Solid Bare Strange Quark Stars
Xu, R X
2003-01-01
The reason, we need three terms of `strange', `bare', and `solid' before quark stars, is presented concisely though some fundamental issues are not certain. Observations favoring these stars are introduced.
Bare strange quark stars formation and emission
Xu, R X
2002-01-01
Recent achievements of bare strange stars are briefly reviewed. A nascent protostrange star should be bare because of strong mass ejection and high temperature after the supernova detonation flame, and a crust can also hardly form except for a super-Eddington accretion. The magnetosphere of a bare strange star is composed mainly of electron-positron pair plasma, where both inner and outer vacuum gaps work for radio as well as high energy nonthermal emission. A featureless thermal spectrum is expected since no ion is above the quark surface, whilst electron cyclotron lines could appear in some bare strange stars with suitable magnetic fields. Various astrophysical implications of bare strange stars are discussed.
The strange-quark distribution
Energy Technology Data Exchange (ETDEWEB)
Barone, V. [Turin Univ. (Italy). Ist. di Fisica Teorica; Genovese, M. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Nikolaev, N.N. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); Predazzi, E. [Turin Univ. (Italy). Ist. di Fisica Teorica; Zakharov, B.G. [L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation)
1996-03-01
We discuss the latest CCFR determination of the strange sea density of the proton. We comment on the differences with a previous, leading-order, result and point out the relevance of quark mass effects and current non-conservation effects. By taking them into account it is possible to solve the residual discrepancy with another determination of the strange-quark distribution. Two important sources of uncertainties are also analysed. (orig.). With 4 figs.
Electrically Charged Strange Quark Stars
Negreiros, Rodrigo P; Malheiro, Manuel; Usov, Vladimir
2009-01-01
The possible existence of compact stars made of absolutely stable strange quark matter--referred to as strange stars--was pointed out by E. Witten almost a quarter of a century ago. One of the most amazing features of such objects concerns the possible existence of ultra-strong electric fields on their surfaces, which, for ordinary strange matter, is around $10^{18}$ V/cm. If strange matter forms a color superconductor, as expected for such matter, the strength of the electric field may increase to values that exceed $10^{19}$ V/cm. The energy density associated with such huge electric fields is on the same order of magnitude as the energy density of strange matter itself, which, as shown in this paper, alters the masses and radii of strange quark stars at the 15% and 5% level, respectively. Such mass increases facilitate the interpretation of massive compact stars, with masses of around $2 M_\\odot$, as strange quark stars.
Search for strange quark matter
Hill, J C
2000-01-01
We present results of a search for charged and neutral strangelets produced on collisions of 11.6 A GeV/c Au beams with Pt or Pb targets. Yields of light nuclei and hypernuclei produced by coalescence were measured. Penalty factors were measured for the addition to a fragment of a nucleon or strange hadron. These are useful in planning future searches for strange quark matter.
Space-Time Geometry of Quark and Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).
Metastable strange matter and compact quark stars
Malheiro, M; Taurines, A R
2003-01-01
Strange quark matter in beta equilibrium at high densities is studied in a quark confinement model. Two equations of state are dynamically generated for the {\\it same} set of model parameters used to describe the nucleon: one corresponds to a chiral restored phase with almost massless quarks and the other to a chiral broken phase. The chiral symmetric phase saturates at around five times the nuclear matter density. Using the equation of state for this phase, compact bare quark stars are obtained with radii and masses in the ranges $R\\sim 5 - 8$ km and $M\\sim M_\\odot$. The energy per baryon number decreases very slowly from the center of the star to the periphery, remaining above the corresponding values for the iron or the nuclear matter, even at the edge. Our results point out that strange quark matter at very high densities may not be absolutely stable and the existence of an energy barrier between the two phases may prevent the compact quarks stars to decay to hybrid stars.
On the strange quark mass with improved staggered quarks
Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.
2002-01-01
We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.
Energy Technology Data Exchange (ETDEWEB)
Glendenning, N.K.
1989-11-01
We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.
Strangeness suppression in the unquenched quark model
Bijker, Roelof; Santopinto, Elena
2016-01-01
In this contribution, we discuss the strangeness suppression in the proton in the framework of the unquenched quark model. The theoretical results are in good agreement with the values extracted from CERN and JLab experiments.
Strange Quark Matter Status and Prospects
Sandweiss, J.
2004-01-01
The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.
Note on Strange Quarks in the Nucleon
Steininger, K
1994-01-01
Scalar matrix elements involving strange quarks are studied in several models. Apart from a critical reexamination of results obtained in the Nambu and Jona-Lasinio model we study a scenario, motivated by instanton physics, where spontaneous chiral symmetry breaking is induced by the flavor-mixing 't Hooft interaction only. We also investigate possible contributions of virtual kaon loops to the strangeness content of the nucleon.
Clustered Quark Matter Calculation for Strange Quark Matter
Na, Xuesen
2009-01-01
Motivated by the need for a solid state strange quark matter to better explain some observational phenomena, we discussed possibility of color singlet cluster formation in cold strange quark matter by a rough calculation following the excluded volume method proposed by Clark et al (1986) and adopted quark mass density dependent model with cubic scaling. It is found that 70% to 75% of volume and 80% to 90% of baryon number is in clusters at temperature from 10MeV to 50MeV and 1 to 10 times nuclear density.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Chen, H.; Wei, J.-B.; Schulze, H.-J.
2016-09-01
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Chen, H; Schulze, H -J
2016-01-01
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9--11 km. We obtain an energy release as large as $3.6 \\times 10^{53}\\,\\text{erg}$ from conversion of neutron stars into strange quark stars.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Energy Technology Data Exchange (ETDEWEB)
Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)
2016-09-15
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)
Seismic Search for Strange Quark Matter
Teplitz, Vigdor
2004-01-01
Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.
Strange quark matter in explosive astrophysical systems
Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M
2010-01-01
Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...
SEARCH FOR NUCLEI CONTAINING TWO STRANGE QUARKS.
Energy Technology Data Exchange (ETDEWEB)
MAY,M.
1997-10-13
This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.
Search for nuclei containing two strange quarks
Energy Technology Data Exchange (ETDEWEB)
May, M.
1997-12-31
This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.
Constraints on the Existence of Strange Quark Stars
Balberg, Shmuel
1997-01-01
Creation of strange quark stars through strong interaction deconfinement is studied based on modern estimates of hyperon formation in neutron stars. The hyperon abundance is shown to be large enough so that if strange quark matter (SQM) is the true ground state of matter, the deconfinement density should be at most 2.5-3 times the nuclear saturation density. If so, deconfinement occurs in neutron stars at birth, and all neutron stars must be strange quark stars. Alternatively, sould observati...
Strange quark momentum fraction from overlap fermion
Sun, Mingyang; Liu, Keh-Fei; Gong, Ming
2015-01-01
We present a calculation of $\\langle x \\rangle_s$ for the strange quark in the nucleon. We also report the ratio of the strange $\\langle x \\rangle$ to that of $u/d$ in the disconnected insertion which will be useful in constraining the global fit of parton distribution functions at small $x$. We adopt overlap fermion action on $2 + 1$ flavor domain-wall fermion configurations on the $24^3 \\times 64$ lattice with a light sea quark mass which corresponds to $m_{\\pi}=330$ MeV. Smeared grid $Z_3$ sources are deployed to calculate the nucleon propagator with low-mode substitution. Even-odd grid sources and time-dilution technique with stochastic noises are used to calculate the high mode contribution to the quark loop. Low mode averaging (LMA) for the quark loop is applied to reduce the statistical error of the disconnected insertion calculation. We find the ratio $\\langle x \\rangle_s/\\langle x \\rangle_{u/d}^{\\mathrm{DI}}= 0.78(3)$ in this study.
The effect of dynamical quark mass on the calculation of a strange quark star's structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Babak Ziaei
2012-01-01
We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Radial stability of anisotropic strange quark stars
Arbañil, José D. V.; Malheiro, M.
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Strangeness at high temperatures: from hadrons to quarks.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2013-08-23
Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.
Strangeness at high temperatures: from hadrons to quarks
Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2013-01-01
Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.
A Possible Resolution of the Strange Quark Polarization Puzzle ?
Leader, Elliot; Stamenov, Dimiter B
2011-01-01
We propose a possible resolution of the strange quark polarization puzzle i.e. of the contradiction between the negative polarized strange quark density obtained from analyses of inclusive DIS data and the positive values obtained from combined analyses of inclusive and semi-inclusive SIDIS data using de Florian et. al. (DSS) fragmentation functions. To this end the results of a new combined NLO QCD analysis of the polarized inclusive and semi-inclusive DIS data, using the Hirai et. al. (HKNS) fragmentation functions, are presented. It is demonstrated that the polarized strange quark density is very sensitive to the kaon fragmentation functions, and if the set of HKNS fragmentation functions is used, the polarized strange quark density from the combined analysis turns out to be negative and well consistent with values obtained from the pure DIS analyses.
Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang
2004-01-01
@@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.
Higher dimensional strange quark matter solutions in self creation cosmology
Şen, R.; Aygün, S.
2016-03-01
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
RX J1856.5-3754: A Strange Star with Solid Quark Surface?
Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan
2003-01-01
The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.
PREFACE: Strangeness in Quark Matter (SQM2009) Strangeness in Quark Matter (SQM2009)
Fraga, Eduardo; Kodama, Takeshi; Padula, Sandra; Takahashi, Jun
2010-09-01
The 14th International Conference on Strangeness in Quark Matter (SQM2009) was held in Brazil from 27 September to 2 October 2009 at Hotel Atlântico, Búzios, Rio de Janeiro. The conference was jointly organized by Universidade Federal do Rio de Janeiro, Universidade Estadual de Campinas, Centro Brasileiro de Pesquisas Físicas, Universidade de São Paulo, Universidade Estadual Paulista and Universidade Federal do Rio Grande do Sul. Over 120 scientists from Argentina, Brazil, China, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Norway, Poland, Russia, Slovakia, South Africa, Switzerland, the UK and the USA gathered at the meeting to discuss the physics of hot and dense matter through the signals of strangeness and also the behavior of heavy quarks. Group photograph The topics covered were strange and heavy quark production in nuclear collisions, strange and heavy quark production in elementary processes, bulk matter phenomena associated with strange and heavy quarks, and strangeness in astrophysics. In view of the LHC era and many other upcoming new machines, together with recent theoretical developments, sessions focused on `New developments and new facilities' and 'Open questions' were also included. A stimulating round-table discussion on 'Physics opportunities in the next decade in the view of strangeness and heavy flavor in matter' was chaired in a relaxed atmosphere by Grazyna Odyniec and conducted by P Braun-Munzinger, W Florkowski, K Redlich, K Šafařík and H Stöcker, We thank these colleagues for pointing out to young participants new physics directions to be pursued. We also thank J Dunlop and K Redlich for excellent introductory lectures given on the Sunday evening pre-conference session. In spite of the not-so-helpful weather, the beauty and charm of the town of Búzios helped to make the meeting successful. Nevertheless, the most important contributions were the excellent talks, whose contents are part of these proceedings, given
16th International Conference on Strangeness in Quark Matter
2016-01-01
Topical conference on Strangeness and Heavy Flavor production in Heavy-Ion Collisions The conference will focus on new experimental and theoretical developments on the role of strange and heavy-flavour quarks in proton-proton and in heavy-ion collisions, and in astrophysical phenomena. New results are expected, from the LHC, from RHIC and from other experimental programs. The 16th International Conference on Strangeness in Quark Matter, follows the recent events of 2015 in Dubna, 2013 in Birmingham, and 2011 in Cracow.
New analysis concerning the strange quark polarization puzzle
Leader, Elliot; Stamenov, Dimiter B
2014-01-01
The fact that analyses of semi-inclusive deep inelastic scattering suggest that the strange quark polarization $\\Delta s(x) + \\Delta \\bar{s}(x)$ is positive in the measured region of Bjorken x, whereas all analyses of inclusive deep inelastic scattering yield significantly negative values of this quantity, is known as the "strange quark polarization puzzle". We have re-analysed the world data on inclusive deep inelastic scattering, including the COMPASS 2010 proton data on the spin asymmetries, and for the first time, the new extremely precise JLab CLAS data on the proton and deuteron spin structure functions. Despite allowing, in our parametrization, for a possible sign change, our results confirm that the inclusive data yield significantly negative values for the strange quark polarization.
Study of Strange Quark Mass in CFL Phase
Institute of Scientific and Technical Information of China (English)
LI Xin; L(U) Xiao-Fu
2006-01-01
In this paper we introduce bilocal fields in the global color symmetry model and consider color and electrical neutrality conditions simultaneously to study the effect of strange quark mass Ms for the momentum-dependent condensate of color-flavor locked phase. Consequently we find that there will be a quantum phase transition occurring.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Studies of the Strange Sea-Quarks Spin with Kaons
Benmokhtar, Fatiha; Voloshin, Andrew; Goodwill, Justin; Lendacky, Andrew
2017-01-01
It is well known that quarks and gluons give the substructure to the nucleons. and understanding of the spin structure of the nucleon in terms of quarks and gluons has been the goal of intense investigations during the last decades. The determination of strangeness is challenging and the only way of determining the strange distribution accurately from data is to improve the semi-inclusive information. This talk is focused on the determination of the strange sea contribution to the nucleon spin through the pseudo-scalar method using semi-inclusive Kaon detection technique with CLAS12 at Jefferson Lab. A Ring Imaging CHerenkov (RICH) detector is under construction and will be used for pion-kaon-proton separation. National Science Foundation #1615067.
Strange Quark Contribution to the Nucleon - (Dissertation)
Darnell, Dean
2008-01-01
The strangeness contribution to the electric and magnetic properties of the nucleon has been under investigation experimentally for many years. Lattice Quantum Chromodynamics (LQCD) gives theoretical predictions of these measurements by implementing the continuum gauge theory on a discrete, mathematical Euclidean space-time lattice which provides a cutoff removing the ultra-violet divergences. In this dissertation we will discuss effective methods using LQCD that will lead to a better determination of the strangeness contribution to the nucleon properties. Strangeness calculations are demanding technically and computationally. Sophisticated techniques are required to carry them to completion. In this thesis, new theoretical and computational methods for this calculation such as twisted mass fermions, perturbative subtraction, and General Minimal Residual (GMRES) techniques which have proven useful in the determination of these form factors will be investigated. Numerical results of the scalar form factor usin...
Strange and Charm Quark Spins from Anomalous Ward Identity
Gong, Ming; Alexandru, Andrei; Draper, Terrence; Liu, Keh-Fei
2015-01-01
We present a calculation of the strange and charm quark contributions to the nucleon spin from anomalous Ward identity (AWI). It is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations on a $24^3 \\times 64$ lattice with the light sea mass at $m_{\\pi} = 330$ MeV. To satisfy the AWI, the overlap fermion for the pseudoscalar density and the overlap Dirac operator for the topological density, which do not have multiplicative renormalization, are used to renormalize the form factor of the local axial-vector current at finite $q^2$. For the charm quark, we find the positive pseudoscalar term almost cancels the negative topological term for each $q^2$, leading to a very small net contribution. For the strange quark, the pseudoscalar term is less positive than that of the charm and this results in a negative strange quark spin when combined with the topological contribution. The $g_A(q^2)$ at $q^2 =0$ is obtained by a global fit of the pseudoscalar and the topological form fact...
Penta-Quark States with Strangeness, Hidden Charm and Beauty
Wu, Jia-Jun; Zou, Bing-Song
The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.
Penta-quark States with Strangeness, Hidden Charm and Beauty
Wu, Jia-Jun
2015-01-01
The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such $N^*$ with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.
Quark-hadron phase transition and strangeness conservation constraints
Saeed-Uddin
1999-01-01
The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.
Stability of charged strange quark stars
Energy Technology Data Exchange (ETDEWEB)
Arbañil, José D. V.; Malheiro, Manuel [Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900 São José dos Campos, SP (Brazil)
2015-12-17
We investigate the hydrostatic equilibrium and the stability of charged stars made of a charged perfect fluid. The matter contained in the star follows the MIT bag model equation of state and the charge distribution to a power-law of the radial coordinate. The hydrostatic equilibrium and the stability of charged strange stars are analyzed using the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s equation pulsation, respectively. These two equation are modified from their original form to the inclusion of the electric charge. We found that the stability of the star decreases with the increment of the central energy density and with the increment of the amount of charge.
A class of exact strange quark star model
Indian Academy of Sciences (India)
S Thirukkanesh; F C Ragel
2013-08-01
Static spherically symmetric space-time is studied to describe dense compact star with quark matter within the framework of MIT Bag Model. The system of Einstein’s field equations for anisotropic matter is expressed as a new system of differential equations using transformations and it is solved for a particular general form of gravitational potential with parameters. For a particular parameter, as an example, it is shown that the model satisfies all major physical features expected in a realistic star. The generated model also smoothly matches with the Schwarzschild exterior metric at the boundary of the star. It is shown that the generated solutions are useful to model strange quark stars.
TRANSITION TEMPERATURE IN QCD WITH PHYSICAL LIGHT AND STRANGE QUARK MASSES.
Energy Technology Data Exchange (ETDEWEB)
KARSCH, F.
2006-11-14
We present results from a calculation of the transition temperature in QCD with two light (up, down) and one heavier (strange) quark mass as well as for QCD with three degenerate quark masses. Furthermore, we discuss first results from an ongoing calculation of the QCD equation of state with almost realistic light and strange quark masses.
Quasiequilibrium sequences of binary strange quark stars in general relativity
Limousin, F; Gourgoulhon, E; Limousin, Francois; Gondek-Rosinska, Dorota; Gourgoulhon, Eric
2004-01-01
Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is irrotational.
The extent of strangeness equilibration in quark gluon plasma
Indian Academy of Sciences (India)
Dipali Pal; Abhijit Sen; Munshi Golam Mustafa; Dinesh Kumar Srivastava
2003-05-01
The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy-ion collisions is studied with initial conditions obtained from the self screened parton cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with the number of participants.
Is RXJ1856.5-3754 a strange quark star?
Energy Technology Data Exchange (ETDEWEB)
Drake, Jeremy J.; Marshall, Herman L
2003-05-05
Deep Chandra LETGS observations of the isolated neutron star candidate RXJ1856.5-3754 have demonstrated that, to within the accuracy of the observations, the X-ray spectrum is consistent with a blackbody with a temperature of 7 x 10{sup 5} K and a radiation radius R{sub {infinity}} {approx} 5 km--much too small for current neutron star equations of state. The small apparent radius, lack of X-ray pulsations down to a level of 3%, and failure to explain the observations in terms of current neutron star models, lead to the suggestion that RXJ1856.5-3754 might be a strange quark star. We discuss some issues associated with this interpretation and look briefly at RX J1856.5-3754 in the context of other have smooth featureless spectra. Both X-ray and optical spectra of some of these objects might be explained by 'naked' crusted neutron stars or strange quark stars with thin coronae. RX J1856.5-3754 remains an interesting strange quark star candidate.
Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter
Niebergal, Brian; Jaikumar, Prashanth
2010-01-01
We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable (u,d,s) quark matter. Our method solves hydrodynamical flow equations in 1D with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change due to heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below approximately 2 times saturation density). In a 2-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly...
Radial stability of anisotropic of strange quark stars
Arbañil, José D V
2016-01-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic $\\sigma=p_t-p_r$, where $p_t$ and $p_r$ are respectively the tangential and the radial pressure, are considered: one that is null at the star's surface defined by $p_r(R)=0$, and other that is nonnull on it, namely, $\\sigma_s=0$ and $\\sigma_s\
The Strange Magnetic Moment of the Proton in the Chiral Quark Model
1998-01-01
The strange magnetic moment of the proton is small in the chiral quark model, because of a near cancellation between the quantum fluctuations that involve kaons and $s$-quarks and loops that involve radiative transitions between strange vector mesons and kaons.
Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets
Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph
2006-01-01
Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.
Xu, J F; Liu, F; Hou, D F; Chen, L W
2015-01-01
A quark model with running coupling and running strange quark mass, which is thermodynamically self-consistent at both high and lower densities, is presented and applied to study properties of strange quark matter and structure of compact stars. An additional term to the thermodynamic potential density is determined by meeting the fundamental differential equation of thermodynamics. It plays an important role in comparatively lower density and ignorable at extremely high density, acting as a chemical-potential dependent bag constant. In this thermodynamically enhanced perturbative QCD model, strange quark matter still has the possibility of being absolutely stable, while the pure quark star has a sharp surface with a maximum mass as large as about 2 times the solar mass and a maximum radius of about 11 kilometers.
Differences in the Cooling Behavior of Strange Quark Matter Stars and Neutron Stars
Schaab, Christoph; Hermann, Bernd; Weber, Fridolin; Weigel, Manfred K.
1997-01-01
The general statement that hypothetical strange (quark matter) stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. In this case, strange stars are slowly cooling, and their surface temperatures are more or less indistinguishable from those of slowly cooling neutron stars. Furthermore the case of enhanced cooling is reinvestigated. It shows that strange sta...
Strangeness s = -3 dibaryons in a chiral quark model
Lian-Rong, D; Chun-Ran, L; Lei, T; Lian-Rong, Dai; Dan, Zhang; Chun-Ran, Li; Lei, Tong
2006-01-01
The structures of $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ with strangeness $s=-3$ are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The first model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon(NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The effect from the vector meson fields is very similar to that from the one-gluon exchange interaction, both in the chiral SU(3) quark model and the extended chiral SU(3) quark model, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems are wealy bound states. The second model parameters are also taken from our previous work by fitting the KN scattering process. when the mixing of scalar mesons are considered, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems change into unbound...
Strange quark asymmetry in the proton in chiral effective theory
Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P
2016-01-01
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.
Dibaryons with two strange quarks and one heavy flavor in a constituent quark model
Park, Aaron; Lee, Su Houng
2016-01-01
We investigate the symmetry property and the stability of dibaryons containing two strange quarks and one heavy flavor with $I=\\frac{1}{2}$. We construct the wave function of the dibaryon in two ways. First, we directly construct the color and spin state of the dibaryon starting from the four possible SU(3) flavor state. Second, we consider the states composed of five light quarks, and then construct the wave function of the dibaryon by adding one heavy quark. The stability of the dibaryon against the strong decay into two baryons is discussed by using variational method in a constituent quark model with confining and hyperfine potential. We find that for all configurations with S=0,1,2, the ground states of the dibaryons are the sum of two baryons, and there are no compact bound state that is stable against the strong decay.
Dibaryons with two strange quarks and one heavy flavor in a constituent quark model
Park, Aaron; Park, Woosung; Lee, Su Houng
2016-09-01
We investigate the symmetry property and the stability of dibaryons containing two strange quarks and one heavy flavor with isospin I =1/2 . We construct the wave function of the dibaryon in two ways. First, we directly construct the color and spin state of the dibaryon starting from the four possible S U (3 ) flavor states. Second, we consider the states composed of five light quarks and then construct the wave function of the dibaryon by adding one heavy quark. The stability of the dibaryon against the strong decay into two baryons is discussed by using the variational method in a constituent quark model with a confining and hyperfine potential. We find that, for all configurations with spin S =0 , 1, 2, the ground states of the dibaryons are the sum of two baryons, and there is no compact bound state that is stable against the strong decay.
Bulk viscosity of strange quark matter in density dependent quark mass model
Indian Academy of Sciences (India)
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Geng, J J; Lu, T
2015-01-01
Strange quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars, but not neutron stars. According to this SQM hypothesis, the existence of a hydrostatically stable sequence of strange quark matter stars has been predicted, ranging from 1 --- 2 solar mass strange stars, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the searching for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral very close to their host strange stars, without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as a new kind of sources for GW bursts, producing strong gravitational waves at the final stage. The events occurring in our local Universe can be detected by the upcoming gravitational wave detectors, such as Advanced LIGO and the Einstein Telescope. This ...
Indian Academy of Sciences (India)
V K Gupta; Asha Gupta; S Singh; J D Anand
2003-10-01
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the effect of magnetic ﬁeld, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.
Institute of Scientific and Technical Information of China (English)
PANG Hou-Rong; PING Jia-Lun; WANG Fan; ZHAO En-Guang
2004-01-01
Promising high strangeness dibaryons are studied by the extended quark delocalization and color screening model. It is shown that besides H particle and di-Ω, there might be other dibaryon candidates worth to be searched experimentally such as NΩ.
Transition temperature in QCD with physical light and strange quark masses
Karsch, F
2007-01-01
We present results from a calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N_t =4 and 6. Calculations with improved staggered fermions have been performed with a strange quark mass fixed close to its physical value and for various light to strange quark mass ratios that correspond to light pseudo-scalar masses in the range (150-500) MeV. From a combined extrapolation to the chiral (m_l -> 0) and continuum (aT -> 0) limits we obtain for the transition temperature at the physical point T_c = 192(7)(4) MeV. We also present first results from an ongoing calculation of the QCD equation of state with almost realistic light and strange quark masses.
Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter
Energy Technology Data Exchange (ETDEWEB)
Bauswein, Andreas Ottmar
2010-01-29
Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)
PREFACE: SQM2007 International Conference on Strangeness in Quark Matter
Šafařík, Karel; Šándor, Ladislav; Tomášik, Boris
2008-04-01
The International Conference on `Strangeness in Quark Matter' (SQM) was held from 24-29 June 2007 at the Congress Hall of the city cultural centre in the charming mediaeval town of Levoča in north-eastern Slovakia. The Institute of Experimental Physics of the Slovak Academy of Science and the Faculty of Science of the P J Šafárik University in Košice shared the duties of main organizers of the conference. SQM2007 was attended by more than 100 participants from about 20 countries. The natural beauty and the rich cultural and historical monuments of the surrounding Spiš (Scepusium) region created an inspiring setting for the scientific, social and cultural framework of the conference. Continuing the trend started at the SQM2006 conference, heavy flavour physics in heavy-ion collisions was a topic given equal importance in the SQM2007 programme alongside strange quark physics. The Symposium for Students, from Students, organized by Christian Klein-Boesing and Boris Tomášik on the basis of the contributed abstracts, was again an integral and successful part of the conference. The jury, drawn from the organizers, awarded William A Horowitz (Columbia University) the title of best student contribution. The good news is that many students and younger researchers attended the conference. This could not have happened without generous support from our sponsors whom we would like to thank for valuable financial support: CERN, Journal of Physics G, the Prešov self-governing region authorities and the Slovak Physical Society. The kind assistance of the mayor of the town of Levoča is also warmly acknowledged. We would like to extend our gratitude to our colleagues and students from the organizing institutions for their diligent work prior to and during the conference, which ensured that everything worked smoothly. Our special thanks go to our secretaries, Adri Chomičová and Mery Šemš'aková, as well as to the management of the SATEL Hotel in Levoča for their highly
Role of the strange quark in the rho(770) meson
Molina, R; Hu, B; Alexandru, A; Doring, M
2016-01-01
Recently, the GWU lattice group has evaluated high-precision phase-shift data for $\\pi\\pi$ scattering in the $I = 1$, $J = 1$ channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing $K\\bar{K}$ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower $\\rho$ mass, and the analysis with U$\\chi$PT shows that the $K \\bar{K}$ channel indeed pushes the $\\pi\\pi$-scattering phase shift upward, having a surprisingly large effect on the $\\rho$-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of $N_f = 2 + 1$ lattice simulations for the $\\rho(770)$ are also reported.
Looking for Strange Quark Matter in Cosmic Rays.
Directory of Open Access Journals (Sweden)
Bezshapov S.P.
2013-06-01
Full Text Available Usually it is supposed that the definition of the CR mass composition in knee region is the key to problem of CR spectrum modification in this range. However tens of the experiments were done for the last half of century and have not decided this problem up to now. The possible causes of fiasco and arguments in favour of necessity to reformulate attack method are discussed, taking into account a new experimental data about fine structure of CR spectrum and EAS core investigations. The possible presence of the exotic processes in the area of a knee is discussed. If exotic component really exists in CR then impossible to formulate correctly more common problem of mass composition without solving this one. It is represented, that the problem of presence of an exotic component in CR should be solved easier than a CR composition problem. The observational basis is discussed. The hypothesis of strange quark matter in CR is suggested for the exotic component.
Using the Moon as a low-noise seismic detector for strange quark nuggets
Energy Technology Data Exchange (ETDEWEB)
Banerdt, W. Bruce [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Chui, Talso [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)], E-mail: talso.c.chui@jpl.nasa.gov; Griggs, Cornelius E. [Physics Department, University of Maryland, College Park, MD 20742 (United States); Herrin, Eugene T. [Department of Geology, Southern Methodist University, Dallas, TX 75275 (United States); Nakamura, Yosio [Institute for Geophysics, University of Texas at Austin, Austin, TX 78759-8500 (United States); Paik, Ho Jung [Physics Department, University of Maryland, College Park, MD 20742 (United States); Penanen, Konstantin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Rosenbaum, Doris [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); Teplitz, Vigdor L. [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Young, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)
2007-04-15
Strange quark matter made of up, down and strange quarks has been postulated by Witten [E. Witten, Phys. Rev D 30 (1984) 279]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10{sup 14} gm/cm{sup 3}). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [A. de Rujula and S. Glashow, Nature 312 (1984) 734], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.
Multi-strange-quark states at ultra-relativistic heavy-ion collisions
Indian Academy of Sciences (India)
J P Coffin; C Kuhn; B Hippolyte; J Baudot; I Belikov
2003-05-01
We examine the possibility of producing and evidencing exotic strange matter (strangelets and metastable multi-hypernuclear objects, MEMO’s), including also pure hyperonic bound states ((), (Ξ )), at RHIC and LHC. Simulations are presented to estimate the sensitivity of the STAR and ALICE experiments to the detection of these objects, focusing mainly on metastable short-lived (weak decaying) strange dibaryons, with a particular emphasis on the -dibaryon, a six quark-bag bound state (uuddss).
Search for Stable Strange Quark Matter in Lunar Soil using the Mass Spectrometry Technique
Han, Ke
2008-01-01
Strange quark matter is a postulated state which may be the true ground state of cold hadronic matter. Physicists have been searching for strange quark matter in the last several decades but found no definite evidence of its existence. In our experiment, we used the Yale tandem accelerator as a mass spectrometer to identify possible stable strangelets (small chunks of strange quark matter) in lunar soil. The search covers the mass range from A=42 to A=70 amu for nuclear charges 6, 8, and 9. No strangelets are found at sensitivity levels down to $\\sim10^{-17}$. The implied limit on strangelet flux in cosmic rays is the most sensitive to date for the covered mass range.
Filter for strangeness in $J^{PC}$ exotic four-quark states
Page, P R
2001-01-01
Symmetrization selection rules for the decay of four-quark states to two J=0 mesons are analysed in a non - field theoretic context with isospin symmetry. The OZI allowed decay of an isoscalar J^PC = (1,3,...)^{-+} exotic state to eta' eta or f_0' f_0 is only allowed for four-quark components of the state containing one s sbar pair, providing a filter for strangeness content in these states. Decays of four-quark a_0 states are narrower than otherwise expected. If the experimentally observed 1^{-+} enhancement in eta pi is resonant, it is qualitatively in agreement with being a four-quark state.
Lattice simulations with Nf=2 +1 improved Wilson fermions at a fixed strange quark mass
Bali, Gunnar S.; Scholz, Enno E.; Simeth, Jakob; Söldner, Wolfgang; RQCD Collaboration
2016-10-01
The explicit breaking of chiral symmetry of the Wilson fermion action results in additive quark mass renormalization. Moreover, flavor singlet and nonsinglet scalar currents acquire different renormalization constants with respect to continuum regularization schemes. This complicates keeping the renormalized strange quark mass fixed when varying the light quark mass in simulations with Nf=2 +1 sea quark flavors. Here we present and validate our strategy within the CLS (coordinated lattice simulations) effort to achieve this in simulations with nonperturbatively order-a improved Wilson fermions. We also determine various combinations of renormalization constants and improvement coefficients.
Chen, X B; Chen, X S; Wang, F
2001-07-02
We perform a one-loop calculation of the strange quark polarization (Deltas) of the nucleon in an SU(3) chiral potential model. We find that if the intermediate quark excited states are summed over in a proper way, i.e., summed up to a given energy instead of given radial and orbital quantum numbers, Deltas turns out to be almost independent of all the model parameters: quark masses and potential strengths. The contribution from the quark-antiquark pair creation and annihilation " Z" diagrams is found to be significant. Our numerical results agree quite reasonably with experiments and lattice QCD calculations.
Strange quark matter solutions for Marder's universe in f(R,T) gravity with Λ
Aygün, S.; Aktas, C.; Yılmaz, İ.
2016-12-01
In this paper, we investigate homogeneous cylindrically symmetric Marder's universe in the presence of strange quark matter (SQM) source in f(R,T) gravity with cosmological constant Λ. For this aim we have used the anisotropy feature (σxx/θ) of Marder type universe and equation of state (EoS) strange quark matter to obtain solutions in two classes f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). Finally, some physical and kinematical properties are discussed.
Using the Moon and Mars as Giant Detectors for Strange Quark Nuggets
Chui, Talso; Penanen, Konstantin; Strayer, Don; Banerdt, Bruce; Tepliz, Vigdor; Herrin, Eugene
2004-01-01
On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.
Strange quark mass from the invariant mass distribution of Cabibbo-suppressed tau decays
Energy Technology Data Exchange (ETDEWEB)
Chen, S.; Davier, M.; Hoecker, A. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Gamiz, E.; Prades, J. [Granada Univ., Dept. de Fisica Teorica y del Cosmos (Spain); Pich, A. [Valencia Univ. (Spain). Dept. de Fisica Teorica
2001-06-01
Quark mass corrections to the {tau} hadronic width play a significant role only for the strange quark, hence providing a method for determining its mass. The experimental input is the vector plus axial-vector strange spectral function derived from a complete study of tau decays into strange hadronic final states performed by ALEPH. New results on strange decay modes from other experiments are also incorporated. The present analysis determines the strange quark mass at the M{sub {tau}} mass scale using moments of the spectral function. Justified theoretical constraints are applied to the nonperturbative components and careful attention is paid to the treatment of the perturbative expansions of the moments which exhibit convergence problems. The result obtained, m{sub s} (M{sup 2}{sub {tau}}) = (120 {+-} 11{sub exp} {+-} 8v{sub us} {+-} 19th) MeV (120{sup +21}{sub -26}) MeV, is stable over the scale from M{tau} down to about 1.4 GeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) (160{sup +28}{sub -35}) MeV and m{sub s}(4 GeV{sup 2}) = (116{sup +20}{sub -25}) MeV. (authors)
Strangeness content and structure function of the nucleon in a statistical quark model
Trevisan, L A; Tomio, L
1999-01-01
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the new muon collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions. (27 refs).
Properties of color-flavor locked strange quark matter in an external strong magnetic field
Institute of Scientific and Technical Information of China (English)
崔帅帅; 彭光雄; 陆振烟; 彭程; 徐建峰
2015-01-01
The properties of color-flavor locked strange quark matter in an external strong magnetic field are investigated in a quark model with density-dependent quark masses. Parameters are determined by stability arguments. It is found that the minimum energy per baryon of the color-flavor locked (MCFL) matter decreases with increasing magnetic-field strength in a certain range, which makes MCFL matter more stable than other phases within a proper magnitude of the external magnetic field. However, if the energy of the field itself is added, the total energy per baryon will increase.
Silva, A; Urbano, D; Göke, K; Silva, Antonio; Kim, Hyun-CHul; Urbano, Diana; Goeke, Klaus
2005-01-01
We investigate three different axial-vector form factors of the nucleon, $G_A^{0}$, $G_A^3$, $G_A^8$, within the framework of the SU(3) chiral quark-soliton model, emphasizing their strangeness content. We take into account the rotational $1/N_c$ and linear strange quark ($m_s$) contributions using the symmetry-conserving SU(3) quantization and assuming isospin symmetry. The strange axial-vector form factor is also obtained and they all are discussed in the context of the parity-violating scattering of polarized electrons off the nucleon and its relevance to the strange vector form factors.
Indian Academy of Sciences (India)
P. K. AGRAWAL; D. D. PAWAR
2017-03-01
We studied plane symmetric cosmological model in the presence of quark and strange quark matter with the help of ${f(R, T)}$ theory. To decipher solutions of plane symmetric space-time, we used power law relation between scale factor and deceleration parameter. We considered the special law of variation of Hubble’s parameter proposed by Berman (Nuovo Cimento B74, 182, 1983) which yields constant deceleration parameter. We also discussed the physical behavior of the solutions by using some physical parameters.
Measurement of the strange quark contribution to the proton spin using neutral kaons at HERMES
Energy Technology Data Exchange (ETDEWEB)
Lu, Shaojun
2007-03-15
This thesis reports a new ''isoscalar'' measurement of {delta}s + {delta} anti s. Because strange quarks carry no isospin, the strange seas in the proton and neutron are identical. In the deuteron, an isoscalar target, the fragmentation process in DIS can be described without any assumptions regarding isospin dependent fragmentation. In the isoscalar extraction of {delta}s + {delta} anti s only the spin asymmetry for K{sup 0}{sub s} A{sup K{sup 0}{sub s1,d}} (x,Q{sup 2}, z) and the inclusive asymmetry A{sub 1,d}(x,Q{sup 2}) are used. An accurate measurement of the total non-strange quark polarisation {delta}Q = {delta}u + {delta} anti u + {delta}d + {delta} anti d comes directly from A{sub 1,d}(x,Q{sup 2}). The fragmentation functions needed for a leading order (LO) extraction of {delta}S = {delta}s + {delta} anti s are measured directly at HERMES kinematics using the same data. As a result of this analysis, the helicity densities for the strange quarks are consistent with zero with the experimental uncertainty over the measured x kinematic range. (orig.)
Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data
Alekhin, S; Caminadac, L; Lipka, K; Lohwasser, K; Moch, S; Petti, R; Placakyte, R
2014-01-01
We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of $W^\\pm$-bosons with $c$-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.
Determination of strange sea quark distributions from fixed-target and collider data
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, J.; Lohwasser, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Caminada, L. [Zuerich Univ. (Switzerland). Physik Inst.; Lipka, K.; Placakyt e, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy
2014-04-15
We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of W{sup ±}-bosons with c-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.
White dwarf stars as strange quark matter detectors
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O G [Departamento de AstronomIa y AstroFisica, Pontificia Universidad Catolica, Vicuna Mackenna 4860, Casilla 306, Santiago (Chile); Facultad de Ciencias Astronomicas y GeoFisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina)
2005-11-01
We show that the presence of a strange matter core inside a white dwarf (WD) star produces a drastic change in the spectrum of non-radial oscillations in the range of periods corresponding to gravity modes. The distinctive, observable signal for such a core is a very short period spacing between consecutive modes, far shorter than in the case of pulsating WDs without any compact core. (letter to the editor)
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
Baron, Remi; Carbonell, Jaume; Deuzeman, Albert; Drach, Vincent; Farchioni, Federico; Gimenez, Vicent; Herdoiza, Gregorio; Jansen, Karl; McNeile, Craig; Michael, Chris; Montvay, Istvan; Palao, David; Pallante, Elisabetta; Pene, Olivier; Reker, Siebren; Urbach, Carsten; Wagner, Marc; Wenger, Urs
2010-01-01
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N_f = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a~0.078 fm and a~0.086 fm with lattice sizes ranging from L~1.9 fm to L~2.8 fm. We measure with high statistical precision the light pseudoscalar mass m_PS and decay constant f_PS in a range 270 < m_PS < 510 MeV and determine the low energy parameters f_0, l_3 and l_4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of the light, strange and charm quark masses to explore the systematic effects. A first study of discretisation effects in light-quark observables and a comparison to N_f=2 results are performed.
Energy Technology Data Exchange (ETDEWEB)
Mader, W.
2004-03-01
Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)
Dey, M; Dey, J; Ray, S; Samanta, B C; Dey, Mira; Bombaci, Ignazio; Dey, Jishnu; Ray, Subharthi
1998-01-01
We derive an equation of state (EOS) for strange matter, starting from an interquark potential which (i) has asymptotic freedom built into it, (ii) shows confinement at zero density ($\\rho_B = 0$) and deconfinement at high $\\rho_B$, and (iii) gives a stable configuration for chargeless, $\\beta$-stable quark matter. This EOS is then used to calculate the structure of Strange Stars, and in particular their mass-radius relation. Our present results confirm and reinforce the recent claim\\cite{li,b} that the compact objects associated with the x-ray pulsar Her X-1, and with the x-ray burster 4U 1820-30 are strange stars.
Excited bottom and bottom-strange mesons in the quark model
Lü, Qi-Fang; Pan, Ting-Ting; Wang, Yan-Yan; Wang, En; Li, De-Min
2016-10-01
In order to understand the possible q q ¯ quark-model assignments of the BJ(5840 ) and BJ(5960 ) recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the BJ(5840 ) and BJ(5960 ) can be identified as the B (2 1S0) and B (1 3D3) , respectively, and the B (5970 ) reported by the CDF Collaboration can be interpreted as the B (2 3S1) or B (1 3D3) . Further precise measurements of the width, spin and decay modes of the B (5970 ) are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Excited bottom and bottom-strange mesons in the quark model
Lü, Qi-Fang; Wang, Yan-Yan; Wang, En; Li, De-Min
2016-01-01
In order to understand the possible $q\\bar{q}$ quark-model assignments of the $B_J(5840)$ and $B_J(5960)$ recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the $B_J(5840)$ and $B_J(5960)$ can be identified as $B(2^1S_0)$ and $B(1^3D_3)$, respectively, and the $B(5970)$ reported by the CDF Collaboration can be interpreted as $B(2^3S_1)$ or $B(1^3D_3)$. Further precise measurements of the width, spin and decay modes of the $B(5970)$ are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Lattice calculation of the leading strange quark-connected contribution to the muon $g-2$
Blum, T.; Del Debbio, L.; Hudspith, R.J.; Izubuchi, T.; Jüttner, A.; Lehner, C.; Lewis, R.; Maltman, K.; Krstić Marinković, M.; Portelli, A.; Spraggs, M.
2016-01-01
We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCD's $N_f=2+1$ domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual systematic effects. Our final result in the continuum limit is $a_\\mu^{(2)\\,{\\rm had},\\,s}=53.1(9)\\left(^{+1}_{-3}\\right)\\times10^{-10}$.
Strange quark matter attached to string cloud in general scalar tensor theory of gravitation
Directory of Open Access Journals (Sweden)
V U M Rao
2014-12-01
Full Text Available Bianchi type-VI0 space time with strange quark matter attached to string cloud in Nordtvedt [1] general scalar tensor theory of gravitation with the help of a special case proposed by Schwinger [2] is obtained. The field equations have been solved by using the anisotropy feature of the universe in the Bianchi type-VI0 space time. Some important features of the model, thus obtained, have been discussed
Measurement of the strange quark contribution to the vector structure of the proton
Energy Technology Data Exchange (ETDEWEB)
Phillips, Sarah
2007-11-30
The goal of the G0 experiment is to determine the contribution of the strange quarks in the quark-antiquark sea to the structure of the nucleon. To this end, the experiment measured parityviolating asymmetries from elastic electron-proton scattering from 0.12 ≤ Q2 ≤ 1.0 (GeV/c)^{2} at Thomas Jefferson National Accelerator Facility. These asymmetries come from the interference of the electromagnetic and neutral weak interactions, and are sensitive to the strange quark contributions in the proton. The results from the forward-angle measurement, the linear combination of the strange electric and magnetic form factors GsE +ηGsM, suggest possible non-zero, Q^{2} dependent, strange quark contributions and provide new information to understand the magnitude of the contributions. This dissertation presents the analysis and results of the forward-angle measurement. In addition, the G0 experiment measured the beam-normal single-spin asymmetry in the elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q^{2} = 0.15, 0.25 (GeV/c)^{2 }as part of the forward-angle measurement. The transverse asymmetry provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments. The results of the measurement indicate that calculations using solely the elastic nucleon intermediate state are insufficient and generally agree with calculations that include significant inelastic hadronic intermediate state contributions. This dissertation presents the analysis and results of this measurement.
Hadronization and Strangeness Production in a Chirally Symmetric Nonequilibrium Model
Rehberg, P
1999-01-01
The expansion and hadronization of a quark meson plasma is studied using an effective chiral interaction Lagrangian. The particles we consider are light as well as strange quarks, which can form pions, kaons and eta mesons via collision processes. The transport equations for the system are solved using a QMD type algorithm. We find that in chemical equilibrium at high temperatures the strange quark mass is considerably higher than the strange current quark mass and becomes even higher if we assume an initial state free of strange quarks. This leads to a considerably higher production threshold. In contrast to simpler scenarios, like thermodynamics of free quarks with their bare mass, we observe that strangeness production in a plasma is hindered and not favoured. The different particle species created during the evolution become separated in coordinate as well as in momentum space. We observe, as at CERN experiments, a larger mean momentum of kaons as compared to pions. Thus the radial collective velocity may...
Energy Technology Data Exchange (ETDEWEB)
The Spin Muon Collaboration
1996-01-01
Semi-inclusive spin asymmetries for positively and negatively charged hadrons measured in deep inelastic scattering of polarised muons on polarised protons and deuterons are presented. The x-dependent spin distributions for up and down valence quarks and for non-strange sea quarks are determined. (author). Submitted to Physics Letters, B (NL); 18 refs.
Estimating the unquenched strange quark mass from the lattice axial Ward identity
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Irving, A.C.; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)
2006-01-15
We present a determination of the strange quark mass for two flavours (n{sub f}=2) of light dynamical quarks using the axial Ward identity. The calculations are performed on the lattice using O(a) improved Wilson fermions and include a fully non-perturbative determination of the renormalisation constant. In the continuum limit we find m{sub s}{sup MS} (2 GeV)=111(6)(4)(6) MeV, using the force scale r{sub 0}=0.467 fm, where the first error is statistical, the second and third are systematic due to the fit and scale uncertainties respectively. Results are also presented for the light quark mass and the chiral condensate. The corresponding results are also given for r{sub 0}=0.5 fm. (orig.)
Study of Proto Strange Stars (PSS) in Temperature and Density Dependent Quark Mass Model
Gupta, V K; Singh, S; Anand, J D; Gupta, Asha
2003-01-01
We report on the study of the mass-radius (M-R) relation and the radial oscillations of proto strange stars. For the quark matter we have employed the well known density dependent quark mass model and its very recent modification, the temperature and density dependent quark mass model. We find that the maximum mass the star can support increases significantly with the temperature of the star in this model which implies that transition to a black hole at the early stage of formation of the star is inhibited. As for the neutrinos, we find, contrary to the expectation that the M-R and oscillation frequencies are almost independent of the neutrino chemical potentials.
Strange Quark PDFs and Implications for Drell-Yan Boson Production at the LHC
Kusina, A; Berge, S; Olness, F I; Schienbein, I; Kovarik, K; Jezo, T; Yu, J Y; Park, K
2012-01-01
Global analyses of Parton Distribution Functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark PDF has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s-quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.
Up, down, strange and charm quark masses with Nf = 2+1+1 twisted mass lattice QCD
Carrasco, N; Dimopoulos, P; Frezzotti, R; Gimenez, V; Herdoiza, G; Lami, P; Lubicz, V; Palao, D; Picca, E; Recker, S; Riggio, L; Rossi, G C; Sanfilippo, F; Scorzato, L; Simula, S; Tarantino, C; Urbach, C; Wenger, U
2014-01-01
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 - 450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses converted to the bar{MS} scheme are: mud(2 GeV) = 3.70(17) MeV, ms(2 GeV) = 99.6(4.1) MeV and mc(mc) = 1.348(42) GeV. We obtain also the quark mass ratios ms/mud = 26.66(32) and mc/ms = 11.62(16). By studying the mass split...
Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD
Directory of Open Access Journals (Sweden)
N. Carrasco
2014-10-01
Full Text Available We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS¯ scheme are: mud(2 GeV=3.70(17 MeV, ms(2 GeV=99.6(4.3 MeV and mc(mc=1.348(46 GeV. We obtain also the quark mass ratios ms/mud=26.66(32 and mc/ms=11.62(16. By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56, leading to mu=2.36(24 MeV and md=5.03(26 MeV.
Strange matter equation of state in the quark mass-density-dependent model
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina)); Lugones, G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina))
1995-02-15
We study the properties and stability of strange matter at [ital T]=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide stability window'' for the values of the parameters ([ital C],[ital M][sub [ital s]0]) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and [ital not] shifted away as stated before; nevertheless, at these densities the velocity of sound is [approx]50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities.
Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model
Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho
2016-05-01
Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.
Quasi-equilibrium sequences of binary strange quark stars in general relativity
Limousin, Francois; Gondek-Rosińska, Dorota; Gourgoulhon, Eric
2004-12-01
Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational. In each of those cases, we show the differences in the gravitational waves signal from neutron stars described by polytropic equation of state.
Lunar Seismic Detector to Advance the Search for Strange Quark Matter
Galitzki, Nicholas B.
2005-01-01
Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.
THE MOST LUMINOUS SUPERNOVA ASASSN-15LH: SIGNATURE OF A NEWBORN RAPIDLY ROTATING STRANGE QUARK STAR
Energy Technology Data Exchange (ETDEWEB)
Dai, Z. G.; Wang, S. Q.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, L. J. [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)
2016-02-01
In this paper we show that the most luminous supernova discovered very recently, ASASSN-15lh, could have been powered by a newborn ultra-strongly magnetized pulsar, which initially rotates near the Kepler limit. We find that if this pulsar is a neutron star, its rotational energy could be quickly lost as a result of gravitational-radiation-driven r-mode instability; if it is a strange quark star (SQS), however, this instability is highly suppressed due to a large bulk viscosity associated with the nonleptonic weak interaction among quarks and thus most of its rotational energy could be extracted to drive ASASSN-15lh. Therefore, we conclude that such an ultra-energetic supernova provides a possible signature for the birth of an SQS.
Lattice simulations with $N_f=2+1$ improved Wilson fermions at a fixed strange quark mass
Bali, Gunnar S; Simeth, Jakob; Söldner, Wolfgang
2016-01-01
The explicit breaking of chiral symmetry of the Wilson fermion action results in additive quark mass renormalization. Moreover, flavour singlet and non-singlet scalar currents acquire different renormalization constants with respect to continuum regularization schemes. This complicates keeping the renormalized strange quark mass fixed when varying the light quark mass in simulations with $N_f=2+1$ sea quark flavours. Here we present and validate our strategy within the CLS (Coordinated Lattice Simulations) effort to achieve this in simulations with non-perturbatively order-$a$ improved Wilson fermions. We also determine various combinations of renormalization constants and improvement coefficients.
Armstrong, D S; Asaturyan, R; Averett, T; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Boukobza, E; Breuer, H; Carlini, R; Carr, R; Chant, N; Chao Yu Chiu; Chattopadhyay, S; Clark, R; Covrig, S D; Cowley, A; Dale, D; Davis, C; Falk, W; Finn, J M; Forest, T; Franklin, G; Furget, C; Gaskell, D; Grames, J; Griffioen, K A; Grimm, K; Guillon, B; Guler, H; Hannelius, L; Hasty, R; Hawthorne Allen, A; Horn, T; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kühn, J; Lachniet, J; Lee, L; Lenoble, J; Liatard, E; Liu, J; Loupias, B; Lung, A; MacLachlan, G A; Marchand, D; Martin, J W; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mkrtchyan, H G; Moffit, B; Morlet, M; Nakagawa, I; Nakahara, K; Nakos, M; Neveling, R; Niccolai, S; Ong, S; Page, S; Papavassiliou, V; Pate, S F; Phillips, S K; Pitt, M L; Poelker, M; Porcelli, T A; Quéméner, G; Quinn, B; Ramsay, W D; Rauf, A W; Real, J S; Roche, J; Roos, P; Rutledge, G A; Secrest, J; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Sulkosky, V; Tadevosyan, V; Tieulent, R; Van der Wiele, J; Van Oers, W T H; Voutier, E; Vulcan, W; Warren, G; Wells, S P; Williamson, S E; Wood, S A; Yan, C; Yun, J; Zeps, V
2005-01-01
We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.
Energy Technology Data Exchange (ETDEWEB)
David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps
2005-06-01
We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.
Search for neutral strange quark matter in high energy heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
De Cataldo, G.; Giglietto, N.; Raino, A.; Spinelli, P. [University of Bari/INFN, Bari (Italy); Huang, H.Z. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Barish, K. [University of California at Riverside, Riverside, California 92521 (United States); Hill, J.C.; Hoversten, R.A.; Lajoie, J.G.; Libby, B.; Wohn, F.K. [Iowa State University, Ames, Iowa 50011 (United States); Rabin, M.S. [University of Massachusetts, Amherst, Massachusetts 01003 (United States); Haridas, P.; Pless, I.A.; Van Buren, G. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Armstrong, T.A.; Lewis, R.A.; Reid, J.D.; Smith, G.A.; Toothacker, W.S. [Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Davies, R.; Hirsch, A.S.; Porile, N.T.; Rimai, A.; Scharenberg, R.; Tincknell, M.L. [Purdue University, West Lafayette, Indiana 47907 (United States); Lainus, T. [United States Military Academy, West Point, New York 10996 (United States); Greene, S.V.; Maguire, C.F. [Vanderbilt University, Nashville, Tennesee 37235 (United States); Bennett, S.J.; Cormier, T.M.; Dee, P.R.; Fachini, P.; Kim, B.; Li, Q.; Li, Y.; Munhoz, M.G.; Pruneau, C.A.; Zhao, K. [Wayne State University, Detroit, Michigan 48201 (United States); Chikanian, A.; Coe, S.D.; Diebold, G.E.; Finch, L.E.; George, N.K.; Kumar, B.S.; Majka, R.D.; Nagle, J.L.; Pope, J.K.; Rotondo, F.S.; Sandweiss, J.; Slaughter, A.J. [Yale University, New Haven, Connecticut 06520 (United States)
1999-04-01
We present results of a search for neutral strange quark matter (strangelets) in 11.6A GeV/c Au+Pb reactions from the 1995 run of experiment E864 at the Brookhaven Alternating Gradient Synchrotron. We have sampled approximately 1.3 billion 10{percent} most central Au+Pb interactions and have observed no statistically significant signal for neutral strangelet states with baryon number in the range 6{lt}A{lt}100. We set upper limits on the production of these exotic states at the level of 8{times}10{sup {minus}8} per central collision for mass {gt}20 GeV/c{sup 2}. These limits are the first limits reported on the production of heavy neutral strangelets. They complement searches for positively and negatively charged strangelets also conducted by our collaboration. We discuss the implications of these results on strangelet production mechanisms and the stability of strange quark matter. {copyright} {ital 1999} {ital The American Physical Society}
Fast spinning strange stars: possible ways to constrain interacting quark matter parameters
Bhattacharyya, Sudip; Logoteta, Domenico; Thampan, Arun V
2016-01-01
For a set of equation of state (EoS) models involving interacting strange quark matter, characterized by an effective bag constant (B_eff) and a perturbative QCD corrections term (a_4), we construct fully general relativistic equilibrium sequences of rapidly spinning strange stars for the first time. Computation of such sequences is important to study millisecond pulsars and other fast spinning compact stars. Our EoS models can support a gravitational mass (M_G) and a spin frequency at least up to approximately 3.0 solar mass and approximately 1250 Hz respectively, and hence are fully consistent with measured M_G and spin frequency values. This paper reports the effects of B_eff and a_4 on measurable compact star properties, which could be useful to find possible ways to constrain these fundamental quark matter parameters, within the ambit of our EoS models. We confirm that a lower B_eff allows a higher mass. Besides, for known M_G and spin frequency, measurable parameters, such as stellar radius, radius-to-m...
Low-excited charm and charm-strange baryons revisited in the quark-diquark picture
Chen, Bing; Liu, Xiang; Matsuki, Takayuki
2016-01-01
Assuming a heavy quark-light diquark picture, we systematically study the mass spectra and strong decays of $1P$ and $2S$ charm and charm-strange baryons by the nonrelativistic constituent quark models. Most of the existing charm and charm-strange baryons can be well explained as $1P$ and $2S$ states in the diquark picture. As for the well-determined states, including $\\Sigma_c(2455)^{0,+,++}$, $\\Sigma_c(2520)^{0,+,++}$, $\\Xi^\\prime_c(2580)^{0,+}$, $\\Xi_c(2645)^{0,+}$, $\\Lambda_c(2595)^+$, $\\Lambda_c(2625)^+$, $\\Xi_c(2790)^{0,+}$, and $\\Xi_c(2815)^{0,+}$, the theoretical results are in good agreement with the experimental data. $\\Sigma_c(2800)^{0,+,++}$ can be assigned to a $\\Sigma_{c2}(3/2^-)$ or $\\Sigma_{c2}(5/2^-)$ state. We prefer to interpret the signal $\\Sigma_c(2850)^0$ as a $2S(1/2^+)$ state although the possibility can not be thoroughly excluded at present that this is the same state as $\\Sigma_c(2800)^0$. $\\Lambda_c(2765)^+$ (or $\\Sigma_c(2765)^+$) could be explained as the $\\Lambda_c^+(2S)$ state a...
Up, down, strange and charm quark masses with N{sub f}=2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Carrasco, N. [INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Deuzeman, A. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Dimopoulos, P. [Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy); Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Frezzotti, R. [Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); INFN, Sezione di “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Giménez, V. [Departament de Física Teòrica and IFIC, Univ. de València – CSIC, Dr. Moliner 50, E-46100 València (Spain); Herdoiza, G. [PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz (Germany); Lami, P.; Lubicz, V. [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Palao, D. [Goethe-Universität, Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany); and others
2014-10-15
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N{sub f}=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS{sup ¯} scheme are: m{sub ud}(2 GeV)=3.70(17) MeV, m{sub s}(2 GeV)=99.6(4.3) MeV and m{sub c}(m{sub c})=1.348(46) GeV. We obtain also the quark mass ratios m{sub s}/m{sub ud}=26.66(32) and m{sub c}/m{sub s}=11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate m{sub u}/m{sub d}=0.470(56), leading to m{sub u}=2.36(24) MeV and m{sub d}=5.03(26) MeV.
Determination of the strange quark density of the proton from ATLAS measurements of the $W \\to l\
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Sapronov, Andrey; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
A QCD analysis is reported of ATLAS data on inclusive W and Z boson production in pp collisions at the LHC, jointly with ep deep inelastic scattering data from HERA. The ATLAS data exhibit sensitivity to the light quark sea composition and magnitude at Bjorken x ~ 0.01. Specifically, the data support the hypothesis of a symmetric composition of the light quark sea at low x. The ratio of the strange-to-down sea quark distributions is determined to be 1.00(+0.25-0.28) at absolute four-momentum transfer squared Q^2 = 1.9 GeV^2 and x = 0.023.
Effect of the Curved Spacetime on the Electrostatic Potential Energy Distribution of Strange Stars
Institute of Scientific and Technical Information of China (English)
陈次星; 张家铝
2001-01-01
The effect of the strong gravitational field of the strange core of a strange star on its surface electrostatic potential energy distribution is discussed. We present the general-relativistic hydrodynamics equations of fluids in the presence of the electric fields and investigate the surface electrostatic potential distribution of the strange core of a strange star in hydrostatic equilibrium to correct Alcock and coworker's result [Astrophys. J. 310 (1986) 261]. Also, we discuss the temperature distribution of the bare strange star surface and give the related formulae, which may be useful if we are concerned further about the physical processes near the quark atter surfaces of strange stars.
Dai, Z G; Wang, J S; Wang, L J; Yu, Y W
2015-01-01
Strange quark stars (SQSs), consisting of quark matter with comparable numbers of deconfined up, down and strange quarks, have so far remained a hypothetical class of compact objects. Observationally, it is difficult to distinguish between SQSs and neutron stars (NSs), because both classes of stars have similar structural and cooling features for stellar masses above one solar mass. Here we show that the most luminous supernova discovered recently, ASASSN-15lh, could have been powered by a newborn strongly-magnetized pulsar rotating with a nearly Keplerian period. A quick rotational-energy loss as a result of gravitational-radiation-driven r-mode instability in a hot young rapidly rotating NS, together with the fact that this instability is highly suppressed due to large bulk viscosity in an SQS, leads to the conclusion that such an ultra-energetic supernova may provide a "smoking gun" signature for the birth of an SQS.
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Univ. Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Inst. for High Energy Physics, Protovino (Russian Federation); Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-02-15
QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, first for the general 1+1+1 flavour case and then for the 2+1 flavour case (when two quark flavours are mass degenerate). These enable highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results for the 2+1 flavour case confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. Singlet quantities remain constant which allows the lattice spacing to be determined from hadron masses (without necessarily being at the physical point). Furthermore an extension of this programme to include partially quenched results is also given. (orig.)
Meson screening masses from lattice QCD with two light and the strange quark
Cheng, M; Francis, A; van der Heide, J; Jung, C; Kaczmarek, O; Karsch, F; Laermann, E; Mawhinney, R D; Miao, C; Mukherjee, S; Petreczky, P; Rantaharju, J; Schmidt, C; Soeldner, W
2010-01-01
We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \\geq 4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3Tc (Tc being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2 \\pi T from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2 \\pi T. The pseudo-scalar and the vector screening masses do not become degenerate...
Fast spinning strange stars: possible ways to constrain interacting quark matter parameters
Bhattacharyya, Sudip; Bombaci, Ignazio; Logoteta, Domenico; Thampan, Arun V.
2016-04-01
For a set of equation of state (EoS) models involving interacting strange quark matter, characterized by an effective bag constant (Beff) and a perturbative quantum chromodynamics corrections term (a4), we construct fully general relativistic equilibrium sequences of rapidly spinning strange stars for the first time. Computation of such sequences is important to study millisecond pulsars and other fast spinning compact stars. Our EoS models can support a gravitational mass (MG) and a spin frequency (ν) at least up to ≈3.0 M⊙ and ≈1250 Hz, respectively, and hence are fully consistent with measured MG and ν values. This paper reports the effects of Beff and a4 on measurable compact star properties, which could be useful to find possible ways to constrain these fundamental quark matter parameters, within the ambit of our EoS models. We confirm that a lower Beff allows a higher mass. Besides, for known MG and ν, measurable parameters, such as stellar radius, radius-to-mass ratio and moment of inertia, increase with the decrease of Beff. Our calculations also show that a4 significantly affects the stellar rest mass and the total stellar binding energy. As a result, a4 can have signatures in evolutions of both accreting and non-accreting compact stars, and the observed distribution of stellar mass and spin and other source parameters. Finally, we compute the parameter values of two important pulsars, PSR J1614-2230 and PSR J1748-2446ad, which may have implications to probe their evolutionary histories, and for constraining EoS models.
Stolarski, M
2012-01-01
In this paper the author discusses the article by the HERMES Collaboration, Phys. Lett. B 666, 446 [arXiv:0803.2993], where several important results concerning strange quark properties in the nucleon were presented. The strange sea distribution was found to be very different from the non-strange in the Bjorken x scaling variable. In addition, the magnitude of these two distributions at low x is similar, contrary to most of the available Parton Distribution Function sets. The strange quark helicity distribution was also extracted combining inclusive and semi-inclusive kaon asymmetries. The result of the first moment of the strange quarks helicity distribution in the measured range is slightly positive, while a rather significant negative value is expected from the world polarised inclusive Deep Inelastic Scattering measurements. The author shows that a certain combination of fragmentation functions extracted from the preliminary HERMES kaon multiplicities presents a very strong Q2 dependence. Such a strong de...
Heavy-Quark Symmetry and the Electromagnetic Decays of Excited Charmed Strange Mesons
Energy Technology Data Exchange (ETDEWEB)
Thomas Mehen; Roxanne P. Springer
2004-10-01
Heavy-hadron chiral perturbation theory (HH{chi}PT) is applied to the decays of the even-parity charmed strange mesons, D{sub s0}(2317) and D{sub s1}(2460). Heavy-quark spin symmetry predicts the branching fractions for the three electromagnetic decays of these states to the ground states D{sub s} and D{sub s}* in terms of a single parameter. The resulting predictions for two of the branching fractions are significantly higher than current upper limits from the CLEO experiment. Leading corrections to the branching ratios from chiral loop diagrams and spin-symmetry violating operators in the HH{chi}PT Lagrangian can naturally account for this discrepancy. Finally the proposal that the D{sub s0}(2317) (D{sub s1}(2460)) is a hadronic bound state of a D (D*) meson and a kaon is considered. Leading order predictions for electromagnetic branching ratios in this molecular scenario are in very poor agreement with existing data.
The role of strange sea quarks in chiral extrapolations on the lattice
Descotes-Genon, S
2004-01-01
Since the strange quark has a light mass of order Lambda_QCD, fluctuations of sea s-s bar pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N_f=2 (m_u=m_d=0, m_s physical) and N_f=3 (m_u=m_d=m_s=0). This effect of vacuum fluctuations of s-s bar pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O(p^4) low-energy constants L_4 and L_6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit a numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with a special care. We investigate the impact of the fluctuations of s-s bar pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluct...
Alberg, Mary
2014-03-01
Both perturbative and non-perturbative mechanisms contribute to strangeness in the proton sea. We have developed a hybrid model in which non-perturbative contributions are calculated in a meson cloud model which expands the proton in terms of meson-baryon states, and perturbative contributions are calculated in a statistical model which expands the proton in terms of quark-gluon states. The perturbative contributions are represented in the parton distributions of the ``bare'' hadrons in the meson cloud. We compare our results to the recent experimental data of ATLAS and HERMES. This research has been supported in part by NSF Award 1205686.
Ananthanarayan, B
2016-01-01
We introduce an optimal renormalization group analysis pertinent to the analysis of polarization functions associated with the $s$-quark mass relevant in $\\tau$-decay. The technique is based on the renormalization group invariance constraints which lead to closed form summation of all the leading and next-to-leading logarithms at each order in perturbation theory. The new perturbation series exhibit reduced sensitivity to renormalization scale and improved behavior in the complex plane along the integration contour. Using improved experimental and theory inputs we have extracted the value of strange quark mass $m_s(2{\\rm GeV}) = 106.70 \\pm 9.36~{\\rm MeV}$ and $m_s(2{\\rm GeV}) = 74.47 \\pm 7.77~{\\rm MeV}$ from presently available ALEPH and OPAL data respectively. These determinations are in agreement with the determinations in other phenomenological methods and from the lattice.
Institute of Scientific and Technical Information of China (English)
PENG Jin-Song; ZHOU Li-Juan; MENG Cheng-Ju; PAN Ji-Huan; MA Wei-Xing; YUAN Tong-Quan
2013-01-01
Based on the fully dressed quark propagator and chiral perturbation theory,we study the ratio of the strange quark mass ms to up or down quark mass mu,d.The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron.An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications.We begin with a brief introduction to the non-perturbation QCD theory,and then study the mass ratio in the framework of the chiral perturbation theory (xPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data.Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD,instanton model,QCD sum rules and the empirical values used widely in the literature.As a by-product of this study,our theoretical results,together with other predictions of physical quantities that used this quark propagator in our previous publications,clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.
Pair Winds in Schwarzschild Spacetime with Application to Strange Stars
Aksenov, A G; Usov, V V
2016-01-01
We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}--10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.
Cooling Properties of Cloudy Bag Strange Stars
Ng Cheuk Liu; Chu, M C
2003-01-01
As the chiral symmetry is widely recognized as an important driver of the strong interaction dynamics, current strange stars models based on MIT bag models do not obey such symmetry. We investigate properties of bare strange stars using the Cloudy Bag Model, in which a pion cloud coupled to the quark-confining bag is introduced such that chiral symmetry is conserved. We find that in this model the decay of pions is a very efficient cooling way. In fact it can carry out most the thermal energy in a few milliseconds and directly convert them into 100MeV photons via pion decay. This may be a very efficient $\\gamma$-ray burst mechanism. Furthermore, the cooling behavior may provide a possible way to distinguish a compact object between a neutron star, MIT strange star and Cloudy Bag strange star in observations.
Bare Quark Stars or Naked Neutron Stars: The Case of RX J1856.5-3754
Turolla, R; Drake, J J; Turolla, Roberto; Zane, Silvia; Drake, Jeremy J.
2004-01-01
In a cool neutron star (T 10^13 G), a phase transition may occur in the outermost layers. As a consequence the neutron star becomes `bare', i.e. no gaseous atmosphere sits on the top of the crust. The surface of cooling, bare neutron stars not necessary gives off blackbody radiation because of the strong suppression in the emissivity at energies below the electron plasma frequency \\omega_p. Since \\omega_p~1 keV under the conditions typical of the dense electron gas in the condensate, the emission from a T~100 eV bare neutron star will be substantially depressed with respect to that of a perfect Planckian radiator at most energies. Here we present a detailed analysis of the emission properties of a bare neutron star. In particular, we derive the surface emissivity for a Fe composition in a range of magnetic fields and temperatures representative of cooling isolated neutron stars, like RX J1856.5-3754. We find that the emitted spectrum is strongly dependent on the electron conductivity in the solid surface lay...
From strangelets to strange stars: A unified description
Xia, Cheng-Jun; Zhao, En-Guang; Zhou, Shan-Gui
2015-01-01
The conventionally separated treatments for strangelets and strange stars are now unified with a more comprehensive theoretical description for objects ranging from strangelets to strange stars. After constraining the model parameter according to the Witten-Bodmer hypothesis and observational mass-radius probability distribution of pulsars, we investigate the properties of this kind of objects. It is found that the energy per baryon decreases monotonously for increasing baryon number and reaches its minimum at the maximum baryon number, corresponding to the most massive strange star. Due to the quark depletion, an electric potential well for negatively charged particles is formed on the surface of the quark part, which may provide some unique observables. For a rotational bare strange star, a magnetic field with the typical strength of pulsars is generated.
Torsional oscillations of strange stars
Directory of Open Access Journals (Sweden)
Mannarelli Massimo
2014-01-01
Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.
RX J1856.5-3754: A strange star with solid quark surface?
Zhang, X L; Zhang, S N
2003-01-01
Within the realms of the possibility of solid quark matter, we fitted the 500ks Chandra LETG/HRC data for RX J1856.5-3754 with a phenomenological spectral model, and found that electric conductivity of quark matter on the stellar surface is about > 1.2 x 10^{18} s^{-1}.
Aschenauer, E C; Joosten, S; Rith, K; Schnell, G; Van Hulse, C
2015-01-01
In the "Comments on Phys. Rev. D89, 097101 (2014)", the Author presents a number of studies to conjecture that the analysis by the HERMES Collaboration presented in Phys. Rev. D89, 097101 (2014) likely suffers from effects that invalidate the leading-order analysis used in that publication. In our opinion, the Author has drawn erroneous conclusions. We present below a discussion of his arguments and the results from a repetition of that analysis using a range of parton distribution sets. The spread in those results precludes credible conclusions and demonstrates the sensitivity of the analysis to poorly known input data (unfavored FFs, strange-quark distributions, and mixed singlet and nonsinglet quantities).
De Sanctis, M; Santopinto, E; Vassallo, A
2015-01-01
We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.
Airapetian, A; Akopov, Z; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Belostotskii, S; Bianchi, N; Blok, H P; Bttcher, H; Bonomo, C; Borisov, A; Brüll, A; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Karibian, V; Giordano, F; Gliske, S; Gregor, I M; Guler, H; Hadjidakis, C; Hasch, D; Hasegawa, T; Hesselink, W H A; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Joosten, S; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Liebing, P; Linden-Levy, L A; Lopez Ruiz, A; Lorenzon, W; Lu, S; Lu, X R; Ma, B Q; Mahon, D; Maiheu, B; Makins, N C R; Manfr, L; Mao, Y; Marianski, B; Marukyan, H; Mexner, V; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Mussgiller, A; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, W D; Osborne, A; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rock, S E; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; van Hulse, C; Varanda, M; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Y; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P
2008-01-01
The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K+/- multiplicities, and from K+/- and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the ubar and dbar quarks. In the region of measurement, the helicity distribution is zero within experimental uncertainties.
Energy Technology Data Exchange (ETDEWEB)
Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)
2016-05-15
The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)
Barate, R; Ghez, P; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Park, I C; Riu, I; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Boix, G; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sedgbeer, J K; Spagnolo, P; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Ealet, A; Motsch, F; Payre, P; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Chambers, J T; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Foss, J; Grupen, Claus; Prange, G; Smolik, L; Stephan, F; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; Mamier, G; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Vogt, M; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G
1999-01-01
All ALEPH measurements of branching ratios of tau decays involving kaons are summarized including a combination of results obtained with K^0_S and K^0_L detection. The decay dynamics are studied, leading to the determination of contributions from vector K^*(892) and K^{*}(1410), and axial-vector K_1(1270) and K_1(1400) resonances. Agreement with isospin symmetry is observed among the different final states. Under the hypothesis of the conserved vector current, the spectral function for the K\\bar{K}\\pi mode is compared with the corresponding cross section for low energy e^+e^- annihilation, yielding an axial-vector fraction of (94^{+6}_{-8})% for this mode. The branching ratio for tau decay into all strange final states is determined to be B(\\tau^-\\to X^-(S=-1)\
Quenched Charmed Meson Spectra Using Tadpole Improved Quark Action on Anisotropic Lattices
Institute of Scientific and Technical Information of China (English)
LIU Liu-Ming; SU Shi-Quan; LI Xin; LIU Chuan
2005-01-01
@@ Charmed meson charmonium spectra are studied with improved quark actions on anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion relations for four lowest lattice momentum modes with quark mass values ranging from the strange quark to charm quark with three different values of gauge coupling β and four different values of bare speed of light v. With the bare speed of light parameter v tuned in a mass-dependent way, we study the mass spectra of D, Ds, ηc, D*, Ds* and J/ψ mesons. The results extrapolated to the continuum limit are compared with the experiment, and a qualitative agreement is found.
Z'-induced FCNC Decays of Top, Beauty and Strange Quarks
Fuyuto, Kaori; Kohda, Masaya
2015-01-01
Anomalous b --> s transitions from LHCb data may suggest a new massive gauge boson Z' that couples to the left-handed b --> s current, which in turn implies a coupling to the t --> c current. In this paper, we study flavor-changing neutral current (FCNC) decays of the top quark induced by a Z' boson, namely t --> c Z', based on a model of the gauged L_mu - L_tau symmetry (the difference between the muon and tauon numbers) with vector-like quarks, which was introduced to explain the anomalous LHCb data. We illustrate that searching for t --> c Z' via Z' --> mu^+ mu^- with LHC Run 1 data can already probe a parameter region which is unexplored by B physics for the Z' mass around O(10) GeV or more. We further extend the model to very light Z' with mass below 400 MeV, which is motivated by the muon g-2 anomaly. Taking rare B and K meson decay data into account, we give upper limits on the t --> c Z' branching ratio for the light Z' case, and discuss about its observability at the LHC. We also scrutinize the possi...
Z'-induced FCNC decays of top, beauty, and strange quarks
Fuyuto, Kaori; Hou, Wei-Shu; Kohda, Masaya
2016-03-01
Anomalous b →s transitions from LHCb data may suggest a new massive gauge boson Z' that couples to the left-handed b →s current, which in turn implies a coupling to the t →c current. In this paper, we study flavor-changing neutral current (FCNC) decays of the top quark induced by a Z' boson, namely t →c Z', based on a model of the gauged Lμ-Lτ symmetry (the difference between the muon and tauon numbers) with vectorlike quarks, which was introduced to explain the anomalous LHCb data. We illustrate that searching for t →c Z' via Z'→μ+μ- with LHC Run 1 data can probe a parameter region that is unexplored by B physics for a Z' mass of around O (10 ) GeV or greater. We further extend the model to a very light Z' with mass below 400 MeV, which is motivated by the muon g -2 anomaly. Taking rare B and K meson decay data into account, we give upper limits on the t →c Z' branching ratio for the light Z' case, and discuss about its observability at the LHC. We also scrutinize the possibility that the decay KL→π0Z' with Z'→ν ν ¯ may lead to an apparent violation of the usual Grossman-Nir bound of B (KL→π0ν ν ¯)<1.4 ×10-9.
Melson, Tobias; Bollig, Robert; Hanke, Florian; Marek, Andreas; Mueller, Bernhard
2015-01-01
Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 Msun progenitor star that a moderate strangeness-dependent contribution of g_a^s = -0.2 to the axial-vector coupling constant g_a = 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is well compatible with cur...
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G.; Horvath, J.E.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina Nacional de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata, (Argentina))
1990-02-12
Deep modifications to the current strange-star structure can occur if strange matter is not stable all the way down to zero pressure. This would be the case, for example, if some stable particle is formed at relatively low pressure and/or temperature. We show that the inclusion of a likely specific candidate particle (quark {alpha}) in the strange-matter picture leads to stellar models that present more realistic behavior in the light of current pulsar understanding.
Search for Charged Strange Quark Matter Produced in 11.5{ital A} GeV/{ital c} Au+Pb Collisions
Energy Technology Data Exchange (ETDEWEB)
De Cataldo, G.; Giglietto, N.; Raino, A.; Spinelli, P. [University of Bari/INFN, Bari (Italy); Dover, C.B. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Huang, H.Z. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Hill, J.C.; Hoversten, R.A.; Libby, B.; Wohn, F.K. [Iowa State University, Ames, Iowa 50011 (United States); Rabin, M.S. [University of Massachusetts, Amherst, Massachusetts 01003 (United States); Haridas, P.; Pless, I.A.; Van Buren, G. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Armstrong, T.A.; Lewis, R.A.; Reid, J.D.; Smith, G.A.; Toothacker, W.S. [Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Davies, R.; Hirsch, A.S.; Porile, N.T.; Rimai, A.; Scharenberg, R.P.; Srivastava, B.K.; Tincknell, M.L. [Purdue University, West Lafayette, Indiana 47907 (United States); Lainis, T. [United States Military Academy, West Point, New York 10996 (United States); Greene, S.V. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Bennett, S.J.; Cormier, T.M.; Dee, P.; Fachini, P.; Kim, B.; Li, Q.; Munhoz, M.G.; Pruneau, C.A.; Wilson, W.K.; Zhao, K. [Wayne State University, Detroit, Michigan 48201 (United States); Barish, K.N.; Bennett, M.J.; Chikanian, A.; Coe, S.D.; Diebold, G.E.; Finch, L.E.; George, N.K.; Kumar, B.S.; Lajoie, J.G.; Majka, R.D.; Nagle, J.L.; Pope, J.K.; Rotondo, F.S.; Sandweiss, J.; Slaughter, A.J.; Wolin, E.J.; Xu, Z. [Yale University, New Haven, Connecticut 06520 (United States)
1997-11-01
We present results of a search for strange quark matter (strangelets) in 11.5A GeV /c Au+Pb collisions from the 1994 and 1995 runs of experiment E864 at Brookhaven{close_quote}s Alternating Gradient Synchrotron. We observe no strangelet candidates and set a 90{percent} confidence level upper limit of approximately 3{times}10{sup {minus}8} per 10{percent} central interaction for the production of {vert_bar}Z{vert_bar}=1 and {vert_bar}Z{vert_bar}=2 strangelets over a large mass range and with metastable lifetimes of about 50ns or more. These results place constraints primarily on quark-gluon plasma based production models for strangelets. {copyright} {ital 1997} {ital The American Physical Society}
Collective modes in strange and isospin asymmetric hadronic matter
2004-01-01
We study the propagation of non-strange and strange meson modes in hadronic matter considering both isospin and strangeness mixings induced by quantum fluctuations in the medium. Baryons are described using the Quark Meson Coupling model extended to include interactions of strange quarks. In particular we evaluate the dependence of the meson masses on the baryonic density, the strangeness fraction and the isospin asymmetry of the medium. We have found a considerable admixture of strangeness a...
A determination of the average up-down, strange and charm quark masses from $N_f=2+1+1$
Carrasco, N; Frezzotti, R; Lami, P; Lubicz, V; Palao, D; Picca, E; Riggio, L; Rossi, G C; Sanfilippo, F; Simula, S; Tarantino, C
2013-01-01
We present a lattice QCD determination of the average up-down, strange and charm quark masses based on simulations performed by the European Twisted Mass Collaboration with $N_f = 2 + 1 + 1$ dynamical fermions. We simulated at three different values of the lattice spacing, the smallest being approximately $0.06fm$, and with pion masses as small as $210 \\text{MeV}$. Our results are: $m_{ud}(2\\text{GeV})=3.70(17)\\text{MeV}$, $m_s(2\\text{GeV})=99.2(3.9)\\text{MeV}$, $m_c(m_c)=1.350(49)\\text{GeV}$, $m_s/m_{ud}=26.64(30)$ and $m_c/m_s=11.65(12)$.
Strange/anti-strange asymmetry in the nucleon sea
Energy Technology Data Exchange (ETDEWEB)
Christiansen, H.R.; Magnin, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1998-01-01
We derive the nucleon sea-quark distributions coming from a meson cloud model, in order to argue for a strange-anti strange asymmetry in the nucleon sea. (author) 13 refs., 3 figs.; e-mail: hugo at cat.cbpf.br; jmagnin at lafex.cbpf.br
Strange neutral currents in nuclei
Ressell, M T; Aufderheide, M B; Bloom, S D; Resler, D A
1995-01-01
We examine the effects on the nuclear neutral current Gamow-Teller (GT) strength of a finite contribution from a polarized strange quark sea. We perform nuclear shell model calculations of the neutral current GT strength for a number of nuclei likely to be present during stellar core collapse. We compare the GT strength when a finite strange quark contribution is included to the strength without such a contribution. As an example, the process of neutral current nuclear de-excitation via \
Gell-Mann, M.
In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…
Zhou, Ya-Jin; Sun, Hao
2012-01-01
Flavor changing effects on the processes \\tch, \\eebs, \\eebsh and \\ppbs in the LHT model are investigated in this paper. We calculate the one-loop level contributions from the T-parity odd mirror quarks and gauge bosons. The results show that the top quark rare decay \\tch in the LHT model can be significantly enhanced relative to that in the SM. The $b\\bar{s}$ production at linear colliders in the LHT model can enhance the SM cross section a lot and reach 0.1 fb in some parameter space allowed in the experiment. But the heavy gauge boson and mirror fermion loops have small contribution to the processes \\ppbs and \\eebsh. So the LHT effect on \\eebs might be detected at future linear colliders, while it's too small to be seen for the \\eebsh and \\ppbs processes at future linear colliders and LHC.
Strange stars at finite temperature
Ray, Subharthi; Bagchi, Manjari; Dey, Jishnu; Dey, Mira
2006-03-01
We calculate strange star properties, using large Nc approximation with built-in chiral symmetry restoration (CSM). We used a relativistic Hartree Fock meanfield approximation method, using a modi.ed Richardson potential with two scale parameters Λ and Λ', to find a new set of equation of state (EOS) for strange quark matter. We take the effect of temperature (T) on gluon mass, in addition to the usual density dependence, and find that the transition T from hadronic matter to strange matter is 80 MeV. Therefore formation of strange stars may be the only signal for formation of QGP with asymptotic freedom (AF) and CSM.
Probing Strangeness in Hard Processes
Avakian, H; Cisbani, E; Contalbrigo, M; D'Alesio, U; De Leo, R; Devita, R; Di Nezza, P; Hasch, D; Mirazita, M; Osipenko, M; Pappalardo, L; Rossi, P
2012-01-01
Since the discovery of strangeness almost five decades ago, interest in this degree of freedom has grown up and now its investigation spans the scales from quarks to nuclei. Measurements with identified strange hadrons can provide important information on several hot topics in hadronic physics: the strange distribution and fragmentation functions, the nucleon tomography and quark orbital momentum, accessible through the study of the {\\it generalized} parton distribution and the {\\it transverse momentum dependent} parton distribution functions, the quark hadronization in the nuclear medium, the hadron spectroscopy and the search for exotic mesons. The CLAS12 large acceptance spectrometer in Hall B at the Jefferson Laboratory upgraded with a RICH detector together with the 12 GeV CEBAF high intensity, high polarized electron beam can open new possibilities to study strangeness in hard processes allowing breakthroughs in all those areas. This paper summarizes the physics case for a RICH detector for CLAS12. Many...
Energy Technology Data Exchange (ETDEWEB)
Batigne, G
2003-12-01
The G{sup 0} project is a parity violation experiment dedicated to the measurement of the proton weak and axial form factors by means of electron-proton scattering. Combining these weak form factors with the electromagnetic ones makes possible the extraction of the contribution of strange quarks to the charge and magnetization distribution in the nucleon. This thesis presents the strategy used for the G{sup 0} experiment, the different subsystems and the first results from its engineering run. The counting rate asymmetries, at the order of 10-5, are measured over a large range in transferred momentum (Q{sup 2} = 0.1 to 1 (GeV/c){sup 2}) with expected precision at the level of 10{sup -7}. A deadtime correction program has been developed which allows to correct 90% of the counting losses and to reduce associated false asymmetries at the level of 10-8. A method has been defined to extract the measured values of Q{sup 2} with a precision of 1%. The first preliminary results of G{sup 0} on parity violation asymmetries are also shown. (author)
Menke, Sven; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronises, analyses of events containing top quarks allow to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on recent precision top-quark measurements by the ATLAS Collaboration: Single top-quark and top-quark pair production cross sections including differential distributions will be presented, as well as measurements of top-quark pair production in association with a W or Z boson and measurements of top quark properties such as the spin correlation and W boson helicity in top quark pair events.
Institute of Scientific and Technical Information of China (English)
HOU Hong-Sheng; SUN Hao; ZHOU Ya-Jin
2013-01-01
Flavor changing effects on the processes t → ch,e+e-→ b-s,e+e-→ b-sh and pp → b-s in the LHT model are investigated in this paper.We calculate the one-loop level contributions from the T-parity odd mirror fermions and gauge bosons.The results show that the top quark rare decay t → ch in the LHT model can be significantly enhanced relative to that in the SM.The b-s production at linear colliders in the LHT model can enhance the SM cross section a lot and reach 0.1 Fb in some parameter space allowed in the experiment.But the heavy gauge boson and mirror fermion loops have small contribution to the processes pp → b-s and e+e-→ b-sh.So the LHT effect on e+e-→ b-s might be detected at future linear colliders,while it is too small to be seen for the e+ e-→ b-sh and pp → b-s processes at future linear colliders and LHC.
Energy Technology Data Exchange (ETDEWEB)
Guillon, B
2005-10-15
In the framework of the Quantum Chromodynamics (QCD), the nucleon is described as being composed of three valence quarks surrounded by a sea of virtual quark-antiquark pairs and gluons. If the role of this virtual sea in the nucleon properties is inferred to be important, this contribution is still poorly understood. In this context, we study the role of the strange quarks in the nucleon since this is the lightest quark flavor of the sea with no valence contribution. We are determining its contribution to the charge and magnetization distributions in the nucleon via parity violation experiments. The measurement is performed by elastically scattering polarized electrons from nucleon target. A world wide program in which the G0 experiment takes place has been performing for a decade. The G0 experiment and the analysis of the results from its forward angles phase are the topics of this thesis. This document presents the physics case of the strangeness content of the nucleon (mass, spin, impulsion). It describes also the formalism related to the electroweak probe and the form factors, and then the principle of parity violating asymmetry measurement. The G0 experimental setup, which was built and installed in the Hall C of the Jefferson Laboratory (Usa), is detailed. This set-up was designed for the measurement of asymmetries of the order of 10{sup -6} with an overall relative uncertainty better than 10 %, over a momentum transfer range 0.1-1 (GeV/c){sup 2}. The various steps of the data analysis are exposed. They have allowed us to start from measured counting rates to reach parity violating physics asymmetries. This required a careful treatment of the various sources of systematical errors which is discussed extensively. Finally the results from the G0 forward angle measurement, its comparison with others experiments and with theoretical models, are presented. They support a non null strange quark contribution. (author)
Energy Technology Data Exchange (ETDEWEB)
He, Yudong [California Univ., Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)
1995-07-01
This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.
Hadron spectroscopy from strangeness to charm and beauty
Energy Technology Data Exchange (ETDEWEB)
Zou, B.S., E-mail: zoubs@ihep.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)
2013-09-20
Quarks of different flavors have different masses, which will cause breaking of flavor symmetries of QCD. Flavor symmetries and their breaking in hadron spectroscopy play important role for understanding the internal structures of hadrons. Hadron spectroscopy with strangeness reveals the importance of unquenched quark dynamics. Systematic study of hadron spectroscopy with strange, charm and beauty quarks would be very revealing and essential for understanding the internal structure of hadrons and its underlying quark dynamics.
More strange hadrons from QCD thermodynamics and strangeness freeze-out in heavy ion collisions
Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-01-01
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. This provides evidence for the thermodynamic importance of additional, experimentally unobserved strange hadrons close to the QCD crossover. We show that, owing to overall strangeness neutrality, the thermodynamic presence of these additional states gets imprinted in the yields of the ground state strange hadrons leading to ob...
Form factors and other measures of strangeness in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik
2007-11-15
We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)
Quark mass dependence of H-dibaryon
Yamaguchi, Yasuhiro
2016-01-01
The H-dibaryon is the exotic multiquark state with baryon number 2 and strangeness $-2$. The existence of the deeply bound H-dibaryon is excluded by the observation of the double hypernuclei. However the recent Lattice QCD simulations have found the bound state below the $\\Lambda\\Lambda$ threshold with large quark masses by HALQCD and NPLQCD collaborations. In this talk, the quark mass dependence of the H-dibaryon mass is discussed using the pionless effective field theory (EFT) where a bare H-dibaryon field is coupled with two-baryon states. We determine the parameters in this theory by fitting the recent Lattice QCD results in the SU(3) limit. As a result, we obtain the attractive scattering length at the physical point where the H-dibaryon is unbound.
Polarized strangeness in the nucleon
Sapozhnikov, M G
2001-01-01
A large violation of the Okubo-Zweig-Iizuka rule was discovered in the annihilation of stopped antiprotons. The explanation of these experimental data is discussed in the framework of the model assumed that the nucleon strange sea quarks are polarized.
Energy Technology Data Exchange (ETDEWEB)
El Yakoubi, M.A
2007-03-15
The PVA4 experiment (Parity Violating in hall A4 in Mainz) aims at assessing the contribution of the strange quark to the charge and current distributions in the nucleon. In order to determine these distributions, measurements of the elastic scattering of longitudinal polarized electrons on a hydrogen target have been performed. 2 types of interaction are involved in this experiment: the electromagnetic interaction (virtual photon exchange) that dominates, and the weak interaction (neutral Z{sup 0} boson exchange). The non-conservation of the parity in the weak interaction induces an asymmetry in the counting rate according to the helicity of the electron beam. The difficulty of this experiment is that it requires the control of the systematic errors and the recording of high statistics due to the low asymmetry (about 10{sup -5} and 10{sup -6} according to the transferred momentum). This document presents the first Rosenbluth separation specific to the PVA4 at Q = 0.23 GeV/c{sup 2}. A formalism related to the violation of parity to separate the strange form factors is developed. The PVA4 experimental setup dedicated to the experiment is given, as well as the Monte-Carlo technique used to extract the strange quark contribution is detailed. The data analysis at forwards and backwards angles has enabled us to determine the following asymmetry values of parity violation: (-5.44 {+-} 0.54 (stat) {+-} 0.26 (sys)) ppm forwards and (-17.1 {+-} 1.4 (stat)) ppm backwards. The combining of these asymmetry values at Q = 0.23 GeV/c{sup 2} has led to the determination of the strange form factors G{sub E}{sup s} and G{sub M}{sup s}: G{sub E}{sup s} = (0.047 {+-} 0.041) and G{sub M}{sup s} = (-0.052 {+-} 0.164). It is also shown that while the strange quark electric component is compatible with a null value, a non-zero contribution of the magnetic part is possible.
Strangeness in strongly interacting matter
Greiner, C
2002-01-01
This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production of strange hadronic particles: (1) mass modification of the kaons in a (baryon-)dense environment; (2) (early) K+ - production probes the nuclear equation of state (EoS); (3) enhanced strangeness production especially in the (multi-)strange (anti-)baryon channels as a signal of quark gluon plasma (QGP) formation. As a guideline for the discussion I employ the extensive experience with microscopic hadronic transport models. In addition, I elaborate on the recent idea of antihyperon production solely by means of multi-mesonic fusion-type reactions.
Improvements on the structure of strange stars
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (La Plata Univ. Nacional (Argentina). Facultad de Ciencias Astronomicas y Geofisicas); Horvath, J.E. (La Plata Univ. Nacional (Argentina). Dept. de Fisica Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico)
1990-12-15
We present the structure of strange-star models, including the effects of a specific hypothetical few-quark bound state (quark-alpha). The general features of these stellar objects are discussed and analysed in detail. It is shown that this modification to the strange-matter picture would allow us to interpret the 'glitch' phenomenon observed in many pulsars in terms of features possessed by such objects, although detailed models remain to be constructed. For low-mass stars it is found that the structure consists entirely of quark-alpha matter, forming a new branch of stable compact stars. (author).
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-08-15
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.
Energy Technology Data Exchange (ETDEWEB)
El Yakoubi, Marouan Abdelbaste [Universite de Paris XI, Paris (France)
2007-07-01
Quantum Chromodynamics describes the proton as three valence quarks surrounded by a sea of quark-antiquark pairs and gluons.The purpose of an international program, which the PVA4 experiment takes part, is to quantify the contribution of the strange quark to the charge and current distributions in the nucleon. Experimentally, to determine these distributions measurements of elastic scattering of longitudinally polarized electrons ///on a hydrogen target are performed. Two types of interactions intervene in these experiments: the electromagnetic interaction (virtual photon exchange) which dominates, and the weak interaction (neutral boson Z{sup 0} exchange). The non-conservation of parity in the weak interaction induces an asymmetry in the counting rate according to the helicity of the electron beam. The difficulty of these experiments is that they require to control the systematic errors and to record high statistics due to the low asymmetry (about 10{sup -5} and 10{sup -6} according to the transferred momentum). This document presents the first Rosenbluth separation specific to the PVA4 at Q{sup 2} = 0.23(GeV/c){sup 2}. A formalism related to the violation of parity to separate the strange form factors is developed. The PVA4 experimental setup dedicated to the measurement is given, as well as the Monte Carlo technique used to extract the strange quark contribution is detailed. The results of the analysis are presented, and show that while the strange quark electric component is compatible with a null value, a nonzero contribution of magnetic part is possible. (author)
On the instanton-induced portion of the nucleon strangeness
Klabucar, D; Melic, B; Picek, I
1999-01-01
We calculate the instanton contribution to the proton strangeness in the MIT bag enriched by the presence of a dilute instanton liquid. The evaluation is based on expressing the nucleon matrix elements of bilinear strange quark operators in terms of a model valence nucleon state and interactions producing quark-antiquark fluctuations on top of that valence state. Our method combines the usage of the evolution operator containing a strangeness source, and the Feynman-Hellmann theorem. The method allows a unified approach to the strangeness in different channels. Only the scalar channel is found to be affected by instantons.
The Discovery of the Top Quark
Sinervo, P.K.
1995-12-01
The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.
Directory of Open Access Journals (Sweden)
David Robert Cole
2014-08-01
Full Text Available This paper contends that the power of Deleuze & Guattari’s (1988 notion of assemblage as theorised in 1000 Plateaus can be normalised and reductive with reference to its application to any social-cultural context where an open system of dynamic and fluid elements are located. Rather than determining the assemblage in this way, this paper argues for an alternative conception of ‘strange assemblage’ that must be deliberately and consciously created through rigorous and focused intellectual, creative and philosophical work around what makes assemblages singular. The paper will proceed with examples of ‘strange assemblage’ taken from a film by Peter Greenaway (A Zed and 2 Noughts; the film ‘Performance’; educational research with Sudanese families in Australia; the book, Bomb Culture by Jeff Nuttall (1970; and the band Hawkwind. Fittingly, these elements are themselves chosen to demonstrate the concept of ‘strange assemblage’, and how it can be presented. How exactly the elements of a ‘strange assemblage’ come together and work in the world is unknown until they are specifically elaborated and created ‘in the moment’. Such spontaneous methodology reminds us of the 1960s ‘Happenings’, the Situationist International and Dada/Surrealism. The difference that will be opened up by this paper is that all elements of this ‘strange assemblage’ cohere in terms of a rendering of ‘the unacceptable.'
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustra...
Strangeness exchange reactions and hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Dover, C.B.
1982-01-01
Recent progress in the spectroscopy of ..lambda.. and ..sigma.. hypernuclei is reviewed. Prospects for the production of doubly strange hypernuclei at a future kaon factory are assessed. It is suggested that the (K/sup -/,K/sup +/) reaction on a nuclear target may afford an optimal way of producing the H dibaryon, a stable six quark object with J/sup ..pi../ = O/sup +/, S = -2.
Strangeness in QGP: Hadronization Pressure
Rafelski, Jan; Petran, Michal
2014-01-01
We review strangeness as signature of quark gluon plasma (QGP) and the hadronization process of a QGP fireball formed in relativistic heavy-ion collisions in the entire range of today accessible reaction energies. We discuss energy dependence of the statistical hadronization parameters within the context of fast QGP hadronization. We find that QGP breakup occurs for all energies at the universal hadronization pressure $P = 80\\pm 3\\,\\mathrm{MeV/fm}^3 $.
Can strange stars mimic dark energy stars?
Deb, Debabrata; Guha, B K; Ray, Saibal
2016-01-01
The possibility of strange stars mixed with dark energy to be one of candidates for dark energy stars is the main issue of the present study. Our investigation shows that quark matter is acting as dark energy after certain yet unknown critical condition inside the quark stars. Our proposed model reveals that strange stars mixed with dark energy feature not only a physically acceptable stable model but also mimic characteristics of dark energy stars. The plausible connections are shown through the mass-radius relation as well as the entropy and temperature. We particulary note that two-fluid distribution is the major reason for anisotropic nature of the spherical stellar system.
Strangeness Production in Ultrarelativistic Nucleus-Nucleus Collisions
Institute of Scientific and Technical Information of China (English)
LONG Jia-Li; HE Ze-Jun; MA Yu-Gang; MA Guo-Liang
2004-01-01
Based on the relaxation equations describing the chemical equilibration of gluons, quarks and s quarks at finite baryon density derived from the Juttner distribution of partons, with the help of a rapid phase transition scenario from quark phase to hadron phase, we calculate strangeness production in the quark phase and hadron phase. It is found that the K-/π- ratio is enhanced to be larger than that in pp collisions by about a factor 3.
Energy Technology Data Exchange (ETDEWEB)
Speltz, J
2006-10-15
In this work, we characterize the production of the multi-strange baryons Xi and Omega in Au+Au collisions at RHIC, where the possible formation of a matter of deconfined quarks and gluons (QGP) is expected. We analyze with the STAR experiment, the collisions obtained at an energy of 62 GeV, intermediate between the one reached at the SPS (17 GeV) and the nominal energy of RHIC (200 GeV). Transverse momentum spectra, yields and elliptic flow are measured with different methods allowing for a relevant estimation of systematic errors. The results are compared to statistical and hydrodynamic models that we have adapted for their use at 62 GeV. The so obtained chemical and dynamic properties of the created medium indicate the formation of a thermalized, at least partially, medium and suggests the formation of a comparable matter at 62 GeV and at 200 GeV. (author)
Heavy quarks and CP: Moriond 1985
Energy Technology Data Exchange (ETDEWEB)
Bjorken, J.D.
1985-03-01
The presentations at the Fifth Moriond Workshop on Heavy Quarks, Flavor Mixing, and CP Violation (La Plagne, France, January 13-19, 1985) are summarized. The following topics are reviewed. What's New (beyond the top, top quarks, bottom quarks, charm quarks, strange quarks, and others); why is all this being done (strong interactions and hadron structure, and electroweak properties); and what next (facilities and can one see CP violation in the B-anti B system). 64 refs., 10 figs.
Torsional oscillations of nonbare strange stars
Mannarelli, Massimo; Parisi, Alessandro; Pilo, Luigi; Tonelli, Francesco
2015-01-01
Strange stars are one of the possible compact stellar objects that can be formed after a supernova collapse. We consider a model of strange star having an inner core in the color-flavor locked phase surmounted by a crystalline color superconducting layer. These two phases constitute the {\\it quarksphere}, which we assume to be the largest and heaviest part of the strange star. The next layer consists of standard nuclear matter forming a ionic crust, hovering on the top of the quarksphere and prevented from falling by a strong dipolar electric field. The dipolar electric field arises because quark matter is confined in the quarksphere by the strong interaction, but electrons can leak outside forming a few hundreds Fermi thick electron layer separating the ionic crust from the underlying quark matter. The ionic matter and the crystalline color superconducting matter constitute two electromagnetically coupled crust layers. We study the torsional oscillations of these two layers. Remarkably, we find that if a fra...
Calculation of strange star structure
Directory of Open Access Journals (Sweden)
GH Bordbar
2009-12-01
Full Text Available In this paper, we have considered that the strange-star consists of quark matter from its center to surface. For quark matter, we have used two models, the MIT bag model and string-flip like model. In the bag model, the energy of the system has been considered the kinetic energy of the particles of system in addition to a constant B. We have considered two states for B, one of them is constant and the other one is density dependent. The second state has been obtained from the recent Cern data from quark-geleon plasma formation. In string-flip like model, the energy of the particles of the system has been obtained from the Schrodinger equation, where the Hamiltonian has been considered the sum of kinetic and potential energies. The potential in Hamiltonian is the general potential which depends on density that is the block potential. In the String-flip like model, the block potential is linear or square functions of the relative distance between two quarks. We have also obtained the equation of state of quark matter for all considered cases. Finally, we have computed the structure of the quark star using our equations of state.
Melting hadrons, boiling quarks
Energy Technology Data Exchange (ETDEWEB)
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.
Charmed-strange mesons revisited: mass spectra and strong decays
Song, Qin-Tao; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family, in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be valuable task in LHCb, forthcoming BelleII and PANDA.
Strangeness production in pA and AA collisions at 158 A GeV
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Λ, Λ) and multiple (Ξ-, Ξ-, Ω-, Ω-) strangeness are given. In LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding system might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.
Strangeness production in pA and AA collisions at 158 A GeV
Institute of Scientific and Technical Information of China (English)
王晓荣[1; 萨本豪[2; 周代翠[3; 刘涵[4; 蔡勖[5
2000-01-01
LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Α ,Α ) and multiple (Ε Ε ) strangeness are given. in LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding sys-tem might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.
Walsh, Karen McNulty
2011-03-28
Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered—and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.
Some Aspects of Strange Matter in Astrophysics
Banerjee, Shibaji
2014-01-01
The present work is connected with the investigation of the origin and properties of compact astrophysical objects endowed with strangeness, with the objective of finding out their relevance in the formation and evolution of the universe. In the first part of the thesis, Chap.~1-3, we discuss a model, proposed by us, to describe the propagation of small lumps of Strange Quark Matter (SQM) or strangelets, through the Terrestrial atmosphere. The theoretical results were found to be well correlated with exotic cosmic ray events characterized by very low charge to mass ratio. In the next part, we have investigated the other end of the mass spectrum of SQM. In Chap 5, we have developed an analytical expression for the Chandrasekhar Limit of Strange Quark Stars. The limit is found to depend on the fundamental constants (including the bag constant). In the last chapter we have endeavored to show that the quark nuggets, surviving the quark-hadron phase transition in the millisecond era of the early Universe can provi...
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
A Lattice Determination of Light Quark Masses
Göckeler, M; Oelrich, H; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G; Stephenson, P
2000-01-01
A fully non-perturbative lattice determination of the up/down and strange quark masses is given for quenched QCD using both, $O(a)$ improved Wilson fermions and ordinary Wilson fermions. For the strange quark mass with $O(a)$ improved fermions we obtain $m^{\\msbar}_s(\\mu=2 {GeV}) = 105(4) {MeV}$, using the interquark force scale $r_0$. Due to quenching problems fits are only possible for quark masses larger than the strange quark mass. If we extrapolate our fits to the up/down quark mass we find for the average mass $m^{\\msbar}_l(\\mu=2 {GeV}) = 4.4(2) {MeV}$.
Cooling Curve of Strange Star in Strong Magnetic Field
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Qin; LUO Zhi-Quan
2008-01-01
In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.
Canonical Strangeness Enhancement
Sollfrank, J; Redlich, Krzysztof; Satz, Helmut
1998-01-01
According to recent experimental data and theoretical developments we discuss three distinct topics related to strangeness enhancement in nuclear reactions. We investigate the compatibility of multi-strange particle ratios measured in a restricted phase space with thermal model parameters extracted recently in 4pi. We study the canonical suppression as a possible reason for the observed strangeness enhancement and argue that a connection between QGP formation and the undersaturation of strangeness is not excluded.
Strangeness in the baryon ground states
Semke, A
2012-01-01
We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Tolos, Laura; Khemchandani, Kanchan; Martinez-Torres, Alberto; Bratkovskaya, Elena; Aichelin, Joerg; Nielsen, Marina; Navarra, Fernando S
2015-01-01
We study the properties of strange mesons in vacuum and in the hot nuclear medium within unitarized coupled-channel effective theories. We determine transition probabilities, cross sections and scattering lengths for strange mesons. These scattering observables are of fundamental importance for understanding the dynamics of strangeness production and propagation in heavy-ion collisions.
Strangeness at finite temperature from Lattice QCD
Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia
2016-01-01
The precision reached by recent lattice QCD results allows for the first time to investigate whether the measured hadronic spectrum is missing some additional strange states, which are predicted by the Quark Model but have not yet been detected. This can be done by comparing some sensitive thermodynamic observables from lattice QCD to the predictions of the Hadron Resonance Gas model (with the inclusion of decays [3]). We propose a set of specific observables, defined as linear combinations of conserved charge fluctuations, which allow to investigate this issue for baryons containing one or more strange quarks separately. Applications of these observables to isolate the multiplicity fluctuations of kaons from lattice QCD, and their comparison with the experimental results, are also discussed.
SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.
Energy Technology Data Exchange (ETDEWEB)
KARSCH,F.; KITAZAWA, M.
2007-07-30
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Spectral Properties of Quarks in the Quark-Gluon Plasma
Karsch, F
2007-01-01
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Strangeness as a probe to baryon-rich QCD matter at NICA
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Kenji [The University of Tokyo, Department of Physics, Bunkyo-ku, Tokyo (Japan)
2016-08-15
We elucidate a prospect of strangeness fluctuation measurements in the heavy-ion collision at NICA energies. The strangeness fluctuation is sensitive to quark deconfinement. At the same time strangeness has a strong correlation with the baryon number under the condition of vanishing net strangeness, which leads to an enhancement of Λ{sup 0}, Ξ{sup 0}, Ξ{sup -}, and K{sup +} at high baryon density. The baryon density is maximized around the NICA energies, and strangeness should be an ideal probe to investigate quark deconfinement phenomena of baryon-rich QCD matter created at NICA. We also utilize the hadron resonance gas model to estimate a mixed fluctuation of strangeness and baryon number. (orig.)
The Phase Diagram of High Temperature QCD with Three Flavors of Improved Staggered Quarks
Bernard, C; De Tar, C E; Steven Gottlieb; Gregory, E B; Heller, U M; Hetrick, J E; Sugar, R L; Toussaint, D; Louis, St; Gottlieb, Steven
2003-01-01
We report on progress in our study of high temperature QCD with three flavors of improved staggered quarks. Simulations are being carried out with three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and with degenerate up and down quarks with masses in the range $0.1 m_s \\leq m_{u,d}\\leq 0.6 m_s$, and the strange quark mass fixed near its physical value. For the quark masses studied to date we find rapid crossovers, which sharpen as the quark mass is reduced, rather than bona fide phase transitions.
Black Holes versus Strange Quark Matter
Gladysz-Dziadus, Ewa
2004-01-01
Interpretation of Centauro like events still remains the open question. To the list of models proposed to explain Centauros, the new idea based on mini black holes evaporation has been recently added by A. Mironov et al.. In our paper we give some comments to this scenario, showing that the hypothesis that Centauro like events result from decay of mini black holes, encounters various difficulties, when compared with experimental observations. The QGP strangelet mechanism, proposed in some of our papers, offers better description.
Chiral dynamics with (non)strange quarks
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Observational constraints on quarks in neutron stars
Nana, P; Nana, Pan; Xiaoping, Zheng
2006-01-01
We estimate the constraints of observational mass and redshift on the properties of equations of state for quarks in the compact stars. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing MIT bag model taking medium effect into account for quark matter and relativistic mean field theory for hadron matter. We find that quark may exist in strange stars and the interior of neutron stars, and only these quark matters with stiff equations of state could be consistent with both constraints. The bag constant is main one parameter that affects the mass strongly for strange stars and only the intermediate coupling constant may be the best choice for compatibility with observational constraints in hybrid stars.
Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP
Kuznetsova, Inga; Rafelski, Johann
2006-01-01
We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.
Nucleon strangeness as the response to a strangeness-sensitive probe in a class of hadron models
Klabucar, D; Melic, B; Picek, I
1999-01-01
On top of its valence quarks, the full nucleon ground state may contain appreciable admixture of s-\\bar{s} pairs already at small momentum transfers. This paper discusses strangeness in the mean-field type of nucleon models, and exemplifies this by explicit calculations in the MIT bag model enriched by the presence of instantons. We calculate the instanton contribution to the strangeness in the MIT bag (on top of the standard contribution to strangeness found in that model). Although we do it in an essentially perturbative way, we present a detailed derivation of the formula expressing nucleon matrix elements of bilinear strange quark operators, in terms of a model valence nucleon state and interactions producing quark-antiquark fluctuations on top of that valence state. We do it in detail to clarify our argument that in the context of the mean-field type of quark models (where a Fock state expansion exists and where the nucleon state can be constructed out of single-quark states), the resulting formula acqui...
Electroproduction of Baryon Resonances and Strangeness Suppression
Santopinto, E; Tecocoatzi, H Garcia
2016-01-01
We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...
Flavor content of the nucleon in an unquenched quark model
Bijker, R
2008-01-01
We discuss the flavor content of the nucleon in an unquenched quark model in which the effects of quark-antiquark pairs (up, down and strange) are taken into account in an explicit form. It is shown that the inclusion of quark-antiquark pairs leads to an excess of anti-d over anti-u quarks in the proton and to a large contribution of orbital angular momentum to the spin of the proton.
Unified description of light- and strange-baryon spectra
Glozman, L Ya; Varga, K; Wagenbrunn, R F
1998-01-01
We present a chiral constituent quark model for light and strange baryons providing a unified description of their ground states and excitation spectra. The model relies on constituent quarks and Goldstone bosons arising as effective degrees of freedom of low-energy QCD from the spontaneous breaking of chiral symmetry. The spectra of the three-quark systems are obtained from a precise variational solution of the Schrödinger equation with a semirelativistic Hamiltonian. The theoretical predictions are found in close agreement with experiment.
Strange Stars : An interesting member of the compact object family
Bagchi, Manjari; Dey, Jishnu; Dey, Mira
2008-01-01
We have studied strange star properties both at zero temperature and at finite temperatures and searched signatures of strange stars in gamma-ray, x-ray and radio astronomy. We have a set of Equations of State (EoS) for strange quark matter (SQM) and solving the TOV equations, we get the structure of strange stars. The maximum mass for a strange star decreases with the increase of temperature, because at high temperatures, the EoS become softer. One important aspect of strange star is that, surface tension depends on the size and structure of the star and is significantly larger than the conventional values. Moment of inertia is another important parameter for compact stars as by comparing theoretical values with observed estimate, it is possible to constrain the dense matter Equation of State. We hope that this approach will help us to decide whether the members of the double pulsar system PSR J0737-3039 are neutron stars or strange stars.
Anomalies, symmetries and strangeness content of the proton
Indian Academy of Sciences (India)
J Pasupathy
2003-11-01
The matrix elements of the operators of strange quark ﬁelds $s\\overline{}s$ where is 1 or 5 between a proton state is calculated. The sigma term is found to be ≈ 41 MeV and the (3) singlet axial matrix element is found to be ≈ 0.22, both in agreement with experiment. The sigma term is found using the trace anomaly, while the determination of the axial vector current matrix element is from QCD sum rules. These correspond to $\\langle p|2\\overline{ss}|\\rangle / \\langle p|\\overline{u}u+\\overline{d}d|p\\rangle ≈ 0.12$ and for the axial current ≈ -0.12, respectively. The role of the anomalies in maintaining ﬂavor symmetry in the presence of substantial differences in quark masses is pointed out. This suggests that there is no need to invoke an intrinsic strange quark component in the proton wave function.
Strangeness Production in AA and pp Collisions
Satz, P Castorina ad H
2016-01-01
Boost-invariant hadron production in high energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ($pp$, $e^+e^-$) below LHC energies. In contrast, the space-time superposition of individual collisions in high energy heavy ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we det...
Probing nucleon strangeness structure with $\\phi$ electroproduction
Oh, Yu; Yang, S N; Mori, T; Oh, Yongseok; Titov, Alexander I.; Yang, Shin Nan; Morii, Toshiyuki
1999-01-01
We study the possibility to constrain the hidden strangeness content of the nucleon by means of the polarization observables in phi meson electroproduction. We consider the OZI evading direct knockout mechanism that arises from the non-vanishing s\\bar{s} sea quark admixture of the nucleon as well as the background of the dominant diffractive and the one-boson-exchange processes. Large sensitivity on the nucleon strangeness are found in several beam-target and beam-recoil double polarization observables. The small \\sqrt{s} and W region, which is accesible at some of the current high-energy electron facilities, is found to be the optimal energy region for extracting out the OZI evasion process.
The role of quark mass in cold and dense perturbative QCD
Fraga, E S; Fraga, Eduardo S.; Romatschke, Paul
2004-01-01
We consider the equation of state of QCD at high density and zero temperature in perturbation theory to first order in the coupling constant $\\alpha_s$. We compute the thermodynamic potential including the effect of a non-vanishing mass for the strange quark and show that corrections are sizable. Renormalization group running of the coupling and the strange quark mass plays a crucial role. The structure of quark stars is dramatically modified.
Pseudoscalar meson physics with four dynamical quarks
Bazavov, A; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Lightman, M; Mackenzie, P B; Neil, E T; Oktay, M; Simone, J N; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R
2012-01-01
We present preliminary results for light, strange and charmed pseudoscalar meson physics from simulations using four flavors of dynamical quarks with the highly improved staggered quark (HISQ) action. These simulations include lattice spacings ranging from 0.15 to 0.06 fm, and sea-quark masses both above and at their physical value. The major results are charm meson decay constants f_D, f_{D_s} and f_{D_s}/f_D and ratios of quark masses. This talk will focus on our procedures for finding the decay constants on each ensemble, the continuum extrapolation, and estimates of systematic error.
Spectrum of heavy baryons in the quark model
Yoshida, Tetsuya; Hosaka, Atsushi; Oka, Makoto; Sadato, Katsunori
2015-01-01
Single- and double- heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions : (1) The color-Coulomb term depend on quark masses, and (2) an antisymmetric $LS$ force is introduced. Model parameters are fixed by the strange baryon spectra, $\\Lambda$ and $\\Sigma$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, further to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy quark symmetry ones.
Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frezzotti, Roberto; Rossi, Giancarlo [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy); Herdoiza, Gregorio [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy)
2012-02-15
We study the nucleon matrix elements of the quark scalar-density operator using maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. We demonstrate that in this setup the nucleon matrix elements of the light and strange quark densities can be obtained with good statistical accuracy, while for the charm quark counterpart only a bound can be provided. The present calculation which is performed at only one value of the lattice spacing and pion mass serves as a benchmark for a future more systematic computation of the scalar quark content of the nucleon. (orig.)
Baikov, P A; Chetyrkin, K G; Kühn, J H
2006-01-13
We compute, for the first time, the absorptive part of the massless correlator of two quark scalar currents in five loops. As physical applications, we consider the [symbol: see text](alpha(s)4) corrections to the decay rate of the standard model Higgs boson into quarks, as well as the constraints on the strange quark mass following from QCD sum rules.
Recurrences of strange attractors
Indian Academy of Sciences (India)
E J Ngamga; A Nandi; R Ramaswamy; M C Romano; M Thiel; J Kurths
2008-06-01
The transitions from or to strange nonchaotic attractors are investigated by recurrence plot-based methods. The techniques used here take into account the recurrence times and the fact that trajectories on strange nonchaotic attractors (SNAs) synchronize. The performance of these techniques is shown for the Heagy-Hammel transition to SNAs and for the fractalization transition to SNAs for which other usual nonlinear analysis tools are not successful.
Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L
2015-01-01
The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-01-01
The yields of strange (${\\rm K}^{0}_{S}$, $\\Lambda$, $\\bar{\\Lambda}$) and multi-strange ($\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, $\\bar{\\Omega}^{+}$) hadrons are measured at midrapidity in proton-proton (pp) collisions at $\\sqrt{s}$ = 7 TeV as a function of the charged-particle multiplicity density (${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$).The production rate of strange particles increases faster than that of non-strange hadrons, leading to an enhancement of strange particles relative to pions, similar to that found in nucleus-nucleus collisions as well as in proton-nucleus collisions at the LHC. This is the first observation of an enhanced production of strange particles in high-multiplicity pp collisions. The magnitude of this strangeness enhancement increases with the event activity, quantified by ${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$, and with hadron strangeness. It reaches almost a factor of two for the $\\Omega$ at the highest multiplicity presented. No enhancement is observed for particles with no strange quark cont...
Equation of State for physical quark masses
Cheng, M; Hegde, P; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Mukherjee, S; Petreczky, P; Schmidt, C; Soeldner, W
2009-01-01
We calculate the QCD equation of state for temperatures corresponding to the transition region with physical mass values for two degenerate light quark flavors and a strange quark using an improved staggered fermion action (p4-action) on lattices with temporal extent N_tau=8. We compare our results with previous calculations performed at twice larger values of the light quark masses as well as with results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations and subtracted chiral condensate. We show that compared to the calculations performed at twice larger value of the light quark mass the transition region shifts by about 5 MeV toward smaller temperatures
Nucleation of strange matter in dense stellar cores
Energy Technology Data Exchange (ETDEWEB)
Horvath, J.E. (Instituto Astronomico e Geofisico, Universidade de Sao Paulo, Avenida M. Stefano 4200, Agua Funda (04301) Sao Paulo, Sao Paulo (Brazil)); Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900) La Plata (Argentina)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 49 y 115, C.C.67 (1900) La Plata (Argentina))
1992-05-15
We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature {ital T} for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios.
Summary of recent experimental results on strangeness production
Kalweit, Alexander
2016-01-01
This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the {\\it International Conference on Strangeness in Quark Matter} in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.
Summary of recent experimental results on strangeness production
Kalweit, Alexander
2017-01-01
This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the International Conference on Strangeness in Quark Matter in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.
Heating (Gapless) Color-Flavor Locked Quark Matter
DEFF Research Database (Denmark)
Fukushima, Kenji; Kouvaris, Christoforos; Rajagopal, Krishna
2005-01-01
We explore the phase diagram of neutral quark matter at high baryon density as a function of the temperature T and the strange quark mass Ms. At T=0, there is a sharp distinction between the insulating color-flavor locked (CFL) phase, which occurs where Ms^2/mu 0 and Delta_2->0) cross. Because we...
A relativistic quark model for the Omega- electromagnetic form factors
Ramalho, G; Gross, Franz
2009-01-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
Relativistic quark model for the Omega- electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
G. Ramalho, K. Tsushima, Franz Gross
2009-08-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
Electroproduction of baryon-meson states and strangeness suppression
Santopinto, E.; García-Tecocoatzi, H.; Bijker, R.
2016-08-01
We describe the electroproduction ratios of baryon-meson states from nucleon, inferring from the sea quarks in the nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: ΛK+, Σ* K, ΣK, pπ0, and nπ+. These predictions are in agreement with the new JLab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial tests of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we compute the so called strangeness suppression factor, λs, that is the suppression of strange quark-antiquark pairs compared to nonstrange pairs, and we found that our finding with this simple extension of the quark model is in good agreement with the results of JLab and CERN experiments.
Colour-Charged Quark Matter in Astrophysics?
Institute of Scientific and Technical Information of China (English)
QIU Cong-Xin; XU Ren-Xin
2006-01-01
Colour confinement is only a supposition, which has not yet been proven in QCD. Here we propose that macroscopic quark-gluon plasma in astrophysics could hardly maintain colourless because of causality. It is expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early Universe could be unavoidable if their colourless correspondents do exist.
Chiral symmetry and the constituent quark model
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
Strange and non-strange sea quark–gluon effects in nucleons
Energy Technology Data Exchange (ETDEWEB)
Batra, M.; Upadhyay, A.
2014-02-15
Within a statistical approach, strange and non-strange quark–gluon Fock state contributions are analyzed for their low energy properties. A suitable wave function is written for a nucleon that consists of three valence quarks (qqq) and the sea (g,qq{sup ¯}). Expansion of the nucleonic system in terms of Fock states that contain (g,qq{sup ¯}) is assumed and the probabilities of all possible Fock states, that lead to such a wave-function containing strange and non-strange quark–gluon contents in the sea are determined. Various approximations are entertained to validate the authenticity of the model used. The statistically determined coefficients strongly favor a vector-dominated sea where the sea includes ss{sup ¯} pairs. Additionally, the sea is constrained to have a limited number of components. The phenomenological implications that affect the low energy properties are discussed. The obtained results are compared to existing theoretical models and experimental data. -- Highlights: • A general expression to determine probabilities for each quark–gluon Fock states. • To calculate probabilities in flavor, spin and color space in statistical framework. • To analyze the sea-content and examine the contribution to various properties.
Heating (Gapless) Color-Flavor Locked Quark Matter
Fukushima, K; Rajagopal, K; Fukushima, Kenji; Kouvaris, Chris; Rajagopal, Krishna
2004-01-01
We explore the phase diagram of neutral quark matter at high baryon density as a function of the temperature T and the strange quark mass Ms. At T=0, there is a sharp distinction between the insulating color-flavor locked (CFL) phase, which occurs where Ms^2/mu 0 and Delta_2->0) cross. Because we do not make any small-Ms approximation, if we choose a relatively strong coupling leading to large gap parameters, we are able to pursue the analysis of the phase diagram all the way up to such large values of Ms that there are no strange quarks present.
Low lying baryon spectrum with $N_f = 2+1+1$ dynamical twisted quarks
Drach, Vincent; Carbonell, Jaume; Papinutto, Mauro; Alexandrou, Constantia
2010-01-01
We present first results on the octet and decuplet strange baryon spectrum with $N_f=2+1+1$ twisted mass quarks. We use an Osterwalder Seiler valence strange quark with a mass tuned to the kaon and compare the results with those obtained in the unitary setup. This comparison allows to perform a first study of the lattice artefacts introduced by the mixed action approach. We investigate the effect of the strange and charm quarks in the sea by using two lattice spacings and comparing with preceding $N_f = 2$ twisted mass fermion calculations.
Low lying baryon spectrum with N{sub f}=2+1+1 dynamical twisted quarks
Energy Technology Data Exchange (ETDEWEB)
Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Carbonell, Jaume; Papinutto, Mauro [UJF, CNRS/IN2P3, INPG (France). Lab. de Physique Subatomique et de Cosmologie; Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics
2010-12-15
We present first results on the octet and decuplet strange baryon spectrum with N{sub f}=2+1+1 twisted mass quarks. We use an Osterwalder Seiler valence strange quark with a mass tuned to the kaon and compare the results with those obtained in the unitary setup. This comparison allows to perform a first study of the lattice artefacts introduced by the mixed action approach. We investigate the effect of the strange and charm quarks in the sea by using two lattice spacings and comparing with preceding N{sub f}=2 twisted mass fermion calculations. (orig.)
Hawking-Unruh hadronization and strangeness production in high energy collisions
Directory of Open Access Journals (Sweden)
Castorina Paolo
2015-01-01
Full Text Available The interpretation of quark (q- antiquark (q̄ pairs production and the sequential string breaking as tunneling through the event horizon of colour confinement leads to a thermal hadronic spectrum with a universal Unruh temperature, T ≃ 165 Mev, related to the quark acceleration, a, by T = a/2π. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration which dilutes the quark mass effect and the strangeness suppression almost disappears.
The role of quark mass in cold and dense pQCD and quark stars
Fraga, E S
2006-01-01
For almost twenty years the effects of a nonzero strange quark mass on the equation of state of cold and dense QCD were considered to be negligible, thereby yielding only minor corrections to the mass-radius diagram of compact stars. By computing the thermodynamic potential to first order in \\alpha_s, and including the effects of the renormalization group running of the coupling and strange quark mass, we show that corrections can be of the order of 25%, and dramatically affect the structure of compact stars.
Observational Constraints on Quark Matter in Neutron Stars
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.
Strangeness production in AA and pp collisions
Energy Technology Data Exchange (ETDEWEB)
Castorina, Paolo [Universita di Catania, Dipartimento di Fisica ed Astronomia, Catania (Italy); INFN, Catania (Italy); Satz, Helmut [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany)
2016-07-15
Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions (pp, e{sup +}e{sup -}) below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well. (orig.)
Strangeness production in AA and pp collisions
Castorina, Paolo; Satz, Helmut
2016-07-01
Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ( pp , e^+e^- below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well.
Report of the Quark Flavor Physics Working Group
Butler, J N; Ritchie, J L; Cirigliano, V; Kettell, S; Briere, R; Petrov, A A; Schwartz, A; Skwarnicki, T; Zupan, J; Christ, N; Sharpe, S R; Van de Water, R S; Altmannshofer, W; Arkani-Hamed, N; Artuso, M; Asner, D M; Bernard, C; Bevan, A J; Blanke, M; Bonvicini, G; Browder, T E; Bryman, D A; Campana, P; Cenci, R; Cline, D; Comfort, J; Cronin-Hennessy, D; Datta, A; Dobbs, S; Duraisamy, M; El-Khadra, A X; Fast, J E; Forty, R; Flood, K T; Gershon, T; Grossman, Y; Hamilton, B; Hill, C T; Hill, R J; Hitlin, D G; Jaffe, D E; Jawahery, A; Jessop, C P; Kagan, A L; Kaplan, D M; Kohl, M; Krizan, P; Kronfeld, A S; Lee, K; Littenberg, L S; MacFarlane, D B; Mackenzie, P B; Meadows, B T; Olsen, J; Papucci, M; Parsa, Z; Paz, G; Perez, G; Piilonen, L E; Pitts, K; Purohit, M V; Quinn, B; Ratcliff, B N; Roberts, D A; Rosner, J L; Rubin, P; Seeman, J; Seth, K K; Schmidt, B; Schopper, A; Sokoloff, M D; Soni, A; Stenson, K; Stone, S; Sundrum, R; Tschirhart, R; Vainshtein, A; Wah, Y W; Wilkinson, G; Wise, M B; Worcester, E; Xu, J; Yamanaka, T
2013-01-01
This report represents the response of the Intensity Frontier Quark Flavor Physics Working Group to the Snowmass charge. We summarize the current status of quark flavor physics and identify many exciting future opportunities for studying the properties of strange, charm, and bottom quarks. The ability of these studies to reveal the effects of new physics at high mass scales make them an essential ingredient in a well-balanced experimental particle physics program.
Hosoya, Akio
2010-01-01
We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.
Open and Hidden Strangeness Production in Nucleon-Nucleon Collisions
Shyam, Radhey
2008-01-01
We present an overview of the description of K and eta meson productions in nucleon-nucleon collisions within an effective Lagrangian model where meson production proceeds via excitation, propagation and subsequent decay of intermediate baryonic resonant states. The $K$ meson contains a strange quark ($s$) or antiquark ($\\bar s$) while the $\\eta$ meson has hidden strangeness as it contains some component of the $s{\\bar s}$ pair. Strange meson production is expected to provide information on the manifestation of quantum chromodynamics in the non-perturbative regime of energies larger than that of the low energy pion physics. We discuss specific examples where proper understanding of the experimental data for these reactions is still lacking.
Fortunati, Lucien
2015-01-01
If you’re at CERN at the moment, you will certainly have noticed the work under way on the Globe. The structure, which has been in pride of place opposite the Laboratory for over ten years, has never been so completely laid bare. But, as we explained in a previous article (see here), it is all for a good cause. The Globe is built entirely from wood and certain parts of it need to be replaced.
Institute of Scientific and Technical Information of China (English)
申影; 何阅; 姜玉梅; 何大韧
2004-01-01
This article reports an observation on a fat strange repeller, which appears after a characteristic crisis observed in a kicked rotor subjected to a piecewise continuous force field. The discontinuity border in the definition range of the two-dimensional mapping, which describes the system, oscillates as the discrete time develops. At a threshold of a control parameter a fat chaotic attractor suddenly transfers to a fat transient set. The strange repeller, which appears after the crisis, is also a fat fractal. This is the reason why super-transience happens
Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon
Dong, S J; Williams, A G
1998-01-01
We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is $G_M^s(0) = - 0.36 \\pm 0.20 $. The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of $ - 0.097 \\pm 0.037 \\mu_N$ to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of $ -0.68 \\pm 0.04$ which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius $_E$ is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.
Deconfinement of strangeness and freeze-out from charge fluctuations
Mukherjee, Swagato
2013-01-01
We use Lattice QCD calculations of fluctuations and correlations of various conserved charges to show that the deconfinement of strangeness takes place in the chiral crossover region of QCD; however, inside the quark-gluon plasma strange quarks remain strongly interacting at least up to temperatures twice the QCD crossover temperature. Further, we discuss how the freeze-out parameters of heavy-ion collisions can be determined in a model-independent way through direct comparisons between experimentally measured higher order cumulants of conserved charges and corresponding Lattice QCD calculations. Utilizing the preliminary data from the STAR and PHENIX experiments we illustrate this method. Although, the Lattice QCD based determinations of the freeze-out parameters utilizing data sets of different experiments and different observables are currently not consistent with each other, it is tantalizing to see that all the observed freeze-out parameters lie very close to the chiral/deconfinement crossover region of ...
The strangeness contribution to the proton spin from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-12-15
We compute the strangeness and light-quark contributions {delta}s, {delta}u and {delta}d to the proton spin in n{sub f}=2 lattice QCD at a pion mass of about 285 MeV and at a lattice spacing{approx}0.073 fm, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson action. We carry out the renormalization of these matrix elements which involves mixing between contributions from different quark flavours. Our main result is the small negative value {delta}s{sup MS}({radical}(7.4)GeV) =-0.020(10)(4) of the strangeness contribution to the nucleon spin. (orig.)
Generalized isothermal models with strange equation of state
Indian Academy of Sciences (India)
S D Maharaj; S Thirukkanesh
2009-03-01
We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact relativistic body allows for anisotropic pressures in the presence of the electromagnetic field. New exact solutions are found to the Einstein–Maxwell system. A particular case is shown to be regular at the stellar centre. In the isotropic limit we regain the general relativistic isothermal Universe. We show that the mass corresponds to the values obtained previously for quark stars when anisotropy and charge are present.
Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.
2015-08-01
Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)
Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions
Directory of Open Access Journals (Sweden)
Paolo Castorina
2014-01-01
Full Text Available The thermal multihadron production observed in different high energy collisions poses many basic problems: why do even elementary, e+e- and hadron-hadron, collisions show thermal behaviour? Why is there in such interactions a suppression of strange particle production? Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why in these collisions is the thermalization time less than ≃0.5 fm/c? We show that the recently proposed mechanism of thermal hadron production through Hawking-Unruh radiation can naturally answer the previous questions. Indeed, the interpretation of quark (q-antiquark (q̅ pairs production, by the sequential string breaking, as tunneling through the event horizon of colour confinement leads to thermal behavior with a universal temperature, T≃170 Mev, related to the quark acceleration, a, by T=a/2π. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration which dilutes the quark mass effect and the strangeness suppression almost disappears.
Energy Technology Data Exchange (ETDEWEB)
Pages, P.
1996-05-07
The thesis work is relative to an analysis of data collected by the DELPHI detector at LET in 1992 and 1993, in order to study the inclusive production production of {phi}{sup 0} mesons, reconstructed according to the decay mode {phi}{sup 0} {yields} K{sup +}K{sup -}. The kaon identification, indispensable to do this reconstruction, was made by the Barrel RICH detector of DELPHI. This study was first done to test the {phi}{sup 0} production in the Lund string model, which is one of the models used to describe the production of hadrons in the e{sup +}e{sup -}processes. The experimental distribution of the differential cross section of the inclusive {phi}{sup 0} production was compared to the one predicted by the model and indicates that the model well reproduces the experimental data. The mean number of produced {phi}{sup 0} per hadronic event was found to be: 0.091 {+-} 0.013, in good agreement with the expected value: 0.091. Next, high momentum {phi}{sup 0} mesons were used for a measurement of the branching ratio of the Z{sup 0} bosons into strange quark pairs: {Gamma}{sub ss}-bar/{Gamma}{sub had}. Three {phi}{sup 0} mesons samples were selected, for which the purity in Z{sup 0}{yields} ss-bar events was greater than 60, 70 and 80 %. For each of these 3 samples, the obtained experimental values are respectively: 0.16 {+-} 0.04, 0.13{+-}0.04 et 0.12{+-}0.05. These values show relatively large uncertainties and indicate an agreement of at the most 2.6 standard deviations to the expected value: 0.22. (author). 63 refs.
The Thomas-Fermi Quark Model: Non-Relativistic Aspects
Liu, Quan
2012-01-01
Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.
Strange stars, strange dwarfs, and planetary-like strange-matter objects
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Schaab, C.; Weigel, M.K. [Ludwig-Maximilians Univ., Munich (Germany). Inst. for Theoretical Physics; Glendenning, N.K. [Lawrence Berkeley Lab., CA (United States). Nuclear Science Div.
1995-05-01
This paper gives an overview of the properties of all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from strange stars to strange dwarfs. In contrast to their non-strange counterparts--neutron stars and white dwarfs--their properties are determined by two (rather than one) parameters, the central star density and the density at the base of the nuclear crust. This leads to stellar strange-matter configurations whose properties are much more complex than those of the conventional sequence. As an example, two generically different categories of stable strange dwarfs are found, which could be the observed white dwarfs. Furthermore the authors find very-low-mass strange stellar objects, with masses as small as those of Jupiter or even lighter planets. Such objects, if abundant enough, should be seen by the presently performed gravitational microlensing searches.
The QCD spectrum with three quark flavors
Bernard, C; DeGrand, T A; Datta, S; DeTar, C E; Gottlieb, S; Heller, U M; Orginos, K; Sugar, R; Toussaint, D; Bernard, Claude; Burch, Tom; Grand, Thomas A. De; Datta, Saumen; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Orginos, Kostas; Sugar, Robert; Toussaint, Doug
2001-01-01
We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.
Top Quark Properties Measurements with the ATLAS Detector
Limosani, Antonio; The ATLAS collaboration
2017-01-01
The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties are presented. Measurements of the charge asymmetry in top quark pair production, which probe models of physics beyond the Standard Model, are presented; these include measurements at high invariant masses of the $t\\bar{t}$ system using boosted top quarks. Limits on the rate of flavour-changing neutral currents in the production or decay of the top quark are discussed
Incompressibility of strange matter
Sinha, M N; Dey, J; Dey, M; Ray, S; Bhowmick, S; Sinha, Monika; Bagchi, Manjari; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Bhowmick, Siddhartha
2002-01-01
Strange stars calculated from a realistic equation of state (EOS) show compact objects in the mass radius curve, when they are solved for gravitational fields via TOV equation. Many of the observed stars seem to fit in with this kind of compactness irrespective of whether they are X-ray pulsars, bursters or soft $\\gamma$ repeaters or radio pulsars. Calculated incompressibility of this strange matter shows continuity with that of nuclear matter. This is important in the cosmic separation of phase scenario. We compare our calculations of incompressibility with that of a nuclear matter EOS. This EOS has a continuous transition to ud-matter at about five times normal density. From a look at the consequent velocity of sound it is found that the transition to ud-matter seems necessary.
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Nucleon axial and tensor charges with dynamical overlap quarks
Yamanaka, N; Hashimoto, S; Kaneko, T
2015-01-01
We report on our calculation of the nucleon axial and tensor charges in 2+1-flavor QCD with dynamical overlap quarks. Gauge ensembles are generated at a single lattice spacing 0.12 fm and at a strange quark mass close to its physical value. We employ the all-mode-averaging technique to calculate the relevant nucleon correlation functions, and the disconnected quark loop is efficiently calculated by using the all-to-all quark propagator. We present our preliminary results for the isoscalar and isovector charges obtained at pion masses $m_\\pi$ = 450 and 540 MeV.
Dense hadron star in quark degree of freedom
Directory of Open Access Journals (Sweden)
Tzeng Yiharn
2014-03-01
Full Text Available The quark degree of freedom may play an important role as one studies dense hadron stars which can help to understand the universe origin. We add a temperature dependence to the effective quark mass adopted from a quark-quark interaction on the QCD basis to probe properties of the star in the quark degree of freedom. Based on this interaction, the quark matter’s equation of state is obtained and its thermodynamic characteristics is investigated in detail. Stability of a star made of such matter is examined with and without strange quarks. The Tolman-Oppenheimer-Volkov equation along with the condition that dm=dr = 4πr2E are used to calculate mass and radius of such a star. Exact computations are made to calculate the star’s radius and mass at several temperatures. Comparisons of results from these temperatures are made and the significance is carefully investigated and discussed.
Innermost stable circular orbits around strange stars and kHz QPOs in low-mass X-ray binaries
Zdunik, J L; Gondek-Rosinska, D; Gourgoulhon, E
2000-01-01
Exact calculations of innermost stable circular orbit (ISCO) around rotatingstrange stars are performed within the framework of general relativity.Equations of state (EOS) of strange quark matter based on the MIT Bag Modelwith massive strange quarks and lowest order QCD interactions, are used. Thepresence of a solid crust of normal matter on rotating, mass accreting strangestars in LMXBs is taken into account. It is found that, contrary to neutronstars, above some minimum mass a gap always separates the ISCO and stellarsurface, independently of the strange star rotation rate. For a given baryonmass of strange star, we calculate the ISCO frequency as function of stellarrotation frequency, from static to Keplerian configuration. For masses close tothe maximum mass of static configurations the ISCO frequencies for static andKeplerian configurations are similar. However, for masses significantly lowerthan the maximum mass of static configurations, the minimum value of the ISCOfrequency is reached in the Keplerian...
Strangeness production in p–Pb and Pb–Pb collisions with ALICE at LHC
Colella, Domenico; ALICE Collaboration
2017-01-01
The main goal of the ALICE experiment is to study the properties of the hot and dense medium created in ultra-relativistic heavy-ion collisions. The measurement of the (multi-)strange particles is an important tool to understand particle production mechanisms and the dynamics of the quark-gluon plasma (QGP). We report on the production of in proton-lead (p–Pb) collisions at and lead-lead (Pb–Pb) collisions at measured by ALICE at the LHC. The comparison of the hyperon-to-pion ratios in the two colliding systems may provide insight into strangeness production mechanisms, while the comparison of the nuclear modification factors helps to determine the contribution of initial state effects and the suppression from strange quark energy loss in nuclear matter.
Nucleon strange $s\\bar s$ asymmetry to the $\\Lambda/\\bar\\Lambda$ fragmentation
Chi, Yujie; Ma, Bo-Qiang
2014-01-01
The difference between the $\\Lambda$ and $\\bar \\Lambda$ longitudinal spin transfers in the semi-inclusive deep inelastic scattering process is intensively studied. The study is performed in the current fragmentation region, by considering the intermediate hyperon decay processes and sea quark fragmentation processes, while the strange sea $s\\bar s$ asymmetry in the nucleon is taken into account. The calculation in the light-cone quark-diquark model shows that the strange sea asymmetry gives a proper trend to the difference between the $\\Lambda$ and $\\bar \\Lambda$ longitudinal spin transfers. When considering the nonzero final hadron transverse momentum, our results can explain the COMPASS data reasonably. The nonzero final hadron transverse momentum is interpreted as a natural constraint to the final hadron $z$ range where the longitudinal spin transfer is more sensitive to the strange sea $s\\bar s$ asymmetry.
In-medium modifications of open and hidden strange-charm mesons from spatial correlation functions
Bazavov, Alexei; Maezawa, Yu; Mukherjee, Swagato; Petreczky, Peter
2014-01-01
We calculate spatial correlation functions of in-medium mesons consisting of strange--anti-strange, strange--anti-charm and charm--anti-charm quarks in (2+1)-flavor lattice QCD using the highly improved staggered quark action. A comparative study of the in-medium modifications of mesons with different flavor contents is performed. We observe significant in-medium modifications for the $\\phi$ and $D_s$ meson channels already at temperatures around the chiral crossover region. On the other hand, for the $J/\\psi$ and $\\eta_c$ meson channels in-medium modifications remain relatively small around the chiral crossover region and become significant only above 1.3 times the chiral crossover temperature.
Anaïs Schaeffer
2015-01-01
If you’re at CERN at the moment, you will certainly have noticed the work under way on the Globe. The structure, which has been in pride of place opposite the Laboratory for over ten years, has never been so completely laid bare. But, as we explained in a previous article (see here), it is all for a good cause. The Globe is built entirely from wood and certain parts of it need to be replaced. The Globe after the removal of all the sun baffles. Image: Lucien Fortunati. Picture the general structure of the Globe. In simple terms, the building consists of two spheres, one inside the other. The inner sphere houses the Universe of Particles exhibition and the conference room and is connected to the outer sphere by two access ramps. “Each of these two spheres is made up of eighteen large supporting arcs,” explains Amaya Martínez García of the GS department, who is supervising the Globe renovation project. “These eighteen arcs are ...
Strangeness and Hadron Structure
Ellis, Jonathan Richard
2001-01-01
The nucleon wave function may contain a significant component of ssbar pairs, according to several measurements including the pi-nucleon sigma term, charm production and polarization effects in deep-inelastic scattering. In addition, there are excesses of phi production in LEAR and other experiments, above predictions based the naive Okubo-Zweig-Iizuka rule, that may be explained if the nucleon wave function contains a polarized ssbar component. This model also reproduces qualitatively data on Lambda polarization in deep-inelastic neutrino scattering. The strange component of the proton is potentially important for other physics, such as the search for astrophysical dark matter.
Gapless Color-Flavor-Locked Quark Matter
DEFF Research Database (Denmark)
Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna
2004-01-01
In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... potential mu or increasing M_s, there is a quantum phase transition from the CFL phase to a new ``gapless CFL phase'' in which only seven quasiparticles have a gap. The transition occurs where M_s^2/mu is approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken...... different from those of the CFL phase, even though its U(1) symmetries are the same. Both gapless quasiparticles have quadratic dispersion relations at the quantum critical point. For values of M_s^2/mu above the quantum critical point, one branch has conventional linear dispersion relations while the other...
Nucleon spin and quark content at the physical point
Alexandrou, C; Hadjiyiannakou, K; Kallidonis, Ch; Koutsou, G; Jansen, K; Wiese, Ch; Avilés-Casco, A Vaquero
2016-01-01
We present results on the spin and quark content of the nucleon using $N_f=2$ twisted mass clover-improved fermion simulations with a pion mass close to its physical value. We use recently developed methods to obtain accurate results for both connected and disconnected contributions. We provide results for the axial charge, quark and gluon momentum fraction as well as the light, strange and charm $\\sigma$-terms.
Precision measurements of top quark production with the ATLAS detector
Stolte, Philipp; The ATLAS collaboration
2016-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on a few recent precision top quark measurements by the ATLAS Collaboration: fiducial top pair and single top production cross sections including differential distributions will be presented and compared with QCD predictions. The results include the first top quark measurements at 13 TeV using data from LHC run 2.
Precision Measurements of Top Quark Production with the ATLAS Detector
Stolte, Philipp; The ATLAS collaboration
2016-01-01
The top quark is the heaviest known fundamental particle. It is the only quark that decays before it hadronises which gives us the unique opportunity to probe the properties of bare quarks and to test perturbative QCD. This overview will focus on a few recent precision top quark measurements by the ATLAS Collaboration at the LHC: Fiducial top pair and single top production cross-sections including differential distributions will be presented and compared with QCD predictions. The results include the first top quark measurements at 13 TeV using data from LHC Run 2.
Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature
Cheng, M; Jung, C; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Petreczky, P; Schmidt, C; Söldner, W
2008-01-01
We analyze baryon number, strangeness and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4-action) at two values of the lattice cut-off with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however show deviations from a resonance gas in the vicinity of the transition temperature.
Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions
Castorina, P
2014-01-01
The thermal multihadron production observed in different high energy collisions poses many basic problems: why do even elementary, $e^+e^-$ and hadron-hadron, collisions show thermal behaviour? Why is there in such interactions a suppression of strange particle production? Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why in these collisions is the thermalization time less than $\\simeq 0.5$ fm/c? We show that the recently proposed mechanism of thermal hadron production through Hawking-Unruh radiation can naturally answer the previous questions. Indeed, the interpretation of quark- antiquark pairs production, by the sequential string breaking, as tunneling through the event horizon of colour confinement leads to thermal behavior with a universal temperature, $T \\simeq 170$ Mev,related to the quark acceleration, a, by $T=a/2\\pi$. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilib...
Strangeness in nuclear matter at DA{Phi}NE
Energy Technology Data Exchange (ETDEWEB)
Gianotti, P. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1998-01-01
The low energy kaons from the {phi} meson produced at DA{Phi}NE offer a unique opportunity to study strangeness in nuclear matter. The interaction of kaons with hadronic matter can be investigated at DA{Phi}NE using three main approaches: study of hypernuclei production and decay, kaons scattering on nucleons, kaonic atoms formation. These studies explore kaon-nucleon and hyperon-nucleon forces at very low energy, the nuclear shell model in presence of strangeness quantum number and eventual quarks deconfinement phenomena. The experiments devoted to study this physical program at DA{Phi}NE are FINUDA and DEAR. The physics topics of both experiments are illustrated together with a detailed descriptions of the two detectors.
Chiral quark model with relativistic kinematics
Garcilazo, H
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
Energy Technology Data Exchange (ETDEWEB)
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
Two phases of hot hadronic matter are described with emphasis put on their distinction. Here the role of strange particles as a characteristic observable of the quark-gluon plasma phase is particularly explored. (orig.)
Spectral properties of quarks above $\\T_{c}$ in quenched lattice QCD
Karsch, Frithjof
2007-01-01
We analyze the quark spectral function above the critical temperature for deconfinement in quenched lattice QCD using clover improved Wilson fermions in Landau gauge. We show that the temporal quark correlator is well reproduced by a two-pole approximation for the spectral function and analyze the bare quark mass dependence of both poles as well as their residues. In the chiral limit we find that the quark spectral function has two collective modes which correspond to the normal and plasmino excitations. At large values of the bare quark mass the spectral function is dominated by a single pole.
Relativistic three-body quark model of light baryons based on hypercentral approach
Aslanzadeh, M.; Rajabi, A. A.
2015-05-01
In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein-Gordon equation. We presented the analytical solution of three-body Klein-Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.
Magnetic monopoles and strange matter
Sañudo, J.; Seguí, A.
1986-01-01
We show that if the density of grand unified monopoles at T⋍200 MeV id of the order of or greater than 4.4×1021 cm-3 they annihilate all of the strange matter produced in the quagma-hadron phase transition which of the unverse undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yield upper limits on the density of monopoles for different sizes of strange ball. On leave of absence from Departamento de Física Atómica y Nuclear, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Strange particle production in hadronic Z{sup 0} decays
Energy Technology Data Exchange (ETDEWEB)
Baird, K.G. III
1996-04-01
A study has been made of neutral strange baryons and pseudoscalar mesons produced in hadronic decays of the weak gauge boson V. The experiment was performed at the Stanford Linear Accelerator Center, which has the unique capability of colliding highly polarized electrons with unpolarized positrons. Overall production rates and spectra of the K{sup 0} and the {Lambda}{sup 0} (+{Lambda}{sup 0}) were measured and compared with other experiments as well as with Quantum Chromodynamics calculations. The combination of the small, stable beam spots produced by the SLAC Linear Collider (SLC) and the precision vertexing capabilities of the SLC Large Detector (SLD) permitted the separation of the hadronic events into three quark flavor-enriched samples. An unfolding was performed to obtain flavor-pure samples, and for the first time measurements were made of K{sup 0} and {Lambda}{sup 0} (+{Lambda}{sup 0}) production rates and spectra in uds, c, and b quark events at the Z{sup 0} pole. This measurement revealed significant production differences. Utilizing the large quark production asymmetry due to the polarized electron beam, high-purity quark and antiquark jet samples were obtained. The first measurement of production differences of the {Lambda}{sup 0} baryon in quark and antiquark jets was performed, which provided clear evidence for a leading particle effect at high momenta.
ALICE Masterclass on strangeness
Directory of Open Access Journals (Sweden)
Foka Panagiota
2014-04-01
Full Text Available An educational activity, the International Particle Physics Masterclasses, was developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Thousands of pupils, every year since 2005, in many countries all over the world, are hosted in research centers or universities close to their schools and become “scientists for a day” as they are introduced to the mysteries of particle physics. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a “hands-on” session where the high-school students perform themselves measurements on real data from particle-physics experiments. The last three years data from the ALICE experiment at LHC were used. The performed measurement “strangeness enhancement” and the employed methodology are presented.
Ellis, Jonathan Richard
2005-01-01
There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.
The quark gluon plasma: Lattice computations put to experimental test
Indian Academy of Sciences (India)
Sourendu Gupta
2003-11-01
I describe how lattice computations are being used to extract experimentally relevant features of the quark gluon plasma. I deal speciﬁcally with relaxation times, photon emissivity, strangeness yields, event-by-event ﬂuctuations of conserved quantities and hydrodynamic ﬂow. Finally I give evidence that the plasma is rather liquid-like in some ways.
A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations
Energy Technology Data Exchange (ETDEWEB)
Edwards, Adam J.; /SLAC
2007-10-15
In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for the double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their
Strange fireball as an explanation of the muon excess in Auger data
Anchordoqui, Luis A.; Goldberg, Haim; Weiler, Thomas J.
2017-03-01
We argue that ultrahigh-energy cosmic-ray collisions in Earth's atmosphere can probe the strange quark density of the nucleon. These collisions have center-of-mass energies ≳1 04.6A GeV , where A ≥14 is the nuclear baryon number. We hypothesize the formation of a deconfined thermal fireball which undergoes a sudden hadronization. At production the fireball has a very high matter density and consists of gluons and two flavors of light quarks (u , d ). Because the fireball is formed in the baryon-rich projectile fragmentation region, the high baryochemical potential damps the production of u u ¯ and d d ¯ pairs, resulting in gluon fragmentation mainly into s s ¯. The strange quarks then become much more abundant and upon hadronization the relative density of strange hadrons is significantly enhanced over that resulting from a hadron gas. Assuming the momentum distribution functions can be approximated by Fermi-Dirac and Bose-Einstein statistics, we estimate a kaon-to-pion ratio of about 3 and expect a similar (total) baryon-to-pion ratio. We show that, if this were the case, the excess of strange hadrons would suppress the fraction of energy which is transferred to decaying π0's by about 20%, yielding an ˜40 % enhancement of the muon content in atmospheric cascades, in agreement with recent data reported by the Pierre Auger Collaboration.
Strange and charm baryon masses with two flavors of dynamical twisted mass fermions
Alexandrou, C; Christaras, D; Drach, V; Gravina, M; Papinutto, M
2012-01-01
The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to $\\beta=3.9$, $\\beta=4.05$ and $\\beta=4.2$ with $r_0/a=5.22(2)$, $r_0/a=6.61(3)$ and $r_0/a=8.31(5)$ respectively. %spacings $a=0.0855(5)$ and $a=0.0667(3)$ determined from the pion decay constant. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.
Strange and charm baryon masses with two flavors of dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Carbonell, J. [CEA-Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Christaras, D.; Gravina, M. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Papinutto, M. [UFJ/CNRS/IN2P3, Grenoble (France). Laboratoire de Physique Subatomique et Cosmologie; Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Universidad Autonoma de Madrid UAM/CSIC (Spain). Inst. de Fisica Teorica
2012-10-15
The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to {beta}=3.9, {beta}=4.05 and {beta}=4.2 with r{sub 0}/a=5.22(2), r{sub 0}/a=6.61(3) and r{sub 0}/a=8.31(5) respectively. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.
Exploring strange nucleon form factors on the lattice
Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David
2010-01-01
We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.
Radial Oscillations of Rotating Strange Stars in Strong Magnetic Fields
Singh, S; Gupta, V K; Sen-Gupta, A; Anand, J D; Gupta, Asha
2000-01-01
In this paper we study radial oscillations of rotating strange stars in strong magnetic fields in the Density Dependent Quark Mass (DDQM) model. We see that increase of frequency i.e. difference in frequency of rotating and non-rotating stars is more for higher magnetic fields. The change is small for low mass stars but it increases with the mass of the star. This change of frequency is significant for maximum mass whereas it is marginal for a 1.4 solar mass star.
Scalar condensate and light quark masses from overlap fermions
Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent; Wittig, Hartmut
2001-01-01
We have studied pseudoscalar correlation functions computed using the overlap operator. Within the accuracy of our calculation we find that the quark mass dependence agrees with the prediction of lowest-order Chiral Perturbation Theory (ChPT) for quark masses in the range of m ~ m_s/2-2m_s. We present the results of an analysis which assumes lowest-order ChPT to be valid to extract the low-energy constants Sigma and f_P, as well as the strange quark mass. Non-perturbative renormalization is i...
Evolution of proto-neutron stars with quarks.
Pons, J A; Steiner, A W; Prakash, M; Lattimer, J M
2001-06-01
Neutrino fluxes from proto-neutron stars with and without quarks are studied. Observable differences become apparent after 10-20 s of evolution. Sufficiently massive stars containing negatively charged, strongly interacting, particles collapse to black holes during the first minute of evolution. Since the neutrino flux vanishes when a black hole forms, this is the most obvious signal that quarks (or other types of strange matter) have appeared. The metastability time scales for stars with quarks are intermediate between those containing hyperons and kaon condensates.
Strangeness enhancement - a potential signature for QGP phase
Tiwari, V. K.; Singh, C. P.
1997-09-01
Strangeness enhancement has always been considered as a potential signature for deconfining as well as chiral symmetry restoring quark-hadron phase transition. We obtain the ratios Λ¯/Λ, Ξ¯/Ξ and K+/K- from a quark-gluon plasma (QGP) using a modified equation of state (EOS). Similarly these ratios are also obtained from a hadron gas (HG) by using a thermodynamically consistent equation of state (EOS) which incorporates the finite size, hard-core repulsive interactions among baryons as an excluded volume effect. We then suggest that the variations of these ratios either with the energy density or with baryon density can serve as a potential signature for detecting a QGP formation in the ultra-relativistic heavy-ion collisions.
Production and decay of heavy top quarks
Energy Technology Data Exchange (ETDEWEB)
Kauffman, R.P.
1989-08-01
Experimental evidence indicates that the top quark exists and has a mass between 50 and 200 GeV/c{sup 2}. The decays of a top quark with a mass in this range are studied with emphasis placed on the mass region near the threshold for production of real W bosons. Topics discussed are: (1) possible enhancement of strange quark production when M{sub W} + m{sub s} < m{sub t} < M{sub W} + m{sub b}; (2) exclusive decays of T mesons to B and B{asterisk} mesons using the non-relativistic quark model; (3) polarization of intermediate W's in top quark decay as a source of information on the top quark mass. The production of heavy top quarks in an e{sup +}e{sup {minus}} collider with a center-of-mass energy of 2 TeV is studied. The effective-boson approximation for photons, Z{sup 0}'s and W's is reviewed and an analogous approximation for interfaces between photons and Z{sup 0}'s is developed. The cross sections for top quark pair production from photon-photon, photon-Z{sup 0}, Z{sup 0}Z{sup 0}, and W{sup +}W{sup {minus}} fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom quarks via {gamma}W{sup +} and Z{sup 0}W{sup +} fusion is studied. An exact calculation of {gamma}e{sup +} {yields} {bar {nu}}t{bar b} is made and compared with the effective-W approximation. 31 refs., 46 figs.
Determination of strange sea distributions from {nu}N deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Inst. for High Energy Physics, Protvino (Russian Federation); Kulagin, S. [Academy of Sciences of Russia, Moscow (Russian Federation). Inst. for Nuclear Research; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy
2008-12-15
We present an analysis of the nucleon strange sea extracted from a global Parton Distribution Function fit including the neutrino and anti-neutrino dimuon data by the CCFR and NuTeV collaborations, the inclusive charged lepton-nucleon Deep Inelastic Scattering and Drell-Yan data. The (anti-)neutrino induced dimuon analysis is constrained by the semi-leptonic charmed-hadron branching ratio B{sub {mu}}=(8.8{+-}0.5)%, determined from the inclusive charmed hadron measurements performed by the FNAL-E531 and CHORUS neutrino emulsion experiments. Our analysis yields a strange sea suppression factor {kappa}(Q{sup 2}=20 GeV{sup 2})=0.62{+-}0.04, the most precise value available, an x-distribution of total strange sea that is slightly softer than the non-strange sea, and an asymmetry between strange and anti-strange quark distributions consistent with zero (integrated over x it is equal to 0.0013{+-}0.0009 at Q{sup 2}=20 GeV{sup 2}). (orig.)
The QCD Equation of State with almost Physical Quark Masses
Cheng, M; Datta, S; Van der Heide, J; Jung, C; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Petreczky, P; Petrov, K; Schmidt, C; Söldner, W; Umeda, T
2007-01-01
We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nt =4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140 MeV < T < 800 MeV. We present a detailed discussion of finite cut-off effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nt=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quar...
Octet to decuplet electromagnetic transition in a relativistic quark model
Ramalho, G
2013-01-01
We study the octet to decuplet baryon electromagnetic transitions using the covariant spectator quark model, and predict the transition magnetic dipole form factors for those involving the strange baryons. Utilizing SU(3) symmetry, the valence quark contributions are supplemented by the pion cloud dressing based on the one estimated in the $\\gamma^\\ast N \\to \\Delta$ reaction. Although the valence quark contributions are dominant in general, the pion cloud effects turn out to be very important to describe the experimental data. We also show that, other mesons besides the pion in particular the kaon, may be relevant for some reactions such as $\\gamma^\\ast \\Sigma^+ \\to \\Sigma^{*+}$, based on our analysis for the radiative decay widths of the strange decuplet baryons.
Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian
2009-01-01
Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the
Effect of Quark Strong Interaction in Phase Transition on Supernova Explosion
Institute of Scientific and Technical Information of China (English)
LAI Xiang-Jun; LUO Zhi-Quan; LIU Jing-Jing; LIU Hong-Lin
2008-01-01
The effect of quark interactions perturbatively to order αc on the conversion, from quark matter to strange quark matter, is studied systematically based on a recent set of current quark masses. The process has a significant effect on increasing the core temperature, the neutrino abundance and the neutrino energies even if there is no quark interaction. Furthermore, with the switch of the strong interaction among quarks, these quantities will increase respectively to some further extents with αc increase. Taking αc = 0.47 as an example, the temperature, the neutrino abundance and the total neutrino energies are further raised by about 10%, 7%, and 20% respectively, which is weakly dependent on the initial temperature. Combining the effect of the current quark mass and the effect of the quark strong interaction, the results of the conversions will greatly enhance the probability of success for a supernova explosion and deeply influence the dynamics of the supernova evolution.
Quark Models and Quark Phenomenology
Lipkin, Harry Jeannot
1997-01-01
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966. A model of colored quarks interacting with a one-gluon-exchange potential explained the systematics of the meson and baryon spectrum and gave a hadron mass formula in surprising agreement with experiment. The simple quark model dismissed as heresy and witchcraft by the establishment predicted quantum numbers of an enormous number of hadronic states as well as relations between masses, reaction cross sections and electromagnetic properties, all unexplained by other approaches. Further developments leading to QCD included confinement in the large $N_c$ limit, duality, dual resonance and string models, high energy scattering systematics, unified treatment of mesons and baryons, no exotics and no free quarks.
Gapless color-flavor-locked quark matter.
Alford, Mark; Kouvaris, Chris; Rajagopal, Krishna
2004-06-04
In neutral cold quark matter that is so dense that the strange quark mass Ms is unimportant, all three quark flavors pair in a color-flavor locked (CFL) pattern, and all nine fermionic quasiparticles have a gap Delta (or 2Delta). We argue that, as the density decreases (or Ms increases), there is a quantum phase transition (at M(2s/mu approximately 2Delta) to a new "gapless CFL phase" in which only seven quasiparticles have a gap. There is still an unbroken U(1)(Q) gluon/photon, but, unlike CFL, gapless CFL is a Q conductor with gapless (charged) quasiquarks and a nonzero electron density at zero temperature, so its low energy effective theory and astrophysical properties are qualitatively new. At the transition, the dispersion relations of both gapless quasiparticles are quadratic, but for larger M2s/mu, one becomes conventionally linear while the other remains quadratic, up to tiny corrections.
Analysis of White Dwarfs with Strange-Matter Cores
Mathews, G J; O'Gorman, B; Lan, N Q; Zech, W; Otsuki, K; Weber, F
2006-01-01
We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify ...
Dey, Kalyan
2015-01-01
Rapidity dependent strangeness enhancement factor of the identified particles have been studied with the help of a string based hadronic transport model UrQMD-3.3 (Ultra Relativistic Quantum Molecular Dynamics) at FAIR energies. A strong rapidity dependent strangeness enhancement could be observed with our generated data for $Au+Au$ collision at the beam energy of 30\\textit{A} GeV. The strangeness enhancement is found to be maximum at mid-rapidity for the particles containing leading quarks while for particles having produced quarks only, the situation is seen to be otherwise. Such rapidity dependent strangeness enhancement could be traced back to the dependence of rapidity width on centrality or otherwise on the distribution of net-baryon density.
Meson screening masses at finite temperature with Highly Improved Staggered Quarks
Maezawa, Y; Karsch, F; Petreczky, P; Mukherjee, S
2013-01-01
We report on the first study of the screening properties of the mesonic excitations with strange ($s$) and charm ($c$) quarks, specifically the ground states of the pseudo-scalar and vector meson excitations for the $\\bar{s}s$, $\\bar{s}c$ and $\\bar{c}c$ flavor combinations, using the Highly Improved Staggered Quark action with dynamical physical strange quark and nearly-physical up and down quarks. By comparing with their respective vacuum meson masses and by investigating the influence of the changing temporal boundary conditions of the valence quarks we study the thermal modifications of these mesonic excitations. While the $\\bar{s}s$ states show significant modifications even below the chiral crossover temperature $T_c$, the modifications of the open-charm and charmonium like states become visible only for temperatures $T\\gtrsim T_c$ and $T\\gtrsim1.2T_c$, respectively.
Modified Approach for Calculating Four-Quark Condensates
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; SUN Wei-Min
2007-01-01
By differentiating the dressed quark propagator with respect to a variable background field,the linear response of the dressed quark propagator in the presence of the background field can be obtained.From this general method,using the vector background field as an illustration,we extract a general formula for the four-quark condensate〈(0)|:-q(0)γμq(0)-q(0)γμq(0):|0〉.This formula contains the corresponding fully dressed vector vertex. We use this formula to analyze the factorization problem of the four-quark condensate and show that in the bare vertex approximation factorization holds exactly.
The physics of heavy quark distributions in hadrons: Collider tests
Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.
2017-03-01
We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.
Silva, Antonio; Kim, Hyun-Chul
2013-01-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (m_s) corrections. To extend the results to higher momentum transfer, we take into account the kinematical relativistic effects. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). We finally discuss the transverse charge densities for both unpolarized and polarized nucleons.
Rotational properties of strange-pulsar models
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata, Argentina (AR)); Horvath, J.E. (Instituto Astronomico e Geofisico, Departamento de Astronomia, Universidade de Sao Paulo, Caixa Postal 30627, 01051 Sao Paulo, Brazil (BR)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, Argentina (AR))
1991-07-15
We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties.
Rotational properties of strange-pulsar models
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina)); Horvath, J.E. (Instituto Astronomico e Geofisico, Departamento de Astronomia, Universidade de Sao Paulo, Caixa Postal 30627, 01051 Sao Paulo (Brazil)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata (Argentina))
1991-08-15
We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties.
Atmospheric Neutrinos Can Make Beauty Strange
Harnik, R; Murayama, H; Pierce, A T; Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Pierce, Aaron
2002-01-01
The large observed mixing angle in atmospheric neutrinos, coupled with Grand Unification, motivates the search for a large mixing between right-handed strange and bottom quarks. Such mixing does not appear in the standard CKM phenomenology, but may induce significant b to s transitions through gluino diagrams. Working in the mass eigenbasis, we show quantitatively that an order one effect on CP violation in B_d to phi+K_S is possible due to a large mixing between right-handed b and s squarks, while still satisfying constraints from b to s + gamma. We also include the effect of right- and left-handed bottom squark mixing proportional to m_b*mu*tan(beta). For small mu*tan(beta) there may also be a large effect in B_s mixing correlated with a large effect in B_d to phi+K_S, typically mixing effects are greater than 100 ps^{-1}, an unambiguous signal of new physics at Tevatron Run II.
Strangeness production at SPS energies
Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Mitrovski, Michael
2006-01-01
We present a summary of measurements of strange particles performed by the experiment NA49 in central and minimum bias Pb+Pb collisions in the beam energy range 20A - 158A GeV. New results on Xi production in central Pb+Pb collisions and on Lambda, Xi production in minimum bias collisions are shown. Transverse mass spectra and rapidity distributions of strange particles at different energies are compared. The energy dependence of the particle yields and ratios is discussed. NA49 measurements of the Lambda and Xi enhancement factors are shown for the first time.
Strange nonchaotic self-oscillator
Jalnine, Alexey Yu.; Kuznetsov, Sergey P.
2016-08-01
An example of strange nonchaotic attractor (SNA) is discussed in a dissipative system of mechanical nature driven by a constant torque applied to one of the elements of the construction. So the external force is not oscillatory, and the system is autonomous. Components of the motion with incommensurable frequencies emerge due to the irrational ratio of the sizes of the involved rotating elements. We regard the phenomenon as strange nonchaotic self-oscillations, and its existence sheds new light on the question of feasibility of SNA in autonomous systems.
Strange chiral nucleon form factors
Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.
1999-01-01
We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.
Partially quenched study of strange baryon with Nf = 2 twisted mass fermions
Drach, V; Carbonell, J; Alexandrou, Z L C; Korzec, T; Koutsou, G; Baron, R; Guichon, P; Pène, O; Pallante, E; Reker, S; Urbach, C; Jansen, K
2008-01-01
We present results on the mass of the baryon octet and decuplet using two flavors of light dynamical twisted mass fermions. The strange quark mass is fixed to its physical value from the kaon sector in a partially quenched set up. Calculations are performed for light quark masses corresponding to a pion mass in the range 270-500 MeV and lattice sizes of 2.1 fm and 2.7 fm. We check for cut-off effects and isospin breaking by evaluating the baryon masses at two different lattice spacings. We carry out a chiral extrapolation for the octet baryons and discuss results for the Omega.
Strange Hadronic Matter in a Chiral Model
Institute of Scientific and Technical Information of China (English)
ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng
2000-01-01
The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -～ (-26.0MeV, 1.23).
Quark and gluon condensates in nuclear matter with Brown- Rho scaling
Institute of Scientific and Technical Information of China (English)
郭华; 杨树; 刘玉鑫
2001-01-01
Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.
O'Raifeartaigh, Cormac
2012-11-01
Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.
How strange is pion electroproduction?
Gorchtein, Mikhail; Zhang, Xilin
2015-01-01
We consider pion production in parity-violating electron scattering (PVES) in the presence of nucleon strangeness in the framework of partial wave analysis with unitarity. Using the experimental bounds on the strange form factors obtained in elastic PVES, we study the sensitivity of the parity-violating asymmetry to strange nucleon form factors. For forward kinematics and electron energies above 1 GeV, we observe that this sensitivity may reach about 20\\% in the threshold region. With parity-violating asymmetries being as large as tens p.p.m., this study suggests that threshold pion production in PVES can be used as a promising way to better constrain strangeness contributions. Using this model for the neutral current pion production, we update the estimate for the dispersive $\\gamma Z$-box correction to the weak charge of the proton. In the kinematics of the Qweak experiment, our new prediction reads Re$\\,\\Box_{\\gamma Z}^V(E=1.165\\,{\\rm GeV}) = (5.58\\pm1.41)\\times10^{-3}$, an improvement over the previous un...
Will strangeness win the prize?
Energy Technology Data Exchange (ETDEWEB)
Kapusta, Joseph I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States). E-mail: kapusta at physics.spa.umn.edu
2001-03-01
Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing with first-year physics results from RHIC. These predictions are summarized and evaluated. (author)
Production rates of strange vector mesons at the Z^{0} resonance
Energy Technology Data Exchange (ETDEWEB)
Dima, Mihai O. [Stanford Univ., CA (United States)
1997-05-01
This dissertation presents a study of strange vector meson production, "leading particle" effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z. The measurements were performed in e^{+}e^{-} collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of ρ and K*^{0} and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*^{0} production is studied separately in these samples, and the results show evidence for the "leading particle" effect. The difference between K*^{0} production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.
Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model
de Melo, J P B C; Tsushima, Kazuo
2015-01-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
Physics of the quark - gluon plasma
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-09-01
This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.
Measurement of the strange - antistrange asymmetry at NLO in QCD from NuTeV dimuon data
Energy Technology Data Exchange (ETDEWEB)
Mason, David Alexander [Univ. of Oregon, Eugene, OR (United States)
2006-03-01
A measurement of the asymmetry between the strange and antistrange quark distributions, from a next to leading order QCD analysis of dimuon events measured by the NuTeV experiment at Fermilab is presented. Neutrino charged current events with two muons in the final state provide a direct means for studying charm production and measuring the strange sea. NuTeV's sign selected beam allows independent measurement of the strange and antistrange seas. An improved measurement of the neutrino and antineutrino forward dimuon cross section tables, using the complete charged current event sample for normalization is performed. These tables are then analyzed at NLO to measure the strange and antistrange seas. Detector acceptance is modeled using an NLO charm cross section differential in all variables required. The strange quark distribution is found to have an integrated momentum weighted asymmetry of +0.00196 ± 0.00046(stat) ± 0.00045(syst) ± 0.00182(external). The charm mass is found to be 1.41 ± 0.10(stat) ± 0.08(syst) ± 0.12(external) GeV.
On the Structure of the Free Surface of Self-Binding Quark Matter
Hajyan, G S
2001-01-01
The distribution of electrons and of electrical at the free surface if strange quark matter are determined within the framework of the MIT bag model. It is shown that, with the allowance for the betta-decay of quarks near the surface due to the outward escape of electrons, the electric charge density of quarks at the surface increases by a factor of 17-25, the thickness of the transitional layer decreases from 230 Fm to 15 Fm, and the field strength increases by a factor of 1.7. The difference between the chemical potentials of electrons at the surface and deep layers decreases from 7 MeV to 0.8 MeV, which increases the limiting possible density of ordinary matter above a strange quark star.
Selected problems of baryons spectroscopy: chiral soliton versus quark models
Kopeliovich, Vladimir B
2008-01-01
Inconsistency between rigid rotator and bound state models at arbitrary number of colors, rigid rotator -- soft rotator dilemma and some other problems of baryon spectroscopy are discussed in the framework of the chiral soliton approach (CSA). Consequences of the comparison of CSA results with simple quark models are considered and the $1/N_c$ expansion for the effective strange antiquark mass is presented, as it follows from the CSA. Strong dependence of the effective strange antiquark mass on the SU(3) multiplet is required to fit the CSA predictions. The difference of `good' and `bad' diquark masses, which is about 100 Mev, is in reasonable agreement with other estimates. Multibaryons (hypernuclei) with strangeness are described and some states of interest are predicted within CSA as well.
Institute of Scientific and Technical Information of China (English)
Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng
2009-01-01
Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.
Strange Particle Production at RHIC
Timmins, Anthony R
2008-01-01
We report STAR measurements of mid-rapidity yields for the $\\Lambda$, $\\bar{\\Lambda}$, $K^{0}_{S}$, $\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, and $\\bar{\\Omega}^{+}$ particles in Cu+Cu and Au+Au $\\sqrt{s_{NN}} = 200$ GeV collisions. We show that at a given number of participating nucleons, bulk strangeness production is higher in Cu+Cu collisions compared to Au+Au collisions at the same center of mass energy, counter to predictions from the Canonical formalism. We compare both the Cu+Cu and Au+Au yields to AMPT and EPOS predictions, and find they reproduce key qualitative aspects of the data. Finally, we investigate other scaling parameters and find bulk strangeness production for both the measured data and theoretical predictions, scales better with the number participants that undergo more than one collision.
Strange metal without magnetic criticality
Tomita, Takahiro; Kuga, Kentaro; Uwatoko, Yoshiya; Coleman, Piers; Nakatsuji, Satoru
2015-07-01
A fundamental challenge to our current understanding of metals is the observation of qualitative departures from Fermi liquid behavior. The standard view attributes such non-Fermi liquid phenomena to the scattering of electrons off quantum critical fluctuations of an underlying order parameter. Although the possibility of non-Fermi liquid behavior isolated from the border of magnetism has long been speculated, no experimental confirmation has been made. Here, we report on the observation of a strange metal region away from a magnetic instability in an ultrapure single crystal. In particular, we show that the heavy-fermion superconductor β-YbAlB4 forms a possible phase with strange metallic behavior across an extensive pressure regime, distinctly separated from a high-pressure magnetic quantum phase transition by a Fermi liquid phase.
Flavor structure of $\\Lambda$ baryons from lattice QCD - from strange to charm
Gubler, Philipp; Oka, Makoto
2016-01-01
$\\Lambda$ baryons of spin-parity $\\frac{1}{2}^{\\pm}$ with either a strange or charm valence quark are studied in full 2+1 flavor lattice QCD. Multiple $SU(3)$ singlet and octet operators are employed to generate the desired single baryon states on the lattice. Via the variational method, the couplings of these states to the different operators provide information about the flavor structure of the $\\Lambda$ baryons. We make use of the gauge configurations of the PACS-CS collaboration and chirally extrapolate the results for the masses and $SU(3)$ flavor components to the physical point. We furthermore gradually change the hopping parameter of the heaviest quark from strange to charm to study how the properties of the $\\Lambda$ baryons evolve as a function of the heavy quark mass. It is found that the baryon energy levels increase almost linearly with the quark mass. Meanwhile, the flavor structure of most of the states remains stable, with the exception of the lowest $\\frac{1}{2}^{-}$ state, which changes from...
Tetra-Quark Interpretation of X(3872) and Z_c(3900) Revisited
Terasaki, Kunihiko
2016-01-01
In relation to the newly observed bottom-strange X^{+,-}(5568) mesons, we revisit our tetra-quark interpretation of X(3872) and Z_c(3900). It is discussed that our assignment of X^{+,-}(5568) to charged components of iso-triplet bottom partners of D_{s0}^+(2317) is compatible with the revised version of our tetra-quark interpretation of X(3872) and Z_c(3900).
An Astronomical Evidence of Existence of Quark Matter and the Prediction for Submillisecond Pulsars
Xiao Ping, Z; Shuhua, Y; Xue Wen Li; Miao, K; Xiaoping, Zheng; Nana, Pan; Shuhua, Yang; Xuewen, Liu; Miao, Kang
2003-01-01
We derive the bulk viscous time scale of neutron stars with quark matter core, i.e. hybrid stars. The r-mode instability windows of the stars show the theoretical result accords with the rapid rotation pulsar data. The fit gives a strong indication for the existence of quark matter in the interior of neutron stars. Hybrid stars instead of neutron or strange stars may result in submillisecond pulsars if they exist.
Sequential deconfinement of quark flavors in neutron stars
Blaschke, D; Klahn, T; Berdermann, J
2008-01-01
We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as found, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu--Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n_0, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by beta-equilibrium and charge neutrality. At about 3n_0 u-quarks appear and a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear...
Chemical Evolution of Strongly Interacting Quark-Gluon Plasma
Directory of Open Access Journals (Sweden)
Ying-Hua Pan
2014-01-01
Full Text Available At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c. However, the quark-gluon plasma (QGP system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.
Quark-cluster Stars: hints from the surface
Dai, Shi
2012-01-01
The matter inside pulsar-like compact stars could be in a quark-cluster phase since in cold dense matter at a few nuclear densities (2 to 10 times), quarks could be coupled still very strongly and condensate in position space to form quark clusters. Quark-cluster stars are chromatically confined and could initially be bare, therefore the surface properties of quark-cluster stars would be quite different from that of conventional neutron stars. Some facts indicate that a bare and self-confined surface of pulsar-like compact stars might be necessary in order to naturally understand different observational manifestations. On one hand, as for explaining the drifting sub-pulse phenomena, the binding energy of particles on pulsar surface should be high enough to produce vacuum gaps, which indicates that pulsar's surface might be strongly self-confined. On the other hand, a bare surface of quark-cluster star can overcome the baryon contamination problem of Gamma-ray burst as well as promote a successful core-collaps...
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S
2016-01-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...
Heavy vector and axial-vector mesons in hot and dense asymmetric strange hadronic matter
Kumar, Arvind; Chhabra, Rahul
2015-09-01
We calculate the effects of finite density and temperature of isospin asymmetric strange hadronic matter, for different strangeness fractions, on the in-medium properties of vector (D*,Ds*,B*,Bs*) and axial-vector (D1,D1 s,B1,B1 s) mesons, using the chiral hadronic SU(3) model and QCD sum rules. We focus on the evaluation of in-medium mass-shift and shift in decay constant of above vector and axial-vector mesons. In the quantum chromodynamics sum rule approach, the properties, e.g., the masses and decay constants of vector and axial-vector mesons are written in terms of quark and gluon condensates. These quark and gluon condensates are evaluated in the present work within the chiral SU(3) model, through the medium modification of scalar-isoscalar fields σ and ζ , the scalar-isovector field δ , and the scalar dilaton field χ , in the strange hadronic medium which includes both nucleons as well as hyperons. As we shall see in detail, the masses and decay constants of heavy vector and axial-vector mesons are affected significantly from isospin asymmetry and the strangeness fraction of the medium, and these modifications may influence the experimental observables produced in heavy-ion collision experiments. The results of present investigations of in-medium properties of vector and axial-vector mesons at finite density and temperature of strange hadronic medium may be helpful for understanding the experimental data from heavy-ion collision experiments in particular for the compressed baryonic matter (CBM) experiment of the FAIR facility at GSI, Germany.
Constraining Light-Quark Yukawa Couplings from Higgs Distributions
Bishara, Fady; Monni, Pier Francesco; Re, Emanuele
2016-01-01
We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting LHC measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavour tagging. Compared to other proposals it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated to quark-initiated production. We derive constraints using data from LHC Run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.
Two types of glitches in a solid quark star model
Lu, Jiguang; Zhou, Enping
2015-01-01
TThe glitch of anomalous X-ray pulsars \\& soft gamma repeaters (AXP/SGRs) usually accompanied with detectable energy releases manifesting as X-ray bursts or outbursts, while the glitch of some pulsars like Vela release negligible energy. We find that these two types of glitches can naturally correspond to two types of starquake of solid strange stars. By applying the EoS of quark cluster star and some realistic pulsar parameters, we can reproduce consistent results compared with previous cons...
Extended Goldstone-boson-exchange constituent quark model
Wagenbrunn, R F; Plessas, W; Varga, K
2000-01-01
We discuss an updated version of the Goldstone-boson-exchange chiral quark model extended to include in addition to pseudoscalar meson exchanges also vector and scalar meson exchanges. The latter ingredients are viewed as effective parametrizations of multiple Goldstone-boson exchanges in baryons. The extended model allows for an accurate description of all light and strange baryon spectra and at the same time produces the right properties for deducing baryon-baryon interactions.
Heavy quark production in neutrino deep-inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Johnson, J.A.; Vakili, M.; Wu, V. [University of Cincinnati, Cincinnati, Ohio 45221 (United States); Bazarko, A.O.; Conrad, J.M.; Formaggio, J.A.; Kim, J.H.; King, B.J.; Koutsoliotas, S.; McNulty, C.; Mishra, S.R.; Romosan, A.; Sculli, F.J.; Seligman, W.G.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Tamminga, B.M.; Vaitaitis, A. [Columbia University, New York, New York 10027 (United States); Bugel, L.; Lamm, M.J.; Marsh, M.; Nienaber, P.; Yu, J. [Fermilab, Batavia, Illinois 60510 (United States); Alton, A.; Bolton, T.; Goldman, J.; Goncharov, M.; Naples, D. [Kansas State University, Manhattan, Kansas 66506 (United States); Buchholz, D.; Harris, D.A.; Schellman, H.M.; Zeller, G.P. [Northwestern University, Evanston, Illinois 97403 (United States); Drucker, R.B.; Frey, R.; Mason, D. [University of Oregon, Eugene, Oregon 97403 (United States); de Barbaro, P.; Bodek, A.; Budd, H.; McFarland, K.S.; Sakumoto, W.K.; Yang, U.K. [University of Rochester, Rochester, New York 14627 (United States); Smith, W.H. [University of Wisconsin, Madison, Wisconsin 45207 (United States)
1999-02-01
Charm production by neutrino charged-current interactions produces two muon (dimuon) events which are easily identified. This signal provides an important method to measure the strange sea and the mass of the charm quark. Several experiments, including CCFR, CDHS and CHARM II, have performed analyses of such events. The results of these analyses are summarized with emphasis on CCFR and improvements made by NuTeV. {copyright} {ital 1999 American Institute of Physics.}
Missing strange resonances in Lattice QCD
Marczenko, Michał
2016-01-01
Recent Lattice QCD (LQCD) studies suggest that there are missing resonances in the strange sector of the Hadron Resonance Gas (HRG) model. By adopting the continuous Hagedorn mass spectrum, we present how different medium compositions influence the HRG predictions of conserved charge fluctuations. It is shown that missing strange resonances may be partially accounted for by applying the Hagedorn mass spectrum extracted from experimentally established hadrons. On the other hand, the strange-baryonic spectra, extracted from LQCD results for fluctuations, are found to be consistent with the unconfirmed states in the Particle Data Group (PDG) database, whilst the strange-mesonic spectrum points towards yet undiscovered states in the intermediate mass region.
(Anti-)strangeness in heavy-ion collisions
Moreau, P.; Cassing, W.; Palmese, A.; Bratkovskaya, E. L.
2016-08-01
We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD before. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies suggest a microscopic explanation for the maximum in the K + /π + and (Ʌ + Σ0)/π - ratios at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.
Niggli, Ernst; Egger, Marcel
2002-05-01
Elementary subcellular Ca2+ signals arising from the opening of single ion channels may offer the possibility to examine the stochastic behavior and the microscopic chemical reaction rates of these channel proteins in their natural environment. Such an analysis can yield detailed information about the molecular function that cannot be derived from recordings obtained from an ensemble of channels. In this review, we summarize experimental evidence suggesting that Ca2+ sparks, elementary Ca2+ signaling events of cardiac and skeletal muscle excitation contraction coupling, may be comprised of a number of smaller Ca2+ signaling events, the Ca2+ quarks.
Decaying hadrons within constituent-quark models
Kleinhappel, Regina
2012-01-01
Within conventional constituent-quark models hadrons come out as stable bound states of the valence (anti)quarks. Thereby the resonance character of hadronic excitations is completely ignored. A more realistic description of hadron spectra can be achieved by including explicit mesonic degrees of freedom, which couple directly to the constituent quarks. We will present a coupled-channel formalism that describes such hybrid systems in a relativistically invariant way and allows for the decay of excited hadrons. The formalism is based on the point-form of relativistic quantum mechanics. If the confining forces between the (anti)quarks are described by instantaneous interactions it can be formally shown that the mass-eigenvalue problem for a system that consists of dynamical (anti)quarks and mesons reduces to a hadronic eigenvalue problem in which the eigenstates of the pure confinement problem (bare hadrons) are coupled via meson loops. The only point where the quark substructure enters are form factors at the m...
Mountain building of solid quark stars
Yang, Haifeng
2011-01-01
One of the key differences between normal neutron and (bare) quark stars is relevant to the fact that the former are gravitationally bound while the latter self-confined unless their masses approach the maximum mass. This difference results in the possibility that quark stars could be very low massive whereas neutron stars cannot. Mountains could also be build on quark stars if realistic cold quark matter is in a solid state, and an alternative estimation of the mountain building is present. As spinning compact objects with non-axisymmetric mass distribution will radiate gravitational waves, the equations of states of pulsars could be constraint by the amplitude of gravitational waves being dependent on the heights of mountains. We then estimate the maximum mountains and thus quadrupole moment on solid quark stars, to be consistent with that by Owen (2005) if the breaking strain is 0.1, addressing that a solid quark star with mass < 10^{-2} Msun could be `potato-like'. We estimate the gravitational wave am...
Quark mass effects in quark number susceptibilities
Graf, Thorben
2016-01-01
The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results.
Neutral strangeness production with the ZEUS detector at HERA
Energy Technology Data Exchange (ETDEWEB)
Liu Chuanlei
2007-12-15
The inclusive production of the neutral strange particles, {lambda}, anti {lambda} and K{sup 0}{sub S} has been studied with the ZEUS detector at HERA. The measurement provides a way to understand the fragmentation process in ep collisions and to check the universality of this process. The strangeness cross sections have been measured and compared with Monte Carlo (MC) predictions. Over the kinematic regions of interest, no {lambda} to anti {lambda} asymmetry was observed. The relative yield of {lambda} and K{sup 0}{sub S} was determined and the result was compared with MC calculations and results from other experiments. A good agreement was found except for the enhancement in the photoproduction process. Clear rapidity correlation was observed for particle pairs where either quark flavor or baryon number compensation occurs. The K{sup 0}{sub S}K{sup 0}{sub S} Bose-Einstein correlation measurement gives a result consistent with those from LEP measurements. The {lambda} polarizations were measured to be consistent with zero for HERA I data. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)
1999-09-21
In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)
Repulsive Vector Interaction in Three Flavor Magnetized Quark and Stellar Matter
Menezes, Débora P; Castro, Luis B; Costa, Pedro; Providência, Constan\\cca
2014-01-01
The effect of the vector interaction on three flavor magnetized matter is studied within the SU(3) Nambu--Jona-Lasiono quark model. We have considered cold matter under a static external magnetic field within two different models for the vector interaction in order to investigate how the form of the vector interaction and the intensity of the magnetic field affect the equation of state as well as the strangeness content. It was shown that the flavor independent vector interaction predicts a smaller strangeness content and, therefore, harder equations of state. On the other hand, the flavor dependent vector interaction favors larger strangeness content the larger the vector coupling. We have confirmed that at low densities the magnetic field and the vector interaction have opposite competing effects: the first one softens the equation of state while the second hardens it. Quark stars and hybrid stars subject to an external magnetic field were also studied. Larger star masses are obtained for the flavor indepen...
Spectral Properties of Quarks at Finite Temperature in Lattice QCD
Kitazawa, Masakiyo
2009-01-01
We analyze the quark spectral function above and below the critical temperature for deconfinement and at finite momentum in quenched lattice QCD. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. The bare quark mass and momentum dependences of the spectral function are analyzed with this ansatz. In the chiral limit we find that even near the critical temperature the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature (T) limit. The pole mass of these modes at zero momentum, which should be identified to be the thermal mass of the quark, is approximately proportional to T in a rather wide range of T in the deconfined phase.
Strangeness production in p-Pb and Pb-Pb collisions with ALICE at LHC
Colella, Domenico
2016-01-01
The main goal of the ALICE experiment is to study the properties of the hot and dense medium created in ultra-relativistic heavy-ion collisions. The measurement of the (multi-)strange particles is an important tool to understand particle production mechanisms and the dynamics of the quark-gluon plasma (QGP). We report on the production of K$^{0}_{S}$, $\\Lambda$($\\overline{\\Lambda}$), $\\Xi^{-}$($\\overline{\\Xi}^{+}$) and $\\Omega^{-}$($\\overline{\\Omega}^{+}$) in proton-lead (p-Pb) collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 TeV and lead-lead (Pb-Pb) collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV measured by ALICE at the LHC. The comparison of the hyperon-to-pion ratios in the two colliding systems may provide insight into strangeness production mechanisms, while the comparison of the nuclear modification factors helps to determine the contribution of initial state effects and the suppression from strange quark energy loss in nuclear matter.
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Strange attractor simulated on a quantum computer
2002-01-01
We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.
Strangeness detection in ALICE experiment at LHC
Energy Technology Data Exchange (ETDEWEB)
Safarik, K. [European Lab. for Particle Physics, Geneva (Switzerland)
1995-07-15
The authors present some parameters of the ALICE detector which concern the detection of strange particles. The results of a simulation for neutral strange particles and cascades, together with estimated rates are presented. They also briefly discuss the detection of charged K-mesons. Finally, they mention the possibility of open charm particle detection.
Kilohertz QPOs and strange stars
Bulik, Tomasz; Gondek-Rosinska, Dorota; Kluzniak, Wlodzimierz
1998-01-01
The kilohertz quasi periodic oscillations (QPOs) discovered in several low mass X-ray binaries (LMXBs) by the Rossi X-ray Timing Explorer (XTE) are thought to occur at the orbital frequency in accretion discs whose inner edge corresponds to the innermost (marginally) stable orbit allowed by general relativity. These ideas have been applied to constrain the equation of state (e.o.s.) of the central neutron star. Here we discuss another possibility, that the central object is a strange star, an...
Weak Strangeness and Eta Production
Alam, M Rafi; Alvarez-Ruso, Luis; Simo, I Ruiz; Vacas, M J Vicente; Singh, S K
2013-01-01
We have studied strange particle production off nucleons through $\\Delta S =0 $ and $|\\Delta S| = 1$ channels, and specifically single kaon/antikaon, eta, associated particle production for neutrino/antineutrino induced processes as well as antineutrino induced single hyperon production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangians. The basic parameters of the model are $f_\\pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $\\Sigma^*(1385)$ resonance and for eta production $S_{11}(1535)$ and $S_{11}(1650)$ resonances are included.
Energy Technology Data Exchange (ETDEWEB)
Nakazawa, K. [Gifu Univ. (Japan). Dept. of Physics
1998-08-24
Studies of double-strangeness (S=-2) systems at KEK are summarized. At KEK, beam exposures have been completed in three experiments, namely PS-E176, E224, and E248. The first two experiments provide interesting information on the {Xi}-N interaction, which will be discussed. In E248, counter alignment calibrations are in progress. A fourth experiment, PS-E373, is waiting for its first period of beam exposure in February 1998 and should provide at least ten times better statistics on S=-2 systems than did E176 and E224. (orig.) 14 refs.
Nakazawa, Kazuma
1998-08-01
Studies of double-strangeness (S=-2) systems at KEK are summarized. At KEK, beam exposures have been completed in three experiments, namely PS-E176, E224, and E248. The first two experiments provide interesting information on the Ξ-N interaction, which will be discussed. In E248, counter alignment calibrations are in progress. A fourth experiment, PS-E373, is waiting for its first period of beam exposure in February 1998 and should provide at least ten times better statistics on S=-2 systems than did E176 and E224.
Quark-Quark Forces in Quantum Chromodynamics
Arkhipov, A A
2014-01-01
By single-time reduction technique of Bethe-Salpeter formalism for two-fermion systems analytical expressions for the quasipotential of quark-quark interactions in QCD have been obtained in one-gluon exchange approximation. The influence of infrared singularities of gluon Green`s functions on the character of quark-quark forces in QCD has been investigated. The way the asymptotic freedom manifests itself in terms of two-quark interaction quasipotential in quantum chromodynamics is shown. Consistent relativistic consideration of quark interaction problem by single-time reduction technique in QFT allows one to establish a nontrivial energy dependence of the two-quark interaction quasipotential. As a result of the energy dependence of the interaction quasipotential, the character of the forces changes qualitatively during the transition from the discrete spectrum (the region of the negative values of the binding energy) to the continuous spectrum (that of the positive values of the binding energy): the smooth be...
The impact of s- anti s asymmetry on the strange electromagnetic form factor
Energy Technology Data Exchange (ETDEWEB)
Ghasempour Nesheli, Ali [Islamic Azad University, Department of Physics, Shiraz Branch, Shiraz (Iran, Islamic Republic of)
2016-09-15
The existence of the strange quark asymmetry in the nucleon sea has been indicated by both the experimental and theoretical analyses. Although it is well known that the s- anti s asymmetry is important for some processes in high-energy hadron collisions, it has also been indicated that it can be related to the strange Dirac form factor F{sub 1}{sup s}. In this work, we have studied the impact of s- anti s asymmetry and its uncertainty from various modern parton distribution functions (PDFs) on F{sub 1} {sup s} and compared the obtained results with the available experimental information. As a result, we found that the uncertainty in F{sub 1}{sup s}(t) due to the s(x) - anti s (x) distribution is rather large so that it dominates the model uncertainty at all values of the squared momentum transfer t. However, taking into account the uncertainties, the theoretical predictions of F{sub 1}{sup s}(t) are fully compatible with the estimate extracted from experiment. We concluded that the future accurate experimental data of the strange Dirac form factor might be used to put direct constraints on the strange content of the proton and reduce its uncertainty that has always been a challenge. (orig.)
The mass spectrum of double heavy baryons in new potential quark models
Directory of Open Access Journals (Sweden)
Kovalenko Vladimir
2017-01-01
Full Text Available A new approach to study the mass spectrum of double heavy baryons (QQ′q containing strange and charmed quarks is proposed. It is based on the separation of variables in the Schrodinger equation in the prolate spheroidal coordinates. Two nonrelativistic potential models are considered. In the first model, the interaction potential of the quarks is the sum of the Coulomb and non-spherically symmetrical linear confinement potential. In the second model it is assumed that the quark confinement provided by a spherically symmetric harmonic oscillator potential. In both models the mass spectrum is calculated, and a comparison with previous results from other models is performed.
Charm-quark production in deep-inelastic neutrino scattering at NNLO in QCD
Berger, Edmond L; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing
2016-01-01
We present a fully differential next-to-next-to-leading order calculation of charm quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti-)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.
,
2016-01-01
We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $\\sqrt{s_{\\rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $\\Omega$ and $\\phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $\\sqrt{s_{\\rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $\\phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $\\phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{\\rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.
Matrix methods for bare resonator eigenvalue analysis.
Latham, W P; Dente, G C
1980-05-15
Bare resonator eigenvalues have traditionally been calculated using Fox and Li iterative techniques or the Prony method presented by Siegman and Miller. A theoretical framework for bare resonator eigenvalue analysis is presented. Several new methods are given and compared with the Prony method.
New Precision Limit on the Strange Vector Form Factors of the Proton
Ahmed, Z; Aniol, K A; Armstrong, D S; Arrington, J; Baturin, P; Bellini, V; Benesch, J; Beminiwattha, R; Benmokhtar, F; Canan, M; Camsonne, A; Cates, G D; Chen, J -P; Chudakov, E; Cisbani, E; Dalton, M M; de Jager, C W; De Leo, R; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, C; Franklin, G B; Friend, M; Frullani, S; Garibaldi, F; Giusa, A; Glamazdin, A; Golge, S; Grimm, K; Hansen, O; Higinbotham, D W; Holmes, R; Holmstrom, T; Huang, J; Huang, M; Hyde, C E; Jen, C M; Jin, G; Jones, D; Kang, H; King, P; Kowalski, S; Kumar, K S; Lee, J H; LeRose, J J; Liyanage, N; Long, E; McNulty, D; Margaziotis, D; Meddi, F; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R; Munoz-Camacho, C; Mihovilovic, M; Muangma, N; Myers, K E; Nanda, S; Narayan, A; Nelyubin, V; Nuruzzaman,; Oh, Y; Pan, K; Parno, D; Paschke, K D; Phillips, S K; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Rider, K; Riordan, S; Roche, J; Rubin, J; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Silwal, R; Sirca, S; Souder, P A; Sperduto, M; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Zhan, X; Yan, X; Yao, H; Ye, L; Zhao, B; Zheng, X
2011-01-01
The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV and beam energy E =3.48 GeV to be A_PV = -23.80 +/- 0.78 (stat) +/- 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G_E^s + 0.517 G_M^s = 0.003 +/- 0.010 (stat) +/- 0.004 (syst) +/- 0.009 (ff), where the third error is due to the limits of precision on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.
167th International School of Physics "Enrico Fermi" : Strangeness and Spin in Fundamental Physics
Bressani, T; Feliciello, A; Ratcliffe, Ph G
2008-01-01
Strangeness and Spin in Fundamental Physics is dedicated to the discussion of the role played by two subtle and somehow puzzling quantum numbers, the strangeness and the spin, in fundamental physics. They both relate to basic properties of the fundamental quantum field theories describing strong and electro-weak interactions and to their phenomenological applications. In some instances, like the partonic spin structure of the proton, they are deeply correlated. The many puzzling results recently obtained by measuring several spin asymmetries have stimulated gigantic progresses in the study of the spin structure of protons and neutrons. Intense theoretical activity has discovered new features of non-perturbative QCD, like strong correlations between the spin and the intrinsic motions of quarks inside the nucleons. The purpose of this publication is that of providing a complete, updated and critical account of the most recent and relevant discoveries in the above fields, both from the experimental and theoretic...
Shock wave produced by hadron-quark phase transition in neutron star
Energy Technology Data Exchange (ETDEWEB)
Gustavo de Almeida, Luis, E-mail: lgalmeida@cbpf.br [Universidade Federal do Acre – Campus Floresta, Estrada do Canela Fina, km 12, CEP 69980-000, Cruzeiro do Sul, AC (Brazil); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ (Brazil); Duarte, Sérgio José Barbosa, E-mail: sbd@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ (Brazil); Rodrigues, Hilário, E-mail: harg.astrophys@gmail.com [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Av. Maracanã, 229, CEP 20271-110, Rio de Janeiro, RJ (Brazil)
2015-12-17
In this work we present a schematic description of the detonation wave in hadronic matter inside a neutron star core. We have used a simplified two shells model where the inner shell medium is initially composed of a small lump of strange quark matter surrounded by a large outer shell composed of hadronic matter. We have utilized an equation of state (EOS) based on Relativistic Mean Field Theory with the parameter set NL3 to describe the nuclear and subnuclear phases. We use the MIT bag model to describe the strange quark matter. The hadron-quark phase transition actually induces highly non equilibrium modes, which may become a detonation process (faster) or a burning process (slower). The main purpose of the work is to study the formation of a remnant quark star and the possibility of mass ejection caused by the hadron-quark phase transition. We have found that the total amount of ejected mass is dependant of the bag constant utilized in the strange matter description.
Institute of Scientific and Technical Information of China (English)
张小平
2012-01-01
Azimuthal anisotropy, especially for the multi-strange hadrons, is expected to be sensitive to the dynamical evolution in the early stage of high energy nuclear collisions. In this paper we present the latest results of multi-strange hadron elliptic flow in Au + Au collisions at √SNN=200GeV from the STAR experiment at RHIC. The number-of-quark scaling is evidenced with φ(ss) and Ω(sss) with highly statistical data, which shows strange quark collectivity at RHIC. The u2 of φ meson is found to be consistent with that of proton within statistical error bars at pw 〈 1 GeV/c.
K$\\to \\pi\\pi$ Amplitudes from Lattice QCD with a Light Charm Quark
Giusti, Leonardo; Laine, M; Peña, C; Wennekers, J; Wittig, H
2007-01-01
We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light (GIM limit). The low-energy constants are extracted by comparing the predictions of finite volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a large DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm quark-mass in K-->pipi amplitudes.
Charge balance functions in a scenario of continuing charge production in quark matter
Energy Technology Data Exchange (ETDEWEB)
Pan, Ying-Hua [Harbin Institute of Technology, Department of Physics, Heilongjiang (China); Zhang, Wei-Ning [Harbin Institute of Technology, Department of Physics, Heilongjiang (China); Dalian University of Technology, School of Physics and Optoelectronic Technology, Liaoning (China)
2015-11-15
We study the charge balance functions of π{sup +}π{sup -} and K{sup +}K{sup -} in a scenario of continuing charge creation in a strongly interacting quark-gluon plasma (QGP) in high-energy heavy-ion collisions, using relativistic hydrodynamics and the lattice QCD results of quark susceptibilities and the equation of state of the QGP. We find that the charge balance functions are dominated by their QGP components because most charges are produced before the hadronic stage. The hadronic component of the balance function of π{sup +}π{sup -} is small but non-negligible. The balance function of K{sup +}K{sup -} has a negative hadronic component because the strangeness decreases during the system evolution. The correlation between light and strange quarks leads to small enhancements of the balance functions at small rapidity difference. (orig.)
Charge balance functions in a scenario of continuing charge production in quark matter
Pan, Ying-Hua; Zhang, Wei-Ning
2015-11-01
We study the charge balance functions of π+π- and K+K- in a scenario of continuing charge creation in a strongly interacting quark-gluon plasma (QGP) in high-energy heavy-ion collisions, using relativistic hydrodynamics and the lattice QCD results of quark susceptibilities and the equation of state of the QGP. We find that the charge balance functions are dominated by their QGP components because most charges are produced before the hadronic stage. The hadronic component of the balance function of π+π- is small but non-negligible. The balance function of K+K- has a negative hadronic component because the strangeness decreases during the system evolution. The correlation between light and strange quarks leads to small enhancements of the balance functions at small rapidity difference.
Direct Evaluation of the Quark Content of Nucleons from Lattice QCD at the Physical Point.
Abdel-Rehim, A; Alexandrou, C; Constantinou, M; Hadjiyiannakou, K; Jansen, K; Kallidonis, Ch; Koutsou, G; Avilés-Casco, A Vaquero
2016-06-24
We evaluate the light, strange, and charm scalar content of the nucleon using one lattice QCD ensemble generated with two degenerate light quarks with mass fixed to their physical value. We use improved techniques to evaluate the disconnected quark loops to sufficient accuracy to determine the strange and charm nucleon σ terms in addition to the light quark content σ_{πN}. We find σ_{πN}=37.2(2.6)(4.7/2.9) MeV, σ_{s}=41.1(8.2)(7.8/5.8) MeV, and σ_{c}=79(21)(12/8) MeV, where the first error is statistical and the second is the systematic error due to the determination of the lattice spacing, the assessment of finite volume, and residual excited state effects.
Topological Charges, Prequarks and Presymmetry: a Topological Approach to Quark Fractional Charges
Matute, E A
2004-01-01
A topological approach to quark fractional charges, based on charge constraints unexplained by the Standard Model of particle physics, is discussed. Charge fractionalization is related to a tunneling process occurring in time between pure gauge field configurations at the far past and future associated with integer-charged bare quarks, named prequarks. This transition conforms to a topologically nontrivial configuration of the weak gauge fields in Euclidean space-time. In this context, an electroweak $Z_{2}$ symmetry between bare quarks and leptons, named presymmetry, is revealed. It is shown that an effective topological charge equal to the ratio between baryon number and the number of fermion generations may be associated with baryonic matter. The observed conservation of baryon number is then connected with the conservation of this charge on quarks. Similar results are obtained for leptons in the dual scenario with local quark charges.
Quark confinement in a constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
Anisotropic strange star with de Sitter spacetime
Kalam, Mehedi; Rahaman, Farook; Ray, Saibal; Hossein, Sk. Monowar; Karar, Indrani; Naskar, Jayanta
2012-12-01
Stars can be treated as self-gravitating fluid. Krori and Barua (J. Phys. A., Math. Gen. 8:508, 1975) gave an analytical solution to that kind of fluids. In this connection, we propose a de Sitter model for an anisotropic strange star with the Krori-Barua spacetime. We incorporate the existence of the cosmological constant on a small scale to study the structure of anisotropic strange stars and come to the conclusion that this doping is very well compatible with the well-known physical features of strange stars.
Indian Academy of Sciences (India)
Yuji Takeuchi
2012-10-01
Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics. Though the measurements of the top quark had been performed only at Tevatron so far, LHC is now ready for measurements with more top quarks than Tevatron. In this article, recent measurements of top quark properties from Tevatron (CDF and DØ) as well as LHC (ATLAS and CMS) are presented.
From quark drops to quark stars. Some aspects of the role of quark matter in compact stars
Energy Technology Data Exchange (ETDEWEB)
Lugones, German [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre (Brazil)
2016-03-15
We review some recent results about the mechanism of deconfinement of hadronic matter into quark matter in cold neutron stars and protoneutron stars. We discuss the role of finite-size effects and the relevance of temperature and density fluctuations on the nucleation process. We also examine the importance of surface effects for mixed phases in hybrid stars. A small drop of quark matter nucleated at the core of a compact star may grow if the conversion is sufficiently exothermic. In such a case, it may trigger the burning of the stellar core and even the whole star if quark matter is absolutely stable. We explore the physical processes that occur inside the flame and analyze the hydrodynamic evolution of the combustion front. In the last part of this review, we focus on hybrid stars using the Nambu-Jona-Lasinio (NJL) model with scalar, vector and 't Hooft interactions, paying particular attention to a generalized non-standard procedure for the choice of the ''bag constant''. We also describe the non-radial oscillation modes of hadronic, hybrid and strange stars with maximum masses above 2M {sub CircleDot} and show that the frequency of the p{sub 1} and g fluid modes contains key information about the internal composition of compact objects. (orig.)
Surface tension of highly magnetized degenerate quark matter
Lugones, G
2016-01-01
We study the surface tension of highly magnetized three flavor quark matter within the formalism of multiple reflection expansion (MRE). Quark matter is described as a mixture of free Fermi gases composed by quarks $u$, $d$, $s$ and electrons, in chemical equilibrium under weak interactions. Due to the presence of strong magnetic fields the particles' transverse motion is quantized into Landau levels, and the surface tension has a different value in the parallel and transverse directions with respect to the magnetic field. We calculate the transverse and longitudinal surface tension for different values of the magnetic field and for quark matter drops with different sizes, from a few fm to the bulk limit. For baryon number densities between $2-10$ times the nuclear saturation density, the surface tension falls in the range $2 - 20$ MeV /fm$^{2}$. The largest contribution comes from strange quarks which have a surface tension an order of magnitude larger than the one for $u$ or $d$ quarks and more than two ord...
Strange and charmed baryons using N_f=2 twisted mass QCD
Papinutto, Mauro; Drach, Vincent; Alexandrou, Constantia
2010-01-01
We compute the mass spectrum for strange/charmed baryons in the partially quenched approach using N_f=2 twisted mass QCD configurations. We investigate two main issues: the size of lattice artefacts using three values of the lattice spacing (the smallest of which is approximately 0.05 fm) and the dependence of baryon masses on meson (or quark) masses. We thus perform a global fit in order to extrapolate simultaneously to the continuum limit and to the physical point. We estimate the masses of Omega_{sss}, Xi_{dss}, Lambda_{uds}, Omega_{ccc}, Xi_{dcc}, Lambda_{udc}.
Strange and charmed baryons using N{sub f}=2 twisted mass QCD
Energy Technology Data Exchange (ETDEWEB)
Papinutto, Mauro; Carbonell, Jaume [UJF, CNRS/IN2P, INPG (France). Lab. de Physique Subatomique et de Cosmologie; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics
2010-12-15
We compute the mass spectrum for strange/charmed baryons in the partially quenched approach using N{sub f}=2 twisted mass QCD configurations. We investigate two main issues: the size of lattice artefacts using three values of the lattice spacing (the smallest of which is approximately 0.05 fm) and the dependence of baryon masses on meson (or quark) masses. We thus perform a global fit in order to extrapolate simultaneously to the continuum limit and to the physical point. We estimate the masses of {omega}{sub sss}, {xi}{sub dss}, {lambda}{sub uds}, {omega}{sub ccc}, {xi}{sub dcc}, {lambda}{sub udc}. (orig.)
Extraction of radiative decay width for the non-strange partner of Theta^+
Azimov, Ya I; Polyakov, M V; Strakovsky, I I; Azimov, Ya.
2005-01-01
Using the results of the GRAAL collaboration on the \\eta photoproduction from the neutron target, we attempt to extract the partial radiative width of the possible new nucleon resonance N^*(1675). The obtained estimates support this resonance to be a very attractive candidate for the non-strange member of the exotic antidecuplet of baryons -- a partner of the \\Theta^+ pentaquark. Our phenomenological value for the transition magnetic moment \\mu(n^* n), appears to be in good agreement with predictions of the Chiral Quark Soliton Model.
Coupled channel approach to strangeness S = -2 baryon-bayron interactions in Lattice QCD
Sasaki, Kenji; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko
2015-01-01
The baryon-baryon interactions with strangeness S = -2 with the flavor SU(3) breaking are calculated for the first time by using the HAL QCD method extended to coupled channel system in lattice QCD. The potential matrices are extracted from the Nambu-Bethe-Salpeter wave functions obtained by the 2+1 flavor gauge configurations of CP-PACS/JLQCD Collaborations with a physical volume of 1.93 fm cubed and with m_pi/m_K = 0.96, 0.90, 0.86. The spatial structure and the quark mass dependence of the potential matrix in the baryon basis and in the SU(3) basis are investigated.
Energy Technology Data Exchange (ETDEWEB)
Ritman, J.L. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Herrmann, N.; Best, D.; Alard, J.P.; Amouroux, V.; Bastid, N.; Belyaev, I.; Berger, L.; Biegansky, J.; Buta, A.; Caplar, R.; Cindro, N.; Coffin, J.P.; Crochet, P.; Dona, R.; Dupieux, P.; Dzelalija, M.; Fintz, P.; Fodor, Z.; Genoux-Lubain, A.; Gobbi, A.; Goebels, G.; Guillaume, G.; Grigorian, Y.; Haefele, E.; Hildenbrand, K.D.; Hoelbling, S.; Jundt, F.; Kecskemeti, J.; Kirejczyk, M.; Korchagin, Y.; Kotte, R.; Kuhn, C.; Lambrecht, D.; Lebedev, A.; Lebedev, A.; Legrand, I.; Leifels, Y.; Maazouzi, C.; Manko, V.; Matulewicz, T.; Moesner, J.; Mohren, S.; Moisa, D.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Rami, F.; Ramillien, V.; Reisdorf, W.; Roy, C.; Schuell, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczynska, K.; Smolyankin, V.; Sodan, U.; Tizniti, L.; Trzaska, M.; Vasiliev, M.A.; Wagner, P.; Wang, G.S.; Wienold, T.; Wohlfarth, D.; Zhilin, A. [Inst. for Phys. and Nucl. Eng., Bucharest (Romania)]|[Central Res. Inst. for Phys., Budapest (Hungary)]|[Lab. de Physique Corpusculaire, Clermont-Ferrand (France)]|[Univ. Blaise Pascal, Clermont-Ferrand (France)]|[Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]|[Forschungszentrum Rossendorf, Dresden (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Inst. for Theor. and Exp. Phys., Moscow (Russian Federation)]|[Kurchatov Inst., Moscow (Russian Federation)]|[Centre de Recherches Nucl. and Univ. Louis Pasteur, Strasbourg (France)]|[Warsaw Univ. (Poland). Inst. of Exp. Phys.]|[Rudjer Boskovic Inst., Zagreb (Croatia); FOPI Collaboration
1995-09-01
Particles with strange quark content produced in the system 1.93 A.GeV {sup 58}Ni on {sup 58}Ni have been investigated at GSI Darmstadt with the FOPI detector system. The correlation of these produced particles was analyzed with respect to the reaction plane. {Lambda} baryons exhibit a very pronounced sideward flow pattern which is qualitatively similar to the proton flow. However, the kaon (K{sup +},K{sup 0}{sub s}) flow patterns are significantly different from that of the protons, and their form may be useful to restrict theoretical models on the form of the kaon potential in the nuclear medium. (orig.)
Search for non-strange dibaryons
Indian Academy of Sciences (India)
Arun K Jain
2006-05-01
Inspite of tremendous interest there has been sporadic searches for dibaryon resonances in the past few decades. The main hurdle one faces in this search is their identification, their signature and practically no guide to their location. With the identification of the pentaquark-+ resonance one is encouraged to look for the discovery of strange dibaryons also. However where and how to look for non-strange dibaryons is not clear. The transition from a bipolar to a unipolar non-strange dibaryon may possibly be seen in the (, 2) reactions on heavy nuclei. The change of the finite size of the $p-p$ interaction vertex can be identified as a sudden change in the extracted DWIA spectroscopic factor. The DWIA anomalies are to be searched for in the existing (, 2) reaction data for the identification of non-strange dibaryons.
Strange particle production from SIS to LHC
Indian Academy of Sciences (India)
H Oeschler; J Cleymans; K Redlich
2003-05-01
A review of meson emission in heavy-ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features, e.g. the different centrality dependences of pions and kaons. Furthermore, the independence of the + to - ratio on the number of participating nucleons observed between SIS and relativistic heavy-ion collider (RHIC) is consistent with this model. The observed maximum in the +/+ excitation function is also seen in the ratio of strange to non-strange particle production. The appearance of this maximum around 30 A$\\cdot$GeV is due to the energy dependence of the chemical freeze-out parameters and .
Associated strangeness production at intermediate energies
Energy Technology Data Exchange (ETDEWEB)
Saghai, B.
1996-04-01
Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author). 59 refs.
Strange Baryonic Matter and Kaon Condensation
Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.
In this contribution we address the question whether kaon condensation could occur in strongly interacting self-bound strange hadronic matter. In our comprehensive dynamical relativistic mean-field (RMF) calculations of nuclear and hypernuclear systems containing several antikaons we found saturation of bar K separation energy as well as the associated nuclear and bar K density distributions upon increasing the number of bar K mesons. The saturation pattern was found to be a universal feature of these multi-strangeness configurations. Since in all cases the bar K separation energy does not exceed 200 MeV, we conclude that bar K mesons do not provide the physical "strangeness" degrees of freedom for self-bound strange hadronic matter.
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; WU Xiao-Hua; SUN Wei-Min; ZHAO En-Guang; WANG Fan
2003-01-01
A method for obtaining the smallcurrent quark mass dependence of the dressed quark propagator froman effective quark-quark interaction model is developed. Within this approach the small current quark mass effects ondressed-quark propagator have been studied. A comparison with previous results is given.
Energy Technology Data Exchange (ETDEWEB)
Paschos, E A
1976-01-01
This contribution reviews the evidence accumulated over the past year in favor of quarks and partons. Then it applies the quark ideas in order to interpret the neutrino-induced production of charm and the structure of neutral currents.
The Fastest Rotating Pulsar: a Strange Star?
Institute of Scientific and Technical Information of China (English)
徐仁新; 徐轩彬; 吴鑫基
2001-01-01
According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.
ATLAS collaboration; LHCb collaboration
2016-01-01
Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on differential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.
Constraining the MIT Bag Model of Quark Matter with Gravitational Wave Observations
Benhar, O; Gualtieri, L; Marassi, S; Benhar, Omar; Ferrari, Valeria; Gualtieri, Leonardo; Marassi, Stefania
2006-01-01
Most theoretical studies of strange stars are based on the MIT bag model of quark matter, whose main parameter, the bag constant B, is only loosely constrained by phenomenology. We discuss the possibility that detection of gravitational waves emitted by a compact star may provide information on both the nature of the source and the value of B. Our results show that the combined knowledge of the frequency of the emitted gravitational wave and of the mass or the radiation radius of the source allows one to discriminate between strange stars and neutron stars and set stringent bounds on the bag constants.
Theoretical perspectives on strange physics
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.
1983-04-01
Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)
Maezawa, Y; Aoki, S; Ejiri, S; Hatsuda, T; Kanaya, K; Ohno, H
2011-01-01
Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the $O(a)$-improved Wilson quark action. We perform simulations at $m_{\\rm PS}/m_{\\rm V} = 0.63$ (0.74) for light (strange) flavors with lattice sizes of $32^3 \\times N_t$ with $N_t=4$--12. We adopt the fixed-scale approach, where temperature can be varied without changing the spatial volume and renormalization factor. We find that, at short distance, the free energies of static quarks in color-singlet channel converge to the static-quark potential evaluated from the Wilson-loop at zero-temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the free energies of static quarks approach to twice the single-quark free energies, implying that the interaction between static quarks is fully screened. The screen...
Baryons as relativistic three-quark bound states
Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.
2016-11-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.
Screening of heavy quarks and hadrons at finite temperature and density
Energy Technology Data Exchange (ETDEWEB)
Doering, M.
2006-09-22
Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16{sup 3} x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T{sub c}. The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)
Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing
2016-05-27
We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.
Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD
Berger, Edmond L.; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing
2016-05-01
We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.
Strangeness Vector and Axial-Vector Form Factors of the Nucleon
Directory of Open Access Journals (Sweden)
Pate Stephen
2014-03-01
Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.
Newtonian and general relativistic contribution of gravity to surface tension of strange stars
Bagchi, M; Dey, M; Dey, J; Bhowmick, S; Bagchi, Manjari; Sinha, Monika; Dey, Mira; Dey, Jishnu; Bhowmick, Siddhartha
2005-01-01
Surface tension (S) is due to the inward force experienced by particles at the surface and usually gravitation does not play an important role in this force. But in compact stars the gravitational force on the particles is very large and S is found to depend not only on the interactions in the strange quark matter, but also on the structure of the star, i.e. on its mass and radius. Indeed, it has been claimed recently that 511 keV photons observed by the space probe INTEGRAL from the galactic bulge may be due to electron-positron annihilation, and their source may be the positron cloud outside of an antiquark star. Such stars, if they exist, may also go a long way towards explaining away the antibaryon deficit of the universe. For that to happen S must be high enough to allow for survival of quark/antiquark stars born in early stages of the formation of the universe. High value of S may also assist explanation of delayed gamma-ray burst after a supernova explosion, as conversion from normal matter to strange ...
Compositeness of the strange, charm and beauty odd parity $\\Lambda$ states
Garcia-Recio, C; Nieves, J; Salcedo, L L; Tolos, L
2015-01-01
We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $\\Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $\\Lambda$ states. We find that the $\\Lambda$ states which are bound states (the three $\\Lambda_b$) or narrow resonances (one $\\Lambda(1405)$ and one $\\Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $\\frac{1}{2}^-$ wide $\\Lambda(1405)$ and $\\Lambda_c(2595)$ as well as the $\\frac{3}{2}^-$ $\\Lambda(1520)$ and $\\Lambda_c(2625)$ states display smaller compositeness and so they...
Energy Technology Data Exchange (ETDEWEB)
Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.
2000-03-24
The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Properties of Strange Matter in a Model with Effective Lagrangian
Institute of Scientific and Technical Information of China (English)
WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang
2001-01-01
The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``
Measurements of strangeness production in the STAR experiment at RHIC
Energy Technology Data Exchange (ETDEWEB)
Wilson, W.K. [Wayne State Univ., Detroit, MI (United States)
1995-07-15
Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.
Heavy quark effective theory computation of the mass of the bottom quark
Energy Technology Data Exchange (ETDEWEB)
Della Morte, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, N.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy)
2006-10-15
We present a fully non-perturbative computation of the mass of the b-quark in the quenched approximation. Our strategy starts from the matching of HQET to QCD in a finite volume and finally relates the quark mass to the spin averaged mass of the B{sub s} meson in HQET. All steps include the terms of order {lambda}{sup 2}/m{sub b}. We discuss the computation and renormalization of correlation functions at order 1/m{sub b}. With the strange quark mass fixed from the Kaon mass and the QCD scale set through r{sub 0}=0.5 fm, we obtain a renormalization group invariant mass M{sub b}=6.758(86) GeV or anti m{sub b}(anti m{sub b})=4.347(48) GeV in the MS scheme. The uncertainty in the computed {lambda}{sup 2}/m{sub b} terms contributes little to the total error and {lambda}{sup 3}/m{sup 2}{sub b} terms are negligible. The strategy is promising for full QCD as well as for other B-physics observables. (orig.)
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
Chiral extrapolations and strangeness in the baryon ground states
Lutz, Matthias F M
2013-01-01
We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.
Stability of realistic strange stars (RSS)
Bhowmick, S; Dey, M; Ray, S; Ray, R; Bhowmick, Siddhartha; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Ray, Ranjan
2001-01-01
Strange stars (SS) calculated from a realistic equation of state (EOS) are very stable, for example under fast rotation but have a soft surface, on which ripples may occur when radiation is emitted close to it. We suggest this as a natural explanation of the fluctuations observed in the intensity profile of X-ray pulsars. In contrast, SS based on EOS derived from the bag models (Bag SS) are less stable against fast rotation and do not have a hard surface and cannot explain these ripples. There are other important differences between Bag SS and the SS, based on a realistic EOS, which we call realistic strange stars (RSS).
Hybrid stars Spin polarised nuclear matter and density dependent quark masses
Maheswari, V S U; Samaddar, S K
1998-01-01
The possibility of formation of a droplet phase (DP) inside a star and its consequences on the structural properties of the star are investigated. For nuclear matter (NM), an equation of state (EOS) based on finite range, momentum and density dependent interaction, and which predicts that neutron matter undergoes ferromagnetic transition at densities realisable inside the neutron star is employed. An EOS for quark matter (QM) with density dependent quark masses, the so-called effective mass model, is constructed by correctly treating the quark chemical potentials. It is then found that a droplet phase consisting of strange quark matter and unpolarised nuclear matter sandwiched between a core of polarised nuclear matter and a crust containing unpolarised nuclear matter exists. Moreover, we could explain the mass and surface magnetic field satisfactorily, and as well allow, due to the presence of a droplet phase, the direct URCA process to happen.
Juste, A
2006-01-01
Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.
Cuevas Maestro, Javier
2016-01-01
An overview of recent top quark measurements in proton-proton collisions at 7, and 8 TeV in data collected with the CMS and ATLAS experiments at the LHC, using a data sample collected during the years 2011, 2012 is presented. The results include measurements of top-quark pairs spin correlation, the top pair charge asymmetry, the cross section of top-quark pair events produced in association with a W or a Z boson. The mass of the top quark is estimated by different methods. Some results on the same topics are also presented in data collected by the CDF and D0 collaborations at the Tevatron collider.
The QCD equation of state with charm quarks from lattice QCD
Cheng, Michael
Recently, there have been several calculations of the QCD equation of state (EoS) on the lattice. These calculations take into account the two light quarks and the strange quark, but have ignored the effects of the charm quark, assuming that the charm mass (mc ≈ 1300 MeV) is exponentially suppressed at the temperatures which are explored. However, future heavy ion collisions, such as those planned at the LHC, may well probe temperature regimes where the charm quarks play an important role in the dynamics of the QGP. We present a calculation of the charm quark contribution to the QCD EoS using p4-improved staggered fermions at Nt = 4, 6, 8. This calculation is done with a quenched charm quark, i.e. the relevant operators are measured using a valence charm quark mass on a 2+1 flavor gauge field background. The charm quark masses are determined by calculating charmonium masses (metac and mJ/Psi) and fixing these mesons to their physical masses. The interaction measure, pressure, energy density, and entropy density are calculated. We find that the charm contribution makes a significant contribution, even down to temperatures as low as the pseudo-critical temperature, Tc. However, there are significant scaling corrections at the lattice spacings that we use, preventing a reliable continuum extrapolation.
Constituent quarks and the gluonic contribution to the spin of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Eldahoumi, Gamal
2009-01-15
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
New quarks: exotic versus strong
Holdom, B.
2011-01-01
The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.
Energy Technology Data Exchange (ETDEWEB)
Lo Curto, G.; Albergo, S.; Bellwied, R.; Bennett, M.; Boemi, D.; Bonner, B.; Caccia, Z.; Caines, H.; Christie, W.; Cina' , G.; Costa, S.; Crawford, H.; Cronqvist, M.; Debbe, R.; Engelage, J.; Flores, I.; Greiner, L.; Hallman, T.; Hoffman, G.; Huang, H.; Humanic, T.J.; Igo, G.; Insolia, A.; Jensen, P.; Judd, E.; Kainz, K.; Kaplan, M.; Kelly, S.; Kotov, I.; Kunde, G.; Lindstrom, P.; Ljubicic, T.; Llope, W.; Longacre, R.; Lynn, D.; Madansky, L.; Mahzeh, N.; Milosevich, Z.; Mitchell, J.T.; Mitchell, J.; Nehmeh, S.; Nociforo, C.; Paganis, S.; Pandey, S.U.; Potenza, R.; Platner, E.; Riley, P.; Russ, D.; Saulys, A.; Schambach, J.; Sheen, J.; Stokley, C.; Sugarbaker, E.; Takahashi, J.; Tang, J.; Trentalange, S.; Tricomi, A.; Tull, C.; Tuve' , C.; Whitfield, J.; Wilson, K
1999-12-27
The main purpose of experiment E896 is to study the production of strange hadrons, in particular the predicted six-quark di-baryon, the H{sub 0}. The placement of the silicon drift detector array (SDDA) close to the target in a 6.2T magnetic field is optimized for the reconstruction of a short lived H{sub 0} as well as of strange baryons ({lambda}, {lambda}-bar, {xi}{sup -}). Simulations show that with the present data sample a detailed study of the {lambda} and {xi}{sup -} yields and distributions may be performed and a clear {lambda}-bar signal might be detected. Simulations as well as a preliminary analysis of the SDDA data will be presented.
Bose-Einstein Condensation in Strong-Coupling Quark Color Superconductor near Flavor SU(3) Limit
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-Bing; REN Chun-Fu; ZHANG Yi
2011-01-01
Near the flavor SU(3) limit, we propose an analytical description for color-flavor-locked-type Bardeen-Cooper-Schrieffer (BCS) phase in the Nambu Jona-Lasinio (NJL) model. The diquark behaviors in light-flavor and strange-flavor-involved channels and Bose-Einstein condensation (BEC) of bound diquark states are studied. When the attractive interaction between quarks is strong enough, a BCS-BEC crossover is predicted in the environment with color-flavor-locked pairing pattern. The resulting Bose-Einstein condensed phase is found to be an intergrade phase before the emergence of the previous-predicted BEC phase in two-flavor quark superconductor.
Equation of state in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach
Umeda, T; Ejiri, S; Hatsuda, T; Kanaya, K; Maezawa, Y; Ohno, H
2012-01-01
We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the $T$-integration method to nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-$N_t$ approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to $m_\\pi/m_\\rho \\simeq 0.63$, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large $N_t$.
Radiatively generated hierarchy of lepton and quark masses
Hernández, A E Cárcamo; Schmidt, Ivan
2016-01-01
We propose a model for radiatively generating the hierarchy of the Standard Model (SM) fermion masses: tree-level top quark mass; 1-loop bottom, charm, tau and muon masses; 2-loop masses for the light up, down and strange quarks as well as for the electron; and 4-loop masses for the light active neutrinos. Our model is based on a softly-broken $S_{3}\\times Z_{2}$ discrete symmetry. Its scalar sector consists only of one SM Higgs doublet and three electrically neutral SM-singlet scalars. We do not need to invoke neither electrically charged scalar fields, nor an extra $SU_{2L}$ scalar doublet, nor the spontaneous breaking of the discrete group, which are typical for other radiative models in the literature. The model features a viable scalar dark matter candidate.
Collective excitations, instabilities, and ground state in dense quark matter
Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio
2006-01-01
We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.
The ({nu},{nu}`N{gamma}) reaction on {sup 16}O and the strangeness content of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Kolbe, E. [Dept. fuer Physik und Astronomie der Univ. Basel, Basel (Switzerland)
1998-06-01
Recently we have pointed out that photons with energies between 5 and 10 MeV, generated by the ({nu},{nu}`p{gamma}) and ({nu},{nu}`n{gamma}) reactions on {sup 16}O, constitute a signal which allows a unique identification of supernova {nu}{sub {mu}} and {nu}{sub {tau}} neutrinos in water Cerenkov detectors. It was also shown that the cross sections for neutrino-induced knockout of a nucleon via a neutral current reaction on nuclei are affected by the strange quark content of the nucleon. Hence strangeness in the nucleon could have an influence on the energy spectrum of the photons emitted in these processes, which is investigated in the following. (orig.)
Constituent quark model description of charmonium phenomenology
Segovia, J; Fernandez, F; Hernandez, E
2013-01-01
We review how quark models are able to describe the phenomenology of the charm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the $\\psi(4415)$ resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in $e^{+}e^{-}$ exclusive reactions around the $\\psi(4415)$ energy region. We make tentative assignments of some of the $XYZ$ mesons. To elucidate the structure of the $1^{+}$ $c\\bar{s}$ states, i.e. $D_{s1}(2460)$ and $D_{s1}(2536)$, we study the strong decay properties of the $D_{s1}(2536)$ meson. We also perform a calculation of the branching fractions for the semileptonic decays of $B$ and $B_{s}$ mesons into final states containing orbitally excited charmed and charmed-strange mesons, which...
Evidence for strange matter in supernovae
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G.; Horvath, J.E. (Facultad de Ciencias Astronomicas y Geofiiaasicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata, Argentina (AR))
1989-08-14
With the aim of overcoming the present energetic difficulties in getting type-II supernovae explosions, we present a possible scenario based on strange-matter formation. The observational expectations of this picture are discussed and the predictions of the model for SN 1987A neutrinos and remnant pulsar are examined.
The Evolution of Proto-Strange Stars
Benvenuto, Omar G
2013-01-01
We perform 1D calculations of neutrino opacities inside a young "strange star" assumed to be the result of the conversion process of a normal neutron object. We evaluate the deleptonization and cooling timescales, which happen to be longer than the proto-NS analogues, and preliminary address the features of the emerging neutrino signal.
The mystery of the strange formulae
Bracken, Tony
2016-10-01
On a recent visit to the Wilhelm Röntgen memorial in Wurzburg, Germany, I noticed two strange trigonometric formulae set in the terrazzo floor at the western entrance to the building that houses Röntgen's X-ray laboratory.
'Strange money': risk, finance and socialized debt.
Dodd, Nigel
2011-03-01
This paper explores an essential but neglected aspect of recent discussions of the banking and financial system, namely money itself. Specifically, I take up a distinction drawn by Susan Strange which has never been fully elaborated: between a financial system that is global, and an international monetary system that remains largely territorial. I propose a sociological elaboration of this distinction by examining each category, 'finance' and 'money', in terms of its distinctive orientation to risk and debt. Money is distinguished by its high degree of liquidity and low degree of risk, corresponding to expectations that derive from its status as a 'claim upon society'- a form of socialized debt. But as Strange argued, these features of money are being undermined by the proliferation of sophisticated instruments of financial risk management -'strange money'- that, as monetary substitutes, both weaken states' capacity to manage money, and more broadly, contribute to 'overbanking'. The ultimate danger, according to Strange, is the 'death of money'. The paper concludes by exploring the implications of the distinction for sociological arguments about the changing nature of money.
E. Laenen
2011-01-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
Indian Academy of Sciences (India)
Eric Laenen
2012-10-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
Energy Technology Data Exchange (ETDEWEB)
Erbacher, Robin D.; /UC, Davis
2005-10-01
While the top quark was discovered in 1995 at the Fermilab Tevatron, a decade later they still have very little information about the top. As the heaviest particle yet discovered, the top quark is interesting in and of itself, but some speculate that it may play a special role in physics beyond the Standard Model. With Run 2 of the Tevatron well underway, they have the opportunity to study top quark properties with much better sensitivity, and to test whether top quarks behave as predicted by current theories. This article focuses on the basics of top quark physics at the Tevatron, highlighting only a sample of the many recent measurements, as new results are being released monthly, and constantly changing the landscape of our knowledge of top.
Fishbone Instability Excited by Barely Trapped Electrons
Institute of Scientific and Technical Information of China (English)
WANG Zhong-Tian; LONG Yong-Xing; DONG Jia-Qi; WANG Long; Fulvio Zonca
2006-01-01
Fishbone instability excited by barely trapped suprathermal electrons (BTSEs) in tokamaks is investigated theoretically. The frequency of the mode is found to close to procession frequency of BTSEs. The growth rate of the mode is much smaller than that of the ideal magnetohytrodynamic (MHD) internal kink mode that is in contrast to the case of trapped ion driven fishbone instability. The analyses also show that spatial density gradient reversal is necessary for the instability. The correlation of the results with experiments is discussed.
Hvorfor siger vi ikke bare ugh?!
DEFF Research Database (Denmark)
Pálfi, Loránd-Levente
2009-01-01
Det danske sprog er ramt af en flerdobbelt katastrofe: De unge i folkeskolerne og gymnasierne taler og skriver et stadigt dårligere dansk, og forskningen i dansk sprog går i stå. Og Dansk Sprognævn, som burde stå vagt om sproget, lader ikke bare stå til, men ophæver forfaldet til lov. Er en "B-fi...
Light Quark Mass Effects in Bottom Quark Mass Determinations
Hoang, A. H.
2001-01-01
Recent results for charm quark mass effects in perturbative bottom quark mass determinations from $\\Upsilon$ mesons are reviewed. The connection between the behavior of light quark mass corrections and the infrared sensitivity of some bottom quark mass definitions is examined in some detail.
Quark propagator at finite temperature and finite momentum in quenched lattice QCD
Karsch, Frithjof
2009-01-01
We present an analysis of the quark spectral function above and below the critical temperature for deconfinement performed at zero and non-zero momentum in quenched lattice QCD using clover improved Wilson fermions in Landau gauge. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. This indicates that excitation modes of the quark field have small decay rates. The bare quark mass and momentum dependence of the spectral function is analyzed with this ansatz. In the chiral limit we find that the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature limit. Over a rather wide temperature range in the deconfined phase the pole mass of these modes at zero momentum, which corresponds to the thermal mass of the quark, is approximately proportional to temperature. With increasing bare quark masses the plasmino mode gradual...
The Burn-UD code for the numerical simulations of the Hadronic-to-Quark-Matter phase transition
Ouyed, Amir; Koning, Nico; Ouyed, Rachid
2015-01-01
Burn-UD is a hydrodynamic combustion code used to model the phase transition of hadronic to quark matter with particular application to the interior of neutron stars. Burn-UD models the flame micro-physics for different equations of state (EoS) on both sides of the interface, i.e. for both the ash (up-down-strange quark phase) and the fuel (up-down quark phase). It also allows the user to explore strange quark seeding produced by different processes including DM annihilation inside neutron stars. The simulations provide a physical window to diagnose whether the combustion process will simmer quietly and slowly, lead to a transition from deflagration to detonation or a (quark) core-collapse explosion. Such an energetic phase transition (a Quark-Nova) would have consequences in high-energy astrophysics and could aid in our understanding of many still enigmatic astrophysical transients. Furthermore, having a precise understanding of the phase transition dynamics for different EoSs could aid further in constraini...
Quark matter nucleation in neutron stars and astrophysical implications
Bombaci, Ignazio; Vidana, Isaac; Providencia, Constanca
2016-01-01
A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot beta-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10^{53}~erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the Q...
Strangeness production in high-energy collisions and Hawking-Unruh radiation
Tawfik, Abdel Nasser; Yassin, Hayam; Abo Elyazeed, Eman R.
The assumption that the production of quark-antiquark pairs and their sequential string-breaking takes place, likely as a tunneling process, through the event horizon of the color confinement determines the freezeout temperature and gives a plausible interpretation for the thermal pattern of elementary and nucleus-nucleus collisions. When relating the black-hole electric charges to the baryon-chemical potentials, it was found that the phenomenologically deduced parameters from the ratios of various particle species and the higher-order moments of net-proton multiplicity in the statistical thermal models and Polyakov linear-sigma model agree well with the ones determined from the thermal radiation from charged black hole. Accordingly, the resulting freezeout conditions, such as normalized entropy density s/T3 = 7 and average energy per particle /≃ 1GeV, are confirmed at finite chemical potentials as well. Furthermore, the problem of strangeness production in elementary collisions can be interpreted by thermal particle production from the Hawking-Unruh radiation. Consequently, the freezeout temperature depends on the quark masses. This leads to a deviation from full equilibrium and thus a suppression of the strangeness production in the elementary collisions. But in nucleus-nucleus collisions, an average temperature should be introduced in order to dilute the quark masses. This nearly removes the strangeness suppression. An extension to finite chemical potentials is introduced. The particle ratios of kaon-to-pion (K+/π+), phi-to-kaon (ϕ/K‑) and antilambda-to-pion (Λ¯/π‑) are determined from Hawking-Unruh radiation and compared with the thermal calculations and the measurements in different experiments. We conclude that these particle ratios can be reproduced, at least qualitatively, as Hawking-Unruh radiation at finite chemical potential. With increasing energy, both K+/π+ and ϕ/K‑ keep their maximum values at low SPS energies. But the further energy
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.
Energy Technology Data Exchange (ETDEWEB)
LIN H.-W.; OHTA, S.
2006-10-02
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments
The strange formula of Dr. Koide
Rivero, A; Rivero, Alejandro; Gsponer, Andre
2005-01-01
We present a short historical and bibliographical review of the lepton mass formula of Yoshio Koide, as well as some speculations on its extensions to quark and neutrino masses, and its possible relations to more recent theoretical developments.
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan
2002-01-01
We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.
On relativistic models of strange stars
Indian Academy of Sciences (India)
Ramesh Tikekar; Kanti Jotania
2007-03-01
The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.
HEAVY FERMIONS. Strange metal without magnetic criticality.
Tomita, Takahiro; Kuga, Kentaro; Uwatoko, Yoshiya; Coleman, Piers; Nakatsuji, Satoru
2015-07-31
A fundamental challenge to our current understanding of metals is the observation of qualitative departures from Fermi liquid behavior. The standard view attributes such non-Fermi liquid phenomena to the scattering of electrons off quantum critical fluctuations of an underlying order parameter. Although the possibility of non-Fermi liquid behavior isolated from the border of magnetism has long been speculated, no experimental confirmation has been made. Here, we report on the observation of a strange metal region away from a magnetic instability in an ultrapure single crystal. In particular, we show that the heavy-fermion superconductor β-YbAlB4 forms a possible phase with strange metallic behavior across an extensive pressure regime, distinctly separated from a high-pressure magnetic quantum phase transition by a Fermi liquid phase.
30 CFR 57.12080 - Bare conductor guards.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at... conductors are less than 7 feet above the rail, they shall be guarded at all points where persons work...
Unique signatures for QGP in strangeness sector
Tiwari, V. K.; Singh, C. P.
1998-03-01
We suggest that the variations of certain strange particle ratios either with the energy density or with the baryon density constitute a significant signal for identification of the QGP formation in ultra-relativistic nucleus-nucleus collisions. We use realistic equations of state (EOS) for the QGP as well as for dense, hot hadron gas (HG) scenarios. We suggest that a direct comparison of the ratios obtained in the QGP and HG scenarios will be immensely helpful in identifying the QGP formation.
A plethora of strange nonchaotic attractors
Indian Academy of Sciences (India)
Surendra Singh Negi; Ramakrishna Ramaswamy
2001-01-01
We show that it is possible to devise a large class of skew-product dynamical systems which have strange nonchaotic attractors (SNAs): the dynamics is asymptotically on fractal attractors and the largest Lyapunov exponent is non-positive. Furthermore, we show that quasiperiodic forcing, which has been a hallmark of essentially all hitherto known examples of such dynamics is not necessary for the creation of SNAs.
How chaotic are strange nonchaotic attractors
Glendinning, Paul; Jaeger, Tobias; Keller, Gerhard
2006-01-01
We show that the classic example of quasiperiodically forced maps with strange nonchaotic attractors described by Grebogi et al and Herman in the mid-1980s have some chaotic properties. More precisely, we show that these systems exhibit sensitive dependence on initial conditions, both on the whole phase space and restricted to the attractor. The results also remain valid in more general classes of quasiperiodically forced systems. Further, we include an elementary proof of a classic result by...
Guichon, P A M; Thomas, A W
1996-01-01
We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.
Indian Academy of Sciences (India)
Narendra Singh
2003-01-01
Assuming a relation between the quark mass matrices of the two sectors a unique solution can be obtained for the CKM ﬂavor mixing matrix. A numerical example is worked out which is in excellent agreement with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Parke, S.
1998-01-01
In this presentation I will primarily focus on top quark physics but I will include a discussion of the W-boson mass and the possibility of discovering a light Higgs boson via associated production at the Tevatron.
DEFF Research Database (Denmark)
Andersen, Tem Frank
2013-01-01
Den britiske børne- og ungdomsforsker professor Sonia Livingstone ved London School of Economics viser gennem en række interviews, at billeder af eksplicitte sexhandlinger er en velkendt del af den ungdommelige cirkulation af ’hverdagspornografisk’ materiale (Ringrose et al. 2012). ’Sexting’ er...... altså ikke bare porno på en mobilplatform. Det er handlinger og værgestrategier, som unge piger er nødt til at forholde sig til i hverdagen, mens drengene umiddelbart ser ud til at slippe relativt let udenom den chikane, der kan ligge i ’sexting’....
Chirality in Bare and Passivated Gold Nanoclusters
Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K
2002-01-01
Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.
Combustion of nuclear matter into strange matter
Energy Technology Data Exchange (ETDEWEB)
Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))
1994-11-15
We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
LUO XiangQian
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Taylor, John C.
1984-01-01
Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....
Production of excited charm and charm-strange mesons at HERA
Chekanov, S; Magill, S; Musgrave, B; Nicholass, D; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cindolo, F; Corradi, M; Iacobucci, G; Margotti, A; Nania, R; Polini, A; Antonelli, S; Basile, M; Bindi, M; Cifarelli, L; Contin, A; De Pasquale, S; Sartorelli, G; Zichichi, A; Bartsch, D; Brock, I; Hartmann, H; Hilger, E; Jakob, H P; Jüngst, M; Nuncio-Quiroz, A E; Paul, E; Samson, U; Schönberg, V; Shehzadi, R; Wlasenko, M; Brook, N H; Heath, G P; Morris, J D; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ibrahim, Z A; Kamaluddin, B; Wan-Abdullah, W A T; Ning, Y; Ren, Z; Sciulli, F; Chwastowski, J; Eskreys, A; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycie, M; Suszycki, L; Kotanski, A; Slomiski, W; Behrens, U; Blohm, C; Bonato, A; Borras, K; Ciesielski, R; Coppola, N; Fang, S; Fourletova, J; Geiser, A; Göttlicher, P; Grebenyuk, J; Gregor, I; Haas, T; Hain, W; Hüttmann, A; Januschek, F; Kahle, B; Katkov, I I; Klein, U; Kötz, U; Kowalski, H; Lobodzinska, E; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Miglioranzi, S; Montanari, A; Namsoo, T; Notz, o D; Parenti, A; Rinaldi, L; Roloff, P; Rubinsky, I; Santamarta, R; Schneekloth, U; Spiridonov, A; Szuba, D; Szuba, J; Theedt, T; Wolf, G; Wrona, K; Yagues-Molina, A G; Youngman, C; Zeuner, W; Drugakov, V; Lohmann, W; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, A; Dobur, D; Karstens, F; Vlasov, N N; Bussey, P J; Doyle, A T; Dunne, W; Forrest, M; Rosin, M; Saxon, D H; Skillicorn, I O; Gialas, I; Papageorgiu, K; Holm, U; Klanner, R; Lohrmann, E; Schleper, P; Schörner-Sadenius, T; Sztuk, J; Stadie, H; Turcato, o M; Foudas; Fry, C; Long, K R; Tapper, A D; Matsumoto, T; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Aushev, V; Bachynska, O; Borodin, M; Kadenko, I; Kozulia, A; Libov, V; Lisovyi, M; Lontkovskyi, D; Makarenko, I; Sorokin, Iu; Verbytskyi, A; Volynets, O; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Ron, E; Soares, M; Terrón, J; Zambrana, M; Corriveau, F; Liu, C; Schwartz, J; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Caldwell, A; Kollar, D; Reisert, B; Schmidke, W B; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Pellegrino, A; Tiecke, H; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Devenish, R C E; Ferrando, J; Foster, B; Korcsak-Gorzo, K; Oliver, K; Robertson, A; Uribe-Estrada, C; Walczak, R; Bertolin, A; Dal Corso, F; Dusini, S; Longhin, A; Stanco, L; Bellan, P; Brugnera, R; Carlin, R; Garfagnini, A; Limentani, S; Oh, B Y; Raval, A; Ukleja, J; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Cole, A Nigro J E; Hart, J C; Abramowicz, H; Ingbir, R; Kananov, S; Levy, A; Stern, A; Kuze, M; Maeda, J; Hori, R; Kagawa, S; Okazaki, N; Shimizu, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Ota, O; Costa, Y D Ri M; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Stewart, T P; Boutle, S K; Butterworth, J M; Gwenlan, C; Jones, T W; Loizides, J H; Wing, M; Brzozowska, B; Ciborowski, J; Grzelak, G; Kulinski, P; Luniak, P; Malka, J; Nowak, R J; Pawlak, zarnecki J M; Tymieniecka, T; Ukleja, A; Zarnecki, A F; Adamus, M; Plucinsky, P P; Eisenberg, Y; Hochman, D; Karshon, U; Brownson, E; Danielson, T; Everett, A; Kçira, D; Reeder, D D; Ryan, P; Savin, A A; Smith, W H; Wolfe, H; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Standage, J; Whyte, J
2008-01-01
The production of excited charm, D_1(2420)^0 and D_2^*(2460)^0, and charm-strange, D_{s1}(2536)^+-, mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D_2^*(2460)^0 and D_{s1}(2536)^+- branching fractions. A search for the radially excited charm meson, D^{*'}(2640)^+-, was also performed. The results are compared with those measured previously and with theoretical expectations.
D* and B* mesons in strange hadronic medium at finite temperature
Directory of Open Access Journals (Sweden)
Chhabra Rahul
2016-01-01
Full Text Available We calculate the effect of density and temperature of isospin symmetric strange medium on the shift in masses and decay constants of vector D and B mesons using chiral SU(3 model and QCD sum rule approach. In the present investigation the values of quark and gluon condensates are calculated from the chiral SU(3 model and these condensatesare further used as input in the QCD Sum rule framework to calculate the in-medium masses and decay constants of vector D and B mesons. These in medium properties of vector D and B mesons may be helpful to understand the experimental observables of the experiments like CBM and PANDA under FAIR project at GSI, Germany. The results which are observed in present work are also compared with the previous predictions.
Production of excited charm and charm-strange mesons at HERA
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2008-07-15
The production of excited charm, D{sub 1}(2420){sup 0} and D{sup *}{sub 2}(2460){sup 0}, and charm-strange, D{sub s1}(2536){sup {+-}}, mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb{sup -1}. Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D{sup *}{sub 2}(2460){sup 0} and D{sub s1}(2536){sup {+-}} branching fractions. A search for the radially excited charm meson, D{sup *'}(2640){sup {+-}}, was also performed. The results are compared with those measured previously and with theoretical expectations. (orig.)
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
,
2012-01-01
We report a measurement of the bottom-strange meson mixing phase \\beta_s using the time evolution of B0_s -> J/\\psi (->\\mu+\\mu-) \\phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \\beta_s and the B0_s decay-width difference \\Delta\\Gamma_s, and measure \\beta_s in [-\\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \\pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \\beta_s, we also determine \\Delta\\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \\tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.
Simple estimates of the masses of pentaquarks with hidden beauty or strangeness
Kopeliovich, Vladimir; Potashnikova, Irina
2016-04-01
The masses of cryptoexotic pentaquarks with hidden beauty are estimated phenomenologically using the results by the LHCb Collaboration which discovered recently the cryptoexotic pentaquarks with hidden charm. The expected masses of the hidden beauty pentaquarks are about 10.8 GeV and 10.7 GeV in the limit of some kind of heavy quark symmetry. The states with hidden strangeness considered in a similar way have masses of about 2.37 GeV and 2.30 GeV, several hundred MeV higher than states discussed previously in connection with the relatively light positive strangeness pentaquark θ+. Empirical data on the spectra of pentaquarks can be used to get information about quarkonia interaction with nucleons. The results obtained for the case of heavy flavors are in fair agreement with the model of isospin (pion) exchange between flavored baryons and antiflavored vector mesons proposed by Karliner and Rosner, and in qualitative agreement with the bound-state version of the chiral soliton model.
Gaussian Sum-Rule Analysis of Scalar Gluonium and Quark Mesons
Steele, T G; Orlandini, G
2003-01-01
Gaussian sum-rules, which are related to a two-parameter Gaussian-weighted integral of a hadronic spectral function, are able to examine the possibility that more than one resonance makes a significant contribution to the spectral function. The Gaussian sum-rules, including instanton effects, for scalar gluonic and non-strange scalar quark currents clearly indicate a distribution of the resonance strength in their respective spectral functions. Furthermore, analysis of a two narrow resonance model leads to excellent agreement between theory and phenomenology in both channels. The scalar quark and gluonic sum-rules are remarkably consistent in their prediction of masses of approximately 1.0 GeV and 1.4 GeV within this model. Such a similarity would be expected from hadronic states which are mixtures of gluonium and quark mesons.
Search for a bound H-dibaryon using local six-quark interpolating operators
Green, Jeremy; Junnarkar, Parikshit; Miao, Chuan; Rae, Thomas; Wittig, Hartmut
2014-01-01
We present early results from a lattice QCD study seeking a bound $H$-dibaryon using $N_f=2$ flavors of $O(a)$ improved Wilson fermions and a quenched strange quark. We compute a matrix of two-point functions using operators consisting of the two independent local products of six positive-parity-projected quarks with the appropriate quantum numbers, which belong to the singlet and 27-plet irreducible representations of flavor SU(3). To expand this basis, we also independently vary the quark-field smearing, and apply a new scheme to reduce the noise caused by smearing. We then find the ground-state mass by solving the generalized eigenvalue problem. We show results from ensembles with pion masses 451 MeV and 1 GeV, and compare with other lattice calculations.
Radiative generation of quark masses and mixing angles in the two Higgs doublet model
Energy Technology Data Exchange (ETDEWEB)
Ibarra, Alejandro [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany); Solaguren-Beascoa, Ana [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)
2014-09-07
We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V{sub ub}|,|V{sub cb}|≪|V{sub us}|. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.
Deconfining Phase Transition to a Quark-Gluon Plasma in Different SU(3) Color Representations
Mezouar, K.; Ait El Djoudi, A.; Ghenam, L.
2016-10-01
For a statistical description of the quark gluon plasma (QGP) considering its internal symmetry, we calculate its partition function using the group theoretical projection method. We project out the partition function of a QGP consisting of gluons, massless up and down quarks, and massive strange quarks onto the singlet representation of the SU(3) color group, as well as onto the color octet and the color 27-plet representations. A comparison of these color representations is done, by studying their effects on the behavior of some thermodynamical quantities characterizing the mixed hadronic gas-QGP system undergoing a thermal deconfining phase transition on one side, and on the free energy during the formation of a QGP droplet from the hot hadronic gas on another side.
Radiative generation of quark masses and mixing angles in the two Higgs doublet model
Directory of Open Access Journals (Sweden)
Alejandro Ibarra
2014-09-01
Full Text Available We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |Vub|,|Vcb|≪|Vus|. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.
Radiative Generation of Quark Masses and Mixing Angles in the Two Higgs Doublet Model
Ibarra, Alejandro
2014-01-01
We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zero-th order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo-Kobayashi-Maskawa matrix are generated at first order, hence explaining the observed hierarchy $|V_{ub}|,|V_{cb}|\\ll |V_{us}|$. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Nicmorus Marinescu, Diana
2007-06-14
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit
Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Baturin, V; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V V; Capitani, G P; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G M; Ellinghaus, F; Elschenbroich, U; Ely, J; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Franz, J; Frullani, S; Gärber, Y; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G E; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Königsmann, K C; Kopytin, M; Korotkov, V A; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Lindemann, T; Lipka, K; Lorenzon, W; Lü, J; Maiheu, B; Makins, N C R; Marianski, B; Marukyan, H O; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M A; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Orlandi, G; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Ryckbosch, D; Salomatin, Yu I; Sanjiev, I; Savin, I; Scarlett, C; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Schwind, A; Seele, J; Seidl, R; Seitz, B; Shanidze, R G; Shearer, C; Shibata, T A; Shutov, V B; Simani, M C; Sinram, K; Stancari, M D; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A V; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, Martin C; Vikhrov, V; Vincter, M G; Visser, J; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ybeles-Smit, G V; Yen, S; Zihlmann, B; Zohrabyan, H G; Zupranski, P
2004-01-01
Double-spin asymmetries of semi-inclusive cross sections for the production of identified pions and kaons have been measured in deep-inelastic scattering of polarized positrons on a polarized deuterium target. Five helicity distributions including those for three sea quark flavors were extracted from these data together with re-analyzed previous data for identified pions from a hydrogen target. These distributions are consistent with zero for all three sea flavors. There is no evidence of either the negative polarization of the strange sea that appears in analyses of only inclusive data, or of a recently predicted flavor asymmetry in the polarization of the light quark sea.
Quark matter nucleation in neutron stars and astrophysical implications
Bombaci, Ignazio; Logoteta, Domenico; Vidaña, Isaac; Providência, Constança
2016-03-01
A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T=0 and hot β -stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 1053erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.
Quark matter nucleation in neutron stars and astrophysical implications
Energy Technology Data Exchange (ETDEWEB)
Bombaci, Ignazio [Universita di Pisa, Dipartimento di Fisica ' ' E. Fermi' ' , Pisa (Italy); INFN, Pisa (Italy); European Gravitational Observatory, Cascina (Italy); Logoteta, Domenico [INFN, Pisa (Italy); Vidana, Isaac; Providencia, Constanca [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal)
2016-03-15
A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot β-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10{sup 53} erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M{sub cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M{sub cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars. (orig.)
Do Bare Rocks Exist on the Moon?
Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David
2017-01-01
Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.
Bootstrapping quarks and gluons
Energy Technology Data Exchange (ETDEWEB)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.
Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies
Energy Technology Data Exchange (ETDEWEB)
Fabbietti, L. [e12, Physik Department Technische Universität München Excellence Cluster “Origin and Structure of the Universe” (Germany)
2016-01-22
The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.
Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD
McNeile, C; Follana, E; Hornbostel, K; Lepage, G P
2012-01-01
We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{\\eta_b} = 0.667(6) GeV. Our value for f_{\\eta_b} is within a few percent of f_{\\Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system t...
Bazavov, A; DeTar, C E; Ding, H -T; Gottlieb, Steven; Gupta, Rajan; Hegde, P; Heller, Urs; Karsch, F; Laermann, E; Levkova, L; Mukherjee, Swagato; Petreczky, P; Schmidt, Christian; Soltz, R A; Soeldner, W; Sugar, R; Vranas, Pavlos M
2012-01-01
We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results in the continuum limit are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T < 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At $T \\simeq 160 MeV$ quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These fin...
Strangeness in nuclei and neutron stars
Lonardoni, Diego
2017-01-01
The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
The Quark's Model and Confinement
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Mini-Proceedings of ECT Workshop "Strangeness in Nuclei"
Curceanu, C
2011-01-01
This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.
Strange Curves, Counting Rabbits, & Other Mathematical Explorations
Ball, Keith
2011-01-01
How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai
Open and hidden strangeness in hadronic systems
Tomasik, Boris
2011-01-01
We investigate production of \\phi mesons and \\Xi baryons in nucleus-nucleus collisions. Reactions on strange particles acting as a catalyser are proposed to interpret the high observed \\phi yields in HADES experiments as well as the energy dependence of the widths of \\phi rapidity spectra in collisions at the SPS energies. It is argued that the enhancement of \\Xi- yield observed by HADES is even higher than originally reported if effects of the experimental centrality trigger are taken into account. Cross sections for new hadronic processes that could produce \\Xi- are reviewed.
Strangeness measurements at the HADES experiment
2010-01-01
Abstract We report on HADES measurements of strange hadrons in the collision systems Ar(1.756 AGeV)+KCl and p+p at 3.5 GeV. Comparisons of K 0 s transverse mass and rapidity spectra to IQMD transport model calculations give a strong hint to a repulsive kaon-nucleon potential. The effect of the potential shows up strongest at very low transverse momenta, which were measured by HADES with high statistics. Statistical model fits show a fair agreement to the particle yields measured in the hea...
On the strangeness content of the nucleon
Alarcon, J M; Camalich, J Martin; Oller, J A
2012-01-01
We revisit the classical relation between the strangeness content of the nucleon, the pion-nucleon sigma term and the $SU(3)_F$ breaking of the baryon masses in the context of covariant chiral perturbation theory. In particular, we consider the contributions of the decuplet resonances explicitly. We find that a value of the pion-nucleon sigma term of $\\sim$60 MeV is not at odds with, but favored by the fulfillment of the Zweig rule. We compare these results with earlier ones and discuss the convergence of the chiral series as well as the uncertainties of chiral approaches to the determination of the sigma terms.
Kaon condensation and multi-strange matter
Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.
2010-04-01
We report on dynamical calculations of multi- K¯ hypernuclei, which were performed by adding K¯ mesons to particle-stable configurations of nucleons, Λ and Ξ hyperons. The K¯ separation energy as well as the baryonic densities saturate with the number of antikaons. We demonstrate that the saturation is a robust feature of multi- K¯ hypernuclei. Because the K¯ separation energy B does not exceed 200 MeV, we conclude that kaon condensation is unlikely to occur in finite strong-interaction self-bound {N,Λ,Ξ} strange hadronic systems.
Mulders, Martijn
2016-01-01
Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...
Alienation (Entfremdung and Strangeness (Fremdheit: two Western cultural paradigms
Directory of Open Access Journals (Sweden)
Suzana Vasconcelos de Melo
2011-01-01
Full Text Available Alienation and strangeness could be understood as markers of cultural paradigms. The first term is related to modernity as the second is to postmodernity. One stands for identity, the other for alterity. While the existence of the phenomenon of alienation becomes disputable, the discourse of strangeness becomes intensified in the European academic sphere. In a way, the discourse of strangeness is labeled by a cultural critic, which tries to justify "strange" for centuries dispelled by the European culture. Meanwhile, a phenomenology of alienation is developed to re-structure the term. Both phenomena are connected insofar as alienation can be understood as a temporary moment of strangeness. Both theories turned out to be productive in literary analysis.
Canonical Strangeness and Distillation Effects in Hadron Production
Toneev, V D
2004-01-01
Strangeness canonical ensemble for Maxwell-Boltzmann statistics is reconsidered for excited nuclear systems with non-vanishing net strangeness. A new recurrence relation method is applied to find the partition function. The method is first generalized to the case of quantum strangeness canonical ensemble. Uncertainties in calculation of the K+/pi+ excitation function are discussed. A new scenario based on the strangeness distillation effect is put forward for a possible explanation of anomalous strangeness production observed at the bombarding energy near 30 AGeV. The peaked maximum in the K+/pi+ ratio is considered as a sign of the critical end-point reached in evolution of the system rather than a latent heat jump emerging from the onset of the first order deconfinement phase transition.
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Color confinement multi quark resonance
Energy Technology Data Exchange (ETDEWEB)
Wang Fan [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China); Ping, J.L. [Department of Physics, Nanjing Normal University, Nanjing, 210097 (China); Pang, H.R. [Department of Physics, Southeast University, Nanjing, 210008 (China); Chen, L.Z. [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China)
2007-06-15
A new kind microscopic resonance, the color confinement multi quark resonance is proposed and studied. The quark delocalization color screening model is compared to one of the chiral quark model, the Salamanca model, and a new mechanism of the intermediate range NN interaction, the mutual distortion of interacting nucleons, is checked to be similar to the {sigma} meson exchange.
Quark Helicity and Transversity Distributions
Hwang, Dae Sung
2016-01-01
The quark transversity distribution inside nucleon is less understood than the quark unpolarized and helicity distributions inside nucleon. In particular, it is important to know clearly why the quark helicity and transversity distributions are different. We investigate the origin of their discrepancy.
Strangeness and Charm in Nuclear Matter
Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis
2012-01-01
The properties of strange ($K$, $\\bar K$ and $\\bar K^*$) and open-charm ($D$, $\\bar D$ and $D^*$) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the $K$, $\\bar K$ and $\\bar K^*$ spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the $\\gamma A \\to K^+ K^{*-} A^\\prime$ reaction, which we propose as a tool to detect in-medium modifications of the $\\bar K^*$ meson....
``Towards Strange Metallic Holography'
Energy Technology Data Exchange (ETDEWEB)
Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara
2010-08-26
We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.
Strange Particles and Heavy Ion Physics
Energy Technology Data Exchange (ETDEWEB)
Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy
2016-04-28
This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.
Study of Diffractive Dissociation Especially into Strange and Charmed Particles with EHS
2002-01-01
.PP The diffractive production of heavy quark-antiquark pairs leading to strangeness-antistrangeness and charm-anticharm systems is intended to be measured in this experiment. The use of the rapid cycling bubble chamber (RCBC) with a volume of 100 x 40 x 40 cm|3 and a picture taking rate of 15 Hz as vertex detector and EHS as forward spectrometer is suitable for the first step of this physics programme. Inclusive cross-sections for diffraction dissociation into ss are lacking whereas diffractive cc production is already better known. The gain of more insight into the mechanism of heavy quark-antiquark production, exclusive diffractive reactions with @p|0's, diffractive resonance production and also the extraction of data for the double Pomeron exchange mechanism are envisage This experiment will be run in two parts, the first one recording the entire unbiased sample of pp and @p|-p interactions, the second however using triggering for beam and high mass target diffraction dissociation against elastic scatteri...
Jiang, Long; Dey, Jishnu; Dey, Mira
2015-01-01
According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during the binary evolution, as observed in most of the binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are PSRs J2234$+$06, J1946$+$3417 and J1950$+$2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive white dwarfs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from neutron stars to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitati...
Dönigus, Benjamin; Braun-Munzinger, P
Within this work data are analysed which have been taken with the ALICE apparatus (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC). The unique properties and the excellent performance of the LHC made it possible to take data for proton-proton collisions (pp) in the last three years at several center-of-mass energies (0.9 TeV, 2.36 TeV, 2.76 TeV, 7 TeV and 8 TeV). It was further possible to aquire data in two of the three years of lead–lead collisions (Pb–Pb) at sqrt(s_NN) = 2.76TeV and recently a short pilot run of proton–lead collisions (pPb) at sqrt(s_NN) = 5.01TeV was recorded. It will be continued as a full run in January/February this year. The high energies and at the same time low baryo-chemical potential (mu_B around 0) in Pb–Pb collisions at the LHC allow the production of strangeness, charm and bottom quarks in up to now unseen quantities. The particles created, either in the initial hard collision (charm and bottom) or in the quark-gluon plasma, end up in hadrons or ligh...
Bugaev, K A; Sagun, V V; Ivanytskyi, A I; Cleymans, J; Mironchuk, E S; Nikonov, E G; Taranenko, A V; Zinovjev, G M
2016-01-01
We present an elaborate version of the hadron resonance gas model with the combined treatment of separate chemical freeze-outs for strange and non-strange hadrons and with an additional $\\gamma_{s}$ factor which accounts for the remaining strange particle non-equilibration. Within suggested approach the parameters of two chemical freeze-outs are connected by the conservation laws of entropy, baryonic charge, third isospin projection and strangeness. The developed model enables us to perform a high-quality fit of the hadron multiplicity ratios measured at AGS, SPS and RHIC with $\\chi^2/dof \\simeq 0.93$. A special attention is paid to a successful description of the Strangeness Horn. The well-known problem of selective suppression of $\\bar \\Lambda $ and $\\bar \\Xi$ hyperons is also discussed. The main result is that for all collision energies the $\\gamma_{s}$ factor is about 1 within the error bars, except for the center of mass collision energy 7.6 GeV at which we find about 20\\% enhancement of strangeness. Als...
Pallante, E.; Petronzio, R.
1995-01-01
We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Î›Ï‡ of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom arising from the bosonization of a gen
Indian Academy of Sciences (India)
C P Singh
2000-04-01
Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.
Mulders, Martijn
2016-10-01
Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I will discuss the status of those techniques and their results, and present a brief outlook of further improvements in the experimental determination of the top quark mass to be expected at the LHC and beyond.
Demilly, A; The ATLAS collaboration
2014-01-01
Properties of the top quark are measured with the ATLAS detector using LHC proton-proton collisions data. Measurements of the top-quark mass and polarisation, as well as of the polarization of W bosons in top quark decays to probe the Wtb-vertex are presented. In addition, measurements of the spin correlation between top and anti-top quarks as well as of the top- quark charge asymmetry, which constitute important tests of QCD and are sensitive to new physics, are discussed.
Fire testing of bare uranium hexafluoride cylinders
Energy Technology Data Exchange (ETDEWEB)
Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)
1991-12-31
In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.
Fire testing of bare uranium hexafluoride cylinders
Energy Technology Data Exchange (ETDEWEB)
Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)
1991-12-31
In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.
Voloshin, M. B.
2017-03-01
The threshold behavior of e+e- annihilation is considered in the channels Bs 0B¯s*+c .c ., Bs 1B¯s+c .c ., and Bs 1B¯s*+c .c ., where Bs 0 and Bs 1 are the excited bottom-strange JP=0+ and JP=1+ mesons. It is argued that due to the heavy quark spin symmetry only one coherent combination of the first two channels is produced in the S wave as well as the third channel. Thus, if there exist threshold molecular peaks in the considered channels, only two of such peaks can be formed in the annihilation. The properties of such threshold states are discussed, including the heavy-light spin structure and the related transitions to bottomonium plus light mesons, as well as mixing with the channels with and without hidden strangeness.
Hyperon puzzle, hadron-quark crossover and massive neutron stars
Energy Technology Data Exchange (ETDEWEB)
Masuda, Kota [The University of Tokyo, Department of Physics, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); Hatsuda, Tetsuo [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); The University of Tokyo, Kavli IPMU (WPI), Chiba (Japan); Takatsuka, Tatsuyuki [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan)
2016-03-15
Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) ''CRover'', which interpolates the two phases at around 3 times the nuclear matter density (ρ{sub 0}), it is found that the cold NSs with the gravitational mass larger than 2M {sub CircleDot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ{sub 0} and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M {sub CircleDot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated. (orig.)
On K{yields}{pi}{pi} amplitudes with a light charm quark
Energy Technology Data Exchange (ETDEWEB)
Giusti, L.; Pena, C. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Hernandez, P. [Edificio Institutos Investigacion, Valencia (Spain). Dpto. de Fisica Teorica and IFIC; Laine, M. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Wennekers, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2006-07-15
We compute the leading-order low-energy constants of the {delta}S=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light (GIM limit). The low-energy constants are extracted by comparing the predictions of finite volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a large {delta}I=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the {delta}I=1/2 amplitude, our computation suggests large QCD contributions to the physical {delta}I=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm quark-mass in K{yields}{pi}{pi} amplitudes. (Orig.)