barents sea: laboratory of a new energy diplomacy?

    International Nuclear Information System (INIS)

    Castel, Viviane du

    2010-01-01

    The Barents Sea is currently carried on the international scene as a real laboratory for a new diplomacy, based on energy and whose actors are more businesses than states. In this context, the opening of new shipping routes, as a result of melting ice and the intrusion of new actors will they not change the current geopolitical and geostrategic balance?

  11. Ice loading model for Glacial Isostatic Adjustment in the Barents Sea constrained by GRACE gravity observations

    Science.gov (United States)

    Root, Bart; Tarasov, Lev; van der Wal, Wouter

    2014-05-01

    The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.

  12. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  13. Barents Sea Paleozoic basement and basin configurations: Crustal structure from deep seismic and potential field data

    Science.gov (United States)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Huismans, Ritske; Faleide, Jan Inge

    2016-04-01

    The Barents Sea is underlain by at least two different basement domains; the Caledonian in the west and the Timanian in the east. The transition between these two domains is not well constrained and contrasting interpretations have been published recently. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea has challenged the Late Paleozoic basin configurations in the western and central Barents Sea as outlined in previous studies. Two regional ocean bottom seismic (OBS) profiles were acquired in 2014. This new dataset crosses the two major directions of Caledonian deformation proposed by different authors: N-S direction and SW-NE direction. Of particular importance are the high velocity anomalies related to Caledonian eclogites, revealing the location of Caledonian suture zones in the northern Barents Sea. One of the main objectives with this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be tightly linked to the deposition of large thicknesses of Devonian erosional products, and later rifting is expected to be influenced by inheritance of Caledonian trends. The P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity- and magnetic modelling will be used to augment the seismic model. The preliminary results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transects reveal areas of complex geology and velocity inversions. A low seismic impedance contrast between the sedimentary section and top crystalline basement makes identification of this interface uncertain. Depth to Moho mostly lies around 30 km, except in an area of rapid change in

  14. A three-dimensional geophysical model of the crust in the Barents Sea region: Model construction and basement characterization

    Science.gov (United States)

    Ritzmann, O.; Maercklin, N.; Inge, Faleide J.; Bungum, H.; Mooney, W.D.; Detweiler, S.T.

    2007-01-01

    BARENTS50, a new 3-D geophysical model of the crust in the Barents Sea Region has been developed by the University of Oslo, NORSAR and the U.S. Geological Survey. The target region comprises northern Norway and Finland, parts of the Kola Peninsula and the East European lowlands. Novaya Zemlya, the Kara Sea and Franz-Josef Land terminate the region to the east, while the Norwegian-Greenland Sea marks the western boundary. In total, 680 1-D seismic velocity profiles were compiled, mostly by sampling 2-D seismic velocity transects, from seismic refraction profiles. Seismic reflection data in the western Barents Sea were further used for density modelling and subsequent density-to-velocity conversion. Velocities from these profiles were binned into two sedimentary and three crystalline crustal layers. The first step of the compilation comprised the layer-wise interpolation of the velocities and thicknesses. Within the different geological provinces of the study region, linear relationships between the thickness of the sedimentary rocks and the thickness of the remaining crystalline crust are observed. We therefore, used the separately compiled (area-wide) sediment thickness data to adjust the total crystalline crustal thickness according to the total sedimentary thickness where no constraints from 1-D velocity profiles existed. The BARENTS50 model is based on an equidistant hexagonal grid with a node spacing of 50 km. The P-wave velocity model was used for gravity modelling to obtain 3-D density structure. A better fit to the observed gravity was achieved using a grid search algorithm which focussed on the density contrast of the sediment-basement interface. An improvement compared to older geophysical models is the high resolution of 50 km. Velocity transects through the 3-D model illustrate geological features of the European Arctic. The possible petrology of the crystalline basement in western and eastern Barents Sea is discussed on the basis of the observed seismic

  15. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    Directory of Open Access Journals (Sweden)

    Martin P. King

    2016-02-01

    Full Text Available Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC over the Barents-Kara (BK seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead–lag processes involving the different components of the climate system from autumn to winter is therefore important. This note presents dynamical interpretation for the ice-ocean–atmosphere relationships that can affect the BK SIC anomaly in late autumn. It is found that cyclonic (anticyclonic wind anomaly over the Arctic in October, by Ekman drift, can be responsible for positive (negative SIC in the BK seas in November. The results also suggest that ocean heat transport via the Barents Sea Opening in September and October can contribute to BK SIC anomaly in November.

  16. Compaction and evolution of rock properties and rock physics diagnostics of Albatross discovery, SW Barents Sea

    OpenAIRE

    Butt, Arif

    2012-01-01

    The Albatross discovery is located approximately 140 km northwest of Hammerfest (city of midnight sun), Norway in the central part of Hammerfest Basin, SW Barents Sea. The Albatross discovery included within Snøhvit field development project (the first gas development project in the Barents Sea) with two other discoveries, Snøhvit and Askeladd, in the area. The reservoirs contain gas and condensate in the Lower and Middle Jurassic sandstones of the Stø Formation. The study focuses compaction ...

  17. Subregional cooperation and protection of the arctic marine environment: The Barents Sea

    International Nuclear Information System (INIS)

    Stokke, Olav Schram

    1997-01-01

    The report deals with questions related to effectiveness of subregional co-operation in the Barents Sea. Efforts have differed from global processes by their clearer programmatic profile. Relatively more resources, in terms of both expertise and financial funds, have been invested in order to enhance the knowledge-base for management decisions in the region as well as the administrative and technical capacity to avoid behaviour liable to threaten the marine environment. Many of the programmatic activities encouraged at other levels have been planned, financed and organised at the subregional level. Comparatively less attention has been given to establishing new regulative norms for environmental protection from either industrial or military activity in the region. The Regional Council ensures that both county level decision makers and representatives of the indigenous population are involved. A point is the general balance between the environmental and the economic component. Moreover, the inclusiveness of the Barents Council provides linkages to potential partners in development found beyond the Barents Sea area. The subregional level has served to relate environmental protection to broader foreign policy issues and has strengthened environmental networks across the Nordic Russian divide which in turn has generated financial resources and expertise. The main reason for the higher fund raising capacity of subregional processes is that geographic proximity ensures denser networks of interdependence partly by the fact that Nordic neighbours have a clear self interest in financing environmental projects in Russia, particularly those addressing industrial pollution from the border areas and those designed to prevent dumping of radioactive waste and partly by ensuring that environmental projects may serve broader purposes associated with national security. The willingness on the part of Norway and other Nordic states to use their financial powers for problem solving

  18. Low-frequency variability of surface air temperature over the Barents Sea

    NARCIS (Netherlands)

    Linden, van der Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, R.G.

    2016-01-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations

  19. Improving the accuracy and reliability of MWD/magnetic-Wellbore-Directional surveying in the barents sea

    DEFF Research Database (Denmark)

    Edvardsen, I.; Nyrnes, E.; Johnsen, M. G.

    2014-01-01

    of nonmagnetic steel in the bottomhole assembly (BHA). To maintain azimuth uncertaintyat an acceptable level in northern areas, it is crucial that wellbore-directional-surveying requirements are given high priority and considered early during well planning. During the development phase of an oil and gas field...... magnetic-reference stations. The different land and sea configuration, distant offshore oil and gas fields, higher geomagnetic latitude, and different behavior of the magnetic field require the procedures to be reassessed before being applied to the Barents Sea. To reduce drilling delays, procedures must...... be implemented to enable efficient management of magnetic disturbances.In some areas of the Barents Sea, the management requires new equipment to be developed and tested before drilling, such as seabed magnetometer stations. One simple way to reduce drillstring interference is increasing the amount...

  20. Characteristics of radionuclide accumulation in benthic organisms and fish of the Barents and Kara Seas

    International Nuclear Information System (INIS)

    Matishov, G.G.; Matishov, D.G.; Rissanen, C.

    1995-01-01

    Artificial radionuclides play a specific role in the hydrochemical, geochemical, and hydrobiological processes that are currently occurring in the western Arctic. The existing data on radioactive contamination of different plant and animal species inhabiting the sea shelf are fragmentary. Hence, it was difficult to follow the transformation of radionuclides during their transmission along food chains, from phyto- and zoo-plankton to benthos, fish, birds, and marine mammals. In 1990-1994, the Murmansk Institute of Marine Biology organized expeditions to collect samples of residues on the sea floor and also of benthos, benthic fish, macrophytes, and other organisms inhabiting the shelf of the Barents and Kara Seas. These samples were tested for cesium-137, cesium-134, strontium-90, plutonium-239, plutonium-240, americium-241, and cobalt-60 in Rovaniemi (Finland) by the regional radiation administration of the Finnish Centre for Radiation and Nuclear Safety. Over 1000 tests were made. Their results provided new data on the content and distribution of these radionuclides among different components of marine ecosystems. 7 refs

  1. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    Science.gov (United States)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature

  2. Selected anthropogenic and natural radioisotopes in the Barents Sea and off the western coast of Svalbard

    International Nuclear Information System (INIS)

    Leppänen, Ari-Pekka; Kasatkina, Nadezhda; Vaaramaa, Kaisa; Matishov, Gennady G.; Solatie, Dina

    2013-01-01

    The Murmansk Marine Biological Institute (MMBI) performed high-latitude expeditions to the Barents Sea during 2007–2009 where a scientist from the Radiation and Nuclear Safety Authority (STUK) participated. The aim of the expeditions was to study and map the current radiological situation throughout the Barents Sea. In the expeditions, samples of seawater, sediment and biota were collected for radioactivity studies. The 90 Sr and 137 Cs isotopes were analysed from the seawater samples and no spatial distribution in the concentrations of 90 Sr and 137 Cs was found. The sediment samples were analysed for γ-emitting isotopes. In the statistical analysis performed only the 90 Sr was found to have no spatial distribution. In the 137 Cs concentrations two areas containing higher concentrations were observed: one in the western part of Svalbard and another in Franz Victoria Trough near the Franz Josef Land archipelago. The increase in the western coast of Svalbard suggests an Atlantic influence while in the Franz Victoria Trough source regions are possibly more complex. Since 137 Cs in marine sediments mainly originates from terrestrial sources, finding higher concentrations in the northern part of the Barents Sea may also suggest a contribution of 137 Cs carried by the ocean currents and by sea ice from the outside Barents Sea. In addition to γ spectrometric measurements, the sediment samples were radiochemically analysed for 210 Pb. It was found that the unsupported fraction of 210 Pb showed significant spatial variation. The fraction of unsupported 210 Pb was reduced to 40–70% near Bear Island, Edge Island and in the Franz Josef Land archipelago. In these regions the sea is typically covered with sea ice during winter. The relatively low fraction of unsupported 210 Pb is possibly caused by blocking of wet and dry deposition of 210 Pb onto the sea by winter sea ice. In biota samples, only small traces, at the level of 0.2 Bq/kg w.w. of 137 Cs, were found. When the

  3. Radiocaesium (137Cs) in marine mammals from Svalbard, the Barents Sea and the North Greenland Sea

    International Nuclear Information System (INIS)

    Andersen, Magnus; Gwynn, Justin P.; Dowdall, Mark; Kovacs, Kit M.; Lydersen, Christian

    2006-01-01

    Specific activities of the anthropogenic radionuclide, 137 Cs, were determined in marine mammals from Svalbard and the Barents and North Greenland Seas. Muscle samples were collected from 12 polar bears, 15 ringed seals, 10 hooded seals, 7 bearded seals, 14 harp seals, one walrus, one white whale and one blue whale in the period 2000-2003. The mean concentrations (± SD) of 137 Cs were: 0.72 ± 0.62 Bq/kg wet weight (w.w.) for polar bears; 0.49 ± 0.07 Bq/kg w.w. for ringed seals; 0.25 ± 0.10 Bq/kg w.w. for hooded seals; 0.22 ± 0.11 Bq/kg w.w. for bearded seals; 0.36 ± 0.13 Bq/kg w.w. for harp seals; 0.67 Bq/kg w.w. for the white whale sample; 0.24 Bq/kg w.w. for the blue whale; and below detection limit for the walrus. Significant differences in 137 Cs specific activities between some of the species were found. Ringed seals had higher specific activities than the other seal species in the study. Bearded seals and hooded seals had similar values, which were both significantly lower than the harp seal values. The results in the present study are consistent with previous reported results, indicating low specific activities of 137 Cs in Arctic marine mammals in the Barents Sea and Greenland Sea region during the last 20 years. The species specific differences found may be explained by varying diet or movement and distribution patterns between species. No age related patterns were found in specific activities for the two species (polar bears and hooded seals) for which sufficient data was available. Concentration factors (CF) of 137 Cs from seawater were determined for polar bears, ringed, bearded, harp and hooded seals. Mean CF values ranged from 79 ± 32 (SD) for bearded seals sampled in 2002 to 244 ± 36 (SD) for ringed seals sampled in 2003 these CF values are higher than those reported for fish and benthic organisms in the literature, suggesting bioaccumulation of 137 Cs in the marine ecosystem

  4. Barents Sea polar bears (Ursus maritimus: population biology and anthropogenic threats

    Directory of Open Access Journals (Sweden)

    Magnus Andersen

    2016-07-01

    Full Text Available This paper examines how anthropogenic threats, such as disturbance, pollution and climate change, are linked to polar bear (Ursus maritimus population biology in the Svalbard and Barents Sea area, with the aim to increase our understanding of how human activity may impact the population. Overharvesting drastically reduced the population of polar bears in the Barents Sea region from about 1870 to 1970. After harvesting was stopped—in 1956 in Russia and 1973 in Norway—the population grew to an estimated 2650 individuals (95% confidence interval 1900–3600 in 2004, and maternity denning in the Svalbard Archipelago became more widely distributed. During recent decades, the population has faced challenges from a variety of new anthropogenic impacts: a range of pollutants, an increasing level of human presence and activity as well as changes in ice conditions. Contaminants bioaccumulate up through the marine food web, culminating in this top predator that consumes ringed, bearded and harp seals. Females with small cubs use land-fast sea ice for hunting and are therefore vulnerable to disturbance by snowmobile drivers. Sea-ice diminution, associated with climate change, reduces polar bears’ access to denning areas and could negatively affect the survival of cubs. There are clear linkages between population biology and current anthropogenic threats, and we suggest that future research and management should focus on and take into consideration the combined effects of several stressors on polar bears.

  5. Temporal dynamics of top predators interactions in the Barents Sea.

    Science.gov (United States)

    Durant, Joël M; Skern-Mauritzen, Mette; Krasnov, Yuri V; Nikolaeva, Natalia G; Lindstrøm, Ulf; Dolgov, Andrey

    2014-01-01

    The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.

  6. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer

    Science.gov (United States)

    Howard-Jones, M. H.; Ballard, V. D.; Allen, A. E.; Frischer, M. E.; Verity, P. G.

    2002-12-01

    The purpose of this study was to determine bacterioplankton abundance and activity in the Barents Sea using the novel modified vital stain and probe (mVSP) method. The mVSP is a protocol that combines DAPI and propidium iodide staining with 16S rRNA eubacterial-specific oligonucleotide probes to determine the physiological status of individual microbial cells. Bacterial abundance and metabolic activity were measured in near-surface waters and with depth at stations in the central Barents Sea during a cruise in June/July 1999. Viral abundance was also determined for 19 transect stations and at depth (2-200 m) for five intensive 24-h stations. In general, bacterial and viral abundances varied across the transect, but showed peaks of abundance (6×10 9 cells l -1, 9×10 9 viruses l -1) in Polar Front water masses. Viruses were abundant in seawater and exceeded bacterial abundance. Metabolic activity was determined for individual cells using 16S rRNA eubacterial-specific oligonucleotide probes, and for the total community with 3H-leucine incorporation. Activity measured by oligonucleotide probes increased from south to north. The fraction of cells that were active was lowest in the southern Barents Sea (20%) and highest in the Polar Front (53%). The proportion of cells at the 24-h stations that were determined to be active decreased with depth, but not with distance from ice cover. Leucine incorporation rates varied significantly and did not always correlate with probe measurements. The proportion of total cells that had compromised membranes and were therefore considered dead remained relatively constant (activity (25-80%), which supports the hypothesis that a significant fraction of cells in aquatic ecosystems are inactive. Bacterioplankton production rates ranged from rates ranged from rates of 2.5 to >200 days. Our results demonstrate that bacterioplankton and viruses are dynamic but ubiquitous features of Arctic microbial communities. The contribution of bacteria

  7. Sub regional cooperation and protection of the arctic marine environments: The Barents Sea

    Energy Technology Data Exchange (ETDEWEB)

    Stokke, Olav Schram

    1997-07-01

    The report deals with questions related to effectiveness of subregional co-operation in the Barents Sea. Efforts have differed from global processes by their clearer programmatic profile. Relatively more resources, in terms of both expertise and financial funds, have been invested in order to enhance the knowledge-base for management decisions in the region as well as the administrative and technical capacity to avoid behaviour liable to threaten the marine environment. Many of the programmatic activities encouraged at other levels have been planned, financed and organised at the subregional level. Comparatively less attention has been given to establishing new regulative norms for environmental protection from either industrial or military activity in the region. The Regional Council ensures that both county level decision makers and representatives of the indigenous population are involved. A point is the general balance between the environmental and the economic component. Moreover, the inclusiveness of the Barents Council provides linkages to potential partners in development found beyond the Barents Sea area. The subregional level has served to relate environmental protection to broader foreign policy issues and has strengthened environmental networks across the Nordic Russian divide which in turn has generated financial resources and expertise. The main reason for the higher fund raising capacity of subregional processes is that geographic proximity ensures denser networks of interdependence partly by the fact that Nordic neighbours have a clear self interest in financing environmental projects in Russia, particularly those addressing industrial pollution from the border areas and those designed to prevent dumping of radioactive waste and partly by ensuring that environmental projects may serve broader purposes associated with national security. The willingness on the part of Norway and other Nordic states to use their financial powers for problem solving

  8. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  9. On rational usage of catches during the trap fishery in the Barents Sea

    Directory of Open Access Journals (Sweden)

    Sokolov K. M.

    2017-06-01

    Full Text Available The aim of the work is the search for resources to increase the fullness and complexity of using commercial catches of the red king crab and snow crab in the Barents Sea. The causes of the by-catches during the new trap fishery for commercial crustaceans in the Barents Sea have been analyzed and discards from the catches have been estimated. The main portion of discards is crab processing wastes, including the cephalothorax and internal organs and tissues placed in. According to estimations in 2006–2015 during the Russian trap fishery of red king crab and snow crab, the annual weight of discards ranged from 1.3 to 4.6 thou. t. These years about 2.8 thou. t of biological materials have been thrown back at sea annually. About 85 % of the total mass of wastes in 2006–2015 has been the red king crabs body parts. Due to the high abundance and biomass of the red king crab stock observed in the recent years accompanied by an increase of the snow crab commercial stock, some increase in the total mass of discards of two crabs can be expected, as well as some increase in the portion of discards from snow crab fishery. Current circumstances preventing the full processing of crabs catches are the technical limitations of fishing vessels, as well as the absence of onshore enterprises capable for processing waste from crab fishery. The full use of catches of the red king crab and the snow crab in the Barents Sea could provide the raw materials for production of food products, as well as a wide range of pharmaceuticals for humans and animals.

  10. Radiocaesium ({sup 137}Cs) in marine mammals from Svalbard, the Barents Sea and the North Greenland Sea

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Magnus; Kovacs, Kit M.; Lydersen, Christian [Norwegian Polar Institute, N-9296, Tromsoe (Norway); Gwynn, Justin P.; Dowdall, Mark [Norwegian Radiation Protection Authority, N-9296, Tromsoe (Norway)

    2006-06-15

    Specific activities of the anthropogenic radionuclide, {sup 137}Cs, were determined in marine mammals from Svalbard and the Barents and North Greenland Seas. Muscle samples were collected from 12 polar bears, 15 ringed seals, 10 hooded seals, 7 bearded seals, 14 harp seals, one walrus, one white whale and one blue whale in the period 2000-2003. The mean concentrations (+/-SD) of {sup 137}Cs were: 0.72+/-0.62 Bq/kg wet weight (w.w.) for polar bears; 0.49+/-0.07 Bq/kg w.w. for ringed seals; 0.25+/-0.10 Bq/kg w.w. for hooded seals; 0.22+/-0.11 Bq/kg w.w. for bearded seals; 0.36+/-0.13 Bq/kg w.w. for harp seals; 0.67 Bq/kg w.w. for the white whale sample; 0.24 Bq/kg w.w. for the blue whale; and below detection limit for the walrus. Significant differences in {sup 137}Cs specific activities between some of the species were found. Ringed seals had higher specific activities than the other seal species in the study. Bearded seals and hooded seals had similar values, which were both significantly lower than the harp seal values. The results in the present study are consistent with previous reported results, indicating low specific activities of {sup 137}Cs in Arctic marine mammals in the Barents Sea and Greenland Sea region during the last 20 years. The species specific differences found may be explained by varying diet or movement and distribution patterns between species. No age related patterns were found in specific activities for the two species (polar bears and hooded seals) for which sufficient data was available. Concentration factors (CF) of {sup 137}Cs from seawater were determined for polar bears, ringed, bearded, harp and hooded seals. Mean CF values ranged from 79+/-32 (SD) for bearded seals sampled in 2002 to 244+/-36 (SD) for ringed seals sampled in 2003 these CF values are higher than those reported for fish and benthic organisms in the literature, suggesting bioaccumulation of {sup 137}Cs in the marine ecosystem. (author)

  11. Temperature, salinity, and other data from buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993 (NODC Accession 9800040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993. Data were collected by the...

  12. Barents Sea Crustal and Upper Mantle Structure from Deep Seismic and Potential Field Data

    Science.gov (United States)

    Aarseth, I.; Mjelde, R.; Breivik, A. J.; Minakov, A.; Huismans, R. S.; Faleide, J. I.

    2016-12-01

    The Barents Sea basement comprises at least two different domains; the Caledonian in the west and the Timanian in the east. Contrasting interpretations have been published recently, as the transition between these two domains is not well constrained. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea challenged previous studies of the Late Paleozoic basin configurations in the western and central Barents Sea. Two major directions of Caledonian structures have been proposed by different authors: N-S and SW-NE. Two regional ocean bottom seismic (OBS) profiles, crossing these two major directions, were acquired in 2014.The primary goal in this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. High velocity anomalies associated with Caledonian eclogites are particularly interesting as they may be related to Caledonian suture zones. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be closely linked to the deposition of Devonian erosional products, and subsequent rifting is likely to be influenced by inheritance of Caledonian trends. P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity modelling has been used to support the seismic model. The results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transect reveals areas of complex geology and velocity inversions. Strong reflections from within the crystalline crust indicate a heterogeneous basement terrain. Gravity modelling agrees with this, as several blocks with variable densities had to be introduced in order to reproduce the observed gravity anomalies. Refractions from the top of the crystalline basement together with reflections from

  13. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    Science.gov (United States)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  14. Microplankton of the Barents Sea: current composition and structure on the eve of the winter

    Directory of Open Access Journals (Sweden)

    Makarevich P. R.

    2017-06-01

    Full Text Available The results of microplankton (Protista investigations in the Barents Sea (standard "Kola Meridian Transect", ~70–78° N, 33° 30′ E in November / December have been presented. Samples for the determination of the taxonomical composition and abundance have been fixed with buffered formalin and examined with light microscopy using Nageotte counting chambers. A list of species recorded in the Barents Sea on transect, abundance and vertical distribution of microplankton has been given: a the seasonal composition of species (Ceratium fusus, Dicroerisma psilonereiella, Dinophysis rotundata, Lessardia elongata aff., Oxytoxum caudatum, Pronoctiluca pelagica, Protoperidinium brevipes, Prorocentrum balticum (Dinophyta, Corethron criophilum (Bacillariophyta, Coccolithus pelagicus (Haptophyta, Halosphaera viridis (Prasinophyta; b mean values of the total biomass of microplankton and its distribution in the water column (1.14 mkg/l in the layer of 50–0 m, 0.97 mkg/l – 100–50 m, 0.75 mkg/l – 200–100 m, 0.53 mkg/l – 300–200 m. Such parameter as dominant species in the structure of the total number is less constant (the ordinary dominant O. caudatum, subdominants – L. elongata aff., P. balticum, C. pelagicus, C. criophilum; in some years, at selected sites of the Barents Sea most of the total number has been formed to unusual species (Emiliania huxleyi, Mesoporos perforatus. The less stable characteristics of microplancton are dominant species composition in the biomass structure, total number of cells and their distribution in the water column.

  15. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences.

    Science.gov (United States)

    Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard

    2012-06-01

    A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management

  16. The Barents Sea, its fisheries and past and present status of radioactive contamination, and its impacts on fisheries

    International Nuclear Information System (INIS)

    Foeyn, L.; Svaeren, I.

    1995-01-01

    For Norway and Russia the fisheries in the Barents Sea is of great importance. When the Chernobyl accident happened, almost two decades had passed without any systematic monitoring of the radioactivity in the Sea. The accident initiated new activity in this field at the Norwegian Institute of Marine Research. In 1990 a programme of sampling sediments, biota and water was started for, in the first hand, determination of radiocesium. The obtained results have shown that the fish resources as such of the Barents Sea have not yet been affected by anthropogenic radioactivity, neither during the nuclear bomb tests in the fifties and sixties, nor during recent years due to accidental releases. The fisheries may, however, be dramatically affected by the fact that the focus of media on radioactive contamination frightens people from eating fish. 11 refs., 1 fig

  17. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in th Greenland Sea and the Barents Sea

    International Nuclear Information System (INIS)

    Nakaoka, Shin-Ichiro; Aoki, Shuji; Nakazawa, Takakiyo; Yoshikawa-Inoue, Hisayuki

    2006-01-01

    In order to elucidate the seasonal and inter annual variations of oceanic CO 2 uptake in the Greenland Sea and the Barents Sea, the partial pressure of CO 2 in the surface ocean (pCO 2 sea ) was measured in all seasons between 1992 and 2001. We derived monthly varying relationships between pCO 2 sea and sea surface temperature (SST) and combined them with the SST data from the NCEP/NCAR reanalysis to determine pCO 2 sea and air-sea CO 2 flux in these seas. The pCO 2 sea values were normalized to the year 1995 by assuming that pCO 2 sea increased at the same growth rate (1.5 μatm/yr) of the pCO 2 in the air (pCO 2 air ) between 1992 and 2001. In 1995, the annual net air-sea CO 2 fluxes were evaluated to be 52 ± 20 gC/m 2 /yr in the Greenland Sea and 46 ± 18 gC/m 2 /yr in the Barents Sea. The CO 2 flux into the ocean reached its maximum in winter and minimum in summer. The wind speed and (delta)pCO 2 (=pCO 2 air -pCO 2 sea ) exerted a greater influence on the seasonal variation than the sea ice coverage. The annual CO 2 uptake examined in this study (70-80 deg N, 20 deg W-40 deg E) was estimated to be 0.050 ± 0.020 GtC/yr in 1995. The inter annual variation in the annual CO 2 uptake was found to be positively correlated with the North Atlantic Oscillation Index (NAOI) via wind strength but negatively correlated with (delta)pCO 2 and the sea ice coverage. The present results indicate that the variability in wind speed and sea ice coverage play a major role, while that in (delta)pCO 2 plays a minor role, in determining the interannual variation of CO 2 uptake in this area

  18. Viability of developing natural gas infrastructure from the Barents sea : from field to market – a complete analysis of the value chain

    OpenAIRE

    Hammer, Erling Andreas; Torvund, Tord Steinset

    2015-01-01

    This thesis assesses whether it is profitable to build a natural gas infrastructure solution in the Barents Sea, under reasonable assumptions about costs and revenues. In order to answer this question we have looked at the resource base in the Barents Sea and the probability of new discoveries, how the global market for natural gas will develop, at what cost the oil and gas companies will be able to recover the resources, and what type of infrastructure that suits the region best ...

  19. A survey of the summer coccolithophore community in the western Barents Sea

    Science.gov (United States)

    Giraudeau, Jacques; Hulot, Vivien; Hanquiez, Vincent; Devaux, Ludovic; Howa, Hélène; Garlan, Thierry

    2016-06-01

    The Barents Sea is particularly vulnerable to large-scale hydro-climatic changes associated with the polar amplification of climate change. Key oceanographical variables in this region are the seasonal development of sea-ice and the location and strength of physico-chemical gradients in the surface and subsurface water layers induced by the convergence of Arctic- and Atlantic-derived water masses. Remote sensing imagery have highlighted the increasing success of calcifying haptophytes (coccolithophores) in the summer phytoplankton production of the Barents Sea over the last 20 years, as a response to an overall larger contribution of Atlantic waters to surface and sub-surface waters, as well as to enhanced sea-ice melt-induced summer stratification of the photic layer. The present study provides a first thorough description of coccolithophore standing stocks and diversity over the shelf and slope of the western Barents Sea from two sets of surface and water column samples collected during August-September 2014 from northern Norway to southern Svalbard. The abundance and composition of coccolithophore cells and skeletal remains (coccoliths) are discussed in view of the physical-chemical-biological status of the surface waters and water column based on in-situ (temperature, salinity, fluorescence) and shore-based (microscope enumerations, chemotaxonomy) measurements, as well as satellite-derived data (Chl a and particulate inorganic carbon contents). The coccolithophore population is characterized by a low species diversity and the overwhelming dominance of Emiliania huxleyi. Coccolithophores are abundant both within the well stratified, Norwegian coastal water - influenced shallow mixed layer off northern Norway, as well as within well-mixed cool Atlantic water in close vicinity of the Polar Front. Bloom concentrations with standing stocks larger than 4 million cells/l are recorded in the latter area north of 75°N. Our limited set of chemotaxonomic data suggests

  20. NODC Standard Product: International ocean atlas Volume 2 - Biological atlas of the Arctic Seas 2000 - Plankton of the Barents and Kara Seas (1 disc set) (NODC Accession 0098568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Presented in this CD-ROM are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period...

  1. Trace elements in bottom sediments of the Barents Sea on the standard section "Kola Meridian"

    Directory of Open Access Journals (Sweden)

    Lapteva A. M.

    2017-03-01

    Full Text Available The levels of trace metals (Cu, Zn, Ni, Cr, Mn, Co, Pb, Cd, Hg and arsenic (As in samples of bottom sediments from the Barents Sea on eight stations of the standard section "Kola Meridian" have been investigated. Trace elements have been determined on atomic absorption spectrophotometer AA-6800 with mercury-hydride attachment HVG-1 of the company Shimadzu (Japan by the methods of flaming (acetylene – air and electrothermal atomization. Common and very toxic trace elements include Pb, Cd, As, and Hg. It is believed that 90 % of lead, 70–80 % of cadmium, and arsenic, over 30 % of mercury in the atmosphere are of anthropogenic origin, and emissions of these elements in the atmosphere are almost completely manufactured in the Northern Hemisphere. The main sources of income in the Barents Sea are waters of the North Atlantic current and the large-scale atmospheric transport from industrialized Central Europe. As a rule the spatial distribution of trace elements is in good agreement with the granulometric composition of bottom sediments and the content of organic carbon. The contents of most of the listed trace elements in samples of bottom sediments on the standard section "Kola Meridian" in the Norwegian classification are consistent with background levels with the exception of Ni, Cr, and As. Their content in bottom sediments at some stations has met the criteria for "slight" and "moderate" pollution. The obtained results confirm the insignificant levels of contamination of bottom sediments of some trace elements. On the status of stocks of commercial species of aquatic biological resources, the observed levels of contamination of bottom sediments in the investigated areas of the Barents Sea will have no significant effect

  2. Serosurvey for Trichinella in polar bears (Ursus maritimus) from Svalbard and the Barents Sea.

    Science.gov (United States)

    Asbakk, Kjetil; Aars, Jon; Derocher, Andrew E; Wiig, Oystein; Oksanen, Antti; Born, Erik W; Dietz, Rune; Sonne, Christian; Godfroid, Jacques; Kapel, Christian M O

    2010-09-20

    Blood samples of live-caught polar bears (Ursus maritimus) from Svalbard collected 1991-2000 (Period 1) and 2006-2008 (Period 2) and from the pack ice of the Barents Sea collected in Period 1, were assayed for antibodies against Trichinella spp. by ELISA. Of 54 cubs-of-the-year included in the Period 1 sample, 53 were seronegative, indicating that exposure to Trichinella infected meat is uncommon during the first months of life for polar bears in the Svalbard region. Of 30 mother-offspring pairs, 18 mothers were seropositive with seronegative offspring (n=27), suggesting (1) that maternal antibodies had dropped to levels below detection limit by the time of capture in April (offspring approximately 4 months old), and (2) supporting experimental studies in other animal models showing that vertical transmission of Trichinella spp. is uncommon. Bear 1 year and older had higher prevalence in Svalbard (78%) than in the Barents Sea (51%). There was no temporal change in prevalence for bears from Svalbard during the time between the two periods. The prevalence increased with age in both sexes. A positive correlation was found between anti-Toxoplasma gondii and anti-Trichinella spp. antibodies.

  3. NODC Standard Product: Climatic atlas of the Arctic Seas 2004 - Database of the Barents, Kara, Laptev, and White Seas - Oceanography and marine biology (NODC Accession 0098061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents primary data on meteorology, oceanography, and hydrobiology from the Barents, Kara, Laptev, and White Seas, which were collected during the...

  4. HeatBar Final Report 2010, Basement Heat Generation and Heat Flow in the western Barents Sea - importance for hydrocarbon systems

    International Nuclear Information System (INIS)

    Pascal, Christophe; Balling, Niels; Barrere, Cecile; Davidsen, Boerre; Ebbing, Joerg; Elvebakk, Harald; Mesli, Melani; Roberts, David; Slagstad, Trond; Willemoes-Wissing, Bjoern

    2011-01-01

    The HeatBar project aimed to determine the relative proportion of heat originating in the basement of the western Barents Sea and, as such, followed the methodologies and scientific approach developed in the course of the 2005-2008 Kontiki Project. We proposed to shed new lights on the thermal state of the basins of the western Barents Sea by (1) determining the heat flow and the relative content in heat-producing elements of the basement onshore northern Norway, (2) building 3D structural models of the basement offshore based on extensive geophysical information and (3) building 3D thermal models of the basins offshore. The present report summarizes the work accomplished in the framework of the project since 2006.(Au)

  5. New methods for processing and interpreting marine magnetic anomalies: Application to structure, oil and gas exploration, Kuril forearc, Barents and Caspian seas

    Directory of Open Access Journals (Sweden)

    A.M. Gorodnitskiy

    2013-01-01

    In the southern and central parts of Barents Sea, tectonic blocks with widths of 30–100 km, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea–Barents Sea paleorift indicate depths to the lower boundary of the layer of 12–30 km. Weak local magnetic anomalies of 2–5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30–40 m and 150–200 m.

  6. Environmental consequences associated with a large-scale blowout of oil in the former disputed area between Norway and Russia in the Barents Sea (a case study)

    OpenAIRE

    Rasmussen, Sigve Evenssønn

    2011-01-01

    Master's thesis in Environmental technology The former disputed area between Norway and Russia in the Barents Sea is of increasing interest when it comes to oil and gas exploration and production. The area is likely to open for exploration in the near future as the maritime delimitation and cooperation agreement between Norway and Russia concerning the Barents Sea were ratified by the Russian State Duma and signed by Russian President Dmitri Medvedev during the spring of 2011. The impact o...

  7. Food consumption estimates of Barents Sea harp seals

    Directory of Open Access Journals (Sweden)

    Kjell T Nilssen

    2004-05-01

    total consumption, other gadoids (dominated by cod, but also including haddock (Melanogrammus aeglefinus and saithe (Pollachius virens, herring, and "other fish". Using the same set of assumptions as in the previous estimate, the total consumption would have been 3.47 million tonnes, divided between various prey species as follows (in tonnes: polar cod 876,000, codfish (cod, saithe and haddock 359,700, "other fish" 618,800, herring 392,500, and crustaceans 1,204,200. Overall, the largest quantities of food were estimated to be consumed in the period June-September. In 1999, the total Barents Sea harp seal stock size was estimated to be 2.18 (95% CI, 1.79 to 2.58 million animals, which would give an annual food consumption in the range of 2,69 - 3.96 million tonnes (based on upper and lower 95% confidence limits and adjusted for a pup mortality rate of 0.3 if capelin is assumed to be abundant.

  8. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian Sea from 2000-05-27 to 2000-06-20 (NODC Accession 0115683)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115683 includes biological, chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the Barents Sea, North Greenland Sea...

  9. Microzooplankton growth rates examined across a temperature gradient in the Barents Sea.

    Science.gov (United States)

    Franzè, Gayantonia; Lavrentyev, Peter J

    2014-01-01

    Growth rates (µ) of abundant microzooplankton species were examined in field experiments conducted at ambient sea temperatures (-1.8-9.0°C) in the Barents Sea and adjacent waters (70-78.5°N). The maximum species-specific µ of ciliates and athecate dinoflagellates (0.33-1.67 d(-1) and 0.52-1.14 d(-1), respectively) occurred at temperatures below 5°C and exceeded the µmax predicted by previously published, laboratory culture-derived equations. The opposite trend was found for thecate dinoflagellates, which grew faster in the warmer Atlantic Ocean water. Mixotrophic ciliates and dinoflagellates grew faster than their heterotrophic counterparts. At sub-zero temperatures, microzooplankton µmax matched those predicted for phytoplankton by temperature-dependent growth equations. These results indicate that microzooplankton protists may be as adapted to extreme Arctic conditions as their algal prey.

  10. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian Sea from 1999-06-15 to 1999-07-07 (NODC Accession 0115678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115678 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian...

  11. Thawed chilled Barents Sea cod fillets in modified atmosphere packaging-application of multivariate data analysis to select key parameters in good manufacturing practice

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Jensen, K.N.; Guldager, H.S.

    2002-01-01

    The purpose of the present study was to select key parameters in good manufacturing practice for production of thawed chilled modified atmosphere packed (MAP) cod (Gadus morhua) fillets. The effect of frozen storage temperature (-20 and -30 C), frozen storage period (3, 6, 9 and 12 mo) and chill...... storage periods up to 21 d at 2 C were evaluated for thawed MAP Barents Sea cod fillets. Sensory, chemical, microbiological and physical quality attributes were evaluated and multivariate data analysis (principal component analysis and partial least- squares regression) applied for identification of key...... storage was low for thawed MAP Barents Sea cod and this fish raw material seemed the more appropriate for production of thawed chilled MAP products. Frozen storage inactivation of the spoilage bacteria of Photobacterium phosphorcum was modest in Barnets Sea cod, possibly due to high trimethylamine oxide...

  12. Radioactivity levels in Barents, Petshora, Kara, Laptev and White Seas

    International Nuclear Information System (INIS)

    Rissanen, K.; Matishov, D.; Matishov, G.G.

    1995-01-01

    The samples collected and analysed during joint work between the Finnish Centre for Radiation and Nuclear Safety and the Murmansk Marine Biological Institute cover a rather large area of the arctic in north west Russia. All the analysed sediments, algae, benthic and fish samples, have shown surprisingly low radionuclide concentrations and indicate that the open sea areas are almost uncontaminated. But the most interesting locations with potential risk sources are closed areas. 134 Cs isotope originating from the fallout of the Chernobyl accident was measured only in terrestrial samples collected on the Kola peninsula and around the White Sea. Small amounts of this isotope with only 2 years half-life was also noticed in some sediment samples from White Sea. 134 Cs isotopes was not noticed in any terrestrial sample collected from the coastal area between the Kanin peninsula and the Jenisey river. The very low concentrations of 134 Cs isotope measured in Kara Sea sediment samples were usually in association with an outlet of a river and were obviously transported by river water from the central parts of Russia. The measured low concentrations of the antropogenic radionuclides in the Barents and Petshora Sea originate obviously from the global fallout. The higher White Sea concentrations contain also additional fallout from the Chernobyl accident and probably also some terrestrial runoff. Low concentration of 60 Co isotopes in some sediment, algae and benthic fauna samples, reveals, however, slight fresh contamination, as were concentrations also at the outlet of Jenisey river. The results on well documented sampling locations represent also background data for possible leakage or other accidents. 5 refs., 3 figs, 3 tabs

  13. Trace elements in bottom sediments of the Barents Sea on the standard section "Kola Meridian"

    OpenAIRE

    Lapteva A. M.; Plotitsyna N. F.

    2017-01-01

    The levels of trace metals (Cu, Zn, Ni, Cr, Mn, Co, Pb, Cd, Hg) and arsenic (As) in samples of bottom sediments from the Barents Sea on eight stations of the standard section "Kola Meridian" have been investigated. Trace elements have been determined on atomic absorption spectrophotometer AA-6800 with mercury-hydride attachment HVG-1 of the company Shimadzu (Japan) by the methods of flaming (acetylene – air) and electrothermal atomization. Common and very toxic trace elements incl...

  14. Carbon transfer in herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer

    NARCIS (Netherlands)

    De Laender, F.; Oevelen, D. van; Soetaert, K.; Middelburg, J.J.

    2010-01-01

    We compared carbon budgets between a herbivore-dominated and a microbial loopdominated food web and examined the implications of food web structure for fish production. We used the southern Barents Sea as a case study and inverse modelling as an analysis method. In spring, when the system was

  15. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the Barents Sea, North Greenland Sea and Norwegian Sea from 1999-10-03 to 1999-10-11 (NODC Accession 0113888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113888 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the Barents Sea, North Greenland Sea and Norwegian...

  16. The effect of radioactive waste storage in Andreev Bay on contamination of the Barents Sea ecosystem

    Science.gov (United States)

    Matishov, G. G.; Ilyin, G. V.; Usyagina, I. S.; Moiseev, D. V.; Dahle, Salve; Kasatkina, N. E.; Valuyskaya, D. A.

    2017-02-01

    The effect of temporary radioactive waste storage on the ecological status of the sea and biota in the littoral of Andreev and Malaya Andreev bays and near the shore of Motovskii Gulf (including the mouth part of the Zapadnaya Litsa Bay) was analyzed. The littoral sediments contaminated by the 137Cs, 90Sr, 238Pu, and 239,240Pu isotopes are located in the zones of constant groundwater discharge on the shores of Andreev and Malaya Andreev bays. The littoral slopes and bottom depressions of the bays accumulate finely dispersed terrigenous material and 137Cs. The investigations have shown that the storage does not exert a significant adverse effect on the radioactive conditions and the status of the sea ecosystems beyond Andreev Bay.

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian Sea from 1993-07-30 to 1993-08-15 (NODC Accession 0113559)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113559 includes chemical, discrete sample, physical and profile data collected from JOHAN HJORT in the Barents Sea, North Greenland Sea and Norwegian...

  18. Carbon transfer in a herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer

    NARCIS (Netherlands)

    De Laender, F.; Van Oevelen, D.; Soetaert, K.E.R.; Middelburg, J.J.

    2010-01-01

    We compare carbon budgets between a herbivore-dominated and a microbial loop-dominated food web and examine the implications of food web structure for fish production. We use the southern Barents Sea as a case study and inverse modelling as an analysis method. In spring, when the system was

  19. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  20. Sensitivity of the sea ice concentration over the Kara-Barents Sea in autumn to the winter temperature variability over East Asia

    Science.gov (United States)

    Cho, K. H.; Chang, E. C.

    2017-12-01

    In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.

  1. Red king crab’s bycatch in demersal fishing in the South-Eeastern part of the Barents Sea

    Directory of Open Access Journals (Sweden)

    Stes Aleksej Vladimirovich

    2016-03-01

    Full Text Available In the paper, the data of the red king crab by-catch in demersal fishing in the South-Eastern part of the Barents Sea, including those in the areas forbidden to trawling are presented. The impact of the catch of demersal fish on the distribution of the king crab is analyzed. It was shown that intensive fishing contributes to the growth of crabs’ density, possibly, they are attracted by the wastes of fish factories.

  2. Sedimentary environments in the south-western Barents Sea during the last deglaciation and the Holocene: a case study outside the Ingøydjupet trough

    Directory of Open Access Journals (Sweden)

    Mauro Pau

    2016-05-01

    Full Text Available A lithological and foraminiferal study of newly acquired sediment cores outside the Ingøydjupet (Ingøy Deep trough has been carried out to improve constraints on the last deglacial history in the south-western Barents Sea. Three lithofacies and three foraminiferal facies were identified. The lowermost lithological unit is a diamicton interpreted as glacial till. It contains a low-abundance, ecologically mixed foraminiferal assemblage, presumably resulting from glacial reworking. Above the diamicton, a layer of ice-rafted debris (IRD, likely associated with intensive iceberg production, marks the initial destabilization of the marine-based ice sheet. At this time, ca. 15.6–15.0 Ky B.P., opportunistic foraminiferal species Nonionellina labradorica and Stainforthia spp. reached peak abundance. During the south-western Barents Sea ice-margin retreat, presumably corresponding to the Bølling interstadial, a sequence of glaciomarine laminations was deposited conformably on the layer of IRD. Sedimentation rates were apparently high (estimated about 0.4 cm per year and the foraminiferal fauna was dominated by Elphidium spp. and Cassidulina reniforme, species common for glacier-proximal environments. A hiatus at the top of the deglacial unit is likely linked to the high bottom-current activity associated with a strengthened inflow of Atlantic water masses into the Barents Sea. The uppermost lithological unit is represented by the Holocene marine sandy mud. It contains a high-abundance, high-diversity foraminiferal fauna with common cassidulinids, Cibicides spp., Epistominella pusilla and planktic species.

  3. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the YMER in the Arctic Ocean, Barents Sea and North Greenland Sea from 1980-08-11 to 1980-09-19 (NODC Accession 0113607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113607 includes chemical, discrete sample, physical and profile data collected from YMER in the Arctic Ocean, Barents Sea and North Greenland Sea...

  4. {sup 239+240}Pu in the Barents Sea Regions. Sources and radioecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Iosjpe, Mikhail [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    The radioecological assessment for {sup 239+240}Pu in the Barents sea regions was made using the compartment modelling approach. The following sources of radioactive contamination were under consideration: global fallout from atmospheric testing of nuclear weapons, transport of {sup 239+240}Pu from the Sellafield and La Hauge nuclear plants and underwater testing of nuclear weapons in Chernaya Bay, Novaya Zemlya. The box model developed at NRPA uses a modified approach for compartmental modeling, which takes into account the dispersion of radionuclides over time. The box structures for surface, mid-depth and deep water layers have been developed based on the description of polar, Atlantic and deep waters in the Arctic Ocean and the Northern Seas, as well as site-specific information for the boxes. The volume of the three water layers in each box has been calculated using detailed bathymetry together with Geographical Information Systems. The box model includes the processes of advection of radioactivity between compartments, sedimentation, diffusion of radioactivity through pore water in sediments, resuspension, mixing due to bioturbation, particle mixing and a burial process for radionuclides in deep sediment layers. Radioactive decay is calculated for all compartments. The contamination of biota is further calculated from the known radionuclide concentrations in filtered seawater in the different water regions. Doses to man are calculated on the basis of seafood consumptions, in accordance with available data for seafood catches and assumptions about human diet in the respective areas. Dose to biota are determined on the basis of calculated radionuclide concentrations in marine organisms, water and sediment, using dose conversion factors. Results of the calculations show that atmospheric deposition is the dominant source for the Barents Sea, except for the Chernaya Bay region. It is also demonstrated that the impact of the Sellafield nuclear facilities has

  5. Radioactivity in the Arctic Seas. Report for the International Arctic Seas Assessment Project (IASAP)

    International Nuclear Information System (INIS)

    1999-04-01

    This report provides comprehensive information on environmental conditions in the Arctic Seas as required for the study of possible radiological consequences from dumped high level radioactive wastes in the Kara Sea. The report describes the oceanography of the regions, with emphasis on the Kara and Barents Seas, including the East Novaya Zemlya Fjords. The ecological description concentrates on biological production, marine food-weds and fisheries in the Arctic Seas. The report presents data on radionuclide concentrations in the Kara and Barents Seas and uses these data to estimate the inventories of radionuclides currently in the marine environment of the Kara and Barents Seas

  6. Some aspects of floating ice related to sea surface operations in the Barents sea

    International Nuclear Information System (INIS)

    Loeset, S.

    1993-01-01

    The present work highlights some aspects of floating ice related to sea surface operations in the Barents sea. The thesis consists of eight papers which fall into two main categories; one part deals with numerical modeling of the temperature distribution and ablation of icebergs (three papers), and the other part studies the behavior of broken ice, focusing on both laboratory experiments and numerical modeling. The temperature distribution within an iceberg affects the mechanical strength of the ice and is therefore crucial in engineering applications when estimating loads from impinging icebergs on offshore structures. A numerical model which simulates the temperature distribution and ablation of icebergs has been developed. The model shows that the depth of the thermal disturbance and slope of the temperature gradient of an iceberg depend on the boundary conditions and the time at sea. By about 12 m into the ice, the temperature is virtually free of any thermal boundary influence. Oil spill response techniques are vulnerable to the presence of sea ice. Deflecting ice upstream of a spill site by means of a flexible boom will facilitate the application of conventional oil spill recovery systems such as oil skimmers and booms. Experiments with such an ice deflecting boom were conducted in an ice tank to determine the loads on the boom and to study the ice-free wake. The study indicated the technical feasibility of the ice boom concept as an operational tool for oil spill cleanups. A two-dimensional discrete element model has been developed. This model simulates the dynamics and interaction forces between distinct ice floes in a broken ice field. The numerical model was applied to estimate the loads on a boom used for ice management. 121 refs., 70 figs., 10 tabs

  7. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970 through 1975 (NODC Accession 0002125)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970...

  8. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976 through 1982 (NODC Accession 0002126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976...

  9. Development of Oil Spill Monitoring System for the Black Sea, Caspian Sea and the Barents/Kara Seas (DEMOSS)

    Science.gov (United States)

    Sandven, Stein; Kudriavtsev, Vladimir; Malinovsky, Vladimir; Stanovoy, Vladimir

    2008-01-01

    DEMOSS will develop and demonstrate elements of a marine oil spill detection and prediction system based on satellite Synthetic Aperture Radar (SAR) and other space data. In addition, models for prediction of sea surface pollution drift will be developed and tested. The project implements field experiments to study the effect of artificial crude oil and oil derivatives films on short wind waves and multi-frequency (Ka-, Ku-, X-, and C-band) dual polarization radar backscatter power and Doppler shift at different wind and wave conditions. On the basis of these and other available experimental data, the present model of short wind waves and radar scattering will be improved and tested.A new approach for detection and quantification of the oil slicks/spills in satellite SAR images is developed that can discriminate human oil spills from biogenic slicks and look-alikes in the SAR images. New SAR images are obtained in coordination with the field experiments to test the detection algorithm. Satellite SAR images from archives as well as from new acquisitions will be analyzed for the Black/Caspian/Kara/Barents seas to investigate oil slicks/spills occurrence statistics.A model for oil spills/slicks transport and evolution is developed and tested in ice-infested arctic seas, including the Caspian Sea. Case studies using the model will be conducted to simulate drift and evolution of oil spill events observed in SAR images. The results of the project will be disseminated via scientific publications and by demonstration to users and agencies working with marine monitoring. The project lasts for two years (2007 - 2009) and is funded under INTAS Thematic Call with ESA 2006.

  10. Temperature, salinity, and zooplankton species and number profiles collected by towed net for the Barents Sea from 7/20/1963 - 8/31/1963 (NODC Accession 0000108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, zooplantkon, and other data were collected using plankton net and bottle casts from the TANNER in the Barents Sea. Data were collected from 20...

  11. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the Barents Sea and Norwegian Sea from 2001-08-22 to 2001-08-29 (NODC Accession 0113887)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113887 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the Barents Sea and Norwegian Sea from 2001-08-22...

  12. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)-Implications for environmental monitoring in the Barents Sea

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, J., E-mail: jasmine.m.nahrgang@uit.no [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); Brooks, S.J. [Norwegian Institute for Water Research (NIVA), NO-0349 Oslo (Norway); Evenset, A. [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); Camus, L. [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); University Centre In Svalbard (UNIS), NO-9171 Longyearbyen (Norway); Jonsson, M.; Smith, T.J. [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); Lukina, J. [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); University of Tromso, Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biosciences, NO-9037 Tromso (Norway); Frantzen, M. [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); Giarratano, E. [Centro Nacional Patagonico (CENPAT-CONICET), AR-9120 Puerto Madryn (Argentina); Renaud, P.E. [Akvaplan-niva, FRAM Centre, NO-9296 Tromso (Norway); University Centre In Svalbard (UNIS), NO-9171 Longyearbyen (Norway)

    2013-02-15

    In the Barents Sea, the limited data on biological relevant indicators and their responses to various anthropogenic stressors have hindered the development of a consistent scientific basis for selecting indicator species and developing practical procedures for environmental monitoring. Accordingly, the main aim of the present study was to develop a common set of baseline values for contaminants and biomarkers in three species, and to identify their strengths and limitations in monitoring of the Barents Sea. Blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua) were sampled from a north Norwegian fjord in March, June, September and December 2010. Digestive glands from the bivalve species and liver from Atlantic cod were analysed for biomarkers of oxidative stress (catalase [CAT], glutathione peroxidase [GPX], glutathione-S-transferase activities [GST], lipid peroxidation as thiobarbituric reactive substances [TBARS] and total oxyradical scavenging capacity [TOSC]), biotransformation (ethoxyresorufine-O-deethylase activity [EROD]) and general stress (lysosomal membrane stability [LMS]). Concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals in the bivalves and PAH metabolites in fish bile were quantified. Finally, energy reserves (total lipids, proteins and carbohydrates) and electron transport system (ETS) activity in the digestive gland of the bivalves and liver of Atlantic cod provided background information for reproductive cycle and general physiological status of the organisms. Blue mussel and Icelandic scallop showed very similar trends in biological cycle, biomarker expression and seasonality. Biomarker baselines in Atlantic cod showed weaker seasonal variability. However, important biological events may have been undetected due to the large time intervals between sampling occasions. Physiological biomarkers such as energy reserves and ETS activity were recommended as complementary parameters to the

  13. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics

    Science.gov (United States)

    Gaichas, Sarah; Skaret, Georg; Falk-Petersen, Jannike; Link, Jason S.; Overholtz, William; Megrey, Bernard A.; Gjøsæter, Harald; Stockhausen, William T.; Dommasnes, Are; Friedland, Kevin D.; Aydin, Kerim

    2009-04-01

    Energy budget models for five marine ecosystems were compared to identify differences and similarities in trophic and community structure. We examined the Gulf of Maine and Georges Bank in the northwest Atlantic Ocean, the combined Norwegian/Barents Seas in the northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the northeast Pacific Ocean. Comparable energy budgets were constructed for each ecosystem by aggregating information for similar species groups into consistent functional groups. Several ecosystem indices (e.g., functional group production, consumption and biomass ratios, cumulative biomass, food web macrodescriptors, and network metrics) were compared for each ecosystem. The comparative approach clearly identified data gaps for each ecosystem, an important outcome of this work. Commonalities across the ecosystems included overall high primary production and energy flow at low trophic levels, high production and consumption by carnivorous zooplankton, and similar proportions of apex predator to lower trophic level biomass. Major differences included distinct biomass ratios of pelagic to demersal fish, ranging from highest in the combined Norwegian/Barents ecosystem to lowest in the Alaskan systems, and notable differences in primary production per unit area, highest in the Alaskan and Georges Bank/Gulf of Maine ecosystems, and lowest in the Norwegian ecosystems. While comparing a disparate group of organisms across a wide range of marine ecosystems is challenging, this work demonstrates that standardized metrics both elucidate properties common to marine ecosystems and identify key distinctions useful for fisheries management.

  14. Lipid composition of phytoplankton from the Barents Sea and environmental influences on the distribution pattern of carbon among photosynthetic end products

    OpenAIRE

    Henderson, R. James; Olsen, Rolf E.; Eilertsen, Hans C.

    1991-01-01

    The colonial algae Phaeocystis pouchetii and Dinobryon pellucidum dominated the phytoplankton crop at three stations in the Polar Front area of the Barents Sea. Lipid extracted from the seawater containing the phytoplankton was dominated by neutral lipid classes, particularly triacylglycerols, and phospholipids were more abundant than galactolipids at all stations. Polyunsaturated fatty acids comprised between 15 and 26% of fatty acids of total lipid. Of the carbon assimilated into lipid over...

  15. Modelling and monitoring of drilling discharges in the Barents Sea

    International Nuclear Information System (INIS)

    Lie, H.N.; Hasle, J.R.; Thorbjoernsen, K.

    1994-01-01

    The conference paper deals with the modelling and monitoring of seabed distribution of drill cuttings and drilling mud has being performed as part of the environmental programme for exploration in the Western Barents Sea in 1992. Modelling prior to drilling was based on experience well data and historical current measurement from the region. The modelling was repeated after drilling, based on measured discharge quantities and particle sizes, and measured current during the drilling period, giving less local sedimentation and distribution over a much wider area. According to the modelling only 1% of the drilling mud baryte would settle within 1000 m from the drilling platform, resulting in a very thin sediment layer (0.05 μm). 53% of the baryte would spread more than 10 km. The modelling results were confirmed by sediment analyses, which showed that the drilling discharges increased the sediment barium content by 10% at distance 250 to 1000 m from the platform, corresponding to a 0.5 μm baryte top layer. Reason for the wide distribution and limited local sedimentation may be tidal current dominance and large water depth (373 m). 9 refs., 5 figs., 4 tabs

  16. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)—Implications for environmental monitoring in the Barents Sea

    International Nuclear Information System (INIS)

    Nahrgang, J.; Brooks, S.J.; Evenset, A.; Camus, L.; Jonsson, M.; Smith, T.J.; Lukina, J.; Frantzen, M.; Giarratano, E.; Renaud, P.E.

    2013-01-01

    In the Barents Sea, the limited data on biological relevant indicators and their responses to various anthropogenic stressors have hindered the development of a consistent scientific basis for selecting indicator species and developing practical procedures for environmental monitoring. Accordingly, the main aim of the present study was to develop a common set of baseline values for contaminants and biomarkers in three species, and to identify their strengths and limitations in monitoring of the Barents Sea. Blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua) were sampled from a north Norwegian fjord in March, June, September and December 2010. Digestive glands from the bivalve species and liver from Atlantic cod were analysed for biomarkers of oxidative stress (catalase [CAT], glutathione peroxidase [GPX], glutathione-S-transferase activities [GST], lipid peroxidation as thiobarbituric reactive substances [TBARS] and total oxyradical scavenging capacity [TOSC]), biotransformation (ethoxyresorufine-O-deethylase activity [EROD]) and general stress (lysosomal membrane stability [LMS]). Concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals in the bivalves and PAH metabolites in fish bile were quantified. Finally, energy reserves (total lipids, proteins and carbohydrates) and electron transport system (ETS) activity in the digestive gland of the bivalves and liver of Atlantic cod provided background information for reproductive cycle and general physiological status of the organisms. Blue mussel and Icelandic scallop showed very similar trends in biological cycle, biomarker expression and seasonality. Biomarker baselines in Atlantic cod showed weaker seasonal variability. However, important biological events may have been undetected due to the large time intervals between sampling occasions. Physiological biomarkers such as energy reserves and ETS activity were recommended as complementary parameters to the

  17. Dispersal of the radionuclide caesium-137 ((137)Cs) from point sources in the Barents and Norwegian Seas and its potential contamination of the Arctic marine food chain: coupling numerical ocean models with geographical fish distribution data.

    Science.gov (United States)

    Heldal, Hilde Elise; Vikebø, Frode; Johansen, Geir Odd

    2013-09-01

    Dispersal of (137)Cs from the nuclear submarine wrecks Komsomolets and K-159, which are resting on the seabed in the Norwegian and Barents Seas, respectively, is simulated using realistic rates and hypothetical scenarios. Furthermore, spatiotemporal (137)Cs concentrations in Northeast Arctic cod and capelin are estimated based on survey data. The results indicate that neither continuous leakages nor pulse discharges will cause concentrations of (137)Cs in cod muscle or whole body capelin exceeding the intervention level of 600 Bq/kg fw. Continuous leakages from Komsomolets and K-159 and pulse discharges from Komsomolets induced negligible activity concentrations in cod and capelin. A pulse discharge of 100% of the (137)Cs-inventory of K-159 will, however, result in concentrations in muscle of cod of above 100 times the present levels in the eastern Barents Sea. Within three years after the release, (137)Cs levels above 20 Bq/kg fw in cod are no longer occurring in the Barents Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of Shipping Emissions on Present and Future Atmospheric Composition Over the Barents Sea

    Science.gov (United States)

    Daskalakis, N.; Raut, J. C.; Law, K.; Marelle, L.; Thomas, J. L.; Onishi, T.

    2016-12-01

    The Arctic is undergoing unprecedented changes as a result of rapid warming and socio-economic drivers. Even though the region is a receptor for anthropogenic pollution from the highly populated mid-latitudes, there are also local sources of pollution, such as shipping, that are already perturbing atmospheric composition. The Barents Sea, located off the northern coasts of Norway and Russia, has year-round shipping traffic and is likely to grow in a warming Arctic because of the economic benefits related to the opening up of the North-East passage placing it in a strategic position for the transport of goods between Europe and Asia. An increase in the marine traffic has already been observed over the past years in this region, resulting in increased emissions of pollutants. In this work, we investigate the impact of the shipping emissions in the Barents Sea on atmospheric composition for the summer period (July/August) with high traffic using the regional chemistry-aerosol transport model WRF-Chem run at high resolution over the region. We quantify the effects of shipping pollution on aerosol concentrations, such as black carbon, sulphate (SO42-), nitrate (NO3-), and secondary organic aerosols (SOA) as well as deposition of potentially important nutrients (NO3-, SO42-). The model is run using an analytical chemical mechanism for gas phase and aerosols (SAPRC99 coupled with VBS and MOSAIC) for present-day (2012) and future (2050) conditions with ECLIPSE anthropogenic emissions and Winther et al. (2014) shipping emissions. Present-day simulations are evaluated against available data. We examine different future growth scenarios taking into account current and proposed ship operation regulations, such as CLE (current legislation) and HGS (high growth scenario), to investigate possible future changes in surface concentrations, tropospheric burdens and deposition fluxes. Potential chemistry-climate feedbacks are also examined such as those related to aerosol

  19. Radioactive contamination in the Barents Sea, past and present status, uptake of radinuclides in fish and its impact on fisheries

    OpenAIRE

    Føyn, Lars

    1994-01-01

    During the atmospheric nuclear bomb test at the end of the fifties and in the beginning of the sixties the Institute of Marine Research, IMR, monitored the radioactive contamination in commercial landed fish from the Barents Sea. There were indications of an immediate response in uptake of radionuclides depending on the time of the year, probably due to the food situation for the fish. There was also indications of species dependant uptake of radionuclides in fish. Even duri...

  20. Soils and Vegetation of the Khaipudyr Bay Coast of the Barents Sea

    Science.gov (United States)

    Shamrikova, E. V.; Deneva, S. V.; Panyukov, A. N.; Kubik, O. S.

    2018-04-01

    Soils and vegetation of the coastal zone of the Khaipudyr Bay of the Barents Sea have been examined and compared with analogous objects in the Karelian coastal zone of the White Sea. The environmental conditions of these two areas are somewhat different: the climate of the Khaipudyr Bay coast is more severe, and the seawater salinity is higher (32-33‰ in the Khaipudyr Bay and 25-26‰ in the White Sea). The soil cover patterns of both regions are highly variable. Salt-affected marsh soils (Tidalic Fluvisols) are widespread. The complicated mesotopography includes high geomorphic positions that are not affected by tidal water. Under these conditions, zonal factors of pedogenesis predominate and lead to the development of Cryic Folic Histosols and Histic Reductaquic Cryosols. On low marshes, the concentrations of soluble Ca2+, K+ + Na+, Cl-, and SO2- 4 ions in the soils of the Khaipudyr Bay coast are two to four times higher than those in the analogous soils of Karelian coast. Cluster analysis of a number of soil characteristics allows separation of three soils groups: soils of low marshes, soils of middle-high marshes, and soils of higher positions developing under the impact of zonal factors together with the aerial transfer and deposition of seawater drops. The corresponding plant communities are represented by coastal sedge cenoses, forb-grassy halophytic cenoses, and zonal cenoses of hypoarctic tundra. It is argued that the grouping of marsh soils in the new substantivegenetic classification system of Russian soils requires further elaboration.

  1. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012

    Directory of Open Access Journals (Sweden)

    Jihye Ahn

    2014-06-01

    Full Text Available Extensive sea ice over Arctic regions is largely involved in heat, moisture, and momentum exchanges between the atmosphere and ocean. Some previous studies have been conducted to develop statistical models for the status of Arctic sea ice and showed considerable possibilities to explain the impacts of climate changes on the sea ice extent. However, the statistical models require improvements to achieve better predictions by incorporating techniques that can deal with temporal variation of the relationships between sea ice concentration and climate factors. In this paper, we describe the statistical approaches by ordinary least squares (OLS regression and a time-series method for modeling sea ice concentration using satellite imagery and climate reanalysis data for the Barents and Kara Seas during 1979–2012. The OLS regression model could summarize the overall climatological characteristics in the relationships between sea ice concentration and climate variables. We also introduced autoregressive integrated moving average (ARIMA models because the sea ice concentration is such a long-range dataset that the relationships may not be explained by a single equation of the OLS regression. Temporally varying relationships between sea ice concentration and the climate factors such as skin temperature, sea surface temperature, total column liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover were modeled by the ARIMA method, which considerably improved the prediction accuracies. Our method may also be worth consideration when forecasting future sea ice concentration by using the climate data provided by general circulation models (GCM.

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from JOHAN HJORT in the Barents Sea, North Sea and others from 2007-11-15 to 2008-06-08 (NCEI Accession 0157398)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157398 includes Surface underway, chemical and physical data collected from JOHAN HJORT in the Barents Sea, North Sea, Norwegian Sea and Skagerrak...

  3. Bioaccumulation of 137Cs in pelagic food webs in the Norwegian and Barents Seas

    International Nuclear Information System (INIS)

    Heldal, Hilde Elise; Foeyn, Lars; Varskog, Per

    2003-01-01

    Knowledge and documentation of the levels of radioactive contamination in fish stocks important to Norwegian fisheries is of major importance to Norwegian consumers and fish export industry. In the present study, the bioaccumulation of caesium-137 ( 137 Cs) has been investigated in marine food webs in the Barents and Norwegian Seas. The contents of 137 Cs in the different organisms were generally low ( -1 wet weight), but a marked bioaccumulation was apparent: The concentration of 137 Cs was about 10-fold higher in the harbour porpoise Phocoena phocoena, representing the upper level of the food web, than in the amphipod Themisto sp., representing the lower level of the food web. The Concentration Factors (CF=Bq kg -1 wet weight/Bq l -1 seawater) increased from 10±3 for a mixed sample of krill and amphipods to 165±5 for harbour porpoises

  4. Dispersal of the radionuclide caesium-137 (137Cs) from point sources in the Barents and Norwegian Seas and its potential contamination of the Arctic marine food chain: Coupling numerical ocean models with geographical fish distribution data

    International Nuclear Information System (INIS)

    Heldal, Hilde Elise; Vikebø, Frode; Johansen, Geir Odd

    2013-01-01

    Dispersal of 137 Cs from the nuclear submarine wrecks Komsomolets and K-159, which are resting on the seabed in the Norwegian and Barents Seas, respectively, is simulated using realistic rates and hypothetical scenarios. Furthermore, spatiotemporal 137 Cs concentrations in Northeast Arctic cod and capelin are estimated based on survey data. The results indicate that neither continuous leakages nor pulse discharges will cause concentrations of 137 Cs in cod muscle or whole body capelin exceeding the intervention level of 600 Bq/kg fw. Continuous leakages from Komsomolets and K-159 and pulse discharges from Komsomolets induced negligible activity concentrations in cod and capelin. A pulse discharge of 100% of the 137 Cs-inventory of K-159 will, however, result in concentrations in muscle of cod of above 100 times the present levels in the eastern Barents Sea. Within three years after the release, 137 Cs levels above 20 Bq/kg fw in cod are no longer occurring in the Barents Sea. -- Highlights: •The dispersal of 137 Cs from the wrecks of Komsomolets and K-159 are simulated. •The submarine wrecks are resting on the seabed in the Norwegian and Barents Seas. •Both realistic rates of discharges and what-if scenarios are simulated. •Concentrations of 137 Cs are estimated in observational records of cod and capelin. •Only pulse discharges from K-159 causes high 137 Cs concentrations in cod and capelin. -- A pulse discharge of 137 Cs from K-159 may cause concentrations in muscle of cod up to 63 and 123 Bq/kg fresh weight in the near-surface and near-bottom layer, respectively

  5. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

    Science.gov (United States)

    Glover, A G; Gooday, A J; Bailey, D M; Billett, D S M; Chevaldonné, P; Colaço, A; Copley, J; Cuvelier, D; Desbruyères, D; Kalogeropoulou, V; Klages, M; Lampadariou, N; Lejeusne, C; Mestre, N C; Paterson, G L J; Perez, T; Ruhl, H; Sarrazin, J; Soltwedel, T; Soto, E H; Thatje, S; Tselepides, A; Van Gaever, S; Vanreusel, A

    2010-01-01

    by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed). Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web.

    Science.gov (United States)

    Haukås, Marianne; Berger, Urs; Hop, Haakon; Gulliksen, Bjørn; Gabrielsen, Geir W

    2007-07-01

    The present study reports concentrations and biomagnification potential of per- and polyfluorinated alkyl substances (PFAS) in species from the Barents Sea food web. The examined species included sea ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black guillemot (Cepphus grylle) and glaucous gull (Larus hyperboreus). These were analyzed for PFAS, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and polybrominated diphenyl ethers (PBDEs). Perfluorooctane sulfonate (PFOS) was the predominant of the detected PFAS. Trophic levels and food web transfer of PFAS were determined using stable nitrogen isotopes (delta(15)N). No correlation was found between PFOS concentrations and trophic level within species. However, a non-linear relationship was established when the entire food web was analyzed. Biomagnification factors displayed values >1 for perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), PFOS and SigmaPFAS(7). Multivariate analyses showed that the degree of trophic transfer of PFAS is similar to that of PCB, DDT and PBDE, despite their accumulation through different pathways.

  7. Basement inheritance and salt tectonics in the SE Barents Sea: Insights from new potential field data

    Science.gov (United States)

    Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.

    2017-12-01

    The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp

  8. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JAN MAYEN in the Arctic Ocean, Barents Sea and North Greenland Sea from 2005-05-20 to 2005-06-02 (NODC Accession 0113564)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113564 includes chemical, discrete sample, physical and profile data collected from JAN MAYEN in the Arctic Ocean, Barents Sea and North Greenland...

  9. Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall patterns in August

    Science.gov (United States)

    He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei

    2018-01-01

    In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.

  10. Plutonium in algae, sediments and biota in the Barents, Pechora and Kara seas

    International Nuclear Information System (INIS)

    Rissanen, Kristina; Ikauheimonen, Tarja K; Ylipieti, Jarkko; Matishov, Dmitri G; Matishov, Gennady G

    2000-01-01

    The 239,240 Pu concentrations measured in the sediment, macro algae and benthic fauna were very low in the Russian Arctic seas, and in fish, seabirds and seals usually below the detection limit. The 238 Pu/ 239,240 Pu ratios suggest that global fallout is the main source of the plutonium. Fallout level Pu isotope ratios, 0.02 - 0.04, were also found in surface vegetation and soil samples from fifteen locations covering Svalbard, Franz Joseph Land Archipelago, coastal areas and islands of the Barents, Pechora and White seas, including the southern coast of Novaya Zemlya, Kola Bay and the River Yenisey estuary. The areal 239,240 Pu concentrations of the terrestrial sampling plots varied from 9 to 32Bq/m 2 . Significantly enhanced 238 Pu/ 239,240 Pu ratios of 0.10 - 0.18 were detected only in the Kola Bay in sediment layers outside and to the south of the Atomflot civilian nuclear ice-breaker base. The enhanced isotope ratios in this section of the Kola Bay were verified by triplicate determinations. The highest ratios were found at a depth 6-7.5 cm, and not in the surface sediment layers, indicating a larger previous release. Plutonium is not concentrated in the marine foodchains. Accumulation of 239,240 Pu was detected in some species of benthic fauna; in molluscs mainly in the shells compared to the soft edible parts of the specimen. Plutonium was not detected higher in the marine food-chain. The 239,240 Pu concentrations measured in the bones and soft tissues of commercial fish species, sea birds and seals were below the detection limit. (author)

  11. Influence of Late Paleozoic Gondwana glaciations on the depositional evolution of the northern Pangean shelf, North Greenland, Svalbard and the Barents Sea

    DEFF Research Database (Denmark)

    Stemmerik, Lars

    2008-01-01

    Outcrop and subsurface data from the central northern margin of the Pangean shelf in North Greenland, Svalbard, and the Norwegian Barents Sea record the depositional response of a Northern Hemisphere subtropical shelf to Late Carboniferous-Early Permian (Bashkirian-Sakmarian) Gondwana glaciations....... The dominant motif is that of meters to tens of meters of exposure-capped cycles of carbonates, mixed carbonates, and siliciclastics and, in older stratigraphic levels, siliciclastics and gypsum. Halitegypsum-carbonate cycles developed in deeper, isolated basins. Individual cycles of carbonate and mixed...

  12. The White Sea, Russia

    Science.gov (United States)

    2002-01-01

    Editor's Note: The caption below, published on May 10, 2001, is incorrect. According to Masha Vorontsova, director of the International Fund for Animal Welfare in Moscow, the situation with the seal pups in the White Sea is normal. There is no disaster and there never was. For more details, refer to the article entitled 'No Danger' on the New Scientist home page. The Earth Observatory regrets the earlier errant report. Original Caption According to the Russian Polar Research Institute for Fisheries and Oceanography, between 250,000 and 300,000 Greenland seal pups face death by starvation over the next two months due to a cruel trick by mother nature. The seals, most of them less than two months old, are trapped on ice sheets that remain locked in the White Sea, located near Archangel in Northern Russia. Typically, during the spring thaw the ice sheets break up and flow with the currents northward into the Barents Sea, the seals' spring feeding grounds. The seal pups hitch a ride on the ice floes, living on their own individual stores of fat until they arrive in the Barents Sea. Their mothers departed for the Barents Sea weeks ago. In a normal year, the seal pups' trip from the White Sea out to the Barents takes about six weeks and the seals have adapted to rely upon this mechanism of mother nature. During their yearly migration, the mother seals usually stay with their pups and feed them until their pelts turn from white to grey--a sign that the pups are mature enough to swim and feed themselves. Unfortunately, this year unusually strong northerly winds created a bottleneck of ice near the mouth of the white sea, thus blocking the flow of ice and trapping the pups. These true-color images of the White Sea were acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. This image, taken May 2, 2000 that there is usually much less ice in the White Sea this time of year as most of it is typically en route to the

  13. Characteristics of Winter Surface Air Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced Sea Ice Area in the Barents Sea

    Science.gov (United States)

    Shukurov, K. A.; Semenov, V. A.

    2018-01-01

    On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.

  14. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the POLARSTERN in the Arctic Ocean, Barents Sea and Laptev (or Nordenskjold) Sea from 2007-07-28 to 2007-10-10 (NODC Accession 0109899)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109899 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Arctic Ocean, Barents Sea and Laptev (or...

  15. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web

    International Nuclear Information System (INIS)

    Haukas, Marianne; Berger, Urs; Hop, Haakon; Gulliksen, Bjorn; Gabrielsen, Geir W.

    2007-01-01

    The present study reports concentrations and biomagnification potential of per- and polyfluorinated alkyl substances (PFAS) in species from the Barents Sea food web. The examined species included sea ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black guillemot (Cepphus grylle) and glaucous gull (Larus hyperboreus). These were analyzed for PFAS, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and polybrominated diphenyl ethers (PBDEs). Perfluorooctane sulfonate (PFOS) was the predominant of the detected PFAS. Trophic levels and food web transfer of PFAS were determined using stable nitrogen isotopes (δ 15 N). No correlation was found between PFOS concentrations and trophic level within species. However, a non-linear relationship was established when the entire food web was analyzed. Biomagnification factors displayed values >1 for perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), PFOS and ΣPFAS(7). Multivariate analyses showed that the degree of trophic transfer of PFAS is similar to that of PCB, DDT and PBDE, despite their accumulation through different pathways. - The first comprehensive survey of fluoroorganic contamination in an European Arctic marine food web

  16. Dumping of radioactive waste in the Barents and Kara seas

    International Nuclear Information System (INIS)

    Salbu, B.; Christensen, G.C.

    1995-01-01

    To evaluate the level of radioactive contamination in the Kara Sea and to assess short- and long-term consequences of dumped radioactive waste, joint Russian-Norwegian expeditions have been performed annually since 1992. Results from the 1992 joint expedition to the Kara Sea demonstrated very low concentrations of radionuclides in waters and sediments. Contributions from different sources: global fallout, river transport, marine transport of discharges from European reprocessing plants and of fallout from Chernobyl, could be identified. From the expeditions in 1993 and 1994 to three bays at Novaya Zemlya, local contamination in the Stepovogo and the Abrosimov bays due to leakage from the dumped radioactive waste could be confirmed. Results from the 1994 expedition will be published in 1995. The levels of radioactivity in the Kara Sea are, however, very low and represent at present an extremely low impact on man and the marine ecosystem. (Author)

  17. Murman Coast of the Barents Sea at the Second Half of the 19th and the Begining 20th Century. Russian or European Colonization?

    OpenAIRE

    Pavel V. Fedorov

    2014-01-01

    This article is dedicated to analysing the historical background of the process of colonization Murman coast of the Barents Sea at the second half of the 19th and the begining 20th century. It consider two different interpretations of the history of colonization. One of them is the process of checking the Murman coast as a result of Russia imposed Western European initiatives. Another interpretation associates colonization with traditional process of the Russian presence on Murman.

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, Inner Sea - West Coast Scotland and others from 2006-02-02 to 2006-12-08 (NCEI Accession 0157361)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157361 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, Inner Sea - West Coast...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Greenland Sea and others from 2007-02-12 to 2007-10-28 (NCEI Accession 0157392)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157392 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Greenland Sea, North...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, Inner Sea - West Coast Scotland and others from 2005-03-12 to 2005-12-14 (NCEI Accession 0157257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157257 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, Inner Sea - West Coast...

  1. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    Science.gov (United States)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2011-06-17 to 2012-01-04 (NCEI Accession 0157242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157242 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, Barents Sea, Kara Sea,...

  3. Numerical Modelling of Extreme Natural Hazards in the Russian Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav; Surkova, Galina

    2017-04-01

    Storm surges and extreme waves are severe natural sea hazards. Due to the almost complete lack of natural observations of these phenomena in the Russian seas (Caspian, Black, Azov, Baltic, White, Barents, Okhotsk, Kara), especially about their formation, development and destruction, they have been studied using numerical simulation. To calculate the parameters of wind waves for the seas listed above, except the Barents Sea, the spectral model SWAN was applied. For the Barents and Kara seas we used WAVEWATCH III model. Formation and development of storm surges were studied using ADCIRC model. The input data for models - bottom topography, wind, atmospheric pressure and ice cover. In modeling of surges in the White and Barents seas tidal level fluctuations were used. They have been calculated from 16 harmonic constant obtained from global atlas tides FES2004. Wind, atmospheric pressure and ice cover was taken from the NCEP/NCAR reanalysis for the period from 1948 to 2010, and NCEP/CFSR reanalysis for the period from 1979 to 2015. In modeling we used both regular and unstructured grid. The wave climate of the Caspian, Black, Azov, Baltic and White seas was obtained. Also the extreme wave height possible once in 100 years has been calculated. The statistics of storm surges for the White, Barents and Azov Seas were evaluated. The contribution of wind and atmospheric pressure in the formation of surges was estimated. The technique of climatic forecast frequency of storm synoptic situations was developed and applied for every sea. The research was carried out with financial support of the RFBR (grant 16-08-00829).

  4. Mapping of sound scattering objects in the northern part of the Barents Sea and their geological interpretation

    Science.gov (United States)

    Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.

    2017-07-01

    On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system

  5. Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems

    Science.gov (United States)

    Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen

    2009-04-01

    As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.

  6. Geology and Assessment of Undiscovered Oil and Gas Resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province, 2008

    Science.gov (United States)

    Klett, Timothy R.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered petroleum resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province as part of its Circum-Arctic Resource Appraisal. These two provinces are situated northeast of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins Province for this study: the Kolguyev Terrace AU, the South Barents and Ludlov Saddle AU, and the North Barents Basin AU. A fourth AU, defined as the Novaya Zemlya Basins and Admiralty Arch AU, coincides with the Novaya Zemlya Basins and Admiralty Arch Province. These four AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources, resulting in total estimated mean volumes of ~7.4 billion barrels of crude oil, 318 trillion cubic feet (TCF) of natural gas, and 1.4 billion barrels of natural-gas liquids.

  7. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HAKON MOSBY in the Barents Sea from 2000-09-23 to 2000-10-03 (NODC Accession 0113886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113886 includes chemical, discrete sample, physical and profile data collected from HAKON MOSBY in the Barents Sea from 2000-09-23 to 2000-10-03 and...

  8. Quo vadis NW Black Sea benthic ecosystems?

    Science.gov (United States)

    Traian Gomoiu, Marian

    2016-04-01

    The author briefly presents a general review on the evolution trends of benthic ecosystems at the Romanian Black Sea coast, referring to some recent data from the literature. The Black Sea represents a "unicum hydrobiologicum" by some of its basic characteristics, such as: 1. a large semi-enclosed basin with an intense exchange of waters; 2. a sea receiving a large amount of fresh water, especially in its northwestern sector, brought by the Danube, Dnieper and Dniester Rivers; 3. a large meromictic sea - euxinic-azoic below depths of 150 - 200 m; 4. around the sea there is a large filter-holding belt consisting of bivalves (Mytilus galloprovincialis and Modiolula phaseolina); 5. a sea having in its northwestern sector a large area covered by red algae of the genus Phyllophora; 6. a sea undergoing, in the last 50 years, intense environmental pressures (pollution by large rivers and direct discharges of wastewater from urban areas, the development of maritime traffic, overfishing by bottom trawling, coastal facilities and especially by many defense works of the new port); 7. a sea registering in the last decades of the past century many events of eutrophication; 8. a sea enriching its biodiversity by alien species. After the political and socio-economic changes triggered by the events of 1989 and especially after Romania's accession to EU, the state of the northwestern Black Sea coastal ecosystems, has recorded positive changes: • Decrease in environmental pressures; • Decreasing pollutant / fertilizing discharges into the Danube; • Reduction of domestic sewage quantities from coastal settlements; • Improvement in the quality of the wastewater discharged into the sea; • Reduction of active fishing by bottom trawling; • Adopting and implementing a national / international set of guidelines concerning marine environment; • Adopting regulations on the protection of the marine environment against pollution in marine economy: transport / shipping, tourism

  9. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the Barents Sea, North Atlantic Ocean and others from 2002-05-30 to 2002-07-01 (NODC Accession 0113569)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113569 includes chemical, discrete sample, physical and profile data collected from KNORR in the Barents Sea, North Atlantic Ocean, North Greenland...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the LANCE in the Barents Sea from 1986-07-19 to 1986-07-26 (NODC Accession 0113910)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113910 includes chemical, discrete sample, physical and profile data collected from LANCE in the Barents Sea from 1986-07-19 to 1986-07-26 and...

  11. Current status of the East Sea Ecosystem in a changing world

    Science.gov (United States)

    Lee, Sang Heon; Kang, Chang-Keun; Lee, Chung IL; Kwak, Jung Hyun

    2017-12-01

    The East/Japan Sea (hereafter the East Sea) is changing quickly. Warming and structural changes in the East Sea have been reported by CREAMS, an acronym of ″Circulation Research of the East Asian Marginal Seas″, which began in 1993 as an international research program to understand the water mass structure and circulation in the East Sea (Kim and Kim, 1996; Kim, 1997; Kim et al., 2001, 2002). A subsequent research program of the EAST-I, an acronym of ″the East Asian Seas Time-series″, was launched by PICES (North Pacific Marine Science Organization) and financially supported by the Korean government, allowing us to deepen our knowledge about rapidly changing processes in the East Sea (Chang et al., 2010). Although there has been considerable progress in developing a mechanistic understanding of the East Sea ecosystem responses to disturbances, more comprehensive studies are needed to address the impacts of the frequency and intensity of disturbances on marine ecosystems. The most important question of the research has been: how do environmental changes affect structural and functional biodiversity? Recently launched research on ″Long-term change of structure and function in marine ecosystems of Korea″, which has been supported by the Korean government since 2011, has given an unprecedented insight into the ecosystem dynamics in the East Sea. It therefore seems an appropriate time to devote a special issue to the topic of ″Current status of the East Sea ecosystem in a changing world″.

  12. Petroleum activity in the Russian Barents Sea: constraints and options for Norwegian offshore and shipping companies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Arild; Rowe, Lars

    2008-09-15

    Presently most attention in the Barents Sea is given to the Shtokman project. Experience from development of this field, where there are still many uncertainties, will have large consequences for the further development program and relations with foreign companies. The exploration activity going on is fairly limited, but over the last few years there has been a struggle over licenses and control over exploration capacity. In the medium term the goal of rapid development of the Arctic continental shelf has become intertwined with a comprehensive government effort to modernise the domestic shipbuilding industry to make it able to cover most of the needs offshore. With the shipbuilding industry in a deep crisis these goals are not fully reconcilable. Russia will either have to accept more foreign involvement, or scale down its offshore ambitions. We believe a combination of the two alternatives is likely. This means that there will still be room for foreign offshore and shipping companies, but that the total amount of activity on the continental shelf will not be as great as stated in official plans. (author). 100 refs., map

  13. Paleomagnetism and rock magnetism from sediments along a continental shelf-to-slope transect in the NW Barents Sea: Implications for geomagnetic and depositional changes during the past 15 thousand years

    Science.gov (United States)

    Caricchi, C.; Lucchi, R. G.; Sagnotti, L.; Macrì, P.; Morigi, C.; Melis, R.; Caffau, M.; Rebesco, M.; Hanebuth, T. J. J.

    2018-01-01

    Paleomagnetic and rock magnetic data were measured on glaciomarine silty-clay successions along an E-W sediment-core transect across the continental shelf and slope of the Kveithola paleo-ice stream system (south of Svalbard, north-western Barents Sea), representing a stratigraphic interval spanning the last deglaciation and the Holocene. The records indicate that magnetite is the main magnetic mineral and that magnetic minerals are distinctly less abundant on the shelf than at the continental slope. The paleomagnetic properties allow for the reconstruction of a well-defined characteristic remanent magnetization (ChRM) throughout the sedimentary successions. The stratigraphic trends of rock magnetic and paleomagnetic parameters are used for a shelf-slope core correlation and sediment facies analysis is applied for depositional processes reconstruction. The new paleomagnetic records compare to the PSV and RPI variation predicted for the core sites by a simulation using the global geomagnetic field variation models SHA.DIF.14k and CALS7K.2 and closest PSV and RPI regional stack curves. The elaborated dataset, corroborated by available 14C ages, provides a fundamental chronological framework to constrain the coupling of shelf-slope sedimentary processes and environmental changes in the NW Barents Sea region during and after deglaciation.

  14. A baseline study on levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, non-ortho and mono-ortho PCBs, non-dioxin-like PCBs and polybrominated diphenyl ethers in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea

    International Nuclear Information System (INIS)

    Julshamn, Kaare; Duinker, Arne; Berntssen, Marc; Nilsen, Bente M.; Frantzen, Sylvia; Nedreaas, Kjell; Maage, Amund

    2013-01-01

    Highlights: • Livers of cod from the Barents Sea have been analysed for dioxins, PCBs and PBDEs. • The overall mean concentration of dioxins and DL-PCBs was 14.2 ng TEQ WHO-2005 /kg ww. • The concentrations of dioxins and DL-PCBs varied between 1.0 and 151 ng TEQ/kg ww. • 20% of the samples had concentrations higher than 20 ng TEQ/kg ww. • The highest concentrations of dioxins and PCB were found in samples from the east area of the Barents Sea. -- Abstract: This study is one of several baseline studies on commercially important Norwegian wild fish species that will provide information concerning metals and persistent organic pollutants (POPs) and food safety. The cod liver is a traditional food product in Norway and a potential source for POPs in the diet. The concentrations of dioxins and furans (PCDD/Fs), dioxin-like PCBs (DL-PCBs), non-dioxin-like PCBs (NDL-PCBs, PCB 6 ) and polybrominated flame retardants (PBDEs) were determined in the liver of 784 individual Northeast Arctic cod caught at 32 positions in the Barents Sea in the period from 2009–2010. In addition, muscle samples from 30 individual cod were analysed for the same substances. The mean concentration of the sum of PCDD/Fs and DL-PCBs for all samples was 14.2 ng TEQ who-2005 /kg ww with a variation between 1.0 and 151 ng TEQ/kg ww. The concentrations of POPs in the fillet samples were very low

  15. Marine litter in the Nordic Seas: Distribution composition and abundance.

    Science.gov (United States)

    Buhl-Mortensen, Lene; Buhl-Mortensen, Pål

    2017-12-15

    Litter has been found in all marine environments and is accumulating in seabirds and mammals in the Nordic Seas. These ecosystems are under pressure from climatic change and fisheries while the human population is small. The marine landscapes in the area range from shallow fishing banks to deep-sea canyons. We present density, distribution and composition of litter from the first large-scale mapping of sea bed litter in arctic and subarctic waters. Litter was registered from 1778 video transects, of which 27% contained litter. The background density of litter in the Barents Sea and Norwegian Sea is 202 and 279 items/km 2 respectively, and highest densities were found close to coast and in canyons. Most of the litter originated from the fishing industry and plastic was the second most common litter. Background levels were comparable to European records and areas with most littering had higher densities than in Europe. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2012-01-08 to 2012-10-06 (NCEI Accession 0157350)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157350 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, Barents Sea, English...

  17. Ecosystem Structure Changes in the Turkish Seas as a Response to Overfishing

    Science.gov (United States)

    Gazihan Akoglu, Ayse; Salihoglu, Baris; Akoglu, Ekin; Kideys, Ahmet E.

    2013-04-01

    Human population in Turkey has grown more than five-fold since its establishment in 1923 and more than 73 million people are currently living in the country. Turkey is surrounded by partially connected seas (the Black Sea, the Sea of Marmara, the Aegean Sea and the Mediterranean Sea) each of which has significantly different productivity levels and ecosystem characteristics. Increasing human population with its growing socio-economic needs has generated an intensive fishing pressure on the fish stocks in its exclusive economic zone. Fishing grounds in the surrounding seas were exploited with different fishing intensities depending upon their productivity level and catch rates. Hence, the responses of these different ecosystems to overfishing have been realized differently. In this study, changes of the ecosystem structures in the Turkish Seas were comparatively investigated by ecosystem indices such as Marine Trophic Index (MTI), Fishing in Balance (FiB) and Primary Production Required (PPR) to assess the degree of sustainability of the fish stocks for future generations.

  18. Ecosystem variability in the offshore northeastern Chukchi Sea

    Science.gov (United States)

    Blanchard, Arny L.; Day, Robert H.; Gall, Adrian E.; Aerts, Lisanne A. M.; Delarue, Julien; Dobbins, Elizabeth L.; Hopcroft, Russell R.; Questel, Jennifer M.; Weingartner, Thomas J.; Wisdom, Sheyna S.

    2017-12-01

    Understanding influences of cumulative effects from multiple stressors in marine ecosystems requires an understanding of the sources for and scales of variability. A multidisciplinary ecosystem study in the offshore northeastern Chukchi Sea during 2008-2013 investigated the variability of the study area's two adjacent sub-ecosystems: a pelagic system influenced by interannual and/or seasonal temporal variation at large, oceanographic (regional) scales, and a benthic-associated system more influenced by small-scale spatial variations. Variability in zooplankton communities reflected interannual oceanographic differences in waters advected northward from the Bering Sea, whereas variation in benthic communities was associated with seafloor and bottom-water characteristics. Variations in the planktivorous seabird community were correlated with prey distributions, whereas interaction effects in ANOVA for walruses were related to declines of sea-ice. Long-term shifts in seabird distributions were also related to changes in sea-ice distributions that led to more open water. Although characteristics of the lower trophic-level animals within sub-ecosystems result from oceanographic variations and interactions with seafloor topography, distributions of apex predators were related to sea-ice as a feeding platform (walruses) or to its absence (i.e., open water) for feeding (seabirds). The stability of prey resources appears to be a key factor in mediating predator interactions with other ocean characteristics. Seabirds reliant on highly-variable zooplankton prey show long-term changes as open water increases, whereas walruses taking benthic prey in biomass hotspots respond to sea-ice changes in the short-term. A better understanding of how variability scales up from prey to predators and how prey resource stability (including how critical prey respond to environmental changes over space and time) might be altered by climate and anthropogenic stressors is essential to

  19. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NARCIS (Netherlands)

    Sokolowski, A.; Wolowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaite, Z.; Gremare, A.; Hummel, H.; Lesutiene, J.; Razinkovas, A.; Renaud, P.E.; Richard, P.; Kedra, M.

    2012-01-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning.

  20. Partial pressure (or fugacity) of carbon dioxide and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, Barents Sea and others from 2015-05-19 to 2015-12-01 (NCEI Accession 0160491)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160491 includes Surface underway, chemical and meteorological data collected from POLARSTERN in the Arctic Ocean, Barents Sea, Bay of Biscay, English...

  1. Call to protect deep-sea coral, sponge ecosystems

    Science.gov (United States)

    Showstack, Randy

    2004-03-01

    More than 1100 scientists are signatories to a 15 February consensus statement calling for the protection of deep sea coral and sponge ecosystems. The statement indicates that ``the greatest human threat'' to these ecosystems ``is commercial fishing, especially bottom trawling.''

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JAN MAYEN in the Arctic Ocean and Barents Sea from 2004-07-24 to 2004-07-31 (NODC Accession 0113566)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113566 includes chemical, discrete sample, physical and profile data collected from JAN MAYEN in the Arctic Ocean and Barents Sea from 2004-07-24 to...

  3. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the G.O. SARS in the Barents Sea, North Atlantic Ocean and others from 2009-05-28 to 2009-08-11 (NODC Accession 0114433)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114433 includes biological, chemical, discrete sample, physical and profile data collected from G.O. SARS in the Barents Sea, North Atlantic Ocean,...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the ODEN in the Arctic Ocean, Barents Sea and others from 2002-04-20 to 2002-06-06 (NODC Accession 0113590)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113590 includes chemical, discrete sample, physical and profile data collected from ODEN in the Arctic Ocean, Barents Sea, North Atlantic Ocean and...

  5. Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model

    KAUST Repository

    Triantafyllou, G.; Yao, F.; Petihakis, G.; Tsiaras, K. P.; Raitsos, D. E.; Hoteit, Ibrahim

    2014-01-01

    The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

  6. Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model

    KAUST Repository

    Triantafyllou, G.

    2014-03-01

    The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

  7. North Sea ecosystem change from swimming crabs to seagulls.

    Science.gov (United States)

    Luczak, C; Beaugrand, G; Lindley, J A; Dewarumez, J-M; Dubois, P J; Kirby, R R

    2012-10-23

    A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.

  8. Transport mechanisms of radioactive substances in the Arctic Ocean. Modelling and experimental studies in the Kara and Barents Seas

    International Nuclear Information System (INIS)

    Nies, H.; Karcher, M.; Bahe, C.; Backhaus, J.; Harms, I.

    1999-03-01

    In 1992, it became known to the public that the former Soviet Union had dumped large amounts of radioactive waste in the Arctic Ocean since about 1959. The waste was dumped into the Kara and Barents Seas in liquid and solid form, sealed in barrels or containers, as reactor parts but also as complete ship reactors including spent fuel. Wrecks of nuclear submarines were dumped near the coast of Novaya Semlya, in depths less than 50 m. The dumping took place in strong contradiction to international rules and conventions. After some confusion and overestimation of the total radioactive inventory, the amount of the waste and the dump site locations are well known, meanwhile. International pressure and the more open information policy of Russia helped to improve the situation. Various international fora primarily within the IAEA and the Arctic Monitoring and Assessment Programme (AMAP) investigated the potential consequences from these dumping practices. This report is the German contribution to these international assessments. The dumped objects in the Kara Sea encompass 17 nuclear ship reactors, seven of them still carrying spent fuel. Four dump sites are located in small and shallow fjords at the east coast of Novaya Semlya, and in the Novaya Semlya Trough, in max. depth of 420 m. The total radioactive inventory was, at the time of dumping, 37 PBq. During the project numerous samples from seawater and sediment were analysed on artificial radionuclides in Arctic waters. This included samples from the Kara Sea but also samples around the Russian nuclear submarine Komsomolets sunk in the Norwegian Sea at a depth of about 1700 m in 1989. Numerical hydrodynamic models in local, regional and global scale were used to predict the potential dispersion of released radionuclides from the dumped wastes and reactors in the Kara Sea. (orig.) [de

  9. Ocean acidification and warming in the Norwegian and Barents Seas: impacts on marine ecosystems and human uses

    OpenAIRE

    Koenigstein, Stefan; Gößling-Reisemann, Stefan

    2014-01-01

    This report synthesizes the results about the impacts of climate change and ocean acidification on marine ecosystems and ecosystem services in Norway, from interviews and a workshop with stakeholders in 2013.

  10. Salton Sea ecosystem monitoring and assessment plan

    Science.gov (United States)

    Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.

    2013-01-01

    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The

  11. The effects of petroleum activity in the Northern areas. Northern Sea, Jan Mayen and the Barents sea; Ringvirkninger av petroleumsaktivitet i nordomraader. Norskehavet, Jan Mayen og Barentshavet

    Energy Technology Data Exchange (ETDEWEB)

    Eika, Torbjoern; Prestmo, Joakim; Cappelen, Aadne

    2012-11-15

    The effects of petroleum activity respectively in the north-eastern Norwegian Sea,Barents Sea south-east and around Jan Mayen are not likely to be very large in a national context, but clearly noticeable. The calculations show the effects of activity in the relevant area, compared to a situation where this activity is not initiated. This can be considered as a study of how the Norwegian economy is affected by a decision to start exploration, followed by developing of the economically viable discoveries. Fiscal policy is assumed unaffected. It is thus not taken into account how the different scenarios will affect the pension fund and thus the frames for oil spending resulting from the fiscal rule. The effects we study are the direct employment in the petroleum sector that can be expected, and the effects of the demand in the form of capital goods and intermediate input. Uncertainty is discussed for each area in terms of alternative scenarios of relatively high and relatively low quantities of petroleum resources. The impact on the economy is clearly most significant in the development phase. This is because the demand related to exploration and operation phases are much more modest. The effects during the production phase are dampened by the weakened cost competitiveness as results of higher level of activity in previous phases. In scenarios with modest demand and petroleum production, employment may at some point of time even be lower than a scenario without increased petroleum activity. In the two scenarios with low and high levels of petroleum activity in the northeastern Norwegian Sea, total annual employment in Norway increases by respectively 3 000 and 10 000 persons at the most. On average for the period 2014-2045, the increase is 800 persons with a low level of activity and 2 300 persons with a high activity level. GDP excluding recovery will in the period 2014-2045, on average, increase by respectively 1.5 and 5.3 billion 2009 million annually in the two

  12. Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes

    Science.gov (United States)

    Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan

    2018-01-01

    The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.

  13. Ecosystem model of the entire Beaufort Sea marine ecosystem: a tool for assessing food-web structure and ecosystem changes from 1970 to 2014

    Science.gov (United States)

    Suprenand, P. M.; Hoover, C.

    2016-02-01

    The Beaufort Sea coastal-marine ecosystem is approximately a 476,000 km2 area in the Arctic Ocean, which extends from -112.5 to -158° longitude to 67.5 to 75° latitude. Within this Arctic Ocean area the United States (Alaskan) indigenous communities of Barrow, Kaktovik, and Nuiqsut, and the Canadian (Northwest Territories) indigenous communities of Aklavik, Inuvik, Tuktoyaktuk, Paulatuk, Ulukhaktok, and Sachs Harbour, subsist by harvesting marine mammals, fish, and invertebrates from the Beaufort Sea to provide the majority of their community foods annually. The ecosystem in which the indigenous communities harvest is considered a polar habitat that includes many specialized species, such as polar bears that rely on sea-ice for foraging activities and denning, or ice algae that are attached to the cryosphere. However, the polar habitat has been experiencing a diminishing sea-ice extent, age, and seasonal duration, with concomitant increases in sea surface temperatures (SSTs), since the 1970s. Changes in sea-ice and SST have consequences to the Beaufort Sea coastal-marine ecosystem, which includes animal habitat losses, alterations to trophodynamics, and impacts to subsistence community harvesting. The present study was aimed at capturing trophodynamic changes in the Beaufort Sea coastal-marine ecosystem from 1970 to 2014 using a fitted spatial-temporal model (Ecopath with Ecosim and Ecospace) that utilizes forcing and mediation functions to describe animal/trophodynamic relationships with sea-ice and sea surface temperature, as well as individual community harvesting efforts. Model outputs reveals similar trends in animals population changes (e.g., increasing bowhead whale stock), changes in apex predator diets (e.g., polar bears eating less ringed seal), and changes in animal distributions (e.g., polar bears remaining closer to land over time). The Beaufort Sea model is a dynamic tool for Arctic Ocean natural resource management in the years to come.

  14. Temporal Evolution of the Yellow Sea Ecosystem Services (1980–2010

    Directory of Open Access Journals (Sweden)

    Qixiang Wang

    2016-03-01

    Full Text Available Marine ecosystem services refer to benefits that people obtain from marine ecosystem. Understanding temporal evolution of these services is a fundamental challenge of natural resource management in marine ecosystems. Yellow Sea is one of the most intensely exploited shallow seas in the Northwest Pacific Ocean. In this study, we analyzed the value of the four classes services (provisioning services, regulating services, cultural services and supporting services, including 14 individual services of the Yellow Sea on temporal scales. From 1980 to 2010, the total value of the four classes of services was between 297 and 2,232 billion RMB yuan. Only the proportion of cultural services as a percentage of the total value continued to increase for the entire period, from 0.9% in 1980 to 9.4% in 2010. Provisioning services reached their highest point at 18.4% in 2000, and then fell to 10.1% in 2010. Meanwhile, the percentage of regulating services and supporting services declined, falling from 14.4% and 79.4% in 1980 to 10.1% and 70.4% in 2010, respectively. This study represents the first attempt to analyze the temporal evolution of Yellow Sea ecosystem services. It will provide the theoretical basis for further study of the ecological mechanisms of marine ecosystem services.

  15. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the JAMES CLARK ROSS in the Arctic Ocean, Barents Sea and others from 2012-11-15 to 2013-08-16 (NODC Accession 0115256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115256 includes chemical, meteorological, physical and underway - surface data collected from JAMES CLARK ROSS in the Arctic Ocean, Barents Sea,...

  17. Re-Os Geochronology Pins Age and Os Isotope Composition of Middle Triassic Black Shales and Seawater, Barents Sea and Spitsbergen (Svalbard)

    Science.gov (United States)

    Xu, G.; Hannah, J. L.; Bingen, B.; Stein, H. J.; Yang, G.; Zimmerman, A.; Weitschat, W.; Weiss, H. M.

    2008-12-01

    Absolute age control throughout the Triassic is extraordinarily sparse. Two "golden spikes" have been added recently (http://www.stratigraphy.org/cheu.pdf) within the otherwise unconstrained Triassic, but ages of stage boundaries remain controversial. Here we report two Re-Os isochrons for Anisian (Middle Triassic) black shales from outcrop in western Svalbard and drill core from the Svalis Dome about 600 km to the SE in the Barents Sea. Black shales of the Blanknuten Member, Botneheia Formation, from the type section at Botneheia, western Spitsbergen (Svalbard), have total organic carbon (TOC) contents of 2.6 to 6.0 wt%. Rock-Eval data suggest moderately mature (Tmax = 440-450° C) Type II-III kerogens (Hydrogen Index (HI) = 232-311 mg HC/g TOC). Re-Os data yield a well-constrained Model 3 age of 241 Ma and initial 187Os/188Os (Osi) of 0.83 (MSWD = 16, n = 6). Samples of the possibly correlative Steinkobbe Formation from IKU core hole 7323/07-U-04 into the Svalis Dome in the Barents Sea (at about 73°30'N, 23°15'E) have TOC contents of 1.4 to 2.4%. Rock-Eval data suggest immature (Tmax = 410-430°) Type II-III kerogens (HI = 246-294 mg HC/g TOC). Re-Os data yield a precise Model 1 age of 239 Ma and Osi of 0.776 (MSWD = 0.2, n = 5). The sampled section of Blanknuten shale underlies a distinctive Frechitas (formerly Ptychites) layer, and is therefore assumed to be middle Anisian. The Steinkobbe core was sampled at 99-100 m, just above the Olenekian-Anisian transition. It is therefore assumed to be lower Anisian. The two isochron ages overlap within uncertainty, and fall within constraints provided by biozones and the current ICS-approved stage boundary ages. The Re-Os ages support the correlation of the Botneheia and Steinkobbe formations. The nearly identical Osi ratios suggest regional homogeneity of seawater and provide new information for the Os seawater curve, marking a relatively high 187Os/188Os ratio during profound ocean anoxia in the Middle Triassic.

  18. The Secret of the Svalbard Sea Ice Barrier

    Science.gov (United States)

    Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory

    2004-01-01

    An elongated sea ice feature called the Svalbard sea ice barrier rapidly formed over an area in the Barents Sea to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts sea ice growth on the water surface.

  19. Polar Frontal Zone of the Barents Sea Western Trough Based on the Direct Measurements in 2007

    Directory of Open Access Journals (Sweden)

    A.N. Morozov

    2017-04-01

    Full Text Available The results of measurements carried out in summer, 2007 in the north-western part of the Barents Sea are discussed. The ship weather station and the vessel mounted Acoustic Doppler current profiler VMADCP150 are used to carry out measurements in the vessel motion. CTD/LADCP-sensing is performed at the drift stations. The minimum horizontal scale of a temperature front is 0.5 km, whereas the maximum horizontal gradient of water temperature is 4 °C/km. The width of the North Cape Current Northern branch is ~8 km that is three times larger than the Rossby radius of deformation. Position of the temperature front coincides with that of the jet stream core. The characteristics of small-scale vertical structure of water dynamics and density stratification in the polar frontal zone are discussed. The averaged annual variability of temperature and salinity vertical structure in the area of the Spitsbergen Bank and the Hopen Deep are represented. The intra-annual variability of water salinity in the Hopen Deep calculated based on the historical database of hydrological data, revealed the presence of variations with a period of four months. Based on satellite observations, position of the temperature front in the area of research is defined.

  20. Wind impact on the Black Sea ecosystem

    Science.gov (United States)

    Stanichny, Sergey; Ratner, Yuriy; Shokurov, Mike; Stanychna, Rimma; Soloviev, Dmytro; Burdyugov, Vyacheslav

    2010-05-01

    Combination of the recent satellite and meteorological data for the regional investigation allowed to describe new features of the processes in marine ecosystem and detect some relations with wind variability for different time scales. Next topics are highlighted in presentation: 1. Inter-annual variability of the wind stress curl over the Black Sea. Shift in the atmospheric processes after 2003 year and related variations in chlorophyll concentration and intensity of the mesoscale currents. 2. Like-tropical cyclone in September 2005 and its impact o the Black Sea upper layer. 3. Strong storm November 11, 2007 and oil pollutions of the Kerch Strait. 4. Relation of the Danube waters transport with wind fields for summer 2007 and 2008. 5. "Valley" wind in the Eastern part of the Black Sea and its impact on the Rim current formation. 6. Low wind conditions and blue -green algae bloom. NCEP, SKIRON and MHI MM5 wind data together with AVHRR, MODIS, MERIS, ETM+, QuikSCAT, ASAR (ESA) satellite data were used for investigation. Work was done with support of the SESAME FP7, "Stable Ecosystem" and Operational Oceanography NASU projects.

  1. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    Science.gov (United States)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  2. P-Cable 3D high-resolution seismic data as a powerful tool to characterize subglacial landforms and their genesis: A case study from the SW Barents Sea

    Science.gov (United States)

    Bellwald, Benjamin; Planke, Sverre; Matar, Mohammed; Daria Piasecka, Emilia

    2017-04-01

    High-resolution 3D seismic data have significantly increased our knowledge about petroleum reservoirs and submarine geohazards. However, little effort has been undertaken to evaluate the potential of such data for mapping subglacial landforms. The Barents Sea has been subjected to repeated Pleistocene glaciations, which intensively eroded the region, resulting in a generally thin (geology. The seismic data cover an area of 200 km2 in water depths of 380-470 m with a recorded in-line spacing of geology. Therefore high-resolution seismic data is beneficial in identifying and analyzing small-scale glacial structures and their expression in the underlying strata in great detail, contributing to the understanding of processes involved in paleo-ice stream dynamics.

  3. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  4. The Northern Barents Sea Assessment Program - Exploration Activities. Report from AKUP/AEAM seminar in Trondheim 22 and 23 Feb 1995; Petroleumsvirksomhet i Barentshavet nord - letevirksomhet. Arbeidsdokument fra AKUP/AEAM-seminar i Trondheim 22 and 23 Feb 1995

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, J.; Andresen, K.H.; Moe, K.A.

    1995-12-31

    An interdisciplinary working seminar was held in Trondheim, Norway, 22 and 23 Feb 1995 in order (1) to identify the relevant topics to concentrate on in an environmental impact assessment for exploration activities in the southern parts of the northern Barents Sea and (2) to examine whether the available data about the region are adequate for carrying out an environmental impact assessment to support the decision to open or not to open the area for exploration activities. As described in this report, the method used was the Adaptive Environmental Assessment and Management Method (AEAM), where priorities, selections and documentation with regard to decision-making are the main elements. The report also describes how the seminar was organized and the working methods. The available information is considered ``good enough`` for some components while for others supplementary documentation is needed. A similar seminar is recommended for the development/production phase. The AEAM method was found to be useful, but it has some shortcomings. One weak point is that the so called Valued Ecosystem Components (VECs) do not include the risk aspects of exploration drilling. 9 refs., 9 figs., 11 tabs.

  5. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  6. Methane Production by Seagrass Ecosystems in the Red Sea

    KAUST Repository

    Garcias Bonet, Neus; Duarte, Carlos M.

    2017-01-01

    Atmospheric methane (CH) is the second strongest greenhouse gas and it is emitted to the atmosphere naturally by different sources. It is crucial to define the dimension of these natural emissions in order to forecast changes in atmospheric CH mixing ratio in future scenarios. However, CH emissions by seagrass ecosystems in shallow marine coastal systems have been neglected although their global extension. Here we quantify the CH production rates of seagrass ecosystems in the Red Sea. We measured changes in CH concentration and its isotopic signature by cavity ring-down spectroscopy on chambers containing sediment and plants. We detected CH production in all the seagrass stations with an average rate of 85.09 ± 27.80 μmol CH m d. Our results show that there is no seasonal or daily pattern in the CH production rates by seagrass ecosystems in the Red Sea. Taking in account the range of global estimates for seagrass coverage and the average seagrass CH production, the global CH production and emission by seagrass ecosystems could range from 0.09 to 2.7 Tg yr. Because CH emission by seagrass ecosystems had not been included in previous global CH budgets, our estimate would increase the contribution of marine global emissions, hitherto estimated at 9.1 Tg yr, by about 30%. Thus, the potential contribution of seagrass ecosystems to marine CH emissions provides sufficient evidence of the relevance of these fluxes as to include seagrass ecosystems in future assessments of the global CH budgets.

  7. Methane Production by Seagrass Ecosystems in the Red Sea

    KAUST Repository

    Garcias Bonet, Neus

    2017-11-07

    Atmospheric methane (CH) is the second strongest greenhouse gas and it is emitted to the atmosphere naturally by different sources. It is crucial to define the dimension of these natural emissions in order to forecast changes in atmospheric CH mixing ratio in future scenarios. However, CH emissions by seagrass ecosystems in shallow marine coastal systems have been neglected although their global extension. Here we quantify the CH production rates of seagrass ecosystems in the Red Sea. We measured changes in CH concentration and its isotopic signature by cavity ring-down spectroscopy on chambers containing sediment and plants. We detected CH production in all the seagrass stations with an average rate of 85.09 ± 27.80 μmol CH m d. Our results show that there is no seasonal or daily pattern in the CH production rates by seagrass ecosystems in the Red Sea. Taking in account the range of global estimates for seagrass coverage and the average seagrass CH production, the global CH production and emission by seagrass ecosystems could range from 0.09 to 2.7 Tg yr. Because CH emission by seagrass ecosystems had not been included in previous global CH budgets, our estimate would increase the contribution of marine global emissions, hitherto estimated at 9.1 Tg yr, by about 30%. Thus, the potential contribution of seagrass ecosystems to marine CH emissions provides sufficient evidence of the relevance of these fluxes as to include seagrass ecosystems in future assessments of the global CH budgets.

  8. Radionuclides in the ecosystem of the southern Baltic Sea

    International Nuclear Information System (INIS)

    Skwarzec, B.; Struminska, D.I.; Borylo, A.

    2006-01-01

    It has been shown that 210 Po and plutonium are significantly more concentrated in the Baltic Sea ecosystem than uranium . Bioaccumulation coefficients in flora and fauna (BCFs) of 210 Po are of the 2·10 3 - 2·10 5 range and plutonium - of the 1·10 2 - 1·10 4 . 238 Pu/ 239-240 Pu isotopic ratio shows for the increasing content in the living organisms of plutonium coming from the Chernobyl NPP accident. Content of 55 Fe and 63 Ni in the Baltic ecosystem (sea water, Fucus Vesilculous) is inverse proportional to the distance from the contamination place (e.g. from the NPP). Against to 55 Fe - 63 Ni is accumulated in the fish skin and flakes through passive diffusion

  9. The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations

    Directory of Open Access Journals (Sweden)

    W. van der Wal

    2017-09-01

    Full Text Available Models for glacial isostatic adjustment (GIA routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013. Sediment displacement estimates are estimated in two different ways: (i from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux and (ii from output of a coupled ice–sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models

  10. Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss

    OpenAIRE

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J.

    2008-01-01

    BackgroundRecent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking.ResultsHere, we present a global-scale study based on 116 deep-sea sites that relates benthic biodi...

  11. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from G.O. SARS in the Barents Sea, North Atlantic Ocean and others from 2009-01-18 to 2009-07-17 (NCEI Accession 0157383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157383 includes Surface underway, chemical, meteorological and physical data collected from G.O. SARS in the Barents Sea, North Atlantic Ocean, North...

  13. Human transformations of the Wadden Sea ecosystem through time : a synthesis

    NARCIS (Netherlands)

    Lotze, H.K.; Reise, K; Worm, B.; van Beusekom, J.; Busch, M.; Ehlers, A.; Heinrich, D.; Hoffman, R.C.; Holm, P.; Jensen, C.; Knottnerus, O.S.; Langhanki, N.; Prummel, W.; Vollmer, M.; Wolff, W.J.

    Todays Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the

  14. Impacts of climate change and sea level rise to Danish near shore ecosystems

    International Nuclear Information System (INIS)

    Vestergaard, P.

    2001-01-01

    Salt marshes and sand dunes are important types of coastal, terrestrial nature, which like other terrestrial ecosystems will be sensible to the future changes in climate, which have been predicted. Due to the processes acting in their morphogenesis and in the development and composition of their ecosystems, they will not least be influenced by sea level rise. Especially a strong impact of a sea level rise of about 50 cm (midrange of the projected global sea level rise) for the next century can be expected on Danish salt marshes, considering their limited vertical range (50-100 cm). (LN)

  15. The results of marine electromagnetic sounding with a high-power remote source in the Kola Bay in the Barents Sea

    Science.gov (United States)

    Grigoriev, V. F.; Korotaev, S. M.; Kruglyakov, M. S.; Orekhova, D. A.; Popova, I. V.; Tereshchenko, E. D.; Tereshchenko, P. E.; Schors, Yu. G.

    2013-05-01

    The first Russian six-component seafloor electromagnetic (EM) receivers were tested in an experiment carried out in Kola Bay in the Barents Sea. The signals transmitted by a remote high-power ELF source at several frequencies in the decahertz range were recorded by six receivers deployed on the seafloor along the profile crossing the Kola Bay. Although not all the stations successfully recorded all the six components due to technical failures, the quality of the data overall is quite suitable for interpretation. The interpretation was carried out by the three-dimensional (3D) modeling of an electromagnetic field with neural network inversion. The a priori geoelectrical model of Kola Bay, which was reconstructed by generalizing the previous geological and geophysical data, including the data of the ground magnetotelluric sounding and magnetovariational profiling, provided the EM fields that are far from those measured in the experiment. However, by a step-by-step modification of the initial model, we achieved quite a satisfactory fit. The resulting model provides the basis for introducing the corrections into the previous notions concerning the regional geological and geophysical structure of the region and particularly the features associated with fault tectonics.

  16. Global change in marine ecosystems: implications for semi-enclosed Arabian seas

    KAUST Repository

    Duarte, Carlos M.

    2015-12-07

    Global Change has been defined as the impact of human activities on the key processes that determine the functioning of the Biosphere. Global Change is a major threat for marine ecosystems and includes climate change as well as other global impacts such as inputs of pollutants, overfishing and coastal sprawl. The Semi-enclosed Arabian Seas, including the Arabian Gulf and the Red Sea, have supported human livelihoods in the Arabian Peninsula over centuries and continue to do so, but are also threatened by Global Change. These threats are particularly severe as Semi-enclosed Arabian Seas already present rather extreme conditions, in terms of temperature, salinity and oxygen concentration. The vulnerability of the unique marine ecosystems of the Semi-enclosed Arabian Seas to Global Change vectors is largely unknown, but predictions based on first principles suggest that they may be at or near the tipping point for many pressures, such as warming and hypoxia. There is an urgent need to implement international collaborative research programs to accelerate our understanding of the vulnerability of Semi-enclosed Arabian Seas to Global Change vectors in order to inform conservation and management plans to ensure these Seas continue to support the livelihoods and well-being of the Arab nations.

  17. Secondary production at the Polar Front, Barents Sea, August 2007

    Science.gov (United States)

    Basedow, Sünnje L.; Zhou, Meng; Tande, Kurt S.

    2014-02-01

    To investigate spatial patterns of secondary production we sampled four core hydrographical regions of the Polar Front in the Barents Sea (Arctic Water, ArW; Polar Front Water, PFW; Atlantic Water, AtW; and Melt Water, MW) by towing an undulating instrument platform along a transect crossing the front from August 8-9, 2007. Sensors mounted on the platform provided data on the hydrography (CTD), fluorescence (Fluorometer, F) and zooplankton abundance in the size range between 0.1 and 30 mm (Laser Optical Plankton Counter, LOPC). These continuous, biophysical data with high-spatial resolution were supplemented by discrete water and zooplankton net samples at stations for sensor calibrations. After in depth quality assessments of the biophysical data, estimates were made of the vital rates based on biovolume spectrum theory. Five size groups were distinguished from the LOPC data: small (S), mainly Oithona spp. and the appendicularian Fritillaria sp.; medium (M), mainly Pseudocalanus spp. and Calanus spp. CI-CIII; large (L), mainly Calanus spp. CIV-CV; and extra large (XL and 2XL), juvenile and adult euphausids. Size groups were further divided based on transparency of organisms. Vital rates based on the biophysical in situ data in combination with biovolume spectrum theories agreed generally well with data from empirical and numerical models in the literature. ArW was characterised by subsurface maxima of chlorophyll a (chl a), and an estimated population growth of ca. 13 mg C m- 3 d- 1 for CI-CIII Calanus spp. and some older Pseudocalanus within the chl a maxima. Frontal waters were characterised by low chl a concentrations, but high abundances and production (around 1 g C m- 3 d- 1) of small copepods (Oithona spp.) and appendicularians (Fritillaria sp.). The estimated production of small-size zooplankton was an order of magnitude higher than the production of all other size groups combined, including large copepods. The high loss rates (- 166 to - 271 mg C m- 3 d- 1

  18. A user-centred design process of new cold-protective clothing for offshore petroleum workers operating in the Barents Sea.

    Science.gov (United States)

    Naesgaard, Ole Petter; Storholmen, Tore Christian Bjørsvik; Wiggen, Øystein Nordrum; Reitan, Jarl

    2017-12-07

    Petroleum operations in the Barents Sea require personal protective clothing (PPC) to ensure the safety and performance of the workers. This paper describes the accomplishment of a user-centred design process of new PPC for offshore workers operating in this area. The user-centred design process was accomplished by mixed-methods. Insights into user needs and context of use were established by group interviews and on-the-job observations during a field-trip. The design was developed based on these insights, and refined by user feedback and participatory design. The new PPC was evaluated via field-tests and cold climate chamber tests. The insight into user needs and context of use provided useful input to the design process and contributed to tailored solutions. Providing users with clothing prototypes facilitated participatory design and iterations of design refinement. The group interviews following the final field test showed consensus of enhanced user satisfaction compared to PPC in current use. The final cold chamber test indicated that the new PPC provides sufficient thermal protection during the 60 min of simulated work in a wind-chill temperature of -25°C. Accomplishing a user-centred design process contributed to new PPC with enhanced user satisfaction and included relevant functional solutions.

  19. Ecosystem Services: a Framework for Environmental Management of the Deep Sea

    Science.gov (United States)

    Le, J. T.; Levin, L. A.; Carson, R. T.

    2016-02-01

    As demand for deep-sea resources rapidly expands in the food, energy, mineral, and pharmaceutical sectors, it has become increasingly clear that a regulatory structure for extracting these resources is not yet in place. There are jurisdictional gaps and a lack of regulatory consistency regarding what aspects of the deep sea need protection and what requirements might help guarantee that protection. Given the mining sector's intent to exploit seafloor massive sulphides, Mn nodules, cobalt crusts, and phosphorites in the coming years, there is an urgent need for deep-ocean environmental management. Here, we propose an ecosystem services-based framework to inform decisions and best practices regarding resource exploitation, and to guide baseline studies, preventative actions, monitoring, and remediation. With policy in early stages of development, an ecosystem services approach has the potential to serve as an overarching framework that takes protection of natural capital provided by the environment into account during the decision-making process. We show how an ecosystem services approach combined with economic tools, such as benefit transfer techniques, should help illuminate issues where there are direct conflicts among different industries, and between industry and conservation. We argue for baseline and monitoring measurements and metrics that inform about deep-sea ecosystem services that would be impaired by mining, and discuss ways to incorporate the value of those losses into decision making, mitigation measures, and ultimately product costs. This proposal is considered relative to current International Seabed Authority recommendations and contractor practices, and new actions are proposed. An ecosystem services-based understanding of how these systems work and their value to society can improve sustainability and stewardship of the deep ocean.

  20. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management

    Science.gov (United States)

    Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew

    2016-09-01

    Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.

  1. Projected future climate change and Baltic Sea ecosystem management.

    Science.gov (United States)

    Andersson, Agneta; Meier, H E Markus; Ripszam, Matyas; Rowe, Owen; Wikner, Johan; Haglund, Peter; Eilola, Kari; Legrand, Catherine; Figueroa, Daniela; Paczkowska, Joanna; Lindehoff, Elin; Tysklind, Mats; Elmgren, Ragnar

    2015-06-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.

  2. What is going on up there? - The Chukchi Sea Ecosystem Mooring

    Science.gov (United States)

    Janzen, C.; McCammon, M.; Danielson, S. L.; Winsor, P.; Hopcroft, R. R.; Lalande, C.; Stafford, K.; Hauri, C.; McDonnell, A. M. P.

    2016-02-01

    As Arctic regions are projected to strongly reflect the impacts of a changing climate, an effort is underway to make sustained, year-round measurements of concurrent physical and biogeochemical parameters in the Arctic. Deploying highly instrumented year-round moorings in the water is no simple feat, given harsh Arctic conditions that include the presence of sea ice and deep ice keels during much of the year. Enter the late-breaking ecosystem mooring located in the northeast Chukchi Sea. This mooring complements established biophysical moorings elsewhere in the northern Bering and Chukchi seas, including those maintained by NOAA-PMEL (M8), UW-APL (Bering Strait) and JAMSTEC moorings. (southern Chukchi and Barrow Canyon). The mooring described here is located on the southern flank of Hanna Shoal and provides a multi-disciplinary approach to year-round observations within a biological hotspot. The Chukchi Ecosystem Mooring is equipped with a sensor suite aimed to monitor and document the state of ocean acidification, nutrient and carbon cycles, particles, waves, currents and physical properties, and even passive and active acoustic monitoring for zooplankton, fish, and marine mammals. Having the simultaneous interdisciplinary measurements provides data valuable to an ecosystem-based approach to research and resource management. The fully outfitted observatory is providing an unprecedented view into the mechanistic workings of the Chukchi Shelf Ecosystem. The first mooring was deployed in September 2014 and recovered in August 2015. The August 2015 deployment consisted of three moorings, each with incremental sensor packages to complete the ecosystem sensor suite. The mooring construction and instrumentation are described in detail, including introduction to the advances in sensor technologies that enable such deployments. Year one data recovery summaries and plots are provided to demonstrate the capabilities.

  3. Recruitment of shrimp ( Pandalus borealis) in the Barents Sea related to spawning stock and environment

    Science.gov (United States)

    Aschan, Michaela; Ingvaldsen, Randi

    2009-10-01

    The shrimp spawn in autumn, and the females carry their eggs as out roe until spring when the larvae hatch. Within a period of 2 months the shrimp larvae settle to the bottom. It has been claimed that the year-class strength probably is determined during the larval phase. Today's assessment and forecast of the shrimp stock productivity and potential fishing yields are weak. This is partly due to poor knowledge on population dynamics from hatching until the shrimp are caught in the fishery at the age of 3 or 4 years. We, therefore, here identify the most important abiotic and biotic factors that affect recruitment in addition to spawning stock biomass. Since 1995, a net attached to the underbelly of the survey trawl used at the annual cruise in the Barents Sea has caught juvenile shrimp. The abundance of settled shrimp larvae varies in time and space. The recruitment to the fishery has been quite stable with the exception of the 1996 year-class, which was observed as 1-year-olds but has not been registered since. The temporal pattern of the three youngest year-classes is studied in relation to abiotic factors such as sea temperature, ice index and North Atlantic Oscillation, as well as biotic factors such as spawning stock biomass and presence of copepods, euphausiids and predating cod. Recruitment indices and factors identified by the Spearmann correlation to be significantly correlated with recruitment were used as input in a principal component analysis (PCA) and a generalized additive model (GAM) was applied. Abundance of 1-year-old shrimp is positively correlated to spawning stock biomass the previous year and to temperature of the previous winter, and negatively correlated with the number of 1-year-old cod. Two-year-old shrimp show significant correlation with temperature, whereas there is a strong negative correlation with euphausiids. Three-year-old shrimp are significantly correlated with the number of 2-year-old shrimp the previous year but negatively

  4. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    Science.gov (United States)

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  5. Modelling Potential Consequences of Different Geo-Engineering Treatments for the Baltic Sea Ecosystem

    Science.gov (United States)

    Schrum, C.; Daewel, U.

    2017-12-01

    From 1950 onwards, the Baltic Sea ecosystem suffered increasingly from eutrophication. The most obvious reason for the eutrophication is the huge amount of nutrients (nitrogen and phosphorus) reaching the Baltic Sea from human activities. However, although nutrient loads have been decreasing since 1980, the hypoxic areas have not decreased accordingly. Thus, geo-engineering projects were discussed and evaluated to artificially ventilate the Baltic Sea deep water and suppress nutrient release from the sediments. Here, we aim at understanding the consequences of proposed geo-engineering projects in the Baltic Sea using long-term scenario modelling. For that purpose, we utilize a 3d coupled ecosystem model ECOSMO E2E, a novel NPZD-Fish model approach that resolves hydrodynamics, biogeochemical cycling and lower and higher trophic level dynamics. We performed scenario modelling that consider proposed geo-engineering projects such as artificial ventilation of Baltic Sea deep waters and phosphorus binding in sediments with polyaluminium chlorides. The model indicates that deep-water ventilation indeed suppresses phosphorus release in the first 1-4 years of treatment. Thereafter macrobenthos repopulates the formerly anoxic bottom regions and nutrients are increasingly recycled in the food web. Consequently, overall system productivity and fish biomass increases and toxic algae blooms decrease. However, deep-water ventilation has no long-lasting effect on the ecosystem: soon after completion of the ventilation process, the system turns back into its original state. Artificial phosphorus binding in sediments in contrast decreases overall ecosystem productivity through permanent removal of phosphorus. As expected it decreases bacterial production and toxic algae blooms, but it also decreases fish production substantially. Contrastingly to deep water ventilation, artificial phosphorus binding show a long-lasting effect over decades after termination of the treatment.

  6. Major impacts of climate change on deep-sea benthic ecosystems

    Directory of Open Access Journals (Sweden)

    Andrew K. Sweetman

    2017-02-01

    Full Text Available The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units. O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction to further impact deep-seafloor ecosystems and discuss the possible societal implications.

  7. Temperature, salinity, oxygen and nutrients bottle and CTD data collected in the northern North Atlantic, Nordic and Arctic Seas from 1901 to 2011 (NODC Accession 0105532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen and nutrients bottle and CTD data collected in the Arctic Ocean, Barents Sea, Greenland Sea, Kara Sea, North Atlantic Ocean,...

  8. Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea

    KAUST Repository

    Triantafyllou, George N.; Hoteit, Ibrahim; Luo, Xiaodong; Tsiaras, Kostas P.; Petihakis, George

    2013-01-01

    An application of an ensemble-based robust filter for data assimilation into an ecosystem model of the Cretan Sea is presented and discussed. The ecosystem model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The filtering scheme is based on the Singular Evolutive Interpolated Kalman (SEIK) filter which is implemented with a time-local H∞ filtering strategy to enhance robustness and performances during periods of strong ecosystem variability. Assimilation experiments in the Cretan Sea indicate that robustness can be achieved in the SEIK filter by introducing an adaptive inflation scheme of the modes of the filter error covariance matrix. Twin-experiments are performed to evaluate the performance of the assimilation system and to study the benefits of using robust filtering in an ensemble filtering framework. Pseudo-observations of surface chlorophyll, extracted from a model reference run, were assimilated every two days. Simulation results suggest that the adaptive inflation scheme significantly improves the behavior of the SEIK filter during periods of strong ecosystem variability. © 2012 Elsevier B.V.

  9. Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea

    KAUST Repository

    Triantafyllou, George N.

    2013-09-01

    An application of an ensemble-based robust filter for data assimilation into an ecosystem model of the Cretan Sea is presented and discussed. The ecosystem model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The filtering scheme is based on the Singular Evolutive Interpolated Kalman (SEIK) filter which is implemented with a time-local H∞ filtering strategy to enhance robustness and performances during periods of strong ecosystem variability. Assimilation experiments in the Cretan Sea indicate that robustness can be achieved in the SEIK filter by introducing an adaptive inflation scheme of the modes of the filter error covariance matrix. Twin-experiments are performed to evaluate the performance of the assimilation system and to study the benefits of using robust filtering in an ensemble filtering framework. Pseudo-observations of surface chlorophyll, extracted from a model reference run, were assimilated every two days. Simulation results suggest that the adaptive inflation scheme significantly improves the behavior of the SEIK filter during periods of strong ecosystem variability. © 2012 Elsevier B.V.

  10. Radioactivity in the northern seas of europe

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.; Madruga, Maria Jose; Oliveira, Joao M.; Gouveia, Jorge M.; Silva, Lidia

    2004-01-01

    The recent accidents with nuclear powered Russian submarines, such as the Kursk and the K-159, that took place in the Arctic Seas, give rise to high concerns of the public and the media about the radioactive contamination of marine ecosystems and radiological safety of the European population. Those accidents were preceded by decades of discharges of radioactive liquid effluents into coastal seas of Europe and the dumping of packed radioactive waste into the North Atlantic. Being Portugal one country with high consumption rate of seafood caught in its own coastal waters as well as in far seas including the Ar tic seas, the investigation of the radioactive contamination of fish was investigated. Analysis of fish from the Sea of Labrador, Sea of Iceland and Barents Sea, has shown that gamma-emitting radionuclides of artificial origin are in general not detected. The only gamma emitting radionuclide present is Cs-137, in concentrations not higher than 0.3 Bq/kg. This radionuclide originates in the deposition of radioactive fallout following nuclear weapon tests performed in the fifties and sixties. Radionuclides in fish from northern regions and in fish from the Portuguese coast generally are present in concentrations lower than those currently reported for fish from the Irish Sea and the Baltic Sea, impacted with the discharges of radioactive waste from Sellafield and the deposition of fallout from Chernobyl, respectively. Nevertheless, the potential for future accidents and the radioactive waste dumped into the North Atlantic may in the future modify this scenario and potentially increase the currently very low radionuclide concentration in fish included in the Portuguese diet. Therefore, the research and radiological surveillance must be maintained in order to monitor the radiological risk and to ensure the quality of food available to consumers. (author)

  11. Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2017-01-01

    Full Text Available The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the results exhibit considerable spread. Here, we compare results from the two last generations of climate models, CMIP3 and CMIP5, with respect to total and regional Arctic sea ice change. Different characteristics of sea ice area (SIA in March and September have been analysed for the Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA to changes in Northern Hemisphere (NH temperature is investigated and dynamical links between SIA and some atmospheric variability modes are assessed.CMIP3 (SRES A1B and CMIP5 (RCP8.5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle. The spatial patterns of SIC variability improve in CMIP5 ensemble, most noticeably in summer when compared to HadISST1 data. A better simulation of summer SIA in the Entire Arctic by CMIP5 models is accompanied by a slightly increased bias for winter season in comparison to CMIP3 ensemble. SIA in the Barents Sea is strongly overestimated by the majority of CMIP3 and CMIP5 models, and projected SIA changes are characterized by a high uncertainty. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes indicating that a part of inter-ensemble SIA spread comes from different temperature sensitivity to anthropogenic forcing. The results suggest that, in general, a sensitivity of SIA to external forcing is enhanced in CMIP5 models. Arctic SIA interannual variability in the end of the 20th century is on average well simulated by both ensembles. To the end of the 21st century, September

  12. IAEA-MEL's contribution to the investigation of the Kara Sea dumping sites

    International Nuclear Information System (INIS)

    Osvath, I.; Ballestra, S.; Baxter, M.S.; Gastaud, J.; Hamilton, T.; Harms, I.; Liong Wee Kwong, L.; Parsi, P.; Povinec, P.P.

    1995-01-01

    Since 1992 the International Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL) has participated in the international programmes devoted to assessment of the environmental and radiological consequences of actual and potential releases of radionuclides to the Arctic Seas. Upon invitation from the Russian and Norwegian authorities IAEA-MEL has collaborated in the Scientific work of the international expert groups on board five investigatory cruises to the Kara and Barents Seas and to the site of the sunken Komsomolets submarine. In-situ underwater γ-spectrometric measurements and laboratory-based analytical work on samples collected during these expeditions have been carried out. IAEA-MEL activities also include organisation of intercomparison exercises for radionuclides in sediment, seawater and biota from the Barents and Kara Seas, provision of a global marine radioactivity database facility including a comprehensive Arctic section, radiometric methodological developments, modelling of radionuclide dispersal on local, regional and global scales and dose assessment. 8 refs., 3 figs

  13. FAUNA OF COLEPTERA,TENEBRIORIDAE OF ARID COASTAL AND ISLAND ECOSYSTEMS OF THE CASPIAN SEA.

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Aim. The aim of the given paper is to expose species structure and geographical distribution of Coleoptera, Tenebrioridae (C, T of coastal and island ecosystem of the Caspian Sea. The given report is compiled of the matcrials, collected in different periods by authors (1961-2013 in the Caucasian part of the Caspian Sea, in the south of the European part of the Russian Federation, Kazakhstan, islands (the Chechen island, the Nord island. The Tuleniyisland. The Kulaly island, collective materials (ZIN; RAS, museum of Zoology of MSU, Institute NAN of Azerbaijan, National museum of Georgia and materials published (Kryzhanovsky, 1965, Medvedev, 1987, 1990; Medvedev, Nepesova, 1990; Shuster, 1934; Kaluzhnaya, 1982; Arzanov and others, 2004, Egorov, 2006.Methods. We used the traditional methods of collecting (hand picking, traps soil, soil traps light amplification light traps, processing and material definition. List of species composition discussed fauna composed by modern taxonomy using directories. Location. Coastal and island ecosystems of the Caspian sea.Results. Species structure and data on general and regional distribution of C,T of coastal and island ecosystems of the Caspian Sea is represented in the paper. Faund discussed is widely represented in the fauna of arid regions of land, especially in the fauna of subtropical deserts and semideserts.Main conclusions. Results of the study will be a step in the determination of age of the islands through the biological diversity and the consequent level regime of the Caspian Sea, as well as possible changes in the population structure of darkling beetles (Coleoptera: Tenebrionidae on island ecosystems.

  14. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto......Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...

  15. Baltic Sea Maritime Spatial Planning for Sustainable Ecosystem Services

    DEFF Research Database (Denmark)

    Hansen, Henning Sten; Schrøder, Anne Lise

    2017-01-01

    in the marine and maritime sectors with great potential for innovation and economic growth. Holistic spatial planning systems supporting sustainable development have proved themselves in terrestrial planning and are also needed at sea. Due to this reason, the BONUS BASMATI project is based on the ecosystem...... services approach to assist in assessing sustainable solutions corresponding to policy goals.......The current and potential use of the seas and oceans is often called the ‘Blue Economy’. Recently, the European Commission launched its Blue Growth Strategy on the opportunities for marine and maritime sustainable growth. The European Commission considers that Blue Growth is a long-term strategy...

  16. Sea-ice indicators of polar bear habitat

    Science.gov (United States)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  17. Environmental policy and regulation for oil exploration and shipping activities in the Barents Sea

    International Nuclear Information System (INIS)

    Futsaeter, G.

    1994-01-01

    The Barents Ses has one of the highest levels of biological production of all the world's oceans, and holds some of the largest fish stocks and concentrations of seabirds. Environmental conditions in the area make it particularly vulnerable to damage from human activities. The Norwegian Pollution Control Authority gives priority to preventive measures that can lower the probability of accidents and particular emphasis will be given to conditions attached to production licenses and controls on activities in areas that have not yet been opened for petroleum activities. Within the Arctic Environmental Protection Strategy (the Rovaniemi-process), Norway has proposed that efforts should be made to improve the protection of Arctic marine areas, and further that a working group including representatives of all the Arctic countries should assess various legal instruments and possible measures, and make recommendations for action. (author)

  18. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial.

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit

    2017-08-29

    Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

  19. A Case for the Commons

    DEFF Research Database (Denmark)

    Kaiser, Brooks; Kourantidou, Melina; Fernandez, Linda

    The open access harvesting of the invasive but commercially valuable species, C. Opilio (Snow Crab) in the Barents Sea generates a positive externality by slowing the spread of the species into sensitive benthic ecosystems. Reclassification of the species to a ‘sedentary species’[1] shifts the re...

  20. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning

    1986-01-01

    Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were co...

  1. MAPPING OF THE RUSSIAN NORTHERN SEAS BOTTOM RELIEF USING DIGITAL ELEVATION MODELS

    Directory of Open Access Journals (Sweden)

    S. M. Koshel

    2014-01-01

    Full Text Available The task of the project is the design of the digital elevation models (DEM of the bottoms of Barents Sea, Pechora Sea, and the White Sea. Accuracy (resolution of DEMs allows for adequate delineation of morphological structures and peculiarities of the sea bottoms and the design of bathymetrical and derivative maps. DEMs of the sea bottom were compiled using data from navigation charts of different scales, where additional isobaths were drawn manually taking into account the classification features of the bottom topography forms. Next procedures were carried out: scanning of these charts, processing of scanned images, isobaths vectorization and creation of attribute tables, vector layers transformation to geographical coordinates as well editing, merging and joining of the map sheets, correction of geometry and attributes. For generation of digital model of bottom topography it is important to choose algorithm which allows for representation all of the sea bottom features expressed by isobaths in most details. The original algorithm based on fast calculation of distances to the two different nearest isobaths was used. Interpretation of isolines as vector linear objects is the main peculiarity of this algorithm. The resulted DEMs were used to design bathymetrical maps of Barents Sea of 1:2 500 000 scale, Pechora Sea of 1:1 000 000 scale, and White Sea of 1:750 000 scale. Different derivative maps were compiled based on DEM of the White Sea.

  2. Structural and functional changes of soft-bottom ecosystems in northern fjords invaded by the red king crab (Paralithodes camtschaticus)

    Science.gov (United States)

    Oug, Eivind; Sundet, Jan H.; Cochrane, Sabine K. J.

    2018-04-01

    The red king crab invaded Norwegian coastal waters in the early 1990s after having been introduced from the northern Pacific to the Russian Barents Sea coast. The crab stock increased rapidly in NE northern Norway in the latter half of the 1990s, and since 2002 there has been a commercial fishery in the eastern invaded areas. The crab is an active predator on benthic fauna especially feeding in deep soft-bottom environments. The present study is a follow-up of previous studies (2007-09) to assess the effects of the king crab predation on soft bottom species composition, ecological functioning and sediment quality. Macroinfauna (> 1 mm) was investigated in three fjord areas in the Varanger region with low, moderate and very high crab abundances, respectively. Compared with data from 1994, most benthic species were markedly reduced in abundance, in particular non-moving burrowing and tube-dwelling polychaetes, bivalves and echinoderms. However, a few species appeared to recover from 2007-09 to 2012. Changes in ecological functioning were assessed using 'biological traits analysis (BTA)'. Following the crab invasion there was a relative reduction of suspension and surface deposit feeding species, an increase in mobile and predatory organisms and an increase in those with planktotrophic larval development. From low to high crab abundances functioning changed from tube-building, deep deposit feeding and fairly large size to free-living, shallow burrowing and rather small size. With regard to sediment reworking, downward and upward conveyors were reduced whereas surficial modifiers increased. The changes imply that sediment biomixing and bioirrigation were reduced leading to a degraded sedimentary environment. It is suggested that establishing relationships between ecosystem functioning and crab abundances may form the basis for estimating ecological costs of the crab invasion. Such knowledge is important for managing the crab in the Barents Sea area being both a non

  3. Temperature data from Norwegian and Russian waters of the northern Barents Sea collected by free-living ringed seals

    Science.gov (United States)

    Lydersen, Christian; Anders Nøst, Ole; Kovacs, Kit M.; Fedak, Mike A.

    2004-05-01

    Free-living ringed seals ( N=11) equipped with satellite-relayed data loggers (SRDLs) with incorporated oceanographic-quality temperature sensors were used to collect data from a large sector of the northern Barents Sea during the autumn and early winter. A total of 2346 temperature profiles were collected over a 4-month period from Norwegian and Russian arctic waters in areas that were at times 90-100% ice-covered. Temperature distributions at different depths from northeastern parts of Svalbard, Norway show warm North Atlantic water (NAW) flowing along the continental slope and gradually cooling at all depths as it flows eastwards. The data suggest that most of the cooling takes place west of 30°E. Vertical temperature profiles from the area between Svalbard and Franz Josef Land, Russia show how the surface water cools during freeze-up and demonstrate a warm water flow, which is probably NAW, coming in from the north through a deep trench west of Franz Josef Land. Global oceanographic and climate models require improved oceanographic databases from crucial areas where important hydrological phenomena occur. Such areas in arctic waters are often inaccessible during winter and logistically difficult to reach even in summer. The present study demonstrates how large amounts of oceanographic information can be collected and retrieved in a cost-efficient manner using ice-associated marine mammals as carrier of oceanographic sampling equipment. In addition to the oceanographic value of the data collected by marine mammals in this manner, a vast amount of information regarding the habitat of these animals is concomitantly sampled.

  4. Activation of the marine ecosystem model 3D CEMBS for the Baltic Sea in operational mode

    Science.gov (United States)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a new marine ecosystem model 3D CEMBS designed for the Baltic Sea. The ecosystem model is incorporated into the 3D POPCICE ocean-ice model. The Current Baltic Sea model is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research) which was adapted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The ecosystem model is a biological submodel of the 3D CEMBS. It consists of eleven mass conservation equations. There are eleven partial second-order differential equations of the diffusion type with the advective term for phytoplankton, zooplankton, nutrients, dissolved oxygen, and dissolved and particulate organic matter. This model is an effective tool for solving the problem of ecosystem bioproductivity. The model is forced by 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdańsk.

  5. Abundance of sea cucumbers on the ecosystem of seagrasses Inunggeh island, Tapanuli Tengah Regency North Sumatera Province

    Science.gov (United States)

    Wisesa, M. M.; Bakti, D.; Fadhilah, A.

    2018-02-01

    Unggeh Island is one area that has the potential of Sea Cucumber in the North Sumatra. Sea cucumbers have an important role in ecosystem waters, namely as a deposit feeder. Sea cucumbers can live in shallow waters, such as seagrass ecosystems. The purpose of this study is to knowing the abundance of sea cucumbers in the seagrass ecosystems on the island of Unggeh and to knowing the type of Sea Cucumber. The method used is a transect quadrant method with a size of 5x5 meters, on a transect line with a length of 100 meters. Sampling was done at three points observations, station 1 was at coordinate point 01°34’26,88 "LU and 098°45’40,25" BT, station 2 was at coordinate point 01°34’32,71 "LU and 098°45’37, 58 "BT, station 3 is at the coordinate point 01°34’24,22" LU and 098°45’38,06 "BT. The type of sea cucumber found in the seagrass ecosystem on the Unggeh island Actinopyga ecinites, A. Miliaris, Holothuria scabra. The density at station 1 was 0.16 ind / m2, at station II a density was0.12 ind / m2, at station III a density was 0.08 ind / m2, and the total density at the research location was 0, 32 ind / m2.

  6. The wind sea and swell waves climate in the Nordic seas

    Science.gov (United States)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  7. Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea

    Directory of Open Access Journals (Sweden)

    J.-B. P. Koehl

    2018-03-01

    Full Text Available The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i the Måsøy Fault Complex, (ii the Rolvsøya fault, and (iii the Troms–Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the

  8. Environmental risk of oil production in sensitive areas[Pollution abatement in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Salve; Larsen, Lars-Henrik

    2006-07-01

    The presentation discusses sensitive areas in the Arctic regions with focus on the north of Norway and the Barents Sea. Various ecosystem problems related to oil and gas production are pointed out. Characteristics of particularly sensitive areas are mentioned and some examples of vulnerable areas are discussed (tk)

  9. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas

    Science.gov (United States)

    Holt, Jason; Schrum, Corinna; Cannaby, Heather; Daewel, Ute; Allen, Icarus; Artioli, Yuri; Bopp, Laurent; Butenschon, Momme; Fach, Bettina A.; Harle, James; Pushpadas, Dhanya; Salihoglu, Baris; Wakelin, Sarah

    2016-01-01

    Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas' ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton's exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change

  10. Denitrification in the Arabian Sea: A 3D ecosystem modelling study

    Science.gov (United States)

    Anderson, Thomas R.; Ryabchenko, Vladimir A.; Fasham, Michael J. R.; Gorchakov, Victor A.

    2007-12-01

    A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr -1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m -2 d -1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m -2 d -1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.

  11. The changing Mediterranean Sea — a sensitive ecosystem?

    Science.gov (United States)

    Turley, Carol M.

    1999-08-01

    seasonal climate and low land runoff contribute to the low productivity of the sea. Nutrients are a major controlling factor in oceanic productivity and often influence the type and succession of phytoplankton. Changes in river flow and agricultural practice can influence the concentration and ratio of different nutrients flowing into the sea. For example, changing agricultural practices have resulted in higher nitrogen and phosphorus flowing into the Adriatic and lagoons of the Nile which has lead to eutrophication. The predicted population increases, especially along the southern shores, seems likely to result in eutrophication and an increased risk of pollution in other areas unless well managed. A further warning tale from the Black Sea has recently come to light where damming of rivers has resulted in depletion of silica in the seawater. (Humborg, C., Ittekkot, V., Cociasu, A., & Bodungen, B. (1997). Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, London, 386, 385-388.) This means that silica-requiring phytoplankton do not have their essential growth nutrient and may explain the unbalanced growth of other toxic forms which do not require silica. Similarly, the Aswan dam holds back massive amounts of silica carried by the Nile from entering the eastern Mediterranean. The future of the Mediterranean ecosystem does not look rosy. If we are to learn from scientific observations, such as those in the Mediterranean Sea, Black Sea and Adriatic, scientists, economists and policy makers, from the 18 countries bordering the Mediterranean, must interface to ensure an adequate and appropriate response.

  12. Metals, Metalloids and Radionuclides in the Baltic Sea Ecosystem

    International Nuclear Information System (INIS)

    Szefer, P.

    2002-01-01

    The state of knowledge of the distribution, bioavailability, biomagnification, discrimination, fate and sources of chemical pollutants (metals, metalloids, radionuclides and nutrients) in all compartments (atmosphere, water, deposits, biota) of the Baltic environment is presented. Particular components of the Baltic ecosystem are considered as potential monitors of pollutants. Budgets of chemical elements and the ecological status of the Baltic Sea in the past, present and future are presented. Estimates of health risks to man in respect to some toxic metals and radionuclides in fish and seafood are briefly discussed. The content of the book makes possible the identification of gaps in our environmental knowledge of the Baltic Sea, with certain sections establishing possible priorities, key areas or strategies for future research

  13. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  14. Inter-annual dynamics of the Barents Sea red king crab (Paralithodes camtschaticus) stock indices in relation to environmental factors

    Science.gov (United States)

    Dvoretsky, Alexander G.; Dvoretsky, Vladimir G.

    2016-12-01

    Knowledge of relationships between environmental variables and biological processes can greatly improve fisheries assessment and management in commercially important species. We analyzed the effects of environmental factors (climatic indices and water temperature) on the stock characteristics (total population number, number of pre-recruits and number of legal males) of the red king crab (Paralithodes camtschaticus), an introduced species in the Barents Sea. Stock trends in red king crab appear to be related to decadal climate shifts. Abundances were negatively related to the North Atlantic Oscillation index (NAO) in August and positively related to water temperature in late winter-early summer. Total and commercial stock abundance were negatively correlated with the lag-1 Arctic Oscillation index (AO) in August and the lag-2 winter NAO index. The total number of P. camtschaticus was most strongly associated with water temperature in spring and summer and NAO/AO indices in April and May. Lagged NAO indices in February and August (9 or 10 yr) had a positive relationship to the commercial stock of P. camtschaticus. These findings suggest that temperature conditions of current and previous year affect natural mortality of larvae and juvenile red king crabs. Warmer temperature conditions lead to increased biomass of red king crab food items. Negative correlations between climatic indices and the red king crab stocks may be associated with predator pressure on juvenile red king crabs or higher mortality because of predator or parasite pressure and diseases. The associations between stock indices and environmental variables could help better predict recruitment patterns of P. camtschaticus.

  15. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea.

    Science.gov (United States)

    Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M

    2017-08-14

    Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.

  16. Sea-ice indicators of polar bear habitat

    Directory of Open Access Journals (Sweden)

    H. L. Stern

    2016-09-01

    Full Text Available Nineteen subpopulations of polar bears (Ursus maritimus are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat on its way to the summer minimum or rises above the threshold (advance on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014 mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in

  17. Ecosystem-based management in the Wadden Sea: Principles for the governance of knowledge

    Science.gov (United States)

    Giebels, Diana; van Buuren, Arwin; Edelenbos, Jurian

    2013-09-01

    The governance of the Wadden Sea has to contend with a complex interplay of social and ecological systems. Social systems tend to be characterized by pluralism of - often conflicting - norms and values, and ecological systems are characterized by high complexity and natural and human-induced variability, leading to unpredictable and nonlinear behavior. This highly volatile situation challenges traditional forms of management as well as traditional ways of organizing knowledge for decision-making processes. Ecosystem-based management approaches have been developed to find more effective, holistic, and evidence-based strategies to deal with the challenges of complex socio-ecological systems. They also require another way of dealing with (scientific) knowledge, the way it is produced and applied. In this paper, from the perspective of ecosystem-based management, we define the specific principles that apply to the way knowledge is mobilized and applied within decision-making processes. We illuminate these principles by examining three empirical cases of ecosystem-based management within, or related to, the Wadden Sea area. Finally, we reflect upon our findings and elaborate on the extent to which our theoretical framework is capable of describing and assessing the interaction between knowledge and decision making within ecosystem-based management approaches.

  18. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea.

    Science.gov (United States)

    Johannesson, Kerstin; André, Carl

    2006-07-01

    Marginal populations are often isolated and under extreme selection pressures resulting in anomalous genetics. Consequently, ecosystems that are geographically and ecologically marginal might have a large share of genetically atypical populations, in need of particular concern in management of these ecosystems. To test this prediction, we analysed genetic data from 29 species inhabiting the low saline Baltic Sea, a geographically and ecologically marginal ecosystem. On average Baltic populations had lost genetic diversity compared to Atlantic populations: a pattern unrelated to dispersal capacity, generation time of species and taxonomic group of organism, but strongly related to type of genetic marker (mitochondrial DNA loci had lost c. 50% diversity, and nuclear loci 10%). Analyses of genetic isolation by geographic distance revealed clinal patterns of differentiation between Baltic and Atlantic regions. For a majority of species, clines were sigmoid with a sharp slope around the Baltic Sea entrance, indicating impeded gene flows between Baltic and Atlantic populations. Some species showed signs of allele frequencies being perturbed at the edge of their distribution inside the Baltic Sea. Despite the short geological history of the Baltic Sea (8000 years), populations inhabiting the Baltic have evolved substantially different from Atlantic populations, probably as a consequence of isolation and bottlenecks, as well as selection on adaptive traits. In addition, the Baltic Sea also acts a refuge for unique evolutionary lineages. This marginal ecosystem is thus vulnerable but also exceedingly valuable, housing unique genes, genotypes and populations that constitute an important genetic resource for management and conservation.

  19. Barents Sea field test of herder to thicken oil for in-situ burning in drift ice

    International Nuclear Information System (INIS)

    Buist, I.; Potter, S.; Sorstrom, S.E.

    2009-01-01

    Thick oil slicks are the key to effective in situ burning. Pack ice can enable in situ burning by keeping slicks thick. Oil spills in drift ice conditions can rapidly spread and become too thin to ignite. The application of chemical surface-active agents known as oil herders are commonly used in open waters to clean and contain oil slicks. Herders result in the formation of a monolayer of surfactants on the water surface and reduce the surface tension on the surrounding water considerably. When the surfactant monolayer reaches the edge of a thin oil slick, it changes the balance of interfacial forces acting on the slick edge and allows the interfacial tensions to contract the oil into thicker layers. This study examined the use of chemical herding agents to thicken oil spills in broken ice to allow them to be ignited and burned in situ. Two meso-scale field burn tests were conducted in May 2008 with crude oil slicks of about 0.1 and 0.7 m 3 in open drift ice off Svalbard in the Barents Sea. Prior to the field experiments, 2 series of small laboratory tests were conducted using Heidrun and Statfjord crudes to determine the ability of the U.S. Navy herding agent to contract slicks of the oil. In the first field experiment involving 102 litres of fresh Heidrun, the slick was unexpectedly carried by currents to a nearby ice edge where the oil was ignited and burned. Approximately 80 per cent of the oil was consumed in the burn. In the second field experiment involving 630 litres of fresh Heidrun, the free-drifting oil was allowed to spread for 15 minutes until it was much too thin to ignite. When the herding agent was applied, the slick contracted and thickened for about 10 minutes and was then ignited using a gelled gas igniter. A 9-minute long burn consumed about 90 per cent of the oil. 9 refs., 5 tabs., 34 figs.

  20. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    Science.gov (United States)

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  1. Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?

    Science.gov (United States)

    Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne

    2017-08-01

    Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.

  2. Temporal development of coastal ecosystems in the Baltic Sea over the past two decades

    DEFF Research Database (Denmark)

    Olsson, Jens; Tomczak, Maciej; Ojaveer, Henn

    2015-01-01

    Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment of the develo...... in the capacity of currently available monitoring data to support integrated assessments and the implementation of an integrated ecosystem-based approach to the management of the Baltic Sea coastal ecosystems......Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment...

  3. A System of Oceanic Reanalysis (SOR) fot the Nordic Seas

    Science.gov (United States)

    Pnyushkov, A.

    2009-04-01

    A system of oceanic reanalysis of the Nordic seas (Norwegian, Greenland and Barents seas) directed to the investigations of long period changes in the oceanic climate of the Arctic sub-polar seas was developed. The system of oceanic reanalysys (SOR) includes hybrid coordinate 22-th level ocean model HYCOM [Bleck,2002] and modern oceanographic data assimilation technique based on spectral nudging method. A series of test experiments was carried out and optimal parameters for assimilation routine were choused. These parameters take into account the accuracy of spatial restoring by means objective analysis procedure and phase distortion in modeling fields during monotonous assimilation of monthly distributions. On the basis of modeling results a set of monthly mean hydrological distributions of thermohaline parameters was created for the Nordic seas that was used for climatic field compilations on the standard levels for period 1957-1990. The data of reanalysis system projections allow us to restore the information about structure and dynamic of oceanographic fields for the periods and areas with a small number of direct measurements, for example East-Greenland currents area, north and north-east parts of the Barents sea. A series of additional experiments with SOR were performed directed to the simple assimilation of sea ice concentration data. A significant improvement of the system of objectively analyzed field preparation was done during 2008 including additional validation procedure of gridded arrays with using the direct data of oceanographic stations. This work was supported by Russian Foundation for Basic Research (grant 07-05-00393).

  4. NODC Standard Product: International ocean atlas Volume 6 - Zooplankton of the Arctic Seas 2002 (NODC Accession 0098570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and biological data for the Arctic and sub-Arctic regions extending from the Barents Sea to the Northwest Pacific, sampled during 25 scientific cruises for...

  5. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    OpenAIRE

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramirez-Llodra, Eva; Sarda, Francisco

    2013-01-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterrane...

  6. Fishing impact and environmental status in European seas: A diagnosis from stock assessments and ecosystem indicators

    DEFF Research Database (Denmark)

    Gascuel, Didier; Coll, Marta; Fox, Clive

    2016-01-01

    Stock-based and ecosystem-based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North-east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses...

  7. Physical and chemical oceanographic profile data, and meteorological data collected in the Atlantic and Arctic Oceans, and adjoining seas by multiple platforms from 14 August 1951 to 27 October 1994 (NODC Accession 0073741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, silicate, phosphate, nitrite, nitrate, alkalinity, and pH data collected in Arctic Ocean, Barents Sea, East Siberian Sea, Greenland...

  8. Using of thorium isotopes to study marine particles in the Southern Ocean, the Barents and the the Mediterranean sea

    International Nuclear Information System (INIS)

    Coppola, Laurent

    2002-01-01

    This work is based on thorium (Th) isotopes to quantify the particles fluxes and exchange between dissolved and particulate phase in three distinct environments. In the shelf region of the Barents Sea, the 234 Th fluxes in the water column suggest that the sediment traps have a good catchment efficiency. To estimate the export of Particulate Organic Carbon (POC), we need to use a POC/ 234 Th ratio. It is 10 times lower in the large trapped particles than in the suspended particles. This is due to a preferential remineralisation of POC vs 234 Th and also to a large quantity of fecal pellets in traps. These results show us the importance of the large particles in the vertical fluxes and suggest that data estimated in previous studies based on the composition of suspended particles in other Arctic regions have been overestimated. In the Indian sector of the Southern Ocean, the export of POC is higher in the Polar Front Zone (PFZ). The 230 Th profiles in the water column indicate a rapid renewal rate of deep water (1-15 y) by the North Atlantic Deep Water (NADW) and the Antarctic Bottom Water (AABW) in the site of study. From 234 Th- 230 Th coupling, we are able to constrain the dynamic processes of marine particles in the upper layer. The results suggest that the settling speed of the filtered large particles are lower in the north of the Agulhas Front (AF). Moreover, we note that the desorption and the disaggregation are higher. This could be explained by the presence of detrital organic matter and/or an efficient microbial loop limiting the export of organic matter to the deep layers. In the Mediterranean studies, we have used 232 Th and 230 Th to estimate the degradation of large marine particles during in vitro experiments. This results suggests that the aggregation of filtered large particles requires to take into account in the particles dynamic models. 230 Th- 232 Th budget of the western Mediterranean Sea indicates that the refractory elements fluxes are

  9. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.

    Science.gov (United States)

    Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E

    2016-05-19

    The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).

  10. The levels of radionuclides and heavy metals in Black Sea ecosystems (Bulgaria)

    International Nuclear Information System (INIS)

    Strezov, A.; Nonova, Tz.

    2006-01-01

    In order to evaluate the influence of geographically varying marine ecosystem properties on the uptake of radionuclides and toxic metals in marine environment, samples of sand, slime and silt sediments were taken during the period 1991-2004. Samples were collected from different zones along the Bulgarian Black Sea coast - from the north Romanian border (Durankulak) to the South Turkish border (Rezovo). Technogenic and natural radionuclides were measured by Low-level Gamma Spectroscopy using HPGe detector with 35 % counting efficiency and energy resolution 1.8 KeV (1332 KeV). Heavy metals (HM) were measured by Atomic Absorption Spectrometry (AAS) - ETAAS (Perkin - Elmer Zeeman 3030 with graphite furnace) and flame AAS - Pye Unicam SP 1950. The measured radionuclides concentrations in Black Sea sediments were found to depend on sediment type - slime sediments accumulate technogenic ( 1 37Cs) and natural nuclides (U and Th series) to the highest extent. Considerably low levels of technogenic and natural radionuclides and a narrow concentration intervals were established for sand and silt sediment samples. The intercomparison of radionuclide and HM content in bottom sediments from one and the same sampling location gives information for mechanisms of radionuclide transfer and shows the trend of potential hazard of anthropogenic impact on marine ecosystems. The obtained data show that highest nuclide and heavy metal content in Black Sea sediments were determined in the northern part of the Black Sea coast. It can be attributed to the influence of the big rivers entering the northern part of the Black Sea - Danube, Dnyepr, Dnester. Data for radionuclides and heavy metals in sediments are in the limits of the cited in literature natural levels, showing no additional anthropogenic contamination

  11. Radioactive inventories and sources for contamination of the Kara Sea

    International Nuclear Information System (INIS)

    Bradley, D.J.; Jenquin, U.P.

    1995-01-01

    The focus of this paper is on detailing the magnitudes of the sources of radionuclides that may be available, or have already been released to the Ob and Yenisey river systems. The emphasis is on the amounts of radioactivity that have been discharged to the environment in the West Siberian Basin. This are potential source terms to the Kara Sea via the Ob and Yenisey rivers. Russian estimates of what has been discharged to the Barents and Kara Seas, including direct ocean discharges, are summarized to provide some perspective on contamination of the Kara Sea. 1 fig., 3 tabs

  12. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka - Reconstructions from biomarker records

    Science.gov (United States)

    Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.

    2018-02-01

    The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.

  13. Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf

    Science.gov (United States)

    Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann

    2017-10-01

    High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.

  14. Ecological state of the Romanian Black Sea littoral lacustrine ecosystems

    Science.gov (United States)

    Gomoiu, M.-T.

    2009-04-01

    The author uses the results of his own researches as well as data from specialty literature to assess the ecological state of some typical lacustrine ecosystems considered, about 50 years ago, of major importance by their functions, services and researches, for the human populations in the settlements nearby. Based on this assessment the author recommends a few criteria which can be taken into account when programs of integrated management of these coastal ecosystems are initiated. The paper focuses on the study cases regarding the following major ecosystems: 1. Razelm-Sinoie Lagoon Complex - tightly linked to the Danube River and Delta systems, 2. Taşaul Lake - interfered in the last two decades by a branch of the DanubeRiver - Black Sea Canal and 3. Techirghiol Lake - for a long time under the sea level, a hyperhaline lake with therapeutic, sapropelic mud, disturbed by huge quantities of freshwaters infiltrated from the irrigation system. At present, the state of the lacustrine ecosystems at the Romanian Black Sea Coast can be characterized, mainly, by the following aspects: · Increase in the quantities of nutrients and chemical toxicants; · Rise in the level and frequency of eutrophication and pollution phenomena; · Drastic reduction of specific diversity; · Simplification of communities' structure - biocoenosis homogeneity; · Decrease in numerical abundance and biomass of benthic populations and consequently, low biofilter power by the decrease of the filter-feeder populations; · Worsening of the qualitative and the quantitative state of the biological benthic resources; · Thriving opportunistic forms (e.g. the worms causing sediment bioturbation); · Invasion by some exotic species, with harmful, unexpected consequences; · All populations undergo quantitative fluctuations; · Decrease in the fish population and in the use values of lacustrine assets, with strong impact on the welfare of the human society. Almost all pressure forms associated with the

  15. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  16. Analysis of regional climate strategies in the Barents region

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, S.; Inkeroeinen, J.; Latola, K.; Vaisanen, T.; Alasaarela, E.

    2012-11-15

    Climate change is a global phenomenon with especially harsh effects on the Arctic and northern regions. The Arctic's average temperature has risen at almost twice the rate as elsewhere in the past few decades. Since 1966, the Arctic land area covered by snow in early summer has shrunk by almost a fifth. The Barents Region consists of the northern parts of Norway, Sweden, Finland and Russia (i.e. the European part of Russia). Climate change will cause serious impacts in the Barents Region because of its higher density of population living under harsh climatic conditions, thus setting it apart from other Arctic areas. In many cases, economic activities, like tourism, rely on certain weather conditions. For this reason, climate change and adaptation to it is of special urgency for the region. Regional climate change strategies are important tools for addressing mitigation and adaptation to climate change as they can be used to consolidate the efforts of different stakeholders of the public and private sectors. Regional strategies can be important factors in achieving the national and international goals. The study evaluated how the national climate change goals were implemented in the regional and local strategies and programmes in northern Finland. The specific goal was to describe the processes by which the regional strategies were prepared and implemented, and how the work was expanded to include the whole of northern Finland. Finally, the Finnish preparatory processes were compared to case examples of processes for preparing climate change strategies elsewhere in the Barents Region. This analysis provides examples of good practices in preparing a climate change strategy and implementing it. (orig.)

  17. Modelling of migration of radionuclides and trace elements between the components of the Black Sea ecosystems

    International Nuclear Information System (INIS)

    Egorov, V.N.

    1999-01-01

    This report considers peculiarities of the mathematical description of radionuclides migration between water environment and biotic and abiotic components of the Black Sea ecosystems at different periods of averaging, from the time scale of metabolic processes, taking place in hydrobionts, to the large-scale description of radionuclides migration in the Black Sea

  18. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    Science.gov (United States)

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  19. Editorial: Global in scope and regionally rich: an IndiSeas workshop helps shape the future of marine ecosystem indicators

    NARCIS (Netherlands)

    Shin, Y.J.; Bundy, A.; Piet, G.J.

    2012-01-01

    This report summarizes the outcomes of an IndiSeas workshop aimed at using ecosystem indicators to evaluate the status of the world’s exploited marine ecosystems in support of an ecosystem approach to fisheries, and global policy drivers such as the 2020 targets of the Convention on Biological

  20. Ecosystem-based management objectives for the North Sea: riding the forage fish rollercoaster

    DEFF Research Database (Denmark)

    Dickey-Collas, Mark; Engelhard, Georg H.; Rindorf, Anna

    2014-01-01

    The North Sea provides a useful model for considering forage fish (FF) within ecosystem-based management as it has a complex assemblage of FF species. This paper is designed to encourage further debate and dialogue between stakeholders about management objectives. Changing the management...... whether maintaining the reserves of prey biomass or a more integral approach of monitoring mortality rates across the trophic system is more robust under the ecosystem approach. In terms of trophic energy transfer, stability, and resilience of the ecosystem, FF should be considered as both a sized-based...... pool of biomass and as species components of the system by managers and modellers. Policy developers should not consider the knowledge base robust enough to embark on major projects of ecosystem engineering. Management plans appear able to maintain sustainable exploitation in the short term. Changes...

  1. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    OpenAIRE

    Tecchio, S.; Coll, Marta; Sarda, F.

    2015-01-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloo...

  2. CRITERIA OF THE ECOSYSTEM STABILITY IN THE NORTHERN REGION OF THE CASPIAN SEA

    Directory of Open Access Journals (Sweden)

    Natalia Mitina

    2011-01-01

    Full Text Available The aim of the work is to determine the criteria of the marine shallow-water ecosystem stability using the Northern region of the Caspian Sea as a case study. For each 260 reference points, we received data on 76 parameters, including physical-geographical, hydrochemical, and hydrobiological characteristics that have been analyzed by the method of principle components. The analyzes of these data allowed us to reveal and evaluate principal geoecological factors that influence the distribution of Acipenseridae in the Caspian Sea as a top level of the ecosystem’s trophic chain. The main geoecological factors and the factor of anthropogenic load of the Caspian Sea ecosystems’ stability have been determined.

  3. Ecosystem Services of Avicennia marina in the Red Sea

    KAUST Repository

    Almahasheer, Hanan

    2016-01-01

    The Red Sea is an arid environment, without riverine inputs, oligotrophic waters and extreme temperature and salinity. Avicennia marina is the dominant vegetation in the shores of the Red Sea. However, little is known about their distribution, dynamics, and services. Therefore, the aim of this Ph.D. was to obtain the basic information needed to evaluate their role in the coastal ecosystems and quantify their services. With that objective we 1) estimated the past and present distribution of mangroves in the Red Sea, 2) investigated the growth, leave production and floration 3) examined the growth limiting factors 4) measured the nutrients and heavy metal dynamics in the leaves and 5) estimated carbon sequestration. We found an increase of about 12% in the last 41 years, which contrasts with global trends of decrease. The extreme conditions in the Red Sea contributed to limit their growth resulting in stunted trees. Hence, we surveyed Central Red Sea mangroves to estimate their node production with an average of 9.59 node y-1 then converted that number into time to have a plastochrone interval of 38 days. As mangroves are taller in the southern Red Sea where both temperature and nutrients are higher than the Central Red Sea, we assessed nutrient status Avicennia marina propagules and naturally growing leaves to find the leaves low in nutrient concentrations (N < 1.5 %, P < 0.09 %, Fe < 0.06) and that nutrients are reabsorbed before shedding the leaves (69%, 72% and 35% for N, P, and Fe respectively). As a result, we conducted a fertilization experiment (N, P, Fe and combinations) to find that iron additions alone led to significant growth responses. Moreover, we estimated their leaf production and used our previous estimates of both the total cover mangrove in the Red Sea along with plastochrone interval to assess their total nutrients flux per year to be 2414 t N, 139 t P and 98 t Fe. We found them to sequester 34 g m-2 y-1, which imply 4590 tons of carbon

  4. Ecosystem Services of Avicennia marina in the Red Sea

    KAUST Repository

    Almahasheer, Hanan

    2016-12-01

    The Red Sea is an arid environment, without riverine inputs, oligotrophic waters and extreme temperature and salinity. Avicennia marina is the dominant vegetation in the shores of the Red Sea. However, little is known about their distribution, dynamics, and services. Therefore, the aim of this Ph.D. was to obtain the basic information needed to evaluate their role in the coastal ecosystems and quantify their services. With that objective we 1) estimated the past and present distribution of mangroves in the Red Sea, 2) investigated the growth, leave production and floration 3) examined the growth limiting factors 4) measured the nutrients and heavy metal dynamics in the leaves and 5) estimated carbon sequestration. We found an increase of about 12% in the last 41 years, which contrasts with global trends of decrease. The extreme conditions in the Red Sea contributed to limit their growth resulting in stunted trees. Hence, we surveyed Central Red Sea mangroves to estimate their node production with an average of 9.59 node y-1 then converted that number into time to have a plastochrone interval of 38 days. As mangroves are taller in the southern Red Sea where both temperature and nutrients are higher than the Central Red Sea, we assessed nutrient status Avicennia marina propagules and naturally growing leaves to find the leaves low in nutrient concentrations (N < 1.5 %, P < 0.09 %, Fe < 0.06) and that nutrients are reabsorbed before shedding the leaves (69%, 72% and 35% for N, P, and Fe respectively). As a result, we conducted a fertilization experiment (N, P, Fe and combinations) to find that iron additions alone led to significant growth responses. Moreover, we estimated their leaf production and used our previous estimates of both the total cover mangrove in the Red Sea along with plastochrone interval to assess their total nutrients flux per year to be 2414 t N, 139 t P and 98 t Fe. We found them to sequester 34 g m-2 y-1, which imply 4590 tons of carbon

  5. Historical changes of the Mediterranean Sea ecosystem: modelling the role and impact of primary productivity and fisheries changes over time

    Science.gov (United States)

    Piroddi, Chiara; Coll, Marta; Liquete, Camino; Macias, Diego; Greer, Krista; Buszowski, Joe; Steenbeek, Jeroen; Danovaro, Roberto; Christensen, Villy

    2017-03-01

    The Mediterranean Sea has been defined “under siege” because of intense pressures from multiple human activities; yet there is still insufficient information on the cumulative impact of these stressors on the ecosystem and its resources. We evaluate how the historical (1950-2011) trends of various ecosystems groups/species have been impacted by changes in primary productivity (PP) combined with fishing pressure. We investigate the whole Mediterranean Sea using a food web modelling approach. Results indicate that both changes in PP and fishing pressure played an important role in driving species dynamics. Yet, PP was the strongest driver upon the Mediterranean Sea ecosystem. This highlights the importance of bottom-up processes in controlling the biological characteristics of the region. We observe a reduction in abundance of important fish species (~34%, including commercial and non-commercial) and top predators (~41%), and increases of the organisms at the bottom of the food web (~23%). Ecological indicators, such as community biomass, trophic levels, catch and diversity indicators, reflect such changes and show overall ecosystem degradation over time. Since climate change and fishing pressure are expected to intensify in the Mediterranean Sea, this study constitutes a baseline reference for stepping forward in assessing the future management of the basin.

  6. Geochemical interpretation of distribution of aromatic hydrocarbons in components of geologic environment of Pechora, Barents and Kara seas.

    Science.gov (United States)

    Kursheva, Anna; Petrova, Vera; Litvinenko, Ivan; Morgunova, Inna

    2017-04-01

    Information about the hydrocarbons content (including aromatic ones) in components of geologic environment allows to define common factors in distribution and correlation both nature and technogenic component, and also to reveal the sources of contamination. At that, it should be noted, that hydrocarbons are widely spread in lithosphere and create steady geochemical background, variations are caused here by specifics of initial organic matter, conditions of its accumulation and transformation. The basis of the study are the samples of sea water and deep sea sediments (more than 600 stations), collected in western sector of Arctic region (Pechora, Barents and Kara seas) during the scientific-research expeditions of FSBI "VNIIOkeangeologia" for the period 2000-2010. Total content of aromatic hydrocarbons was defined by spectrofluorometric method using analyzer «FLUORAT-Panorama-02». Certification of data was performed on representative samples based on contents and molecule structure of polycyclic aromatic hydrocarbons using GC-MS (Agilent 5973/6850 GC-MS System). Results of spectrofluorometric analysis of lipid fraction of organic matter of bottom sediments allowed to define specific parameters, which characterize various lithofacies groups of sediments. Thus, sandy residues are characterized by low level of aromatic hydrocarbons (ca. 4.3 μg/g) with prevalence of bi- and tri-aromatic compounds (λmax 270-310 nm). This correlates with low sorption capacity of coarse-grained sediments and absence of organic-mineral component, containing the breakdown products of initial organic matter. Tetra- and penta- aromatic structures prevail in clay sediments (ca. 13.0 μg/g), which are typical components of lipid fraction of organic matter of post sedimentation and early diagenetic stages of transformation. At that, changes of spectral characteristic of sediments in stratigraphic sequence completely reflect processes of diagenetic transformation of organic matter, including

  7. Bedrock cores from 89° North: Implications for the geologic framework and Neogene paleoceanography of Lomonosov Ridge and a tie to the Barents shelf

    Science.gov (United States)

    Grantz, Arthur; Pease, Victoria L.; Willard, Debra A.; Phillips, R.L.; Clark, David L.

    2001-01-01

    Two piston cores from the Eurasian flank of Lomonosov Ridge near lat 88.9°N, long 140°E provide the first samples of bedrock from this high-standing trans-Arctic ridge. Core 94-PC27 sampled nonmarine siltstone similar in facies and age to uppermost Triassic to lower Lower Jurassic and mid– Lower Cretaceous beds in the 4 to > 5 km Mesozoic section on Franz Josef Land, on the outer Barents shelf. A ca. 250 Ma peak in the cumulative frequency curve of detrital zircons from the siltstone, dated by U- Th-Pb analysis, suggests a source in the post-tectonic syenites of northern Taymyr and nearby islands in the Kara Sea. Textural trends reported in the literature indicate that the Lower Jurassic nonmarine strata of Franz Josef Land coarsen to the southeast; this suggests the existence of a sedimentary system in which detrital zircons could be transported from the northern Taymyr Peninsula to the outer Barents shelf near the position of core 94-PC27 prior to opening of the Eurasia Basin. Correlation of the coaly siltstone in core 94-PC27 with part of the Mesozoic section on Franz Josef Land is compatible with the strong evidence from seafloor magnetic anomalies and bathymetry that Lomonosov Ridge is a continental fragment rifted from the Barents shelf during the Cenozoic. It also suggests that Lomonosov Ridge near the North Pole is underlain by a substantial section of unmetamorphosed Mesozoic marine and nonmarine sedimentary strata. Core 94-PC29 sampled cyclical deposits containing ice-rafted debris (IRD) overlying weakly consolidated laminated olive-black anoxic Neogene siltstone and mudstone with an average total organic carbon (TOC) of 4.1 wt%. The high TOC content of the mudstone indicates that during the Neogene, prior to the introduction of IRD into the Arctic seas about 3.3 Ma (early late Pliocene), the shallow waters of the central Arctic Ocean supported significant primary photosynthetic organic production near the North Pole. These deposits also contain fine

  8. The presence of the Indo-Pacific symbiont-bearing foraminifer Amphistegina lobifera in Greek coastal ecosystems (Aegean Sea, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    M.V. TRIANTAPHYLLOU

    2009-12-01

    Full Text Available During the last decades, hundreds of species of Indo-Pacific origin from the Red Sea have traversed the Suez Canal and settled in the Eastern Mediterranean. Nowadays, Amphistegina lobifera Larsen, is known to be a successful immigrant that is widely distributed in the coastal ecosystems of the Eastern Mediterranean Sea. Amphistegina is the most common epiphytic, symbiont- bearing large foraminifer. In this study we provide additional data on the presence of this species in the coastal ecosystems of Aegean Sea, Greece. The high relative abundance of A. lobifera is the result of very successful adaptation of this species to local conditions and suggests that it has become a significant part of the epiphytic foraminiferal fauna.

  9. The outlook for investment in the Norwegian North Sea

    International Nuclear Information System (INIS)

    Enger, T.

    1992-01-01

    An outline of the investment potential for oil and gas production on the Norwegian continental shelf is given. The continental shelf includes the Haltenbanken area and the Barents Sea as well as the North Sea. A description of existing projects and present knowledge of future prospects is given. The total production of oil and gas in 1990 was 107 million toe, the ratio of oil to gas production being 4:1. The relationship between oil and gas will change dramatically in the future however as the gas share in fields under development is much greater than in currently producing fields. The greatest potential for gas is expected to be in the Barents Sea which, being located at a considerable distance from existing gas markets presents a great challenge for commercial development. The conclusion drawn from the outline is that the present level of investment will be maintained or increase slightly over the next four to five years. For the period up to the turn of the century there is increasing uncertainty over the investment level which will become more and more dependent upon further expansion of gas exports but a best estimate is for continued investment stability beyond the year 2000. The production level can be expected to increase and reach a peak during the late 1990s. The resource base is sufficient to maintain a high production level for several decades after the year 2000. (UK)

  10. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent; Cusack, Michael; Almahasheer, Hanan; Serrano, Oscar; Masqué , Pere; Arias-Ortiz, Ariane; Krishnakumar, Periyadan Kadinjappalli; Rabaoui, Lotfi; Qurban, Mohammad Ali; Duarte, Carlos M.

    2018-01-01

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  11. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent

    2018-04-12

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  12. Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea

    Science.gov (United States)

    Olli, Kalle; Wexels Riser, Christian; Wassmann, Paul; Ratkova, Tatjana; Arashkevich, Elena; Pasternak, Anna

    2002-12-01

    The spatial and seasonal variations in the vertical flux of particulate biogenic matter were investigated in the Barents Sea in winter and spring 1998 and summer 1999. Arrays of simple cylindrical sediment traps were moored for 24 h between 30 and 200 m along a transect from the ice-free Atlantic water to Arctic water with up to 80% ice cover. Large gradients in the quantity and composition of the sinking particles were observed in the south-north direction, and in relation to water column structure and stability, which depend on the processes of ice retreat. The magnitude of the vertical flux of particulate organic carbon (POC) out of the upper mixed layer ranged from background winter values (30-70 mg C m -2 day -1) to 150-300 mg C m -2 day -1 in summer and 500-1500 mg C m -2 day -1 in spring. Vertical flux of chlorophyll a (CHL) was negligible in winter, generally balticum and single-celled P. pouchetii). The magnitude of the vertical flux to the bottom in spring was comparable in the Arctic and Atlantic waters (ca. 200 mg C m -2 day -1), but the composition and C/N ratio of the particles were different. The regulation of biogenic particle sedimentation took place in the upper layers and over very short vertical distances, and varied with season and water mass. The vertical flux was mainly shaped by the water column stratification (strong salinity stratification in the Arctic water; no stratification in the Atlantic water) and also by the activity of plankton organisms. Zooplankton faecal pellets were an important constituent of the vertical flux (up to 250 mg C m -2 day -1), but their significance varied widely between stations. The daily sedimentation loss rates of POC in spring exceeded the loss rates in summer on the average of 1.7 times. The complexity of the planktonic community during summer suggested the prevalence of a retention food chain with a higher capacity of resource recycling compared to spring.

  13. Radioactive sources of main radiological concern in the Kola-Barents region

    International Nuclear Information System (INIS)

    Bergman, R.; Baklanov, A.

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  14. Radioactive sources of main radiological concern in the Kola-Barents region

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Baklanov, A

    1998-07-01

    This overview focuses on some major issues for risk analysis appearing in our recent study surveying radioactive sources on the Kola Peninsula, along with adjacent parts of the Arctic seas. The main issues of the parts are as follows: An introduction to the presence of radioactive sources and environmental contamination in the Barents Euro-Arctic Region and the current status as regards various significant studies. Radioactive contamination in man and the environment on the Kola Peninsula, as well as radioactive transfer during the last three decades from external sources to the Kola-Barents region. The main conclusion from the findings is that the contamination is generally relatively low and that neither the activity levels in samples of soil, vegetation, and the important food-chains, nor the content in man indicate any changes since 1986 that could not be explained by the combined effect of the cumulative deposition from the nuclear weapons testing and the accident in Chernobyl. The radioactive sources of main concern in the region belong to the following categories: nuclear power submarine and cruiser naval bases; civil nuclear power ice-breaker fleet; building and repairing shipyards; nuclear power plants; radioactive waste and spent nuclear fuel storage facilities; sunken reactors/ships; liquid radioactive waste dumping; solid radioactive waste dumping; nuclear weapon bases; nuclear weapon tests; civil nuclear explosions; nuclear accidents; mining radioactive ore deposits and plants; new projects and others. Several case studies concerning releases in the Kola-Barents region are reviewed, and followed by consequence analyses for the categories of primary interest covering: a) airborne releases from the Kola NPP, and from submarines or spent nuclear fuel; b) releases from objects in the marine environment including submarines, dumped reactors, and various other radioactive objects and waste; c) releases from liquid and solid wastes stored on land or during

  15. Feeding strategies and resource partitioning among elasmobranchs and cephalopods in Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Valls, Maria; Rueda, Lucía; Quetglas, Antoni

    2017-10-01

    Cephalopods and elasmobranchs are important components of marine ecosystems, whereby knowing the ecological role they play in the structure and dynamics of trophic networks is paramount. With this aim, stomach contents and stable isotopes of the most abundant elasmobranch and cephalopod species (5 and 18 species, respectively) inhabiting deep-sea ecosystems from the western Mediterranean were analyzed. The predators investigated encompassed different taxonomic groups, such as rays and sharks within elasmobranchs, and squids, octopuses and cuttlefishes within cephalopods. Specifically, we investigated ontogenetic shifts in diet, feeding strategies and prey consumption, trophic structure and potential dietary overlap between and within both taxonomical groups. Stable isotope analysis revealed ontogenetic shifts in diet in three elasmobranch (rays and sharks) and two cephalopod (octopuses and squids) species. Isotopic data showed a contrasting food source gradient (δ13C), from pelagic (squids and cuttlefishes) to benthic (octopuses and elasmobranchs). Stomach data highlighted a great variety of trophic guilds which could be further aggregated into three broad categories: benthic, benthopelagic and pelagic feeders. The combination of both stomach content and stable isotope analyses revealed a clear food partitioning among species. Mesopelagic prey were found to be an important food resource for deep-sea elasmobranchs and cephalopods, which could be related to the strong oligotrophic conditions in the area. The observed differences in feeding strategies within cephalopods and elasmobranchs should be taken into account when defining functional groups in trophodynamic models from the western Mediterranean. Our results also revealed that cephalopods play a key role for the benthopelagic coupling, whereas demersal elasmobranchs contribute primarily to a one-way flux accumulating energy resources into deep-sea ecosystems.

  16. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem; Allen, Julian Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason T.; Tsiaras, Kostas P.; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle C.; Daewel, Ute; Wakelin, Sarah L.; Machú , Eric; Pushpadas, Dhanya; Butenschö n, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris J M; Garç on, Vé ronique C.; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A.; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-01-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  17. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem

    2014-05-07

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  18. Biomass changes and trophic amplification of plankton in a warmer ocean.

    Science.gov (United States)

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  19. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    Science.gov (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  20. Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr

    Directory of Open Access Journals (Sweden)

    C. V. Dylmer

    2013-07-01

    Full Text Available Three marine sediment cores distributed along the Norwegian (MD95-2011, Barents Sea (JM09-KA11-GC, and Svalbard (HH11-134-BC continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO, is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea–eastern Fram Strait region. The Little Ice Age (LIA was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.

  1. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-12-01

    The coastal ocean is a marginal region of the global ocean, but is home to metabolically intense ecosystems which increase the structural complexity of the benthos. These ecosystems have the ability to alter the carbon chemistry of surrounding waters through their metabolism, mainly through processes which directly release or consume carbon dioxide. In this way, coastal habitats can engineer their environment by acting as sources or sinks of carbon dioxide and altering their environmental chemistry from the regional norm. In most coastal water masses, it is difficult to resolve the ecosystem effect on coastal carbon biogeochemistry due to the mixing of multiple offshore end members, complex geography or the influence of variable freshwater inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability of three Red Sea benthic coastal habitats (coral reefs, seagrass meadows and mangrove forests) to create characteristic ecosystem end-members, which deviate from the biogeochemistry of offshore source waters. This is done by both calculating non-conservative deviations in carbonate stocks collected over each ecosystem, and by quantifying net carbonate fluxes (in seagrass meadows and mangrove forests only) using 24 hour incubations. Results illustrate that carbonate stocks over ecosystems conform to broad ecosystem trends, which are different to the offshore end-member, and are influenced by inherited properties from surrounding ecosystems. Carbonate fluxes also show ecosystem dependent trends and further illustrate the importance of sediment processes in influencing CaCO3 fluxes in blue carbon benthic habitats, which warrants further attention. These findings show the respective advantages of studying both carbonate stocks and fluxes of coastal benthic ecosystems in order to

  2. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  3. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    Omar, Abdirahman M.

    2003-01-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  4. Ecosystem changes in the Neva Estuary (Baltic Sea): natural dynamics or response to anthropogenic impacts?

    Science.gov (United States)

    Golubkov, Sergey; Alimov, Alexander

    2010-01-01

    The Neva Estuary situated in the eastern Gulf of Finland is one of the largest estuaries of the Baltic Sea with a large conurbation, St. Petersburg, situated on its coast. Eutrophication, alien species and large-scale digging and dumping of bottom sediment are the most prominent anthropogenic impacts on its ecosystem. However, many ecosystem responses, which are traditionally attribute to these impacts, are related to natural dynamics of the ecosystem. Fluctuations in discharge of the Neva River, intrusions of bottom hypoxic waters from the western part of the Gulf of Finland, higher summer temperatures and a shorter period of ice cover are climatic mediated factors inducing adverse changes in its ecosystem from the 1980s onwards. The main ecosystem responses to these factors are 2-3-fold increase of trophic status, deterioration of native zoobenthic communities and establishment of alien species, as well as the many fold decrease of fish catch and the population of ringed seal in the region. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  6. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  7. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    Science.gov (United States)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  8. Temporal development of coastal ecosystems in the Baltic Sea - an assessment of patterns and trends

    DEFF Research Database (Denmark)

    Olsson, Jens; Bergström, Lena; Tomczak, Maciej

    2014-01-01

    in the north, covers between two to five trophic levels per area, and include time series dating back to the early 1990s. Using multivariate analyses, we assess the temporal development of species abundance or biomass at different trophic levels in relation to the development of variables related to local...... and regional climate, hydrology, nutrient loading and fishing pressure. Our results highlight the relative timing of change in ecosystem structure and the development of key biological elements across areas. Besides describing the temporal development of coastal ecosystems in the Baltic Sea during the past two...

  9. Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea based on image analysis

    Directory of Open Access Journals (Sweden)

    E. Rybakova (Goroslavskaya

    2013-05-01

    Full Text Available During a survey of the Håkon Mosby mud volcano (HMMV, located on the Bear Island fan in the southwest Barents Sea at ∼1250 m water depth, different habitats inside the volcano caldera and outside it were photographed using a towed camera platform, an Ocean Floor Observation System (OFOS. Three transects were performed across the caldera and one outside, in the background area, each transect was ∼2 km in length. We compared the density, taxa richness and diversity of nonsymbiotrophic megafauna in areas inside the volcano caldera with different bacterial mat and pogonophoran tubeworm cover. Significant variations in megafaunal composition, density and distribution were found between considered areas. Total megafaunal density was highest in areas of dense pogonophoran populations (mean 52.9 ind. m−2 followed by areas of plain light-coloured sediment that were devoid of bacterial mats and tube worms (mean 37.7 ind. m−2. The lowest densities were recorded in areas of dense bacterial mats (mean ≤1.4 ind. m−2. Five taxa contributed to most of the observed variation: the ophiuroid Ophiocten gracilis, lysianassid amphipods, the pycnogonid Nymphon macronix, the caprellid Metacaprella horrida and the fish Lycodes squamiventer. In agreement with previous studies, three zones within the HMMV caldera were distinguished, based on different habitats and megafaunal composition: "bacterial mats", "pogonophoran fields" and "plain light-coloured sediments". The zones were arranged almost concentrically around the central part of the caldera that was devoid of visible megafauna. The total number of taxa showed little variation inside (24 spp. and outside the caldera (26 spp.. The density, diversity and composition of megafauna varied substantially between plain light-coloured sediment areas inside the caldera and the HMMV background. Megafaunal density was lower in the background (mean 25.3 ind. m−2 compared to areas of plain light-coloured sediments

  10. [New settlers comb jellies Mnemiopsis leidyi (A. Agassiz) and Beroe ovata Mayer 1912 and their influence on the pelagic ecosystem of the northeastern part of the Black Sea].

    Science.gov (United States)

    Shiganova, T A; Musaeva, E I; Bulgakova, Iu V; Mirzoian, Z A; MartynIuk, M L

    2003-01-01

    We analyzed the condition of pelagic ecosystem of northeastern Black Sea influenced by expansion of a new settler Beroe ovata in 1999-2001. Expansion of B. ovata considerably decreased the population of another new settler Mnemiopsis leidyi that deformed the Black Sea ecosystem for over a decade. Reduction of M. leidyi population limited its influence on the ecosystem and, consequently, we observed reestablishment of the main components of the Black Sea pelagic ecosystem--zooplankton and fish, their spawn and larvae. The relationship between annual and seasonal variability of the population and biomass of the both new settlers M. leidyi and B. ovata are discussed.

  11. Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea

    KAUST Repository

    Racault, Marie-Fanny

    2015-02-18

    Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplankton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data coverage, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phytoplankton growth during the winter period (relative to the summer

  12. Multispecies functional response of the minke whale Balaenoptera acutorostrata based on small-scale foraging studies

    OpenAIRE

    Smout, Sophie; Lindstrøm, Ulf

    2007-01-01

    Atlantic minke whales are important predators in the Barents Sea ecosystem; capelin Mallotus villosus, krill Thysanoessa sp. and Meganyctephanes norvegica and herring Clupea harengus are their major prey. Their consumption of commercial species may present an economic problem for the local fishery. In order to estimate this consumption and understand the potential consequences for prey dynamics, it is essential to determine the multispecies functional response of the whales. The parameterisat...

  13. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka

    Science.gov (United States)

    Perera, K. A. R. S.; De Silva, K. H. W. L.; Amarasinghe, M. D.

    2018-02-01

    Unique location in the land-sea interface makes mangrove ecosystems most vulnerable to the impacts of predicted sea level rise due to increasing anthropogenic CO2 emissions. Among others, carbon sink function of these tropical ecosystems that contribute to reduce rising atmospheric CO2 and temperature, could potentially be affected most. Present study was undertaken to explore the extent of impact of the predicted sea level rise for the region on total organic carbon (TOC) pools of the mangrove ecosystems in Negombo estuary located on the west coast of Sri Lanka. Extents of the coastal inundations under minimum (0.09 m) and maximum (0.88 m) sea level rise scenarios of IPCC for 2100 and an intermediate level of 0.48 m were determined with GIS tools. Estimated total capacity of organic carbon retention by these mangrove areas was 499.45 Mg C ha- 1 of which 84% (418.98 Mg C ha- 1) sequestered in the mangrove soil and 16% (80.56 Mg C ha- 1) in the vegetation. Total extent of land area potentially affected by inundation under lowest sea level rise scenario was 218.9 ha, while it was 476.2 ha under intermediate rise and 696.0 ha with the predicted maximum sea level rise. Estimated rate of loss of carbon sink function due to inundation by the sea level rise of 0.09 m is 6.30 Mg C ha- 1 y- 1 while the intermediate sea level rise indicated a loss of 9.92 Mg C ha- 1 y- 1 and under maximum sea level rise scenario, this loss further increases up to 11.32 Mg C ha- 1 y- 1. Adaptation of mangrove plants to withstand inundation and landward migration along with escalated photosynthetic rates, augmented by changing rainfall patterns and availability of nutrients may contribute to reduce the rate of loss of carbon sink function of these mangrove ecosystems. Predictions over change in carbon sequestration function of mangroves in Negombo estuary reveals that it is not only affected by oceanographic and hydrological alterations associated with sea level rise but also by anthropogenic

  14. Food-web and ecosystem structure of the open-ocean and deep-sea environments of the Azores, NE Atlantic

    Directory of Open Access Journals (Sweden)

    Telmo Morato

    2016-12-01

    Full Text Available The Marine Strategy Framework Directive intends to adopt ecosystem-based management for resources, biodiversity and habitats that puts emphasis on maintaining the health of the ecosystem alongside appropriate human use of the marine environment, for the benefit of current and future generations. Within the overall framework of ecosystem-based management, ecosystem models are tools to evaluate and gain insights in ecosystem properties. The low data availability and complexity of modelling deep-water ecosystems has limited the application of ecosystem models to few deep-water ecosystems. Here, we aim to develop an ecosystem model for the deep-sea and open ocean in the Azores exclusive economic zone with the overarching objective of characterising the food-web and ecosystem structure of the ecosystem. An ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built. Overall data quality measured by the pedigree index was estimated to be higher than the mean value of all published models. Therefore, the model was built with source data of an overall reasonable quality, especially considering the normally low data availability for deep-sea ecosystems. The total biomass (excluding detritus of the modelled ecosystem for the whole area was calculated as 24.7 t km-². The mean trophic level for the total marine catch of the Azores was estimated to be 3.95, similar to the trophic level of the bathypelagic and medium-size pelagic fish. Trophic levels for the different functional groups were estimated to be similar to those obtained with stable isotopes and stomach contents analyses, with some exceptions on both ends of the trophic spectra. Omnivory indices were in general low, indicating prey speciation for the majority of the groups. Cephalopods, pelagic sharks and toothed whales were identified as groups with

  15. Ecological conversion efficiency and its influencers in twelve species of fish in the Yellow Sea Ecosystem

    Science.gov (United States)

    Tang, Qisheng; Guo, Xuewu; Sun, Yao; Zhang, Bo

    2007-09-01

    The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy ( Engraulis japonicus), rednose anchovy ( Thrissa kammalensis), chub mackerel ( Scomber japonicus), halfbeak ( Hyporhamphus sajori), gizzard shad ( Konosirus punctatus), sand lance ( Ammodytes personatus), red seabream ( Pagrus major), black porgy ( Acanthopagrus schlegeli), black rockfish ( Sebastes schlegeli), finespot goby ( Chaeturichthys stigmatias), tiger puffer ( Takifugu rubripes), and fat greenling ( Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.

  16. Migration of some metals in the ecosystem of the Caspian sea

    Science.gov (United States)

    Chaplygin, Wladimir A.; Tanasova, Anastasia S.; Ershova, Tatiana S.; Zaitsev, Vyacheslav F.; Bech, Jaume; Roca, Núria

    2017-04-01

    The content of heavy metals in aquatic organisms of the Caspian sea is connected with the increase of anthropogenic load on aqueous ecosystems, what leads to the disruption of the natural cycle of chemical elements. Heavy metals in small concentrations are included in an organism and are involved in various metabolic processes. One of the reasons for the high content of metals in the body of hydrobionts is the accumulation of the last in the food web and functional disturbance in all parts of the ecosystem. The aim of this work was to trace the migration of some metals in trophic chains in the ecosystem of the Caspian sea. The objects of the study were: various types of soils of the Caspian sea molluscs of the genus Didacna, fish - gobies ceneйcTвa Gobiidae and liver of Russian sturgeon Acipenser gueldenstaedtii, mammal - the liver of the Caspian seal Phoca caspica. The main burden of the accumulation of trace elements takes on the liver, which is a functional depot of many metals and is characterized by high metabolic activity in which there is a filtering and transformation of substances. The content of heavy metals in the objects of study were determined by atomic absorption method. The results are presented in mg/kg dry matter. The results showed that the level of accumulation of heavy metals in different types of soils of the Caspian sea was within the limits of environmental standards for bottom sediments taken in the Netherlands (2009) and heavy metal concentrations in silt and sand soil were below background values (according Verkhnevolzhskaya exploration of the enterprise and the Institute of water problems Russian Academy of Sciences, Russia). It should be noted that silty and sandy soils have a similar distribution pattern of heavy metals. A number of decrease the content of heavy metals in different soils of the Caspian sea were as follows: Silty and sandy soils: Zn>Ni>Pb>Co>Cd>Hg. The metals content in mollusks decreases in the series: Zn

  17. Ecosystem-based management and the wealth of ecosystems

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio’s performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth. PMID:28588145

  18. Ecosystem-based management and the wealth of ecosystems.

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K; Fenichel, Eli P

    2017-06-20

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio's performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth.

  19. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    Science.gov (United States)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation

  20. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  1. Transport of radionuclides from the Kara Sea. Potential ''shortcuts'' in space and time

    International Nuclear Information System (INIS)

    Phirman, S.L.; Koegler, J.W.; Anselme, B.

    1995-01-01

    Satellite images from the Kara Sea show that, until July, fast ice extends along the coast and fills the estuaries of the Ob and Yenisey rivers. It is separated from offshore drift ice by a region of open water, comprising a flaw lead/polynya. By August, much of the fast and drift ice has melted and retreated from the southwestern Kara Sea, leaving behind a persistent patch of ice east of Novaya Zemlya. The authors of the paper discuss the potential for exchange of water, ice and contaminants with the Barents Sea through Kara Gate (Karsikye Vorota), south of Novaya Zemlya, in the context of the temperature and turbidity distribution observed in the satellite images. 19 refs

  2. Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index

    Science.gov (United States)

    Köseoğlu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen

    2018-02-01

    The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25-derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.

  3. The drivers of sea lice management policies and how best to integrate them into a risk management strategy: An ecosystem approach to sea lice management.

    Science.gov (United States)

    Jackson, D; Moberg, O; Stenevik Djupevåg, E M; Kane, F; Hareide, H

    2018-06-01

    The control of sea lice infestations on cultivated Atlantic salmon is a major issue in many regions of the world. The numerous drivers which shape the priorities and objectives of the control strategies vary for different regions/jurisdictions. These range from the animal welfare and economic priorities of the producers, to the mitigation of any potential impacts on wild stocks. Veterinary ethics, environmental impacts of therapeutants, and impacts for organic certification of the produce are, amongst others, additional sets of factors which should be considered. Current best practice in both EU and international environmental law advocates a holistic ecosystem approach to assessment of impacts and risks. The issues of biosecurity and ethics, including the impacts on the stocks of species used as cleaner fish, are areas for inclusion in such a holistic ecosystem assessment. The Drivers, Pressures, State, Impacts, Responses (DPSIR) process is examined as a decision-making framework and potential applications to sea lice management are outlined. It is argued that this is required to underpin any integrated sea lice management (ISLM) strategy to balance pressures and outcomes and ensure a holistic approach to managing the issue of sea lice infestations on farmed stock on a medium to long-term basis. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  4. A Possible Link Between Winter Arctic Sea Ice Decline and a Collapse of the Beaufort High?

    Science.gov (United States)

    Petty, Alek A.

    2018-03-01

    A new study by Moore et al. (2018, https://doi.org/10.1002/2017GL076446) highlights a collapse of the anticyclonic "Beaufort High" atmospheric circulation over the western Arctic Ocean in the winter of 2017 and an associated reversal of the sea ice drift through the southern Beaufort Sea (eastward instead of the predominantly westward circulation). The authors linked this to the loss of sea ice in the Barents Sea, anomalous warming over the region, and the intrusion of low-pressure cyclones along the eastern Arctic. In this commentary we discuss the significance of this observation, the challenges associated with understanding these possible linkages, and some of the alternative hypotheses surrounding the impacts of winter Arctic sea ice loss.

  5. Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea

    Science.gov (United States)

    Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie

    2017-09-01

    Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mol N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3-32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. Under high irradiance, non-constitutive mixotrophy appreciably increases annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. In this ecosystem, non-constitutive mixotrophy is also observed to have an indirect stimulating effect on diatoms. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that contrasting forms of mixotrophy have different

  6. Landowner behavior can determine the success of conservation strategies for ecosystem migration under sea-level rise.

    Science.gov (United States)

    Field, Christopher R; Dayer, Ashley A; Elphick, Chris S

    2017-08-22

    The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas.

  7. A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem

    Science.gov (United States)

    Stabeno, Phyllis J.; Farley, Edward V., Jr.; Kachel, Nancy B.; Moore, Sue; Mordy, Calvin W.; Napp, Jeffrey M.; Overland, James E.; Pinchuk, Alexei I.; Sigler, Michael F.

    2012-06-01

    Sufficient oceanographic measurements have been made in recent years to describe the latitudinal variation in the physics of the eastern Bering Sea shelf and the potential impact of climate change on the species assemblages in the two ecosystems (north and south). Many of the predicted ecosystem changes will result from alterations in the timing and extent of sea ice. It is predicted that the sea ice in the northern Bering Sea will be less common in May, but will continue to be extensive through April. In contrast, the southern shelf will have, on average, much less sea ice than currently observed, but with large interannual and multiyear variability until at least 2050. Thus, even under current climate warming scenarios, bottom temperatures on the northern shelf will remain cold. Based on biophysical measurements, the southern and northern ecosystems were divided by a North-South Transition at ˜60°N. The northern middle shelf was characterized by a freshwater lens at the surface, cold bottom temperatures, and a thicker pycnocline than found on the southern shelf. Subsurface phytoplankton blooms were common. In contrast, the southern shelf stratification was largely determined by temperature alone; the pycnocline was thin (oftenstomias, respectively) are unlikely to become common in the north. The projected warming of the southern shelf will limit the distribution of arctic species (e.g., snow crab, Chionoecetes opilio) to the northern shelf and will likely permit expansion of subarctic species into the southern Bering Sea. The distribution and abundance of baleen whales will respond to shifts in prey availability; for instance, if prey are advected northward from the southeastern Bering Sea, an extension of range and an increase in seasonally migratory baleen whale numbers is anticipated. Thus, alteration of this ecosystem in response to climate change is expected to result in something other than a simple northward shift in the distribution of all species.

  8. Society in the north depends on being able to fish in clean waters; Samfunnet i nord er avhengig av aa fiske i et reint hav

    Energy Technology Data Exchange (ETDEWEB)

    Vaage, Roald

    1997-12-31

    This presentation begins by putting the northern seas in a geographic and oceanographic context. This is important for the understanding of the threats and possibilities faced by Norway in the near waters when it comes to keeping these waters clean. Contaminations in Norwegian waters may be carried by the Gulf Stream straight into the Barents Sea to important fish areas west of Spitzbergen. Organic environmental poisons like PCB found in fish from the Barents Sea are mainly air transported. Radioactive contamination of fish from the Barents Sea is decreasing, although it has never been large, but the concentration of environmental poisons and extraneous matter is increasing. It causes concern that considerable concentrations of environmental poisons have been found in polar bears. People in the north of Norway, are not at present worried about clean sea or failing fish resources, but rather about the fact that strong interest groups and others will take an interest in the Barents Sea and adjacent seas. To qualify for an exploration licence for this area, oil companies must document that they will not compromise the purity of Europe`s cleanest seas. It now appears that the greatest threats to the Barents Sea may not come from northbound contaminated flows or from discharge of water from Russian rivers, but from petroleum activities in the area. Probably the petroleum activities will be subject to increasing attention from many sides and the companies will depend on keeping these areas in a clean condition. 12 figs.

  9. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    Directory of Open Access Journals (Sweden)

    Rénald Belley

    Full Text Available The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen, quality of organic matter (chl a:phaeo and C:N ratios and sediment characteristics (mean grain size and porosity explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and

  10. Assimilation of ocean colour to improve the simulation and understanding of the North West European shelf-sea ecosystem

    Science.gov (United States)

    Ciavatta, Stefano; Brewin, Robert; Skakala, Jozef; Sursham, David; Ford, David

    2017-04-01

    Shelf-seas and coastal zones provide essential goods and services to humankind, such as fisheries, aquaculture, tourism and climate regulation. The understanding and management of these regions can be enhanced by merging ocean-colour observations and marine ecosystem simulations through data assimilation, which provides (sub)optimal estimates of key biogeochemical variables. Here we present a range of applications of ocean-colour data assimilation in the North West European shelf-sea. A reanalysis application illustrates that assimilation of error-characterized chlorophyll concentrations could provide a map of the shelf sea vulnerability to oxygen deficiency, as well as estimates of the shelf sea uptake of atmospheric carbon dioxide (CO2) in the last decade. The interannual variability of CO2 uptake and its uncertainty were related significantly to interannual fluctuations of the simulated primary production. However, the reanalysis also indicates that assimilation of total chlorophyll did not improve significantly the simulation of some other variables, e.g. nutrients. We show that the assimilation of alternative products derived from ocean colour (i.e. spectral diffuse attenuation coefficient and phytoplankton size classes) can overcome this limitation. In fact, these products can constrain a larger number of model variables, which define either the underwater light field or the structure of the lower trophic levels. Therefore, the assimilation of such ocean-colour products into marine ecosystem models is an advantageous novel approach to improve the understanding and simulation of shelf-sea environments.

  11. Fishing cod in the Baltic Sea - Gambling with the ecosystem services

    Science.gov (United States)

    Björkman, Sven; Nordlöf, Anders

    2014-05-01

    The population of cod in the Baltic sea has over the last decades decreased due to overfishing. To make the students aware of this problem and also to find a solution they are introduced to a game. The purpose of the game is to let the students know how to use renewable natural resources in these aspects; 1 Fishing cod without using it up 2 That solidarity is needed if you are sharing a resource 3 That cooperation is the key to keeping a natural resource healthy. The students are fishermen in group of four and are equipped with a boat. The playing board is a map over the Baltic sea. The rules of the game include the carrying capacity of the sea, how much fish one fishing boat is allowed to pick up, how much it costs to have a boat, and possibilities to buy a bigger boat. The game has two rounds: In round one the students in the group are competing against each other, they are not allowed to talk to each other and they are supposed to get as much fish as they can. As a consequence after round one the sea will become empty. In round two the groups compete with each other and they are coworking within the group. After this round the result is different from the first round. The catches are bigger than in round one and still there are cod left in the sea, which will generate a good fishing in the future.. The discussions after the game can be about why the two rounds ended so different, general discussion about "tragedy of the commons", sustainable use of ecosystem services and discussions about resources in common.

  12. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    Science.gov (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  13. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.

    2005-01-01

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  14. Salinity and other variables collected from Surface underway observations using not applicable and other instruments from unknown platforms in various oceans and seas World-Wide from 1965-01-01 to 1994-12-31 (NCEI Accession 0157055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157055 includes Surface underway, chemical and physical data collected from unknown platforms in the Arctic Ocean, Barents Sea, Bay of Biscay, Indian...

  15. Marine ecosystems in conditions of formed nuclear testing area (the Novaya Zemlya archipelago)

    International Nuclear Information System (INIS)

    Gal'tsova, V.V.; Alekseev, D.K.

    2008-01-01

    The main aim of our study was to evaluate the impact of a radioactive contamination on benthic communities of Barents and Kara Sea. The special attention was given to the meiobenthic organisms - the small bottom animals inhabiting a small space between grains of the sediment. It is possible to conclude that meiobenthos reacts to the radioactive pollution by the change of the taxonomic diversity and quantitative characteristics faster then macrobenthos, which is more inert component, less subjected to the influence of this factor. (authors)

  16. Migration of 90Sr in the cooling basin of the Ignalina atomic power plant and the Baltic sea ecosystems

    International Nuclear Information System (INIS)

    Dushauskiene-Duzh, R.

    1992-01-01

    On the basis of a long-time radiation monitoring of the Ignalina APP and the Baltic sea ecosystems determined regularities of the 90 Sr distribution in the main components of the ecosystems (water, bottom sediments, biota). It was established that 90 Sr accumulation coefficient in the aquatic plants of the warmed up water zone of the Ignalina APP is 2.6 lower than that of the stable water suction zone. The accumulation of 90 Sr in molluscs is higher in the warmed up water zone than in the stable water zone. It was determined that the mean concentration of 90 Sr in surface water of near-shore areas of the Baltic sea are higher than that in the open Baltic. Concentration of the 90 Sr in the biota in the Baltic sea is about 300-500 times higher than in the water. The accumulation level of 90 Sr in zoobenthos varies in different species being in organs and tissues of fishes consuming actively calcium for building up their skeletons. 90 Sr levels in bottom sediments of bays are higher than those in sediments of the open sea. Accumulation of 90 Sr in muds is about 11 times higher than in sands. (author). 5 figs., 3 refs

  17. Sea otters homogenize mussel beds and reduce habitat provisioning in a rocky intertidal ecosystem.

    Directory of Open Access Journals (Sweden)

    Gerald G Singh

    Full Text Available Sea otters (Enhydra lutris are keystone predators that consume a variety of benthic invertebrates, including the intertidal mussel, Mytilus californianus. By virtue of their competitive dominance, large size, and longevity, M. californianus are ecosystem engineers that form structurally complex beds that provide habitat for diverse invertebrate communities. We investigated whether otters affect mussel bed characteristics (i.e. mussel length distributions, mussel bed depth, and biomass and associated community structure (i.e. biomass, alpha and beta diversity by comparing four regions that varied in their histories of sea otter occupancy on the west coast of British Columbia and northern Washington. Mussel bed depth and average mussel lengths were 1.5 times lower in regions occupied by otters for >20 years than those occupied for <5 yrs. Diversity of mussel bed associated communities did not differ between regions; however, the total biomass of species associated with mussel beds was more than three-times higher where sea otters were absent. We examined alternative explanations for differences in mussel bed community structure, including among-region variation in oceanographic conditions and abundance of the predatory sea star Pisaster ochraceus. We cannot discount multiple drivers shaping mussel beds, but our findings indicate the sea otters are an important one. We conclude that, similar to their effects on subtidal benthic invertebrates, sea otters reduce the size distributions of intertidal mussels and, thereby, habitat available to support associated communities. Our study indicates that by reducing populations of habitat-providing intertidal mussels, sea otters may have substantial indirect effects on associated communities.

  18. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    indicates a dominant mass contribution, especially in the Greenland, Norwegian, and Barents Seas sector.

  19. Shelf-sea ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  20. Integrated ecosystem services assessment: Valuation of changes due to sea level rise in Galveston Bay, Texas, USA.

    Science.gov (United States)

    Yoskowitz, David; Carollo, Cristina; Pollack, Jennifer Beseres; Santos, Carlota; Welder, Kathleen

    2017-03-01

    The goal of the present study was to identify the potential changes in ecosystem service values provided by wetlands in Galveston Bay, Texas, USA, under the Intergovernmental Panel on Climate Change (IPCC) A1B max (0.69 m) sea level rise scenario. Built exclusively upon the output produced during the Sea Level Affecting Marshes Model 6 (SLAMM 6) exercise for the Galveston Bay region, this study showed that fresh marsh and salt marsh present a steady decline from 2009 (initial condition) to 2100. Fresh marsh was projected to undergo the biggest changes, with the loss of approximately 21% of its extent between 2009 and 2100 under the A1B max scenario. The percentages of change for salt marsh were less prominent at approximately 12%. This trend was also shown in the values of selected ecosystem services (disturbance regulation, waste regulation, recreation, and aesthetics) provided by these habitats. An ordinary least squares regression was used to calculate the monetary value of the selected ecosystem services provided by salt marsh and fresh marsh in 2009, and in 2050 and 2100 under the A1B max scenario. The value of the selected services showed potential monetary losses in excess of US$40 million annually in 2100, compared to 2009 for fresh marsh and more than $11 million for salt marsh. The estimates provided here are only small portions of what can be lost due to the decrease in habitat extent, and they highlight the need for protecting not only built infrastructure but also natural resources from sea level rise. Integr Environ Assess Manag 2017;13:431-443. © 2016 SETAC. © 2016 SETAC.

  1. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-01-01

    inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability

  2. VIKING EXPANSION NORTHWARDS - MEDIEVAL SOURCES

    NARCIS (Netherlands)

    HOFSTRA, T; SAMPLONIUS, K

    Evidence for Scandinavian activities in the northwestern part of the Barents Sea is scanty; according to the Annals, Svalbaro(i) was discovered in 1194, but the entry refers to Jan Mayen rather than present-day Svalbard/Spitsbergen. By contrast, the southern fringe of the Barents Sea was more than

  3. Spatial features of glacier changes in the Barents-Kara Sector

    Science.gov (United States)

    Sharov, A. I.; Schöner, W.; Pail, R.

    2009-04-01

    In the 1950s, the total area of glaciers occupying separate islands and archipelagos of the Barents and Kara seas exceeded 92,300 km² (Atlas of the Arctic 1985). The overall glacier volume reached 20,140 km³ and the average ice thickness was given as 218 m. Our recent remote sensing studies and mass-balance estimates using spaceborne ASTER and LANDSAT imagery, ERS and JERS radar interferometric mosaics, and ICESat altimetry data revealed that, in the 2000s, the areal extent and volume of Barents-Kara glaciation amounted to 86,200±200 km² and 19,330±20 km³, respectively. The annual loss of land ice influenced by severe climate change in longitudinal direction was determined at approx. 8 km³/a in Svalbard, 4 km³/a both in the Franz Josef Land and Novaya Zemlya archipelagos, and less than 0.3 km³/a in Severnaya Zemlya over the past 50 years. The average ice thickness of remaining glaciation increased to 224 m. This fact was explained by rapid disintegration of thinner glacier margins and essential accumulation of snow at higher glacier elevations. Both effects were clearly visible in the series of satellite image maps of glacier elevation changes generated within the framework of the INTEGRAL, SMARAGD and ICEAGE research projects. These maps can be accessed at http://joanneum.dib.at/integral or smaragd (cd results). The largest negative elevation changes were typically detected in the seaward basins of fast-flowing outlet glaciers, both at their fronts and tops. Ablation processes were stronger manifested on southern slopes of ice caps, while the accumulation of snow was generally higher on northern slopes so that main ice divides "shifted" to the north. The largest positive elevation changes (about 100 m) were found in the central part of the study region in the accumulation areas of the biggest ice caps, such as Northern Ice Cap in Novaya Zemlya, Tyndall and Windy ice domes in Franz Josef Land, and Kvitoyjokulen at Kvitøya. The sides of these glaciers

  4. Natural occurring radionuclide 210Po in the components of the Black Sea ecosystem

    International Nuclear Information System (INIS)

    Lazorenko, G. G.; Polikarpov, G. G.

    2006-01-01

    The interest to study of the behavior of naturally occurring radionuclide 2 10Po in marine ecosystem was caused by its main contribution to the doses of irradiation to hydrobionts. This work presents own data of 2 10Po concentrations determined in water, bottom sediments and hydrobionts of the Black Sea in 1998-2004. 2 10Po concentrations in water varied from 0.58 to 1.02 Bqxm - 3. Their range in bottom sediments from shelf zone and open part of the Black Sea was 11.5-496.5 Bqxkg - 1 dry weight with maximum in the North-West region. The range of 2 10Po concentrations in bottom sediments from the Eastern part of the Black Sea was 4.5-220 Bqxkg-1 dry weight. Concentration factors (CF) of 2 10Po in bottom sediments reached 10 4 -10 5 . 2 10Po concentrations in the Black Sea hydrobionts are reported and compared with published data in the same taxa. The range of 2 10Po concentrations in the Black Sea mesozooplankton was 1.7-3.5 Bqxkg - 1 wet weight. It was 1.9-2.9 Bqxkg - 1 wet weight in the representative species of macro plankton community, namely the ctenophore Beroe ovata. 2 10Po concentrations in the Black Sea fishes depend on their belonging to different ecological groups and decrease from pelagic species to demersal and bottom ones. 2 10Po concentrations in the Black Sea mollusks excluding small species Nana nerithea were on the highest levels determined in hydrobionts inhabiting in this region. Concentration factors of this radionuclide, estimated on a wet weight basis, reached values of 1.5x10 3 for macrophytes, 4x10 3 for total zooplankton, 10 3 -10 4 for the entire fishes, depending on their ecological groups affiliation and (3.0-6.7) x10 4 for mollusks. So, the ability of the Black Sea hydrobionts to accumulate natural radionuclide 2 10Po is comparable with that of similar species from others marine and oceanic areas

  5. Salton Sea Ecosystem Monitoring Project

    Science.gov (United States)

    Miles, A. Keith; Ricca, Mark A.; Meckstroth, Anne; Spring, Sarah E.

    2009-01-01

    The Salton Sea is critically important for wintering and breeding waterbirds, but faces an uncertain future due to water delivery reductions imposed by the Interstate and Federal Quantification Settlement Agreement of 2003. The current preferred alternative for wetland restoration at the Salton Sea is saline habitat impoundments created to mitigate the anticipated loss of wetland habitat. In 2006, a 50-hectare experimental complex that consisted of four inter-connected, shallow water saline habitat ponds (SHP) was constructed at the southeastern shoreline of the Salton Sea and flooded with blended waters from the Alamo River and Salton Sea. The present study evaluated ecological risks and benefits of the SHP concept prior to widespread restoration actions. This study was designed to evaluate (1) baseline chemical, nutrient, and contaminant measures from physical and biological constituents, (2) aquatic invertebrate community structure and colonization patterns, and (3) productivity of and contaminant risks to nesting waterbirds at the SHP. These factors were evaluated and compared with those of nearby waterbird habitat, that is, reference sites.

  6. Climate change and control of the southeastern Bering Sea pelagic ecosystem

    Science.gov (United States)

    Hunt, George L., Jr.; Stabeno, Phyllis; Walters, Gary; Sinclair, Elizabeth; Brodeur, Richard D.; Napp, Jeffery M.; Bond, Nicholas A.

    2002-12-01

    We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock ( Theragra chalcogramma), Pacific cod ( Gadus macrocephalus) and arrowtooth flounder ( Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin ( Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to

  7. Nutrients, chlorophyll, fractional primary productivity in water column of the North Arabian Sea in support of the North Arabian Sea Environment and Ecosystem Research from 1992-1994 (NODC Accession 0000778)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Five cruises were carried out under the Pak-US cooperative project 'North Arabian Sea Environment and Ecosystem Research' (NASEER) from 1992-1994. The main objective...

  8. Methodological challenges in assessing the environmental status of a marine ecosystem: case study of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Henn Ojaveer

    Full Text Available Assessments of the environmental status of marine ecosystems are increasingly needed to inform management decisions and regulate human pressures to meet the objectives of environmental policies. This paper addresses some generic methodological challenges and related uncertainties involved in marine ecosystem assessment, using the central Baltic Sea as a case study. The objectives of good environmental status of the Baltic Sea are largely focusing on biodiversity, eutrophication and hazardous substances. In this paper, we conduct comparative evaluations of the status of these three segments, by applying different methodological approaches. Our analyses indicate that the assessment results are sensitive to a selection of indicators for ecological quality objectives that are affected by a broad spectrum of human activities and natural processes (biodiversity, less so for objectives that are influenced by a relatively narrow array of drivers (eutrophications, hazardous substances. The choice of indicator aggregation rule appeared to be of essential importance for assessment results for all three segments, whereas the hierarchical structure of indicators had only a minor influence. Trend-based assessment was shown to be a useful supplement to reference-based evaluation, being independent of the problems related to defining reference values and indicator aggregation methodologies. Results of this study will help in setting priorities for future efforts to improve environmental assessments in the Baltic Sea and elsewhere, and to ensure the transparency of the assessment procedure.

  9. Prostitution as a social issue - the experiences of Russian women prostitutes in the Barents region

    Directory of Open Access Journals (Sweden)

    Pia Skaffari

    2014-04-01

    Full Text Available This article analyses prostitution in the Barents Region as a social question through the subjective experiences of female Russian prostitutes. The women who were interviewed for this research live their everyday lives in the context of Russia. The operational possibilities of the women are based on a sociocultural framework which differs from that of Western countries. This article addresses the following question: How does prostitution construct the agency of women in the Barents Region? The question is explored in terms of the social relationships of the women, their everyday agency within the local environment, their living conditions, and the marginal conditions of their lives. Our focus is on the social structures and the position of the women within them. The data used in this article consist of observational material as well as interviews with 17 women, wherein they discuss their experiences of prostitution in the Barents Region. All of the material was collected in Murmansk, Russia between 2004 and 2008. Qualitative content analysis was performed as a means to understand the aforementioned women’s experiences of prostitution and its relation to everyday life. Prostitution is a product of social structures, a woman’s position, the accessibility of support, and the available personal, social and mental resources. Sometimes prostitution is a way to survive. Women who practice prostitution are often seen only as stereotypes, but the individual paths of their lives and the social contexts in which they live are integral to an understanding of the causes and effects of sex work.

  10. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  11. Reconstruction and prediction of radioactive contamination of the ecosystems of the Arctic Seas

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1995-01-01

    An analysis of the radionuclide content in components of the marine ecosystem was performed on the basis of observational data. The site-specific factors of radionuclide accumulation in marine biota and sediments were calculated for 90 Sr and 137 Cs. The following can be concluded from the comparison of site-specific accumulation factors with the world averaged data (IAEA Publication : 247): 1) 90 Sr concentration factors in algae and zooplankton in the Arctic Sea are roughly the same as world-averaged values. However, for fish they are much higher then average values and are mostly as high as the upper estimates of 90 Sr concentration factors presented in the IAEA Publication. 2) 137 Cs concentration factors in algae and zooplankton in the Arctic Sea are practically equal to the generalized world data. However, they are twice as high as world-averaged values for fish, but not going beyond the range of uncertainty for world-averaged data. 8 refs., 2 tabs

  12. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  13. "Tabula Sinvs Venetici" von W. Barents und ihre Geschichtilische und Geographische Bedeutung

    Directory of Open Access Journals (Sweden)

    Mithad Kozličić

    1999-06-01

    Full Text Available In der wissenschaftlichen Literatur sind zwei Varianten der Seekarte der Adria vom niederländischen Seefahrer und Polarforscher Willem Barents (1550-1597 bekannt. Die erste, in diesem Aufsatz als K-1 bezeichnete Karte, wurde in Amsterdam 1595 hergestellt und gedruckt. Sie hatte anfänglich eine praktisch-navigatorische Funktion. Die zweite, K-2, ins Jahr 1595 datierte (1637-1662 Karte, wurde als geostrategische Karte der Adria und der südlichen Teile Europas ausgenützt. An den adriatischen Nordküsten, besonders in ihrem Hinterland, geschahen mit dem Durchbruch der Türken seit der Hälfte des 16. Jahrhunderts wichtige militärische und politische Änderungen. In den “Atlanten” des Niederländers Jan (Johann; Joannes Janssonius (1588-1664 fehlte gerade solch eine Karte, die auch mehrmals in Amsterdam gedruckt wurde, aber zwischen 1637 und 1662. Die K-1 von Barents, deren Druckplatte Janssonius zur Verfügung hatte, konnte diese Funktion befriedigen. Deswegen machte Janssonius nur die nötigen dem darstellenden Standard der ersten Hälfte des 17. Jahrhunderts entsprechenden Änderungen, und als solche wurde sie gedruckt. Die K-2 verlor ihre ursprüngliche praktisch-navigatorische Funktion und wurde eine Karte von geostrategischer Bedeutung. Mit diesen Grundfragen befaßt sich dieser Aufsatz.

  14. Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea

    NARCIS (Netherlands)

    Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis

  15. Implementing ecosystem-based marine management as a process of regionalisation

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Raakjær, Jesper; van Tatenhove, Jan

    2015-01-01

    and the Baltic Sea Fisheries Forum, both examples of regionalisation processes in order to implement ecosystem-based marine management. The Helsinki Commission Group for implementation of the ecosystem approach is a joint management body for the implementation of the Baltic Sea Action Plan and the European Union......This article deals with the implementation of ecosystem-based marine management in the Baltic Sea. It explores and documents in particular the preliminary lessons from environmental and fisheries management with reference to the Helsinki Commission Group for implementation of the ecosystem approach......'s Marine Strategy Framework Directive. The Baltic Sea Fisheries Forum is a new governing body to facilitate regional cooperation in fisheries management. The aim of the article is twofold: a) to describe and discuss two different pathways of regionalisation in the Baltic Sea and b) to explore how...

  16. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  17. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    Science.gov (United States)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.; Martma, Tõnu; Ivanov, Boris V.; Kowalczuk, Piotr; Granskog, Mats A.

    2016-05-01

    The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350 nm (aCDOM(350)) and DOC (exceeding 10 m-1 and 550 μmol l-1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99-25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from

  18. Ecosystem structure and fishing impacts in the northwestern Mediterranean Sea using a food web model within a comparative approach

    Science.gov (United States)

    Corrales, Xavier; Coll, Marta; Tecchio, Samuele; Bellido, José María; Fernández, Ángel Mario; Palomera, Isabel

    2015-08-01

    We developed an ecological model to characterize the structure and functioning of the marine continental shelf and slope area of the northwestern Mediterranean Sea, from Toulon to Cape La Nao (NWM model), in the early 2000s. The model included previously modeled areas in the NW Mediterranean (the Gulf of Lions and the Southern Catalan Sea) and expanded their ranges, covering 45,547 km2, with depths from 0 to 1000 m. The study area was chosen to specifically account for the connectivity between the areas and shared fish stocks and fleets. Input data were based on local scientific surveys and fishing statistics, published data on stomach content analyses, and the application of empirical equations to estimate consumption and production rates. The model was composed of 54 functional groups, from primary producers to top predators, and Spanish and French fishing fleets were considered. Results were analyzed using ecological indicators and compared with outputs from ecosystem models developed in the Mediterranean Sea and the Gulf of Cadiz prior to this study. Results showed that the main trophic flows were associated with detritus, phytoplankton, zooplankton and benthic invertebrates. Several high trophic level organisms (such as dolphins, benthopelagic cephalopods, large demersal fishes from the continental shelf, and other large pelagic fishes), and the herbivorous salema fish, were identified as keystone groups within the ecosystem. Results confirmed that fishing impact was high and widespread throughout the food web. The comparative approach highlighted that, despite productivity differences, the ecosystems shared common features in structure and functioning traits such as the important role of detritus, the dominance of the pelagic fraction in terms of flows and the importance of benthic-pelagic coupling.

  19. Stratigraphy and palynology of the Lower Carboniferous Sortebakker Formation, Wandel Sea Basin, eastern North Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Dalhoff, F.; Stemmerik, L. [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Vigran, J.O. [IKU Petroleum Research, Trondheim (Norway)

    2000-07-01

    Two palynological assemblages of Early Carboniferous age have been recorded from the upper parts of the non-marine, fluvial-dominated Sortebakker Formation in the Wandel Sea Basin. The stratigraphically lower assemblage includes poorly preserved Cingulizonates spp., Densosporites spp., Lycospora spp. and Schulzospora spp. whereas the upper assemblage contains a more diversified microflora including the stratigraphically important Tripartites distinctus, Potoniespores delicatus and Savitrisporites spp. The microflora enables correlation and dating of the succession to the late Visean Perotrilites tessellatus - Schulzospora campyloptera (TC) and Raistrickia nigra - Triquitrites marginatus (NM) miospore Biozones of western Europe. The depositional facies correspond to those seen in time equivalent deposits from East Greenland, Svalbard, Bjoernoeya and the Barents Sea. (au)

  20. SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone

    DEFF Research Database (Denmark)

    Kaleschke, Lars; Tian-Kunze, Xiangshan; Maaß, Nina

    2016-01-01

    system for ship route optimisation has been developed and was tested during this field campaign with the ice-strengthened research vessel RV Lance. The ship cruise was complemented with coordinated measurements from a helicopter and the research aircraft Polar 5. Sea ice thickness was measured using...... an electromagnetic induction (EM) system from the bow of RV Lance and another EM-system towed below the helicopter. Polar 5 was equipped among others with the L-band radiometer EMIRAD-2. The experiment yielded a comprehensive data set allowing the evaluation of the operational forecast and route optimisation system...

  1. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  2. Modelling the effects of climate change, species interactions and fisheries - towards Ecosystem-based Fisheries Management in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Lindegren, Martin

    aim of this thesis is to develop a decision-support tool fit for achieving EBFM in the Central Baltic Sea, an ecosystem heavily impacted by overfishing and climate change. To that end, a theoretical approach for modelling multispecies population dynamics was combined with advanced statistical methods...

  3. The distribution of artificial radionuclides in the waters of the Norwegian-Greenland Sea in 1985

    International Nuclear Information System (INIS)

    Wedekind, C.; Gabriel, H.; Goroncy, I.; Framcke, G.

    1997-01-01

    In the summer of 1985, sea water samples were taken to determine 3 H, 90 Sr, 134 Cs, 137 Cs and transuranics within a grid of 165 stations including 16 depth series down to the seafloor, covering all ice-free areas. The distribution of the activity concentrations and the nuclide ratios reveal the contamination pathway into the surface and deeper layers of the Norwegian-Greenland Sea from nuclear weapon fallout and civil nuclear technology. Moreover, the investigations show that: (1) a yearly discharge of 1 TBq (10 12 Bq) 90 Sr into the Irish Sea (English Channel) is diluted on its way to the southern Norwegian Sea, raising the concentration by about 0.04 m Bql -1 ; (2) the drift time to this sea area is around 4 years; (3) about 40% of the 137 Cs discharged does not reach the Norwegian Sea and (4) a further 30% leaves the Norwegian-Greenland Sea via the North Cape and flows into the Barents Sea. Investigations into the vertical distribution and stratification of the radioactivity indicate the time scale on which the radionuclides travel to the deeper layers. (author)

  4. Efficiency of fisheries is increasing at the ecosystem level

    DEFF Research Database (Denmark)

    Jacobsen, Nis Sand; Burgess, Matthew G; Andersen, Ken Haste

    2017-01-01

    examine the efficiency of North Sea and Baltic Sea fisheries with respect to economic rent and ecosystem impact, finding both to be inefficient but steadily improving. Our results suggest the following: (i) a broad and encouraging trend towards ecosystem-level efficiency of fisheries; (ii) that ecosystem......Managing fisheries presents trade-offs between objectives, for example yields, profits, minimizing ecosystem impact, that have to be weighed against one another. These trade-offs are compounded by interacting species and fisheries at the ecosystem level. Weighing objectives becomes increasingly...... regressing at least one other. We investigate the ecosystem-level efficiency of fisheries in five large marine ecosystems (LMEs) with respect to yield and an aggregate measure of ecosystem impact using a novel calibration of size-based ecosystem models. We estimate that fishing patterns in three LMEs (North...

  5. The response of the Goddard general circulation model to sea ice boundary conditions

    Science.gov (United States)

    Herman, G.; Johnson, W. T.

    1979-01-01

    The effect of variation in the location of Arctic sea ice boundaries on the model's mean monthly climatology was examined. When sea ice boundaries were at their maximum extent the differences resulted in the January-February climatology. Sea level pressure was higher over the Barents Sea, in the Davis Strait, and in the Sea of Okhotsk. Pressure was lower by as much as 8 mb in the North Atlantic between Iceland and the British Isles, and in the Gulf of Alaska. Pressure rises in the eastern subtropical regions of the North Atlantic and North Pacific accompanied pressure falls in the Gulf of Alaska and Icelandic region. Geopotential heights at 500 mb were more than 100 gpm lower in the Bering Sea, and more than 120 gpm lower in the Icelandic region. Zonally averaged temperatures were cooler by 4 deg C below 3800 mb between 50 deg and 70 deg N with little change elsewhere. Zonally averaged geopotentials were lower by as much as 70 gpm in the mid-troposphere between 50/-70 deg N and zonal winds increased by as much as 3 m s in the mid-troposphere between 35/-50 deg N.

  6. Gelationous Organism (Macrozooplankton in the Black Sea and Effects

    Directory of Open Access Journals (Sweden)

    Zekiye BİRİNCİ ÖZDEMİR

    2017-06-01

    Full Text Available It is important problem as ecological, invasion of the marine systems by the gelatinous organism that distributed natural balance. Black Sea ecosystem has been changed critical level by the some causes such as marine pollution, eutrophication, climate change, overfishing, invasive gelatinous organisms. Effect in the ecosystem of gelatinous organisms occurred especially with collapsed of Black Sea anchovy (Engraulis encrasicolus stock and fishery production. In the study, gelatinous organism species, important for Black sea, and its effects in the Black sea ecosystem were presented.

  7. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  8. Collective doses to man from dumping of radioactive waste in the Arctic Seas.

    Science.gov (United States)

    Nielsen, S P; Iosjpe, M; Strand, P

    1997-08-25

    A box model for the dispersion of radionuclides in the marine environment covering the Arctic Ocean and the North Atlantic Ocean has been constructed. Collective doses from ingestion pathways have been calculated from unit releases of the radionuclides 3H, 60Co, 63Ni, 90Sr, 129I, 137Cs, 239Pu and 241Am into a fjord on the east coast of NovayaZemlya. The results show that doses for the shorter-lived radionuclides (e.g. 137Cs) are derived mainly from seafood production in the Barents Sea. Doses from the longer-lived radionuclides (e.g. 239Pu) are delivered through marine produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion of the fuel ignoring the barriers that prevent direct contact between the fuel and the seawater. The second scenario selected assumed that releases of radionuclides from spent nuclear fuel do not occur until after failure of the protective barriers. All other liquid and solid radioactive waste was assumed to be available for dispersion at the time of discharge in both scenarios. The estimated collective dose for the worst-case scenario was about 9 manSv and that for the second scenario was about 3 manSv. In both cases, 137Cs is the radionuclide predicted to dominate the collective doses as well as the peak collective dose rates.

  9. Contrasting Patterns of Phytoplankton Assemblages in Two Coastal Ecosystems in Relation to Environmental Factors (Corsica, NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Marie Garrido

    2014-04-01

    Full Text Available Corsica Island is a sub-basin of the Northwestern Mediterranean Sea, with hydrological features typical of both oligotrophic systems and eutrophic coastal zones. Phytoplankton assemblages in two coastal ecosystems of Corsica (the deep Bay of Calvi and the shallow littoral of Bastia show contrasting patterns over a one-year cycle. In order to determine what drives these variations, seasonal changes in littoral phytoplankton are considered together with environmental parameters. Our methodology combined a survey of the physico-chemical structure of the subsurface water with a characterization of the phytoplankton community structure. Sampling provided a detailed record of the seasonal changes and successions that occur in these two areas. Results showed that the two sampled stations presented different phytoplankton abundance and distribution patterns, notably during the winter–spring bloom period. Successions in pico-, nano-, and microphytoplankton communities appeared mainly driven by differences in the ability to acquire nutrients, and in community-specific growth rates. Phytoplankton structure and dynamics are discussed in relation to available data on the Northwestern Mediterranean Sea. These results confirm that integrated monitoring of coastal areas is a requisite for gaining a proper understanding of marine ecosystems.

  10. Abrasion and algal fouling of coarse material on the Murman littoral

    Directory of Open Access Journals (Sweden)

    Malavenda S. V.

    2017-03-01

    Full Text Available On the Murmansk coast of the Barents Sea the boulder littoral zone is widely spread mostly covered by Fucus communities. This is one of the most productive benthic communities of the Barents Sea. The studies of intertidal communities have the long history, but the dynamics of intertidal ecosystems due to surf and storms is not clear. The goal of the work is to identify the leading factors that determine the rate of abrasion of coarse material and fouling algae-macrophytes of the intertidal zone of Murman. The study has been conducted in the Zelenetskaya Bay of the Barents Sea on the basis of the biological station of the MMBI KSC RAS. The rate of abrasion has been carried out during 2004–2013, phyto-overgrowing – 2009–2013. In three pilot landfills 12 samples of coarse material have been exposed during the year (from July to next July. The weight change of the sample as well as species composition and biomass of algae of fouling communities have been investigated. The influence of the surf intensity, temperature of water and air has been analyzed (univariate analysis of variance ANOVA has been applied. It has been shown that on the littoral of the Murmansk coast the abrasion of coarse material is determined primarily by the number of storms, so the storm rate has been proposed. It has been revealed that the density of fouling boulders with macroalgae depends primarily on the intensity of the surf and the average gradient of air temperature. The basis for the emerging communities of annual species are green (Acrosiphonia arcta, Blidingia minima, Spongomorpha aeruginosa and brown algae (Pylaiella littoralis, Dictyosiphon chordaria. These algae groups are found everywhere in Fucus communities of the boulder intertidal zone of the Murman coast and probably they are the intermediate stage of fouling the coarse-grained material

  11. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  12. Seasonal PCB bioaccumulation in an arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration.

    Science.gov (United States)

    Laender, Frederik De; Oevelen, Dick Van; Frantzen, Sylvia; Middelburg, Jack J; Soetaert, Karline

    2010-01-01

    Primary production and species' lipid contents in Arctic ecosystems are notoriously seasonal. Additionally, seasonal migration patterns of fish may alter prey availability and thus diet. Taking the southern Barents Sea as a study region and PCBs as model contaminants, we examined to what extent each of these factors cause bioaccumulation in fish to change throughout the year. Data on physiology and standing stocks of multiple trophic levels were used to estimated season-specific carbon budgets and by inference also corresponding values for food ingestion and production of cod, capelin, and herring. When combining these values with Arctic lipid dynamics for bioaccumulation model parameter setting, we predicted bioaccumulation factors (BAFs) that were in good agreement with BAFs for cod and capelin observed between 1998 and 2008. BAFs in all fish were 10 times lower in summer than in spring and fall/winter and were mainly driven by lipid dynamics. Trophic magnification factors (TMFs: increase in BAF per unit increase in trophic level as derived from our carbon budgets) were highest for PCB 153 during spring (2.3-2.4) and lowest for PCB 52 in summer and fall/winter (1.5-1.6) and were driven by seasonal shifts in trophic level and lipid dynamics.

  13. Modelling the effects of climate change, species interactions and fisheries – towards Ecosystem-based Fisheries Management in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Lindegren, Martin

    aim of this thesis is to develop a decision-support tool fit for achieving EBFM in the Central Baltic Sea, an ecosystem heavily impacted by overfishing and climate change. To that end, a theoretical approach for modelling multispecies population dynamics was combined with advanced statistical methods...

  14. Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?

    Science.gov (United States)

    Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.

    2018-03-01

    The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

  15. Rapid formation of a sea ice barrier east of Svalbard

    Science.gov (United States)

    Nghiem, S. V.; van Woert, M. L.; Neumann, G.

    2005-11-01

    Daily SeaWinds scatterometer images acquired by the QuikSCAT satellite show an elongated sea ice feature that formed very rapidly (˜1-2 days) in November 2001 east of Svalbard over the Barents Sea. This sea ice structure, called "the Svalbard sea ice barrier," spanning approximately 10° in longitude and 2° in latitude, restricts the sea route and poses a significant navigation hazard. The secret of its formation appears to lie in the bottom of the sea: A comparison between bathymetry from the International Bathymetric Chart of the Arctic Ocean data and the pattern of sea ice formation from scatterometer data reveals that the sea ice barrier conforms well with and stretches above a deep elongated channel connecting the Franz Josef-Victoria Trough to the Hinlopen Basin between Svalbard and Franz Josef Land. Historic hydrographic data from this area indicate that this sea channel contains cold Arctic water less than 50 m below the surface. Strong and persistent cold northerly winds force strong heat loss from this shallow surface layer, leading to the rapid formation of the sea ice barrier. Heat transfer rates estimated from European Centre for Medium-Range Weather Forecasts temperature and wind data over this region suggest that the surface water along the deep channel can be rapidly cooled to the freezing point. Scatterometer results in 1999-2003 show that sea ice forms in this area between October and December. Understanding the ice formation mechanisms helps to select appropriate locations for deployment of buoys measuring wind and air-sea temperature profile and to facilitate ice monitoring, modeling, and forecasting.

  16. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    Science.gov (United States)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  17. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic

    Science.gov (United States)

    Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut

    2018-02-01

    Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link

  18. The Sea Around Us Project: documenting and communicating global fisheries impacts on marine ecosystems.

    Science.gov (United States)

    Pauly, Daniel

    2007-06-01

    The Sea Around Us Project, initiated by the Pew Charitable Trusts in Philadelphia, PA, and located at the Fisheries Centre, University of British Columbia, Vancouver, Canada, started in mid 1999. Its goal was (and still is) to investigate the impact of fisheries on marine ecosystems and to propose policies to mitigate these impacts. Although conceived as a global activity, the project first emphasized the data-rich North Atlantic as a test bed for developing its approaches, which rely on mapping of catch data and indicators of ecosystem health derived from the analysis of long catch time series data. Initial achievements included mapping the decline, throughout the North Atlantic basin, of high-trophic level fishes from 1900 to the present and the presentation of compelling evidence of change in the functioning of the North Atlantic ecosystems, summarized in a 2003 book. The Central and South Atlantic were the next basins to be tackled, with emphasis on the distant-water fleet off West Africa, culminating in a major conference in Dakar, Senegal, in 2002. The project then emphasized the North Pacific, Antarctica, and marine mammals and the multiplicity of tropical Indo-Pacific fisheries before it turned completely global, with all our major analyses and reports (e.g., on the interactions between marine mammals and fisheries, on fuel consumption by fleets, on the catches of small-scale fisheries, on subsidies to fisheries) being based on global studies. Broadly, the work of the project is aimed at a reappraisal of fisheries, from the benign activity that many interested people still perceive them to be, to a realization that they have become the driver for massive loss of biodiversity in the ocean. Moreover, the emphasis on global estimates (rather than local estimates of dubious generality) has allowed the project to contribute to various global initiatives (e.g., developing the Marine Trophic Index for the Convention on Biological Diversity, quantifying marine

  19. Towards the implementation of an integrated ecosystem fleet-based management of European fisheries

    NARCIS (Netherlands)

    Gascuel, D.; Merino, G.; Döring, R.D.; Druon, D.N.; Goti, L.; Guénette, S.; Macher, C.; Soma, K.; Travers-Trolet, M.; Mackinson, S.

    2012-01-01

    Using the Celtic Sea and the North Sea as case studies, the fleet-based approach is shown to be the pathway to implement an effective ecosystem approach to fisheries management (EAFM) in European seas. First, a diagnostic on the health of each ecosystem is proposed based on the reconstruction of

  20. Arctic Sea Ice Variability and Trends, 1979-2006

    Science.gov (United States)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2008-01-01

    Analysis of Arctic sea ice extents derived from satellite passive-microwave data for the 28 years, 1979-2006 yields an overall negative trend of -45,100 +/- 4,600 km2/yr (-3.7 +/- 0.4%/decade) in the yearly averages, with negative ice-extent trends also occurring for each of the four seasons and each of the 12 months. For the yearly averages the largest decreases occur in the Kara and Barents Seas and the Arctic Ocean, with linear least squares slopes of -10,600 +/- 2,800 km2/yr (-7.4 +/- 2.0%/decade) and -10,100 +/- 2,200 km2/yr (-1.5 +/- 0.3%/decade), respectively, followed by Baffin Bay/Labrador Sea, with a slope of -8,000 +/- 2,000 km2/yr) -9.0 +/- 2.3%/decade), the Greenland Sea, with a slope of -7,000 +/- 1,400 km2/yr (-9.3 +/- 1.9%/decade), and Hudson Bay, with a slope of -4,500 +/- 900 km2/yr (-5.3 +/- 1.1%/decade). These are all statistically significant decreases at a 99% confidence level. The Seas of Okhotsk and Japan also have a statistically significant ice decrease, although at a 95% confidence level, and the three remaining regions, the Bering Sea, Canadian Archipelago, and Gulf of St. Lawrence, have negative slopes that are not statistically significant. The 28-year trends in ice areas for the Northern Hemisphere total are also statistically significant and negative in each season, each month, and for the yearly averages.

  1. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth, including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components

  2. Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea

    Science.gov (United States)

    Moll, Andreas; Stegert, Christoph

    2007-01-01

    This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem-zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.

  3. Building upon cooperative prospects amongst stakeholders for fighting Arctic marine invasion challenges

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    Biological invasions in Arctic marine environments are expected to noticeably affect the way the ecosystem will look and function in coming years. Along with many other rapid changes taking place in these previously isolated ecosystems, invasions of which we are both aware and unaware may have ir...... in the decision making process to help articulate incentive-compatible ecosystem management strategies that are adaptive to new information garnered from sustained Arctic observations....... expect that game theoretic environmental economic tools can help illuminate aspects of invasive species management significant for sound decision-making processes. Building blocks of such a game theoretic approach include the different players (stakeholders) involved. In our case study, we take...... environmental quality outcomes: Norwegian and Russian fishermen, Live and frozen crab markets, and Society, representing all possible beneficiaries of a healthy and well-sustained marine ecosystem in the Barents Sea as well as those in areas to which the invasion may spread. These actors must make decisions...

  4. Climate-driven ichthyoplankton drift model predicts growth of top predator young.

    Science.gov (United States)

    Myksvoll, Mari S; Erikstad, Kjell E; Barrett, Robert T; Sandvik, Hanno; Vikebø, Frode

    2013-01-01

    Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.

  5. STUDY REGARDING TO AGGRESSIONS ON THE ECOSYSTEM DANUBE DELTA – BLACK SEA AND PROTECTIVE MEASURES

    Directory of Open Access Journals (Sweden)

    Ion Gr. IONESCU

    2014-06-01

    Full Text Available Danube Delta has suffered damages of habitat and species loss caused by factors, including: construction of dams upstream have degraded obviously flooding regime; creation of agricultural and fishing enclosures which decreased the natural and original surfaces; extending artificial navigation channels that negatively affected the hydrological regime and water quality of lakes; increase of nutrients in the water, industrial pollution and accumulate effluents that led to the reduction of plant and bird species; attempt to exploit quartz sand, very pure and fine, the sea levees, although they were protected as nature reserves because of the specific morphology and sub-Mediterranean vegetation covering them; tourism and illegal fishing; mismanagement of resources of reed and fish. The fact is that there was a slight improvement for the marine ecosystem, reported since the early 90s. At present, the area of the Danube Delta - Black Sea is developing sustainable, in terms of medium and economic perspective. In my study I used comparative methods, investigations, direct observations, measurements, calculations and actual data, obtained from surveys and direct observations, from prestigious, specialized and authorized institutions.

  6. Microbial production and consumption of dimethyl sulfide (DMS) in a sea grass (Zostera noltii)-dominated marine intertidal sediment ecosystem (Bassin d'Arcachon, France)

    NARCIS (Netherlands)

    Jonkers, HM; van Bergeijk, SA; van Gemerden, H

    The relation between net dimethyl sulfide (DMS) production and changes in near surface (0-5 mm) oxygen concentrations in a sea grass (Zostera noltii Hornem)-covered intertidal sediment ecosystem was examined during a diel cycle. Sediment covered with Zostera was found to be more oxygenated than

  7. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  8. Incorporating ecosystem services into environmental management of deep-seabed mining

    Science.gov (United States)

    Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.

    2017-03-01

    Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services

  9. NKS/SRV seminar on Barents Rescue 2001 LIVEX. Gamma search cell

    International Nuclear Information System (INIS)

    Ulvsand, T.; Finck, R.R.; Lauritzen, N.

    2002-04-01

    At the seminar, results from the Gamma Search Cell of the Barents Rescue 2001 LIVEX were presented and the performance and experiences of airborne and car-borne teams that took part in the exercise were evaluated. In the Gamma Search Cell, the mobile teams found about 50 % of a large number of radioactive sources hidden within the exercise area. The exercise demonstrated that it is necessary to practise and test equipment under out-door conditions. By which method a source is found is important information in the evaluation of the result. Complementary methods are necessary to find hidden sources. For heavily shielded sources methods based on scattered radiation should be developed. (au)

  10. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  11. The use of modern methods for complex studies of the hydrotechnical structures of the Barents Sea region

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N

    2017-03-01

    Full Text Available The Barents region hydrotechnical structures (HTS as part of the bulk earth dams and levees tailings of mining enterprises in terms of requirements of the responsible entities have been considered. The brief review of emergencies and accidents of HTS with an analysis of their causes and geo-ecological consequences has been fulfilled. The necessity and urgency of the application of modern techniques for comprehensive research and monitoring of the HTS state have been shown: geo-fluid mechanics computer modeling, subsurface georadar sensing, GPS geodetic measurements, optical and radar satellite imagery. Joint use of GPR and satellite imagery in combination with traditional engineering-geological, hydro-geological and geodetic studies allows obtaining a more complete picture of the HTS state taking into account local and regional geological and fluid dynamic processes. The system structure of HTS complex researches which creates a scientific and technical basis for researching the geologic-geophysical environment, shifts, deformations and power influence has been developed. This allows to reveal the hidden filtration and deformation zones in HTS at early stages of their formation and in due time to make the administrative decision on prevention and localization of any emergency. Application of modern methods for HTS complex researches will allow to receive operational information on their state, parametrical sizes of volume, angular and linear deformations and movements, intensity of natural and technogenic influence. The obtained data have to be integrated in the "Database and Parameters" geoportal by means of which their logical processing and comparison to standard and extreme values has to be carried out. On this basis expert assessment of the current and expected state of HTS is carried out and the operating decisions including on development, in case of need, of preventive and protective measures are made

  12. Checking contamination of the sea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-07-01

    In July, 133 scientists from 15 countries attended an IAEA symposium on the Interaction of Radioactive Contaminants with the Constituents of the Marine Environment. It was held at the University of Washington, with the USAEC acting as host. Representatives from five international organisations, the CEC, OECD-NEA, WFUNA, WHO and the IAEA attended. The symposium was primarily aimed at elucidating the influence of radioactivity on the marine ecosystem and providing some background material for estimation of the capacity of the sea to accept radioactive waste without any significant harmful effects on man and the ecosystem. At the U. N. Conference on Human Environment held in Stockholm in June this year, a special concern was expressed regarding the international waters, such as the seas and oceans, and the need to conserve the resources of the sea. For the past 14 years the Agency has conducted an intensive programme on the discharge of radioactive waste into the sea, and the behaviour of radionuclides in the sea. (author)

  13. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  14. Sea Urchin Embryogenesis as Bioindicators of Marine Pollution in Impact Areas of the Sea of Japan/East Sea and the Sea of Okhotsk.

    Science.gov (United States)

    Lukyanova, Olga N; Zhuravel, Elena V; Chulchekov, Denis N; Mazur, Andrey A

    2017-08-01

    The embryogenesis of the sea urchin sand dollar Scaphechinus mirabilis was used as bioindicators of seawater quality from the impact areas of the Sea of Japan/East Sea (Peter the Great Bay) and the Sea of Okhotsk (northwestern shelf of Sakhalin Island and western shelf of Kamchatka Peninsula). Fertilization membrane formation, first cleavage, blastula formation, gastrulation, and 2-armed and 4-armed pluteus formation have been analyzed and a number of abnormalities were calculated. Number of embryogenesis anomalies in sand dollar larvae exposed to sea water from different stations in Peter the Great Bay corresponds to pollution level at each area. The Sea of Okhotsk is the main fishing area for Russia. Anthropogenic impact on the marine ecosystem is caused by fishing and transport vessels mainly. But two shelf areas are considered as "hot spots" due to oil and gas drilling. Offshore oil exploitation on the northeastern Sakhalin Island has been started and at present time oil is being drill on oil-extracting platforms continuously. Significant reserves of hydrocarbons are prospected on western Kamchatka shelf, and exploitation drilling in this area was intensified in 2014. A higher number of abnormalities at gastrula and pluteus stages (19-36%) were detected for the stations around oil platforms near Sakhalin Island. On the western Kamchatka shelf number of abnormalities was 7-21%. Such anomalies as exogastrula, incomplete development of pairs of arms were not observed at all; only the delay of development was registered. Eggs, embryos, and larvae of sea urchins are the suitable bioindicators of early disturbances caused by marine pollution in impact ecosystems.

  15. Development of a coupled physical-biological ecosystem model ECOSMO - Part I: Model description and validation for the North Sea

    DEFF Research Database (Denmark)

    Schrum, Corinna; Alekseeva, I.; St. John, Michael

    2006-01-01

    A 3-D coupled biophysical model ECOSMO (ECOSystem MOdel) has been developed. The biological module of ECOSMO is based on lower trophic level interactions between two phyto- and two zooplankton components. The dynamics of the different phytoplankton components are governed by the availability...... of the macronutrients nitrogen, phosphate and silicate as well as light. Zooplankton production is simulated based on the consumption of the different phytoplankton groups and detritus. The biological module is coupled to a nonlinear 3-D baroclinic model. The physical and biological modules are driven by surface...... showed that the model, based on consideration of limiting processes, is able to reproduce the observed spatial and seasonal variability of the North Sea ecosystem e.g. the spring bloom, summer sub-surface production and the fall bloom. Distinct differences in regional characteristics of diatoms...

  16. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    Science.gov (United States)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  17. Climate-driven ichthyoplankton drift model predicts growth of top predator young.

    Directory of Open Access Journals (Sweden)

    Mari S Myksvoll

    Full Text Available Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.

  18. Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.

    Science.gov (United States)

    Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko

    2012-08-01

    Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.

  19. Local Perceptions of Corporate Social Responsibility for Arctic Petroleum in the Barents Region

    Directory of Open Access Journals (Sweden)

    Ilan Kelman

    2016-11-01

    Full Text Available Corporate social responsibility (CSR is promoted and critiqued by many players involved in or opposed to petroleum exploration and extraction, although a common understanding of CSR's theoretical and practical meanings rarely exists. This paper uses Arctic petroleum in the Barents region (Norway and Russia to investigate local perceptions of CSR. We conducted open-ended, semi-structured interviews in four locations: Hammerfest, Murmansk, Komi Republic, and Nenets Autonomous Okrug (NAO. Interviewees included the local population, regional and local authorities, non-governmental organisations (NGOs, and petroleum company representatives. The field research suggests that those who gain directly from the petroleum industry and do not directly experience negative impacts were more inclined to be positive about the industry, although overall, general support for petroleum activity was high. In some cases, positive economic benefits resulted in greater tolerance of environmental risk. Sometimes, the industry and government were criticised by locals for failing to support a more equitable distribution of broader economic benefits. Rather than splitting along for-profit/NGO or indigenous/non-indigenous lines, our analysis suggests that those who are closer to the petroleum industry or its benefits, termed ‘insiders’, tend to be more positive than ‘outsiders’. This study is perhaps the first of its kind in its focus on local perceptions of CSR for Arctic petroleum across the Barents region. The findings of this study not only match with that of the previous literature on Arctic petroleum but also provide further practical and theoretical insights by indicating subtleties and nuances within the localities examined.

  20. Activation of the operational ecohydrodynamic model (3D CEMBS - the ecosystem module

    Directory of Open Access Journals (Sweden)

    Jaromir Jakacki

    2013-08-01

    Full Text Available The paper describes the ecohydrodynamic predictive model - the ecosystem module - for assessing the state of the Baltic marine environment and the Baltic ecosystem. The Baltic Sea model 3D CEMBS (the Coupled Ecosystem Model of the Baltic Sea is based on the Community Earth System Model, which was adopted for the Baltic Sea as a coupled sea-ice-ecosystem model. The 3D CEMBS model uses: (i hydrodynamic equations describing water movement, (ii thermodynamic equations, (iii equations describing the concentration distribution of chemical variables in the sea, and (iv equations describing the exchange of matter between individual groups of organisms and their environment that make allowance for the kinetics of biochemical processes. The ecosystem model consists of 11 main components: three classes of phytoplankton (small phytoplankton, large phytoplankton represented mainly by diatoms and summer species, mostly cyanobacteria expressed in units of carbon and chlorophyll a as separate variables, zooplankton, pelagic detritus, dissolved oxygen and nutrients (nitrate, ammonium, phosphate and silicate. In operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM are used. All model forecasts are available on the website http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php. The results presented in this paper show that the 3D CEMBS model is operating correctly.

  1. Linking Marine Ecosystem Services to the North Sea’s Energy Fields in Transnational Marine Spatial Planning

    Directory of Open Access Journals (Sweden)

    Christina Vogel

    2018-06-01

    Full Text Available Marine spatial planning temporally and spatially allocates marine resources to different users. The ecosystem approach aims at optimising the social and economic benefits people derive from marine resources while preserving the ecosystem’s health. Marine ecosystem services are defined as the benefits people obtain from marine ecosystems. The aim of this study is to determine which interrelations between marine ecosystem services and the marine energy industry can be identified for use in transnational marine spatial planning exemplified in the North Sea region. As the North Sea is one of the busiest seas worldwide, the risk of impairing the ecosystems through anthropogenic pressures is high. Drawing on a literature-based review, 23 marine ecosystem services provided by the North Sea region were defined and linked to seven offshore energy fields comprising oil and natural gas, wind, tides and currents, waves, salinity gradients, algal biomass, and geothermal heat. The interactions were divided into four categories: dependence, impact, bidirectional, or no interaction. Oil and natural gas, as well as algae biomass, are the fields with the most relations with marine ecosystem services while waves and salinity gradients exhibit the least. Some marine ecosystem services (Conditions for Infrastructure, Regulation of Water Flows, and Cognitive Development are needed for all fields; Recreation and Tourism, Aesthetic and Cultural Perceptions and Traditions, Cognitive Development, and Sea Scape are impacted by all fields. The results of this research provide an improved basis for an ecosystem approach in transnational marine spatial planning.

  2. Diving Behaviors and Habitat Use of Adult Female Steller Sea Lion (Eumetopias jubatus), A Top Predator of the Bering Sea and North Pacific Ocean Ecosystems

    Science.gov (United States)

    Lander, M. E.; Fadely, B.; Gelatt, T.; Sterling, J.; Johnson, D.; Haulena, M.; McDermott, S.

    2016-02-01

    Decreased natality resulting from nutritional stress is one hypothesized mechanism for declines of Steller sea lions (SSLs; Eumetopias jubatus) in western Alaska, but little is known of the winter foraging habitats or behavior of adult females. To address this critical data need, adult female Steller sea lions were chemically immobilized and tagged with Fastloc® GPS satellite transmitters during the fall at Southeast Alaska (SEAK) during 2010 (n=3), and the central and western Aleutian Islands (AI) from 2011-2014 (n=9). To identify habitat features of biological importance to these animals, location data were processed with a continuous-time correlated random walk model and kernel density estimates of predicted locations were used to compute individual-based utilization distributions. Kernel density estimates and diving behaviors (i.e. mean, maximum, and frequency of dive depths) were examined with respect to a series of static and dynamic environmental variables using linear mixed-effects models. Habitat use varied within and among individuals, but overall, all response variables were significantly related to a combination of the predictor variables season, distance to nearest SSL site, bathymetric slope, on/off shelf, sea surface temperature, sea surface height, proportion of daylight, and some interaction effects (P≤0.05). The habitat use of SSL from SEAK was consistent with previous reports and reflected the seasonal distribution of predictable forage fish, whereas SSL from the AI used a variety of marine ecosystems and habitat use was more variable, likely reflecting specific prey behaviors encountered in different areas. These results have improved our understanding of the habitat features necessary for the conservation of adult female SSL and have been useful for reviewing designated critical habitat for Steller sea lions throughout the U.S. range.

  3. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    Science.gov (United States)

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  4. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea

    Science.gov (United States)

    Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.

    2017-11-01

    Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely

  5. North European Transect

    Science.gov (United States)

    Korja, Annakaisa; Heikkinen, Pekka J.; Roslov, Yuri; Ivanova, Nina; Verba, Marc; Sakoulina, Tamara

    2010-05-01

    A nearly continuous, 3600 km long, NE-running North European Transect (NET) is combined from the existing deep seismic reflection data sets in the Baltic Sea (BABEL, 1600 km), Northern Finland (FIRE 4-4A, 580 km) and Barents Sea (1-AR, 1440 km;). The reflective image of the deep crust is highly dependent on the thickness of the sedimentary cover. The cover is few hundred meters in the Baltic sea, few tens of meters in the land areas and few kilometers in the Barents Sea area. In the Barents Sea area, the seismic image is dominated by the layered structure of the sedimentary basins and the middle and lower crust are poorly imaged. Therefore the Moho boundary in the Barents Sea has been determined from wide-angle reflections. Geologically the transect covers the transition from Phanerozoic Europe to Precambrian Europe and back to the Phanerozoic Barents Sea Shelf. It displays how Northern Europe grew around Baltica in several tectonic episodes involving the formation and destruction of Columbia/Hudsonland, Rodinia and Pangea supercontinents. The paleo plateboundaries are traversed by subvertical transparent zones suggesting transpressional and trantensional environments. The BABEL lines image how the core of Baltica was formed by sequential accretion of microcontinents and arc terranes at the old continental margin during the Svecofennian Orogeny ~1.9-1.8 Ga .When Baltica joined the Columbia supercontinent, new terranes were added to its southern edge in the Sveocbaltic Orogeny (~1.8 Ga). During the dispersal of the Columbia, the Baltic Sea failed rift was formed, rapakivi granitoids were intruded and sedimentary basins were developed. An extended plate margin structure has been imposed on the Rodinian (Sveconorwegian) and Pangean additions (Variscan-Caledonian). Major crustal thinning takes place along a series of subvertical faults across the Trans-European Suture Zone marking the transition from Phanerozoic to Proterozoic Europe. The FIRE lines in Northen Finland

  6. Crustal structure and evolution of the Arctic Caledonides: Results from controlled-source seismology

    Science.gov (United States)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Minakov, Alexander; Faleide, Jan Inge; Flueh, Ernst; Huismans, Ritske S.

    2017-10-01

    The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates ;root structures; that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.

  7. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China

    Directory of Open Access Journals (Sweden)

    Nian-Zhi Jiao

    2015-06-01

    Full Text Available The ecosystems of China seas and coasts are undergoing rapid changes under the strong influences of both global climate change and anthropogenic activities. To understand the scope of these changes and the mechanisms behind them is of paramount importance for the sustainable development of China, and for the establishment of national policies on environment protection and climate change mitigation. Here we provide a brief review of the impacts of global climate change and human activities on the oceans in general, and on the ecosystems of China seas and coasts in particular. More importantly, we discuss the challenges we are facing and propose several research foci for China seas/coasts ecosystem studies, including long-term time series observations on multiple scales, facilities for simulation study, blue carbon, coastal ecological security, prediction of ecosystem evolution and ecosystem-based management. We also establish a link to the Future Earth program from the perspectives of two newly formed national alliances, the China Future Ocean Alliance and the Pan-China Ocean Carbon Alliance.

  8. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  9. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  10. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NARCIS (Netherlands)

    Bouma, T.J.; Olenin, S.; Reise, K.; Ysebaert, T.

    2009-01-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and

  11. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  12. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  13. Outdoor model simulating a Baltic Sea littoral ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Notini, M; Nagell, B; Hagstroem, A; Grahn, O

    1977-01-01

    Plastic pools (surface 6.6 m/sup 2/, volume 4.2 m/sup 3/) were equipped with a flow-through system providing 2.51 min/sup -1/. Except for fish predators the main components of the flora and fauna of the Baltic littoral zone were introduced into the pools to form a model of the ecosystem. During 8 weeks the macroscopic epifauna and infauna of the bladder wrack Fucus vesiculosus L. were found to be qualitatively and quantitatively fairly stable, and the number of aerobic heterotrophic bacteria showed little variation. Oxygen concentration, temperature and pH were recorded and compared with values measured in the littoral zone. The results indicate good agreement between the characters of the model system and of the natural littoral ecosystem. This together with the observed stability and the possibilities for controlling and measuring the conditions in the system makes us believe that the model is a valuable tool for assessing toxic effects on the littoral ecosystem.

  14. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity

    Science.gov (United States)

    Rode, Karyn D.; Wilson, Ryan R.; Douglas, David C.; Muhlenbruch, Vanessa L; Atwood, Todd C.; Regehr, Eric V.; Richardson, Evan; Pilfold, Nicholas; Derocher, Andrew E.; Durner, George M.; Stirling, Ian; Amstrup, Steven C.; St Martin, Michelle; Pagano, Anthony M.; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983–1999 and 2000–2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in

  15. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    Science.gov (United States)

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  16. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes

    Directory of Open Access Journals (Sweden)

    V. Le Fouest

    2013-07-01

    Full Text Available The Arctic Ocean (AO undergoes profound changes of its physical and biotic environments due to climate change. In some areas of the Beaufort Sea, the stronger haline stratification observed in summer alters the plankton ecosystem structure, functioning and productivity, promoting oligotrophy. A one-dimension (1-D physical–biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i to infer the plankton ecosystem functioning and related nitrogen fluxes and (ii to assess the model sensitivity to key light-driven processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e., photoammonification process was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. Photoammonification directly and indirectly (by stimulating the microbial food web activity contributed to 70% and 18.5% of the 0–10 m and whole water column, respectively, simulated primary production (respectively 66% and 16% for the bacterial production. The model also suggested that variable carbon to chlorophyll ratios were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional group competition, nutrient recycling and primary production in poorly productive waters of the AO, as they are expected to expand rapidly.

  17. Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February-April 1979-2010

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Courtenay [University of Utah, Salt Lake City, UT (United States)

    2012-12-15

    Arctic marginal ice zone (MIZ) widths in the Atlantic sector were measured during the months of maximum sea ice extent (February-April) for years 1979-2010 using a novel method based on objective curves through idealized sea ice concentration fields that satisfied Laplace's equation. Over the record, the Labrador Sea MIZ (MIZ{sub L}) had an average width of 122 km and narrowed by 28 % while moving 254 km poleward, the Greenland Sea MIZ (MIZ{sub G}) had an average width of 98 km and narrowed by 43 % while moving 158 km west toward the Greenland coast, and the Barents Sea MIZ (MIZ{sub B}) had an average width of 136 km and moved 259 km east toward the Eurasian coast without a trend in width. Trends in MIZ position and width were consistent with a warming Arctic and decreasing sea ice concentrations over the record. Beyond the trends, NAO-like atmospheric patterns influenced interannual variability in MIZ position and width: MIZ{sub L} widened and moved southeast under anomalously strong northerly flow conducive to advection of sea ice into the Labrador Sea, MIZ{sub G} widened and moved northeast under anomalously weak northerly flow conducive to diminishing the westward component of sea ice drift, and MIZ{sub B} widened and moved poleward at the expense of pack ice under anomalously strong southwesterly flow conducive to enhancing oceanic heat flux into the Barents Sea. In addition, meridional flow anomalies associated with the NAO per se moved MIZ{sub B} east and west by modulating sea ice concentration over the Barents Sea. (orig.)

  18. Situation in the sea area between the North Sea and the Baltic Sea. Situationen i havsomraadet mellan Nordsjoen och Oestersjoen

    Energy Technology Data Exchange (ETDEWEB)

    Dybern, B.I.; Soederstroem, J.; Thorell, L.

    1984-01-01

    Due to the special topographical and hydrological features the seas surrounding Sweden are very sensitive to both natural changes and changes caused by man. The sea area between the North Sea and the Baltic Sea has come into focus during the last few decades due to problems with pollution and its impact on the ecosystems and to overfishing of some commer- cially important species. In order to elucidate the present situation from the Swedish viewpoint, the National Board of Fisheries, the National Environment Protection Board and the County Council of the County Goeteborg and Bohyslaen arranged a Symposium on the Situation in the Sea Area between the North Sea and the Baltic Sea in Goeteborg, 14-16 March, 1983. This volume contains lectures given at that Symposium. In most cases there are English summaries and English translations of texts to figures and tables.

  19. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    Directory of Open Access Journals (Sweden)

    S. Shalin

    2018-03-01

    Full Text Available The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a data from the northern Arabian Sea (50–75° E and 15–30° N during the winter months (November–March. Principal component analysis (PCA and cluster analysis (CA were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD, wind speed, sea-surface temperature (SST, photosynthetically active radiation (PAR, nitrate and dust optical thickness (DOT as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening

  20. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    Science.gov (United States)

    Shalin, Saleem; Samuelsen, Annette; Korosov, Anton; Menon, Nandini; Backeberg, Björn C.; Pettersson, Lasse H.

    2018-03-01

    The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50-75° E and 15-30° N) during the winter months (November-March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The

  1. Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical–biogeochemical model ECOSMO

    Directory of Open Access Journals (Sweden)

    U. Daewel

    2017-09-01

    Full Text Available Here we present results from a long-term model simulation of the 3-D coupled ecosystem model ECOSMO II for a North Sea and Baltic Sea set-up. The model allows both multi-decadal hindcast simulation of the marine system and specific process studies under controlled environmental conditions. Model results have been analysed with respect to long-term multi-decadal variability in both physical and biological parameters with the help of empirical orthogonal function (EOF analysis. The analysis of a 61-year (1948–2008 hindcast reveals a quasi-decadal variation in salinity, temperature and current fields in the North Sea in addition to singular events of major changes during restricted time frames. These changes in hydrodynamic variables were found to be associated with changes in ecosystem productivity that are temporally aligned with the timing of reported regime shifts in the areas. Our results clearly indicate that for analysing ecosystem productivity, spatially explicit methods are indispensable. Especially in the North Sea, a correlation analysis between atmospheric forcing and primary production (PP reveals significant correlations between PP and the North Atlantic Oscillation (NAO and wind forcing for the central part of the region, while the Atlantic Multi-decadal Oscillation (AMO and air temperature are correlated to long-term changes in PP in the southern North Sea frontal areas. Since correlations cannot serve to identify causal relationship, we performed scenario model runs perturbing the temporal variability in forcing condition to emphasize specifically the role of solar radiation, wind and eutrophication. The results revealed that, although all parameters are relevant for the magnitude of PP in the North Sea and Baltic Sea, the dominant impact on long-term variability and major shifts in ecosystem productivity was introduced by modulations of the wind fields.

  2. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including...... the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...

  3. Natural and anthropogenic radionuclide distributions in the Nansen Basin, Artic Ocean: Scavenging rates and circulation timescales

    Science.gov (United States)

    Kirk Cochran, J.; Hirschberg, David J.; Livingston, Hugh D.; Buesseler, Ken O.; Key, Robert M.

    Determination of the naturally occurring radionuclides 232Th, 230Th, 228 Th and 210Pb, and the anthropogenic radionuclides 241Am, 239,240Pu, 134Cs and 137Cs in water samples collected across the Nansen Basin from the Barents Sea slope to the Gakkel Ridge provides tracers with which to characterize both scavenging rates and circulation timescales in this portion of the Arctic Ocean. Large volume water samples (˜ 15001) were filtered in situ to separate particulate (> 0.5 μm) and dissolved Th isotopes and 241Am. Thorium-230 displays increases in both particulate and dissolved activities with depth, with dissolved 230Th greater and particulate 230Th lower in the deep central Nansen Basin than at the Barents Sea slope. Dissolved 228Th activities also are greater relative to 228Ra, in the central basin. Residence times for Th relative to removal from solution onto particles are ˜1 year in surface water, ˜10 years in deep water adjacent to the Barents Sea slope, and ˜20 years in the Eurasian Basin Deep Water. Lead-210 in the central basin deep water also has a residence time of ˜20 years with respect to its removal from the water column. This texture of scavenging is reflected in distributions of the particle-reactive anthropogenic radionuclide 241Am, which shows higher activities relative to Pu in the central Nansen Basin than at the Barents Sea slope. Distributions Of 137Cs show more rapid mixing at the basin margins (Barents Sea slope in the south, Gakkel Ridge in the north) than in the basin interior. Cesium-137 is mixed throughout the water column adjacent to the Barents Sea slope and is present in low but detectable activities in the Eurasian Basin Deep Water in the central basin. At the time of sampling (1987) the surface water at all stations had been labeled with 134Cs released in the 1986 accident at the Chernobyl nuclear power station. In the ˜1 year since the introduction of Chernobyl 134Cs to the Nansen Basin, it had been mixed to depths of ˜800 m at

  4. A radioecological model of radionuclide bioaccumulation in the ecosystems of the Barents and Kara Seas

    International Nuclear Information System (INIS)

    Sazykina, T.G.

    1995-01-01

    A dynamic model is developed to assess the radioecological consequences of the radioactive waste dumping in the Arctic Ocean, with a special focus on the impact on fisheries. The contamination of important commercial species of Arctic fish is modelled with consideration for their living and feeding habits. Model predictions are made for biologically significant and long-lived radionuclides, such as 137 Cs and 90 Sr. The potential consequences of the dumping for Russian and Norwegian fisheries are analyzed, based on the statistical data for commercial fishery in the Arctic Ocean. Doses to humans due to the consumption of contaminated marine foodstuffs from the Arctic Ocean are estimated

  5. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century

    Science.gov (United States)

    Stern, Harry; Kovacs, Kit M.; Lowry, Lloyd; Moore, Sue E.; Regehr, Eric V.; Ferguson, Steven H.; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P.; Born, Erik W.; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando

    2015-01-01

    Abstract Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. PMID:25783745

  6. Neoliberal governance, sustainable development and local communities in the Barents Region

    Directory of Open Access Journals (Sweden)

    Monica Tennberg

    2014-04-01

    Full Text Available There are currently high hopes in the Barents Region for economic growth, higher employment and improved well-being, encouraged by developments in the energy industry, tourism and mining. The article discusses these prospects from the perspective of local communities in five locations in the region, which spans the northernmost counties of Finland, Norway, Sweden and Northwest Russia. The communities studied are remote, relatively small, multicultural, and dependent on natural resources. The salient dynamic illuminated in the research is how ideas of sustainability and neoliberal governance meet in community development. While the two governmentalities often conflict, they sometimes also complement one another, posing a paradox that raises concerns over the social aspect of sustainable development in particular. The article is based on international, multidisciplinary research drawing on interviews as well as statistical and documentary analysis.

  7. COASTAL DYNAMICS OF THE PECHORA AND KARA SEAS UNDER CHANGING CLIMATIC CONDITIONS AND HUMAN DISTURBANCES

    Directory of Open Access Journals (Sweden)

    Stanislav A. Ogorodov

    2016-01-01

    Full Text Available Coastal dynamics monitoring on the key areas of oil and gas development at the Barents and Kara Seas has been carried out by Laboratory of Geoecology of the North at the Faculty of Geography (Lomonosov Moscow State University together with Zubov State Oceanographic Institute (Russian Federal Service for Hydrometeorology and Environmental Monitoring for more than 30 years. During this period, an up-to-date monitoring technology, which includes direct field observations, remote sensing and numerical methods, has been developed. The results of such investigations are analyzed on the example of the Ural coast of Baydaratskaya Bay, Kara Sea. The dynamics of thermal-abrasion coasts are directly linked with climate and sea ice extent change. A description of how the wind-wave energy flux and the duration of the ice-free period affect the coastal line retreat is provided, along with a method of the wind-wave energy assessment and its results for the Kara Sea region. We have also evaluated the influence of local anthropogenic impacts on the dynamics of the Arctic coasts. As a result, methods of investigations necessary for obtaining the parameters required for the forecast of the retreat of thermoabrasional coasts have been developed.

  8. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea)

    International Nuclear Information System (INIS)

    Dauvin, Jean-Claude

    2010-01-01

    Since 1967, the alumina plants in the Marseilles area (Barasse and Gardanne) have been discharging the mineral residue (i.e., red mud) resulting from the alkaline processing of bauxite into the submarine Cassidaigne canyon (north-western Mediterranean Sea) through pipes situated at 320-330 m in depth. The Barasse pipe stopped being used in 1988. From 1987 to 1996, many decrees and regulations were promulgated by the French State to rule the conditions under which the Gardanne alumina refinery was authorized to dispose of the bauxite residue in the sea. The refinery was required: (i) to study the hydrodynamic circulation in the Cassidaigne canyon to evaluate the potential dispersion and transport of fine elements discharged into the water mass and their impact on the pelagic ecosystem; (ii) to survey the marine environment every five years to control the expansion and thickness of the red mud deposit and compare the evolution of the benthic macrofauna at representative sampling sites in the environment affected by the red mud discharge with that of reference sites outside of the red mud plume; (iii) to study the effect of the discharge on fishing activities; and (iv) to investigate the toxicity of the red mud, particularly its persistence, accumulation, interaction and effect on the marine ecosystem, paying special attention to the bio-accumulation of chromium and vanadium. A Scientific Committee was created to insure an independent evaluation of the studies promised by the manufacturer in response to the State's regulations. Since the beginning of the 1960s, data have been accumulating on the structure and long-term functioning of the Cassidaigne bathyal ecosystem. This paper presents the collaborative efforts of the State-Manufacturer-Committee triplet and summarizes the main results obtained during the last period's sea campaigns (1991-2007). This paper also illustrates how national regulations concerning manufacturers, such as Gardanne alumina refinery, have

  9. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.

    2011-07-19

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  10. Abrupt warming of the Red Sea

    Science.gov (United States)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  11. Making the ecosystem approach operational-Can regime shifts in ecological- and governance systems facilitate the transition?

    DEFF Research Database (Denmark)

    Österblom, H.; Gårdmark, A.; Bergström, L.

    2010-01-01

    Effectively reducing cumulative impacts on marine ecosystems requires co-evolution between science, policy and practice. Here, long-term social–ecological changes in the Baltic Sea are described, illustrating how the process of making the ecosystem approach operational in a large marine ecosystem...... stimulating innovations and re-organizing governance structures at drainage basin level to the Baltic Sea catchment as a whole. Experimentation and innovation at local to the regional levels is critical for a transition to ecosystem-based management. Establishing science-based learning platforms at sub...

  12. Southwest Florida Shelf Ecosystems Analysis Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southwest Florida Shelf Ecosystems Analysis Study produced grain size analyses in the historic 073 format for 299 sea floor samples collected from October 25,...

  13. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    Science.gov (United States)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  14. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    Science.gov (United States)

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  15. Anthropogenic radioactivity in the Arctic Ocean. Review of the results from the joint German project

    International Nuclear Information System (INIS)

    Nies, H.; Harms, I.H.; Karcher, M.J.; Dethleff, D.; Bahe, C.

    1999-01-01

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239+240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclides by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas

  16. Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.

    Science.gov (United States)

    Nies, H; Harms, I H; Karcher, M J; Dethleff, D; Bahe, C

    1999-09-30

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239 + 240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclide by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas.

  17. Results of complex annual parasitological monitoring in the coastal area of Kola Bay

    Science.gov (United States)

    Kuklin, V. V.; Kuklina, M. M.; Kisova, N. E.; Maslich, M. A.

    2009-12-01

    The results of annual parasitological monitoring in the coastal area near the Abram-mys (Kola Bay, Barents Sea) are presented. The studies were performed in 2006-2007 and included complex examination of the intermediate hosts (mollusks and crustaceans) and definitive hosts (marine fish and birds) of the helminths. The biodiversity of the parasite fauna, seasonal dynamics, and functioning patterns of the parasite systems were investigated. The basic regularities in parasite circulation were assessed in relation to their life cycle strategies and the ecological features of the intermediate and definitive hosts. The factors affecting the success of parasite circulation in the coastal ecosystems were revealed through analysis of parasite biodiversity and abundance dynamics.

  18. Walking a Tight Line: Management of Arctic Fisheries in the Presence of Spatially Differentiated Ecological-Economic Externalities

    DEFF Research Database (Denmark)

    Kaiser, Brooks; Fernandez, Linda; Sundet, Jan

    king crab (RKC) and the accidental introduction of the snow crab in the Barents Sea, and the red king crab’s recent identification in Icelandic waters, are used to develop the discussion of the tradeoffs, local, regional and international governance opportunities and failures, and intervention...... perturbations in the fragile Arctic ecosystems are likely to have outsized impacts both ecologically and economically. This work discusses the optimal management of international invasive species threats in order to minimize overall damages and costs. The related cases of the purposeful introduction of the red...... incentives of open access fisheries. We analyze whether such a solution would be feasible for the newer but more rapidly expanding snow crab invasion....

  19. Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea.

    Science.gov (United States)

    Ullah, Riaz; Yasir, Muhammad; Khan, Imran; Bibi, Fehmida; Sohrab, Sayed Sartaj; Al-Ansari, Ahmed; Al-Abbasi, Fahad; Al-Sofyani, Abdulmohsin A; Daur, Ihsanullah; Lee, Seon-Woo; Azhar, Esam I

    2017-08-01

    Mangrove habitats are ecologically important ecosystems that are under severe pressure worldwide because of environmental changes and human activities. In this study, 16S rRNA gene amplicon deep-sequencing was used to compare bacterial communities in Red Sea mangrove ecosystems at anthropogenically influenced coastal sites with those at a relatively pristine island site. In total, 32 phyla were identified from the mangrove rhizospheres, with Proteobacteria predominating at each of the studied sites; however, the relative abundance was significantly decreased at the coastal sites (Mastorah, MG-MS; Ar-Rayis, MG-AR) compared with the pristine island site near Dhahban (MG-DBI). The phyla Actinobacteria, Firmicutes, Acidobacteria, Chloroflexi, Spirochetes, and Planctomycetes were present at a relative abundance of >1% at the MG-MS and MG-AR sites, but their concentration was <1% at the MG-DBI site. A total of 1659 operational taxonomic units (OTUs) were identified at the species level, and approximately 945 OTUs were shared across the different sampling sites. Multivariate principal coordinate data analysis separated the MG-DBI site from the MG-AR and MG-MS cluster. Specific bacterial taxa were enriched at each location, and in particular, the genera Pseudoalteromonas and Cobetia were predominantly identified in the MG-DBI site compared with the anthropogenically influenced coastal sites.

  20. Multi-actor involvement for integrating ecosystem services in strategic environmental assessment of spatial plans

    International Nuclear Information System (INIS)

    Rozas-Vásquez, Daniel; Fürst, Christine; Geneletti, Davide; Muñoz, Francisco

    2017-01-01

    Integrating an ecosystem services (ES) approach into Strategic Environmental Assessment (SEA) of spatial plans potentially enhances the consideration of the value of nature in decision making and policy processes. However, there is increasing concern about the institutional context and a lack of a common understanding of SEA and ecosystem services for adopting them as an integrated framework. This paper addresses this concern by analysing the current understanding and network relations in a multi-actor arrangement as a first step towards a successful integration of ES in SEA and spatial planning. Our analysis focuses on a case study in Chile, where we administered a questionnaire survey to some of the main actors involved in the spatial planning process. The questionnaire focused on issues such as network relations among actors and on conceptual understanding, perceptions and challenges for integrating ES in SEA and spatial planning, knowledge on methodological approaches, and the connections and gaps in the science-policy interface. Our findings suggest that a common understanding of SEA and especially of ES in a context of multiple actors is still at an initial stage in Chile. Additionally, the lack of institutional guidelines and methodological support is considered the main challenge for integration. We conclude that preconditions exist in Chile for integrating ES in SEA for spatial planning, but they strongly depend on appropriate governance schemes that promote a close science-policy interaction, as well as collaborative work and learning. - Highlights: • Linking ecosystem services in SEA is an effective framework for sustainability. • Multi-actor understanding and networks in ecosystem services and SEA were analyzed. • Understanding of SEA and especially of ES is still in an initial stage in Chile. • A lack of institutional guidelines is one of the key challenges for this link.

  1. Multi-actor involvement for integrating ecosystem services in strategic environmental assessment of spatial plans

    Energy Technology Data Exchange (ETDEWEB)

    Rozas-Vásquez, Daniel, E-mail: danielrozas@gmail.com [Center for Development Research, Dept. Ecology and Natural Resources Management, University of Bonn, Walter Flex Str. 3, 53113 Bonn (Germany); Laboratorio de Planificación Territorial, Universidad Católica de Temuco, Rudecindo ortega, 02950 Temuco (Chile); Fürst, Christine [Martin Luther University Halle-Wittenberg, Dept. Natural Sciences III, Institute for Geosciences and Geography, Von Seckendorff-Platz 4, 06120 Halle-Saale (Germany); Geneletti, Davide [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano, 77, Trento 38123 (Italy); Muñoz, Francisco [Laboratorio de Planificación Territorial, Universidad Católica de Temuco, Rudecindo ortega, 02950 Temuco (Chile)

    2017-01-15

    Integrating an ecosystem services (ES) approach into Strategic Environmental Assessment (SEA) of spatial plans potentially enhances the consideration of the value of nature in decision making and policy processes. However, there is increasing concern about the institutional context and a lack of a common understanding of SEA and ecosystem services for adopting them as an integrated framework. This paper addresses this concern by analysing the current understanding and network relations in a multi-actor arrangement as a first step towards a successful integration of ES in SEA and spatial planning. Our analysis focuses on a case study in Chile, where we administered a questionnaire survey to some of the main actors involved in the spatial planning process. The questionnaire focused on issues such as network relations among actors and on conceptual understanding, perceptions and challenges for integrating ES in SEA and spatial planning, knowledge on methodological approaches, and the connections and gaps in the science-policy interface. Our findings suggest that a common understanding of SEA and especially of ES in a context of multiple actors is still at an initial stage in Chile. Additionally, the lack of institutional guidelines and methodological support is considered the main challenge for integration. We conclude that preconditions exist in Chile for integrating ES in SEA for spatial planning, but they strongly depend on appropriate governance schemes that promote a close science-policy interaction, as well as collaborative work and learning. - Highlights: • Linking ecosystem services in SEA is an effective framework for sustainability. • Multi-actor understanding and networks in ecosystem services and SEA were analyzed. • Understanding of SEA and especially of ES is still in an initial stage in Chile. • A lack of institutional guidelines is one of the key challenges for this link.

  2. 150 years of ecosystem evolution in the North Sea - from pristine conditions to acidification

    Science.gov (United States)

    Pätsch, Johannes; Lorkowski, Ina; Kühn, Wilfried; Moll, Andreas; Serna, Alexandra

    2010-05-01

    The 3-d coupled physical-biogeochemical model ECOHAM was applied to the Northwest European Shelf (47° 41‘ - 63° 53' N, 15° 5' W - 13° 55' E) for the years 1860, 1960 and continuously for the time interval 1970 - 2006. From stable nitrogen isotope analysis in sediment cores of the German Bight in the southeastern part of the North Sea (inner shelf) we found the period before 1860 unaffected by anthropogenic river inputs of nitrogen. After this period the delta15N-ratios significantly increased from ~6 per mil to more than 8 per mil in recent sediments indicating eutrophication by anthropogenic nitrate mainly from intensive agriculture fertilization. We deduced from the successful simulation of delta15N patterns in recent sediments that during pristine conditions nitrogen loads of the main continental rivers were about 10% of the modern input while the deposition of inorganic atmospheric nitrogen was 28% of the recent atmospheric flux. The 1960-sediment exhibited similar delta15N-values as the recent sediment which allows the conclusion that eutrophication in the German Bight predates the 1960 period of rapidly increasing river loads. By comparing model results with observational data in the North Sea we analyzed the variability of simulated carbon fluxes (1970-2006) constituting the so called "shelf pump" which transports atmospheric CO2 via biological fixation, vertical export and advection into the adjacent North Atlantic. Even though the highly variable North Atlantic water-inflow which correlated with the North Atlantic Oscillation Index (NAOI) supplied the northern North Sea with strongly varying nutrient inputs, the interannual variability of the strength of the shelf pump was mainly governed by the variability of the southern basin's biological productivity. The net ecosystem production (NEP) in the southern North Sea varies around zero inducing CO2 exchange with the atmosphere which is near equilibrium. In the northern North Sea the strong positive

  3. Past and future challenges in managing European seas

    Directory of Open Access Journals (Sweden)

    Thorsten Blenckner

    2015-03-01

    Full Text Available Marine environments have undergone large-scale changes in recent decades as a result of multiple anthropogenic pressures, such as overfishing, eutrophication, habitat fragmentation, etc., causing often nonlinear ecosystem responses. At the same time, management institutions lack the appropriate measures to address these abrupt transformations. We focus on existing examples from social-ecological systems of European seas that can be used to inform and advise future management. Examples from the Black Sea and the Baltic Sea on long-term ecosystem changes caused by eutrophication and fisheries, as well as changes in management institutions, illustrate nonlinear dynamics in social-ecological systems. Furthermore, we present two major future challenges, i.e., climate change and energy intensification, that could further increase the potential for nonlinear changes in the near future. Practical tools to address these challenges are presented, such as ensuring learning, flexibility, and networking in decision-making processes across sectors and scales. A combination of risk analysis with a scenario-planning approach might help to identify the risks of ecosystem changes early on and may frame societal changes to inform decision-making structures to proactively prevent drastic surprises in European seas.

  4. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  5. Fishing for opinions: Stakeholder views on MSFD implementation in European Seas

    NARCIS (Netherlands)

    Hendriksen, A.; Jouanneau, C.; Koss, R.; Raakjaer, J.

    2014-01-01

    Stakeholder participation is vital when introducing and implementing ecosystem-based management (EBM) at any scale. This paper presents the results of a survey covering four European Regional Seas (Baltic Sea, Black Sea, Mediterranean Sea and North-East Atlantic Ocean) aimed to collect stakeholders¿

  6. Tidal extension and sea-level rise: recommendations for a research agenda

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory

    2018-01-01

    Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.

  7. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    Science.gov (United States)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  8. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2015-02-16

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  9. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.; Yi, Xing; Platt, Trevor; Racault, Marie-Fanny; Brewin, Robert J. W.; Pradhan, Yaswant; Papadopoulos, Vassilis P.; Sathyendranath, Shubha; Hoteit, Ibrahim

    2015-01-01

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  10. Filling regulatory gaps in high seas fisheries: discrete high seas fish stocks, deep-sea fisheries and vulnerable marine ecosystems

    NARCIS (Netherlands)

    Takei, Y.

    2008-01-01

    The present study examines the legal regime of high seas fisheries with a view to identifying regulatory gaps. The main research questions are as follows: 1. What general principles are applicable to high seas fisheries?; 2. What implications do these general principles have for new challenges in

  11. Modeling the Dispersion of Radioactive Contaminants in the Arctic Using a Coupled Ice-Ocean Model

    National Research Council Canada - National Science Library

    Preller, Ruth

    1995-01-01

    ... of dumping and the amounts and types of radioactive materials that have been dumped. The report states that low level liquid waste was dumped into the Kara and Barents Seas with lesser amounts dumped into the White Sea and the Baltic...

  12. Fueling incubation : Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis)

    NARCIS (Netherlands)

    Eichhorn, Goetz; van der Jeugd, Henk P.; Meijer, Harro A. J.; Drent, Rudolf H.

    We compared the use of body stores in breeding Barnacle Geese (Branta leucopsis) in traditional Arctic colonies in the Barents Sea with that in recently established temperate-zone breeding colonies in the Baltic Sea and North Sea by studying female body-mass loss and use of fat and protein stores

  13. Barents Tour for Geotourists

    Science.gov (United States)

    Pihlaja, Jouni; Johansson, Peter; Lauri, Laura

    2015-04-01

    Barents Tour for Geotourists is a guidebook for a circular route locating in northern Finland, northern Norway and north-western Russia. The targets along the route are all connected with different aspects of geology: there are localities presenting rare rock types and minerals, potholes, gorges, eskers, raised beaches and palsa mires. Total number of sites along the route is 26, 14 of them are locating in Finland, 4 in Norway and 8 in the Kola Peninsula, Russia. In addition to geological information on the sites, the guidebook features directions and information on local tourism services in four languages: English, Finnish, Russian and Norwegian. Good examples of the geological sites in northern Finland are the potholes at Aholanvaara, Salla. The largest pothole is called the "Drinking pot". With a diameter of 15.5 m and a depth of 9.5 m it is the largest known pothole in Finland. One famous target in northern Finland is also the Gold Prospector Museum and geological nature trail at Tankavaara, Sodankylä. The museum has an impressive mineral and jewellery stone collection and it is the only international museum in the world displaying past and present items of gold panning and prospecting. The Khibiny Tundra is the largest mountain massif on the Kola Peninsula, Russia. These mountains are best known for their unique landscapes, geology and mineralogy. With an experienced guide, minerals like apatite, nepheline, titanite, eudialyte and lamprophyllite can be found there. In north-eastern Norway, the palsas at Øvre Neiden and Færdesmyra are examples of a specific mire type in the cold climate area. The palsa mires are characterized by the presence of 2-5 m high peat mounds that consist of interleaved peat and ice layers. The route was planned and implemented in the ABCGheritage project (Arctic Biological, Cultural and Geological Heritage) partly funded by the Kolarctic ENPI CBC program of the European Union. The guidebook was written by researchers of the

  14. Caspian sea: petroleum challenges

    International Nuclear Information System (INIS)

    2005-01-01

    The Caspian sea is one of the world areas the most promising in terms of investments and petroleum development. This study presents the petroleum challenges generated by this hydrocarbons reserve. The first part discusses the juridical status (sea or lake), the petroleum and the gas reserves, the ecosystem and the today environment (fishing and caviar), the geostrategic situation and the transport of gas and oil. It provides also a chronology from 1729 to 2005, a selection of Internet sites, books and reports on the subject and identity sheets of the countries around the Caspian sea. (A.L.B.)

  15. Environmental studies for mining of deep-sea polymetallic nodules - Accomplishments and future plans

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    on marine ecosystem, the project on ‘EIA studies for nodule mining in CIB’ was initiated in 1996, under the national programme on polymetallic nodules funded by the Dept. of Ocean Development. Mining of the deep-sea minerals [1] is expected to alter... for the future • Development of predictive ecosystem models • Creation of environmental database • Evaluating the biogeochemical coupling of biota with deep-sea ecosystem • Development of environment management plan for nodule mining References...

  16. Recent changes in the marine ecosystems of the northern Adriatic Sea

    Science.gov (United States)

    Giani, Michele; Djakovac, Tamara; Degobbis, Danilo; Cozzi, Stefano; Solidoro, Cosimo; Umani, Serena Fonda

    2012-12-01

    This review of studies on long term series on river discharges, oceanographic features, plankton, fish and benthic compartments, collected since the 1970s revealed significant changes of mechanisms and trophic structures in the northern Adriatic ecosystems. A gradual increase of eutrophication pressure occurred during the 1970s until the mid 1980s, followed by a reversal of the trend, particularly marked in the 2000s. This trend was ascribed to the combination of a reduction of the anthropogenic impact, mainly due to a substantial decrease of the phosphorus loads, and of climatic modifications, resulting in a decline of atmospheric precipitations and, consequently, of the runoff in the northern Adriatic Sea. Significant decreases of the phytoplankton abundances were observed after the mid 1980s, concurrently with changes in the species composition of the communities, with an evident shift toward smaller cells or organism sizes. Moreover, changes in the zooplankton community were also observed. A decrease of demersal fishes, top predators and small pelagic fishes was ascribed to both overfishing and a demise of eutrophication. Macrozoobenthic communities slowly recovered in the last two decades after the anoxia events of the 1970s and 1980s. An increasing number of non-autochthonous species has been recorded in the last decades moreover the increasing seawater temperature facilitated the spreading of thermophilic species.

  17. Dispersal of the radionuclide caesium-137 (137Cs) from point sources in the Barents and Norwegian Seas and its potential contamination of the Arctic marine food chain: Coupling numerical ocean models with geographical fish distribution data

    International Nuclear Information System (INIS)

    Heldal, Hilde Elise; Vikebø, Frode; Johansen, Geir Odd

    2012-01-01

    Dispersal of 137 Cs from Komsomolets and K-159 is simulated using realistic rates and hypothetical scenarios. Furthermore, spatiotemporal 137 Cs concentrations in Northeast Arctic cod and capelin are estimated based on survey data. The results indicate that only pulse discharges from K-159 will cause concentrations of 137 Cs in cod muscle exceeding the intervention level of 600 Bq/kg fresh weight. A discharge of ≥10% of the 137 Cs-inventory will result in concentrations in muscle of cod exceeding the intervention level for approximately two years. In fact, a discharge of 10% of the 137 Cs-inventory results in an overlap of 8–30% between the different size groups of cod and levels that exceed the intervention level during the first year after the discharge. For capelin, individuals less than one year old during the first year after a discharge are more likely to be severely affected by discharges comprising ≥50% of the inventory. - Highlights: ► The dispersal of 137 Cs from the wrecks of Komsomolets and K-159 are simulated. ► The submarine wrecks are resting on the seabed in the Norwegian and Barents Seas. ► Both realistic rates of discharges and what-if scenarios are simulated. ► Concentrations of 137 Cs are estimated in observational records of cod and capelin. ► Only pulse discharges from K-159 causes high 137 Cs concentrations in cod and capelin. - A leakage of 137 Cs from K-159 may cause concentrations in muscle of cod exceeding the intervention level of 600 Bq/kg fresh weight for up to two years after the leakage.

  18. The Chukchi Sea zoobenthos: contemporary conditions and trends in anthropogenic influence.

    Directory of Open Access Journals (Sweden)

    Kirievskaya Dubrava

    2017-06-01

    Full Text Available The Chukchi Sea is a key region where rapid changes of the Arctic environment have been observed recently. Benthos of the Chukchi Sea is a sensitive indicator of these changes. In addition, the benthos can be used as an indicator of the anthropogenic load on the marine environment. A lot of researches have been conducted in the different parts of the Chukchi Sea. In this paper we summarized all the data collected for the last 30 years to evaluate contemporary conditions of the Chukchi Sea benthos as well as to discuss a potential response of the benthic ecosystem to the anthropogenic load. The Chukchi Sea zoobenthos is characterized by relatively high biodiversity compared to the seas of the western Arctic Ocean. The spatial distribution of zoobenthos is non-uniform. It is caused by a lot of factors: depth, bottom and sediment temperature, geochemical structure of the sediments, hydrodynamics, etc. Present environmental conditions of the Chukchi Sea biota can be considered to be close to the average long-term norms. By the reason of climate change scientists started to observe northing displacement of subarctic and temperate species of the benthic ecosystem. The Chukchi Sea is still included into the area with low anthropogenic pressure. The main potential threat for the Chukchi sea benthos results from continued oil and gas exploration and sea transport. For example, benthos around oil-wells (the Burger and the Klondike contains pollutants at a high concentration. The risk of rising anthropogenic load on the Chukchi Sea ecosystem poses the problem to additionally identify vulnerable areas of increased ecological significance for later receiving conservation status.

  19. A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: Methods and benefits

    KAUST Repository

    Korres, Gerasimos

    2012-06-01

    Within the framework of the European INSEA project, an advanced assimilation system has been implemented for the Pagasitikos Gulf ecosystem. The system is based on a multivariate sequential data assimilation scheme that combines satellite ocean sea color (chlorophyll-a) data with the predictions of a three-dimensional coupled physical-biochemical model of the Pagasitikos Gulf ecosystem presented in a companion paper. The hydrodynamics are solved with a very high resolution (1/100°) implementation of the Princeton Ocean Model (POM). This model is nested within a coarser resolution model of the Aegean Sea which is part of the Greek POSEIDON forecasting system. The forecast of the Aegean Sea model, itself nested and initialized from a Mediterranean implementation of POM, is also used to periodically re-initalize the Pagatisikos hydrodynamics model using variational initialization techniques. The ecosystem dynamics of Pagasitikos are tackled with a stand-alone implementation of the European Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter, in which the error statistics are parameterized by means of a suitable set of Empirical Orthogonal Functions (EOFs).The assimilation experiments were performed for year 2003 and additionally for a 9-month period over 2006 during which the physical model was forced with the POSEIDON-ETA 6-hour atmospheric fields. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical processes and the overall quality of the forecasts. Assimilation of either GlobColour in 2003 or SeaWiFS in 2006 chlorophyll-a data enhances the identification of the ecological state of the Pagasitikos Gulf. Results, however, suggest that subsurface ecological observations are needed to improve the controllability of the ecosystem in the deep layers. © 2011 Elsevier B.V.

  20. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    Science.gov (United States)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  1. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    Science.gov (United States)

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F.; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr. Stenseth, Nils

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change. PMID:25694626

  2. State of the Salton Sea—A science and monitoring meeting of scientists for the Salton Sea

    Science.gov (United States)

    Barnum, Douglas A.; Bradley, Timothy; Cohen, Michael; Wilcox, Bruce; Yanega, Gregor

    2017-01-19

    IntroductionThe Salton Sea (Sea) is an ecosystem facing large systemic changes in the near future. Managers and stakeholders are seeking solutions to the decline of the Sea and have turned to the scientific community for answers. In response, scientists gathered in Irvine, California, to review existing science and propose scientific studies and monitoring needs required for understanding how to retain the Sea as a functional ecosystem. This document summarizes the proceedings of this gathering of approximately 50 scientists at a September 8–10, 2014, workshop on the State of the Salton Sea.

  3. Belowground dynamics in mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  4. An indicator for ecosystem externalities in fishing

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars; Andersen, Ken Haste; Vestergaard, Niels

    2016-01-01

    Ecosystem externalities arise when one use of an ecosystem affects its other uses through the production functions of the ecosystem. We use simulations with a size-spectrum ecosystem model to investigate the ecosystem externality created by fishing of multiple species. The model is based upon...... general ecological principles and is calibrated to the North Sea. Two fleets are considered: a "forage fish" fleet targeting species that mature at small sizes and a "large fish" fleet targeting large piscivorous species. Based on the marginal analysis of the present value of the rent, we develop...... a benefit indicator that explicitly divides the consequences of fishing into internal and external benefits. This analysis demonstrates that the forage fish fleet has a notable economic impact on the large fish fleet, but the reverse is not true. The impact can be either negative or positive, which entails...

  5. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  6. Zooplankton community structure in the Yellow Sea and East China Sea in autumn

    Directory of Open Access Journals (Sweden)

    Hongju Chen

    2015-12-01

    Full Text Available Abstract Study on zooplankton spatial distribution is essential for understanding food web dynamics in marine ecosystems and fishery management. Here we elucidated the composition and distribution of large mesozooplankton on the continental shelf of the Yellow Sea and East China Sea, and explored the zooplankton community structure in these water masses. Sixty vertical hauls (bottom or 200 m in deep water to surface using a ring net (diameter 0.8 m, 505-μm mesh were exploited in November 2007. The biogeographic patterns of zooplankton communities were investigated using multivariate analysis methods; copepod biodiversity was analyzed using univariate indices. Copepods and protozoans were dominate in the communities. Based on the species composition, we divided the study areas into six station groups. Significant differences in zooplankton assemblages were detected between the Yellow Sea and East China Sea. Species richness was higher in East China Sea groups than those in Yellow Sea, whereas taxonomic distinctness was higher in Yellow Sea than in East China Sea. There was a clear relationship between the species composition and water mass group.

  7. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning

    Science.gov (United States)

    Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  8. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  9. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  10. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    Science.gov (United States)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  11. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): evidence of a recent regime shift?

    DEFF Research Database (Denmark)

    Tomczak, Maciej Tomasz; Dinesen, Grete E.; Hoffmann, Erik

    2012-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and...... further showed the regime shift to be driven by a combination of anthropogenic pressures and possible interplay with climatic disturbance......An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west......), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses...

  12. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  13. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    Directory of Open Access Journals (Sweden)

    E. Ramirez-Llodra

    2010-09-01

    Full Text Available The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna.

    Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller – indeed, minimal – proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold

  14. Stationary spiraling eddies in presence of polar amplification of global warming as a governing factor of ecology of Greenland seals White Sea population: results of verification study

    Science.gov (United States)

    Melentyev, K.; Chernook, V.; Melentyev, V.

    2003-04-01

    Ice-associated forms of marine mammals are representatives of a high level of fodder chains in the ocean and taxation of population number for different group, as assessment of ecology and animal welfare are the important tasks for marine biology, ecology, fishery and other application uses. Many problems create a global warming and antropogenical impact on marine and coastal ecosystem. In order to investigate ice covered Arctic Ocean and charting the number of seals were performed annual inspections onboard research aircraft PINRO "Arktika". Multi-spectral airborne and satellite observations were fulfilled regularly from Barents and White Sea to the Bering and Okhotsk Sea (1996-2002). A contemporary status of different group of sea mammals was evaluated, where number of adults and pups were checked separately. In situ observations were provided with using helicopter and icebreaker for gathering a water samples and ice cores (with following biochemical and toxicological analysis). A prevailing part of life cycle of Greenland seals (harp seal) is strongly depended from winter hydrology (water masses, stable currents, meandering fronts, stationary eddies) and closely connected with type of ice (pack, fast ice) and other parameters of ice (age, origin, salinity, ice edge.). First-year ice floes which has a specific properties and distinctive features are used by harp seals for pupping, lactation, molting, pairing and resting. Ringed seals, inversely, use for corresponding purposes only fast-ice. Different aspects of ecology, and migration features of harp seals were analyzed in frame of verification study. It was revealed a scale of influence of winter severity and wind regime, but stationary eddies in the White Sea is most effective governing factor (novelty). Following relationship " eddies - ecology of Greenland seal White Sea population " will be discussed: A) regularities of eddies formation and their spatial arrangement, temporal (seasonal and annual

  15. International Arctic Seas Assessment Project (IASAP)

    International Nuclear Information System (INIS)

    Sjoeblom, K.L.; Linsley, G.S.

    1995-01-01

    The purpose of this paper was to give an overall view of the International Arctic Seas Assessment Project (IASAP). The IASAP project was initiated in 1993 to address concerns about the possible health and environmental impacts of radioactive wastes dumped in the shallow waters of the Arctic seas by the former Soviet Union. The project is being executed as a part of the IAEA's responsibilities under the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972). The results and conclusions of the project are expected to be reported to the London Convention in late 1996. The objectives of the project are: 1) to assess the risks to human health and to the environment associated with the radioactive waste dumped in the Kara and Barents Seas; and 2) to examine possible remedial actions related to the dumped wastes and to advise on whether they are necessary and justified. The project is organized in five working areas: source terms, existing environmental concentrations, transfer mechanisms and models, impact assessment and remedial measures. Progress made in all working areas of IASAP is reviewed each year by a group of senior scientists (IASAP Advisory Group Meeting). During the first two years of the IASAP project, a considerable amount of new information has been produced and published as IASAP working documents. Experts from 15 countries and several international organizations are involved in the different Working Groups and Advisory Group Meetings of the project. It is planned that in addition to the report to the London Convention, which will be prepared by the Advisory Group, detailed technical reports covering the work of all areas of the IASAP will be produced. 12 refs., 3 figs., 1 tab

  16. Sea ice biogeochemistry: a guide for modellers.

    Directory of Open Access Journals (Sweden)

    Letizia Tedesco

    Full Text Available Sea ice is a fundamental component of the climate system and plays a key role in polar trophic food webs. Nonetheless sea ice biogeochemical dynamics at large temporal and spatial scales are still rarely described. Numerical models may potentially contribute integrating among sparse observations, but available models of sea ice biogeochemistry are still scarce, whether their relevance for properly describing the current and future state of the polar oceans has been recently addressed. A general methodology to develop a sea ice biogeochemical model is presented, deriving it from an existing validated model application by extension of generic pelagic biogeochemistry model parameterizations. The described methodology is flexible and considers different levels of ecosystem complexity and vertical representation, while adopting a strategy of coupling that ensures mass conservation. We show how to apply this methodology step by step by building an intermediate complexity model from a published realistic application and applying it to analyze theoretically a typical season of first-year sea ice in the Arctic, the one currently needing the most urgent understanding. The aim is to (1 introduce sea ice biogeochemistry and address its relevance to ocean modelers of polar regions, supporting them in adding a new sea ice component to their modelling framework for a more adequate representation of the sea ice-covered ocean ecosystem as a whole, and (2 extend our knowledge on the relevant controlling factors of sea ice algal production, showing that beyond the light and nutrient availability, the duration of the sea ice season may play a key-role shaping the algal production during the on going and upcoming projected changes.

  17. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    Science.gov (United States)

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  18. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    Science.gov (United States)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  19. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Science.gov (United States)

    Kramer, Daniel B; Stevens, Kara; Williams, Nicholas E; Sistla, Seeta A; Roddy, Adam B; Urquhart, Gerald R

    2017-01-01

    Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  20. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Directory of Open Access Journals (Sweden)

    Daniel B Kramer

    Full Text Available Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  1. Ecosystem function and services provided by the deep sea

    Science.gov (United States)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  2. Carbon, nitrogen and phosphorus dynamics in nine sub-systems of the Sylt-Rømø Bight ecosystem, German Wadden Sea

    Science.gov (United States)

    Baird, Dan; Asmus, Harald; Asmus, Ragnhild

    2011-01-01

    Flow networks of nine sub-systems consisting of 59 components each of the Sylt-Rømø Bight, German Wadden Sea, were constructed depicting the standing stocks and flows of material and energy within and between the sub-systems. Carbon, nitrogen and phosphorous were used as currencies for each sub-system, thus resulting in 27 network models, which were analyzed by ecological network analytical protocols. Results show substantial variability in the dynamics of these elements within and between the nine sub-systems, which differ in habitat structure, species diversity and in the standing stocks of their constituent living and non-living components. The relationship between the biodiversity and selected information indices and ratios, derived from ecological network analysis, of individual sub-systems is variable and differ substantially between them. Ecosystem properties such as the structure and magnitude of the recycling of these elements, number of cycles, and total sub-system activity were calculated and discussed, highlighting the differences between and complexity of the flow of C, N and P in a coastal marine ecosystem. The average number of cycles increase from 179 for C, to 16,923 and 20,580 for N and P respectively, while the average amount of recycled material, as measured by the Finn Cycling Index (FCI), increase from 17% for C, to 52% for P and to 61% for N. The number of cycles and the FCI vary considerably between the sub-systems for the different elements. The largest number of cycles of all three elements was observed in the muddy sand flat sub-system, but the highest FCIs were computed for both C (32%) and N (85%) in the Arenicola Flats, and in sparse Zostera noltii sea grass beds for P (67%). Indices reflecting on the growth, organization and resilience of the sub-systems also showed considerable variability between and within the inter-tidal ecosystems in the Bight. Indices such as, for example, the relative ascendency ratios increase on average

  3. Controls of Multiple Stressors on the Black Sea Fishery

    Directory of Open Access Journals (Sweden)

    Temel Oguz

    2017-04-01

    Full Text Available Black Sea is one of the most severely degraded and exploited large marine ecosystems in the world. For the last 50 years after the depletion of large predatory fish stocks, anchovy (with the partial contribution of sprat has been acting as the main top predator species and experienced a major stock collapse at the end of 1990s. After the collapse, eastern part of the southern Black Sea became the only region sustaining relatively high anchovy catch (400,000 tons whereas the total catch within the rest of the sea was reduced to nearly its one-third. The lack of recovery of different fish stocks under a slow ecosystem rehabilitation may be attributed, on the one hand, to inappropriate management measures and the lack of harmonized fishery policy among the riparian countries. On the other hand, impacts of multiple stressors (eutrophication, alien species invasions, natural climatic variations on the food web may contribute to resilience of the system toward its recovery. The overfishing/recovery problem therefore cannot be isolated from rehabilitation efforts devoted to the long-term chronic degradation of the food web structure, and alternative fishery-related management measures must be adopted as a part of a comprehensive ecosystem-based management strategy. The present study provides a data-driven ecosystem assessment, underlines the key environmental issues and threats, and points to the critical importance of holistic approach to resolve the fishery-ecosystem interactions. It also stresses the transboundary nature of the problem.

  4. Producing a problem? Effects of produced water contaminants (PAHs, radium-226, barium and scale inhibitor) on the copepod Calanus finmarchicus

    Energy Technology Data Exchange (ETDEWEB)

    Kiel Jensen, Louise [Norwegian Radiation Protection Authority, Fram Centre, 9296 Tromsoe (Norway); Halvorsen, Elisabeth; Gammelsaeter Hallanger, Ingeborg [UiT The Arctic University of Norway, Department of Arctic and Marine Biology, P.O. box 6050 Langnes, 9037 Tromsoe (Norway); Tollefsen, Knut Erik; Brooks, Steven [Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo (Norway); Hansen, Bjoern Henrik [SINTEF Materials and Chemistry, Marine Environmental Technology, Brattoerkaia 17B, 7010 Trondheim (Norway)

    2014-07-01

    In the Barents Sea region new petroleum fields are discovered yearly and the extraction of petroleum products are expected to increase in the upcoming years. Despite enhanced technology and stricter governmental legislation, establishing the petroleum industry in the Barents Sea will introduce a new source of Naturally Occurring Radioactive Material (NORM) to the area as some discharges of produced water will be allowed. Whether the presence of produced water poses a risk to the Arctic marine life remains to be examined. We examined effects on the copepod species Calanus finmarchicus after exposure to several compounds found in produced water. A mixture of polycyclic aromatic hydrocarbons and alkyl phenols commonly found in produced water was used as a proxy of the organic fraction of the produced water (hereafter termed APW (Artificial Produced Water)). In addition, exposures were done using radium-226 (proxy for NORM), barium (proxy for metals) and a scale inhibitor (SI -4470, M-I SWACO, Schlumberger Norge AS). Short-term screening tests on a range of concentrations of all compounds were run to assess the hatchability of the eggs and early survival of the nauplii. Long-term experiments were carried out with exposure concentrations at realistic levels found in the vicinity of known discharge points. The copepod C. finmarchicus is considered a keystone species in the Barents Sea ecosystem as it represents the major pathway of energy transfer from lower to higher trophic levels. We have examined sub-lethal effects on early life stages and on adult females. The hatchability of the eggs was not affected by concentrations well above realistic environmental levels. However, the instant mortality of the hatched larvae increased with higher concentrations of barium, scale inhibitor and APW, though not with higher radium-226 concentration. When examining the long-term growth of the nauplii, we found that the survival was poor in the APW treatment, and in the barium

  5. Trends in Sea Ice Cover, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.

    2011-12-01

    The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea

  6. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas

    : Tools for the Assessment of Ecosystem Health, 2009-2011), which is part of the Baltic Sea BONUS+ Programme funded jointly by national funding agencies and FP7 ERA-NET+ of the European Commission. The BEAST project consists of three workpackages (WP) with the following main tasks: WP1- Field studies...... and experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf...... of Finland, Gulf of Riga, Gulf of Gdansk and the Belt Sea, most of which are characterised by scarce data on biological effects of hazardous substances. The data acquired will be combined with previous data (e.g. national monitoring activities, case studies, EU BEEP project) to reach the goals of WP2 and WP3...

  7. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    Science.gov (United States)

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  8. Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks

    DEFF Research Database (Denmark)

    Möllmann, Christian; Lindegren, Martin; Blenckner, Thorsten

    2014-01-01

    -economic factors, in relation to specified management objectives. Here, we focus on implementing the IEA approach for Baltic Sea fish stocks. We combine both tactical and strategic management aspects into a single strategy that supports the present Baltic Sea fish stock advice, conducted by the International...... Council for the Exploration of the Sea (ICES). We first review the state of the art in the development of IEA within the current management framework. We then outline and discuss an approach that integrates fish stock advice and IEAs for the Baltic Sea. We intentionally focus on the central Baltic Sea...... and its three major fish stocks cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus), but emphasize that our approach may be applied to other parts and stocks of the Baltic, as well as other ocean areas...

  9. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  10. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  11. Water-cooled spacecraft : DART to be launched by Russian Volna (Stingray) rocket

    NARCIS (Netherlands)

    Van Baten, T.; Buursink, J.; Hartmann, L.

    2002-01-01

    A25 September 2005, Barents Sea, near Murmansk.Ten metres under the surface of the sea, the launch tube of the Mstislav, a Rostropovich class nuclear submarine, grinds open. The countdown for the launch of a Volna R-29R slbm (Submarine-Launched Ballistic Missile) starts: For many years, satellites

  12. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  13. Sea-level Rise Impacts on Oregon Estuaries: Biology and Hydrology

    Science.gov (United States)

    Estuaries are transitional ecosystems located at the margin of the land and ocean and as a result they are particularly sensitive to sea level rise and other climate drivers. In this presentation, we summarize the potential impacts of sea level rise on key estuarine habitats inc...

  14. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    Science.gov (United States)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with

  15. Shifts in North Sea forage fish productivity and potential fisheries yield

    DEFF Research Database (Denmark)

    Worsøe Clausen, Lotte; Rindorf, Anna; van Deurs, Mikael

    2018-01-01

    productivity. Furthermore, from an ecosystem-based fisheries management perspective, a link between functional complementarity and productivity, indicates that ecosystem resilience may decline with productivity. Based on this, we advise that system productivity, perhaps monitored as forage fish growth, becomes......1. Forage fish populations support large scale fisheries and are key components of marine ecosystems across the world, linking secondary production to higher trophic levels. While climate-induced changes in the North Sea zooplankton community are described and documented in literature......, the associated bottom-up effects and consequences for fisheries remain largely unidentified. 2. We investigated the temporal development in forage fish productivity and the associated influence on fisheries yield of herring, sprat, Norway pout and sandeel in the North Sea. Using principal component analysis, we...

  16. Anthropogenic radionuclides in Kola and Motovsky Bays of the Barents Sea, Russia

    International Nuclear Information System (INIS)

    Matishov, G.G.; Matishov, D.G.; Namjatov, A.A.; Carroll, J.; Dahle, S.

    1999-01-01

    Russia's military and civilian nuclear powered maritime fleets operate in the Kola and Motovsky Bays on the northwest Arctic coast of Russia. Levels of anthropogenic radionuclides were measured in sediment grab samples collected from approximately 100 stations in areas near military and civilian nuclear installations and in the open waters of the two bays. In most areas, radionuclide levels are similar to those reported for other Arctic seas: 137 Cs=1-24 Bq kg -1 d.w., 60 Co= -1 d.w. and 239,240 Pu=0.8-1.6 Bq kg -1 d.w. However, the presence of 60 Co (up to 27 Bq kg -1 d.w.) indicates that minor leakage of radioactive waste has occurred near several military installations. Sites where leakage is detected include Pala, Sayda, Olenya and Ekaterininskaya Bays in the Kola Bay and Zapadnaya Litsa in Motovsky Bay. 137 Cs levels of 40-50 Bq kg -1 d.w. and 239,240 Pu levels of up to 2.2 Bq kg -1 d.w. were measured near several military installations but these levels do not indicate leakage as the source.Some of the highest 60 Co activities were detected in sediments collected near the civilian nuclear installation, Atomflot. The sediments also contained higher 137 Cs activities compared to samples from other regions of the study area with similar particle size distributions. Routine discharges of purified radioactive waste from the Atomflot facility are the likely source of 60 Co and enhanced 137 Cs levels. With this investigation, we have detected evidence of radioactive waste leakage in the marine environment, but the environmental impact on the bays has been minimal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area

    Science.gov (United States)

    Berov, Dimitar; Todorova, Valentina; Dimitrov, Lubomir; Rinde, Eli; Karamfilov, Ventzislav

    2018-01-01

    The distribution and abundance of macroalgal communities in a Marine Protected Area (MPA) along the Bulgarian Black Sea coast were mapped and quantified, with particular focus on the previously unstudied P. crispa lower-infralittoral communities on Ostrea edulis biogenic reefs. Data from high resolution geophysical substrate mapping were combined with benthic community observations from georeferenced benthic photographic surveys and sampling. Multivariate analysis identified four distinct assemblages of lower-infralittoral macroalgal communities at depths between 10 and 17 m, dominated by Phyllophora crispa, Apoglossum ruscifoluim, Zanardinia typus and Gelidium spp. Maxent software analysis showed distinct preferences of the identified communities to areas with specific ranges of depth, inclination and curvature, with P. crispa more frequently occurring on vertical oyster biogenic reef structures. By combining production rates from literature, biomass measurements and the produced habitat maps, the highest proportion of primary production and DOC release was shown for the upper infralittoral Cystoseira barbata and Cystoseira bosphorica, followed by the production of the lower-infralittoral macroalgae. The observed distribution of P. crispa within the studied MPA was related to the network of Natura 2000 maritime MPAs along the Bulgarian Black Sea coast, which indicated that the connectivity of the populations of the species within the established network is insufficient within this cell of ecosystem functioning.

  19. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  20. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  1. A New Perspective on the Foraging Ecology of Apex Predators in the California Current: Results from a Fully Coupled Ecosystem Model

    Science.gov (United States)

    Fiechter, J.; Huckstadt, L. A.; Rose, K.; Costa, D. P.; Curchitser, E. N.; Hedstrom, K.; Edwards, C. A.; Moore, A. M.

    2016-02-01

    Results from a fully coupled end-to-end ecosystem model for the California Current Large Marine Ecosystem are used to describe the impact of environmental variability on the foraging ecology of its most abundant apex predator, California sea lions (Zalophus californianus). The ecosystem model consists of a biogeochemical submodel embedded in a regional ocean circulation submodel, and both coupled with a multi-species individual-based submodel for forage fish (sardine and anchovy) and California sea lions. For sea lions, bioenergetics and behavioral attributes are specified using available TOPP (Tagging Of Pacific Predators) data on their foraging patterns and diet in the California Current. Sardine and anchovy are explicitly included in the model as they represent important prey sources for California sea lions and exhibit significant interannual and decadal variability in population abundances. Output from a 20-year run (1989-2008) of the model demonstrates how different physical and biological processes control habitat utilization and foraging success of California sea lions on interannual time scales. A principal component analysis of sea lion foraging patterns indicates that the first mode of variability is alongshore and tied to sardine availability, while the second mode is cross-shore and associated with coastal upwelling intensity (a behavior consistent with male sea lion tracking data collected in 2004 vs. 2005). The results also illustrate how variability in environmental conditions and forage fish distribution affects sea lions feeding success. While specifically focusing on the foraging ecology of sea lions, our modeling framework has the ability to provide new and unique perspectives on trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.

  2. Habitat preferences among three top predators inhabiting a degraded ecosystem, the Black Sea

    Directory of Open Access Journals (Sweden)

    Alicia Sánchez-Cabanes

    2017-06-01

    Full Text Available This study investigated whether there is evidence of widespread niche partitioning based on environmental factors in the Black Sea and tested the hypothesis that physiographic factors may be employed as predictors. It addresses poorly researched areas with good habitat potential for the only three cetacean subspecies living in this area: the Black Sea short-beaked common dolphin (Delphinus delphis spp. ponticus, the Black Sea bottlenose dolphin (Tursiops truncatus spp. ponticus and the Black Sea harbour porpoise (Phocoena phocoena spp. relicta. Generalized additive models (GAMs were used to analyse data collected from multiple sources. In total, 745 sightings of the three species between 1998 and 2010 throughout the Black Sea were included. The analysis found depth and sea surface temperature to be the most important variables for separating the occurrence of the three species. Common dolphins occurred mainly in deep waters and in areas where the sea surface temperature was low, bottlenose dolphins were distributed primarily in shallower and warmer waters than common dolphins, and harbour porpoises were distributed in shallower waters with lower sea surface temperature than bottlenose dolphins. This study suggests strong niche segregation among the three cetacean species. The study is also the first contribution to the basic information of cetacean species distribution and habitat preferences in the Black Sea as a whole. Knowledge of the distribution of the three dolphin species in the study area is essential to establish conservation measures for these populations.

  3. Oil and the Caspian Sea

    International Nuclear Information System (INIS)

    Mohammad Poure Daryaei, N.

    2000-01-01

    Caspian Sea is the biggest lake in the world. It is almost F-shape and located between five Countries of Iran, Turkmenistan, Russia, Azarbayjohn, Ghazaghestan. Un fortunately, in the different region of the sea there are highly contaminated oil, in addition with other source of pollutants such as: agricultural, industrial and domestic pollution, which causes to eliminate the natural habitats of aquatic life and thus, the Caspian sea with all of the valuable natural sources of foods and energy is close to be destroyed. This paper studies the pollution by oil industry which causes the elimination of aquatic life and natural ecosystem, as well as, necessary plan to over come the present situation

  4. Past and future changes in extreme sea levels and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Lawe, J.A.; Woodworth, P.L.; Knutson, T.; McDonald, R.E.; Mclnnes, K.L.; Woth, K.; Von Storch, H.; Wolf, J.; Swail, V.; Bernier, N.B.; Gulev, S.; Horsburgh, K.J.; Unnikrishnan, A.S.; Hunter, J.R.; Weisse, R.

    of Extreme Sea Level 11.3.1 An Introduction to Storms Both mid-latitude and tropical storms are associated with extremes of sea level. Storm surges are generated by low atmospheric pressure and intense winds over the ocean. The latter also cause high wave... timescales, extremes and mean-sea-level change are both major factors in determining coastal evolution including the development of coastal ecosystems. It will be seen below that, although it is difficult to determine how mean sea level has changed...

  5. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery

    International Nuclear Information System (INIS)

    Steckbauer, A; Duarte, C M; Vaquer-Sunyer, R; Carstensen, J; Conley, D J

    2011-01-01

    Coastal hypoxia is increasing in the global coastal zone, where it is recognized as a major threat to biota. Managerial efforts to prevent hypoxia and achieve recovery of ecosystems already affected by hypoxia are largely based on nutrient reduction plans. However, these managerial efforts need to be informed by predictions on the thresholds of hypoxia (i.e. the oxygen levels required to conserve biodiversity) as well as the timescales for the recovery of ecosystems already affected by hypoxia. The thresholds for hypoxia in coastal ecosystems are higher than previously thought and are not static, but regulated by local and global processes, being particularly sensitive to warming. The examination of recovery processes in a number of coastal areas managed for reducing nutrient inputs and, thus, hypoxia (Northern Adriatic; Black Sea; Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxia, and typically involve decadal timescales. The extended lag time for ecosystem recovery from hypoxia results in non-linear pathways of recovery due to hysteresis and the shift in baselines, affecting the oxygen thresholds for hypoxia through time.

  6. Metagenomic studies of the Red Sea.

    Science.gov (United States)

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2016-02-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and

  7. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Science.gov (United States)

    Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  8. North Sea mackerel egg survey: dutch participation may and June 2011

    NARCIS (Netherlands)

    Damme, van C.J.G.

    2012-01-01

    Every three years an international North Sea survey is carried out by two European institutes, Institute for Marine Research (IMR) from Norway and Institute for Marine Resources and Ecosystem Studies (IMARES) from the Netherlands, to monitor the spatial and seasonal distribution of North Sea

  9. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica

    Science.gov (United States)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-08-01

    Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: while females tended to follow the sea ice edge as it extended northward, the males remained on the continental shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the pack ice, ∼150-370 km south of the ice edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the ice-water interface or within the water column (from

  10. Dissolved oxygen, nitrate, nitrite, phosphate, salinity, silicate, temperature and other data collected by bottle from 19 September 1959 to 28 November 1992 in the Eastern Arctic (NODC Accession 0000047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle casts from the AKHILL and other platforms in the Barents Sea. Data were collected...

  11. Norwegian North Polar Expedition 1893-1896: Oceanographic Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains water depth, temperature, specific gravity, salinity, and density measurements from the North Polar Basin and the Barents Sea, gathered by...

  12. Marine Spatial Planning: Norway´s management plans

    OpenAIRE

    Hoel, Alf Håkon; Olsen, Erik

    2010-01-01

    Since the adoption of a government white paper on ocean governance in 2001, Norway has worked on the development and implementation of marine spatial planning in the format of regional management plans. Management plans for the Barents Sea and the oceans off northern Norway and the Norwegian Sea were adopted in 2006 and 2009, respect...

  13. Sea Reclamation Status of Countries around the South China Sea from 1975 to 2010

    Directory of Open Access Journals (Sweden)

    Junjue Zhang

    2017-05-01

    Full Text Available As a way of turning sea into land for living space for humans, the actions of sea reclamation bring about significant benefits. Nevertheless, it is also an under-recognized threat to the environment and the marine ecosystem. Based on images in two periods, sea reclamation information of countries around the South China Sea was extracted from 1975 to 2010. The spatial state and driven forces of sea reclamation are then discussed. Results show that the overall strength of sea reclamation in the South China Sea was great. New reclaimed land added up to 3264 km2. Sea reclamation for fish farming was the main reclamation type and widely distributed in the whole area, especially on the coast from the Pearl River Delta to the Red River Delta, and the coast of Ca Mau Peninsula. Sea reclamation in China and Vietnam was rather significant, which occupies 80.6% of the total reclamation area. Singapore had the highest level of sea reclamation. New reclaimed land for fish farming holds a key role in China, Vietnam, and Indonesia, while new reclaimed land for construction and docks dominated in Malaysia, Singapore, and Brunei. Areas and use-type compositions of new reclaimed land in countries varied greatly due to the differences of economic factors, policy inclination, and landscapes in the respective countries.

  14. A Quantitative Proxy for Sea-Ice Based on Diatoms: A Cautionary Tale.

    Science.gov (United States)

    Nesterovich, A.; Caissie, B.

    2016-12-01

    Sea ice in the Polar Regions supports unique and productive ecosystems, but the current decline in the Arctic sea ice extent prompts questions about previous sea ice declines and the response of ice related ecosystems. Since satellite data only extend back to 1978, the study of sea ice before this time requires a proxy. Being one of the most productive, diatom-dominated regions in the world and having a wide range of sea ice concentrations, the Bering and Chukchi seas are a perfect place to find a relationship between the presence of sea ice and diatom community composition. The aim of this work is to develop a diatom-based proxy for the sea ice extent. A total of 473 species have been identified in 104 sediment samples, most of which were collected on board the US Coast Guard Cutter Healy ice breaker (2006, 2007) and the Norseman II (2008). The study also included some of the archived diatom smear slides made from sediments collected in 1969. The assemblages were compared to satellite-derived sea ice extent data averaged over the 10 years preceding the sampling. Previous studies in the Arctic and Antarctic regions demonstrated that the Generalized Additive Model (GAM) is one of the best choices for proxy construction. It has the advantage of using only several species instead of the whole assemblage, thus including only sea ice-associated species and minimizing the noise created by species responding to other environmental factors. Our GAM on three species (Connia compita, Fragilariopsis reginae-jahniae, and Neodenticula seminae) has low standard deviation, high level of explained variation, and holds under the ten-fold cross-validation; the standard residual analysis is acceptable. However, a spatial residual analysis revealed that the model consistently over predicts in the Chukchi Sea and under predicts in the Bering Sea. Including a spatial model into the GAM didn't improve the situation. This has led us to test other methods, including a non-parametric model

  15. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  16. Nutrient controls on biocomplexity of mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  17. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  18. Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica

    Directory of Open Access Journals (Sweden)

    Kevin R. Arrigo

    2014-07-01

    Full Text Available Abstract Sea ice covers approximately 5% of the ocean surface and is one of the most extensive ecosystems on the planet. The microbial communities that live in sea ice represent an important food source for numerous organisms at a time of year when phytoplankton in the water column are scarce. Here we describe the distributions and physiology of sea ice microalgae in the poorly studied Amundsen Sea sector of the Southern Ocean. Microalgal biomass was relatively high in sea ice in the Amundsen Sea, due primarily to well developed surface communities that would have been replenished with nutrients during seawater flooding of the surface as a result of heavy snow accumulation. Elevated biomass was also occasionally observed in slush, interior, and bottom ice microhabitats throughout the region. Sea ice microalgal photophysiology appeared to be controlled by the availability of both light and nutrients. Surface communities used an active xanthophyll cycle and effective pigment sunscreens to protect themselves from harmful ultraviolet and visible radiation. Acclimation to low light microhabitats in sea ice was facilitated by enhanced pigment content per cell, greater photosynthetic accessory pigments, and increased photosynthetic efficiency. Photoacclimation was especially effective in the bottom ice community, where ready access to nutrients would have allowed ice microalgae to synthesize a more efficient photosynthetic apparatus. Surprisingly, the pigment-detected prymnesiophyte Phaeocystis antarctica was an important component of surface communities (slush and surface ponds where its acclimation to high light may precondition it to seed phytoplankton blooms after the sea ice melts in spring.

  19. RKU North Sea. Update on the regional consequence examination concerning the petroleum industry in the North Sea

    International Nuclear Information System (INIS)

    2006-12-01

    An overview over prognoses for oil and gas production and the emissions related to these activities is provided for the years 2005-2025. A description of the Norwegian Continental Shelf's ecosystem, environmental technology employed, and considerations regarding the petroleum industry's effect on the ecosystem are considered. Emissions to air, planned emissions to the sea and accident emissions and spills are treated, as well as other possible environmental effects. Consequences for fishery, cultural monuments and for the society in general are also examined (ml)

  20. Environmental risk of oil spills in Northern Areas[Pollution abatement in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, Espen

    2006-07-01

    The presentation discusses consequences and risks for the environment of oil spills and other pollution factors in the northern areas particularly in the north of Norway and the Barents Sea. Various environmental risk analysis are also discussed. The main conclusions are: Environmental risk for Obelix: The environmental risk is very low. The environmental risk for Obelix is less than 21% of Hydro's acceptance criteria for minor damage. The environmental risk is acceptable. DNV: The contingency planned for Obelix (barrier 1 and 2) will reduce the environmental risk further by approx. 60%, date: 2006-01-13. Question: Hydro Oil and Energy. Does the oil industry reach other conclusions than the national research institutes does for the Management Plan of the Barents Sea. The underlying studies (of the management plan) mainly consider the consequences of worst case events. Full rate (3000 m3/d), long duration (60 days). Blowout occurring at the worst time and place. They assume that consequences experienced by shipwreck accidents in the coastal zone are relevant also for offshore discharges. They do not consider: The probability for the worst case blowout to occur. The probability for the worst case consequences to be realized. The probability for less serious impact. The probable impact distribution. Overall conclusion: Environmental Risk of oil and gas activities in Lofoten and the Barents Sea Based on: 1) 40 years of experience in the Norwegian sector. 2) World leading risk reduction technology. 3) Systematic and thorough methods for analysis of environmental risk. 4) Several environmental risk analyses for Barents Sea and Lofoten drilling operations, indicating acceptable risk levels. 5) Recent ERA for Goliath drilling indicating similar low risk levels. 6) Well functioning contingency systems. We conclude that the environmental risk of oil and gas activities in the northern areas is low and acceptable to the Norwegian society. The environmental risk due to oil

  1. Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea

    Science.gov (United States)

    Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo

    1999-02-01

    A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.

  2. Distribution of transuranic nuclides in Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ballestra, S.; Thein, M.; Fukai, R.

    1982-01-01

    For the comprehensive understanding of the behaviour of transuranic elements in the marine environment, the knowledge on the distribution of these elements in various components of marine ecosystems is essential. Since the Mediterranean Sea is considered a sufficiently self-contained system, our approach for studying the processes controlling the transuranic cycling in the sea has been to follow, step by step, the redistribution of plutonium and americium in different components of the marine environment, taking Mediterranean ecosystems as examples. While the studies in the past years have supplied quantitative information on the inputs of plutonium and americium into the Mediterranean from atmospheric fallout and rivers as well as on their behaviour in the Mediterranean water column, only scattered data have been made available so far on the occurrence of the transuranic nuclides in the Mediterranean marine biota or sediments. In order to fill up this information gap, biological and sediment samples were collected from the northwestern Mediterranean region during 1975-1978 for the transuranic measurements. The results of these determinations are given in the present report

  3. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  4. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Monitoring the Impact of Simulated Deep-sea Mining in Central Indian Basin R. SHARMA, B. NAGENDER NATH, AND S. JAI SANKAR National Institute of Oceanography, Dona Paula, Goa, India Monitoring of deep-sea disturbances, natural or man-made, has gained... has shown a partial recovery of the benthic ecosystem, with indications of restoration and recolonization. Keywords deep-sea mining, environmental impact, Central Indian Basin Deep-sea mineral deposits such as the polymetallic nodules and crusts...

  5. Natural and anthropogenic hydrocarbons in the White sea ecosystem

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.; Bogunov, A.

    2006-01-01

    An investigation of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH) concentrations in the White Sea was presented. The study was conducted to determine natural and anthropogenic hydrocarbon (HC) concentrations in order to aid in future zoning plans. Hydrocarbons were extracted from samples of aerosols, ice, water, particulate matter, phyto- and zooplankton, and bottom sediments. Results of the study suggested that HC concentrations in aerosols above the White Sea were lower than in marine aerosols above the southeastern Atlantic and lower than Alkane concentrations in aerosols in the Mediterranean Sea. A study of PAH behaviour in Northern Dvina estuaries showed that the submicron fractions contained light polyarenes. Particulate matter collected in sedimentation traps was enriched in phenanthrene, fluoranthene, and pyrene. Aliphatic HC enrichment was due to the presence of phytoplankton and other microorganisms. Between 54 per cent and 85 per cent of initial organic matter was consumed during diagenesis in the bottom sediments, indicating a high rate of HC transformation. It was suggested that the majority of oil HC transported with river water is precipitated. Fluoranthene was the dominant PAH in the study, and was assumed to be caused by natural transformation of PAH composition during distant atmospheric transport. Pyrogenic contamination of the bottom sediments was attributed to an aluminium plant. It was concluded that the detection of significant amounts of HC is not direct evidence of their anthropogenic origins. 31 refs., 3 tabs., 7 figs

  6. Facts 2000. Norwegian petroleum activities; Fakta 2000. Norsk petroleumsvirksomhet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The petroleum resources discovered on the Norwegian Continental Shelf amounts to about 9,6 billion Sm{sup 3} oil equivalents, 76 percent in the North Sea, 20 percent in the Norwegian Sea and 4 percent in the Barents Sea. The present publication gives a summary of the resources, the exploration, the field development, the production of oil and gas, and the revenue from petroleum sale for the year 1999.

  7. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  8. Spatial patterns of infauna, epifauna and demersal fish communities in the North Sea.

    NARCIS (Netherlands)

    Reiss, H.; Degraer, S.; Duineveld, G.C.A.; Craeymeersch, J.A.M.

    2010-01-01

    Understanding the structure and interrelationships of North Sea benthic invertebrate and fish communities and their underlying environmental drivers is an important prerequisite for conservation and spatial ecosystem management on scales relevant to ecological processes. Datasets of North Sea

  9. Contemporary radioecological state of the North-western Black Sea and the problems of environment conservation

    International Nuclear Information System (INIS)

    Tereshchenko, N.N.; Mirzoyeva, N.Yu.; Gulin, S.B.; Milchakova, N.A.

    2014-01-01

    Highlights: • Contamination of the ecosystem components by the radioactive isotopes 137 Cs, 90 Sr, 239, 240 Pu. • The maps of the temporal–spatial change in distribution of isotopes are submitted. • Zones with an increased ability to accumulate these radioactive pollutants were revealed. • Estimations of the flows of elimination of the radionuclides into the bottom sediments were carried out. • Assessment of dose rates formed by 90 Sr, 137 Cs and 239,240 Pu for Black Sea hydrobionts was obtained. - Abstract: Review is devoted to the analysis of a radioecological situation in the North-western Black Sea and concerns the levels of contamination of the components of an ecosystem by the main artificial radioactive isotopes ( 90 Sr, 137 Cs, 239,240 Pu). The long-term accumulation trends of these radionuclides were analyzed in components of the Black Sea ecosystem after the Chernobyl nuclear power plant accident. Zones that have an increased ability to accumulate these radioisotopes were revealed. The assessment of irradiation dose rates formed by 90 Sr, 137 Cs and 239,240 Pu in Black Sea hydrobionts was obtained. The strategy for biodiversity conservation and sustainable management of natural resources should include monitoring of the radioecological state of the marine ecosystems, and the formation of a complex of biogeochemical criteria for assessment of an ecological situation in the sea. This approach is important for marine protected areas, since it allows the formation of a basis for scientific and practical function

  10. Multi-Annual Climate Predictions for Fisheries: An Assessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Desiree Tommasi

    2017-06-01

    Full Text Available Decisions made by fishers and fisheries managers are informed by climate and fisheries observations that now often span more than 50 years. Multi-annual climate forecasts could further inform such decisions if they were skillful in predicting future conditions relative to the 50-year scope of past variability. We demonstrate that an existing multi-annual prediction system skillfully forecasts the probability of next year, the next 1–3 years, and the next 1–10 years being warmer or cooler than the 50-year average at the surface in coastal ecosystems. Probabilistic forecasts of upper and lower seas surface temperature (SST terciles over the next 3 or 10 years from the GFDL CM 2.1 10-member ensemble global prediction system showed significant improvements in skill over the use of a 50-year climatology for most Large Marine Ecosystems (LMEs in the North Atlantic, the western Pacific, and Indian oceans. Through a comparison of the forecast skill of initialized and uninitialized hindcasts, we demonstrate that this skill is largely due to the predictable signature of radiative forcing changes over the 50-year timescale rather than prediction of evolving modes of climate variability. North Atlantic LMEs stood out as the only coastal regions where initialization significantly contributed to SST prediction skill at the 1 to 10 year scale.

  11. Temporal variations in the fecundity of Arcto-Norwegian cod ( Gadus morhua) in response to natural changes in food and temperature

    Science.gov (United States)

    Kjesbu, O. S.; Witthames, P. R.; Solemdal, P.; Greer Walker, M.

    1998-12-01

    Sexually mature Arcto-Norwegian female cod, Gadus morhua, were sampled off northern Norway either during spawning migration (Vesterålen) or at spawning sites (Lofoten) from 1986 to 1996. This period comprised a dramatic, nearly cyclical change in the Barents Sea ecosystem. The stock of the main food item, viz. the Barents Sea capelin Mallotus villosus villosus, changed from a low (1986), to a high (1991) and again to a low (1994) level of abundance while the climate changed from a cold (≤1989) to a warm regime. The relative annual potential fecundity (i.e. number of vitellogenic oocytes per g prespawning fish) increased by approximately 40% from 1987 to 1991. However, information from a back-calculation technique calibrated in the laboratory using spawning fish indicated that this change might have been as high as 80 to 90%. Ovaries were analysed by the gravimetric, the automated particle counting and the stereometric method (modified to use with ovaries too large to section whole). All three methods gave similar fecundity estimates. The latter method was applied to quantify atresia of developing oocytes in the good-condition year of 1991. Atresia was rare, occurring in only 30% of the ovaries and where it was present in only 1 to 4% of the vitellogenic oocytes. Spawning females sampled from 1991 to 1996 gradually produced fewer eggs and demonstrated clear interannual variations in vitellogenic oocyte mean size and distribution thought to reflect a delicate reproductive tactic to minimise negative nutritional effects on egg size and egg quality. Estimates of annual potential fecundity for the duration of the study were significantly positively correlated with environmental temperature and the availability of capelin during vitellogenesis.

  12. The Impact of Sea Level Rise on Florida's Everglades

    Science.gov (United States)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  13. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    Science.gov (United States)

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  14. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh

    2015-10-23

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  15. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2015-01-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  16. Environment Laboratories Newsletter. Vol. 1, No. 02, Jul.-Dec. 2014

    International Nuclear Information System (INIS)

    Liong Wee Kwong, Laval

    2014-11-01

    Responding to Member States’ requests to physically monitor and report on the types and trends of contaminants in the natural environment is core business for the IAEA Environment Laboratories. This includes providing quality control and capacity building services relevant to radioactive substances and toxic pollutants, as well as communicating how environmental contaminants interact with other stressors to impact biodiversity and undermine the provision of essential ecosystem services. By fulfilling these functions using a practical, hands-on approach, the IAEA Environment Laboratories are unique within the UN system. In this edition of the Environment Laboratories Newsletter, we focus on recent initiatives and field activities to monitor radioactive and other substances in the environment, as well as key partnerships focused on improving the performance of analytical laboratories around the world. We report on a diverse array of activities, from sea water monitoring off the coast of Fukushima, Japan, and the Barents Sea, to training courses on the rapid determination of radioactive strontium in milk and the analysis of trace elements and organic contaminants in marine samples

  17. High contributions of sea ice derived carbon in polar bear (Ursus maritimus tissue.

    Directory of Open Access Journals (Sweden)

    Thomas A Brown

    Full Text Available Polar bears (Ursus maritimus rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated, rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55, irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

  18. Gene transcription in sea otters (Enhydra lutris); development of a diagnostic tool for sea otter and ecosystem health

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Murray, Michael; Haulena, Martin; Tuttle, Judy; van Bonn, William; Adams, Lance; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Tinker, M. Tim; Keister, Robin; Stott, Jeffrey L.

    2012-01-01

    Gene transcription analysis for diagnosing or monitoring wildlife health requires the ability to distinguish pathophysiological change from natural variation. Herein, we describe methodology for the development of quantitative real-time polymerase chain reaction (qPCR) assays to measure differential transcript levels of multiple immune function genes in the sea otter (Enhydra lutris); sea otter-specific qPCR primer sequences for the genes of interest are defined. We establish a ‘reference’ range of transcripts for each gene in a group of clinically healthy captive and free-ranging sea otters. The 10 genes of interest represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumour suppression, cellular stress response, xenobiotic metabolizing enzymes, antioxidant enzymes and cell–cell adhesion. The cycle threshold (CT) measures for most genes were normally distributed; the complement cytolysis inhibitor was the exception. The relative enumeration of multiple gene transcripts in simple peripheral blood samples expands the diagnostic capability currently available to assess the health of sea otters in situ and provides a better understanding of the state of their environment.

  19. Incorporating Ecosystem Services into Community-level ...

    Science.gov (United States)

    EPA’s Office of Research and Development’s Sustainable and Healthy Communities Research Program is developing tools and approaches to incorporate ecosystem goods and services concepts into community-level decision-making. The San Juan Community Study is one of a series of coordinated community studies, which also include Mobile Bay, AL, Great Lakes Areas of Concern, and the Pacific Northwest. Common elements across the community studies include a focus on watershed management and national estuary programs (National Estuary Program, National Estuarine Research Reserve System). San Juan, Puerto Rico, is unique from the other community studies in that it is located in a highly urbanized watershed integrated with a number of freshwater and coastal ecosystems. The San Juan Community Study will explore linkages between watershed management decisions (e.g., dredging canals, restoration of mangrove buffers, sewage discharge interventions, climate adaptive strategies) targeting priority stressors (e.g., nutrients, contaminants, and pathogens; aquatic debris; habitat loss; modified hydrology and water circulation; sea level rise; storm intensity and frequency) effecting the condition of ecosystems (e.g., estuarine habitats and fish, as well as the connected terrestrial and coastal ecosystems), associated ecosystem goods and services (e.g., tourism and recreation, fishing, nutrient & sediment retention, contaminant processing, carbon sequestration, flood protection),

  20. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.