Sudden-quench dynamics of Bardeen-Cooper-Schrieffer states in deep optical lattices
Nuske, Marlon; Mathey, L.; Tiesinga, Eite
2016-08-01
We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultracold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf|/2 π in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the BCS order parameter Δ . The oscillation frequency of Δ is not reproduced by treating the time evolution in mean-field theory. In our theory, the momentum noise (i.e., density-density) correlation functions oscillate at frequency | Uf|/2 π as well as at its second harmonic. For a very deep lattice, with zero tunneling energy, the oscillations of momentum occupation numbers are undamped. Nonzero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. The damping occurs even for a finite-temperature initial BCS state, but not for a noninteracting Fermi gas. Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of the BCS state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop strong anticorrelations near the Dirac point.
Microscopic Derivation of Ginzburg-Landau Theory
DEFF Research Database (Denmark)
Frank, Rupert; Hainzl, Christian; Seiringer, Robert;
2012-01-01
We give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical...
Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction
DEFF Research Database (Denmark)
Frank, Rupert; Hanizl, Christian; Seiringer, Robert;
2013-01-01
In a recent paper we give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Here we present our results in the simplified case of a one-dimensional system of particles interacting via a delta-potential....
Shirkov, Dmitrii V.
2009-06-01
This is a retrospective historical review of the ideas that led to the concept of the spontaneous symmetry breaking (SSB), the issue that has been implemented in quantum field theory in the form of the Higgs mechanism. The key stages covered include: the Bogoliubov microscopic theory of superfluidity (1946); the Bardeen-Cooper-Schrieffer-Bogoliubov microscopic theory of superconductivity (1957); superconductivity as superfluidity of Cooper pairs (Bogoliubov, 1958); the extension of the SSB concept to simple quantum field models (early 1960s); triumph of the Higgs model in electroweak theory (early 1980s). The role and status of the Higgs mechanism in the current Standard Model are discussed.
Ground-State Properties of Z = 59 Nuclei in the Relativistic Mean-Field Theory
Institute of Scientific and Technical Information of China (English)
ZHOU Yong; MA Zhong-Yu; CHEN Bao-Qiu; LI Jun-Qing
2000-01-01
Ground-state properties of Pr isotopes are studied in a framework of the relativistic mean-field (RMF) theory using the recently proposed parameter set TM1. Bardeen-Cooper-Schrieffer (BCS) pproximation and blocking method is adopted to deal with pairing interaction and the odd nucleon, respectively. The pairing forces are taken to be isospin dependent. The domain of the validity of the BCS theory and the positions of neutron and proton drip lines are studied. It is shown that RMF theory has provided a good description of the binding energy,isotope shifts and deformation of nuclei over a large range of Pr isotopes, which are in good agreement with those obtained in the finite-range droplet model.
Energy Technology Data Exchange (ETDEWEB)
Anderson, Philip W; Casey, Philip A, E-mail: pwa@princeton.ed [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)
2010-04-28
We present a formalism for dealing directly with the effects of the Gutzwiller projection implicit in the t-J model which is widely believed to underlie the phenomenology of the high-T{sub c} cuprates. We suggest that a true Bardeen-Cooper-Schrieffer condensation from a Fermi liquid state takes place, but in the unphysical space prior to projection. At low doping, however, instead of a hidden Fermi liquid one gets a 'hidden' non-superconducting resonating valence bond state which develops hole pockets upon doping. The theory which results upon projection does not follow conventional rules of diagram theory and in fact in the normal state is a Z = 0 non-Fermi liquid. Anomalous properties of the 'strange metal' normal state are predicted and compared against experimental findings.
Origin of Mass - Horizons Expanding from the Nambu's Theory
Yamawaki, Koichi
2016-01-01
Origin of mass may be strong dynamics of matter in the vacuum. Since the initial proposal of Nambu for the origin of the nucleon mass, the dynamical symmetry breaking in the strongly coupled underlying theories has been expanding the horizons in the context of the modern version of the origin of mass beyond the Standard Model (SM). The Nambu-Jona-Lasinio (NJL) model is a typical strong coupling theory with the non-zero critical coupling, in sharp contrast to its precedent model, the Bardeen-Cooper-Schrieffer theory for the superconductor. The non-zero critical coupling is also hidden in the asymptotically free gauge theories including QCD and walking technicolor. As is well known, the NJL model can be cast into the SM Higgs Lagrangian. We show that the SM Higgs Lagrangian is simply rewritten into a form of the (approximately) scale-invariant nonlinear sigma model, with both the chiral symmetry and scale symmetry realized nonlinearly, with the SM Higgs being nothing but the (pseudo-) dilaton. The SM Higgs Lagr...
Equation of state of imbalanced cold matter from chiral perturbation theory
Carignano, Stefano; Mannarelli, Massimo
2016-01-01
We study the thermodynamic properties of matter at vanishing temperature for non-extreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading order pressure obtained by maximizing the static chiral Lagrangian density we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the chiral perturbation energy density and the Stefan-Boltzmann energy density as well as for the isospin chemical potential at the peak in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For $\\mu_I \\gtrsim 2 m_\\pi$ the leading order chiral perturbation theory breaks down; as an example it underestimates the energy density of the system and leads to a wron...
Ground-state and Pairing Properties of Pr Isotopes in RMF Theory
Institute of Scientific and Technical Information of China (English)
2002-01-01
The ground-state and pairing properties of Pr (Z=59) isotopes have been investigated in therelativistic mean-field (RMF). The pairing correlation is studied in Bardeen-Cooper-Schrieffer (BCS) approximation and the pairingforces are taken to be isospin dependent. The ’blocking’ method is adopted to deal with unpaired odd
John Bardeen: The Only Person to Win Two Nobel Prizes in Physics
Hoddeson, L.
2011-01-01
John Bardeen worked on the theory of solids throughout his physics career, winning two Nobel Prizes: the first in 1956 for the invention of the transistor with Walter Brattain and William Shockley; and the second in 1972 for the development with Leon Cooper and J Robert Schrieffer of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.…
Microscopic Derivation of the Ginzburg-Landau Model
DEFF Research Database (Denmark)
Frank, Rupert; Hainzl, Christian; Seiringer, Robert;
2014-01-01
We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...
Effect of Resonant Continuum on Pairing Correlations in the Relativistic Approach
Institute of Scientific and Technical Information of China (English)
CAOLi-gang; MAZhong-yu
2003-01-01
We have investigated the pairing correlation for neutron-rich Ni isotopes in the relativistic mean field theory (RMF) and Bardeen-Cooper-Schrieffer approximation. There are a few resonant states with life times in the continuum. A proper treatment of the resonant state in the continuum on pairing correlations has to include not only its energy, but also its width.
Superconducting loop quantum gravity and the cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon H.S. [Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University, 104 Davey Lab, University Park, PA 16802 (United States); Department of Physics, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States)], E-mail: stephonalexander@mac.com; Calcagni, Gianluca [Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University, 104 Davey Lab, University Park, PA 16802 (United States)], E-mail: gianluca@gravity.psu.edu
2009-03-02
We argue that the cosmological constant is exponentially suppressed in a candidate ground state of loop quantum gravity as a nonperturbative effect of a holographic Fermi-liquid theory living on a two-dimensional spacetime. Ashtekar connection components, corresponding to degenerate gravitational configurations breaking large gauge invariance and CP symmetry, behave as composite fermions that condense as in Bardeen-Cooper-Schrieffer theory of superconductivity. Cooper pairs admit a description as wormholes on a de Sitter boundary.
Conventional superconductivity at 190 K at high pressures
Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
2014-01-01
The highest critical temperature of superconductivity Tc has been achieved in cuprates: 133 K at ambient pressure and 164 K at high pressures. As the nature of superconductivity in these materials is still not disclosed, the prospects for a higher Tc are not clear. In contrast the Bardeen-Cooper-Schrieffer (BCS) theory gives a clear guide for achieving high Tc: it should be a favorable combination of high frequency phonons, strong coupling between electrons and phonons, and high density of st...
Neergård, K
2016-01-01
Previously published expressions for a smooth counterterm in the sense of the Strutinskij theory to the correction to the Bardeen-Cooper-Schrieffer isovector pair correlation energy obtained in the Random Phase Approximation (RPA) are derived in detail and extended. In particular the counterterm to the neutron-proton pair correlation energy, whose variation contributes to the so-called Wigner cusp in plots of masses along isobaric chains, is analyzed rigorously and found to be less attenuated at large excesses of neutrons or protons than suggested by the previous estimate.
Evidence for pair correlation effects in heavy ion reactions
Auditore, L; D'Amico, V; De Pasquale, D; Trifiró, A; Trimarchi, M; Italiano, A
2003-01-01
The study of the sup 1 sup 2 C( sup 1 sup 4 N, sup 1 sup 4 N) sup 1 sup 2 C reaction was performed at 28 and 35 MeV beam energies. The results were analyzed in the frame of the EFRDWBA (Exact-Finite-Range Distorted Wave Born Approximation) assuming the simultaneous and sequential transfer of a np pair. The angular distributions, fairly reproduced in the first case, confirm the validity of the generalized BCS (Bardeen-Cooper-Schrieffer) theory to explain this behaviour. Moreover, this process could be regarded as a possible Nuclear Josephson Effect. (author)
Conventional superconductivity at 203 K at high pressures
Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I.
2015-01-01
A superconductor is a material that can conduct electricity with no resistance below its critical temperature (Tc). The highest Tc that has been achieved in cuprates1 is 133 K at ambient pressure2 and 164 K at high pressures3. As the nature of superconductivity in these materials has still not been explained, the prospects for a higher Tc are not clear. In contrast, the Bardeen-Cooper-Schrieffer (BCS) theory gives a guide for achieving high Tc and does not put bounds on Tc, all that is needed...
DEFF Research Database (Denmark)
da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik
2013-01-01
as they possibly relate to chirality of nuclei (atoms) in molecules as a source of chirality in amino acids and hence in life. Previous works have not investigated the nuclear forces as a possible bias which initiated the bias towards L-amino acids as the building blocks on proteins, and later life.......Superconductivity is described by the well-known Bardeen-Cooper-Schrieffer (BCS) theory, which is a symmetry breaking approximation. Color superconductivity shows up in extremely high density matter and temperature, which is here investigated and compared to the other end of the scale of low energy...
The quantum nature of the superconducting hydrogen sulfide at finite temperatures
Yuan, Ying; Feng, Yexin; Bian, Lifeng; Zhang, Dong-Bo; Li, Xin-Zheng
2016-01-01
H$_3$S is believed to the most possible high-temperature superconducting ($T_{\\text{c}}$) phase of hydrogen sulfide at $\\sim$200 GPa. It's isotope substitution of hydrogen (H) by deuterium (D), however, shows an anomalous $T_{\\text{c}}$ decrease of $\\sim$100 K at 140 to 160 GPa, much larger than the Bardeen-Cooper-Schrieffer theory prediction. Using ab initio path-integral molecular dynamics (PIMD), we show that the nuclear quantum effects (NQEs) influence the structures of H$_3$S and D$_3$S ...
Momentum-resolved spectroscopy of a Fermi liquid.
Doggen, Elmer V H; Kinnunen, Jami J
2015-01-01
We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948
Analysis of proton single-particle properties of zinc and germanium isotopes
Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.
2014-12-01
Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.
Resonant Continuum in Extended RMF Plus BCS Approximation
Institute of Scientific and Technical Information of China (English)
CAO Li-Gang; MA Zhong-Yu
2004-01-01
The contribution of the resonant continuum to pairing correlations is investigated in the relativistic mean field theory plus Bardeen-Cooper-Schrieffer(BCS)approximation with a constant pairing strength.The resonance states with their widths in the continuum are considered explicitly.The numerical study is performed in an effective Lagrangian with the parameter set NLSH for neutron-rich nucleus 84Ni.The results show that the effect of the proper treatment of the resonant continuum on pairing correlations for nucleus close to neutron drip line is important.It is found that the problem of an unphysical particle gas could be overcome when the pairing correlation is performed by using the resonant states instead of the discretized states in the continuum.
Analysis of proton single-particle properties of zinc and germanium isotopes
Energy Technology Data Exchange (ETDEWEB)
Bespalova, O. V., E-mail: besp@sinp.msu.ru; Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)
2014-12-15
Experimental proton single-particle energies in the vicinity of the Fermi energy for stable zinc and germanium isotopes are analyzed on the basis the dispersive optical model. The values found for the parameters of the dispersive optical potential are corrected with the aim of matching the total number of protons that is calculated with the aid of the function of Bardeen-Cooper-Schrieffer theory for the occupation probability for single-particle orbits with the charge number Z of the nucleus. The parameters of the dispersive optical potential are extrapolated on the basis of physically motivated arguments to the region of unstable isotopes in which the number N ranges between 34 and 50, and single-particle spectra are predicted by means of calculations with these parameters.
Superconducting properties of lithium-decorated bilayer graphene
Szczȩśniak, Dominik
2015-07-01
The present study provides a comprehensive theoretical analysis of the superconducting phase in selected lithium-decorated bilayer graphene nanostructures. The numerical calculations, conducted within the Eliashberg formalism, give quantitative estimations of the most important thermodynamic properties such as the critical temperature, specific heat, critical field and others. It is shown that discussed lithium-graphene systems present enhancement of their thermodynamic properties comparing to the monolayer case, e.g., the critical temperature can be raised to ∼15 \\text{K} . Furthermore, estimated characteristic thermodynamic ratios exceed predictions of the Bardeen-Cooper-Schrieffer theory suggesting that the considered lithium-graphene systems can be properly analyzed only within the strong-coupling regime.
Anomalous coherence peak in the microwave conductivity of c-axis oriented MgB2 thin films.
Jin, B B; Dahm, T; Gubin, A I; Choi, Eun-Mi; Kim, Hyun Jung; Lee, Sung-Ik; Kang, W N; Klein, N
2003-09-19
The temperature dependence of the real part of the microwave complex conductivity at 17.9 GHz obtained from surface impedance measurements of two c-axis oriented MgB2 thin films reveals a pronounced maximum at a temperature around 0.6 times the critical temperature. Calculations in the frame of a two-band model based on Bardeen-Cooper-Schrieffer (BCS) theory suggest that this maximum corresponds to an anomalous coherence peak resembling the two-gap nature of MgB2. Our model assumes there is no interband impurity scattering and a weak interband pairing interaction, as suggested by band structure calculations. In addition, the observation of a coherence peak indicates that the pi band is in the dirty limit and dominates the total conductivity of our films.
Pairing reentrance in warm rotating $^{104}$Pd nucleus
Hung, N Quang; Agrawal, B K; Datar, V M; Mitra, A; Chakrabarty, D R
2015-01-01
Pairing reentrance phenomenon in the warm rotating $^{104}$Pd nucleus is studied within the Bardeen-Cooper-Schrieffer (BCS)-based approach (the FTBCS1). The theory takes into account the effect of quasiparticle number fluctuations on the pairing field at finite temperature and angular momentum within the pairing model plus noncollective rotation along the symmetry axis. The numerical calculations for the pairing gaps and nuclear level densities (NLD), of which an anomalous enhancement has been experimentally observed at low excitation energy $E^*$ and high angular momentum $J$, show that the pairing reentrance is seen in the behavior of pairing gap obtained within the FTBCS1 at low $E$ and high $J$. This leads to the enhancement of the FTBCS1 level densities, in good agreement with the experimental observation. This agreement indicates that the observed enhancement of the NLD might be the first experimental detection of the pairing reentrance in a finite nucleus.
Particle-number projection in the finite-temperature mean-field approximation
Fanto, P; Bertsch, G F
2016-01-01
Calculation of statistical properties of nuclei in a finite-temperature mean-field theory requires projection onto good particle number, since the theory is formulated in the grand canonical ensemble. This projection is usually carried out in a saddle-point approximation. Here we derive formulas for an exact particle-number projection of the finite-temperature mean-field solution. We consider both deformed nuclei, in which the pairing condensate is weak and the Hartree-Fock (HF) approximation is the appropriate mean-field theory, and nuclei with strong pairing condensates, in which the appropriate theory is the Hartree-Fock-Bogoliubov (HFB) approximation, a method that explicitly violates particle-number conservation. For the HFB approximation, we present a general projection formula for a condensate that is time-reversal invariant and a simpler formula for the Bardeen-Cooper-Schrieffer (BCS) limit, which is realized in nuclei with spherical condensates. We apply the method to three heavy nuclei: a typical de...
Stoof, Henk T C; Gubbels, Koos
2009-01-01
Ultracold Quantum Fields provides a self-contained introduction to quantum field theory for many-particle systems, using functional methods throughout. The general focus is on the behaviour of so-called quantum fluids, i.e., quantum gases and liquids, but trapped atomic gases are always used as an example. Both equilibrium and non-equilibrium phenomena are considered. Firstly, in the equilibrium case, the appropriate Hartree-Fock theory for the properties of a quantum fluid in the normal phase is derived. The focus then turns to the properties in the superfluid phase, and the authors present a microscopic derivation of the Bogoliubov theory of Bose-Einstein condensation and the Bardeen-Cooper-Schrieffer theory of superconductivity. The former is applicable to trapped bosonic gases such as rubidium, lithium, sodium and hydrogen, and the latter in particular to the fermionic isotope of atomic lithium. In the non-equilibrium case, a few topics are discussed for which a field-theoretical approach is especially su...
Energy Technology Data Exchange (ETDEWEB)
Dmitriev, V M [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Rybaltchenko, L F [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Ishchenko, L A [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Khristenko, E V [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Bukowski, Z [W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw 2 (Poland); Troc, R [W Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw 2 (Poland)
2006-06-15
We present the data of the point contact (PC) Andreev-reflection measurements on the new paramagnetic superconductor Mo{sub 3}Sb{sub 7}, which were used for finding the energy gap {delta} and upper critical field H{sub c2} for this compound. The maximum gap value, reduced to the zero temperature via the Bardeen-Cooper-Schrieffer (BCS) theory, turned out to be {delta} (0) {approx_equal} 0.32 meV, which is slightly smaller than that expected from the BCS theory, {delta}{sup BCS} (0) {approx_equal} 0.35 meV. The temperature dependence of the gap obeys the BCS theory approximately. The H{sub c2}(0) value of about 16.5 kOe was obtained from fitting the experimental data to the conventional H(T) dependence, which is quadratic in temperature. This value is in close agreement with the result from magnetization measurements of 17.2 kOe.
He, Yan; Guo, Hao
2016-07-01
Respecting the conservation laws of momentum and energy in a many body theory is very important for understanding the transport phenomena. The previous conserving approximation requires that the self-energy of a single particle could be written as a functional derivative of a full dressed Green's function. This condition can not be satisfied in the G0 G t-matrix or pair fluctuation theory which emphasizes the fermion pairing with a stronger than the Bardeen-Cooper-Schrieffer (BCS) attraction. In the previous work [1], we have shown that when the temperature is above the superfluid transition temperature Tc, the G0 G t-matrix theory can be put into a form that satisfies the stress tensor Ward identity (WI) or local form of conservation laws by introducing a new type of vertex correction. In this paper, we will extend the above conservation approximation to the superfluid phase in the BCS mean field level. To establish the stress tensor WI, we have to include the fluctuation of the order parameter or the contribution from the Goldstone mode. The result will be useful for understanding the transport properties such as the behavior of the viscosity of Fermionic gases in the superfluid phases.
High-temperature study of superconducting hydrogen and deuterium sulfide
Energy Technology Data Exchange (ETDEWEB)
Durajski, A.P. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Szczesniak, R. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Institute of Physics, Jan Dlugosz University, Ave. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Pietronero, L. [Sapienza, Universita di Roma, Dip. Fisica, P. le A. Moro 2, 00185 Roma (Italy); Institute of Complex Systems, CNR, Via dei Taurini 19 Roma (Italy); London Institute for Mathematical Sciences, South Street 22, Mayfair London (United Kingdom)
2016-05-15
Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of 203 K in hydrogen sulfide (H{sub 3}S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H{sub 3}S and D{sub 3}S at 150 GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature 203 K and 147 K for H{sub 3}S and D{sub 3}S by using a Coulomb pseudopotential of 0.123 and 0.131, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D{sub 3}S is smaller than for H{sub 3}S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Yamaguchi, Makoto; Nii, Ryota; Kamide, Kenji; Ogawa, Tetsuo; Yamamoto, Yoshihisa
2015-03-01
Electrons, holes, and photons in semiconductors are interacting fermions and bosons. In this system, a variety of ordered coherent phases can be formed through the spontaneous phase symmetry breaking because of their interactions. The Bose-Einstein condensation (BEC) of excitons and polaritons is one of such coherent phases, which can potentially cross over into the Bardeen-Cooper-Schrieffer (BCS) type ordered phase at high densities under quasiequilibrium conditions, known as the BCS-BEC crossover. In contrast, one can find the semiconductor laser, superfluorescence (SF), and superradiance as relevant phenomena under nonequilibrium conditions. In this paper, we present a comprehensive generating functional theory that yields nonequilibrium Green's functions in a rigorous way. The theory gives us a starting point to discuss these phases in a unified view with a diagrammatic technique. Comprehensible time-dependent equations are derived within the Hartree-Fock approximation, which generalize the Maxwell-semiconductor-Bloch equations under the relaxation time approximation. With the help of this formalism, we clarify the relationship among these cooperative phenomena and we show theoretically that the Fermi-edge SF is directly connected to the e-h BCS phase. We also discuss the emission spectra as well as the gain-absorption spectra.
Rahmatinejad, A.; Razavi, R.; Kakavand, T.
2016-07-01
In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.
Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A
2013-03-15
Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Unconventional high-Tc superconductivity in fullerides.
Takabayashi, Yasuhiro; Prassides, Kosmas
2016-09-13
A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501971
Bruhat, L. E.; Viennot, J. J.; Dartiailh, M. C.; Desjardins, M. M.; Kontos, T.; Cottet, A.
2016-04-01
Microwave cavities have been widely used to investigate the behavior of closed few-level systems. Here, we show that they also represent a powerful probe for the dynamics of charge transfer between a discrete electronic level and fermionic continua. We have combined experiment and theory for a carbon nanotube quantum dot coupled to normal metal and superconducting contacts. In equilibrium conditions, where our device behaves as an effective quantum dot-normal metal junction, we approach a universal photon dissipation regime governed by a quantum charge relaxation effect. We observe how photon dissipation is modified when the dot admittance turns from capacitive to inductive. When the fermionic reservoirs are voltage biased, the dot can even cause photon emission due to inelastic tunneling to/from a Bardeen-Cooper-Schrieffer peak in the density of states of the superconducting contact. We can model these numerous effects quantitatively in terms of the charge susceptibility of the quantum dot circuit. This validates an approach that could be used to study a wide class of mesoscopic QED devices.
Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc
2016-08-01
We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.
International Nuclear Information System (INIS)
The first compound in the cobalt bismuth system was synthesized by high-pressure high-temperature synthesis at 5 GPa and 450 °C. CoBi3 crystallizes in space group Pnma (no. 62) with lattice parameters of a = 8.8464(7) Å, b = 4.0697(4) Å and c = 11.5604(9) Å adopting a NiBi3-type crystal structure. CoBi3 undergoes a superconducting transition at Tc = 0.48(3) K as evidenced by electrical-resistivity and specific-heat measurements. Based on the anomaly of the specific heat at Tc and considering the estimated electron-phonon coupling, the new Bi-rich compound can be classified as a Bardeen-Cooper-Schrieffer-type superconductor with weak electron-phonon coupling. Density-functional theory calculations disclose a sizable influence of the spin-orbit coupling to the valence states and proximity to a magnetic instability, which accounts for a significantly enhanced Sommerfeld coefficient. (paper)
The external field dependence of the BCS critical temperature
DEFF Research Database (Denmark)
Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert;
2016-01-01
We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...
New light on the intriguing history of superfluidity in liquid 4He
Griffin, Allan
2009-04-01
Surprisingly, it was 30 years after the first liquefaction of 4He in 1908 that the discovery that liquid 4He is not just a 'cold' liquid was made. Below T = 2.18 K, it is a 'quantum' liquid which exhibits spectacular macroscopic quantum behaviour that can be seen with the naked eye. Since the observation of superfluidity in liquid 4He is one of the greatest discoveries in modern physics, we present a day-to-day chronology of the tangled events which preceded the seminal discovery of zero viscosity in 1938 by Kapitza in Moscow and by Allen and Misener in Cambridge. On the theory side, London argued in 1938 that the microscopic basis for this new superfluid phase was the forgotten phenomenon of Bose-Einstein condensation (BEC) first suggested by Einstein in 1925. In 1941, Landau developed a very successful theory of superfluid 4He, but it was not anchored in a microscopic theory of interacting atoms. It took another 20 years for theorists to unify the two seemingly different theories of Landau and London. Experiments on trapped superfluid atomic gases since 1995 have shone new light on superfluid 4He. In the mid-1930s, London had emphasized that superconductivity in metals and superfluidity in liquid 4He were similar. Experiments on trapped two-component Fermi gases in the last five years have shown that a Bose condensate is indeed the basis of both of these superfluid phases. This confirms the now famous Bardeen-Cooper-Schrieffer-BEC crossover scenario developed for superfluidity by Leggett and Nozières in the early 1980s but largely ignored until a few years ago. The study of superfluid 4He will increasingly overlap with strongly interacting dilute quantum gases, perhaps opening up a new era of research on this most amazing liquid.
New light on the intriguing history of superfluidity in liquid (4)He.
Griffin, Allan
2009-04-22
Surprisingly, it was 30 years after the first liquefaction of (4)He in 1908 that the discovery that liquid (4)He is not just a 'cold' liquid was made. Below T = 2.18 K, it is a 'quantum' liquid which exhibits spectacular macroscopic quantum behaviour that can be seen with the naked eye. Since the observation of superfluidity in liquid (4)He is one of the greatest discoveries in modern physics, we present a day-to-day chronology of the tangled events which preceded the seminal discovery of zero viscosity in 1938 by Kapitza in Moscow and by Allen and Misener in Cambridge. On the theory side, London argued in 1938 that the microscopic basis for this new superfluid phase was the forgotten phenomenon of Bose-Einstein condensation (BEC) first suggested by Einstein in 1925. In 1941, Landau developed a very successful theory of superfluid (4)He, but it was not anchored in a microscopic theory of interacting atoms. It took another 20 years for theorists to unify the two seemingly different theories of Landau and London. Experiments on trapped superfluid atomic gases since 1995 have shone new light on superfluid (4)He. In the mid-1930s, London had emphasized that superconductivity in metals and superfluidity in liquid (4)He were similar. Experiments on trapped two-component Fermi gases in the last five years have shown that a Bose condensate is indeed the basis of both of these superfluid phases. This confirms the now famous Bardeen-Cooper-Schrieffer-BEC crossover scenario developed for superfluidity by Leggett and Nozières in the early 1980s but largely ignored until a few years ago. The study of superfluid (4)He will increasingly overlap with strongly interacting dilute quantum gases, perhaps opening up a new era of research on this most amazing liquid.
Microscopic Self-consistent Study of Neon Halos with Resonant Contributions
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shisheng [ORNL; Smith, Michael Scott [ORNL; Kang, Zhong-Shu [Beihang University, Beijing; Zhao, Jie [Chinese Academy of Sciences, INstitute of Theoretical Physics (ITP)
2014-01-01
Recent reaction measurements have been interpreted as evidence of a halo structure in the exotic neutron-rich isotopes 29,31Ne. While theoretical studies of 31Ne generally agree on its halo nature, they differ significantly in their predictions of its properties and underlying cause (e.g., that 31Ne lies in an "island of inversion'"). We have made a systematic theoretical analysis of possible Neon halo signatures -- the first using a fully microscopic, relativistic mean field approach that properly treats positive energy orbitals (such as the valence neutron in 31Ne) self-consistently with bound levels, and that includes the pairing effect that keeps the nucleus loosely bound with negative Fermi energy. Our model is the analytical continuation of the coupling constant (ACCC) method based on a relativistic mean field (RMF) theory with Bardeen-Cooper-Schrieffer (BCS) pairing approximation. We calculate neutron- and matter-radii, one-neutron separation energies, p- and f-orbital energies and occupation probabilities, and neutron densities for single-particle resonant orbitals in 27-31Ne. We analyze these results for evidence of neutron halo formation in 29,31Ne. Our model predicts a p-orbit 1n halo structure for 31Ne, based on a radius increase from 30Ne that is 7 - 8 times larger than the increase from 29Ne to 30Ne, as well as a decrease in the neutron separation energy by a factor of ~ 10 compared to that of 27-30Ne. In contrast to other studies, our inclusion of resonances yields an inverted ordering of p and f orbitals for small deformations. Furthermore, we find no evidence of an s-orbit 1n halo in 29Ne as recently claimed in the literature.
Angular momentum, g-value, and magnetic flux of gyration states
International Nuclear Information System (INIS)
Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B iZ. According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of LZ = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint
The decay and collisions of dark solitons in superfluid Fermi gases
Scott, R.G.; Dalfovo, F.; Pitaevskii, L. P.; Stringari, S.; Fialko, O.; Liao, R; Brand, J.
2011-01-01
We study soliton collisions and the decay of solitons into sound in superfluid Fermi gases across the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover by performing numerical simulations of the time-dependent Bogoliubov-de Gennes equations. This decay process occurs when the solitons are accelerated to the bulk pair-breaking speed by an external potential. A similar decay process may occur when solitons are accelerated by an inelastic collision with another soliton. W...
Relativistic mean field description of exotic nuclei
Meng, Jie; Ring, Peter; Zhao, Pengwei; Zhou, Shan-Gui
In this chapter, we will present relativistic mean field (RMF) models with pairing treated by the Bardeen-Cooper-Schrieffer (BCS) and the relativistic Hartree-Bogoliubov (RHB) approaches and applications for exotic nuclear phenomena including nuclear halos, the position of the proton drip line and proton radioactivity, the surface diffuseness and its relation to nuclear exotic phenomena, and the effects of pairing correlations on the nuclear size.
Description of Excitations in Odd Non-magic Nuclei by the Green's Function Method
Avdeenkov, A.V.; Kamerdzhiev, S. P.
2000-01-01
General equations for one- particle Green function in non- magic nuclei have been derived where a pairing mechanism, which is analogous to the Bardeen- Cooper- Schrieffer one, has been singled out explicitely. A "refining" procedure for the phenomenological single- particle energies and pairing gaps is formulated to avoid double counting of the phonon mixing if the initial data of the problem are these phenomenological quantities. The general equations obtained have been written in the square...
International Nuclear Information System (INIS)
Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, Tc, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a Tc of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals of carbon-60, magnesium diboride and
Two decades on[Research into high-temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Durrani, M. [Physics World (United Kingdom)
2006-04-15
Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, T{sub c}, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a T{sub c} of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
International Nuclear Information System (INIS)
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Probing superfluid properties in strongly correlated Fermi gases with high spatial resolution
Energy Technology Data Exchange (ETDEWEB)
Weimer, Wolf
2014-07-01
In this thesis an apparatus to study ultracold fermionic {sup 6}Li with tunable interaction strength and dimensionality is presented. The apparatus is applied to investigate the speed of sound v{sub s} and the superfluid critical velocity v{sub c} across the transition from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity. The results set benchmarks for theories describing strongly correlated systems. To measure v{sub c}, an obstacle, that is formed by a tightly focused laser beam, is moved through a superfluid sample with a constant velocity along a line of constant density. For velocities larger than v{sub c} heating of the gas is observed. The critical velocity is mapped out for various different interaction strengths covering the BEC-BCS crossover. According to the Landau criterion and Bogolyubov theory, v{sub c} should be closely related to v{sub s} in a Bose-Einstein condensate. The measurement of v{sub s} is conducted by creating a density modulation in the centre of the cloud and tracking the excited modulation. The velocities v{sub s} and v{sub c} are measured in a similar range of interaction strengths and in similar samples to ensure comparability. The apparatus which provides the ultracold samples is a two chamber design with a magneto-optical trap that is loaded via a Zeeman slower. The subsequent cooling steps are all-optical and finally create an ultracold oblate atom cloud inside a flat vacuum cell. This cell provides optimal optical access and is placed between two high numerical aperture microscope objectives. These objectives are used to probe the samples in-situ on length scales which are comparable to the intrinsic length scales of the gases. Similarly, optical dipole potentials are employed to manipulate the clouds on the same small length scales. The oblate samples are sufficiently flat such that there spatial extent along the microscope axes is smaller than the depth of field of the objectives. With an
The BCS Model for General Pair Interaction
DEFF Research Database (Denmark)
Hainzl, Christian; Hamza, Eman; Seiringer, Robert;
2008-01-01
The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed attention as a description of fermionic gases interacting with local pairwise interactions. We present here a rigorous analysis of the BCS functional for general pair interaction potentials. For both zero and positive...... temperature, we show that the existence of a non-trivial solution of the nonlinear BCS gap equation is equivalent to the existence of a negative eigenvalue of a certain linear operator. From this we conclude the existence of a critical temperature below which the BCS pairing wave function does not vanish...
The critical velocity in the BEC-BCS crossover
Weimer, Wolf; Morgener, Kai; Singh, Vijay Pal; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Mathey, Ludwig; Moritz, Henning
2014-01-01
We map out the critical velocity in the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer superfluidity with ultracold $^{6}$Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity $v_c$. In the same samples, we measure the speed of sound $v_s$ by exciting density waves and compare the results to the measured values of $v_c$. We perform numerical simulations...
Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion
Energy Technology Data Exchange (ETDEWEB)
Dhakal, Pashupati [JLAB; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Myneni, Ganapati Rao [JLAB
2015-06-01
An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.
Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion
Dhakal, Pashupati; Kneisel, Peter; Myneni, Ganapati Rao
2014-01-01
An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.
Energy Technology Data Exchange (ETDEWEB)
Yan, D; Kevrekidis, P G [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D J, E-mail: kevrekid@math.umass.edu [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2011-10-14
In this work, we consider a model of a defocusing nonlinear Schroedinger equation with a variable nonlinearity exponent. This is motivated by the study of a superfluid Fermi gas in the Bose-Einstein condensation (BEC)-Bardeen-Cooper-Schrieffer crossover. In particular, we focus on the relevant mean-field model in the regime from BEC to unitarity and especially consider the modification of the nearly black soliton oscillation frequency due to the variation in the nonlinearity exponent in a harmonic trapping potential. The analytical expressions given as a function of the relevant nonlinearity exponent are corroborated by numerical computations and also extended past the BEC limit. (paper)
Importance of the single-particle continuum in BCS pairing with a pseudostate basis
Directory of Open Access Journals (Sweden)
Lay J. A.
2016-01-01
Full Text Available In a recent work [arXiv:1510.03185] the use of the Transformed Harmonic Oscillator (THO basis for the discretization of the singleparticle continuum into a Generalized Bardeen-Cooper-Schrieffer (BCS formalism was proposed for the description of weakly bound nuclei. We make use of the flexibility of this formalism to study the evolution of the pairing when the nucleus becomes more and more weakly bound. Specifically we focus on the evolution of the occupation of the different partial waves in 22O when the Fermi level approaches zero.
Josephson effect in fermionic superfluids across the BEC-BCS crossover.
Valtolina, Giacomo; Burchianti, Alessia; Amico, Andrea; Neri, Elettra; Xhani, Klejdja; Seman, Jorge Amin; Trombettoni, Andrea; Smerzi, Augusto; Zaccanti, Matteo; Inguscio, Massimo; Roati, Giacomo
2015-12-18
The Josephson effect is a macroscopic quantum phenomenon that reveals the broken symmetry associated with any superfluid state. Here we report on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We show that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids. PMID:26680193
Variational Equation for Quantum Number Projection at Finite Temperature
Tanabe, Kosai; Nakada, Hitoshi
2008-04-01
To describe phase transitions in a finite system at finite temperature, we develop a formalism of the variation-after-projection (VAP) of quantum numbers based on the thermofield dynamics (TFD). We derive a new Bardeen-Cooper-Schrieffer (BCS)-type equation by variating the free energy with approximate entropy without violating Peierls inequality. The solution to the new BCS equation describes the S-shape in the specific heat curve and the superfluid-to-normal phase transition caused by the temperature effect. It simulates the exact quantum Monte Carlo results well.
Isoscalar Giant Resonances of 120Sn in the Quasiparticle Relativistic Random Phase Approximation
Institute of Scientific and Technical Information of China (English)
CAO Li-Gang; MA Zhong-Yu
2004-01-01
@@ The quasiparticle relativistic random phase approximation (QRRPA) is formulated based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the Bardeen-Cooper-Schrieffer approximation with a constant pairing gap. The numerical calculations are performed in the case of various isoscalar giant resonances of nucleus 120Sn with parameter set NL3. The calculated results show that the QRRPA approach could satisfactorily reproduce the experimental data of the energies of low-lying states.
Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction
Institute of Scientific and Technical Information of China (English)
CHENG Ze
2011-01-01
@@ We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer(BCS)condensation below a critical temperature.In the BCS condensation state,bare atoms with opposite wave vectors are bound into pairs,and unpaired bare atoms are transformed into a new kind of quasi-particles,i.e.the dressed atoms.The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid.The critical temperature and the effective mass of dressed atoms are derived analytically.The transition from the BCS condensation state to the normal state is a first-order phase transition.%We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer (BCS)condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particles, i.e. the dressed atoms. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.
Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru
2009-05-01
Superconductors can usefully be divided into two classes, those that are well described by the classic Bardeen-Cooper-Schrieffer (BCS) theory and its extensions and those which require a different microscopic description. The BCS theory of superconductivity solved the long standing mystery of this spectacular phenomenon and described all superconductors that were known when it was formulated in the 1950s. The key ingredient is an attractive interaction generated by the exchange of phonons between electrons which overcomes a Coulomb repulsion weakened by screening, to give a net attractive force on the low energy scale. In this case the simplest s-wave pairing always maximises the energy gain. There were speculations a little later that other types of electron pairing could be possible, but it took a quarter of a century until the first signs of superconductors with different and exotic pairing appeared. In the intervening thirty years many superconductors with exotic pairing have been and continue to be discovered and the study of their superconductivity has grown into a major subfield of condensed matter physics today. The importance of these exotic superconductors with unconventional symmetry is that their pairing is of electronic origin. As a result they are freed from the restrictions of low transition temperatures that go along with the phonon driven conventional superconductors. However in two of the main classes of the exotic superconductors, namely heavy fermion and organic superconductors, the intrinsic energy scales are very small leading to low temperature scales. The third class contains the small number of superconducting transition metal compounds with exotic pairing symmetry. The most studied of these are the high-Tc cuprates, the newly discovered iron pnictides and strontium ruthenate which is closely related to superfluid 3He. Although the basic electronic structure of these materials is well understood, the origin of the pairing is more complex
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Tobias
2010-08-27
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Razavi, R.; Dehghani, V.
2014-03-01
The entropy excess of 163Dy compared to 162Dy as a function of nuclear temperature have been investigated using the mean value Bardeen-Cooper-Schrieffer (BCS) method based on application of the isothermal probability distribution function to take into account the statistical fluctuations. Then, the spin cut-off excess ratio (moment of inertia excess ratio) introduced by Razavi [Phys. Rev. C88 (2013) 014316] for proton and neutron system have been obtained and are compared with their corresponding data on the BCS model. The results show that the overall agreement between the BCS model and mean value BCS method is satisfactory and the mean value BCS model reduces fluctuations and washes out singularities. However, the expected constant value in the entropy excess is not reproduced by the mean value BCS method.
Critical velocity in the BEC-BCS crossover.
Weimer, Wolf; Morgener, Kai; Singh, Vijay Pal; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Mathey, Ludwig; Moritz, Henning
2015-03-01
We map out the critical velocity in the crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer superfluidity with ultracold ^{6}Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity v_{c}. In the same samples, we measure the speed of sound v_{s} by exciting density waves and compare the results to the measured values of v_{c}. We perform numerical simulations in the Bose-Einstein condensation regime and find very good agreement, validating the approach. In the strongly correlated regime our measurements of v_{c} provide a testing ground for theoretical approaches. PMID:25793823
Dark lump excitations in superfluid Fermi gases
Institute of Scientific and Technical Information of China (English)
Xu Yan-Xia; Duan Wen-Shan
2012-01-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer (BCS) regime,Bose-Einstein condensate (BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
DEFF Research Database (Denmark)
Milovanov, A.V.; Juul Rasmussen, J.
2002-01-01
Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......-induced superconducting phase in the electron-doped polymers, we simultaneously find a rather modest transition temperature of similar to2-3 K owing to the limitations imposed by the electron tunneling processes on a fractal geometry. We speculate that the hole-type superconductivity shows a larger onset temperature when...
Thermodynamics of superconductors with charge-density waves
Gabovich, A M; Szymczak, H; Voitenko, A I
2003-01-01
Equations for the temperature-(T-) dependent superconducting (DELTA(T)) and dielectric (SIGMA(T)) order parameters are solved self-consistently in the partial dielectric gapping model of Bilbro and McMillan for superconductors with charge-density waves (CDWs). It is shown that for the close enough structural phase transition temperature, T sub s , and superconducting one, T sub c , with T sub s > T sub c , SIGMA below T sub c may become smaller than DELTA. The electronic heat capacity C(T) is calculated. It is shown that the discontinuity DELTA C at T = T sub c is always smaller than the Bardeen-Cooper-Schrieffer value. The effect is detectable over a wide range of the model parameters. Experimental implications for CDW superconductors, such as A15 compounds, high-T sub c cuprates, and MgB sub 2 , are suggested and discussed.
Energy Technology Data Exchange (ETDEWEB)
Ho, P-C; Butch, N P; Zapf, V S; Yanagisawa, T; Frederick, N A; Kim, S K; Yuhasz, W M; Maple, M B [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093-0360 (United States); Betts, J B; Lacerda, A H [National High Magnetic Field Laboratory/LANL, Los Alamos, NM 87545 (United States)], E-mail: pcho@csufresno.edu
2008-05-28
To study the possible competition between unconventional and Bardeen-Cooper-Schrieffer superconductivity in the filled skutterudites Pr(Os{sub 1-x}Ru{sub x}){sub 4}Sb{sub 12}, the evolution of superconductivity and the high field ordered phase in single-crystal specimens has been investigated by means of electrical resistivity measurements in magnetic fields up to 18 T. Whereas the upper critical field H{sub c2}(T) curves have conventional shapes for x<0.4, the H{sub c2}(T) curves are nearly linear for x > or approx. 0.4. For all x, H{sub c2}(0) matches the calculated value of the orbital critical field. Features in the electrical resistivity associated with the high field ordered phase, observed clearly for PrOs{sub 4}Sb{sub 12}, weaken with increasing x and vanish for x > or approx. 0.1.
Pairing in high-density neutron matter including short- and long-range correlations
Ding, Dong; Rios, Arnau; Dussan, Helber; Dickhoff, Willem; Witte, Sam; Polls, Artur
2016-03-01
To address open questions in neutron star phenomenology, pairing gaps of 1S0 and 3P2 -3F2 channels in a wide range of densities has been calculated using three different interactions (AV18 CDbonn N3LO). Traditionally, the Bardeen-Cooper-Schrieffer(BCS) approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations in the pairing gaps. Short-range correlations (SRC) are treated including the appropriate fragmentation of single-particle states, and they suppress the gaps substantially. Long-range correlations(LRC) dress the pairing interaction via density and spin modes, and provide a relatively small correction. Results are relevant and parametrized in a user friendly way for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.
Renormalization group analysis of ultracold Fermi gases with two-body attractive interaction
Guo, Xiaoyong; Chi, Zimeng; Zheng, Qiang; Wang, Zaijun
2016-01-01
We propose a new functional renormalization group (RG) strategy to investigate the many-body physics of interacting ultracold Fermi gases. By mapping the Ginzburg-Landau (GL) action of Fermi gases onto a complex φ4-model, we can obtain the closed flow equation in the one-loop approximation. An analysis of the emerging RG flow gives the ground state behavior. The Hamiltonian of a Fermi gas with a two-body attractive interaction is used as a demonstration to clarify our treatment. The fixed point structure reveals not only the condensation phase transition, but also the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover. The effect of the imaginary time renormalization is also discussed. It is shown that for the dynamical field configuration our RG procedure can reproduce the well known theoretical results of BCS-BEC crossover, while under a static approximation the phase transition takes place at a higher critical temperature.
Charge Separation within Superconductors in the Presence of Tidal Gravitational Fields
International Nuclear Information System (INIS)
Tidal gravitational fields affect the Cooper-pair electrons and lattice ions of a type I superconductor differently. The quantum nonlocalizability of the Cooper pairs, which will remain coherent in the presence of interacting fields corresponding to frequencies less than that of the Bardeen-Cooper-Schrieffer (BCS) gap frequency, causes the superconducting electrons to undergo non-classical, non-geodesic motion, in contrast to the classical, geodesic motion of the lattice ions. The ensuing relative motion between the electrons and the ionic lattice causes a charge separation that leads to a measurable voltage potential when a macroscopic, quantum-coherent superconducting system undergoes free fall in the Earth's inhomogeneous gravitational field. Theoretical and experimental implications will be discussed.
Critical velocity in the BEC-BCS crossover.
Weimer, Wolf; Morgener, Kai; Singh, Vijay Pal; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Mathey, Ludwig; Moritz, Henning
2015-03-01
We map out the critical velocity in the crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer superfluidity with ultracold ^{6}Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity v_{c}. In the same samples, we measure the speed of sound v_{s} by exciting density waves and compare the results to the measured values of v_{c}. We perform numerical simulations in the Bose-Einstein condensation regime and find very good agreement, validating the approach. In the strongly correlated regime our measurements of v_{c} provide a testing ground for theoretical approaches.
Ground State Properties of Neutron Magic Nuclei
Saxena, G
2016-01-01
A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.
Directory of Open Access Journals (Sweden)
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
First Results of the SRF Wafer Test Cavity for the Characterization of Superconductors
Energy Technology Data Exchange (ETDEWEB)
Pogue, Nathaniel J. [Texas A& M; Comeaux, Justin [Texas A& M; McIntyre, Peter [Texas A& M; Palczewski, Ari D. [JLAB; Reece, Charles E. [JLAB
2015-06-01
The wafer test cavity was designed as a short sample test system that could create a reproducible environment for the testing of superconducting materials above the Bardeen-Cooper- Schrieffer limit of niobium. The results of the sapphire test cavity showed that the dielectric was too lossy, and thus, the original design had to be altered to make operation feasible with current hardware and achieve ~200 mT. The new design was fabricated at Thomas Jefferson National Accelerator Facility and was cryogenically tested. After four tests, the cavity was able to produce a 6.6-mT field with a Q of 3.96 * 108. Although lower than anticipated, in comparison to other TE01 cavities, this result is quite encouraging. Multipacting and coupling were limitations, but current work is pursuing the elimination of these complications. This document will expound upon the new design, mathematical simulations, testing of the cavity, complications, results, and future work.
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism...... and reflectivism. Yet, ironically, there has been little attention to Waltz's very explicit and original arguments about the nature of theory. This article explores and explicates Waltz's theory of theory. Central attention is paid to his definition of theory as ‘a picture, mentally formed' and to the radical anti......-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory...
Nekrasov, Nikita
2004-01-01
We present the evidence for the existence of the topological string analogue of M-theory, which we call Z-theory. The corners of Z-theory moduli space correspond to the Donaldson-Thomas theory, Kodaira-Spencer theory, Gromov-Witten theory, and Donaldson-Witten theory. We discuss the relations of Z-theory with Hitchin's gravities in six and seven dimensions, and make our own proposal, involving spinor generalization of Chern-Simons theory of three-forms. Based on the talk at Strings'04 in Paris.
Marino Beiras, Marcos
2001-01-01
We give an overview of the relations between matrix models and string theory, focusing on topological string theory and the Dijkgraaf--Vafa correspondence. We discuss applications of this correspondence and its generalizations to supersymmetric gauge theory, enumerative geometry and mirror symmetry. We also present a brief overview of matrix quantum mechanical models in superstring theory.
Jara, Pascual; Torrecillas, Blas
1988-01-01
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
International Nuclear Information System (INIS)
Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)
DEFF Research Database (Denmark)
Linder, Stefan; Foss, Nicolai Juul
2015-01-01
Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting, and informational conditions, the theory addresses problems of ex...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....
DEFF Research Database (Denmark)
Linder, Stefan; Foss, Nicolai Juul
Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting and informational conditions, the theory addresses problems of ex...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....
Williams, Jeffrey
1994-01-01
Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…
Harris, Tina
2015-04-29
Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.
Rowen, Louis H
1991-01-01
This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**""As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of non
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Chang, CC
2012-01-01
Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko
Jaques, Thomas
2010-01-01
Generative Linguistics can and should be engaged by those with an interest in Translation Studies while developing their own positions on literary theory in general, but translation theory in particular. Generative theory provides empirical evidence for a free, creative mind that can comprehend, read, speak and translate a language. What is being proposed here contrasts radically with the dominant position of this generation's Translation Studies specialists, who freely incorporate Post-struc...
Cox, David A
2012-01-01
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!"—Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galo
Hashiguchi, Koichi
2009-01-01
This book details the mathematics and continuum mechanics necessary as a foundation of elastoplasticity theory. It explains physical backgrounds with illustrations and provides descriptions of detailed derivation processes..
DEFF Research Database (Denmark)
Stein, Irene F.; Stelter, Reinhard
2011-01-01
Communication theory covers a wide variety of theories related to the communication process (Littlejohn, 1999). Communication is not simply an exchange of information, in which we have a sender and a receiver. This very technical concept of communication is clearly outdated; a human being...
International Nuclear Information System (INIS)
After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Liu, Baoding
2015-01-01
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...
Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří
1988-01-01
Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal...
Bohm, David
1951-01-01
This superb text by David Bohm, formerly Princeton University and Emeritus Professor of Theoretical Physics at Birkbeck College, University of London, provides a formulation of the quantum theory in terms of qualitative and imaginative concepts that have evolved outside and beyond classical theory. Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of t
Lubliner, Jacob
2008-01-01
The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and
DEFF Research Database (Denmark)
Smith, Shelley
This paper came about within the context of a 13-month research project, Focus Area 1 - Method and Theory, at the Center for Public Space Research at the Royal Academy of the Arts School of Architecture in Copenhagen, Denmark. This project has been funded by RealDania. The goals of the research...... project, Focus Area 1 - Method and Theory, which forms the framework for this working paper, are: * To provide a basis from which to discuss the concept of public space in a contemporary architectural and urban context - specifically relating to theory and method * To broaden the discussion of the concept...
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
Directory of Open Access Journals (Sweden)
Kathleen Holtz Deal
2007-05-01
Full Text Available Psychodynamic theory, a theory of personality originated by Sigmund Freud, has a long and complex history within social work and continues to be utilized by social workers. This article traces the theory’s development and explains key concepts with an emphasis on its current relational focus within object relations theory and self-psychology. Empirical support for theoretical concepts and the effectiveness of psychodynamic therapies is reviewed and critiqued. Future directions are discussed, including addressing cultural considerations, increasing research, and emphasizing a relational paradigm
Hočevar, Mitja
2015-01-01
This BCs thesis deals with topics from graph theory. Ramsey theory in its most basic form deals with the problem of determining the minimal positive integer, such that for any edge-coloring of the complete graph of this size with a prescribed number of colors one can find a subgraph of predefined size all of whose edges are of the same colour. These minimal sizes are called Ramsey numbers. In this BCs thesis we present basic notions of graph theory needed to understand the basic theorem of...
Victor, Oluwafemi Oludu
2015-01-01
From ages to ages there had been expectation of individuals on a specific predictions and future occurrences. So also in a game, different participant that involves in those specified game have their various expectations of the results or the output of the game they are involved in. That is why we need a mathematical theory that helps in prediction of the future expectations in our day to day activities. Therefore the Martingale Theory is a very good theory that explains and dissects the expe...
Hodges, Wilfrid
1993-01-01
An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.
International Nuclear Information System (INIS)
This report discusses concepts in nuclear theory such as: neutrino nucleosynthesis; double beta decay; neutrino oscillations; chiral symmetry breaking; T invariance; quark propagator; cold fusion; and other related topics
DEFF Research Database (Denmark)
Hjørland, Birger
2009-01-01
Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts...
International Nuclear Information System (INIS)
A series of lectures on plasma theory with the main headings: introduction; charged particles moving in em fields; the liquid model; transport phenomena in the plasma; wave propagation in plasmas; plasma instabilities. 57 figs. (qui)
DEFF Research Database (Denmark)
Carroll, Joseph; Clasen, Mathias; Jonsson, Emelie;
2015-01-01
Biocultural theory is an integrative research program designed to investigate the causal interactions between biological adaptations and cultural constructions. From the biocultural perspective, cultural processes are rooted in the biological necessities of the human life cycle: specifically huma...
Nel, Louis
2016-01-01
This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Effective theories of universal theories
Wells, James D.; Zhang, Zhengkang
2016-01-01
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hf f , hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order y f 2 . All these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.
Possibility Theory versus Probability Theory in Fuzzy Measure Theory
Directory of Open Access Journals (Sweden)
Parul Agarwal
2015-05-01
Full Text Available The purpose of this paper is to compare probability theory with possibility theory, and to use this comparison in comparing probability theory with fuzzy set theory. The best way of comparing probabilistic and possibilistic conceptualizations of uncertainty is to examine the two theories from a broader perspective. Such a perspective is offered by evidence theory, within which probability theory and possibility theory are recognized as special branches. While the various characteristic of possibility theory within the broader framework of evidence theory are expounded in this paper, we need to introduce their probabilistic counterparts to facilitate our discussion.
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad
Stewart, Ian
2003-01-01
Ian Stewart's Galois Theory has been in print for 30 years. Resoundingly popular, it still serves its purpose exceedingly well. Yet mathematics education has changed considerably since 1973, when theory took precedence over examples, and the time has come to bring this presentation in line with more modern approaches.To this end, the story now begins with polynomials over the complex numbers, and the central quest is to understand when such polynomials have solutions that can be expressed by radicals. Reorganization of the material places the concrete before the abstract, thus motivating the g
Effective theories of universal theories
Wells, James D
2015-01-01
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably $S$ and $T$ parameters) are only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the $h^3$, $hff$, $hVV$ vertices, 3 parameters for $hVV$ vertices absent in the Standard Model, and 1 four-fermion coupling of order $y_f^2$. All these parameters are defined in an unambiguous and basis-indepen...
Lenz, Alexander
2016-01-01
We set the scene for theoretical issues in charm physics that were discussed at CHARM 2016 in Bologna. In particular we emphasize the importance of improving our understanding of standard model contributions to numerous charm observables and we discuss also possible tests of our theory tools, like the Heavy Quark Expansion via the lifetime ratios of $D$-mesons
DEFF Research Database (Denmark)
Monthoux, Pierre Guillet de; Statler, Matt
2014-01-01
The recent Carnegie report (Colby, et al., 2011) characterizes the goal of business education as the development of practical wisdom. In this chapter, the authors reframe Scharmer’s Theory U as an attempt to develop practical wisdom by applying certain European philosophical concepts. Specifically...
R. Veenhoven (Ruut)
2014-01-01
markdownabstract__Abstract__ Assumptions Livability theory involves the following six key assumptions: 1. Like all animals, humans have innate needs, such as for food, safety, and companionship. 2. Gratification of needs manifests in hedonic experience. 3. Hedonic experience determines how much we
Plummer, MD
1986-01-01
This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.
Hashiguchi, Koichi
2014-01-01
This book was written to serve as the standard textbook of elastoplasticity for students, engineers and researchers in the field of applied mechanics. The present second edition is improved thoroughly from the first edition by selecting the standard theories from various formulations and models, which are required to study the essentials of elastoplasticity steadily and effectively and will remain universally in the history of elastoplasticity. It opens with an explanation of vector-tensor analysis and continuum mechanics as a foundation to study elastoplasticity theory, extending over various strain and stress tensors and their rates. Subsequently, constitutive equations of elastoplastic and viscoplastic deformations for monotonic, cyclic and non-proportional loading behavior in a general rate and their applications to metals and soils are described in detail, and constitutive equations of friction behavior between solids and its application to the prediction of stick-slip phenomena are delineated. In additi...
2015-01-01
A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor.
Helms, Lester L
2014-01-01
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In ...
Milgrom, Mordehai
2014-01-01
A general account of MOND theory is given. I start with the basic tenets of MOND, which posit departure from standard dynamics in the limit of low acceleration -- below an acceleration constant a0 -- where dynamics become scale invariant. I list some of the salient predictions of these tenets. The special role of a0 and its significance are then discussed. In particular, I stress its coincidence with cosmologically relevant accelerations. The deep-MOND limit and the consequences of its scale ...
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Relativistic quasiparticle time blocking approximation. Dipole response of open-shell nuclei
Litvinova, E; Tselyaev, V
2008-01-01
The self-consistent Relativistic Quasiparticle Random Phase Approximation (RQRPA) is extended by the quasiparticle-phonon coupling (QPC) model using the Quasiparticle Time Blocking Approximation (QTBA). The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A quantitative description of electric dipole excitations in the chain of tin isotopes (Z=50) with the mass numbers A = 100, 106, 114, 116, 120, and 130 and in the ...
Superconductivity in Ternary Pnictide SrPd2Sb2 Polymorphs
Kase, Naoki; Suzuki, Harufumi; Tsukamoto, Takenori; Nakano, Tomohito; Takeda, Naoya
2016-04-01
Superconductivity was observed in SrPd2Sb2 polymorphs: a primitive tetragonal CaBe2Ge2-type (low-temperature phase, LT-SrPd2Sb2) structure and body-centered ThCr2Si2-type (high-temperature phase, HT-SrPd2Sb2) structure. The superconducting transition was observed at Tc = 1.95 (LT) and 0.6 K (HT). The specific heat C(T) showed a clear anomaly at Tc = 1.85 (LT) and 0.6 K (HT); thus, the superconductivity was of a bulk nature. The agreement with the Bardeen-Cooper-Schrieffer (BCS) curve indicated that the LT-SrPd2Sb2 superconductor was fully gapped. The values of electron-phonon coupling λep and density of state at Fermi level N(EF) in 122 compounds with the CaBe2Ge2-type and its related structure were evaluated to reveal the main factor that determines Tc. From our systematic analysis, Tc of this family can be explained by λep rather than N(EF).
Effect of temperature and magnetic field on two-flavor superconducting quark matter
Mandal, Tanumoy; Jaikumar, Prashanth
2016-10-01
We investigate the effect of turning on temperature for the charge neutral phase of two-flavor color superconducting (2SC) dense quark matter in the presence of constant external magnetic field. Within the Nambu-Jona-Lasinio model, by tuning the diquark coupling strength, we study the interdependent evolution of the quark Bardeen-Cooper-Schrieffer gap and dynamical mass as functions of temperature and magnetic field. We find that magnetic field B ≳0.02 GeV2 (1 018 G ) leads to anomalous temperature behavior of the gap in the gapless 2SC phase (moderately strong coupling), reminiscent of previous results in the literature found in the limit of weak coupling without magnetic field. The 2SC gap in the strong coupling regime is abruptly quenched at ultrahigh magnetic field due to the mismatched Fermi surfaces of up and down quarks imposed by charge neutrality and oscillation of the gap due to Landau level quantization. The dynamical quark mass also displays strong oscillation and magnetic catalysis at high magnetic field, although the latter effect is tempered by nonzero temperature. We discuss the implications for newly born compact stars with superconducting quark cores.
Hainzl, Christian; Seyrich, Jonathan
2016-05-01
In this paper we report on the results of a numerical study of the nonlinear time-dependent Bardeen-Cooper-Schrieffer (BCS) equations, often also denoted as Bogoliubov-de-Gennes (BdG) equations, for a one-dimensional system of fermions with contact interaction. We show that, even above the critical temperature, the full equations and their linear approximation give rise to completely different evolutions. In contrast to its linearization, the full nonlinear equation does not show any diffusive behavior in the order parameter. This means that the order parameter does not follow a Ginzburg-Landau-type of equation, in accordance with a recent theoretical result in [R.L. Frank, C. Hainzl, B. Schlein, R. Seiringer, to appear in Lett. Math. Phys., ext-link ext-link-type="uri" xlink:href="http://arxiv.org/abs/1504.05885">arXiv:1504.05885ext-link> (2016)]. We include a full description on the numerical implementation of the partial differential BCS/BdG equations.
High-pressure studies on a new superconducting clathrate: Ba sub 6 Ge sub 2 sub 5
Yuan, H Q; Carrillo-Cabrera, W; Paschen, S; Sparn, G; Baenitz, M; Grin, Y; Steglich, F
2002-01-01
The effect of pressure on the low-temperature states of the newly discovered clathrate Ba sub 6 Ge sub 2 sub 5 is investigated by means of measurements of the electrical resistivity. At ambient pressure, Ba sub 6 Ge sub 2 sub 5 undergoes a two-step structural phase transition between 230 and 180 K from metallic behaviour to a high-resistivity state characterized by a mean free path of about 3 A. Interestingly, a Bardeen-Cooper-Schrieffer-like (BCS-like) superconducting transition occurs at T sub C approx 0.24 K from the resulting 'bad metal'. With increasing pressure, the structural phase transition is depressed but T sub C increases drastically. T sub C reaches a maximum value of 3.85 K at the critical pressure p sub C approx 2.8 GPa, where the structural distortion is completely suppressed and the system exhibits metallic behaviour. Higher pressures lead to a slight decrease of T sub C.
Mixtures of Ultracold Fermions with Unequal Masses
de Melo, Carlos A. R. Sa
2008-05-01
The quantum phases of ultracold fermions with unequal masses are discussed in continuum and lattice models for a wide variety of mixtures which exhibit Feshbach resonances, e.g., mixtures of ^6Li and ^40K. The evolution of superfluidity from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein condensation (BEC) regime in the continuum is analyzed as a function of scattering parameter, population imbalance and mass anisotropy. In the continuum case, regions corresponding to normal, phase-separated or coexisting uniform-superfluid/excess-fermion phases are identified and the possibility of topological phase transitions is discussed [1]. For optical lattices, the phase diagrams as a function of interaction strength, population imbalance, filling fraction and tunneling parameters are presented [2]. In addition to the characteristic phases of the continuum, a series of insulating phases emerge in the phase diagrams of optical lattices, including a Bose-Mott insulator (BMI), a Fermi-Pauli insulator (FPI), a phase-separated BMI/FPI mixture, and a Bose-Fermi checkerboard (BFC) phase. Lastly, the effects of harmonic traps and the emergence of unusual shell structures are discussed for mixtures of fermions with unequal masses. [1] M. Iskin, and C. A. R. S' a de Melo, Phys. Rev. Lett 97, 100404 (2006); [2] M. Iskin, and C. A. R. S' a de Melo, Phys. Rev. Lett. 99, 080403 (2007).
Institute of Scientific and Technical Information of China (English)
Yan Jing; Shan Lei; Wang Yue; Xiao Zhi-Li; Wen Hai-Hu
2008-01-01
Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper-Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.
Cooling compact stars and phase transitions in dense QCD
Energy Technology Data Exchange (ETDEWEB)
Sedrakian, Armen [J.W. Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)
2016-03-15
We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10{sup -3} spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars. (orig.)
Fukushima, Kenji; Kojo, Toru
2016-02-01
We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid-gas (or liquid-vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC-BCS (Bose Einstein Condensation-Bardeen Cooper Schrieffer) scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea, we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass-radius relation of the neutron star and constraints on parameters in the proposed scheme.
Cooling compact stars and phase transitions in dense QCD
Sedrakian, Armen
2015-01-01
We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the time-scale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best fit values larger than $10^{-3}$ ...
Richardson-Gaudin integrability in the contraction limit of the quasispin
De Baerdemacker, Stijn
2012-01-01
Background: The reduced, level-independent, Bardeen-Cooper-Schrieffer Hamiltonian is exactly diagonalizable by means of a Bethe Ansatz wavefunction, provided the free variables in the Ansatz are the solutions of the set of Richardson-Gaudin equations. On the one side, the Bethe Ansatz is a simple product state of generalised pair operators. On the other hand, the Richardson-Gaudin equations are strongly coupled in a non-linear way, making them prone to singularities. Unfortunately, it is non-trivial to give a clear physical interpretation to the Richardson-Gaudin variables because no physical operator is directly related to the individual variables. Purpose: The purpose of this paper is to shed more light on the critical behavior of the Richardson-Gaudin equations, and how this is related to the product wave structure of the Bethe Ansatz. Method: A pseudo-deformation of the quasi-spin algebra is introduced, leading towards a Heisenberg-Weyl algebra in the contraction limit of the deformation parameter. This e...
Low-lying excitations in a strongly interacting Fermi gas
Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus
2016-05-01
We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.
Peninsulas of the neutron stability of nuclei in the vicinity of neutron magic numbers
International Nuclear Information System (INIS)
On the basis of the Hartree-Fock method as implemented with Skyrme forces (Ska, SkM*, Sly4, and SkI2) and with allowance for an axial deformation and nucleon pairing in the Bardeen-Cooper-Schrieffer approximation, the properties of extremely neutron-rich even-even nuclei were calculated beyond the neutron drip line known earlier from theoretical calculations. It was shown that the chains of isotopes beyond the neutron drip line that contain N = 32, 58, 82, 126, and 184 neutrons form peninsulas of nuclei stable against the emission of one neutron and, in some cases, peninsulas of nuclei stable against the emission of two neutrons. The neutron- and proton-density distributions in nuclei forming stability peninsulas were found to be spherically symmetric. A mechanism via which the stability of nuclei might be restored beyond the neutron drip line was discussed. A comparison with the results of calculations by the Hartree-Fock-Bogolyubov method was performed for long chains of sulfur and gadolinium isotopes up to the neutron drip line.
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Kenji [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kojo, Toru, E-mail: fuku@nt.phys.s.u-tokyo.ac.jp, E-mail: torukojo@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States)
2016-02-01
We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid–gas (or liquid–vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC–BCS (Bose Einstein Condensation–Bardeen Cooper Schrieffer) scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea, we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass–radius relation of the neutron star and constraints on parameters in the proposed scheme.
The origin of multiple superconducting gaps in MgB2.
Souma, S; Machida, Y; Sato, T; Takahashi, T; Matsui, H; Wang, S-C; Ding, H; Kaminski, A; Campuzano, J C; Sasaki, S; Kadowaki, K
2003-05-01
Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.
The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect.
Hinks, D G; Claus, H; Jorgensen, J D
2001-05-24
Magnesium diboride, MgB2, was recently observed to become superconducting at 39 K, which is the highest known transition temperature for a non-copper-oxide bulk material. Isotope-effect measurements, in which atoms are substituted by isotopes of different mass to systematically change the phonon frequencies, are one of the fundamental tests of the nature of the superconducting mechanism in a material. In a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor, where the mechanism is mediated by electron-phonon coupling, the total isotope-effect coefficient (in this case, the sum of both the Mg and B coefficients) should be about 0.5. The boron isotope effect was previously shown to be large and that was sufficient to establish that MgB2 is a conventional superconductor, but the Mg effect has not hitherto been measured. Here we report the determination of the Mg isotope effect, which is small but measurable. The total reduced isotope-effect coefficient is 0.32, which is much lower than the value expected for a typical BCS superconductor. The low value could be due to complex materials properties, and would seem to require both a large electron-phonon coupling constant and a value of mu* (the repulsive electron-electron interaction) larger than found for most simple metals.
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
Goldie, Charles M
1991-01-01
This book is an introduction, for mathematics students, to the theories of information and codes. They are usually treated separately but, as both address the problem of communication through noisy channels (albeit from different directions), the authors have been able to exploit the connection to give a reasonably self-contained treatment, relating the probabilistic and algebraic viewpoints. The style is discursive and, as befits the subject, plenty of examples and exercises are provided. Some examples and exercises are provided. Some examples of computer codes are given to provide concrete illustrations of abstract ideas.
Merris, Russell
2001-01-01
A lively invitation to the flavor, elegance, and power of graph theoryThis mathematically rigorous introduction is tempered and enlivened by numerous illustrations, revealing examples, seductive applications, and historical references. An award-winning teacher, Russ Merris has crafted a book designed to attract and engage through its spirited exposition, a rich assortment of well-chosen exercises, and a selection of topics that emphasizes the kinds of things that can be manipulated, counted, and pictured. Intended neither to be a comprehensive overview nor an encyclopedic reference, th
Diestel, Reinhard
2012-01-01
HauptbeschreibungThis standard textbook of modern graph theory, now in its fourth edition, combinesthe authority of a classic with the engaging freshness of style that is the hallmarkof active mathematics. It covers the core material of the subject with concise yetreliably complete proofs, while offering glimpses of more advanced methodsin each field by one or two deeper results, again with proofs given in full detail.The book can be used as a reliable text for an introductory course, as a graduatetext, and for self-study. Rezension"Deep, clear, wonderful. This is a serious book about the
DEFF Research Database (Denmark)
Bertelsen, Olav Wedege; Bødker, Susanne
2003-01-01
The rise of personal computer challenged mainframes systems for automation of existing work routine. Furthermore it brought forth a need to focus on how to work on materials and objects through the computer. In search for theoretical and methodical perspectives it seemed promising to turn towards...... the young HCI research tradition. But HCI was already facing problems: lack of consideration for other aspects of human behavior, for interaction with other people, for culture. Cognitive science-based theories lacked means to address several issues that came out of the empirical projects....
International Nuclear Information System (INIS)
Techniques used in conventional project appraisal are mathematically very simple in comparison to those used in reservoir modelling, and in the geosciences. Clearly it would be possible to value assets in mathematically more sophisticated ways if it were meaningful and worthwhile so to do. The DCf approach in common use has recognized limitations; the inability to select a meaningful discount rate being particularly significant. Financial Theory has advanced enormously over the last few years, along with computational techniques, and methods are beginning to appear which may change the way we do project evaluations in practice. The starting point for all of this was a paper by Black and Scholes, which asserts that almost all corporate liabilities can be viewed as options of varying degrees of complexity. Although the financial presentation may be unfamiliar to engineers and geoscientists, some of the concepts used will not be. This paper outlines, in plain English, the basis of option pricing theory for assessing the market value of a project. it also attempts to assess the future role of this type of approach in practical Petroleum Exploration and Engineering economics. Reference is made to relevant published Natural Resource literature
International Nuclear Information System (INIS)
With reference to highly debated sustainable growth strategies to counter pressing interrelated global environmental and socio-economic problems, this paper reviews economic and resource development theories proposed by classical and neoclassical economists. The review evidences the growing debate among public administration decision makers regarding appropriate methods to assess the worth of natural resources and ecosystems. Proposed methods tend to be biased either towards environmental protection or economic development. Two major difficulties in the effective implementation of sustainable growth strategies are also evidenced - the management of such strategies would require appropriate revisions to national accounting systems, and the dynamic flow of energy and materials between an economic system and the environment would generate a sequence of unstable structures evolving in a chaotic and unpredictable way
St-Amant, Patrick
2010-01-01
We will see that key concepts of number theory can be defined for arbitrary operations. We give a generalized distributivity for hyperoperations (usual arithmetic operations and operations going beyond exponentiation) and a generalization of the fundamental theorem of arithmetic for hyperoperations. We also give a generalized definition of the prime numbers that are associated to an arbitrary n-ary operation and take a few steps toward the development of its modulo arithmetic by investigating a generalized form of Fermat's little theorem. Those constructions give an interesting way to interpret diophantine equations and we will see that the uniqueness of factorization under an arbitrary operation can be linked with the Riemann zeta function. This language of generalized primes and composites can be used to restate and extend certain problems such as the Goldbach conjecture.
Chong, Chi Tat; Friedman, Sy D.
1996-01-01
In this article, intended for the Handbook of Recursion Theory, we survey recursion theory on the ordinal numbers, with sections devoted to $\\alpha$-recursion theory, $\\beta$-recursion theory and the study of the admissibility spectrum.
General Theories of Regulation
Hertog, J.A. den
1999-01-01
This chapter makes a distinction between three types of theories of regulation: public interest theories, the Chicago theory of regulation and the public choice theories. The Chicago theory is mainly directed at the explanation of economic regulation; public interest theories and public choice theor
Polchinski, Joseph
1994-01-01
The first part is an introduction to conformal field theory and string perturbation theory. The second part deals with the search for a deeper answer to the question posed in the title. Contents: 1. Conformal Field Theory 2. String Theory 3. Vacua and Dualities 4. String Field Theory or Not String Field Theory 5. Matrix Models
Review of Hydroelasticity Theories
DEFF Research Database (Denmark)
Chen, Xu-jun; Wu, You-sheng; Cui, Wei-cheng;
2006-01-01
Existing hydroelastic theories are reviewed. The theories are classified into different types: two-dimensional linear theory, two-dimensional nonlinear theory, three-dimensional linear theory and three-dimensional nonlinear theory. Applications to analysis of very large floating structures (VLFS...
THEORIES OF CORPORATE GOVERNANCE
Directory of Open Access Journals (Sweden)
Sorin Nicolae BORLEA
2013-03-01
Full Text Available This study attempts to provide a theoretical framework for the corporate governance debate. The review of various corporate governance theories enhances the major objective of corporate governance which is maximizing the value for shareholders by ensuring good social and environment performances. The theories of corporate governance are rooted in agency theory with the theory of moral hazard’s implications, further developing within stewardship theory and stakeholder theory and evolving at resource dependence theory, transaction cost theory and political theory. Later, to these theories was added ethics theory, information asymmetry theory or the theory of efficient markets. These theories are defined based on the causes and effects of variables such as: the configuration of the board of directors, audit committee, independence of managers, the role of top management and their social relations beyond the legal regulatory framework. Effective corporate governance requires applying a combination
de Boer, Jan
2002-01-01
An overview of some of the developments in string theory over the past two years is given, focusing on four topics: realistic (standard model like) models from string theory, geometric engineering and theories with fluxes, the gauge theory-gravity correspondence, and time dependent backgrounds and string theory. Plenary talk at ICHEP'02, Amsterdam, July 24-31, 2002.
Müller, Gert; Sacks, Gerald
1990-01-01
These proceedings contain research and survey papers from many subfields of recursion theory, with emphasis on degree theory, in particular the development of frameworks for current techniques in this field. Other topics covered include computational complexity theory, generalized recursion theory, proof theoretic questions in recursion theory, and recursive mathematics.
Decidability of formal theories and hyperincursivity theory
Grappone, Arturo G.
2000-05-01
This paper shows the limits of the Proof Standard Theory (briefly, PST) and gives some ideas of how to build a proof anticipatory theory (briefly, PAT) that has no such limits. Also, this paper considers that Gödel's proof of the undecidability of Principia Mathematica formal theory is not valid for axiomatic theories that use a PAT to build their proofs because the (hyper)incursive functions are self-representable.
Guerra, Francesco
2005-01-01
A coincise review about Euclidean (Quantum) Field Theory is presented. It deals with the general structural properties, the connections with Quantum Field Theory, the exploitation in Constructive Quantum Field Theory, and the physical interpretation.
Mangani, P
2011-01-01
This title includes: Lectures - G.E. Sacks - Model theory and applications, and H.J. Keisler - Constructions in model theory; and, Seminars - M. Servi - SH formulas and generalized exponential, and J.A. Makowski - Topological model theory.
Decoding the architectural theory
Institute of Scientific and Technical Information of China (English)
Gu Mengchao
2008-01-01
Starting from the illustration of the definition and concept of the architectural theory, the author established his unique understanding about the framework of the architectural theory and the innovation of the architectural theory underlined by Chinese characteristics.
Grounded theory, feminist theory, critical theory: toward theoretical triangulation.
Kushner, Kaysi Eastlick; Morrow, Raymond
2003-01-01
Nursing and social science scholars have examined the compatibility between feminist and grounded theory traditions in scientific knowledge generation, concluding that they are complementary, yet not without certain tensions. This line of inquiry is extended to propose a critical feminist grounded theory methodology. The construction of symbolic interactionist, feminist, and critical feminist variants of grounded theory methodology is examined in terms of the presuppositions of each tradition and their interplay as a process of theoretical triangulation.
THEORIES OF CORPORATE GOVERNANCE
Sorin Nicolae BORLEA; Monica-Violeta ACHIM
2013-01-01
This study attempts to provide a theoretical framework for the corporate governance debate. The review of various corporate governance theories enhances the major objective of corporate governance which is maximizing the value for shareholders by ensuring good social and environment performances. The theories of corporate governance are rooted in agency theory with the theory of moral hazard’s implications, further developing within stewardship theory and stakeholder theory and evolving at re...
Murray, Paul R.; Paul R., Murray
2001-01-01
This paper deals with two difficult questions: (1) What is literary theory? and (2) What does literary theory do? Literary theory is contrasted to literary criticism, and theory is found to be a more all-embracing, inclusive field than criticism, which is tied more closely to literature itself. Literary theory is shown to be a multitude of differing ways of looking at literature, with each theory yielding differing results.
Supersymmetric Gauge Theories from String Theory
Metzger, Steffen
2005-01-01
The subject of this thesis are various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain subcycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. In particular, the low energy effective superpotential...
Foundations for a theory of gravitation theories
Thorne, K. S.; Lee, D. L.; Lightman, A. P.
1972-01-01
A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.
Jardine, John F
2015-01-01
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, n...
Rationality, Theory Acceptance and Decision Theory
Directory of Open Access Journals (Sweden)
J. Nicolas Kaufmann
1998-06-01
Full Text Available Following Kuhn's main thesis according to which theory revision and acceptance is always paradigm relative, I propose to outline some possible consequences of such a view. First, asking the question in what sense Bayesian decision theory could serve as the appropriate (normative theory of rationality examined from the point of view of the epistemology of theory acceptance, I argue that Bayesianism leads to a narrow conception of theory acceptance. Second, regarding the different types of theory revision, i.e. expansion, contraction, replacement and residuals shifts, I extract from Kuhn's view a series of indications showing that theory replacement cannot be rationalized within the framework of Bayesian decision theory, not even within a more sophisticated version of that model. Third, and finally, I will point to the need for a more comprehensive model of rationality than the Bayesian expected utility maximization model, the need for a model which could better deal with the different aspects of theory replacement. I will show that Kuhn's distinction between normal and revolutionary science gives us several hints for a more adequate theory of rationality in science. I will also show that Kuhn is not in a position to fully articulate his main ideas and that he well be confronted with a serious problem concerning collective choice of a paradigm.
de Bruin, B.P.
2005-01-01
Game theory is the mathematical study of strategy and conflict. It has wide applications in economics, political science, sociology, and, to some extent, in philosophy. Where rational choice theory or decision theory is concerned with individual agents facing games against nature, game theory deals
Moschovakis, YN
1987-01-01
Now available in paperback, this monograph is a self-contained exposition of the main results and methods of descriptive set theory. It develops all the necessary background material from logic and recursion theory, and treats both classical descriptive set theory and the effective theory developed by logicians.
Contemporary theories of democracy
Directory of Open Access Journals (Sweden)
Mladenović Ivan
2008-01-01
Full Text Available The aim of this paper is two-fold: first, to analyze several contemporary theories of democracy, and secondly, to propose a theoretical framework for further investigations based on analyzed theories. The following four theories will be analyzed: pluralism, social choice theory, deliberative democracy and participatory democracy.
Bursa, Francis; Kroyter, Michael
2010-01-01
String field theory is a candidate for a full non-perturbative definition of string theory. We aim to define string field theory on a space-time lattice to investigate its behaviour at the quantum level. Specifically, we look at string field theory in a one dimensional linear dilaton background. We report the first results of our simulations.
DEFF Research Database (Denmark)
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Lassig, Michael
2011-01-01
A systematic theory is introduced that describes stochastic effects in game theory. In a biological context, such effects are relevant for the evolution of finite populations with frequency-dependent selection. They are characterized by quantum Nash equilibria, a generalization of the well-known Nash equilibrium points in classical game theory. The implications of this theory for biological systems are discussed in detail.
Zimmerman Jones, Andrew
2010-01-01
Making Everything Easier!. String Theory for Dummies. Learn:. The basic concepts of this controversial theory;. How string theory builds on physics concepts;. The different viewpoints in the field;. String theory's physical implications. Andrew Zimmerman Jones. Physics Guide, About.com. with Daniel Robbins, PhD in Physics. Your plain-English guide to this complex scientific theory. String theory is one of the most complicated sciences being explored today. Not to worry though! This informative guide clearly explains the basics of this hot topic, discusses the theory's hypotheses and prediction
Institute of Scientific and Technical Information of China (English)
梁景宏
2010-01-01
In this essay, I wish to invite young scholars to learn, use, and contribute to accounting theory. In this invitation, I argue theory has lineage, is important and can be fun. Its lineage comes from the post-WWII scientific revolution in management education and research. Theory is important because it is the successful interaction between theory and empirical work that ultimately advances an academic discipline. Theory can be fun because when done well, learning, using and contributing to theory can be an enjoyable activity for all scholars, either as consumers or as producers of theory.
Noncommutative Gauge Theories in Matrix Theory
Ho, P M; Ho, Pei-Ming; Wu, Yong-Shi
1998-01-01
We present a general framework for Matrix theory compactified on a quotient space of n dimensional Euclidean space over G, with G a discrete group of Euclidean motions. The general solution to the quotient conditions gives a gauge theory on a noncommutative space. We characterize the resulting noncommutative gauge theory in terms of the twisted group algebra of G associated with a projective regular representation.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The basic ideas of game theory were originated from the problems of maximum and minimum given by J.Yon Neumann in 1928. Later, wars accelerated the study of game theory, there are many developments that contributed to the advancement of game theory, many problems of optimum appeared in economic development process. Scientists applied mathematic methods to studying game theory to make the theory more profound and perfect. The axiomatic structure of game theory was nearly complete in 1944. The path of the development of game theory started from finite to infinite, from two players to many players, from expressing gains with quantity to showing the ending of game theory with abstract result, and from certainty problems to random problems. Thus development of game theory is closely related to the economic development. In recent years, the research on the non-differentiability of Shapley value posed by Belgian Mertens is one of the advanced studies in game theory.
Gauge theory loop operators and Liouville theory
International Nuclear Information System (INIS)
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
DEFF Research Database (Denmark)
Andersen, Jack
2015-01-01
Purpose To provide a small overview of genre theory and its associated concepts and to show how genre theory has had its antecedents in certain parts of the social sciences and not in the humanities. Findings The chapter argues that the explanatory force of genre theory may be explained with its...... emphasis on everyday genres, de facto genres. Originality/value By providing an overview of genre theory, the chapter demonstrates the wealth and richness of forms of explanations in genre theory....
Ali Rabbani Khorasghani; Mohammad Abbaszadeh
2010-01-01
AbstractAccording to social changes in global level, social scientist introduced new theories to explanation of socialphenomena. According to appearance new theories, research methods have changed. The Idea is that,Simultaneity with Appearance post positivist theories, research approaches such a grounded theory hasestablished. This method, acts in the base of qualitative methods and use systematic complex of multipleProcedures to gathering data for theory development upon induction. This meth...
Conlon, Joseph
2016-01-01
Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.
Teaching Theory X and Theory Y in Organizational Communication
Noland, Carey
2014-01-01
The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…
Generalizability Theory and Classical Test Theory
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
[Topics in field theory and string theory
International Nuclear Information System (INIS)
In the past year, I have continued to investigate the relations between conformal field theories and lattice statistical mechanical models. I have also tried to extend some of these results to higher dimensions and to find applications in string theories and other contexts
Generalizability theory and item response theory
Glas, C.A.W.; Eggen, T.J.H.M.; Veldkamp, B.P.
2012-01-01
Item response theory is usually applied to items with a selected-response format, such as multiple choice items, whereas generalizability theory is usually applied to constructed-response tasks assessed by raters. However, in many situations, raters may use rating scales consisting of items with a s
Elements of a theory of algebraic theories
Hyland, Martin
2013-01-01
Kleisli bicategories are a natural environment in which the combinatorics involved in various notions of algebraic theory can be handled in a uniform way. The setting allows a clear account of comparisons between such notions. Algebraic theories, symmetric operads and nonsymmetric operads are treated as examples.
Fabris, J C
2015-01-01
General Relativity is the modern theory of gravitation. It has replaced the newtonian theory in the description of the gravitational phenomena. In spite of the remarkable success of the General Relativity Theory, the newtonian gravitational theory is still largely employed, since General Relativity, in most of the cases, just makes very small corrections to the newtonian predictions. Moreover, the newtonian theory is much simpler, technically and conceptually, when compared to the relativistic theory. In this text, we discuss the possibility of extending the traditional newtonian theory in order to incorporate typical relativistic effects, but keeping the simplicity of the newtonian framework. We denominate these extensions neo-newtonian theories. These theories are discussed mainly in the contexts of cosmology and compact astrophysical objects.
Directory of Open Access Journals (Sweden)
Ali Rabbani Khorasghani
2010-01-01
Full Text Available AbstractAccording to social changes in global level, social scientist introduced new theories to explanation of socialphenomena. According to appearance new theories, research methods have changed. The Idea is that,Simultaneity with Appearance post positivist theories, research approaches such a grounded theory hasestablished. This method, acts in the base of qualitative methods and use systematic complex of multipleProcedures to gathering data for theory development upon induction. This method with characteristics as ifflexibility, reflexivity, has caused many of researchers used it. In the present article, we paid to introductionof grounded theory and its critics.
Directory of Open Access Journals (Sweden)
Regina Szylit Bousso
2014-02-01
Full Text Available The theory framework of nursing science is built in a dynamic process that arises from practice and is reproduced through research, mainly by analysis and development of concepts and theories. This study presents a theory reflection on nursing knowledge construction and points out subsidies for future studies in the area. The interrelation among theory, research, and clinical practice is required for continuous development of nursing as a profession and science. Ideally, the practice must be based on theory that is validated by research. Therefore, theory, research, and practice affect each other reciprocally and continuously.
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G2-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G2-manifold is known. Here we construct families of metrics on compact weak G2-manifolds, which contain two conical singularities. Weak G2-manifolds have properties that are similar to the ones of proper G2-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E8 x E8-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Introduction to percolation theory
Stauffer, Dietrich
1991-01-01
Percolation theory deals with clustering, criticallity, diffusion, fractals, phase transitions and disordered systems. This book covers the basic theory for the graduate, and also professionals dealing with it for the first time
Combinatorics and field theory
Bender, Carl M.; Brody, Dorje C.; Meister, Bernhard K.
2006-01-01
For any given sequence of integers there exists a quantum field theory whose Feynman rules produce that sequence. An example is illustrated for the Stirling numbers. The method employed here offers a new direction in combinatorics and graph theory.
DEFF Research Database (Denmark)
Clemmensen, Torkil; Kaptelinin, Victor; Nardi, Bonnie
2016-01-01
This paper reports a study of the use of activity theory in human–computer interaction (HCI) research. We analyse activity theory in HCI since its first appearance about 25 years ago. Through an analysis and meta-synthesis of 109 selected HCI activity theory papers, we created a taxonomy of 5...... different ways of using activity theory: (1) analysing unique features, principles, and problematic aspects of the theory; (2) identifying domain-specific requirements for new theoretical tools; (3) developing new conceptual accounts of issues in the field of HCI; (4) guiding and supporting empirical...... analyses of HCI phenomena; and (5) providing new design illustrations, claims, and guidelines. We conclude that HCI researchers are not only users of imported theory, but also theory-makers who adapt and develop theory for different purposes....
Zielenkiewicz, Wojciech
2004-01-01
The purpose of this book is to give a comprehensive description of the theoretical fundamentals of calorimetry. The considerations are based on the relations deduced from the laws and general equations of heat exchange theory and steering theory.
Theories of Career Development. A Comparison of the Theories.
Osipow, Samuel H.
These seven theories of career development are examined in previous chapters: (1) Roe's personality theory, (2) Holland's career typology theory, (3) the Ginzberg, Ginsburg, Axelrod, and Herma Theory, (4) psychoanalytic conceptions, (5) Super's developmental self-concept theory, (6) other personality theories, and (7) social systems theories.…
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Güth, Werner
2000-01-01
Whereas orthodox game theory relies on the unrealistic assumption of (commonly known) perfect rationality, participants in game playing experiments are at best boundedly rational. This makes it necessary to supplement orthodox game theory by a behavioral theory of game playing. We first point out that this applies also to (one person-) decision theory. After reviewing the influential experiments based on repeated games and the ultimatum game the typical reactions to the striking experimental ...
Linker, Patrick
2016-01-01
A couple of quantum gravity theories were proposed to make theoretical predictions about the behavior of gravity. The most recent approach to quantum gravity, called E-theory, is proposed mathematical, but there is not formulated much about what dynamics of gravity this theory proposes. This research paper treats the main results of the application of E-theory to General relativity involving conservation laws and scattering of particles in presence of gravity. Also the low-energy limit of thi...
International Nuclear Information System (INIS)
Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors
Thulasiraman, K
2011-01-01
This adaptation of an earlier work by the authors is a graduate text and professional reference on the fundamentals of graph theory. It covers the theory of graphs, its applications to computer networks and the theory of graph algorithms. Also includes exercises and an updated bibliography.
Comparing Measurement Theories.
Schumacker, Randall E.
In comparing measurement theories, it is evident that the awareness of the concept of measurement error during the time of Galileo has lead to the formulation of observed scores comprising a true score and error (classical theory), universe score and various random error components (generalizability theory), or individual latent ability and error…
Matsumoto, Kohji
2002-01-01
The book includes several survey articles on prime numbers, divisor problems, and Diophantine equations, as well as research papers on various aspects of analytic number theory such as additive problems, Diophantine approximations and the theory of zeta and L-function Audience Researchers and graduate students interested in recent development of number theory
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Battenfeld, Ingo
2008-01-01
This thesis presents Topological Domain Theory as a powerful and flexible framework for denotational semantics. Topological Domain Theory models a wide range of type constructions and can interpret many computational features. Furthermore, it has close connections to established frameworks for denotational semantics, as well as to well-studied mathematical theories, such as topology and computable analysis.
Maasland, E.
2012-01-01
Auction theory is a branch of game theory that considers human behavior in auction markets and the ensuing market outcomes. It is also successfully used as a tool to design real-life auctions. This thesis contains five essays addressing a variety of topics within the realm of auction theory. The fir
Algorithmic information theory
P.D. Grünwald; P.M.B. Vitányi
2008-01-01
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain the main concepts of this quantitative approach to defining `information'. We discuss the extent to which Kolmogorov's and Shannon's information theory have a common purpose, and where they are
Algorithmic information theory
P.D. Grünwald; P.M.B. Vitányi
2008-01-01
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain the main concepts of this quantitative approach to defining 'information'. We discuss the extent to which Kolmogorov's and Shannon's information theory have a common purpose, and where they are
Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez
2012-01-01
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
Reflections on Activity Theory
Bakhurst, David
2009-01-01
It is sometimes suggested that activity theory represents the most important legacy of Soviet philosophy and psychology. But what exactly "is" activity theory? The canonical account in the West is given by Engestrom, who identifies three stages in the theory's development: from Vygotsky's insights, through Leontiev's articulation of the…
Peim, Nick
2009-01-01
This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…
Superspace conformal field theory
International Nuclear Information System (INIS)
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Missinne, Leo E.; Wilcox, Victoria
This paper discusses the life, theories, and therapeutic techniques of psychotherapist, Viktor E. Frankl. A brief biography of Frankl is included discussing the relationship of his early experiences as a physician to his theory of personality. Frankl's theory focusing on man's need for meaning and emphasizing the spiritual dimension in each human…
Positioning Theory in Paradigms
Institute of Scientific and Technical Information of China (English)
FU Xiao-qiu
2015-01-01
This article discusses the importance of theory and paradigm to a researcher. It starts from introducing and analyzing the definition of the two terms, by using the theories in the field of intercultural communication as examples. To a good researcher, he needs not only clarifying the paradigm his research is positioned, but also integrating the theories in his paradigm.
Vazzana, Anthony; Garth, David
2007-01-01
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.
Theory and context / Theory in context
DEFF Research Database (Denmark)
Glaveanu, Vlad Petre
2014-01-01
It is debatable whether the psychology of creativity is a field in crisis or not. There are clear signs of increased fragmenta-tion and a scarcity of integrative efforts, but is this necessari-ly bad? Do we need more comprehensive theories of creativ-ity and a return to old epistemological...... questions? This de-pends on how one understands theory. Against a view of theoretical work as aiming towards generality, universality, uniformity, completeness, and singularity, I advocate for a dynamic perspective in which theory is plural, multifaceted, and contextual. Far from ‘waiting for the Messiah......’, theoreti-cal work in the psychology of creativity can be integrative without having the ambition to explain or, even more, predict, creative expression across all people, at all times, and in all domains. To avoid such ambition, the psychology of creativi-ty requires a theory of context that doesn...
Rotor theories by Professor Joukowsky: Momentum theories
DEFF Research Database (Denmark)
van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.
2015-01-01
This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role......, and the contributions by individual researchers like Lanchester, Prandtl, Betz and Joukowslcy himself. After the one-dimensional momentum theory was well established, the introduction of torque and angular momentum was the next step. Joukowslcy has led the basis for this step, but Glauert's Blade Element Momentum still...... of inviscid flow. For very low tip speed ratios the general momentum theory gives unphysical results which disappear after applying a perturbation parameter representing phenomena not captured by the Euler equations. (C) 2014 Elsevier Ltd. All rights reserved....
La theorie autrement (Theory in Another Light).
Bertocchini, Paola; Costanzo, Edwige
1985-01-01
Outlines a technique using articles from "Le Francais dans le Monde" to teach reading comprehension and theory simultaneously to teachers of French as a second language. Describes a program in Italy using this approach. (MSE)
Family systems theory, attachment theory, and culture.
Rothbaum, Fred; Rosen, Karen; Ujiie, Tatsuo; Uchida, Nobuko
2002-01-01
Family systems theory and attachment theory have important similarities and complementarities. Here we consider two areas in which the theories converge: (a) in family system theorists' description of an overly close, or "enmeshed," mother-child dyad, which attachment theorists conceptualize as the interaction of children's ambivalent attachment and mothers' preoccupied attachment; (b) in family system theorists' description of the "pursuer-distance cycle" of marital conflict, which attachment theorists conceptualize as the interaction of preoccupied and dismissive partners. We briefly review family systems theory evidence, and more extensively review attachment theory evidence, pertaining to these points of convergence. We also review cross-cultural research, which leads us to conclude that the dynamics described in both theories reflect, in part, Western ways of thinking and Western patterns of relatedness. Evidence from Japan suggests that extremely close ties between mother and child are perceived as adaptive, and are more common, and that children experience less adverse effects from such relationships than do children in the West. Moreover, in Japan there is less emphasis on the importance of the exclusive spousal relationship, and less need for the mother and father to find time alone to rekindle romantic, intimate feelings and to resolve conflicts by openly communicating their differences. Thus, the "maladaptive" pattern frequently cited by Western theorists of an extremely close mother-child relationship, an unromantic, conflictual marriage characterized by little verbal communication and a peripheral, distant father, may function very differently in other cultures. While we believe that both theories will be greatly enriched by their integration, we caution against the application of either theory outside the cultures in which they were developed.
Irvine, J M
1972-01-01
Nuclear Structure Theory provides a guide to nuclear structure theory. The book is comprised of 23 chapters that are organized into four parts; each part covers an aspect of nuclear structure theory. In the first part, the text discusses the experimentally observed phenomena, which nuclear structure theories need to look into and detail the information that supports those theories. The second part of the book deals with the phenomenological nucleon-nucleon potentials derived from phase shift analysis of nucleon-nucleon scattering. Part III talks about the phenomenological parameters used to de
Prest, M
1988-01-01
In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of module
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
Kilmister, Clive William
1970-01-01
Special Theory of Relativity provides a discussion of the special theory of relativity. Special relativity is not, like other scientific theories, a statement about the matter that forms the physical world, but has the form of a condition that the explicit physical theories must satisfy. It is thus a form of description, playing to some extent the role of the grammar of physics, prescribing which combinations of theoretical statements are admissible as descriptions of the physical world. Thus, to describe it, one needs also to describe those specific theories and to say how much they are limit
Generalized Teleparallel Theory
Junior, Ednaldo L B
2015-01-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the Teleparallel Theory still keeping the invariance of local Lorentz transformations. We show that our theory falls, to a certain limit of a real parameter, in the $f(R)$ Gravity or, to another limit of the same real parameter, in a modified $f(T)$ Gravity, interpolating between these two theories and still can fall on several other theories. We explicitly show the equivalence with $f(R)$ Gravity for cases of Friedmann-Lemaitre-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads.
Variational Transition State Theory
Energy Technology Data Exchange (ETDEWEB)
Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)
2016-09-29
This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.
Gross, Jonathan L
2003-01-01
The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approaches as well as ""pure"" graph theory. They then carefully edited the compilation to produce a unified, authoritative work ideal for ready reference.Designed and edited with non-experts in mind, the Handbook of Graph Theory makes information easy to fi
Directory of Open Access Journals (Sweden)
Antonio De Felice
2010-06-01
Full Text Available Over the past decade, f(R theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R theories to cosmology and gravity – such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans–Dicke theory and Gauss–Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.
Generalization Rough Set Theory
Institute of Scientific and Technical Information of China (English)
XIAO Di; ZHANG Jun-feng; HU Shou-song
2008-01-01
In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed.At first, the degree of general importance of an attribute and attribute subsets are presented.Then, depending on the degree of general importance of attribute, the space distance can be measured with weighted method.At last, a generalization rough set theory based on the general near neighborhood relation is proposed.The proposed theory partitions the universe into the tolerant modules, and forms lower approximation and upper approximation of the set under general near neighborhood relationship, which avoids the discretization in Pawlak's rough set theory.
Barron, E N
2013-01-01
An exciting new edition of the popular introduction to game theory and its applications The thoroughly expanded Second Edition presents a unique, hands-on approach to game theory. While most books on the subject are too abstract or too basic for mathematicians, Game Theory: An Introduction, Second Edition offers a blend of theory and applications, allowing readers to use theory and software to create and analyze real-world decision-making models. With a rigorous, yet accessible, treatment of mathematics, the book focuses on results that can be used to
Förste, S; Forste, Stefan; Louis, Jan
1996-01-01
In this lecture we review some of the recent developments in string theory on an introductory and qualitative level. In particular we focus on S-T-U dualities of toroidally compactified ten-dimensional string theories and outline the connection to M-theory. Dualities among string vacua with less supersymmetries in six and four space-time dimensions is discussed and the concept of F-theory is briefly presented. (Lecture given by J. Louis at the Workshop on Gauge Theories, Applied Supersymmetry and Quantum Gravity, Imperial College, London, UK, July 5--10, 1996.)
Introduction to bifurcation theory
International Nuclear Information System (INIS)
Bifurcation theory is a subject with classical mathematical origins. The modern development of the subject starts with Poincare and the qualitative theory of differential equations. In recent years, the theory has undergone a tremendous development with the infusion of new ideas and methods from dynamical systems theory, singularity theory, group theory, and computer-assisted studies of dynamics. As a result, it is difficult to draw the boundaries of the theory with any confidence. In this review, the objects in question will be parameterized families of dynamical systems (vector fields or maps). In the sciences these families commonly arise when one formulates equations of motion to model a physical system. We specifically analyze how the time evolution near an equilibrium can change as parameters are varied; for simplicity we consider the case of a single parameter only
Niederreiter, Harald
2015-01-01
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
[Introduction to grounded theory].
Wang, Shou-Yu; Windsor, Carol; Yates, Patsy
2012-02-01
Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.
Johnson, C V
2006-01-01
We present a class of solvable models that resemble string theories in many respects but have a strikingly different non-perturbative sector. In particular, there are no exponentially small contributions to perturbation theory in the string coupling, which normally are associated with branes and related objects. Perturbation theory is no longer an asymptotic expansion, and so can be completely re-summed to yield all the non-perturbative physics. We examine a number of other properties of the theories, for example constructing and examining the physics of loop operators, which can be computed exactly, and gain considerable understanding of the difference between these new theories and the more familiar ones, including the possibility of how to interpolate between the two types. Interestingly, the models we exhibit contain a family of zeros of the partition function which suggest a novel phase structure. The theories are defined naturally by starting with models that yield well-understood string theories and al...
A Reconciliation of Collision Theory and Transition State Theory
Yi, Y. G.
2001-01-01
A statistical-mechanical treatment of collision leads to a formal connection with transition-state theory, suggesting that collision theory and transition-state theory might be joined ultimately as a collision induced transition state theory.
EIA THEORIES — ALL CHINESE WHISPERS AND NO CRITICAL THEORY
JOE WESTON
2010-01-01
There have been a large number of attempts to develop a theory or theories of Environmental Impact Assessment in order to justify its use in environmental decision-making. A review of academic articles demonstrates that these theories are largely drawn from planning theories. Planning theories are themselves a development of sociological theories of decision-making and from one particular strand of sociological theory. In this review of the theories of EIA it is argued that an understanding o...
Blagojević, Milutin
2012-01-01
During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...
Matrix String Theory As A Generalized Quantum Theory
Minic, Djordje
1997-01-01
Matrix String Theory of Banks, Fischler, Shenker and Susskind can be understood as a generalized quantum theory (provisionally named "quansical" theory) which differs from Adler's generalized trace quantum dynamics. The effective Matrix String Theory Hamiltonian is constructed in a particular fermionic realization of Matrix String Theory treated as an example of "quansical" theory.
The theories on inequality: class theory
Directory of Open Access Journals (Sweden)
Ali Arslan
2006-11-01
Full Text Available This stduy aims to analyse class theory and its major expansions. In addition, the problems and dilemmas of class theory are discussed. Social inequality, either socially or economically, is one of the most common features of capitalist societies. Some people or some social groups have more money, more prestige, more privilege and more influence on the decision making process. Two main strategies have been used for analysing and explaining inequalities. The first and most popular strategy is “class theory” which stresses ownership and control to explain class differentiation. It concentrates on the inequalities based mainly on the ownership or non-ownership of economic resources. Class theory was fathered by Karl Marx and especially developed by Marxist writers. Class analysts focus on identification of classes as the major social forces of society. There are two main schools of thought in class theory with their variations within each school: a Marxist Class Theory, b Weberian Class Theory If the Marxist class analysis and Weberian class analysis are examined it will be seen that, two approaches are incompatible and it is impossible to synthesise them. Nevertheless, Hindess sees Weber’s view as the correction of and supplement to Marx’s ideas rather than an alternative. When the ideas of Marx and Weber are compared, it will be clearly seen that both Marx and Weber explain classes in relation to the economy. Nevertheless, while Marx defines classes in terms of the relations of production, Weber defines them in relation to the market.
Chung, Daniel J H
2016-01-01
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.
Linch, William D
2015-01-01
We consider, at the linearized level, the superspace formulation of lower-dimensional F-theory. In particular, we describe the embedding of 3D Type II supergravity of the superstring, or 4D, N=1 supergravity of M-theory, into the corresponding F-theory in full detail, giving the linearized action and gauge transformations in terms of the prepotential. This manifestly supersymmetric formulation reveals some features not evident from a component treatment, such as Weyl and local S-supersymmetry invariances. The linearized multiplet appears as a super 3-form (just as that for the manifestly T-dual theory is a super 2-form), reflecting the embedding of M-theory (as the T-dual theory embeds Type II supergravity). We also give the embedding of matter multiplets into this superspace, and derive the F-constraint from the gauge invariance of the gauge invariance.
DEFF Research Database (Denmark)
Zander, Pär Ola
2014-01-01
theory. The paper concludes that Baudrillard's arguments for abandoning Marxism altogether are problematic and led him away from developing a more finished theory of value. This is unfortunate because it remains a project that may yield interesting insights even in contemporary social theory, not least......Jean Baudrillard outlined a theory of value in his early writings that built on, but also criticized, Marxist concepts of use value and exchange value. In this paper, I use a close reading to delineate the diachronic transition of Baudrillard's writings toward anti-Marxism and (allegedly......) postmodernism, with specific focus on his value theory, in order to understand his own reasons for abandoning his previous position. I then follow the marginal stream of scholars who are making use of the early Baudrillard. I find his value theory promising but still a mere sketch rather than an actual general...
Algebraic quantum field theory
International Nuclear Information System (INIS)
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
DEFF Research Database (Denmark)
Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed
2016-01-01
is the mechanism of increasing in the photon energy that causes increase in its frequency growth? So, in CPH theory (Creative particles of Higgs Theory), it has been attempted to scrutinize the interface between classical mechanics, relativity and quantum mechanics through a novel approach to the established......There are various theories in physics, but nature is unique. This is not nature's problem that we have various theories; nature obeys simple and unique law. We should improve our theories. Universal constancy of the speed of light undergoes the question whether the limit on the light speed...... physical events. Emphasizing on these phenomena and presenting the relation between photon's energy and frequency, CPH Theory is to draw attention on the importance of constancy of speed in relation to the mass structure which will be scrutinized in reviewing relativistic Newton's second law. The results...
Thorbj, rn Knudsen
2002-01-01
The present article provides a minimal description of the causal structure of economic selection theory and outlines how the internal selection dynamics of business organisations can be reconciled with selection in competitive markets. In addition to generic similarity in terms of the Darwinian principles of variation, continuity and selection, it is argued that economic selection theory should mimic the causal structure of neo-Darwinian theory. Two of the most influential explanations of eco...
Vinokurov, Evgeny
2007-01-01
The manuscript represents a comprehensive theory of enclaves and exclaves. The theory comprises both political and economic aspects. It is the first general book on the world’s enclaves and exclaves. Due to its comprehensive and pioneer character, it has a potential to become a book of reference for the nascent and promising research field. In its attempt to provide a fully-fledged theory of enclaves and exclaves, it covers a wide scope of regions and territories throughout the world. Basical...
Tong, David
2009-01-01
This is a one semester course on bosonic string theory aimed at beginning graduate students. The lectures assume a working knowledge of quantum field theory and general relativity. Contents: 1. The Classical String 2. The Quantum String 3. Open Strings and D-Branes 4. Introducing Conformal Field Theory 5. The Polyakov Path Integral and Ghosts 6. String Interactions 7. The Low-Energy Effective Action 8. Compactification and T-Duality
Relevance Theory in Translation
Institute of Scientific and Technical Information of China (English)
Shao Jun; Jiang Min
2008-01-01
In perspective of relevance theory, translation is regarded as communication. According to relevance theory, communication not only requires encoding, transfer and decoding processes, but also involves inference in addition. As communication, translation decision-making is also based on the human beings' inferential mental faculty. Concentrating on relevance theory, this paper tries to analyze and explain some translation phenomena in two English versions of Cai Gen Tan-My Crude Philosophy of Life.
Accounting and Economic Theory
Martin Shubik
2003-01-01
This paper deals with the changing relationship between economic theory and accounting practice and theory. It argues that many of the basic problems encountered in practice cannot be avoided in any attempt to construct an economic theory adequate to handle dynamics. In particular problems of timing become critical. furthermore, there are several critical problems concerning profit maximization, the nature of the rate of interest, agency problems within the firm and the payment of dividends w...
Marx Boopathi
2012-01-01
The game theory techniques are used to find the equilibrium of a market. Game theory refers to the ways in which strategic interactions among economic agents produce outcomes with respect to the preferences (or utilities) of those agents, where the outcomes in question might have been intended by none of the agents. The oligopolistic market structures are taken and how game theory applies to them is explained.
International Nuclear Information System (INIS)
Some of the difficulties and limitations encountered when teaching neutron slowing down theory to nuclear engineering students, are examined. Specific problems in teaching the kinetics of the slowing down of neutrons, the neutron balance equation, resonance escape probabilities, and the continuous slowing down theory, are considered and it is suggested that, as far as possible, use should be made, by analogy, of the work already done with the students in deriving diffusion theory and its one group equation. (U.K.)
Theory Modeling and Simulation
Energy Technology Data Exchange (ETDEWEB)
Shlachter, Jack [Los Alamos National Laboratory
2012-08-23
Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.
Hypergraph theory an introduction
Bretto, Alain
2013-01-01
This authored monograph presents hypergraph theory and covers both traditional elements of the theory as well as more original concepts such as entropy of hypergraph, similarities and kernels. Moreover, the author gives a detailed account to applications of the theory, including, but not limited to, applications for telecommunications and modeling of parallel data structures. The target audience primarily comprises researchers and practitioners in applied sciences but the book may also be beneficial for graduate students.
Supergravity for Effective Theories
Daniel Baumann; Daniel Green(Stanford Institute for Theoretical Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, U.S.A.)
2011-01-01
Higher-derivative operators are central elements of any effective field theory. In supersymmetric theories, these operators include terms with derivatives in the K\\"ahler potential. We develop a toolkit for coupling such supersymmetric effective field theories to supergravity. We explain how to write the action for minimal supergravity coupled to chiral superfields with arbitrary numbers of derivatives and curvature couplings. We discuss two examples in detail, showing how the component actio...
Supergravity from Gauge Theory
Berkowitz, Evan
2016-01-01
Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
DEFF Research Database (Denmark)
Rijkhoff, Jan
2010-01-01
This paper argues that grammatical theorizing and linguistic typologizing must go hand in hand and that rare typological features play a central role in the interaction of typology and theory. The paper is organized as follows. Section 2 discusses a sampling method that (compared to other sampling...... Functional (Discourse) Grammar and sections 4 and 5 are concerned with the crucial role of rara both in theory driven data collection and in data driven theory building....
Botond Koszegi
2014-01-01
This review provides a critical survey of psychology-and-economics ("behavioral-economics") research in contract theory. First, I introduce the theories of individual decision making most frequently used in behavioral contract theory, and formally illustrate some of their implications in contracting settings. Second, I provide a more comprehensive (but informal) survey of the psychology-and-economics work on classical contract-theoretic topics: moral hazard, screening, mechanism design, and i...
Ed Nosal; Peter Rupert
2002-01-01
It wasn’t A Beautiful Mind—the book or the movie—that made John Forbes Nash, Jr., famous. It was his work in game theory, a theory that models strategic interactions between people as games. Before Nash, the only games theorists could get a handle on were artificial ones with no real-world applications. Nash’s insights enabled economists to expand the use of game theory to interesting practical problems.
Introduction to superstring theory
Energy Technology Data Exchange (ETDEWEB)
Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar
2009-07-01
This is a very basic introduction to the AdS/CFT correspondence. The first lecture motivates the duality between gauge theories and gravity/string theories. The next two lectures introduce the bosonic and supersymmetric string theories. The fourth lecture is devoted to study Dp-branes and finally, in the fifth lecture I discuss the two worlds: N=4 SYM in 3+1 flat dimensions and type IIB superstrings in AdS{sub 5} x S5. (author)
Effective quantum field theories
International Nuclear Information System (INIS)
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Gardner, JW
2003-01-01
Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation
Baird, J. K.
1986-01-01
The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.
Cappell, Sylvain; Rosenberg, Jonathan
2014-01-01
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a
Cappell, Sylvain; Rosenberg, Jonathan
2014-01-01
Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject''s founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors ask
Enderton, Herbert B
1977-01-01
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
DEFF Research Database (Denmark)
Schlamovitz, Jesper
2015-01-01
Process thinking and process-based theory are receiving increased attention in the field of organization studies and organization theory development (Tsoukas & Chia, 2002; Langley & Tsoukas, 2010; Hernes, 2014). The aim has been to study processes rather than structures, in organizations. This has...... recently inspired research on the organizing of projects and the development of a (new) theory of temporary organizations (Bakker, 2010; Blomquist et al. 2010; Söderlund, 2013). These theories are still under development and need empirical studies that can show their relevance for practice. This paper...
Generalized etale cohomology theories
Jardine, John F
1997-01-01
A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra. This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable hom...
Empirical comparison of theories
International Nuclear Information System (INIS)
The book represents the first, comprehensive attempt to take an empirical approach for comparative assessment of theories in sociology. The aims, problems, and advantages of the empirical approach are discussed in detail, and the three theories selected for the purpose of this work are explained. Their comparative assessment is performed within the framework of several research projects, which among other subjects also investigate the social aspects of the protest against nuclear power plants. The theories analysed in this context are the theory of mental incongruities and that of the benefit, and their efficiency in explaining protest behaviour is compared. (orig./HSCH)
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
Crisan, Mircea
1989-01-01
This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t
Games, theory and applications
Thomas, L C
2011-01-01
Anyone with a knowledge of basic mathematics will find this an accessible and informative introduction to game theory. It opens with the theory of two-person zero-sum games, two-person non-zero sum games, and n-person games, at a level between nonmathematical introductory books and technical mathematical game theory books. Succeeding sections focus on a variety of applications - including introductory explanations of gaming and meta games - that offer nonspecialists information about new areas of game theory at a comprehensible level. Numerous exercises appear with full solutions, in addition
International Nuclear Information System (INIS)
The formation mechanism and plasma theory of tornado are proposed. Tornado is considered as a gas discharge. Electrical fields, currents, electromagnetic forces and velocities fields have been obtained
Dwivedi, Yogesh K; Schneberger, Scott L
2011-01-01
The overall mission of this book is to provide a comprehensive understanding and coverage of the various theories and models used in IS research. Specifically, it aims to focus on the following key objectives: To describe the various theories and models applicable to studying IS/IT management issues. To outline and describe, for each of the various theories and models, independent and dependent constructs, reference discipline/originating area, originating author(s), seminal articles, level of analysis (i.e. firm, individual, industry) and links with other theories. To provide a critical revie
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
DEFF Research Database (Denmark)
Balle, Søren Hattesen
2009-01-01
This paper takes its starting point in a short poem by Wallace Stevens from 1917, which incidentally bears the title “Theory”. The poem can be read as a parable of theory, i.e., as something literally ’thrown beside’ theory (cf. OED: “< ancient Greek: parabole: a placing side by side“). In the ph......, so theory needs its stylistic features to rule the world. And Stevens’s poem is a good example of how theory is at the hands of literature for gaining power through style....
Young, Petyon
2014-01-01
The ability to understand and predict behavior in strategic situations, in which an individual's success in making choices depends on the choices of others, has been the domain of game theory since the 1950s. Developing the theories at the heart of game theory has resulted in 8 Nobel Prizes and insights that researchers in many fields continue to develop. In Volume 4, top scholars synthesize and analyze mainstream scholarship on games and economic behavior, providing an updated account of developments in game theory since the 2002 publication of Volume 3, which only covers work through the mi
DEFF Research Database (Denmark)
Hastings, Gerard; Brown, Abraham; Anker, Thomas Boysen
2010-01-01
The chapter looks at three important theories which help social marketers to think more systematically about the key questions they need to address: (i) how does the target group or population feel about a particular behaviour (Stages of Change Theory); (ii) what social and contextual factors...... influence this positioning (Social Cognitive Theory and Social Norms) and; (iii) what offerings might encourage them to change their behaviour – or, those in a position to do so, to make the social context more conducive to change (Exchange Theory). Moreover, the chapter outlines how social marketers might...
Goethe, Johann Wolfgang von
2006-01-01
The wavelength theory of light and color had been firmly established by the time the great German poet published his Theory of Colours in 1810. Nevertheless, Goethe believed that the theory derived from a fundamental error, in which an incidental result was mistaken for a elemental principle. Far from affecting a knowledge of physics, he maintained that such a background would inhibit understanding. The conclusions Goethe draws here rest entirely upon his personal observations.This volume does not have to be studied to be appreciated. The author's subjective theory of colors permits him to spe
Kontextualisierung von Queer Theory Contextualizing Queer Theory
Directory of Open Access Journals (Sweden)
Anna Voigt
2008-03-01
Full Text Available Christine M. Klapeer legt in diesem Einführungsband dar, aus welchen politischen und theoretischen Kontexten heraus sich ‚queer‘ zu einem Begriff mit besonderem politischem und theoretischem Gehalt entwickelt hat. Wesentlich zielt sie dabei auf eine kritische Kontextualisierung von „queer theory”. Die Autorin geht zunächst auf das Gay Liberation Movement ein, grenzt die Queer Theory vom Poststrukturalismus, von feministischen Theorien und den Lesbian and Gay Studies ab, beleuchtet Eckpunkte queeren Denkens und zeichnet schließlich die Entwicklungen in Österreich sowohl politisch-rechtlich als auch bewegungsgeschichtlich und in der Wissenschaftslandschaft nach.Christine M. Klapeer’s introductory volume demonstrates the manner in which ‘queer’ grew out of various political and theoretical contexts to become a term with special political and theoretical content. She focuses primarily on a critical contextualization of “queer theory.” The author begins by approaching the Gay Liberation Movement and then distinguishes Queer Theory from poststructuralism, from feminist theories, and from Lesbian and Gay Studies. She continues on to illuminate the key aspects of queer thought and concludes by sketching the development in Austria in terms of politics and the law, the history of movements, and within the landscape of knowledge.
[Topics in field theory and string theory
International Nuclear Information System (INIS)
In the past year, I have continued to investigate the relations between conformal field theories and lattice statistical mechanical models, and in particular have been studying two dimensional models coupled to quantum gravity. I have continued as well to consider possible extension of these results to higher dimensions and potential applications in other contexts
Dynasting Theory: Lessons in learning grounded theory
Directory of Open Access Journals (Sweden)
Johnben Teik-Cheok Loy, MBA, MTS, Ph.D.
2011-06-01
Full Text Available This article captures the key learning lessons gleaned from the author’s experience learning and developing a grounded theory for his doctoral dissertation using the classic methodology as conceived by Barney Glaser. The theory was developed through data gathered on founders and successors of Malaysian Chinese family-own businesses. The main concern for Malaysian Chinese family businesses emerged as dynasting . the building, maintaining, and growing the power and resources of the business within the family lineage. The core category emerged as dynasting across cultures, where founders and successors struggle to transition from traditional Chinese to hybrid cultural and modernized forms of family business from one generation to the next. The key learning lessons were categorized under five headings: (a sorting through different versions of grounded theory, (b educating and managing research stakeholders, (c embracing experiential learning, (d discovering the core category: grounded intuition, and (e recognizing limitations and possibilities.Keywords: grounded theory, learning, dynasting, family business, Chinese
String Theory and Gauge Theories (Strings, Gravity, and the Large N Limit of Gauge Theories)
International Nuclear Information System (INIS)
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
Electronic properties of graphite; Proprietes electroniques du graphite
Energy Technology Data Exchange (ETDEWEB)
Schneider, J.
2010-10-15
In this thesis, low-temperature magneto-transport (T {approx} 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 {<=} B {<=} 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 {+-} 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)
BCS-BEC crossover induced by a synthetic non-Abelian gauge field
Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.
2011-07-01
We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
Attractive and repulsive Fermi polarons in two dimensions.
Koschorreck, Marco; Pertot, Daniel; Vogt, Enrico; Fröhlich, Bernd; Feld, Michael; Köhl, Michael
2012-05-31
The dynamics of a single impurity in an environment is a fundamental problem in many-body physics. In the solid state, a well known case is an impurity coupled to a bosonic bath (such as lattice vibrations); the impurity and its accompanying lattice distortion form a new entity, a polaron. This quasiparticle plays an important role in the spectral function of high-transition-temperature superconductors, as well as in colossal magnetoresistance in manganites. For impurities in a fermionic bath, studies have considered heavy or immobile impurities which exhibit Anderson's orthogonality catastrophe and the Kondo effect. More recently, mobile impurities have moved into the focus of research, and they have been found to form new quasiparticles known as Fermi polarons. The Fermi polaron problem constitutes the extreme, but conceptually simple, limit of two important quantum many-body problems: the crossover between a molecular Bose-Einstein condensate and a superfluid with BCS (Bardeen-Cooper-Schrieffer) pairing with spin-imbalance for attractive interactions, and Stoner's itinerant ferromagnetism for repulsive interactions. It has been proposed that such quantum phases (and other elusive exotic states) might become realizable in Fermi gases confined to two dimensions. Their stability and observability are intimately related to the theoretically debated properties of the Fermi polaron in a two-dimensional Fermi gas. Here we create and investigate Fermi polarons in a two-dimensional, spin-imbalanced Fermi gas, measuring their spectral function using momentum-resolved photoemission spectroscopy. For attractive interactions, we find evidence for a disputed pairing transition between polarons and tightly bound dimers, which provides insight into the elementary pairing mechanism of imbalanced, strongly coupled two-dimensional Fermi gases. Additionally, for repulsive interactions, we study novel quasiparticles--repulsive polarons--the lifetime of which determines the
Mayer, William V.
In this paper the author examines the question of whether evolution is a theory or a dogma. He refutes the contention that there is a monolithic scientific conspiracy to present evolution as dogma and suggests that his own presentation might be more appropriately entitled "Creationism: Theory or Dogma." (PEB)
DEFF Research Database (Denmark)
Wæver, Ole
2011-01-01
distinct from both the study of political practices of securitization and explorations of competing concepts of politics among security theories. It means tracking what kinds of analysis the theory can produce and whether such analysis systematically impacts real-life political struggles. Securitization...
Suppes, Patrick
1972-01-01
This clear and well-developed approach to axiomatic set theory is geared toward upper-level undergraduates and graduate students. It examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, finite sets and cardinal numbers, rational and real numbers, and other subjects. 1960 edition.
Rexhepi, Jevdet; Torres, Carlos Alberto
2011-01-01
This paper discusses Critical Theory, a model of theorizing in the field of the political sociology of education. We argue for a "reimagined" Critical Theory to herald an empowering, liberatory education that fosters curiosity and critical thinking, and a means for successful bottom-up, top-down political engagement. We present arguments at a…
Evaluating Conceptual Metaphor Theory
Gibbs, Raymond W., Jr.
2011-01-01
A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…
2003-01-01
With the start of next year, CERN's Theory Division and Experimental Physics Division will merge to form the new Department of Physics. The Bulletin looks back at an era, has a closer a look at what the Theory Division is and what makes it so special.
Shor, Mikhael
2003-01-01
States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…
DEFF Research Database (Denmark)
Michelsen, Aage U.
2004-01-01
Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process.......Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process....
Rewriting the Opportunity Theory
DEFF Research Database (Denmark)
Korsgaard, Steffen T.
The aim of this paper is to further the discussion of opportunity theory by discussing its ontological and epistemological underpinnings, which have been neglected in previous discussions. The idea that opportunities have an objective component is critically examined drawing on insights from social...... constructionism. It is argued that opportunity theory needs to be rewritten....
International Nuclear Information System (INIS)
This report briefly discussion the following programs of the Institute for Nuclear Theory: fundamental interactions in nuclei; strangeness in hadrons and nuclei; microscopic nuclear structure theory; nuclear physics in atoms and molecules; phenomenology and lattice QCD; and large amplitude collective motion
Jaeger, Audrey J.; Dunstan, Stephany; Thornton, Courtney; Rockenbach, Alyssa B.; Gayles, Joy G.; Haley, Karen J.
2013-01-01
When making decisions that impact student learning, college educators often consider previous experiences, precedent, common sense, and advice from colleagues. But how often do they consider theory? At a recent state-level educators' meeting, the authors of this article asked 50 student affairs educators about the use of theory in their practice.…
Multisource Algorithmic Information Theory
Shen, Alexander
2006-01-01
Multisource information theory is well known in Shannon setting. It studies the possibilities of information transfer through a network with limited capacities. Similar questions could be studied for algorithmic information theory and provide a framework for several known results and interesting questions.
Molder, te H.F.M.
2009-01-01
Available in both print and electronic formats, the Encyclopedia of Communication Theory provides students and researchers with a comprehensive two-volume overview of contemporary communication theory. Reference librarians report that students frequently approach them seeking a source that will prov
Science and information theory
Brillouin, Leon
2013-01-01
A classic source for exploring the connections between information theory and physics, this text is geared toward upper-level undergraduates and graduate students. The author, a giant of 20th-century mathematics, applies the principles of information theory to a variety of issues, including Maxwell's demon, thermodynamics, and measurement problems. 1962 edition.
Towards Extended Vantage Theory
Glaz, Adam
2010-01-01
The applicability of Vantage Theory (VT), a model of (colour) categorization, to linguistic data largely depends on the modifications and adaptations of the model for the purpose. An attempt to do so proposed here, called Extended Vantage Theory (EVT), slightly reformulates the VT conception of vantage by capitalizing on some of the entailments of…
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon [Syracuse University; Hubisz, Jay [Syracuse University; Balachandran, Aiyalam [Syracuse University; Schechter, Joe [Syracuse University
2013-01-05
This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.
DEFF Research Database (Denmark)
Pais, Alexandre; Valero, Paola
2014-01-01
What is the place of social theory in mathematics education research, and what is it for? This special issue of Educational Studies in Mathematics offers insights on what could be the role of some sociological theories in a field that has historically privileged learning theories coming from...... from a “socio-cultural” approach to learning and rather deploy sociological theories in the analysis of mathematics education practices. In this commentary paper, we will point to what we see to be the contributions of these papers to the field. We will do so by highlighting issues that run through...... the six papers. We will try to synthetize what we think are the benchmarks of the social approach to mathematics education that they propose. We will also take a critical stance and indicate some possible extensions of the use of social theory that are not addressed in this special issue but nonetheless...
Statistical theory and inference
Olive, David J
2014-01-01
This text is for a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sample theory, likelihood ratio tests and uniformly most powerful tests and the Neyman Pearson Lemma. A major goal of this text is to make these topics much more accessible to students by using the theory of exponential families. Exponential families, indicator functions and the support of the distribution are used throughout the text to simplify the theory. More than 50 ``brand name" distributions are used to illustrate the theory with many examples of exponential families, maximum likelihood estimators and uniformly minimum variance unbiased estimators. There are many homework problems with over 30 pages of solutions.
Pachner, J.
1984-11-01
In order to make reliable predictions in any region of human activity, it is necessary to distinguish clearly what is based on experience and what is a construction of intellect. The theory of knowledge developed in the present paper is an attempt to devise a set of axioms that demarcate experience, as the only source of our knowledge of the external world, from the ideas, scientific models, and theories by means of which the scientific predictions are made. After a discussion of the causality in relation to the laws of nature, the axioms of the expounded theory are formulated in the formalism of set theory. The theory is then applied to some problems in physics to demonstrate its usefulness.
Theory of gravitational interactions
Gasperini, Maurizio
2013-01-01
This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf......This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with...... coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...
Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio
2016-01-01
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Lipstein, Arthur E
2014-01-01
We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.
Quantal density functional theory
Sahni, Viraht
2016-01-01
This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...
Theory X and Theory Y in the Organizational Structure.
Barry, Thomas J.
This document defines contrasting assumptions about the labor force--theory X and theory Y--and shows how they apply to the pyramid organizational structure, examines the assumptions of the two theories, and finally, based on a survey and individual interviews, proposes a merger of theories X and Y to produce theory Z. Organizational structures…
String theory as a higher spin theory
Gaberdiel, Matthias R.; Gopakumar, Rajesh
2016-09-01
The symmetries of string theory on {AdS}_3× {S}^3× T^4 at the dual of the symmetric product orbifold point are described by a so-called Higher Spin Square (HSS). We show that the massive string spectrum in this background organises itself in terms of representations of this HSS, just as the matter in a conventional higher spin theory does so in terms of representations of the higher spin algebra. In particular, the entire untwisted sector of the orbifold can be viewed as the Fock space built out of the multiparticle states of a single representation of the HSS, the so-called `minimal' representation. The states in the twisted sector can be described in terms of tensor products of a novel family of representations that are somewhat larger than the minimal one.
Field-theory methods in coagulation theory
International Nuclear Information System (INIS)
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n1, n2, ..., ng, ...), where ng is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W(Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Higher Gauge Theory and M-Theory
Palmer, Sam
2014-01-01
In this thesis, the emerging field of higher gauge theory will be discussed, particularly in relation to problems arising in M-theory, such as selfdual strings and the so-called (2,0) theory. This thesis will begin with a Nahm-like construction for selfdual strings using loop space, the space of loops on spacetime. This construction maps solutions of the Basu-Harvey equation, the BPS equation arising in the description of multiple M2-branes, to solutions of a selfdual string equation on loop space. Furthermore, all ingredients of the construction reduce to those of the ordinary Nahm construction when compactified on a circle with all loops restricted to those wrapping the circle. The rest of this thesis, however, will not involve loop space. We will see a Nahm-like construction for the case of infinitely many selfdual strings, suspended between two M5-branes. This is possible since the limit taken renders the fields describing the M5-branes abelian. This avoids the problem which the rest of this thesis focuse...
Energy Technology Data Exchange (ETDEWEB)
Svozil, K. [Univ. of Technology, Vienna (Austria)
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.
Bollobás, Béla
1998-01-01
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
Theories of information behavior
Erdelez, Sandra; McKechnie, Lynne
2005-01-01
This unique book presents authoritative overviews of more than 70 conceptual frameworks for understanding how people seek, manage, share, and use information in different contexts. A practical and readable reference to both well-established and newly proposed theories of information behavior, the book includes contributions from 85 scholars from 10 countries. Each theory description covers origins, propositions, methodological implications, usage, links to related conceptual frameworks, and listings of authoritative primary and secondary references. The introductory chapters explain key concepts, theory–method connections, and the process of theory development.
Theory of intermolecular forces
Margenau, H; Ter Haar, D
1971-01-01
Theory of Intermolecular Forces deals with the exposition of the principles and techniques of the theory of intermolecular forces. The text focuses on the basic theory and surveys other aspects, with particular attention to relevant experiments. The initial chapters introduce the reader to the history of intermolecular forces. Succeeding chapters present topics on short, intermediate, and long range atomic interactions; properties of Coulomb interactions; shape-dependent forces between molecules; and physical adsorption. The book will be of good use to experts and students of quantum mechanics
Hansen, Jean-Pierre
1986-01-01
This book gives a comprehensive and up-to-date treatment of the theory of ""simple"" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics.Key Features* Compares theoretical deductions with experimental r
Fraïssé, R
2011-01-01
The first part of this book concerns the present state of the theory of chains (= total or linear orderings), in connection with some refinements of Ramsey's theorem, due to Galvin and Nash-Williams. This leads to the fundamental Laver's embeddability theorem for scattered chains, using Nash-Williams' better quasi-orderings, barriers and forerunning.The second part (chapters 9 to 12) extends to general relations the main notions and results from order-type theory. An important connection appears with permutation theory (Cameron, Pouzet, Livingstone and Wagner) and with logics (existence criter
DEFF Research Database (Denmark)
Dindler, Christian; Dalsgaard, Peter
2014-01-01
We present the notion of ‘bridging concepts’ as a particular form of intermediary knowledge in HCI research, residing between theory and practice. We argue that bridging concepts address the challenge of facilitating exchange between theory and practice in HCI, and we compare it to other....... These constituents specify how bridging concepts, as a form of knowledge, are accountable to both theory and practice. We present an analysis of the concept of ‘peepholes’ as an example of a bridging concept aimed at spurring user curiosity and engagement....
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
Superstring perturbation theory
Adam, I.
2009-01-01
The state of superstring perturbation theory is reviewed with an emphasis on the state of the pure spinor superstring perturbation theory. We begin with a brief summary of the state of perturbation theory in the Ramond–Neveu–Schwarz and in the Green–Schwarz formulations of the superstring. Then we proceed to a quick review of the minimal and non-minimal pure spinor formulations of the superstring and discuss the multi-loop amplitude prescriptions in each of them. We end with a summary and ope...
Eves, Howard
1980-01-01
The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri
Cohn, Harvey
1980-01-01
""A very stimulating book ... in a class by itself."" - American Mathematical MonthlyAdvanced students, mathematicians and number theorists will welcome this stimulating treatment of advanced number theory, which approaches the complex topic of algebraic number theory from a historical standpoint, taking pains to show the reader how concepts, definitions and theories have evolved during the last two centuries. Moreover, the book abounds with numerical examples and more concrete, specific theorems than are found in most contemporary treatments of the subject.The book is divided into three parts
Menasco, William
2005-01-01
This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry.* Survey of mathematical knot theory* Articles by leading world authorities* Clear exposition, not over-technical* Accessible to readers with undergraduate background in mathematics
DEFF Research Database (Denmark)
Knudsen, Thorbjørn
2003-01-01
The present article provides a minimal description of the causal structure of economic selection theory and outlines how the internal selection dynamics of business organisations can be reconciled with selection in competitive markets. In addition to generic similarity in terms of the Darwinian...... principles of variation, continuity and selection, it is argued that economic selection theory should mimic the causal structure of neo-Darwinian theory. Two of the most influential explanations of economic evolution, Alchian's and Nelson and Winter's, are used to illustrate how this could be achieved....
Irreversible processes kinetic theory
Brush, Stephen G
2013-01-01
Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s
Gross, Jonathan L; Zhang, Ping
2013-01-01
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition-over 400 pages longer than its predecessor-incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an ex
On Nietzsche's "Superman" Theory
Institute of Scientific and Technical Information of China (English)
董晓烨; 吴晓意
2016-01-01
Nietzsche, German philosopher, who has had a great influence on the transformation of western philosophy from the contemporary to the modern, is a non-rationalist. Since the birth of Nietzsche's philosophy, evaluation from the international academic circles on his thoughts has been mixed. The"Superman" philosophy is an important part of Nietzsche's theory. He believes the spirit of strong will and that the development of man is endless, finally, we will have a"Superman". This theory has broken the tradition of western rationalism, the moral tradition of Christianity and the cultural tradition of the enlightenment since Socrates. However, we should evaluate the"Superman" theory properly.
Georgiev, Svetlin G
2015-01-01
This book explains many fundamental ideas on the theory of distributions. The theory of partial differential equations is one of the synthetic branches of analysis that combines ideas and methods from different fields of mathematics, ranging from functional analysis and harmonic analysis to differential geometry and topology. This presents specific difficulties to those studying this field. This book, which consists of 10 chapters, is suitable for upper undergraduate/graduate students and mathematicians seeking an accessible introduction to some aspects of the theory of distributions. It can also be used for one-semester course.
Generalized Supersymmetric Perturbation Theory
Institute of Scientific and Technical Information of China (English)
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Dynkin, E B
1960-01-01
Theory of Markov Processes provides information pertinent to the logical foundations of the theory of Markov random processes. This book discusses the properties of the trajectories of Markov processes and their infinitesimal operators.Organized into six chapters, this book begins with an overview of the necessary concepts and theorems from measure theory. This text then provides a general definition of Markov process and investigates the operations that make possible an inspection of the class of Markov processes corresponding to a given transition function. Other chapters consider the more c
Durante, Fabrizio
2015-01-01
Principles of Copula Theory explores the state of the art on copulas and provides you with the foundation to use copulas in a variety of applications. Throughout the book, historical remarks and further readings highlight active research in the field, including new results, streamlined presentations, and new proofs of old results.After covering the essentials of copula theory, the book addresses the issue of modeling dependence among components of a random vector using copulas. It then presents copulas from the point of view of measure theory, compares methods for the approximation of copulas,
Iterative q difference Galois Theory
Hardouin, Charlotte
2009-01-01
We propose in this paper a Galois theory of $q$-difference equations where q is a root of unity. This theory is the q difference analogue of the Galois theory of iterative differential equations, that is differential equations over fields of positive characteristic. This theory contains and generalizes the Galois theory of q difference equations developed by Singer and van der Put.
Nonstandard Methods in Lie Theory
Goldbring, Isaac Martin
2009-01-01
In this thesis, we apply model theory to Lie theory and geometric group theory. These applications of model theory come via nonstandard analysis. In Lie theory, we use nonstandard methods to prove two results. First, we give a positive solution to the local form of Hilbert's Fifth Problem, which asks whether every locally euclidean local…
Almost ring theory - sixth release
Gabber, Ofer; Ramero, Lorenzo
2002-01-01
We develop almost ring theory, which is a domain of mathematics somewhere halfway between ring theory and category theory (whence the difficulty of finding appropriate MSC-class numbers). We apply this theory to valuation theory and to p-adic analytic geometry. You should really have a look at the introductions (each chapter has one).
Beyond generalized Proca theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the maximally symmetric space-time, we perform the Hessian and Hamiltonian analysis and show the presence of a second-class constraint that removes the would-be ghost associated with the temporal component of the vector field. Furthermore, we study the behavior of linear perturbations on top of the homogeneous and isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories. Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar per...
International Nuclear Information System (INIS)
We have recently developed a new theoretical approach to the study of polymer liquids. The theory is based on the ''reference interaction site model'' (RISM theory) of Chandler and Andersen, which has been successful in describing the structure of small molecule liquids. We have recently extended our polymer RISM theory to the case of polymer blends. In the present investigation we have applied this theory to two special binary blends: (1) the athermal mixture where we isolate structural effects, and (2) the isotopic mixture in which structurally identical polymer chains interact with dissimilar attractive interactions. By studying these two special cases we are able to obtain insights into the molecular factors which control the miscibility in polymer mixtures. 18 refs., 2 figs
International Nuclear Information System (INIS)
We discuss an aspect of string theory which has been tackled from many different perspectives, but incompletely: the role of nonlocality in the theory and its relation to the geometric shape of the string. In particular, we will describe in quantitative terms how one can zoom out from an extended object such as a string in such a way that, at sufficiently large scales, it appears structureless. Since there are no free parameters in free-string theory, the notion of large scales will be unambiguously determined. In other words, we will be able to answer the question: how and at which scale can the string be seen as a particle? In doing so, we will employ the concept of spectral dimension in a new way with respect to its usual applications in quantum gravity. The operational notions of worldsheet and target spacetime dimension in string theory are also clarified and found to be in mutual agreement. (paper)
Swanson, Donald Gary
2008-01-01
Developed from the lectures of a leading expert in plasma wave research, Plasma Kinetic Theory provides the essential material for an introductory course on plasma physics as well as the basis for a more advanced course on kinetic theory. Exploring various wave phenomena in plasmas, it offers wide-ranging coverage of the field. After introducing basic kinetic equations and the Lenard–Balescu equation, the book covers the important Vlasov–Maxwell equations. The solutions of these equations in linear and quasilinear approximations comprise the majority of kinetic theory. Another main topic in kinetic theory is to assess the effects of collisions or correlations in waves. The author discusses the effects of collisions in magnetized plasma and calculates the different transport coefficients, such as pressure tensor, viscosity, and thermal diffusion, that depend on collisions. With worked examples and problem sets that enable sound comprehension, this text presents a detailed, mathematical approach to app...
Large Spin Perturbation Theory
Alday, Luis F
2016-01-01
We consider conformal field theories around points of large twist degeneracy. Examples of this are theories with weakly broken higher spin symmetry and perturbations around generalised free fields. At the degenerate point we introduce twist conformal blocks. These are eigenfunctions of certain quartic operators and encode the contribution, to a given four-point correlator, of the whole tower of intermediate operators with a given twist. As we perturb around the degenerate point, the twist degeneracy is lifted. In many situations this breaking is controlled by inverse powers of the spin. In such cases the twist conformal blocks can be decomposed into a sequence of functions which we systematically construct. Decomposing the four-point correlator in this basis turns crossing symmetry into an algebraic problem. Our method can be applied to a wide spectrum of conformal field theories in any number of dimensions and at any order in the breaking parameter. As an example, we compute the spectrum of various theories ...
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2014-01-01
Technological knowledge has been characterized as having a scope that is specific to a particular problem. However, the information systems community is exploring forms of design science research that provide a promising avenue to technological knowledge with broader scope: design theories. Because...... design science research is materially prescriptive, it requires a different perspective in developing the breadth of applications of design theories. In this paper we propose different concepts that embody forms of general technological knowledge The concept of projectability, developed originally...... as a means of distinguishing realized generalizations from unrealized generalizations, helps explain how design theories, being prescriptive, possess a different form of applicability. The concept of entrenchment describes the use of a theory in many projections. Together these concepts provide a means...
International Nuclear Information System (INIS)
We discuss the wormhole effective interactions in string theory, thought of as a sum over two-dimensional field theories on different world sheets. The effective interactions are calculated in the ''dilute wormhole approximation,'' initially by considering the Green's functions on higher-genus Riemann surfaces, and then by calculating the effect of a complete basis of wave functions on scattering amplitudes for a surface with a boundary. The sum over wormholes is equivalent to having a world sheet of trivial topology and summing over different space-time and matter-field backgrounds. To leading order these consist of the massless fluctuations, since the tachyon cancels out when a sum is done over different spin structures going through the wormhole. In this way we recover quantized general relativity as an effective theory, from a sum over field theories on higher-genus Riemann surfaces
Kirschner, Paul A.; Kirschner, Femke; Paas, Fred
2010-01-01
Kirschner, P. A., Kirschner, F. C., & Paas, F. (2009). Cognitive load theory. In E. M. Anderman & L. H. Anderman (Eds.). Psychology of classroom learning: An encyclopedia, Volume 1, a-j (pp. 205-209). Detroit, MI: Macmillan Reference.
Einstein's theory of relativity
Born, Max
2012-01-01
Semi-technical account includes a review of classical physics (origin of space and time measurements, Ptolemaic and Copernican astronomy, laws of motion, inertia, more) and of Einstein's theories of relativity.
DEFF Research Database (Denmark)
Schindler, Samuel
2013-01-01
practices are efficient in guarding against any epistemological threat posed by theory-ladenness. In this paper I show that one can generate a thesis of theory-ladenness for experimental practices from an influential New Experimentalist account. The notion I introduce for this purpose is the concept of...... light bending in 1919 by Eddington and others) to show that TDRs are used by scientists to resolve data conflicts. I argue that the rationality of the practices which employ TDRs can be saved if the independent support of the theories driving TDRs is construed in a particular way.......The thesis of theory-ladenness of observations, in its various guises, is widely considered as either ill-conceived or harmless to the rationality of science. The latter view rests partly on the work of the proponents of New Experimentalism who have argued, among other things, that experimental...
Theory of fundamental interactions
International Nuclear Information System (INIS)
In the present article the theory of fundamental interactions is derived in a systematic way from the first principles. In the developed theory there is no separation between space-time and internal gauge space. Main equations for basic fields are derived. In is shown that the theory satisfies the correspondence principle and gives rise to new notions in the considered region. In particular, the conclusion is made about the existence of particles which are characterized not only by the mass, spin, charge but also by the moment of inertia. These are rotating particles, the particles which represent the notion of the rigid body on the microscopical level and give the key for understanding strong interactions. The main concepts and dynamical laws for these particles are formulated. The basic principles of the theory may be examined experimentally not in the distant future. 29 refs
Jarvis, Frazer
2014-01-01
The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Dreyfus, Thomas
2015-01-01
In this paper, we develop a difference Galois theory in the setting of real fields. After proving the existence and uniqueness of the real Picard-Vessiot extension, we define the real difference Galois group and prove a Galois correspondence.
Kuang, Zhen-Bang
2014-01-01
Theory of Electroelasticity analyzes the stress, strain, electric field and electric displacement in electroelastic structures such as sensors, actuators and other smart materials and structures. This book also describes new theories such as the physical variational principle and the inertial entropy theory. It differs from the traditional method by using the physical variational principle to derive the governing equations of the piezoelectric material, whereas the Maxwell stress is obtained automatically. By using the inertial entropy theory, the temperature wave equation is obtained very easily. The book is intended for scientists, researchers and engineers in the areas of mechanics, physics, smart material and control engineering as well as mechanical, aeronautical and civil engineering, etc. Zhen-Bang Kuang is a professor at Shanghai Jiao Tong University.
2008-01-01
String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.
Swanson, E S
2009-01-01
A brief review of theoretical progress in hadron spectroscopy and nonperturbative QCD is presented. Attention is focussed on recent lattice gauge theory, the Dyson-Schwinger formalism, unquenching constituent models, and some beyond the Standard Model physics.
International Nuclear Information System (INIS)
Members of the Institute have worked on a number of problems including the following: acceleration algorithms for the Monte Carlo analysis of lattice field, and gauge and spin theories, based on changes of variables specific to lattices of dimension 2ell; construction of quaternionic generalizations of complex quantum mechanics and field theory; wave functions for paired Hall states; black hole quantum mechanics; generalized target-space duality in curved string backgrounds; gauge symnmetry algebra of the N = 2 string; two-dimensional quantum gravity and associated string theories; organizing principles from which the signal processing of neural networks in the retina and cortex can be deduced; integrable systems of KdV type; and a theory for Kondo insulators
Close, Frank
2017-01-01
Physicist Frank Close takes the reader to the frontiers of science in a vividly told investigation of revolutionary science and enterprise from the seventeenth century to the present. He looks at what has been meant by theories of everything, explores the scientific breakthroughs they have allowed, and shows the far-reaching effects they have had on crucial aspects of life and belief. Theories of everything, he argues, can be described as those which draw on all relevant branches of knowledge to explain everything known about the universe. Such accounts may reign supreme for centuries. Then, often as a result of the advances they themselves have enabled, a new discovery is made which the current theory cannot explain. A new theory is needed which inspiration, sometimes, supplies. Moving from Isaac Newton's work on gravity and motion in the seventeenth century to thermodynamics and James Clerk Maxwell's laws of electromagnetism in the nineteenth to Max Planck's and Paul Dirac's quantum physics in the twentiet...
Morava, Jack
2012-01-01
We suggest a generalization of \\pi_0 for topological groupoids, which encodes incidence relations among the strata of the associated quotient object, and argue for its utility by example, starting from the orbit categories of the theory of compact Lie groups. [The most substantial example [\\S 2.1], however, comes from Arnol'd's classification of isolated singularities.] One of the points of this note is that Thom's theory of structurally stable forms fits quite nicely with the categorical theory of databases developed recently by D. Spivak; the other is that the stratifications studied by Thom are closely related to the phase transitions studied in physics, and that the generalization of \\pi_0 proposed here may be useful in their study: in particular, in organizing our understanding of the scaling laws which naturally accompany such phenomena, in the theory of condensed matter, biology, finance ...
International Nuclear Information System (INIS)
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
Erçetin, Şefika; Tekin, Ali
2014-01-01
The present work investigates global politics and political implications of social science and management with the aid of the latest complexity and chaos theories. Until now, deterministic chaos and nonlinear analysis have not been a focal point in this area of research. This book remedies this deficiency by utilizing these methods in the analysis of the subject matter. The authors provide the reader a detailed analysis on politics and its associated applications with the help of chaos theory, in a single edited volume.
Arlinghaus Sandra L.; Kerski Joseph
2015-01-01
Is mathematical category theory a unifying tool for geography? Here we look at a few basic category theoretical ideas and interpret them in geographic example. We also offer links to indicate how category theory has been used as such in other disciplines. Finally, we announce the direction of our research program on this topic as a way to facilitate the learning, and maintenance of learning, of GIS software – and in the spirit of Quaestiones Geographicae, invite debate, comment, and contribut...
Hokky Situngkir; Deni Khanafiah
2004-01-01
We construct a model based on social balance theory proposed by Fritz Heider to analyze the interpersonal network among social agents. The model of social balance theory provides us an interesting tool to see how a social group evolves to the possible balance state. We introduce the balance index that can be used to measure social balance in macro structure level (global balance index) or in micro structure (local balance index) to see how the local balance index influences the global balance...
Krueger, Joachim I
2016-01-01
The theory of group-selected Big God religions is a master narrative of cultural evolution. The evidence is a positive manifold of correlated assumptions and variables. Although provocative, the theory is overly elastic. Its critical ingredient - belief in Big Gods - is neither necessary nor sufficient to account for in-group prosociality and discipline. Four specific issues illustrate this elasticity.
DEFF Research Database (Denmark)
Grønlund, Bo
2002-01-01
Concept of urbanity, urban theory a short overview, Johan Asplund, William Whyte, Henri Lefebvre, Richard Serenelt, Bill Hillrer and Spree Syntax Analyses. Forelæsningsnoter til kursus 3.314 i 2001 og 3.308 i 2002.......Concept of urbanity, urban theory a short overview, Johan Asplund, William Whyte, Henri Lefebvre, Richard Serenelt, Bill Hillrer and Spree Syntax Analyses. Forelæsningsnoter til kursus 3.314 i 2001 og 3.308 i 2002....
Waerden, B
1996-01-01
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.
Energy Technology Data Exchange (ETDEWEB)
Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, DE-14476 Potsdam (Germany)
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
Entrepreneurship and Economic Theory
Khalil, Elias
2006-01-01
Let us define entrepreneurship as creativity and the evolution of novelty. Let us suppose, the main thesis of the chapter, that entrepreneurship is an action that does not differ from everyday action such as walking, driving, or chewing gum. If the definition and supposition are granted we can conclude that the theory of everyday action, such as walking or chewing gum, is one and the same as the theory of evolution. The conclusion is definitely strange if not extraordinary. It is based on...
Leadership styles and theories.
Giltinane, Charlotte Louise
It is useful for healthcare professionals to be able to identify the leadership styles and theories relevant to their nursing practice. Being adept in recognising these styles enables nurses to develop their skills to become better leaders, as well as improving relationships with colleagues and other leaders, who have previously been challenging to work with. This article explores different leadership styles and theories, and explains how they relate to nursing practice.
Itoyama, H
2016-01-01
This is a brief summary of an introductory lecture for students and scholars in general given by the author at Nambu Memorial Symposium which was held at Osaka City University on September 29, 2015. We review the invention of string theory by Professor Yoichiro Nambu following the discovery of the Veneziano amplitude. We also discuss Professor Nambu's proposal on string theory in the Schild gauge in 1976 which is related to the matrix model of Yang-Mills type.
Recursion theory for metamathematics
Smullyan, Raymond M
1993-01-01
This work is a sequel to the author''s Godel''s Incompleteness Theorems, though it can be read independently by anyone familiar with Godel''s incompleteness theorem for Peano arithmetic. The book deals mainly with those aspects of recursion theory that have applications to the metamathematics of incompleteness, undecidability, and related topics. It is both an introduction to the theory and a presentation of new results in the field.
GLOBALIZATION AND ECONOMIC THEORY
Asatiani, Rozeta
2008-01-01
This article examines the origin of economic theory, analyzes the distinctive paradigms underlying economics as a branch of science that is more concerned with the quantitative side of the market economy, and explains the similarities and differences between economics and economic theory. In the author’s opinion, this will help to develop the economic (and not only economic) world view of the Caucasian peoples, who are facing difficult problems, and will promote a more scientific approach to ...
O'Farrell, Anthony G.
1991-01-01
Ever since the famous thesis of Frostman, capacities have been important in many areas of function theory. In this talk I shall be concerned only with one–variable function theory on arbitrary open subsets of the complex plane, C. It is important to stress that the open sets need not be connected. I will discuss the use of analytic capacities in connection with problems of removable singularities, holomorphic approximation, and boundary smoothness. A brief reference to the applications ...
Matthew Fuller
2011-01-01
Faulty Theory proposes a few means by which theory may be operative in media ecology, providing capacities for inducing and experimenting with a range of media dynamics. The article develops accounts of the work of Alfred Jarry and Charles Fort, alongside a discussion of a certain current of thought experiment carried out in cybernetics through the development of robots and other devices by Gordon Pask, Grey Walter and W. Ross Ashby. The article proposes possible resonances between theoretica...
Didenko, V.; Skvortsov, E.
2014-01-01
We propose a self-contained description of Vasiliev higher-spin theories with the emphasis on nonlinear equations. The main sections are supplemented with some additional material, including introduction to gravity as a gauge theory; the review of the Fronsdal formulation of free higher-spin fields; Young diagrams and tensors as well as sections with advanced topics. The shortest route to Vasiliev equations covers 40 pages. The general discussion is dimension independent, while the essence of...
Manuel García Docampo
2014-01-01
This paper reviews the existing analysis framework for territorial dynamics and urban growth and proposes a taxonomy of interpretive theories as well as a critical review. Specifically, the paper aims to provide four innovations to existing knowledge in this field as follows: firstly, a clear presentation of how the data of population growth of each habitat type have appeared and their academic interpretations; secondly, a reclassification of interpretative theories into three groups: the cou...
Bates, David Robert
1962-01-01
Quantum Theory: A Treatise in Three Volumes, I: Elements focuses on the principles, methodologies, and approaches involved in quantum theory, including quantum mechanics, linear combinations, collisions, and transitions. The selection first elaborates on the fundamental principles of quantum mechanics, exactly soluble bound state problems, and continuum. Discussions focus on delta function normalization, spherically symmetric potentials, rectangular potential wells, harmonic oscillators, spherically symmetrical potentials, Coulomb potential, axiomatic basis, consequences of first three postula
Leadership theory and practice
Northouse, Peter G
1997-01-01
Leadership: Theory and Practice provides a description and analysis of a wide variety of different theoretical approaches to leadership, giving special attention to how each theory can be employed to improve leadership in real-world organizations. Written in a clear, concise manner, the first edition has been widely used in undergraduate and graduate courses in business, organizational communication, political science, public administration, training and development, and health services.
Silveirinha, Mario G.
2013-01-01
Here, we develop a comprehensive quantum theory for the phenomenon of quantum friction. Based on a theory of macroscopic quantum electrodynamics for unstable systems, we calculate the quantum expectation of the friction force, and link the friction effect to the emergence of system instabilities related to the Cherenkov effect. These instabilities may occur due to the hybridization of particular guided modes supported by the individual moving bodies, and selection rules for the interacting mo...
Husnija Hasanbegović
2014-01-01
The processes of hearing the sounds and speech are not yet explicable enough, and therefore rehabilitation audiology is continuously facing practical problems of hearing and speech stimulation with heavy out of hearing children. Hearing successes with children who have implanted cochlear apparatus may indicate to resonance problem, rather than damaged nerve cells problem with deaf children, as it is alleged today. This paper presents a new theory (the theory of resonance rehabilit...
DEFF Research Database (Denmark)
Løvengreen, Hans Henrik
2002-01-01
In this set of notes, we present some of the basic theory underlying the discipline of programming with concurrent processes/threads. The notes are intended to supplement a standard textbook on concurrent programming.......In this set of notes, we present some of the basic theory underlying the discipline of programming with concurrent processes/threads. The notes are intended to supplement a standard textbook on concurrent programming....
Planar theory made variational
Energy Technology Data Exchange (ETDEWEB)
Jackson, A.D.; Lande, A.; Smith, R.A.
1985-04-08
Within the framework of boson parquet-diagram summations in perturbation theory, we show analytically that several simple approximations lead inevitably to the radial distribution function g(r) which would be obtained with the Jastrow hypernetted-chain variational method. This is the first derivation of the Jastrow result from perturbation theory. Without mentioning pair correlation functions, we have a clear interpretation of g(r) and the structure function, S(k), in terms of diagram sums.
Planar theory made variational
International Nuclear Information System (INIS)
Within the framework of boson parquet-diagram summations in perturbation theory, we show analytically that several simple approximations lead inevitably to the radial distribution function g(r) which would be obtained with the Jastrow hypernetted-chain variational method. This is the first derivation of the Jastrow result from perturbation theory. Without mentioning pair correlation functions, we have a clear interpretation of g(r) and the structure function, S(k), in terms of diagram sums
Sander, K F
1964-01-01
Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies
Leadership styles and theories.
Giltinane, Charlotte Louise
It is useful for healthcare professionals to be able to identify the leadership styles and theories relevant to their nursing practice. Being adept in recognising these styles enables nurses to develop their skills to become better leaders, as well as improving relationships with colleagues and other leaders, who have previously been challenging to work with. This article explores different leadership styles and theories, and explains how they relate to nursing practice. PMID:23905259
Kline, A David
2006-04-01
The received account of whistleblowing, developed over the last quarter century, is identified with the work of Norman Bowie and Richard DeGeorge. Michael Davis has detailed three anomalies for the received view: the paradoxes of burden, missing harm and failure. In addition, he has proposed an alternative account of whistleblowing, viz., the Complicity Theory. This paper examines the Complicity Theory. The supposed anomalies rest on misunderstandings of the received view or misreadings of model cases of whistleblowing, for example, the Challenger disaster and the Ford Pinto. Nevertheless, the Complicity Theory is important for as in science the contrast with alternative competing accounts often helps us better understand the received view. Several aspects of the received view are reviewed and strengthened through comparison with Complicity Theory, including why whistleblowing needs moral justification. Complicity Theory is also critiqued. The fundamental failure of Complicity Theory is its failure to explain why government and the public encourage and protect whistleblowers despite the possibility of considerable harm to the relevant company in reputation, lost jobs, and lost shareholder value.
Reverse Engineering Quantum Field Theory
Oeckl, Robert
2012-01-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Reverse engineering quantum field theory
Oeckl, Robert
2012-12-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
An introduction to information theory
Reza, Fazlollah M
1994-01-01
Graduate-level study for engineering students presents elements of modern probability theory, information theory, coding theory, more. Emphasis on sample space, random variables, capacity, etc. Many reference tables and extensive bibliography. 1961 edition.
International Nuclear Information System (INIS)
The thermodynamics of gauge theories such as QED and QCD are slightly more complicated than that of theories such as scalar field theory or free fremion field theory. We shall consider QED in some detail in this lecture, and shall generalize the results we find to more complicated gauge theories such as QCD. The results of this analysis are easily generalized to non-abelian gauge theories with scalar fields and spontaneous symmetry breaking such as GUTS
Game theory and industrial organization
Bagwell, Kyle; Wolinsky, Asher
2000-01-01
In this article, we consider how important developments in game theory have contributed to the theory of industrial organization. Our goal is not to survey the theory of industrial organization; rather, we consider the contribution of game theory through a careful discussion of a small number of topics within the industrial organization field. We also identify some points in which developments in the theory of industrial organization have contributed to game theory. The topics that we conside...
Conceptual Translation: Script Theory over Equivalence Theory
Directory of Open Access Journals (Sweden)
Naser N. AlBzour
2016-09-01
Full Text Available Unlike most translation studies that mainly focus on describing problematic areas and issues translators oftentimes encounter and thus suggesting or even prescribing some practical solutions and techniques, this study essentially targets the conceptual mechanism that can to some extent explain possible choices made by translators and students of translation. Therefore, this paper is by no means an endeavor to provide any translation assessment or any pedantic instructions of methods and strategies to follow; rather, the researcher has explicitly endeavored to offer some insights into understanding the symptoms and rationales of making choices while translating any text, based on translators’ schematic behavior that can be best tackled by script theory that shoots far beyond the mere semantic and pragmatic constraints. The study, therefore, attempts to extend the scope of translation studies from the traditional domains of cultural studies and applied linguistics interests into a higher intermediate Sweetserian conceptual analysis of pragmatic behavior and ultimately into some more comprehensive Schankean schematic paradigms.Keywords: Conceptualization, pragmatics, schematic, Schank, script theory, semantics, semiotics, Sweetser
Who Needs Learning Theory Anyway?
Zemke, Ron
2002-01-01
Looks at a variety of learning theories: andragogy, behaviorism, cognitivism, conditions of learning, Gestalt, and social learning. Addresses the difficulty of selecting an appropriate theory for training. (JOW)
International Nuclear Information System (INIS)
We have described a theory of a single massive spin 2 field interacting with background gravitational, electromagnetic, and dilaton fields. By virtue of a gauge invariance of this massive spin 2 field, which is valid up to terms of higher order in the massive field, the theory is consistent up to terms of this higher order. The four dimensional Lagrangian and its gauge transformation have been explicitly exhibited. The Chern-Simons action for several versions anti de Sitter and de Sitter supergravity theories have been constructed. Gauge transformations of the supergroups are equivalent to diffeomorphisms on shell. The partition function for two level systems obeying parastatistics of an arbitrary order Q were obtained without making use of a particular ansatz. These results for the first time illuminate the statistical behavior of parastatistical systems and rule out a number of speculations made in the literature. We have analyzed the quark lepton mass generation in technicolor theories. In our computations we have taken into account the extended technicolor contributions to technifermion chiral symmetry breaking. We found that top mass masses of the order of 80 GeV can be generated without violations of the rho parameter bound. The generalized parafermionic theories of Gepner have been bosonized. The energy momentum tensor was shown to appear in the non-leading terms of the operator product expansion of the parafermionic conformal fields, just like in the case of the original Zamolodchikov-Fateev parafermionic theories. The question of modular invariance was also investigated in the framework of bosonized parafermionic theories. 38 refs
Energy Technology Data Exchange (ETDEWEB)
Metzger, St
2005-12-15
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the
Strahm, Thomas; Studer, Thomas
2016-01-01
The aim of this volume is to collect original contributions by the best specialists from the area of proof theory, constructivity, and computation and discuss recent trends and results in these areas. Some emphasis will be put on ordinal analysis, reductive proof theory, explicit mathematics and type-theoretic formalisms, and abstract computations. The volume is dedicated to the 60th birthday of Professor Gerhard Jäger, who has been instrumental in shaping and promoting logic in Switzerland for the last 25 years. It comprises contributions from the symposium “Advances in Proof Theory”, which was held in Bern in December 2013. Proof theory came into being in the twenties of the last century, when it was inaugurated by David Hilbert in order to secure the foundations of mathematics. It was substantially influenced by Gödel's famous incompleteness theorems of 1930 and Gentzen's new consistency proof for the axiom system of first order number theory in 1936. Today, proof theory is a well-established branch ...
Gohberg, Israel
2001-01-01
rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One ...
Generalized teleparallel theory
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
International Nuclear Information System (INIS)
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Brandt, Bastian B; Wettig, Tilo
2016-01-01
We explore an alternative discretization of continuum SU(N_c) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N_b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N_b can be as small as N_c. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N_c) to SU(N_c), (ii) derive refined bounds on N_b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the ga...
Prototype Theory and Classical Theory:An Explanation and Comparison
Institute of Scientific and Technical Information of China (English)
刘莹
2014-01-01
This paper discusses two different ways to understand categorization, which are classical theory and prototype theory. There is a deep exploration on how to understand categories, and different theoretical backgrounds of the two categorization the⁃ories. Furthermore, it reviews the limitations and advantages of both theories. And the comparison of the theories gives a clearer angle to understand their similarities and differences.
On novel string theories from 4d gauge theories
Directory of Open Access Journals (Sweden)
Kiritsis Elias
2014-04-01
Full Text Available We investigate strings theories as defined from four dimensional gauge theories. It is argued that novel (superstring theories exist up to 26 dimensions. Some of them may support weakly curved geometries. A proposal is outlined to link their local conformal invariance to the dynamics of the bulk string theory.
Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery
Thomas, Gary; James, David
2006-01-01
Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…
Problems in equilibrium theory
Aliprantis, Charalambos D
1996-01-01
In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.
Kubrusly, Carlos S
2015-01-01
Classical in its approach, this textbook is thoughtfully designed and composed in two parts. Part I is meant for a one-semester beginning graduate course in measure theory, proposing an “abstract” approach to measure and integration, where the classical concrete cases of Lebesgue measure and Lebesgue integral are presented as an important particular case of general theory. Part II of the text is more advanced and is addressed to a more experienced reader. The material is designed to cover another one-semester graduate course subsequent to a first course, dealing with measure and integration in topological spaces. The final section of each chapter in Part I presents problems that are integral to each chapter, the majority of which consist of auxiliary results, extensions of the theory, examples, and counterexamples. Problems which are highly theoretical have accompanying hints. The last section of each chapter of Part II consists of Additional Propositions containing auxiliary and complementary results. Th...
DEFF Research Database (Denmark)
Nygaard, Mikkel
Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. A simple domain theory for concurrency is presented. Based on a categorical model of linear logic...... of affine-linear logic. This language adds to HOPLA an interesting tensor operation at the price of linearity constraints on the occurrences of variables. The tensor can be understood as a juxtaposition of independent processes, and allows Affine HOPLA to encode processes of the kind found in treatments...... of nondeterministic dataflow. The domain theory can be generalised to presheaf models, providing a more refined treatment of nondeterministic branching and supporting notions of bisimulation. The operational semantics for HOPLA is guided by the idea that derivations of transitions in the operational semantics should...
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Finite Temperature Matrix Theory
Meana, M L; Peñalba, J P; Meana, Marco Laucelli; Peñalba, Jesús Puente
1998-01-01
We present the way the Lorentz invariant canonical partition function for Matrix Theory as a light-cone formulation of M-theory can be computed. We explicitly show how when the eleventh dimension is decompactified, the N=1 eleven dimensional SUGRA partition function appears. From this particular analysis we also clarify the question about the discernibility problem when making statistics with supergravitons (the N! problem) in Matrix black hole configurations. We also provide a high temperature expansion which captures some structure of the canonical partition function when interactions amongst D-particles are on. The connection with the semi-classical computations thermalizing the open superstrings attached to a D-particle is also clarified through a Born-Oppenheimer approximation. Some ideas about how Matrix Theory would describe the complementary degrees of freedom of the massless content of eleven dimensional SUGRA are also discussed.
Documentary and Cognitive Theory
DEFF Research Database (Denmark)
Bondebjerg, Ib
2014-01-01
This article deals with the benefits of using cognitive theory in documentary film studies. The article outlines general aspects of cognitive theory in humanities and social science, however the main focus is on the role of narrative, visual style and emotional dimensions of different types...... of documentaries. Dealing with cognitive theories of film and media and with memory studies, the article analyses how a cognitive approach to documentaries can increase our under-standing of how documentaries influence us on a cognitive and emotional level and contribute to the forming of our social and cultural...... imagination. The article analyses case studies of documentaries dealing with climate change and the environment and documentaries dealing with social history....
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Astronomy and political theory
Campion, Nicholas
2011-06-01
This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.
DEFF Research Database (Denmark)
Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning
2010-01-01
defined by Semper as a constructive precondition, a theory for developing a novel tectonic relation between home and system opens up. As a research result the paper suggests a practical spatial exploitation of the actual prefab construction, defining interiority not solely as a visual occupation......’ is an example of this sensuous interior transformation of a house into a home, a level of detailing which is, however, seldom represented in the prefabricated house. Consequently, this paper investigates whether interiority can be developed as a tectonic theory and design principle for uniting home and system...... in the development of novel prefab solutions. This is pursued trough a deductive study comparing Gottfried Semper’s theories on the origins of construction with Werner Blaser’s technical and practical studies of the joint. In combining Blaser’s constructive understanding of the joint with the interior softness...
Aerts, Diederik
2015-01-01
We put forward a new view of relativity theory that makes the existence of a flow of time compatible with the four-dimensional block universe. To this end, we apply the creation-discovery view elaborated for quantum mechanics to relativity theory and in such a way that time and space become creations instead of discoveries and an underlying non-temporal and non-spatial reality comes into existence. We study the nature of this underlying non-temporal and non-spatial reality and reinterpret many aspects of the theory within this new view. We show that data of relativistic measurements are sufficient to derive the three-dimensionality of physical space. The nature of light and massive entities is reconsidered, and an analogy with human cognition is worked out.
Commercial Conspiracy Theories
Directory of Open Access Journals (Sweden)
Adrian eFurnham
2013-06-01
Full Text Available There are many ways to categorise conspiracy theories. In the present study, we examined individual and demographic predictors of beliefs in commercial conspiracy theories among a British sample of over 300 women and men. Results showed people were cynical and sceptical with regard to advertising tricks, as well as the tactics of organisations like banks and alcohol, drug and tobacco companies. Beliefs sorted into four identifiable clusters, labelled sneakiness, manipulative, change-the-rules and suppression/prevention. The high alpha for the overall scale suggested general beliefs in commercial conspiracy. Regressions suggested that those people who were less religious, more left-wing, more pessimistic, less (self-defined as wealthy, less Neurotic and less Open-to-Experience believed there was more commercial conspiracy. Overall the individual difference variables explained relatively little of the variance in these beliefs.The implications of these findings for the literature on conspiracy theories are discussed.
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...
Deformations of Superconformal Theories
Cordova, Clay; Intriligator, Kenneth
2016-01-01
We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in $d \\geq 3$ dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformat...
Gurau, R; Rivasseau, V
2008-01-01
We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Pragmatism and practice theory
DEFF Research Database (Denmark)
Buch, Anders; Elkjær, Bente
Proponents of the ‘practice turn’ in the social sciences rarely mention American pragmatism as a source of inspiration or refer to pragmatist philosophy. This strikes us as not only odd, but also a disadvantage since the pragmatist legacy has much to offer practice theory in the study of organiza......Proponents of the ‘practice turn’ in the social sciences rarely mention American pragmatism as a source of inspiration or refer to pragmatist philosophy. This strikes us as not only odd, but also a disadvantage since the pragmatist legacy has much to offer practice theory in the study...... of organizations. In this paper we want to spell out the theoretical similarities and divergences between practice theory and pragmatism to consider whether the two traditions can find common ground when gazing upon organization studies. We suggest that pragmatism should be included in the ‘tool-kit’ of practice...
Doria, Gino; Koch, Giorgio; Strom, Roberto
1979-01-01
This volume collects the contributions presented at the "Working Conference on System Theory in Immunology", held in Rome, May 1978. The aim of the Conference was to bring together immunologists on one side and experts in system theory and applied mathematics on the other, in order to identify problems of common interest and to establish a network of joint effort toward their solution. The methodologies of system theory for processing experimental data and for describing dynamical phenomena could indeed contribute significantly to the under standing of basic immunological facts. Conversely, the complexity of experimental results and of interpretative models should stimulate mathematicians to formulate new problems and to design appropriate procedures of analysis. The multitude of scientific publications in theoretical biology, appeared in recent years, confirms this trend and calls for extensive interaction between mat- matics and immunology. The material of this volume is divided into five sections, along ...
Stochastic processes inference theory
Rao, Malempati M
2014-01-01
This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.
Gurau, Razvan
2009-01-01
Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex.
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Privatization in economic theory
Directory of Open Access Journals (Sweden)
Drakić Maja
2007-01-01
Full Text Available In reality privatization has never occurred according to the handbook rules of ordinary market transactions. Not even in advanced market economies can privatization transactions be described by the Walrasian or Arrowian, or Leontiefian equilibrium models, or by the equilibrium models of the game theory. In these economies transactions of privatization take place in a fairly organic way – which means that those are driven by the dominance of private property rights and in a market economy. But despite this fact Western privatization also some peculiar features as compared to ordinary company takeovers, since the state as the seller may pursue non – economic goals. Changes in the dominant form of property change positions and status of many individuals and groups in the society. That’s why privatization can even less be explained by ordinary market mechanisms in transition countries where privatizing state-owned property have happened in a mass scale and where markets and private property rights weren't established at the time process of privatization began. In this paper I’ll discuss and analyze the phenomenon of privatization in context of different economic theories arguing that empirical results go in favor of the public choice theory (Buchanan, 1978, theory of "economic constitution" (Brennan and Buchanan 1985, (Buchanan and Tullock, 1989, and theory of "collective action" (Olson, 1982. These theories argues that transition from one economic system into another, for example transition from collectivistic, socialistic system into capitalism and free market economy with dominant private property, will not happen through isolated changes of only few economic institutions, no matter how deep that changes would be. In other words privatization can not give results if it's not followed by comprehensive change of economic system because privatized companied wouldn't be able to operate in old environment.
Matrix string theory, contact terms, and superstring field theory
Dijkgraaf, Robbert; Motl, Lubos
2003-01-01
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of...
Barron, E N
2008-01-01
A fundamental introduction to modern game theory from a mathematical viewpoint. Game theory arises in almost every fact of human and inhuman interaction since oftentimes during these communications objectives are opposed or cooperation is viewed as an option. From economics and finance to biology and computer science, researchers and practitioners are often put in complex decision-making scenarios, whether they are interacting with each other or working with evolving technology and artificial intelligence. Acknowledging the role of mathematics in making logical and advantageous decisions, Game
Harrison, Walter A
2011-01-01
""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o
Microemulsions theory and practice
Prince, Leon
1977-01-01
Microemulsions: Theory and Practice covers the development of the theory and practice of microemulsion systems. This book is divided into seven chapters that explore the physics and chemistry of microemulsions. This book deals first with the commercial history of microemulsions, from the discovery of carnauba wax emulsions to polymer emulsions. This topic is followed by discussions on the theoretical aspects of microemulsion formulation techniques and the design of other products. The subsequent chapter describes the microemulsion formulation with less solubilizer or emulsifier together wi
Directory of Open Access Journals (Sweden)
Arlinghaus Sandra L.
2015-12-01
Full Text Available Is mathematical category theory a unifying tool for geography? Here we look at a few basic category theoretical ideas and interpret them in geographic example. We also offer links to indicate how category theory has been used as such in other disciplines. Finally, we announce the direction of our research program on this topic as a way to facilitate the learning, and maintenance of learning, of GIS software – and in the spirit of Quaestiones Geographicae, invite debate, comment, and contribution to this program in spatial mathematics.
Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich
1966-01-01
Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-
Energy Technology Data Exchange (ETDEWEB)
Berry, Ray Alden [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kadioglu, Samet Yucel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-03-01
This document summarizes the physical models and mathematical formulations used in the RELAP-7 code. In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The MOOSE framework enables rapid development of the RELAP-7 code. The developmental efforts and results demonstrate that the RELAP-7 project is on a path to success. This theory manual documents the main features implemented into the RELAP-7 code. Because the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with periodic updates to keep it current with the state of the development, implementation, and model additions/revisions.
Sarason, Donald
2007-01-01
Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Co
Strømmen, Einar
2006-01-01
This text book is intended for studies in wind engineering, with focus on the stochastic theory of wind induced dynamic response calculations for slender bridges or other line ?like civil engineering type of structures. It contains the background assumptions and hypothesis as well as the development of the computational theory that is necessary for the prediction of wind induced fluctuating displacements and cross sectional forces. The simple cases of static and quasi-static structural response calculations are for the sake of completeness also included. The text is at an advanced level in the
Ball, Joseph A; Helton, JWilliam; Rodman, Leiba; Spitkovsky, Iiya
2010-01-01
This is the first volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.
Nonlinear optimal control theory
Berkovitz, Leonard David
2012-01-01
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis
Stoll, Robert R
1979-01-01
Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in
International Nuclear Information System (INIS)
This report summarizes progress during the past year in the following areas of research: Pion charge exchange reactions, including a theory of the contribution of pion absorption and correlated double scattering to double charge exchange, new coupled channel calculations for single and double charge exchange from 14C. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values. Proposed research for the coming year in each area is presented
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Cartan, Élie
1981-01-01
The French mathematician Élie Cartan (1869-1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to intr
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Elements of probability theory
Rumshiskii, L Z
1965-01-01
Elements of Probability Theory presents the methods of the theory of probability. This book is divided into seven chapters that discuss the general rule for the multiplication of probabilities, the fundamental properties of the subject matter, and the classical definition of probability. The introductory chapters deal with the functions of random variables; continuous random variables; numerical characteristics of probability distributions; center of the probability distribution of a random variable; definition of the law of large numbers; stability of the sample mean and the method of moments
Tourlakis, George
2012-01-01
Learn the skills and acquire the intuition to assess the theoretical limitations of computer programming Offering an accessible approach to the topic, Theory of Computation focuses on the metatheory of computing and the theoretical boundaries between what various computational models can do and not do—from the most general model, the URM (Unbounded Register Machines), to the finite automaton. A wealth of programming-like examples and easy-to-follow explanations build the general theory gradually, which guides readers through the modeling and mathematical analysis of computational pheno
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Kim, S; Yee, H U; Kim, Seok; Lee, Ki-Myeong; Yee, Ho-Ung
2006-01-01
To a domain wall or string object, Noether charge and topological spatial objects can be attracted, forming a composite BPS (Bogomolny-Prasad-Sommerfield) object. We consider two field theories and derive a new BPS bound on composite linear solitons involving multiple charges. Among the BPS objects `supertubes' appear when the wall or string tension is canceled by the bound energy, and could take an arbitrary closed curve. In our theories, supertubes manifest as Chern-Simons solitons, dyonic instantons, charged semi-local vortices, and dyonic instantons on vortex flux sheet.
Knopp, Konrad
1996-01-01
This is a one-volume edition of Parts I and II of the classic five-volume set The Theory of Functions prepared by renowned mathematician Konrad Knopp. Concise, easy to follow, yet complete and rigorous, the work includes full demonstrations and detailed proofs.Part I stresses the general foundation of the theory of functions, providing the student with background for further books on a more advanced level.Part II places major emphasis on special functions and characteristic, important types of functions, selected from single-valued and multiple-valued classes.
Levy, Azriel
2002-01-01
An advanced-level treatment of the basics of set theory, this text offers students a firm foundation, stopping just short of the areas employing model-theoretic methods. Geared toward upper-level undergraduate and graduate students, it consists of two parts: the first covers pure set theory, including the basic motions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of it consequences; the second deals with applications and advanced topics such as point set topology, real spaces, Boolean algebras, and infinite combinatorics and large cardinals. An
Mahmoud, Hosam M
2011-01-01
A cutting-edge look at the emerging distributional theory of sorting Research on distributions associated with sorting algorithms has grown dramatically over the last few decades, spawning many exact and limiting distributions of complexity measures for many sorting algorithms. Yet much of this information has been scattered in disparate and highly specialized sources throughout the literature. In Sorting: A Distribution Theory, leading authority Hosam Mahmoud compiles, consolidates, and clarifies the large volume of available research, providing a much-needed, comprehensive treatment of the
Sierpinski, Waclaw
1988-01-01
Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian
Energy Technology Data Exchange (ETDEWEB)
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2004-08-01
This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programer-notes manual, the user's notes and of course the material in the open literature.
Computability theory an introduction
Jones, Neil D
1973-01-01
Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church-Turing thesis.Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decida
Theory of differential equations
Gel'fand, I M
1967-01-01
Generalized Functions, Volume 3: Theory of Differential Equations focuses on the application of generalized functions to problems of the theory of partial differential equations.This book discusses the problems of determining uniqueness and correctness classes for solutions of the Cauchy problem for systems with constant coefficients and eigenfunction expansions for self-adjoint differential operators. The topics covered include the bounded operators in spaces of type W, Cauchy problem in a topological vector space, and theorem of the Phragmén-Lindelöf type. The correctness classes for the Cau
Dudley, Underwood
2008-01-01
Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta
Holographic effective field theories
Martucci, Luca; Zaffaroni, Alberto
2016-06-01
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2015-01-01
The research article presents the highly innovative theoretical research results: 1) the new quantum microeconomics theory in the quantum econophysics science is formulated; the idea on the existence of the discrete-time induced quantum transitions of firm’s earnings (the firm’s value) in the quantum microeconomics theory in the quantum econophysics science is proposed; 2) the formulas (1, 2) to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments i...
Contemporary theories of learning
DEFF Research Database (Denmark)
Græsk oversættelse af: Contemporary theories of learning. Bogens titel på græsk: Σύγχρονες θεωρίες μάθησης......Græsk oversættelse af: Contemporary theories of learning. Bogens titel på græsk: Σύγχρονες θεωρίες μάθησης...
Carroll, RW
1991-01-01
When soliton theory, based on water waves, plasmas, fiber optics etc., was developing in the 1960-1970 era it seemed that perhaps KdV (and a few other equations) were really rather special in the set of all interesting partial differential equations. As it turns out, although integrable systems are still special, the mathematical interaction of integrable systems theory with virtually all branches of mathematics (and with many currently developing areas of theoretical physics) illustrates the importance of this area. This book concentrates on developing the theme of the tau function. KdV and K
Oleg Bazaluk
2015-01-01
The book The Theory of Evolution: from the Space Vacuum to Neural Ensembles and Moving Forward, an edition of 100 copies, was published in Russian language, in December 2014 in Kiev. Its Russian version is here: http://en.bazaluk.com/journals.html. Introduction, Chapter 10 and Conclusion published in English for the first time. Since 2004 author have been researching in the field of theory of Evolution, Big History. The book was written on the base of analysis of more than 2000 primary so...
LeVeque, William J
1996-01-01
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given - making the book self-contained in this respect.The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diopha
Kouri, Donald J
2017-01-01
This book provides a detailed exposition of quantum scattering theory as applied to chemical physics. It includes the fundamental mathematics of scattering, details of how it applies to atom-molecule, molecule-molecule collisions, as well as collisions with surfaces. A variety of computational methods for solving scattering problems are presented. In addition, some discussion of fully quantal approximations is included. Both inelastic and reactive scattering are treated in detail. Both time-dependent and time-independent approaches to scattering theory and scattering computation are included. The book will reflect the research done over approximately 50 years by the author.
International Nuclear Information System (INIS)
Here, we develop a comprehensive quantum theory for the phenomenon of quantum friction. Based on a theory of macroscopic quantum electrodynamics for unstable systems, we calculate the quantum expectation of the friction force at zero temperature, and link the friction effect to the emergence of system instabilities related to the Cherenkov effect. These instabilities may occur due to the hybridization of particular guided modes supported by the individual moving bodies, and selection rules for the interacting modes are derived. It is proven that the quantum friction effect can take place even when the interacting bodies are lossless and made of nondispersive dielectrics. (paper)
Energy Technology Data Exchange (ETDEWEB)
Chris Quigg
2001-08-10
After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2){sub L} {circle_times} U(1){sub Y} electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity.
Measure theory and integration
De Barra, G
2003-01-01
This text approaches integration via measure theory as opposed to measure theory via integration, an approach which makes it easier to grasp the subject. Apart from its central importance to pure mathematics, the material is also relevant to applied mathematics and probability, with proof of the mathematics set out clearly and in considerable detail. Numerous worked examples necessary for teaching and learning at undergraduate level constitute a strong feature of the book, and after studying statements of results of the theorems, students should be able to attempt the 300 problem exercises whi
Wu, Ning
1998-01-01
In this paper, we will construct a gauge field model, in which the masses of gauge fields are non-zero and the local gauge symmetry is strictly preserved. A SU(N) gauge field model is discussed in details in this paper. In the limit $\\alpha \\longrightarrow 0$ or $\\alpha \\longrightarrow \\infty$, the gauge field model discussed in this paper will return to Yang-Mills gauge field model. This theory could be regarded as theoretical development of Yang-Mills gauge field theory.
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Time Dependent Resonance Theory
Soffer, A.; Weinstein, M. I.
1998-01-01
An important class of resonance problems involves the study of perturbations of systems having embedded eigenvalues in their continuous spectrum. Problems with this mathematical structure arise in the study of many physical systems, e.g. the coupling of an atom or molecule to a photon-radiation field, and Auger states of the helium atom, as well as in spectral geometry and number theory. We present a dynamic (time-dependent) theory of such quantum resonances. The key hypotheses are (i) a reso...
Institute of Scientific and Technical Information of China (English)
王燕
2012-01-01
“Culture” is such a broad concept which is understood and defined differently by different people and has been remaining a focus for research. Some view culture as skills, values, understandings, knowledge or ways of being achieved as members of society and it is acquired and transmitted over generations; some regard culture as meaning which is established and constructed in practice and it is the context of production of new meaning and constraint of action. In this article it will focus on two theories of culture, namely, Cultural Relativism and Cultural Structuralism, and will illustrate the general ideas, main representatives and their arguments of these two theories.
International Nuclear Information System (INIS)
This opening contribution consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory and Cyclic Homology
Theory-Based Stakeholder Evaluation
Hansen, Morten Balle; Vedung, Evert
2010-01-01
This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…
Edifying Theory: Serving the Good.
Manen, Max van
1982-01-01
This article, concerning the importance of and need for educational theory, elucidates the etymology of the word "theory," describes the importance of ethnomethodology to educational principles, and views the concerns of epistemology to curriculum theory. The question "What is the good of theory?" is debated in relation to the actual benefit of…
Nineteenth-century aether theories
Schaffner, Kenneth F
2013-01-01
Nineteenth-Century Aether Theories focuses on aether theories. The selection first offers information on the development of aether theories by taking into consideration the positions of Christiaan Huygens, Thomas Young, and Augustin Fresnel. The text then examines the elastic solid aether. Concerns include Green's aether theory, MacCullagh's aether theory, and Kelvin's aether theory. The text also reviews Lorentz' aether and electron theory. The development of Lorentz' ideas of the stagnant aether and electrons; Lorentz' theorem of corresponding states and its development; and Lorentz' respons
String Theory: Progress and Problems
Schwarz, John H.
2007-01-01
String theory builds on the great legacy of Yukawa and Tomonaga: New degrees of freedom and control of the UV are two important themes. This talk will give an overview of some of the progress and some of the unsolved problems that characterize string theory today. It is divided into two parts: (1) Connecting String Theory to the Real World; (2) Gauge Theory/String Theory Duality. Two other major subjects, which I will omit, are Black Holes in String Theory and The Impact of String Theory on M...
The evolution of criminological theories
Heidt, Jonathon Michael
2011-01-01
Since the 1970s, the field of criminology has produced numerous philosophies, theories, and research programs. This has resulted in unresolved debates over philosophical positions, needless competitive theory testing, an inconsistent use of terminology, and general disarray in the field. These problems have hampered theory development and obscured our understanding of theory growth in criminology. In addition, little has been written about theory building in criminology; this has also cont...
International Nuclear Information System (INIS)
An elementary review of string theory aimed at physicists in general rather than theorists in particular is given. It is explained how string theory can provide a consistent theory of gravity and quantum mechanics and may also unify all the forces of nature. The relationship between critical phenomena, conformal field theory and string theory is explained. More recent developments involving W-algebras and integrable models are summarized. (author). 4 figs., 1 tab
A Theory of Political Entrepreneurship
McCaffrey, Matthew; Joseph T. Salerno; Ma,
2011-01-01
This paper adapts the entrepreneurial theory developed by Richard Cantillon, Frank Knight, and Ludwig von Mises to the theory of "political entrepreneurship." Political entrepreneurship is an outgrowth of the theory of the market entrepreneur, and derives from extending entrepreneurial theory from the market into the political sphere of action. By applying the theory of the entrepreneur to political behavior, we provide a basis for identifying political entrepreneurs, and for separating t...
Molecular theory of capillarity
Rowlinson, J S
2002-01-01
History of thought on molecular origins of surface phenomena offers a critical and detailed examination and assessment of modern theories, focusing on statistical mechanics and application of results in mean-field approximation to model systems. Emphasis on liquid-gas surface, with a focus on liquid-liquid surfaces in the final chapters. 1989 edition.
Riotto, Antonio
1998-01-01
These lectures provide a pedagogical review of the present status of theories explaining the observed baryon asymmetry of the Universe. Particular emphasis is given on GUT baryogenesis and electroweak baryogenesis. The key issues, the unresolved problems and the very recent developments, such as GUT baryogenesis during preheating, are explained. Some exercises (and their solution) are also provided.
Theory and computational science
International Nuclear Information System (INIS)
The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)
Havenith, R.W.A.
2005-01-01
In this Letter, the formulation and implementation of a parallel response property code for non-orthogonal, valence bond wave-functions are described. Test calculations on benzene and cyclobutadiene show that the polarisability and magnetisability tensors obtained using valence bond theory are compa
International Nuclear Information System (INIS)
Progress in this area is reported in five sections: (1) Magnetohydrodynamic theory. The nonlinear behavior of MHD instabilities to tokamaks was studied numerically. Linear stability was also investigated, using combinations of exact and approximate methods. Two-dimensional tokamak equilibrium codes were used to ascertain the effect of an iron core transformer, and a three-dimensional equilibrium code was developed to study finite beta effects in the ELMO Bumpy Torus. (2) Kinetic theory. Numerical methods were derived to solve the drift kinetic equation, initially to study neoclassical diffusion and dissipative trapped electron instabilities in tokamaks. A parallel effort has extended the linear theory of these instabilities into experimentally relevant regimes and derived shear stabilization criteria for them. The theory of neutral beam injection into tokamaks was expanded and compared successfully with experiment. Finite-beta and electric-field effects on particle orbits in the EBT were studied. (3) Plasma modeling. One-dimensional tokamak transport codes were improved and used to study neutral beam injection and impurity effects. (4) Plasma engineering. Plasma characteristics required for break-even conditions in F-BX and TCT were determined. Prospects for burning advanced fuels such as D-D and D-6Li were studied. The power balance in EBT was studied, using a zero-dimensional point model. (5) Data handling. The ORMAK data system was improved, and initial work on the EBT system was completed. (U.S.)
Incorporating Feminist Standpoint Theory
DEFF Research Database (Denmark)
Ahlström, Kristoffer
2005-01-01
As has been noted by Alvin Goldman, there are some very interesting similarities between his Veritistic Social Epistemology (VSE) and Sandra Harding’s Feminist Standpoint Theory (FST). In the present paper, it is argued that these similarities are so significant as to motivate an incorporation...
Hydromechanics theory and fundamentals
Sinaiski, Emmanuil G
2010-01-01
Written by an experienced author with a strong background in applications of this field, this monograph provides a comprehensive and detailed account of the theory behind hydromechanics. He includes numerous appendices with mathematical tools, backed by extensive illustrations. The result is a must-have for all those needing to apply the methods in their research, be it in industry or academia.
Shandera, Sarah
2015-04-01
I will discuss the importance of measurements or improved constraints of primordial tensor modes for theories of the primordial universe. In particular, I will review the implications of the amplitude of the tensor fluctuations for inflation and discuss what an era of B-mode cosmology could teach us about particle physics near the Planck scale.
Children's Theories of Motivation
Gurland, Suzanne T.; Glowacky, Victoria C.
2011-01-01
To investigate children's theories of motivation, we asked 166 children (8-12 years of age) to rate the effect of various motivational strategies on task interest, over the short and long terms, in activities described as appealing or unappealing. Children viewed the rewards strategy as resulting in greatest interest except when implemented over…
Boonstra, Harm Jan Hugo
1996-01-01
The physics of elementary particles is currently described in terms of a very successful theory called the standard model. It describes all known elementary particles and their interactions except gravitational interactions. The standard model accommodates the quarks and the leptons which are the co
Palmer, T N
2016-01-01
Invariant Set Theory (IST) is a realistic, locally causal theory of fundamental physics which assumes a much stronger synergy between cosmology and quantum physics than exists in contemporary theory. In IST the (quasi-cyclic) universe $U$ is treated as a deterministic dynamical system evolving precisely on a measure-zero fractal invariant subset $I_U$ of its state space. In this approach, the geometry of $I_U$, and not a set of differential evolution equations in space-time $\\mathcal M_U$, provides the most primitive description of the laws of physics. As such, IST is non-classical. The geometry of $I_U$ is based on Cantor sets of space-time trajectories in state space, homeomorphic to the algebraic set of $p$-adic integers, for large but finite $p$. In IST, the non-commutativity of position and momentum observables arises from number theory - in particular the non-commensurateness of $\\phi$ and $\\cos \\phi$. The complex Hilbert Space and the relativistic Dirac Equation respectively are shown to describe $I_U$...
Generalizability Theory [Book Review].
Kane, Michael
2003-01-01
This book presents a comprehensive overview of univariate and multivariate generalizability theory, a psychometric model that provides a powerful approach to the analysis of errors of measurement through the use of random-effects and mixed-model analysis of variance. (SLD)
Colloquium: Topological band theory
Bansil, A.; Lin, Hsin; Das, Tanmoy
2016-04-01
The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.
Variational transition state theory
Energy Technology Data Exchange (ETDEWEB)
Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2016-07-01
This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
V. Ruitinga (Volker)
2011-01-01
textabstractJohn Rawls presents his work on social justice as Ideal Theory. By taking an idealized scenario, he is able to consider the compatibility of different concepts relating to social justice without being hampered by all the complexities of society and its actors; an approach to social theor
DEFF Research Database (Denmark)
Falster, Peter; Jenkins, Michael
1999-01-01
This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose pri...
Kaplan, Sandra N.
2012-01-01
The importance of putting theory into practice can be addressed and advocated to educators and gifted students through the presentation of a Continuum of Practice. Articulating the sequence and phases of practice can underscore how practice can take place; it also can change the perspective and meaning of practice.
DEFF Research Database (Denmark)
Svendsen, Winnie Edith
2015-01-01
,000 m−1, which is a huge difference and has a large impact on flow behavior. In this chapter the basic microfluidic theory will be presented, enabling the reader to gain a comprehensive understanding of how liquids behave at the microscale, enough to be able to engage in design of micro systems...
Verbeek, P.P.C.C.
2012-01-01
In his article In Between Us, Yoni van den Eede expands existing theories of mediation into the realm of the social and the political, focusing on the notions of opacity and transparency. His approach is rich and promising, but two pitfalls should be avoided. First, his concept of ‘in-between’ runs
Marks, Stephen R.
1974-01-01
Durkheim's theory of anomie is traced and argued to be a major development that followed the publication of "Suicide." Recognition of anomie as a macrosociological problem rendered it insoluble by Durkeheim's practical-humanistic orientation. In this connection his remedial proposals -- occupational, political, education, and "creation and…
J. Förster; J. Marguc; M. Gillebaart
2010-01-01
Novelty Categorization Theory (NCT) attempts to predict when people perceive events as novel and how they process novel events across different domains. It is predicted that broad mental categories reduce the perception of an event being novel via inclusion processes, whereas narrow categories incre
Cornwell, J F
1989-01-01
Recent devopments, particularly in high-energy physics, have projected group theory and symmetry consideration into a central position in theoretical physics. These developments have taken physicists increasingly deeper into the fascinating world of pure mathematics. This work presents important mathematical developments of the last fifteen years in a form that is easy to comprehend and appreciate.