WorldWideScience

Sample records for barcoding bacterial cells

  1. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing.

    Science.gov (United States)

    Park, Eun-Jin; Chun, Jongsik; Cha, Chang-Jun; Park, Wan-Soo; Jeon, Che Ok; Bae, Jin-Woo

    2012-05-01

    Kimchi, a food made of fermented vegetables, is densely populated by indigenous microorganisms that originate from the raw ingredients under normal conditions. Most microbiological studies on kimchi have been on the most popular dish, baechu-kimchi (Chinese cabbage kimchi). Therefore, relatively little is known about the various other kinds of kimchi (depending on the region, season, main ingredient, starter culture inoculation and recipe). In this study, we collected 100 samples periodically during the fermentation of ten representative kinds of kimchi (including starter-inoculated kimchi) that were stored in the refrigerator (4 °C) during the 30-35 days fermentation period. The multiplex barcoded pyrosequencing of a hypervariable V1-V3 region of the 16S ribosomal RNA (rRNA) gene tagged with sample-specific barcodes for multiplex identifiers was employed for bacterial community profiling. We found that bacterial communities differed between starter-inoculated and non-inoculated kimchi at the early stages of fermentation, but overall there were no significant differences in the late phases. Also, the diversity and richness of bacterial communities varied depending on the various types of kimchi, and these differences could largely be explained by the major ingredients and the manufacture processes of each types of kimchi. This study provides the comprehensive understanding of the factors influencing the biodiversity of the kimchi ecosystem.

  2. Genetic barcodes

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  3. Tracing Dynamics and Clonal Heterogeneity of Cbx7-Induced Leukemic Stem Cells by Cellular Barcoding

    NARCIS (Netherlands)

    Klauke, Karin; Broekhuis, Mathilde J. C.; Weersing, Ellen; Dethmers-Ausema, Albertina; Ritsema, Martha; Gonzalez, Marta Vila; Zwart, Erik; Bystrykh, Leonid V.; de Haan, Gerald

    2015-01-01

    Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for

  4. The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons.

    Science.gov (United States)

    Starke, Ingo C; Vahjen, Wilfried; Pieper, Robert; Zentek, Jürgen

    2014-01-01

    In this study, the effect of different DNA extraction procedures and primer sets on pyrosequencing results regarding the composition of bacterial communities in the ileum of piglets was investigated. Ileal chyme from piglets fed a diet containing different amounts of zinc oxide was used to evaluate a pyrosequencing study with barcoded 16S rRNA PCR products. Two DNA extraction methods (bead beating versus silica gel columns) and two primer sets targeting variable regions of bacterial 16S rRNA genes (8f-534r versus 968f-1401r) were considered. The SEED viewer software of the MG-RAST server was used for automated sequence analysis. A total of 5.2 × 10(5) sequences were used for analysis after processing for read length (150 bp), minimum sequence occurrence (5), and exclusion of eukaryotic and unclassified/uncultured sequences. DNA extraction procedures and primer sets differed significantly in total sequence yield. The distribution of bacterial order and main bacterial genera was influenced significantly by both parameters. However, this study has shown that the results of pyrosequencing studies using barcoded PCR amplicons of bacterial 16S rRNA genes depend on DNA extraction and primer choice, as well as on the manner of downstream sequence analysis.

  5. The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons

    Directory of Open Access Journals (Sweden)

    Ingo C. Starke

    2014-01-01

    Full Text Available In this study, the effect of different DNA extraction procedures and primer sets on pyrosequencing results regarding the composition of bacterial communities in the ileum of piglets was investigated. Ileal chyme from piglets fed a diet containing different amounts of zinc oxide was used to evaluate a pyrosequencing study with barcoded 16S rRNA PCR products. Two DNA extraction methods (bead beating versus silica gel columns and two primer sets targeting variable regions of bacterial 16S rRNA genes (8f-534r versus 968f-1401r were considered. The SEED viewer software of the MG-RAST server was used for automated sequence analysis. A total of 5.2×105 sequences were used for analysis after processing for read length (150 bp, minimum sequence occurrence (5, and exclusion of eukaryotic and unclassified/uncultured sequences. DNA extraction procedures and primer sets differed significantly in total sequence yield. The distribution of bacterial order and main bacterial genera was influenced significantly by both parameters. However, this study has shown that the results of pyrosequencing studies using barcoded PCR amplicons of bacterial 16S rRNA genes depend on DNA extraction and primer choice, as well as on the manner of downstream sequence analysis.

  6. Analysis of run-to-run variation of bar-coded pyrosequencing for evaluating bacterial community shifts and individual taxa dynamics.

    Science.gov (United States)

    Ge, Yuan; Schimel, Joshua P; Holden, Patricia A

    2014-01-01

    Bar-coded pyrosequencing has been increasingly used due to its fine taxonomic resolution and high throughput. Yet, concerns arise regarding the reproducibility of bar-coded pyrosequencing. We evaluated the run-to-run variation of bar-coded pyrosequencing in detecting bacterial community shifts and taxa dynamics. Our results demonstrate that pyrosequencing is reproducible in evaluating community shifts within a run, but not between runs. Also, the reproducibility of pyrosequencing in detecting individual taxa increased as a function of taxa abundance. Based on our findings: (1) for studies with modest sequencing depth, it is doubtful that data from different pyrosequencing runs can be considered comparable; (2) if multiple pyrosequencing runs are needed to increase the sequencing depth, additional sequencing efforts should be applied to all samples, rather than to selected samples; (3) if pyrosequencing is used for estimating bacterial population dynamics, only the abundant taxa should be considered; (4) for less-abundant taxa, the sequencing depth should be increased to ensure an accurate evaluation of taxon variation trends across samples.

  7. Stochastic particle barcoding for single-cell tracking and multiparametric analysis.

    Science.gov (United States)

    Castellarnau, M; Szeto, G L; Su, H-W; Tokatlian, T; Love, J C; Irvine, D J; Voldman, J

    2015-01-27

    This study presents stochastic particle barcoding (SPB), a method for tracking cell identity across bioanalytical platforms. In this approach, single cells or small collections of cells are co-encapsulated within an enzymatically-degradable hydrogel block along with a random collection of fluorescent beads, whose number, color, and position encode the identity of the cell, enabling samples to be transferred in bulk between single-cell assay platforms without losing the identity of individual cells. The application of SPB is demonstrated for transferring cells from a subnanoliter protein secretion/phenotyping array platform into a microtiter plate, with re-identification accuracies in the plate assay of 96±2%. Encapsulated cells are recovered by digesting the hydrogel, allowing subsequent genotyping and phenotyping of cell lysates. Finally, a model scaling is developed to illustrate how different parameters affect the accuracy of SPB and to motivate scaling of the method to thousands of unique blocks.

  8. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  9. Tracing dynamics and clonal heterogeneity of Cbx7-induced leukemic stem cells by cellular barcoding.

    Science.gov (United States)

    Klauke, Karin; Broekhuis, Mathilde J C; Weersing, Ellen; Dethmers-Ausema, Albertina; Ritsema, Martha; González, Marta Vilà; Zwart, Erik; Bystrykh, Leonid V; de Haan, Gerald

    2015-01-13

    Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.

  10. Tracing Dynamics and Clonal Heterogeneity of Cbx7-Induced Leukemic Stem Cells by Cellular Barcoding

    Directory of Open Access Journals (Sweden)

    Karin Klauke

    2015-01-01

    Full Text Available Accurate monitoring of tumor dynamics and leukemic stem cell (LSC heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.

  11. Barcoding T cell calcium response diversity with methods for automated and accurate analysis of cell signals (MAAACS.

    Directory of Open Access Journals (Sweden)

    Audrey Salles

    Full Text Available We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS, a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells.

  12. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    Science.gov (United States)

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  13. A versatile, bar-coded nuclear marker/reporter for live cell fluorescent and multiplexed high content imaging.

    Directory of Open Access Journals (Sweden)

    Irina Krylova

    Full Text Available The screening of large numbers of compounds or siRNAs is a mainstay of both academic and pharmaceutical research. Most screens test those interventions against a single biochemical or cellular output whereas recording multiple complementary outputs may be more biologically relevant. High throughput, multi-channel fluorescence microscopy permits multiple outputs to be quantified in specific cellular subcompartments. However, the number of distinct fluorescent outputs available remains limited. Here, we describe a cellular bar-code technology in which multiple cell-based assays are combined in one well after which each assay is distinguished by fluorescence microscopy. The technology uses the unique fluorescent properties of assay-specific markers comprised of distinct combinations of different 'red' fluorescent proteins sandwiched around a nuclear localization signal. The bar-code markers are excited by a common wavelength of light but distinguished ratiometrically by their differing relative fluorescence in two emission channels. Targeting the bar-code to cell nuclei enables individual cells expressing distinguishable markers to be readily separated by standard image analysis programs. We validated the method by showing that the unique responses of different cell-based assays to specific drugs are retained when three assays are co-plated and separated by the bar-code. Based upon those studies, we discuss a roadmap in which even more assays may be combined in a well. The ability to analyze multiple assays simultaneously will enable screens that better identify, characterize and distinguish hits according to multiple biologically or clinically relevant criteria. These capabilities also enable the re-creation of complex mixtures of cell types that is emerging as a central area of interest in many fields.

  14. Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level

    DEFF Research Database (Denmark)

    Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya

    2016-01-01

    Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny....... Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...

  15. Probing bacterial cell biology using image cytometry.

    Science.gov (United States)

    Cass, Julie A; Stylianidou, Stella; Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2017-03-01

    Advances in automated fluorescence microscopy have made snapshot and time-lapse imaging of bacterial cells commonplace, yet fundamental challenges remain in analysis. The vast quantity of data collected in high-throughput experiments requires a fast and reliable automated method to analyze fluorescence intensity and localization, cell morphology and proliferation as well as other descriptors. Inspired by effective yet tractable methods of population-level analysis using flow cytometry, we have developed a framework and tools for facilitating analogous analyses in image cytometry. These tools can both visualize and gate (generate subpopulations) more than 70 cell descriptors, including cell size, age and fluorescence. The method is well suited to multi-well imaging, analysis of bacterial cultures with high cell density (thousands of cells per frame) and complete cell cycle imaging. We give a brief description of the analysis of four distinct applications to emphasize the broad applicability of the tool.

  16. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  17. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice.

    Science.gov (United States)

    Cheung, Alice M S; Nguyen, Long V; Carles, Annaick; Beer, Philip; Miller, Paul H; Knapp, David J H F; Dhillon, Kiran; Hirst, Martin; Eaves, Connie J

    2013-10-31

    Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ(-/-) mice, each transplanted with ∼10(5) of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo.

  18. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by ou

  19. Measuring bacterial cells size with AFM.

    Science.gov (United States)

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described.

  20. Research on magnetic metallization of bacterial cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A multidisciplinary approach to the fabrication of biologically based magnetic monomers for biolimited forming is described. Rod-like Bacilli cereus about 0.5 μm in diameter and 3-5 μm in length, were used as templates on which the ferromagnetic material was deposited by an electroless deposition method. Different electroless plating solutions were compared in detail and CoNiP solution was selected. During the deposition process, both dispersant and mechanical stirring were used to solve the problem of aggregation of bacterial cells so as to obtain a uniform plating layer. The CoNiP film on Bacilli cereus was a mixture of crystalline and non-crystalline in the phase structure and showed a good magnetism. The magnetic metallized bacterial cells could be manipulated with a magnetic field. Parallel arrays of these micro magnetic particles were achieved and they could rotate along with the magnetic field.

  1. [The species traceability of the ultrafine powder and the cell wall-broken powder of herbal medicine based on DNA barcoding].

    Science.gov (United States)

    Xiang, Li; Tang, Huan; Cheng, Jin-le; Chen, Yi-long; Deng, Wen; Zheng, Xia-sheng; Lai, Zhi-tian; Chen, Shi-lin

    2015-12-01

    Ultrafine powder and cell wall-broken powder of herbal medicine lack of the morphological characters and microscopic identification features. This makes it hard to identify herb's authenticity with traditional methods. We tested ITS2 sequence as DNA barcode in identification of herbal medicine in ultrafine powder and cell wall-broken powder in this study. We extracted genomic DNAs of 93 samples of 31 representative herbal medicines (28 species), which include whole plant, roots and bulbs, stems, leaves, flowers, fruits and seeds. The ITS2 sequences were amplified and sequenced bidirectionally. The ITS2 sequences were identified using Basic Local Alignment Search Tool (BLAST) method in the GenBank database and DNA barcoding system to identify the herbal medicine. The genetic distance was analyzed using the Kimura 2-parameter (K2P) model and the Neighbor-joining (NJ) phylogenetic tree was constructed using MEGA 6.0. The results showed that DNA can be extracted successfully from 93 samples and high quality ITS2 sequences can be amplified. All 31 herbal medicines can get correct identification via BLAST method. The ITS2 sequences of raw material medicines, ultrafine powder and cell wall-broken powder have same sequence in 26 herbal medicines, while the ITS2 sequences in other 5 herbal medicines exhibited variation. The maximum intraspecific genetic-distances of each species were all less than the minimum interspecific genetic distances. ITS2 sequences of each species are all converged to their standard DNA barcodes using NJ method. Therefore, using ITS2 barcode can accurately and effectively distinguish ultrafine powder and cell wall-broken powder of herbal medicine. It provides a new molecular method to identify ultrafine powder and cell wall-broken powder of herbal medicine in the quality control and market supervision.

  2. Bacterial foodborne infections after hematopoietic cell transplantation.

    Science.gov (United States)

    Boyle, Nicole M; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A

    2014-11-01

    Diarrhea, abdominal pain, and fever are common among patients undergoing hematopoietic cell transplantation (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence after transplantation within a single-center population of HCT recipients. All HCT recipients who underwent transplantation from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, Washington were followed for 1 year after transplantation. Data were collected retrospectively using center databases, which include information from transplantation, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli O157:H7, Salmonella species, Shigella species, Vibrio species, or Yersinia species were isolated in culture within 1 year after transplantation. Nonfoodborne infections with these agents and patients with pre-existing bacterial foodborne infection (within 30 days of transplantation) were excluded from analyses. A total of 12 of 4069 (.3%) patients developed a bacterial foodborne infection within 1 year after transplantation. Patients with infections had a median age at transplantation of 50.5 years (interquartile range [IQR], 35 to 57), and the majority were adults ≥18 years of age (9 of 12 [75%]), male gender (8 of 12 [67%]) and had allogeneic transplantation (8 of 12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% confidence interval, .5 to 1.7) and at a median of 50.5 days after transplantation (IQR, 26 to 58.5). The most frequent pathogen detected was C. jejuni/coli (5 of 12 [42%]) followed by Yersinia (3 of 12 [25%]), although Salmonella (2 of 12 [17%]) and Listeria (2 of 12 [17%]) showed equal frequencies; no cases of Shigella

  3. One bacterial cell, one complete genome.

    Directory of Open Access Journals (Sweden)

    Tanja Woyke

    Full Text Available While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA. Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs, indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  4. One Bacterial Cell, One Complete Genome

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  5. DNA Barcoding on Bacteria: A Review

    Directory of Open Access Journals (Sweden)

    D. E. Lebonah

    2014-01-01

    Full Text Available Bacteria are omnipotent and they can be found everywhere. The study of bacterial pathogens has been happening from olden days to prevent epidemics, food spoilage, losses in agricultural production, and loss of lives. Modern techniques in DNA based species identification are considered. So, there is a need to acquire simple and quick identification technique. Hence, this review article covers the efficacy of DNA barcoding of bacteria. Routine DNA barcoding involves the production of PCR amplicons from particular regions to sequence them and these sequence data are used to identify or “barcode” that organism to make a distinction from other species.

  6. DNA mini-barcodes.

    Science.gov (United States)

    Hajibabaei, Mehrdad; McKenna, Charly

    2012-01-01

    Conventional DNA barcoding uses an approximately 650 bp DNA barcode of the mitochondrial gene COI for species identification in animal groups. Similar size fragments from chloroplast genes have been proposed as barcode markers for plants. While PCR amplification and sequencing of a 650 bp fragment is consistent in freshly collected and well-preserved specimens, it is difficult to obtain a full-length barcode in older museum specimens and samples which have been preserved in formalin or similar DNA-unfriendly preservatives. A comparable issue may prevent effective DNA-based authentication and testing in processed biological materials, such as food products, pharmaceuticals, and nutraceuticals. In these cases, shorter DNA sequences-mini-barcodes-have been robustly recovered and shown to be effective in identifying majority of specimens to a species level. Furthermore, short DNA regions can be utilized via high-throughput sequencing platforms providing an inexpensive and comprehensive means of large-scale species identification. These properties of mini-barcodes, coupled with the availability of standardized and universal primers make mini-barcodes a feasible option for DNA barcode analysis in museum samples and applied diagnostic and environmental biodiversity analysis.

  7. Shedding light on biology of bacterial cells.

    Science.gov (United States)

    Schneider, Johannes P; Basler, Marek

    2016-11-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging

  8. Shedding light on biology of bacterial cells

    Science.gov (United States)

    2016-01-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging. This

  9. Determining Lineage Pathways from Cellular Barcoding Experiments

    Directory of Open Access Journals (Sweden)

    Leïla Perié

    2014-02-01

    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  10. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  11. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    . Staphylococci adhere stronger on fresh glass than on hydrophilic glass, while the weaker adhesion by P. fluorescens was similar on both types of glass. These results confirmed the importance of surface hydrophobicity in bacterial adhesion. This study has demonstrated that single-cell force spectroscopy allows...... be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  12. DNA barcoding for plants.

    Science.gov (United States)

    de Vere, Natasha; Rich, Tim C G; Trinder, Sarah A; Long, Charlotte

    2015-01-01

    DNA barcoding uses specific regions of DNA in order to identify species. Initiatives are taking place around the world to generate DNA barcodes for all groups of living organisms and to make these data publically available in order to help understand, conserve, and utilize the world's biodiversity. For land plants the core DNA barcode markers are two sections of coding regions within the chloroplast, part of the genes, rbcL and matK. In order to create high quality databases, each plant that is DNA barcoded needs to have a herbarium voucher that accompanies the rbcL and matK DNA sequences. The quality of the DNA sequences, the primers used, and trace files should also be accessible to users of the data. Multiple individuals should be DNA barcoded for each species in order to check for errors and allow for intraspecific variation. The world's herbaria provide a rich resource of already preserved and identified material and these can be used for DNA barcoding as well as by collecting fresh samples from the wild. These protocols describe the whole DNA barcoding process, from the collection of plant material from the wild or from the herbarium, how to extract and amplify the DNA, and how to check the quality of the data after sequencing.

  13. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.

    NARCIS (Netherlands)

    Beltman, J.B.; Urbanus, J.; Velds, A.; Rooij, van N.; Rohr, J.C.; Naik, S.H.; Schumacher, T.N.

    2016-01-01

    BACKGROUND Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and

  14. Fungal DNA barcoding.

    Science.gov (United States)

    Xu, Jianping

    2016-11-01

    Fungi are ubiquitous in both natural and human-made environments. They play important roles in the health of plants, animals, and humans, and in broad ecosystem functions. Thus, having an efficient species-level identification system could significantly enhance our ability to treat fungal diseases and to monitor the spatial and temporal patterns of fungal distributions and migrations. DNA barcoding is a potent approach for rapid identification of fungal specimens, generating novel species hypothesis, and guiding biodiversity and ecological studies. In this mini-review, I briefly summarize (i) the history of DNA sequence-based fungal identification; (ii) the emergence of the ITS region as the consensus primary fungal barcode; (iii) the use of the ITS barcodes to address a variety of issues on fungal diversity from local to global scales, including generating a large number of species hypothesis; and (iv) the problems with the ITS barcode region and the approaches to overcome these problems. Similar to DNA barcoding research on plants and animals, significant progress has been achieved over the last few years in terms of both the questions being addressed and the foundations being laid for future research endeavors. However, significant challenges remain. I suggest three broad areas of research to enhance the usefulness of fungal DNA barcoding to meet the current and future challenges: (i) develop a common set of primers and technologies that allow the amplification and sequencing of all fungi at both the primary and secondary barcode loci; (ii) compile a centralized reference database that includes all recognized fungal species as well as species hypothesis, and allows regular updates from the research community; and (iii) establish a consensus set of new species recognition criteria based on barcode DNA sequences that can be applied across the fungal kingdom.

  15. Bacterial cell division as a target for new antibiotics.

    Science.gov (United States)

    Sass, Peter; Brötz-Oesterhelt, Heike

    2013-10-01

    Bacterial resistance to currently applied antibiotics complicates the treatment of infections and demands the evaluation of new strategies to counteract multidrug-resistant bacteria. In recent years, the inhibition of the bacterial divisome, mainly by targeting the central cell division mediator FtsZ, has been recognized as a promising strategy for antibiotic attack. New antibiotics were shown to either interfere with the natural dynamics and functions of FtsZ during the cell cycle or to activate a bacterial protease to degrade FtsZ and thus bring about bacterial death in a suicidal manner. Their efficacy in animal models of infection together with resistance-breaking properties prove the potential of such drugs and validate the inhibition of bacterial cell division as an attractive approach for antibiotic intervention.

  16. Bar-Coded Pyrosequencing of 16S rRNA Gene Amplicons Reveals Changes in Ileal Porcine Bacterial Communities Due to High Dietary Zinc Intake ▿ †

    Science.gov (United States)

    Vahjen, W.; Pieper, R.; Zentek, J.

    2010-01-01

    Feeding high levels of zinc oxide to piglets significantly increased the relative abundance of ileal Weissella spp., Leuconostoc spp., and Streptococcus spp., reduced the occurrence of Sarcina spp. and Neisseria spp., and led to numerical increases of all Gram-negative facultative anaerobic genera. High dietary zinc oxide intake has a major impact on the porcine ileal bacterial composition. PMID:20709843

  17. Bar-Coded Pyrosequencing of 16S rRNA Gene Amplicons Reveals Changes in Ileal Porcine Bacterial Communities Due to High Dietary Zinc Intake ▿ †

    OpenAIRE

    2010-01-01

    Feeding high levels of zinc oxide to piglets significantly increased the relative abundance of ileal Weissella spp., Leuconostoc spp., and Streptococcus spp., reduced the occurrence of Sarcina spp. and Neisseria spp., and led to numerical increases of all Gram-negative facultative anaerobic genera. High dietary zinc oxide intake has a major impact on the porcine ileal bacterial composition.

  18. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.

  19. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  20. Barcode uses and abuses

    Energy Technology Data Exchange (ETDEWEB)

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Barcodes are something that everybody sees every day; so common as to be taken for granted and normally unnoticed. Readable, no one reads them. They are used to allow machines to identify a wide variety of non-electronic, real life objects. Barcode is one of the earliest types of what is now called ``Automatic Identification and Data Capture'' (AIDC), meaning ``data was transmitted into whatever system by something other than typing or hand-writing.'' There are 18 technologies, broken down into six categories--biometrics, electromagnetic, magnetic, optical, Smart Cards, Touch--included in the AIDC concept. Many are used jointly with or as adjuncts to a basic barcode system of some type. All are based on assignment of a unique identifier to the object, usually a number. The uniqueness presumption makes barcode systems very applicable and appropriate to the nuclear information management venue as they inherently comply with the Nuclear Quality Assurance (NQA-1) requirements. Barcode systems belong to the optical category of AIDC. It is very old in usage as these technologies go, having first been patented in 1949. It astonished me, in researching this paper, to find that there are over 250 types of barcode (symbologies), each with its own specialized attributes, though only a few dozen are in active use. The initial uses were in the early 1950s and diversity of use is ever increasing as people find new ways to make this versatile old technology work. To what else could it be applied, in the future? This paper attempts to answer this.

  1. Conductivity and Dielectric Dispersion of Gram-Positive Bacterial Cells

    Science.gov (United States)

    van der Wal A; Minor; Norde; Zehnder; Lyklema

    1997-02-01

    The conductivity of bacterial cell suspensions has been studied over a wide range of ionic strengths and is interpreted in terms of their cell wall properties. The experimental data have been analyzed after improving the high kappaa double-layer theory of Fixman, by accounting for ionic mobility in the hydrodynamically stagnant layer, i.e., in the bacterial wall. Static conductivity and dielectric dispersion measurements both show that the counterions in the porous gel-like cell wall give rise to a considerable surface conductance. From a comparison of the mobile charge with the total cell wall charge it is inferred that the mobilities of the ions in the bacterial wall are of the same order but somewhat lower than those in the bulk electrolyte solution. The occurrence of surface conductance reduces the electrophoretic mobility in electrophoresis studies. If this effect is not taken into account, the zeta-potential will be underestimated, especially at low electrolyte concentrations.

  2. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  3. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  4. Studying biomolecule localization by engineering bacterial cell wall curvature.

    Directory of Open Access Journals (Sweden)

    Lars D Renner

    Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.

  5. Environmental barcoding reveals massive dinoflagellate diversity in marine environments.

    Directory of Open Access Journals (Sweden)

    Rowena F Stern

    Full Text Available BACKGROUND: Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known "species", as a reference to measure the natural diversity in three marine environments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assembled a large cytochrome c oxidase 1 (COI barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean, including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. CONCLUSIONS/SIGNIFICANCE: COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a

  6. Mathematical Modeling of the Induced Mutation Process in Bacterial Cells

    Science.gov (United States)

    Belov, Oleg V.; Krasavin, Evgeny A.; Parkhomenko, Alexander Yu.

    2010-01-01

    A mathematical model of the ultraviolet (UV) irradiation-induced mutation process in bacterial cells Escherichia coli is developed. Using mathematical approaches, the whole chain of events is tracked from a cell exposure to the damaging factor to mutation formation in the DNA chain. An account of the key special features of the regulation of this genetic network allows predicting the effects induced by the cell exposure to certain UV energy fluence.

  7. Barcoded microchips for biomolecular assays.

    Science.gov (United States)

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  8. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  9. Isolation of cell-free bacterial inclusion bodies

    Directory of Open Access Journals (Sweden)

    Rodríguez-Carmona Escarlata

    2010-09-01

    Full Text Available Abstract Background Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Results Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10-1 cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. Conclusions The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  10. Micro-magnet arrays for specific single bacterial cell positioning

    Science.gov (United States)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  11. Improved immunoadsorption procedure with anion-exchange bacterial cell columns.

    Science.gov (United States)

    McKinney, R M; Thacker, L; Wong, M C; Hebert, G A

    1978-01-01

    Bacterial cell columns for immunoadsorption were prepared with Streptococcus cells and triethylaminoethyl cellulose (Cellex-T) matrix material as a model system. Good column flow properties and satisfactory retention of the cells were obtained with ratios as high as 2 ml of packed cells/3 g dry weight of cellulose. Anion-exchange fractionation of whole serum by the Cellex-T was prevented by using 0.25 M NaCl in the developing buffer. Antibodies were adsorbed directly from whole serum and recovered in high yield by desorption at pH 2.3. Pre-exposing bacterial cells to formalin and washing them with acetone was necessary to ensure that they remained on the columns. One strain of Streptococcus salivarius (SS 908) was satisfactorily retained on a column only after cells were labeled with fluorescein isothiocyanate and washed with acetone. The means by which Cellex-T retains bacterial cells appears to be a combination of electronic attraction and physical entrapment.

  12. GTPases in bacterial cell polarity and signalling.

    Science.gov (United States)

    Bulyha, Iryna; Hot, Edina; Huntley, Stuart; Søgaard-Andersen, Lotte

    2011-12-01

    In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.

  13. A Bacterial Cell Shape-Determining Inhibitor.

    Science.gov (United States)

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  14. Bacterial cell surface structures in Yersinia enterocolitica.

    Science.gov (United States)

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  15. Resistance to antibiotics targeted to the bacterial cell wall.

    Science.gov (United States)

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-03-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

  16. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  17. Bounds on bacterial cell growth rates

    CERN Document Server

    Landy, Jonathan

    2013-01-01

    Recent experiments have shown that rod-like bacteria in nutrient-rich media grow in length at an exponential rate. Here, I point out that it is the elongated shape of these bacteria that allows for this behavior. Further, I show that when a bacterium's growth is limited by some nutrient -- taken in by the cell through a diffusion-to-capture process -- its growth is suppressed: In three-dimensional geometries, the length $L$ is bounded by $\\log L \\lesssim t^{1/2}$, while in two dimensions the length is bounded by a power-law form. Fits of experimental growth curves to these predicted, sub-exponential forms could allow for direct measures of quantities relating to cellular metabolic rates.

  18. Dental pulp response to bacterial cell wall material.

    Science.gov (United States)

    Warfvinge, J; Dahlén, G; Bergenholtz, G

    1985-08-01

    Lipopolysaccharides (LPS) from Bacteroides oralis and Veillonella parvula and cell wall material from Lactobacillus casei were studied for their capacity to induce leukocyte migration in the dental pulp and in an implanted wound chamber. Three adult monkeys were challenged using lyophilized material sealed into buccal Class V cavities prepared in dentin. Pulp tissue responses were observed histologically eight and 72 hours after initiation of the experiment. Subjacent to cut dentinal tubules, bacterial materials induced polymorphonuclear leukocyte (PMN's) infiltration in the pulp tissue of the majority of test teeth examined. Responses were similar for the three bacterial test materials at both time periods. Topical applications of bovine serum albumin (BSA), used as a control, induced significantly less accumulation of PMN's. Assessments of induced exudate volumes and leukocyte densities in chambers implanted in rats showed comparable rankings with pulpal experiment between test (i.e., bacterial) and control (BSA) materials. Analysis of the data indicates that high-molecular-weight complexes of bacterial cell walls may adversely affect pulpal tissue across freshly exposed dentin.

  19. Extracellular heme uptake and the challenges of bacterial cell membranes.

    Science.gov (United States)

    Smith, Aaron D; Wilks, Angela

    2012-01-01

    In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.

  20. The Role of Lipid Domains in Bacterial Cell Processes

    Directory of Open Access Journals (Sweden)

    Katarína Muchová

    2013-02-01

    Full Text Available Membranes are vital structures for cellular life forms. As thin, hydrophobic films, they provide a physical barrier separating the aqueous cytoplasm from the outside world or from the interiors of other cellular compartments. They maintain a selective permeability for the import and export of water-soluble compounds, enabling the living cell to maintain a stable chemical environment for biological processes. Cell membranes are primarily composed of two crucial substances, lipids and proteins. Bacterial membranes can sense environmental changes or communication signals from other cells and they support different cell processes, including cell division, differentiation, protein secretion and supplementary protein functions. The original fluid mosaic model of membrane structure has been recently revised because it has become apparent that domains of different lipid composition are present in both eukaryotic and prokaryotic cell membranes. In this review, we summarize different aspects of phospholipid domain formation in bacterial membranes, mainly in Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. We describe the role of these lipid domains in membrane dynamics and the localization of specific proteins and protein complexes in relation to the regulation of cellular function.

  1. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  2. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    Science.gov (United States)

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  3. Bacterial actin and tubulin homologs in cell growth and division.

    Science.gov (United States)

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  4. Factors affecting daughter cells' arrangement during the early bacterial divisions.

    Directory of Open Access Journals (Sweden)

    Pin-Tzu Su

    Full Text Available On agar plates, daughter cells of Escherichia coli mutually slide and align side-by-side in parallel during the first round of binary fission. This phenomenon has been previously attributed to an elastic material that restricts apparently separated bacteria from being in string. We hypothesize that the interaction between bacteria and the underneath substratum may affect the arrangement of the daughter bacteria. To test this hypothesis, bacterial division on hyaluronic acid (HA gel, as an alternative substratum, was examined. Consistent with our proposition, the HA gel differs from agar by suppressing the typical side-by-side alignments to a rare population. Examination of bacterial surface molecules that may contribute to the daughter cells' arrangement yielded an observation that, with disrupted lpp, the E. coli daughter cells increasingly formed non-typical patterns, i.e. neither sliding side-by-side in parallel nor forming elongated strings. Therefore, our results suggest strongly that the early cell patterning is affected by multiple interaction factors. With oscillatory optical tweezers, we further demonstrated that the interaction force decreased in bacteria without Lpp, a result substantiating our notion that the side-by-side sliding phenomenon directly reflects the strength of in-situ interaction between bacteria and substratum.

  5. Tiny cells meet big questions: a closer look at bacterial cell biology.

    Science.gov (United States)

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  6. High resolution imaging of surface patterns of single bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Dominik; Wesner, Daniel [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Regtmeier, Jan, E-mail: jan.regtmeier@physik.uni-bielefeld.de [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Anselmetti, Dario [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2010-09-15

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  7. Dislocation-mediated growth of bacterial cell walls

    CERN Document Server

    Amir, Ariel

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference (Garner et al., Science (2011), Dominguez-Escobar et al. Science (2011), van Teeffelen et al. PNAS (2011). We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall.

  8. Structure of a bacterial cell surface decaheme electron conduit.

    Science.gov (United States)

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  9. Metabolic activity of bacterial cells enumerated by direct viable count

    Energy Technology Data Exchange (ETDEWEB)

    Roszak, D.B.; Colwell, R.R.

    1987-12-01

    The direct viable count (DVC) method was modified by incorporating radiolabeled substrates in microautoradiographic analyses to assess bacterial survival in controlled laboratory microcosms. The DVC method, which permits enumeration of culturable and nonculturable cells, discriminates those cells that are responsive to added nutrients but in which division is inhibited by the addition of nalidixic acid. The resulting elongated cells represent all viable cells; this includes those that are culturable on routine media and those that are not. Escherichia coli and Salmonella enteritidis were employed in the microcosm studies, and radiolabeled substrates included (methyl-tritium thymidine or (Uranium-Carbon 14) glutamic acid. Samples taken at selected intervals during the survival experiments were examined by epifluorescence microscopy to enumerate cells by the DVC and acridine orange direct count methods, as well as by culture methods. Good correlation was obtained for cell-associated metabolic activity, measured by microautoradiography and substrate responsiveness (by the DVC method) at various stages of survival. Of the cells responsive to nutrients by the DVC method, ca 90% were metabolically active by the microautoradiographic method. No significant difference was observed between DVC enumerations with or without added radiolabeled substrate.

  10. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  11. Lung Dendritic Cells Facilitate Extrapulmonary Bacterial Dissemination during Pneumococcal Pneumonia

    Directory of Open Access Journals (Sweden)

    Alva eRosendahl

    2013-06-01

    Full Text Available Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DC-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DC-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9 in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection.

  12. Segrosome complex formation during DNA trafficking in bacterial cell division

    Directory of Open Access Journals (Sweden)

    Maria A. Oliva

    2016-09-01

    Full Text Available Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialised partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  13. Barcoding Fauna Bavarica: 78% of the Neuropterida fauna barcoded!

    Directory of Open Access Journals (Sweden)

    Jérome Morinière

    Full Text Available This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78% recorded from Bavaria (Germany and three other species from nearby regions (Austria, France and the UK. Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH, 237 (83% generated a DNA barcode. Eleven species (13% shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836 and W. quadrifasciatus (Reuter, 1894; Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763, Sympherobius pygmaeus (Rambur, 1842, Sisyra nigra (Retzius, 1783, Semidalis aleyrodiformis (Stephens, 1836 and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research.

  14. Barcoding Fauna Bavarica: 78% of the Neuropterida fauna barcoded!

    Science.gov (United States)

    Morinière, Jérome; Hendrich, Lars; Hausmann, Axel; Hebert, Paul; Haszprunar, Gerhard; Gruppe, Axel

    2014-01-01

    This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78%) recorded from Bavaria (Germany) and three other species from nearby regions (Austria, France and the UK). Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH), 237 (83%) generated a DNA barcode. Eleven species (13%) shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836) and W. quadrifasciatus (Reuter, 1894); Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763), Sympherobius pygmaeus (Rambur, 1842), Sisyra nigra (Retzius, 1783), Semidalis aleyrodiformis (Stephens, 1836) and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research.

  15. Transmission electron microscopy and atomic force microscopy characterization of nickel deposition on bacterial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recently bacterial cells have become attractive biological templates for the fabrication of metal nano- structures or nanomaterials due to their inherent small size, various standard geometrical shapes and abundant source. In this paper, nickel-coated bacterial cells (gram-negative bacteria of Escherichia coli) were fabricated via electroless chemical plating. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) characterization results reveal evident morphological difference between bacterial cells before and after deposition with nickel. The bare cells with smooth surface presented transverse outspreading effect at mica surface. Great changes took place in surface roughness for those bacterial cells after metallization. A large number of nickel nanoparticles were observed to be equably distributed at bacterial surface after activation and subsequent metallization. Furthermore, ultra thin section analytic results validated the presence and uniformity of thin nickel coating at bacterial surface after metallization.

  16. (p)ppGpp and the bacterial cell cycle

    Indian Academy of Sciences (India)

    Aanisa Nazir; Rajendran Harinarayanan

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  17. Stress responses and replication of plasmids in bacterial cells

    Directory of Open Access Journals (Sweden)

    Wegrzyn Alicja

    2002-05-01

    Full Text Available Abstract Plasmids, DNA (or rarely RNA molecules which replicate in cells autonomously (independently of chromosomes as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage λ that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.

  18. (p)ppGpp and the bacterial cell cycle.

    Science.gov (United States)

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  19. Choosing and using a plant DNA barcode.

    Directory of Open Access Journals (Sweden)

    Peter M Hollingsworth

    Full Text Available The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1 mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance.

  20. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins ca

  1. Statistical Approaches for DNA Barcoding

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Matz, M.

    2006-01-01

    The use of DNA as a tool for species identification has become known as "DNA barcoding" (Floyd et al., 2002; Hebert et al., 2003; Remigio and Hebert, 2003). The basic idea is straightforward: a small amount of DNA is extracted from the specimen, amplified and sequenced. The gene region sequenced...... is chosen so that it is nearly identical among individuals of the same species, but different between species, and therefore its sequence, can serve as an identification tag for the species ("DNA barcode"). By matching the sequence obtained from an unidentified specimen ("query" sequence) to the database...

  2. Plant DNA barcoding: from gene to genome.

    Science.gov (United States)

    Li, Xiwen; Yang, Yang; Henry, Robert J; Rossetto, Maurizio; Wang, Yitao; Chen, Shilin

    2015-02-01

    DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

  3. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis.

    Science.gov (United States)

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-06-23

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.

  4. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W;

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients...

  5. Regulation of bacterial cell polarity by small GTPases.

    Science.gov (United States)

    Keilberg, Daniela; Søgaard-Andersen, Lotte

    2014-04-01

    Bacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria. The rod-shaped Myxococcus xanthus cells have two motility systems, one for gliding and one that depends on type IV pili. The function of both systems hinges on proteins that localize asymmetrically to the cell poles. During cellular reversals, these asymmetrically localized proteins are released from their respective poles and then bind to the opposite pole, resulting in an inversion of cell polarity. Here, we review genetic, cell biological, and biochemical analyses that identified two modules containing small Ras-like GTPases that regulate the dynamic polarity of motility proteins. The GTPase SofG interacts directly with the bactofilin cytoskeletal protein BacP to ensure polar localization of type IV pili proteins. In the second module, the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB, and the response regulator RomR localize asymmetrically to the poles and sort dynamically localized motility proteins to the poles. During reversals, MglA, MglB, and RomR switch poles, in that way inducing the relocation of dynamically localized motility proteins. Structural analyses have demonstrated that MglB has a Roadblock/LC7 fold, the central β2 strand in MglA undergoes an unusual screw-type movement upon GTP binding, MglA contains an intrinsic Arg finger required for GTP hydrolysis, and MglA and MglB form an unusual G protein/GAP complex with a 1:2 stoichiometry.

  6. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  7. DNA barcoding Chinese medicinal Bupleurum.

    Science.gov (United States)

    Chao, Zhi; Zeng, Weiping; Liao, Jing; Liu, Li; Liang, Zhenbiao; Li, Xiaolei

    2014-11-15

    We tested 4 markers, namely nuclear internal transcribed spacer 2 (ITS2), psbA-trnH, matK, and rbcL, to evaluate these candidate DNA barcodes for distinguishing Bupleuri radix (Chaihu) from its adulterants. 51 plant samples of Bupleurum representing 19 species were collected from different areas in China. Amplification and sequencing were attempted for all the 4 candidate barcode regions, whose validity was assessed in terms of the success rate of PCR amplification and sequencing, differential intra- and inter-specific divergences, DNA barcoding gap and the ability to discriminate species. The results showed that ITS2 had the best performance in identifying Bupleurum with an identification efficiency of 73.68%, which, after combining with psbA-trnH, increased to 83.33%. We further evaluated the efficiency of ITS2 for discriminating the species of Bupleurum using a large database from GenBank, which archived data of 223 samples from 74 species, and ITS2 successfully discriminated 64.13% of the samples at the species level. In conclusion, the ITS2 can serve as a potentially useful barcode for Bupleurum species, with psbA-trnH as a supplementary locus.

  8. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.;

    of the mechanisms of bacterial attachment. An alternative way to study the adhesion of single bacterial cells is to measure the adhesion between immobilized bacterial cells and coated AFM cantilevers. This strategy was used to investigate the adhesive properties of novel high density poly(ethylene glycol) (PEG......) coatings on titanium. We investigate the ability of a high density poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating to resist bacterial adhesion and biofilm formation from three clinically relevant bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermis. The high...

  9. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Science.gov (United States)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  10. Guidelines for monitoring bulk tank milk somatic cell and bacterial counts.

    Science.gov (United States)

    Jayarao, B M; Pillai, S R; Sawant, A A; Wolfgang, D R; Hegde, N V

    2004-10-01

    This study was conducted to establish guidelines for monitoring bulk tank milk somatic cell count and bacterial counts, and to understand the relationship between different bacterial groups that occur in bulk tank milk. One hundred twenty-six dairy farms in 14 counties of Pennsylvania participated, each providing one bulk tank milk sample every 15 d for 2 mo. The 4 bulk tank milk samples from each farm were examined for bulk tank somatic cell count and bacterial counts including standard plate count, preliminary incubation count, laboratory pasteurization count, coagulase-negative staphylococcal count, environmental streptococcal count, coliform count, and gram-negative noncoliform count. The milk samples were also examined for presence of Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma. The bacterial counts of 4 bulk tank milk samples examined over an 8-wk period were averaged and expressed as mean bacterial count per milliliter. The study revealed that an increase in the frequency of isolation of Staphylococcus aureus and Streptococcus agalactiae was significantly associated with an increased bulk tank somatic cell count. Paired correlation analysis showed that there was low correlation between different bacterial counts. Bulk tank milk with low (standard plate count also had a significantly low level of mean bulk tank somatic cell count (count (count (counts (count (count was less likely to be associated with somatic cell or other bacterial counts. Herd size and farm management practices had considerable influence on somatic cell and bacterial counts in bulk tank milk. Dairy herds that used automatic milking detachers, sand as bedding material, dip cups for teat dipping instead of spraying, and practiced pre-and postdipping had significantly lower bulk tank somatic cell and/or bacterial counts. In conclusion, categorized bulk tank somatic cell and bacterial counts could serve as indicators and facilitate monitoring of herd udder health and milk

  11. Bacterial colonization of host cells in the absence of cholesterol.

    Directory of Open Access Journals (Sweden)

    Stacey D Gilk

    2013-01-01

    Full Text Available Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/- mouse embryonic fibroblasts (MEFs. DHCR24(-/- MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/- MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/- MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(Vβ(3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/- MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.

  12. DNA barcoding the floras of biodiversity hotspots

    OpenAIRE

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern A...

  13. Barcoding poplars (Populus L. from western China.

    Directory of Open Access Journals (Sweden)

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  14. Choosing and Using a Plant DNA Barcode

    OpenAIRE

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the ...

  15. Cellular barcoding tool for clonal analysis in the hematopoietic system.

    Science.gov (United States)

    Gerrits, Alice; Dykstra, Brad; Kalmykowa, Olga J; Klauke, Karin; Verovskaya, Evgenia; Broekhuis, Mathilde J C; de Haan, Gerald; Bystrykh, Leonid V

    2010-04-01

    Clonal analysis is important for many areas of hematopoietic stem cell research, including in vitro cell expansion, gene therapy, and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle, they generally provide a low-resolution, biased, and incomplete assessment of clonality. To overcome those limitations, we labeled retroviral vectors with random sequence tags or "barcodes." On integration, each vector introduces a unique, identifiable, and heritable mark into the host cell genome, allowing the clonal progeny of each cell to be tracked over time. By coupling the barcoding method to a sequencing-based detection system, we could identify major and minor clones in 2 distinct cell culture systems in vitro and in a long-term transplantation setting. In addition, we demonstrate how clonal analysis can be complemented with transgene expression and integration site analysis. This cellular barcoding tool permits a simple, sensitive assessment of clonality and holds great promise for future gene therapy protocols in humans, and any other applications when clonal tracking is important.

  16. DNA barcoding of Dutch birds

    Directory of Open Access Journals (Sweden)

    Mansour Aliabadian

    2013-12-01

    Full Text Available The mitochondrial cytochrome c-oxidase subunit I (COI can serve as a fast and accurate marker for the identification of animal species, and has been applied in a number of studies on birds. We here sequenced the COI gene for 387 individuals of 147 species of birds from the Netherlands, with 83 species being represented by >2 sequences. The Netherlands occupies a small geographic area and 95% of all samples were collected within a 50 km radius from one another. The intraspecific divergences averaged 0.29% among this assemblage, but most values were lower; the interspecific divergences averaged 9.54%. In all, 95% of species were represented by a unique barcode, with 6 species of gulls and skua (Larus and Stercorariusat least one shared barcode. This is best explained by these species representing recent radiations with ongoing hybridization. In contrast, one species, the Lesser Whitethroat Sylvia curruca showed deep divergences, averaging 5.76% and up to 8.68% between individuals. These possibly represent two distinct taxa, S. curruca and S. blythi, both clearly separated in a haplotype network analysis. Our study adds to a growing body of DNA barcodes that have become available for birds, and shows that a DNA barcoding approach enables to identify known Dutch bird species with a very high resolution. In addition some species were flagged up for further detailed taxonomic investigation, illustrating that even in ornithologically well-known areas such as the Netherlands, more is to be learned about the birds that are present.

  17. DNA Barcoding for Honey Biodiversity

    OpenAIRE

    Alice Valentini; Christian Miquel; Pierre Taberlet

    2010-01-01

    Honey is produced by honeybees from nectar and from secretions of living plants. It reflects the honeybees’ diet and the local plant communities. Honey also shows different plant compositions in different geographical locations. We propose a new method for studying the plant diversity and the geographical origin of honey using a DNA barcoding approach that combines universal primers and massive parallel pyrosequencing. To test this method we use two commercial honeys, one from a regional orig...

  18. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  19. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  20. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    CERN Document Server

    Wakita, Jun-ichi; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki

    2015-01-01

    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species $Bacillus$ $subtilis$. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion, one-way rotational motion, two-way rotational motion, random oscillatory motion, and ordered oscillatory motion. Two critical values of reduced cell lengths are evaluated, at which drastic changes in collective motion are induced. A phase diagram is proposed in which the six phases are arranged.

  1. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  2. Principles of Bacterial Cell-Size Determination Revealed by Cell-Wall Synthesis Perturbations

    Directory of Open Access Journals (Sweden)

    Carolina Tropini

    2014-11-01

    Full Text Available Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cytoskeleton. We quantified the biochemical and biophysical properties of the cell wall across a wide range of cell sizes. We find that, although cell-wall chemical composition is unaltered, MreB dynamics, cell twisting, and cellular mechanics exhibit systematic large-scale changes consistent with altered chirality and a more isotropic cell wall. This multiscale analysis enabled identification of distinct roles for MreB and PBP2, despite having similar morphological effects when depleted. Altogether, our results highlight the robustness of cell-wall synthesis and physical principles dictating cell-size control.

  3. 76 FR 34871 - Mobile Barcode Promotion

    Science.gov (United States)

    2011-06-15

    ... 111 Mobile Barcode Promotion AGENCY: Postal Service TM . ACTION: Final rule. SUMMARY: The Postal... ) 709.4 to add a temporary promotion for First-Class Mail cards, letters and flats, and Standard Mail... barcode promotion, and the new mailing standards to implement the promotion. To be eligible,...

  4. Long-range barcode labeling-sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.; Pennacchio, Len A.; Froula, Jeff L.; Eng, Kevin S.

    2016-10-18

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  5. DNA Barcoding Investigations Bring Biology to Life

    Science.gov (United States)

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  6. 77 FR 26185 - POSTNET Barcode Discontinuation

    Science.gov (United States)

    2012-05-03

    ... a barcode clear zone on all letters. To maintain focus on the discontinuation of price eligibility... maintain focus on the POSTNET barcode discontinuation, the Postal Service removed the proposal to require... Exceptions are as follows: a. Automation letters. Automation letters do not require an ``AUTO'' marking...

  7. DNA Bar-Coding for Phytoplasma Identification

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta;

    2013-01-01

    Phytoplasma identi fi cation has proved dif fi cult due to their inability to be maintained in vitro. DNA barcoding is an identi fi cation method based on comparison of a short DNA sequence with known sequences from a database. A DNA barcoding tool has been developed for phytoplasma identi fi cat...

  8. Barcoding of soil microarthropods in Kobbefjord

    DEFF Research Database (Denmark)

    Krogh, Paul Henning; Wirta, Helena; Roslin, Tomas

    2013-01-01

    Since it was proposed to identity species by small sequences of DNA with e.g. less than 1000 bp (base pairs) popularized by the term barcode, monitoring of biodiversity has included barcoding (Hebert et al. 2003, Hogg and Hebert 2004 and Rougerie et al. 2009). It is now a rapidly increasing...

  9. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  10. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard

    2010-01-01

    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  11. DNA barcoding methods for land plants.

    Science.gov (United States)

    Fazekas, Aron J; Kuzmina, Maria L; Newmaster, Steven G; Hollingsworth, Peter M

    2012-01-01

    DNA barcoding in the land plants presents a number of challenges compared to DNA barcoding in many animal clades. The CO1 animal DNA barcode is not effective for plants. Plant species hybridize frequently, and there are many cases of recent speciation via mechanisms, such as polyploidy and breeding system transitions. Additionally, there are many life-history trait combinations, which combine to reduce the likelihood of a small number of markers effectively tracking plant species boundaries. Recent results, however, from the two chosen core plant DNA barcode regions rbcL and matK plus two supplementary regions trnH-psbA and internal transcribed spacer (ITS) (or ITS2) have demonstrated reasonable levels of species discrimination in both floristic and taxonomically focused studies. We describe sampling techniques, extraction protocols, and PCR methods for each of these two core and two supplementary plant DNA barcode regions, with extensive notes supporting their implementation for both low- and high-throughput facilities.

  12. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    Directory of Open Access Journals (Sweden)

    Schuren Frank H

    2008-12-01

    Full Text Available Abstract Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.

  13. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  14. Behind the lines–actions of bacterial type III effector proteins in plant cells

    OpenAIRE

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Ty...

  15. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    Science.gov (United States)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  16. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    Science.gov (United States)

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  17. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.;

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... of the relB gene counteracted the effect of relE to some extent, suggesting that toxin-antitoxin interaction also occurs in S. cerevisiae, Thus, bacterial toxin-antitoxin gene systems also have potential applications in the control of cell proliferation in eukaryotic cells, especially in those industrial...

  18. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    Science.gov (United States)

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  19. Selective Removal of DNA from Dead Cells of Mixed Bacterial Communities by Use of Ethidium Monoazide

    OpenAIRE

    Nocker, Andreas; Anne K. Camper

    2006-01-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A prom...

  20. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis.

  1. DNA barcoding amphibians and reptiles.

    Science.gov (United States)

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  2. Bacterial delivery of large intact genomic-DNA-containing BACs into mammalian cells.

    Science.gov (United States)

    Cheung, Wing; Kotzamanis, George; Abdulrazzak, Hassan; Goussard, Sylvie; Kaname, Tadashi; Kotsinas, Athanassios; Gorgoulis, Vassilis G; Grillot-Courvalin, Catherine; Huxley, Clare

    2012-01-01

    Efficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines. Most drugs tested resulted in a marginal increase of the overall efficiency of delivery in only some cell lines, except the lysosomotropic drug chloroquine, which was found to increase the efficiency of delivery by 6-fold in B16F10 cells. Bacterial invasion was found to be significantly advantageous compared with lipofection in delivering large intact BACs into mouse cells, resulting in 100% of clones containing intact DNA. Furthermore, evaluation of expression of the human hypoxanthine phosphoribosyltransferase (HPRT) gene from its genomic locus, which was present in one of the BACs, showed that single copy integrations of the HPRT-containing BAC had occurred in mouse B16F10 cells and that expression of HPRT from each human copy was 0.33 times as much as from each endogenous mouse copy. These data provide new evidence that bacterial delivery is a convenient and efficient method to transfer large intact therapeutic genes into mammalian cells.

  3. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  4. A DNA barcode for land plants

    OpenAIRE

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L; Hajibabaei, Mehrdad; Ratnasingham,Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quali...

  5. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    Science.gov (United States)

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  6. Development of method for evaluating cell hardness and correlation between bacterial spore hardness and durability

    Directory of Open Access Journals (Sweden)

    Nakanishi Koichi

    2012-06-01

    Full Text Available Abstract Background Despite the availability of conventional devices for making single-cell manipulations, determining the hardness of a single cell remains difficult. Here, we consider the cell to be a linear elastic body and apply Young’s modulus (modulus of elasticity, which is defined as the ratio of the repulsive force (stress in response to the applied strain. In this new method, a scanning probe microscope (SPM is operated with a cantilever in the “contact-and-push” mode, and the cantilever is applied to the cell surface over a set distance (applied strain. Results We determined the hardness of the following bacterial cells: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and five Bacillus spp. In log phase, these strains had a similar Young’s modulus, but Bacillus spp. spores were significantly harder than the corresponding vegetative cells. There was a positive, linear correlation between the hardness of bacterial spores and heat or ultraviolet (UV resistance. Conclusions Using this technique, the hardness of a single vegetative bacterial cell or spore could be determined based on Young’s modulus. As an application of this technique, we demonstrated that the hardness of individual bacterial spores was directly proportional to heat and UV resistance, which are the conventional measures of physical durability. This technique allows the rapid and direct determination of spore durability and provides a valuable and innovative method for the evaluation of physical properties in the field of microbiology.

  7. Dynamics of phenotypic reversibility of bacterial cells with oscillating hydrostatic pressure

    Science.gov (United States)

    Nepal, Sudip; Kumar, Pradeep

    Bacterial cells encounter and respond to physiochemical fluctuations. The response depends on the extent and type of the stresses applied. The response of bacterial cells to the fluctuating stress is relatively unknown. Here, we have studied the response of wild type Escherichia coli (E. coli) under fluctuating hydrostatic pressures ranging from 1 atm to 500 atm. High pressure acts as a stress to E. coli since these bacteria are adapted to grow optimally at atmospheric pressure. Cell division of E. coli is inhibited at high pressures resulting in increase in the length of the cells. Cell-length is reversible in nature and bacterial cells revert back to normal size on a time scale that is proportional to the strength and time of continuous pressure applied upon relaxing the high pressure condition. We have studied the dynamics of cellular reversibility of E. coli under the conditions in which continuous pressure is applied and subsequently relaxed over different time scales. We have quantified the dynamics of cellular reversibility with different relaxation times. Furthermore, we propose a model to describe the reversibility of the bacterial cell with the relaxation time. Our theoretical model fits well to the experimental data. We further

  8. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level.

    Science.gov (United States)

    Cinquin, Bertrand; Maigre, Laure; Pinet, Elizabeth; Chevalier, Jacqueline; Stavenger, Robert A; Mills, Scott; Réfrégiers, Matthieu; Pagès, Jean-Marie

    2015-12-11

    Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake.

  9. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    DEFF Research Database (Denmark)

    Chindera, Kantaraja; Mahato, Manohar; Sharma, Ashwani Kumar

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption...... by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when...... to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance....

  10. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    Science.gov (United States)

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.

  11. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    Science.gov (United States)

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  12. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  13. Responses of synovial fluid and peripheral blood mononuclear cells to bacterial antigens and autologous antigen presenting cells.

    Science.gov (United States)

    Klasen, I S; Melief, M J; Swaak, T J; Severijnen, A J; Hazenberg, M P

    1993-01-01

    The specificity of T cells in the inflamed joints of patients with rheumatoid arthritis (RA) has been the subject of much study. Bacterial antigens are suspect in the aetiology of rheumatic diseases. The responsiveness of the mononuclear cell fraction of peripheral blood and synovial fluid of patients with RA and of patients with rheumatic diseases other than RA to bacterial antigens such as cell wall fragments of the anaerobic intestinal flora, cell wall fragments of Streptococcus pyogenes, intestinal flora derived peptidoglycan polysaccharide complexes, the 65 kilodalton protein of Mycobacterium tuberculosis, and muramyldipeptide was investigated. No significant difference in response was found to all these bacterial antigens in the synovial fluid of patients with RA compared with the responses in patients with other rheumatic diseases. The highest responsiveness in the synovial fluid of the patients with RA was to the streptococcal cell wall fragments and to the 65 kilodalton protein. Higher responses to several bacterial antigens in the synovial fluid of patients with RA were found compared with peripheral blood from the same patient group. The antigen presenting cell population of the synovial fluid in patients with RA and the patients with other rheumatic diseases was found to be stimulatory for autologous peripheral blood T cells even in the absence of antigen. This suggests an important role for the synovial antigen presenting cell in the aetiology of inflammatory joint diseases. PMID:8447692

  14. Bacterial cell-cell communication in the host via RRNPP peptide-binding regulators

    Directory of Open Access Journals (Sweden)

    David ePerez-Pascual

    2016-05-01

    Full Text Available Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  15. Bacterial swarmer cells in confinement: A mesoscale hydrodynamic simulation study

    CERN Document Server

    Eisenstecken, Thomas; Winkler, Roland G

    2016-01-01

    A wide spectrum of Peritrichous bacteria undergo considerable physiological changes when they are inoculated onto nutrition-rich surfaces and exhibit a rapid and collective migration denoted as swarming. Thereby, the length of such swarmer cells and their number of flagella increases substantially. In this article, we investigated the properties of individual E. coli-type swarmer cells confined between two parallel walls via mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the swarmer cell with the multiparticle particle collision dynamics approach for the embedding fluid. E. coli-type swarmer cells are three-times longer than their planktonic counter parts, but their flagella density is comparable. By varying the wall separation, we analyze the confinement effect on the flagella arrangement, on the distribution of cells in the gap between the walls, and on the cell dynamics. We find only a weak dependence of confinement on the bundle structure and dynamics. The distribution of ...

  16. On the chronology and topography of bacterial cell division.

    Science.gov (United States)

    Vicente, M; Palacios, P; Dopazo, A; Garrido, T; Pla, J; Aldea, M

    1991-01-01

    Gene products that play a role in the formation of cell septum should be expected to be endowed with a set of specific properties. In principle, septal proteins should be located at the cell envelope. The expression of division genes should ensure the synthesis of septal proteins at levels commensurate with the needs of cell division at different rates of cell duplication. We have results indicating that some fts genes located within the 2.5-min cluster in the Escherichia coli chromosome conform to these predictions.

  17. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    Directory of Open Access Journals (Sweden)

    Akifumi S Tanabe

    Full Text Available Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need

  18. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    Science.gov (United States)

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate

  19. Recommendations for Using Barcode in Hospital Process

    Science.gov (United States)

    Hachesu, Peyman Rezaei; Zyaei, Leila; Hassankhani, Hadi

    2016-01-01

    Background: Lack of attention to the proper barcode using leads to lack of use or misuse in the hospitals. The present research aimed to investigate the requirements and barrier for using barcode technology and presenting suggestions to use it. Methods: The research is observational-descriptive. The data was collected using the designed checklist which its validity was assessed. This check list consists of two parts: “Requirements” and “barrier” of using the barcodes. Research community included 10 teaching hospitals and a class of 65 participants included people in the hospitals. The collected data was analyzed using descriptive statistics. Results: Required changes of workflow processes in the hospital and compliance them with the hospital policy are such requirements that had been infringed in the 90 % of hospitals. Prioritization of some hospital processes for barcoding, system integration with Hospital Information system (HIS), training of staff and budgeting are requirements for the successful implementation which had been infringed in the 80% of hospitals. Dissatisfaction with the quality of barcode labels and lacks of adequate scanners both whit the rate of 100 %, and the lack of understanding of the necessary requirements for implementation of barcodes as 80% were the most important barrier. Conclusion: Integrate bar code system with clinical workflow should be considered. Lack of knowledge and understanding toward the infrastructure, inadequate staff training and technologic problems are considered as the greatest barriers. PMID:27482137

  20. DNA barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera.

    Directory of Open Access Journals (Sweden)

    Robert G Foottit

    Full Text Available BACKGROUND: Many studies have shown the suitability of sequence variation in the 5' region of the mitochondrial cytochrome c oxidase I (COI gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. CONCLUSIONS/SIGNIFICANCE: This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage.

  1. DNA Barcoding for Honey Biodiversity

    Directory of Open Access Journals (Sweden)

    Alice Valentini

    2010-04-01

    Full Text Available Honey is produced by honeybees from nectar and from secretions of living plants. It reflects the honeybees’ diet and the local plant communities. Honey also shows different plant compositions in different geographical locations. We propose a new method for studying the plant diversity and the geographical origin of honey using a DNA barcoding approach that combines universal primers and massive parallel pyrosequencing. To test this method we use two commercial honeys, one from a regional origin and one composed of a worldwide mix of different honeys. We demonstrate that the method proposed here is fast, simple to implement, more robust than classical methods, and therefore suitable for analyzing plant diversity in honey.

  2. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    Science.gov (United States)

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  3. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    Science.gov (United States)

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  4. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    Science.gov (United States)

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  5. In the fast lane: large-scale bacterial genome engineering.

    Science.gov (United States)

    Fehér, Tamás; Burland, Valerie; Pósfai, György

    2012-07-31

    The last few years have witnessed rapid progress in bacterial genome engineering. The long-established, standard ways of DNA synthesis, modification, transfer into living cells, and incorporation into genomes have given way to more effective, large-scale, robust genome modification protocols. Expansion of these engineering capabilities is due to several factors. Key advances include: (i) progress in oligonucleotide synthesis and in vitro and in vivo assembly methods, (ii) optimization of recombineering techniques, (iii) introduction of parallel, large-scale, combinatorial, and automated genome modification procedures, and (iv) rapid identification of the modifications by barcode-based analysis and sequencing. Combination of the brute force of these techniques with sophisticated bioinformatic design and modeling opens up new avenues for the analysis of gene functions and cellular network interactions, but also in engineering more effective producer strains. This review presents a summary of recent technological advances in bacterial genome engineering.

  6. A mechanistic stochastic framework for regulating bacterial cell division.

    Science.gov (United States)

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A; Singh, Abhyudai

    2016-07-26

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size.

  7. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    Science.gov (United States)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.

  8. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Directory of Open Access Journals (Sweden)

    Andrew S Brown

    2016-06-01

    Full Text Available Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC, which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  9. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Science.gov (United States)

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  10. Water Diffusion from a Bacterial Cell in Low-Moisture Foods.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Tang, Juming; Zhong, QingPing

    2016-09-01

    We used a Fick's unsteady state diffusion equation to estimate the time required for a single spherical shaped bacterium (assuming Enterococcus faecium as the target microorganism) in low-moisture foods to equilibrate with the environment. We generated water sorption isotherms of freeze-dried E. faecium. The water activity of bacterial cells at given water content increased considerably as temperature increased from 20 to 80 °C, as observed in the sorption isotherms of bacterial cells. When the water vapor diffusion coefficient was assumed as between 10(-12) and 10(-10) m(2) /s for bacterial cells, the predicted equilibration times (teq ) ranged from 8.24×10(-4) to 8.24×10(-2) s. Considering a cell membrane barrier with a lower water diffusion coefficient (10(-15) m(2) /s) around the bacterial cell with a water diffusion coefficient of 10(-12) m(2) /s, the teq predicted using COMSOL Multiphysics program was 3.8×10(-1) s. This result suggests that a single bacterium equilibrates rapidly (within seconds) with change in environmental humidity and temperature.

  11. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    Science.gov (United States)

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  12. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy.

    Science.gov (United States)

    Biagi, Maria Chiara; Fabregas, Rene; Gramse, Georg; Van Der Hofstadt, Marc; Juárez, Antonio; Kienberger, Ferry; Fumagalli, Laura; Gomila, Gabriel

    2016-01-26

    We quantified the electric permittivity of single bacterial cells at microwave frequencies and nanoscale spatial resolution by means of near-field scanning microwave microscopy. To this end, calibrated complex admittance images have been obtained at ∼19 GHz and analyzed with a methodology that removes the nonlocal topographic cross-talk contributions and thus provides quantifiable intrinsic dielectric images of the bacterial cells. Results for single Escherichia coli cells provide a relative electric permittivity of ∼4 in dry conditions and ∼20 in humid conditions, with no significant loss contributions. Present findings, together with the ability of microwaves to penetrate the cell membrane, open an important avenue in the microwave label-free imaging of single cells with nanoscale spatial resolution.

  13. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    Science.gov (United States)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  14. Vehicles, Replicators, and Intercellular Movement of Genetic Information: Evolutionary Dissection of a Bacterial Cell

    Directory of Open Access Journals (Sweden)

    Matti Jalasvuori

    2012-01-01

    Full Text Available Prokaryotic biosphere is vastly diverse in many respects. Any given bacterial cell may harbor in different combinations viruses, plasmids, transposons, and other genetic elements along with their chromosome(s. These agents interact in complex environments in various ways causing multitude of phenotypic effects on their hosting cells. In this discussion I perform a dissection for a bacterial cell in order to simplify the diversity into components that may help approach the ocean of details in evolving microbial worlds. The cell itself is separated from all the genetic replicators that use the cell vehicle for preservation and propagation. I introduce a classification that groups different replicators according to their horizontal movement potential between cells and according to their effects on the fitness of their present host cells. The classification is used to discuss and improve the means by which we approach general evolutionary tendencies in microbial communities. Moreover, the classification is utilized as a tool to help formulating evolutionary hypotheses and to discuss emerging bacterial pathogens as well as to promote understanding on the average phenotypes of different replicators in general. It is also discussed that any given biosphere comprising prokaryotic cell vehicles and genetic replicators may naturally evolve to have horizontally moving replicators of various types.

  15. Heterotrophic free-living and particle-bound bacterial cell size in the river Cauvery and its downstream tributaries

    Indian Academy of Sciences (India)

    T S Harsha; Sadanand M Yamakanamardi; M Mahadevaswamy

    2007-03-01

    This is the first comprehensive study on planktonic heterotrophic bacterial cell size in the river Cauvery and its important tributaries in Karnataka State, India. The initial hypothesis that the mean cell size of planktonic heterotrophic bacteria in the four tributaries are markedly different from each other and also from that in the main river Cauvery was rejected, because all five watercourses showed similar planktonic heterotrophic bacterial cell size. Examination of the correlation between mean heterotrophic bacterial cell size and environmental variables showed four correlations in the river Arkavathy and two in the river Shimsha. Regression analysis revealed that 18% of the variation in mean heterotrophic free-living bacterial cell size was due to biological oxygen demand (BOD) in the river Arkavathy, 11% due to surface water velocity (SWV) in the river Cauvery and 11% due to temperature in the river Kapila. Heterotrophic particle-bound bacterial cell size variation was 28% due to chloride and BOD in the river Arkavathy, 11% due to conductivity in the river Kapila and 8% due to calcium in the river Cauvery. This type of relationship between heterotrophic bacterial cell size and environmental variables suggests that, though the mean heterotrophic bacterial cell size was similar in all the five water courses, different sets of environmental variables apparently control the heterotrophic bacterial cell size in the various water bodies studied in this investigation. The possible cause for this environmental (bottom–up) control is discussed.

  16. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    Science.gov (United States)

    Schrader, Jared M; Shapiro, Lucy

    2015-04-08

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

  17. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    Science.gov (United States)

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  18. Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Kimura, R H; Woo, Y; Cantor, J; Shekhtman, A

    2007-04-05

    The cyclotide MCoTI-II is a powerful trypsin inhibitor recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. We report for the first time the in vivo biosynthesis of natively-folded MCoTI-II inside live E. coli cells. Our biomimetic approach involves the intracellular backbone cyclization of a linear cyclotide-intein fusion precursor mediated by a modified protein splicing domain. The cyclized peptide then spontaneously folds into its native conformation. The use of genetically engineered E. coli cells containing mutations in the glutathione and thioredoxin reductase genes considerably improves the production of folded MCoTI-II in vivo. Biochemical and structural characterization of the recombinant MCoTI-II confirmed its identity. Biosynthetic access to correctly-folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened inside living cells for their ability to modulate or inhibit cellular processes.

  19. Homeostatic interplay between bacterial cell-cell signaling and iron in virulence.

    Directory of Open Access Journals (Sweden)

    Ronen Hazan

    2010-03-01

    Full Text Available Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.

  20. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    Science.gov (United States)

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process.

  1. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns

    Science.gov (United States)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Sun, Zhaoyue; Wang, Leyun

    2016-04-01

    Microbially induced reductions in the saturated hydraulic conductivity, Ks, of natural porous media, conventionally called bioclogging, occurs frequently in natural and engineered subsurface systems. Bioclogging can affect artificial groundwater recharge, in situ bioremediation of contaminated aquifers, or permeable reactive barriers. In this study, we designed a series of percolation experiments to simulate the growth and metabolism of bacteria in sand columns. The experimental results showed that the bacterial cell amount gradually increased to a maximum of 8.91 log10 CFU/g sand at 144 h during the bioclogging process, followed by a decrease to 7.89 log10 CFU/g sand until 336 h. The same variation pattern was found for the concentration of tightly bound extracellular polymeric substances (TB-EPS), which had a peak value of 220.76 μg/g sand at 144 h. In the same experiments, the concentration of loosely bound extracellular polymeric substances (LB-EPS) increased sharply from 54.45 to 575.57 μg/g sand in 192 h, followed by a slight decline to 505.04 μg/g sand. The increase of the bacterial cell amount along with the other two concentrations could reduce the Ks of porous media, but their relative contributions varied to a large degree during different percolation stages. At the beginning of the tests (e.g., 48 h before), bacterial cells were likely responsible for the Ks reduction of porous media because no increase was found for the other two concentrations. With the accumulation of cells and EPS production from 48 to 144 h, both were important for the reduction of Ks. However, in the late period of percolation tests from 144 to 192 h, LB-EPS was probably responsible for the further reduction of Ks, as the bacterial cell amount and TB-EPS concentration decreased. Quantitative contributions of bacterial cell amount and the two types of extracellular polymers to Ks reductions were also evaluated.

  2. Interspecies communication between pathogens and immune cells via bacterial membrane vesicles

    Directory of Open Access Journals (Sweden)

    Katerina S Jurkoshek

    2016-11-01

    Full Text Available The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50–250 nm membrane vesicles (MVs in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb, an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may regulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote MHC-II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection.

  3. Bacterial vaginosis (clue cell-positive discharge) : diagnostic, ultra-structural and therapeutic aspects

    NARCIS (Netherlands)

    W.I. van der Meijden (Willem)

    1987-01-01

    textabstractThis thesis deals with several aspects of (abnormal) vaginal discharge, focusing especially on clue cell-positive discharge (bacterial vaginosis, nonspecific vaginitis). It reports data on epidemiology and clinical features, pathogenesis, and treatment of this vaginal disease entity, as

  4. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croesea, E.; Jeremiasse, A.W.; Marshall, I.P.G.; Spormann, A.M.; Euverink, G.J.W.; Geelhoed, J.S.; Stams, A.J.M.; Plugge, C.M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design

  5. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croese, Elsemiek; Jeremiasse, Adriaan W.; Marshall, Ian P.G.; Spormann, Alfred M.; Euverink, Gert-Jan W.; Geelhoed, Jeanine S.; Stams, Alfons J.M.; Plugge, Caroline M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (

  6. Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole-cell biosensor

    DEFF Research Database (Denmark)

    Hansen, L. H.; Aarestrup, Frank Møller; Sørensen, S. J.

    2002-01-01

    Bacterial whole-cell biosensors were used to measure the concentration of chlortetracycline (CTC) in the feces of pigs. In this study, the Escherichia coli biosensor used has a detection limit of 0.03 mg/kg CTC in pig feces. The tetracycline concentration was correlated with the appearance...

  7. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell

    Science.gov (United States)

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. The present study examined the formation in culture of an unidentified bacterial oxidant and investigated the ...

  8. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes.

    Science.gov (United States)

    Chindera, Kantaraja; Mahato, Manohar; Sharma, Ashwani Kumar; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-03-21

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.

  9. Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole-cell biosensor

    DEFF Research Database (Denmark)

    Hansen, Lars Hestbjerg; Aarestrup, Frank; Sørensen, Søren Johannes

    2002-01-01

    Bacterial whole-cell biosensors were used to measure the concentration of chlortetracycline (CTC) in the feces of pigs. In this study, the Escherichia coli biosensor used has a detection limit of 0.03 mg/kg CTC in pig feces. The tetracycline concentration was correlated with the appearance...

  10. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    R.M. Determann; M. Weisfelt; J. de Gans; A. van der Ende; M.J. Schultz; D. van de Beek

    2006-01-01

    Objective: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. Design: Retrospective study of diagnostic accuracy. Setting and patients: CSF was coll

  11. Bacterial cell wall preservation during organic matter diagenesis in sediments off Peru

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Niggemann, Jutta; Jørgensen, Bo Barker;

    BACTERIAL CELL WALL PRESERVATION DURING ORGANIC MATTER DIAGENESIS IN SEDIMENTS OFF PERU The spatial distribution of total hydrolysable amino acids, total hydrolysable amino sugars and amino acid enantiomers (D- and L-forms) were investigated in surface sediments at 20 stations in the Peru margin: 9...

  12. Arthrobacter Species as a Prey Cell Reservoir for Nonobligate Bacterial Predators in Soil

    Science.gov (United States)

    1989-01-01

    species as a prey cell reservoir for nonobligate bacterial predators in soil. Can. J. Microbiol. 35 : 559--564, tine investigation at etc entreprise sur...8217 .Stieprom tice ~s species and Bad//uhs instead of’ A. glohifrbrmis. to provide 1 .0 mng/g soil did not nivoie from the soil did not interfecre because

  13. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Willerslev-Olsen, Andreas; Krejsgaard, Thorbjørn; Lindahl, Lise M

    2013-01-01

    In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus...

  14. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water.

  15. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  16. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  17. Exploiting bacterial peptide display technology to engineer biomaterials for neural stem cell culture.

    Science.gov (United States)

    Little, Lauren E; Dane, Karen Y; Daugherty, Patrick S; Healy, Kevin E; Schaffer, David V

    2011-02-01

    Stem cells are often cultured on substrates that present extracellular matrix (ECM) proteins; however, the heterogeneous and poorly defined nature of ECM proteins presents challenges both for basic biological investigation of cell-matrix investigations and translational applications of stem cells. Therefore, fully synthetic, defined materials conjugated with bioactive ligands, such as adhesive peptides, are preferable for stem cell biology and engineering. However, identifying novel ligands that engage cellular receptors can be challenging, and we have thus developed a high throughput approach to identify new adhesive ligands. We selected an unbiased bacterial peptide display library for the ability to bind adult neural stem cells (NSCs), and 44 bacterial clones expressing peptides were identified and found to bind to NSCs with high avidity. Of these clones, four contained RGD motifs commonly found in integrin binding domains, and three exhibited homology to ECM proteins. Three peptide clones were chosen for further analysis, and their synthetic analogs were adsorbed on tissue culture polystyrene (TCPS) or grafted onto an interpenetrating polymer network (IPN) for cell culture. These three peptides were found to support neural stem cell self-renewal in defined medium as well as multi-lineage differentiation. Therefore, bacterial peptide display offers unique advantages to isolate bioactive peptides from large, unbiased libraries for applications in biomaterials engineering.

  18. In situ probing the interior of single bacterial cells at nanometer scale

    Science.gov (United States)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  19. Plasmonic imaging of protein interactions with single bacterial cells.

    Science.gov (United States)

    Syal, Karan; Wang, Wei; Shan, Xiaonan; Wang, Shaopeng; Chen, Hong-Yuan; Tao, Nongjian

    2015-01-15

    Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

  20. Barcoding bias in high-throughput multiplex sequencing of miRNA.

    Science.gov (United States)

    Alon, Shahar; Vigneault, Francois; Eminaga, Seda; Christodoulou, Danos C; Seidman, Jonathan G; Church, George M; Eisenberg, Eli

    2011-09-01

    Second-generation sequencing is gradually becoming the method of choice for miRNA detection and expression profiling. Given the relatively small number of miRNAs and improvements in DNA sequencing technology, studying miRNA expression profiles of multiple samples in a single flow cell lane becomes feasible. Multiplexing strategies require marking each miRNA library with a DNA barcode. Here we report that barcodes introduced through adapter ligation confer significant bias on miRNA expression profiles. This bias is much higher than the expected Poisson noise and masks significant expression differences between miRNA libraries. This bias can be eliminated by adding barcodes during PCR amplification of libraries. The accuracy of miRNA expression measurement in multiplexed experiments becomes a function of sample number.

  1. Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine.

    Science.gov (United States)

    Olyveira, Gabriel Molina; Acasigua, Gerson Arisoly Xavier; Costa, Ligia Maria Manzine; Scher, Cristiane Regina; Xavier Filho, Lauro; Pranke, Patricia Helena Lucas; Basmaji, Pierre

    2013-08-01

    Adhesion and Viability study with human dental pulp stem cell using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine are presented at first time in this work. Nanotolith, are osteoinductors, i.e., they stimulate bone regeneration, enabling higher cells migration for bone tissue regeneration formation. This is mainly because nanotoliths are rich minerals present in the internal ear of bony fish. In addition, are part of a system which acts as a depth sensor and balance, acting as a sound vibrations detector and considered essential for the bone mineralization process, as in hydroxiapatites. Nanotoliths influence in bacterial cellulose was analyzed using transmission infrared spectroscopy (FTIR). Results shows that fermentation process and nanotoliths agglomeration decrease initial human dental pulp stem cell adhesion however tested bionanocomposite behavior has cell viability increase over time.

  2. Quantitative Tracking of Salmonella Enteritidis Transmission Routes Using Barcode-Tagged Isogenic Strains in Chickens: Proof-of-Concept Study

    Science.gov (United States)

    Yang, Yichao; Ricke, Steven C.; Tellez, Guillermo; Kwon, Young Min

    2017-01-01

    Salmonella is an important foodborne bacterial pathogen, however, a fundamental understanding on Salmonella transmission routes within a poultry flock remains unclear. In this study, a series of barcode-tagged strains were constructed by inserting six random nucleotides into a functionally neutral region on the chromosome of S. Enteritidis as a tool for quantitative tracking of Salmonella transmission in chickens. Six distinct barcode-tagged strains were used for infection or contamination at either low dose (103 CFUs; three strains) or high dose (105 CFUs; three strains) in three independent experiments (Experiment 1 oral gavage; Experiment 2 contaminated feed; Experiment 3 contaminated water). For all chick experiments, cecal and foot-wash samples were collected from a subset of the chickens at days 7 or/and 14, from which genomic DNA was extracted and used to amplify the barcode regions. After the resulting PCR amplicons were pooled and analyzed by MiSeq sequencing, a total of approximately 1.5 million reads containing the barcode sequences were analyzed to determine the relative frequency of every barcode-tagged strain in each sample. In Experiment 1, the high dose of oral infection was correlated with greater dominance of the strains in the ceca of the respective seeder chickens and also in the contact chickens yet at lesser degrees. When chicks were exposed to contaminated feed (Experiment 2) or water (Experiment 3), there were no clear patterns of the barcode-tagged strains in relation to the dosage, except that the strains introduced at low dose required a longer time to colonize the ceca with contaminated feed. Most foot-wash samples contained only one to three strains for the majority of the samples, suggesting potential existence of an unknown mechanism(s) for strain exclusion. These results demonstrated the proof of concept of using barcode tagged to investigate transmission dynamics of Salmonella in chickens in a quantitative manner. PMID:28261587

  3. Single-Cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of Trichonympha and Trichomitopsis from the hindgut of the termite Zootermopsis angusticollis.

    Directory of Open Access Journals (Sweden)

    Vera Tai

    Full Text Available To aid in their digestion of wood, lower termites are known to harbour a diverse community of prokaryotes as well as parabasalid and oxymonad protist symbionts. One of the best-studied lower termite gut communities is that of Zootermopsis angusticollis which has been known for almost 100 years to possess 3 species of Trichonympha (T. campanula, T. collaris, and T. sphaerica, 1 species of Trichomitopsis (T. termopsidis, as well as smaller flagellates. We have re-assessed this community by sequencing the small subunit (SSU rRNA gene and the internal transcribed spacer (ITS region from a large number of single Trichonympha and Trichomitopsis cells for which morphology was also documented. Based on phylogenetic clustering and sequence divergence, we identify 3 new species: Trichonympha postcylindrica, Trichomitopsis minor, and Trichomitopsis parvus spp. nov. Once identified by sequencing, the morphology of the isolated cells for all 3 new species was re-examined and found to be distinct from the previously described species: Trichonympha postcylindrica can be morphologically distinguished from the other Trichonympha species by an extension on its posterior end, whereas Trichomitopsis minor and T. parvus are smaller than T. termopsidis but similar in size to each other and cannot be distinguished based on morphology using light microscopy. Given that Z. angusticollis has one of the best characterized hindgut communities, the near doubling of the number of the largest and most easily identifiable symbiont species suggests that the diversity of hindgut symbionts is substantially underestimated in other termites as well. Accurate descriptions of the diversity of these microbial communities are essential for understanding hindgut ecology and disentangling the interactions among the symbionts, and molecular barcoding should be a priority for these systems.

  4. Bacterial conjugation in the cytoplasm of mouse cells.

    NARCIS (Netherlands)

    Lim, Y.M.; Groof, A.J.C. de; Bhattacharjee, M.K.; Figurski, D.H.; Schon, E.A.

    2008-01-01

    Intracellular pathogenic organisms such as salmonellae and shigellae are able to evade the effects of many antibiotics because the drugs are not able to penetrate the plasma membrane. In addition, these bacteria may be able to transfer genes within cells while protected from the action of drugs. The

  5. Generating barcoded libraries for multiplex high-throughput sequencing.

    Science.gov (United States)

    Knapp, Michael; Stiller, Mathias; Meyer, Matthias

    2012-01-01

    Molecular barcoding is an essential tool to use the high throughput of next generation sequencing platforms optimally in studies involving more than one sample. Various barcoding strategies allow for the incorporation of short recognition sequences (barcodes) into sequencing libraries, either by ligation or polymerase chain reaction (PCR). Here, we present two approaches optimized for generating barcoded sequencing libraries from low copy number extracts and amplification products typical of ancient DNA studies.

  6. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers

    Science.gov (United States)

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function. PMID:28046014

  7. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  8. Dodecamer is required for agglutination of Litopenaeus vannamei hemocyanin with bacterial cells and red blood cells.

    Science.gov (United States)

    Pan, Jian-yi; Zhang, Yue-ling; Wang, San-ying; Peng, Xuan-xian

    2008-01-01

    Hemocyanins are multi-functional proteins, although they are well known to be respiratory proteins of invertebrate to date. In the present study, the agglutination ability of two oligomers of hemocyanin, hexamer and dodecamer, with pathogenic bacteria and red blood cells (RBCs) is investigated in pacific white shrimp, Litopenaeus vannamei. Hexameric hemocyanin exhibits an extremely high stability even in the absence of Ca(2+) and in alkaline pH. Dodecamer (di-hexamer) is easily dissociated into hexamers in unphysiological conditions. Hexamer and dodecamer are interchanged reciprocally with environmental conditions. Both oligomers can bind to bacteria and RBCs, but agglutination is observed only using dodecamer but not using hexamer in agglutination assay. However, the agglutination is detected when hexamer is utilized in the presence of antiserum against hemocyanin. These results indicate that dodecamer of hemocyanin is required for agglutination with bacteria and RBCs. It can be logically inferred that there is only one carbohydrate-binding site to bacterial cells and RBCs in the hexamer, while at least two sites in the dodecamer. Our finding has provided new insights into structural-functional relationship of hemocyanin.

  9. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  10. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  11. A simple protocol for venom peptide barcoding in scorpions

    Directory of Open Access Journals (Sweden)

    Stephan Schaffrath

    2014-06-01

    Full Text Available Scorpion venoms contain many species-specific peptides which target ion channels in cell membranes. Without harming the scorpions, these peptides can easily be extracted and detected by MALDI-TOF mass spectrometry. So far, only few studies compared the venom of different species solely for taxonomic purposes. Here, we describe a very simple protocol for venom extraction and mass fingerprinting that was developed for peptide barcoding (venom code for species identification and facilitates reproducibility if sample preparation is performed under field conditions. This approach may serve as suitable basis for a taxonomy-oriented scorpion toxin database that interacts with MALDI-TOF mass spectra.

  12. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  13. QR Codes in the Library: "It's Not Your Mother's Barcode!"

    Science.gov (United States)

    Dobbs, Cheri

    2011-01-01

    Barcode scanning has become more than just fun. Now libraries and businesses are leveraging barcode technology as an innovative tool to market their products and ideas. Developed and popularized in Japan, these Quick Response (QR) or two-dimensional barcodes allow marketers to provide interactive content in an otherwise static environment. In this…

  14. Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Omar M El-Halfawy

    Full Text Available The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

  15. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Punsiri M Colonne

    2016-09-01

    Full Text Available Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, subversion of cell intrinsic immunity, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  16. Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles

    Science.gov (United States)

    Chiang, Chen-Li; Sung, Ching-Shan

    2006-07-01

    The functionalized magnetic nanobeads were used to develop a rapid protocol for extracting and purifying transfection-grade plasmid DNA from bacterial culture. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical coprecipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe 3O 4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 819 μg of high-purity (A 260/A 280 ratio=1.86) plasmid DNA was isolated from 100 ml of overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and animal cell transfection applications with success. The PEI-modified magnetic nanobead delivers significant time-savings, overall higher yields and better transfection efficiencies compared to anion-exchange and other methods. The results presented in this report show that PEI-modified magnetic nanobeads are suitable for isolation and purification of transfection-grade plasmid DNA.

  17. Cell fate regulation governed by a repurposed bacterial histidine kinase.

    Directory of Open Access Journals (Sweden)

    W Seth Childers

    2014-10-01

    Full Text Available One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  18. Analysis of gene expression levels in individual bacterial cells without image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, In Hae; Son, Minjun [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States); Hagen, Stephen J., E-mail: sjhagen@ufl.edu [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  19. Bacterial ‘Cell’ Phones: Do cell phones carry potential pathogens?

    Directory of Open Access Journals (Sweden)

    Kiran Chawla

    2009-05-01

    Full Text Available Cell phones are important companions for professionals especially health care workers (HCWs for better communication in hospital. The present study compared the nature of the growth of potentially pathogenic bacterial flora on cell phones in hospital and community. 75% cell phones from both the categories grew at least one potentially pathogenic organism. Cell phones from HCWs grew significantly more potential pathogens like MRSA (20%, Acinetobacter species (5%, Pseudomonas species (2.5% as compared to the non HCWs. 97.5% HCWs use their cell phone in the hospital, 57.5% never cleaned their cell phone and 20% admitted that they did not wash their hands before or after attending patients, although majority (77.5% knows that cell phones can have harmful colonization and act as vector for nosocomial infections. It is recommended, therefore, that cell phones in the hospital should be regularly decontaminated. Moreover, utmost emphasis needs to be paid to hand washing practices among HCWs.

  20. Bacterial glycosidases for the production of universal red blood cells

    DEFF Research Database (Denmark)

    Liu, Qiyong P; Sulzenbacher, Gerlind; Yuan, Huaiping;

    2007-01-01

    Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating...... of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions....

  1. Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods.

    Science.gov (United States)

    Le Blay, Gwenaëlle; Fliss, Ismaïl; Lacroix, Christophe

    2004-11-01

    Different methods are used to study bacterial adhesion to intestinal epithelial cells, which is an important step in pathogenic infection as well as in probiotic colonization of the intestinal tract. The aim of this study was to compare the ELISA-based method with more conventional plate count and radiolabeling methods for bacterial adhesion detection. An ELISA-based assay was optimized for the detection of Bifidobacterium longum and Escherichia coli O157:H7, which are low and highly adherent bacteria, respectively. In agreement with previous investigations, a percentage of adhesion below 1% was obtained for B. longum with ELISA. However, high nonspecific background and low positive signals were measured due to the use of polyclonal antibodies and the low adhesion capacity with this strain. In contrast, the ELISA-based method developed for E. coli adhesion detected a high adhesion percentage (15%). For this bacterium the three methods tested gave similar results for the highest bacterial concentrations (6.8 Log CFU added bacteria/well). However, differences among methods increased with the addition of decreased bacterial concentration due to different detection thresholds (5.9, 5.6 and 2.9 Log CFU adherent bacteria/well for radioactivity, ELISA and plate count methods, respectively). The ELISA-based method was shown to be a good predictor for bacterial adhesion compared to the radiolabeling method when good quality specific antibodies were used. This technique is convenient and allows handling of numerous samples.

  2. Predominance of single bacterial cells in composting bioaerosols

    Science.gov (United States)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  3. Plant DNA barcoding in China

    Institute of Scientific and Technical Information of China (English)

    De-Zhu LI; Jian-Quan LIU; Zhi-Duan CHEN; Hong WANG; Xue-Jun GE; Shi-Liang ZHOU; Lian-Ming GAO; Cheng-Xin FU; Shi-Lin CHEN

    2011-01-01

    @@ Identification is the keystone of biology (Bell, 1986).However, to biologists and students of biology, the total numbers of species that must be identified far outnumber the names commonly used in English, Chinese, or other living languages.In addition, the identification cues vary greatly between different taxonomical groups.Even for the taxonomists with long training and experience, it is difficult to remember all specific terms for a given group, e.g., Orchidaceae or Poaceae, without help of floristic books or monographs.It takes much time and effort to train a taxonomist, at a time when fewer and fewer young students are interested in this "classical" and "out-of-style", but extremely important, discipline.Many students elect to learn the more "advanced'' and "modem" biological disciples like molecular biology and biochemistry.Thus, in China and therest of the world, taxonomists are themselves becoming "endangered".The rise of the DNA barcoding is expected to mitigate, at least in part, this dilemma.

  4. A central role for carbon-overflow pathways in the modulation of bacterial cell death.

    Directory of Open Access Journals (Sweden)

    Vinai Chittezham Thomas

    2014-06-01

    Full Text Available Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC and α-acetolactate synthase/decarboxylase (AlsSD overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development.

  5. GROWTH AND METABOLISM OF INDIVIDUAL BACTERIAL CELLS UTILIZING NANOSIMS

    Energy Technology Data Exchange (ETDEWEB)

    NEALSON, H. K.

    2007-08-03

    This work involved the use of the Nano-SIMS Instrument at Lawrence Livermore Laboratory, in an effort to utilize this unique tool for experiments in Biology. The work consisted primarily of experiments to measure in real time, C and N fixation in cyanobacteria. The work revealed a number of the difficulties in using the nano-SIMS approach with biological material, but with collaboration from a number of individuals at USC and LLNL, major progress was made. The collaborators from LLNL were from the Chemistry Group (Dr. Peter Weber), and the Biology Group (Dr. Jennifer Pett-Ridge). In addition, there were a number of other scientists involved from LLNL. The USC group consisted of Dr. K.H. Nealson, the PI on the grant, Dr. R. Popa, a postdoctoral fellow and research associate at USC, Professor Douglas Capone, and Juliet Finze, a graduate student in biology. Two major experiments were done, both of which yielded new and exciting data. (1) We studied nitrogen and carbon fixation in Anabaena, demonstrating that fixation ofN occurred rapidly in the heterocysts, and that the fixed N was transported rapidly and completely to the vegetative cells. C fixation occurred in the vegetative cells, with labeled C remaining in these cells in support of their growth and metabolism. This work was accepted in the ISME Journal (Nature Publication), and published last month. (2) We studied nitrogen and carbon fixation in Trichodesmium, a non-heterocystous cyanobacterium that also fixes nitrogen. Interestingly, the nitrogen fixation was confined to regions within the filaments that seem to be identical to the so-called cyanophycaen granules. The fixed N is then transported to other parts of the cyanobacterium, as judged by movement of the heavy N throughout the filaments. On the basis of these very exciting results, we have applied for funding from the NSF to continue the collaboration with LLNL. The results of both studies were presented in the summer of 2007 at the Gordon Research

  6. Bacterial xylanase expression in mammalian cells and transgenic mice.

    Science.gov (United States)

    Fontes, C M; Ali, S; Gilbert, H J; Hazlewood, G P; Hirst, B H; Hall, J

    1999-06-11

    The energy which simple-stomached livestock can derive from dietary plant material is limited by the lack of plant polysaccharide degrading enzymes in their gastro-intestinal (GI) tract and the inefficient microbial fermentation of such material in their hind-gut. In poultry the non-starch polysaccharides found in cereal grains can also impair normal digestive function as they form viscous gels in the GI tract inhibiting the breakdown and absorption of nutrients. The nutrition of such livestock could, therefore, be improved by the introduction of enzymes able to degrade plant polysaccharides in the small intestine. We describe the expression of a xylanase, XYLY', from the bacterium Clostridium thermocellum in mammalian cells and the exocrine pancreas of transgenic mice. The enzyme is synthesised, secreted and functionally active in the eukaryote system. This work demonstrates the feasibility of generating animals with the endogenous capacity to depolymerise the xylan component of hemi-cellulose.

  7. Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR

    Science.gov (United States)

    Naumann, D.

    1984-05-01

    Living bacterial cells of Staphylococcus aureus have been measured from aqueous suspensions taking advantage of the solvent subtraction capabilities of FTIR. All spectral features, between 1800-800 cm -1, of the intact cells could be measured with a reproducibility of better than ±5% when applying strict metabolic control of cell growth and a highly standardized experimental procedure prior to IR measurements. IR bands near 1745, 1656, 1547, 1240 and 1200-1000 cm -1were tentatively assigned to: CO stretching of ester groups, amide I and amide II bands of the various peptides and proteins, asymmetric stretching of phosphate groups and complex vibrational modes resulting from polysaccharidal compounds, respectively. Absorbance subtraction of IR spectra of different intact baterial cells and cell-wall preparations yielded reasonable results on structural variations accompanying: (i) cell growth, (ii) use of different growth media, (iii) chemical treatment of cells and (iv) biochemical isolation processes of cell walls from the intact cells.

  8. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule.

    Directory of Open Access Journals (Sweden)

    Stephanie N Bartley

    Full Text Available We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.

  9. From Barcode to QR Code Applications

    Directory of Open Access Journals (Sweden)

    László Várallyai

    2012-12-01

    Full Text Available This paper shows the Zsohár Horticulture Company in Nagyrákos, how they want to change their barcode identification system to QR code. They cultivate herbaceous, perpetual decorational plants, rock-garden, flower-bed and swamp perpetuals, decorational grasses and spices. A part of the perpetuals are evergreens, but most of them has special organs - such as onions, thick-, bulbous roots, "winter-proof" buds - so they can survive winter. In the first part of the paper I introduce the different barcode standards, how can it be printed and how can it be read. In the second part of the paper I give details about the quick response code (QR code and the two-dimensional (2D barcode. Third part of this paper illustrates the QR code usability in agriculture focused on the gardening.

  10. DNA barcodes for ecology, evolution, and conservation.

    Science.gov (United States)

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed.

  11. Short barcodes for next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Katharina Mir

    Full Text Available We consider the design and evaluation of short barcodes, with a length between six and eight nucleotides, used for parallel sequencing on platforms where substitution errors dominate. Such codes should have not only good error correction properties but also the code words should fulfil certain biological constraints (experimental parameters. We compare published barcodes with codes obtained by two new constructions methods, one based on the currently best known linear codes and a simple randomized construction method. The evaluation done is with respect to the error correction capabilities, barcode size and their experimental parameters and fundamental bounds on the code size and their distance properties. We provide a list of codes for lengths between six and eight nucleotides, where for length eight, two substitution errors can be corrected. In fact, no code with larger minimum distance can exist.

  12. Short barcodes for next generation sequencing.

    Science.gov (United States)

    Mir, Katharina; Neuhaus, Klaus; Bossert, Martin; Schober, Steffen

    2013-01-01

    We consider the design and evaluation of short barcodes, with a length between six and eight nucleotides, used for parallel sequencing on platforms where substitution errors dominate. Such codes should have not only good error correction properties but also the code words should fulfil certain biological constraints (experimental parameters). We compare published barcodes with codes obtained by two new constructions methods, one based on the currently best known linear codes and a simple randomized construction method. The evaluation done is with respect to the error correction capabilities, barcode size and their experimental parameters and fundamental bounds on the code size and their distance properties. We provide a list of codes for lengths between six and eight nucleotides, where for length eight, two substitution errors can be corrected. In fact, no code with larger minimum distance can exist.

  13. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.

    2017-02-08

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  14. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+ T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+ T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+ T-cells in PBMC cultures required 'classical' CD14(+ monocytes, which enhanced T-cell activation. CD3(+ T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+ T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.

  15. Codon optimization of bacterial luciferase (lux) for expression in mammalian cells.

    Science.gov (United States)

    Patterson, Stacey S; Dionisi, Hebe M; Gupta, Rakesh K; Sayler, Gary S

    2005-03-01

    Expression of the bacterial luciferase (lux) system in mammalian cells would culminate in a new generation of bioreporters for in vivo monitoring and diagnostics technology. Past efforts to express bacterial luciferase in mammalian cells have resulted in only modest gains due in part to low overall expression of the bacterial genes. To optimize expression, we have designed and synthesized codon-optimized versions of the luxA and luxB genes from Photorhabdus luminsecens. To evaluate these genes in vivo, stable HEK293 cell lines were created harboring wild type luxA and luxB (WTA/WTB), codon-optimized luxA and wild type luxB (COA/WTB), and codon-optimized versions of both luxA and luxB genes (COA/COB). Although mRNA levels within these clones remained approximately equal, LuxA protein levels increased significantly after codon optimization. On average, bioluminescence levels were increased by more than six-fold [5x10(5) vs 2.9x10(6) relative light units (RLU)/mg total protein] with the codon-optimized luxA and wild type luxB. Bioluminescence was further enhanced upon expression of both optimized genes (2.7x10(7) RLU/mg total protein). These results show promise toward the potential development of an autonomous light generating lux reporter system in mammalian cells.

  16. Convergent development of anodic bacterial communities in microbial fuel cells.

    KAUST Repository

    Yates, Matthew D

    2012-05-10

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  17. The effect of natural organic matter on the adsorption of mercury to bacterial cells

    Science.gov (United States)

    Dunham-Cheatham, Sarrah; Mishra, Bhoopesh; Myneni, Satish; Fein, Jeremy B.

    2015-02-01

    We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy (XAS) experiments were conducted at three pH conditions, and the results indicate that the presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions studied. Hg XAS results show that the presence of FA does not alter the binding environment of Hg adsorbed onto the biomass regardless of pH or FA concentration, indicating that ternary bacteria-Hg-FA complexes do not form to an appreciable extent under the experimental conditions, and that Hg binding on the bacteria is dominated by sulfhydryl binding. We used the experimental results to calculate apparent partition coefficients, Kd, for Hg under each experimental condition. The calculations yield similar coefficients for Hg onto each of the bacterial species studies, suggesting there is no significant difference in Hg partitioning between the three bacterial species. The calculations also indicate similar coefficients for Hg-bacteria and Hg-FA complexes. S XAS measurements confirm the presence of sulfhydryl sites on both the FA and bacterial cells, and demonstrate the presence of a wide range of S moieties on the FA in contrast to the bacterial biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete with bacterial binding sites for aqueous Hg, because of the relatively similar partition coefficients for the types of sorbents, the competition is not dominated by either bacteria or FA unless the concentration of one type of site greatly exceeds that of the other.

  18. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis.

    Science.gov (United States)

    Maglione, Paul J; Xu, Jiayong; Chan, John

    2007-06-01

    Though much is known about the function of T lymphocytes in the adaptive immune response against Mycobacterium tuberculosis, comparably little is understood regarding the corresponding role of B lymphocytes. Indicating B cells as components of lymphoid neogenesis during pulmonary tuberculosis, we have identified ectopic germinal centers (GCs) in the lungs of infected mice. B cells in these pulmonary lymphoid aggregates express peanut agglutinin and GL7, two markers of GC B cells, as well as CXCR5, and migrate in response to the lymphoid-associated chemokine CXCL13 ex vivo. CXCL13 is negatively regulated by the presence of B cells, as its production is elevated in lungs of B cell-deficient (B cell(-/-)) mice. Upon aerosol with 100 CFU of M. tuberculosis Erdman, B cell(-/-) mice have exacerbated immunopathology corresponding with elevated pulmonary recruitment of neutrophils. Infected B cell(-/-) mice show increased production of IL-10 in the lungs, whereas IFN-gamma, TNF-alpha, and IL-10R remain unchanged from wild type. B cell(-/-) mice have enhanced susceptibility to infection when aerogenically challenged with 300 CFU of M. tuberculosis corresponding with elevated bacterial burden in the lungs but not in the spleen or liver. Adoptive transfer of B cells complements the phenotypes of B cell(-/-) mice, confirming a role for B cells in both modulation of the host response and optimal containment of the tubercle bacillus. As components of ectopic GCs, moderators of inflammatory progression, and enhancers of local immunity against bacterial challenge, B cells may have a greater role in the host defense against M. tuberculosis than previously thought.

  19. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    Science.gov (United States)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  20. Mucosal-associated invariant T (MAIT cells: new players in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    James E Ussher

    2014-10-01

    Full Text Available Mucosal-associated invariant T (MAIT cells are an innate-like T cell population involved in antibacterial immunity. In humans, MAIT cells are abundant, comprising ~ 10% of the CD8+ T cell compartment in blood. They are enriched at mucosal sites and are particularly prevalent within the liver. MAIT cells are defined by the expression of a semi-invariant T cell receptor (Vα7.2-Jα33/12/20 and are restricted by the non-polymorphic, highly evolutionarily conserved MHC class Ib molecule, MR1. MR1 has recently been shown to present an unstable pyrimidine intermediate derived from a biosynthetic precursor of riboflavin; riboflavin biosynthesis occurs in many bacteria but not in humans. Consistent with this, MAIT cells are responsive to riboflavin-metabolizing bacteria, including Salmonella. In mouse models, MAIT cells have been shown to play a non-redundant role in antibacterial immunity, including against E. coli, Klebsiella pneumoniae, and Mycobacterium bovis BCG. In humans, MAIT cells are decreased in frequency in the blood of patients with tuberculosis or pneumonia, and their frequency has been inversely correlated with the risk of subsequent systemic bacterial infection in patients in intensive care. Intriguingly, MAIT cells are also depleted from the blood early in HIV infection and fail to recover with antiretroviral therapy, which may contribute to the susceptibility of patients infected with HIV to certain bacterial infections, including with non-typhoidal Salmonella. In this review we will discuss what is currently known about MAIT cells, the role that Salmonella has played in elucidating MAIT cell restriction and function, and the role MAIT cells might play in the control of Salmonella infection.

  1. Multivalent nanofibers of a controlled length: regulation of bacterial cell agglutination.

    Science.gov (United States)

    Lee, Dong-Woo; Kim, Taehoon; Park, Il-Soo; Huang, Zhegang; Lee, Myongsoo

    2012-09-12

    Control of the size and shape of molecular assemblies on the nanometer scale in aqueous solutions is very important for the regulation of biological functions. Among the well-defined supramolecular structures of organic amphiphiles, one-dimensional nanofibers have attracted much attention because of their potential applications in biocompatible materials. Although much progress has been made in the field of self-assembled nanofibers, the ability to control the fiber length remains limited. The approach for control of the fiber length presented herein overcomes this limitation through the coassembly of amphiphilic rod-coil molecules in which the crystallinity of the aromatic segment can be regulated by π-π stacking interactions. The introduction of carbohydrate segments into the fiber exterior endows the nanofibers with the ability to adhere to bacterial cells. Notably, the fiber length systematically regulates the agglutination and proliferation of bacterial cells exposed to these fibers.

  2. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    Science.gov (United States)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  3. Influence of molecular noise on the growth of single cells and bacterial populations.

    Directory of Open Access Journals (Sweden)

    Mischa Schmidt

    Full Text Available During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i the precision of division site placement (at which molecular noise is highly suppressed and (ii the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i and allowance of noise in example (ii] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions.

  4. Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2008-12-01

    Full Text Available Abstract Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. Results The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Conclusion Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  5. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  6. Instrumental analysis of bacterial cells using vibrational and emission Moessbauer spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation)]. E-mail: aakamnev@ibppm.sgu.ru; Tugarova, Anna V. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Antonyuk, Lyudmila P. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Tarantilis, Petros A. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Kulikov, Leonid A. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Perfiliev, Yurii D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Polissiou, Moschos G. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Gardiner, Philip H.E. [Division of Chemistry, School of Science and Mathematics, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2006-07-28

    In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with {sup 57}Co emission Moessbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.

  7. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  8. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode.

    Science.gov (United States)

    Françoso, E; Arias, M C

    2013-09-01

    Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode.

  9. Targeted delivery of an ADP-ribosylating bacterial toxin into cancer cells

    Science.gov (United States)

    Zahaf , N.-I.; Lang, A. E.; Kaiser, L.; Fichter, C. D.; Lassmann, S.; McCluskey, A.; Augspach, A.; Aktories, K.; Schmidt, G.

    2017-01-01

    The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells. PMID:28128281

  10. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms.

    Science.gov (United States)

    Khasriya, Rajvinder; Sathiananthamoorthy, Sanchutha; Ismail, Salim; Kelsey, Michael; Wilson, Mike; Rohn, Jennifer L; Malone-Lee, James

    2013-07-01

    Chronic lower urinary tract symptoms (LUTS), such as urgency and incontinence, are common, especially among the elderly, but their etiology is often obscure. Recent studies of acute urinary tract infections implicated invasion by Escherichia coli into the cytoplasm of urothelial cells, with persistence of long-term bacterial reservoirs, but the role of infection in chronic LUTS is unknown. We conducted a large prospective study with eligible patients with LUTS and controls over a 3-year period, comparing routine urine cultures of planktonic bacteria with cultures of shed urothelial cells concentrated in centrifuged urinary sediments. This comparison revealed large numbers of bacteria undetected by routine cultures. Next, we typed the bacterial species cultured from patient and control sediments under both aerobic and anaerobic conditions, and we found that the two groups had complex but significantly distinct profiles of bacteria associated with their shed bladder epithelial cells. Strikingly, E. coli, the organism most responsible for acute urinary tract infections, was not the only or even the main offending pathogen in this more-chronic condition. Antibiotic protection assays with shed patient cells and in vitro infection studies using patient-derived strains in cell culture suggested that LUTS-associated bacteria are within or extremely closely associated with shed epithelial cells, which explains how routine cultures might fail to detect them. These data have strong implications for the need to rethink our common diagnoses and treatments of chronic urinary tract symptoms.

  11. Visualization of sialic acid produced on bacterial cell surfaces by lectin staining.

    Science.gov (United States)

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada, Hiroshi; Wariishi, Hiroyuki; Yamamoto, Takeshi

    2010-01-01

    Oligosaccharides containing N-acetylneuraminic acid on the cell surface of some pathogenic bacteria are important for host-microbe interactions. N-acetylneuraminic acid (Neu5Ac) plays a major role in the pathogenicity of bacterial pathogens. For example, cell surface sialyloligosaccharide moieties of the human pathogen Haemophilus influenzae are involved in virulence and adhesion to host cells. In this study, we have established a method of visualizing Neu5Ac linked to a glycoconjugate on the bacterial cell surface based on lectin staining. Photobacterium damselae strain JT0160, known to produce a-2,6-sialyltransferase, was revealed to possess Neu5Ac by HPLC. Using the strain, a strong Sambucus sieboldiana lectin-binding signal was detected. The bacteria producing α-2,6-sialyltransferases could be divided into two groups: those with a lot of α-2,6-linked Neu5Ac on the cell surface and those with a little. In the present study, we developed a useful method for evaluating the relationship between Neu5Ac expression on the cell surface and the degree of virulence of marine bacteria.

  12. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  13. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  14. Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds.

    Science.gov (United States)

    Muller, D; Silva, J P; Rambo, C R; Barra, G M O; Dourado, F; Gama, F M

    2013-01-01

    In this work, polypyrrole (PPy) was in situ polymerized onto the surface of bacterial nanocellulose (BNC) produced by Gluconacetobacter xylinus, by chemical oxidation in aqueous medium using ammonium persulfate. Composites (BNC/PPy) were produced with varying concentrations of pyrrole (Py). The produced BNC/PPy membranes were used as a template for the seeding of PC12 rat neuronal cells. Cell suspensions were directly seeded onto the surfaces of the BNC/PPy membranes. The Py concentration affected the behavior of neuronal cells that adhered and grew significantly more on BNC/PPy comparatively to BNC. Scanning electron microscopy (SEM) micrographs revealed that PC12 cells adhered on the surface of the BNC and BNC/PPy membranes. Conductive PPy coatings on nanofibers acting as an active interface for tissue engineering may be used to regulate cell activity through electrical stimulations.

  15. Universal COI primers for DNA barcoding amphibians.

    Science.gov (United States)

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  16. DNA barcoding of clinically relevant Cunninghamella species

    NARCIS (Netherlands)

    Yu, Jin; Walther, G; Van Diepeningen, A D; Gerrits Van Den Ende, A H G; Li, Ruo-Yu; Moussa, T A A; Almaghrabi, O A; De Hoog, G S

    2015-01-01

    Mucormycosis caused, in part, by representatives of the genus Cunninghamella is a severe infection with high mortality in patients with impaired immunity. Several species have been described in the literature as etiologic agents. A DNA barcoding study using ITS rDNA and tef-1α provided concordance o

  17. Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice.

    Science.gov (United States)

    Kasibabu, Betha Saineelima B; D'souza, Stephanie L; Jha, Sanjay; Kailasa, Suresh Kumar

    2015-07-01

    In this paper, we have described a simple hydrothermal method for preparation of fluorescent carbon dots (C-dots) using Carica papaya juice as a precursor. The synthesized C-dots show emission peak at 461 nm with a quantum yield of 7.0 %. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on E. coli. The C-dots were used as fluorescent probes for imaging of bacterial (Bacillus subtilis) and fungal (Aspergillus aculeatus) cells and emitted green and red colors under different excitation wavelengths, which indicates that the C-dots can be used as a promising material for cell imaging.

  18. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    Full Text Available Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs of Burkholderia thailandensis (B. thai in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

  19. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain.

    Science.gov (United States)

    Kabaivanova, L; Dobreva, E; Dimitrov, P; Emanuilova, E

    2005-01-01

    Cells of the moderately thermophilic Bacillus sp. UG-5B strain, producing nitrilase (EC3.5.5.1), which converts nitriles directly to the corresponding acid and ammonia, were immobilized using different types of matrices and techniques. A variety of sol-gel silica hybrids were tested for entrapment and adsorption of bacterial cells as well as chemical binding on polysulphone membranes. Activation of the matrix surface with formaldehyde led to an increase in immobilization efficiency and operational stability of the biocatalysts. Among the supports screened, membranes gave the best results for enzyme activity and especially operational stability, with retention of 100% activity after eight reaction cycles.

  20. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines☆

    Science.gov (United States)

    Alberdi, M. Pilar; Dalby, Matthew J.; Rodriguez-Andres, Julio; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2012-01-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed ‘tick-only’ viruses inhabiting tick cell lines. PMID:22743047

  1. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.

    Science.gov (United States)

    Alberdi, M Pilar; Dalby, Matthew J; Rodriguez-Andres, Julio; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2012-06-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed 'tick-only' viruses inhabiting tick cell lines.

  2. Office space bacterial abundance and diversity in three metropolitan areas.

    Directory of Open Access Journals (Sweden)

    Krissi M Hewitt

    Full Text Available People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples. 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils. There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009.

  3. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  4. Condensation of FtsZ filaments can drive bacterial cell division.

    Science.gov (United States)

    Lan, Ganhui; Daniels, Brian R; Dobrowsky, Terrence M; Wirtz, Denis; Sun, Sean X

    2009-01-06

    Forces are important in biological systems for accomplishing key cell functions, such as motility, organelle transport, and cell division. Currently, known force generation mechanisms typically involve motor proteins. In bacterial cells, no known motor proteins are involved in cell division. Instead, a division ring (Z-ring) consists of mostly FtsZ, FtsA, and ZipA is used to exerting a contractile force. The mechanism of force generation in bacterial cell division is unknown. Using computational modeling, we show that Z-ring formation results from the colocalization of FtsZ and FtsA mediated by the favorable alignment of FtsZ polymers. The model predicts that the Z-ring undergoes a condensation transition from a low-density state to a high-density state and generates a sufficient contractile force to achieve division. FtsZ GTP hydrolysis facilitates monomer turnover during the condensation transition, but does not directly generate forces. In vivo fluorescence measurements show that FtsZ density increases during division, in accord with model results. The mechanism is akin to van der Waals picture of gas-liquid condensation, and shows that organisms can exploit microphase transitions to generate mechanical forces.

  5. DNA barcoding Bromeliaceae: achievements and pitfalls.

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Maia

    Full Text Available BACKGROUND: DNA barcoding has been successfully established in animals as a tool for organismal identification and taxonomic clarification. Slower nucleotide substitution rates in plant genomes have made the selection of a DNA barcode for land plants a much more difficult task. The Plant Working Group of the Consortium for the Barcode of Life (CBOL recommended the two-marker combination rbcL/matK as a pragmatic solution to a complex trade-off between universality, sequence quality, discrimination, and cost. METHODOLOGY/PRINCIPAL FINDINGS: It is expected that a system based on any one, or a small number of plastid genes will fail within certain taxonomic groups with low amounts of plastid variation, while performing well in others. We tested the effectiveness of the proposed CBOL Plant Working Group barcoding markers for land plants in identifying 46 bromeliad species, a group rich in endemic species from the endangered Brazilian Atlantic Rainforest. Although we obtained high quality sequences with the suggested primers, species discrimination in our data set was only 43.48%. Addition of a third marker, trnH-psbA, did not show significant improvement. This species identification failure in Bromeliaceaecould also be seen in the analysis of the GenBank's matK data set. Bromeliaceae's sequence divergence was almost three times lower than the observed for Asteraceae and Orchidaceae. This low variation rate also resulted in poorly resolved tree topologies. Among the three Bromeliaceae subfamilies sampled, Tillandsioideae was the only one recovered as a monophyletic group with high bootstrap value (98.6%. Species paraphyly was a common feature in our sampling. CONCLUSIONS/SIGNIFICANCE: Our results show that although DNA barcoding is an important tool for biodiversity assessment, it tends to fail in taxonomy complicated and recently diverged plant groups, such as Bromeliaceae. Additional research might be needed to develop markers capable to

  6. The periplasmic enzyme, AnsB, of Shigella flexneri modulates bacterial adherence to host epithelial cells.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available S. flexneri strains, most frequently linked with endemic outbreaks of shigellosis, invade the colonic and rectal epithelium of their host and cause severe tissue damage. Here we have attempted to elucidate the contribution of the periplasmic enzyme, L-asparaginase (AnsB to the pathogenesis of S. flexneri. Using a reverse genetic approach we found that ansB mutants showed reduced adherence to epithelial cells in vitro and attenuation in two in vivo models of shigellosis, the Caenorhabditis elegans and the murine pulmonary model. To investigate how AnsB affects bacterial adherence, we compared the proteomes of the ansB mutant with its wild type parental strain using two dimensional differential in-gel electrophoresis and identified the outer membrane protein, OmpA as up-regulated in ansB mutant cells. Bacterial OmpA, is a prominent outer membrane protein whose activity has been found to be required for bacterial pathogenesis. Overexpression of OmpA in wild type S. flexneri serotype 3b resulted in decreasing the adherence of this virulent strain, suggesting that the up-regulation of OmpA in ansB mutants contributes to the reduced adherence of this mutant strain. The data presented here is the first report that links the metabolic enzyme AnsB to S. flexneri pathogenesis.

  7. Bio-barcode gel assay for microRNA

    Science.gov (United States)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  8. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis

    DEFF Research Database (Denmark)

    De Corte, Simon; Bechstein, Stefanie; Lokanathan, Arcot R.

    2013-01-01

    An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks...... nanoparticles, and that abiotic surfaces could support the Pd particle synthesis as efficiently as bacteria. In this study, we explore the possibility of replacing bacteria with amine-functionalized materials, and we compare different functionalization strategies. Pd nanoparticles formed on the support...... of microbially supported Pd catalysts are the low catalytic activity compared to conventional Pd nanocatalysts and the possible poisoning of the catalyst surface by sulfur originating from bacterial proteins. A recent study showed that amine groups were a key component in surface-supported synthesis of Pd...

  9. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    Science.gov (United States)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  10. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  11. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    Science.gov (United States)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  12. High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial Lux reporter.

    Science.gov (United States)

    Class, Bradley; Thorne, Natasha; Aguisanda, Francis; Southall, Noel; McKew, John C; Zheng, Wei

    2015-04-01

    Cell viability assays are extensively used to determine cell health, evaluate growth conditions, and assess compound cytotoxicity. Most existing assays are endpoint assays, in which data are collected at one time point after termination of the experiment. The time point at which toxicity of a compound is evident, however, depends on the mechanism of that compound. An ideal cell viability assay allows the determination of compound toxicity kinetically without having to terminate the assay prematurely. We optimized and validated a reagent-addition-free cell viability assay using an autoluminescent HEK293 cell line that stably expresses bacterial luciferase and all substrates necessary for bioluminescence. This cell viability assay can be used for real-time, long-term measurement of compound cytotoxicity in live cells with a signal-to-basal ratio of 20- to 200-fold and Z-factors of ~0.6 after 24-, 48- 72-, or 96-h incubation with compound. We also found that the potencies of nine cytotoxic compounds correlated well with those measured by four other commonly used cell viability assays. The results demonstrated that this kinetic cell viability assay using the HEK293(lux) autoluminescent cell line is useful for high-throughput evaluation of compound cytotoxicity.

  13. INFLUENCE OF THE PHYSICAL STATE OF THE BACTERIAL CELL MEMBRANE UPON THE RATE OF RESPIRATION.

    Science.gov (United States)

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Influence of the physical state of the bacterial cell membrane upon the rate of respiration. J. Bacteriol. 87:1274-1280. 1964.-NaCl and KCl in concentrations of the order of 0.2 to 0.5 m inhibit the respiration of Escherichia coli B and other gram-negative organisms. Cell-free enzymes concerned in respiration and prepared from the same organisms are not inhibited by these salts, whereas these same enzymes tested in intact cells are. The physical state of the cell membrane appears to be a factor controlling its respiratory activity.

  14. Computer models of bacterial cells: from generalized coarsegrained to genome-specific modular models

    Science.gov (United States)

    Nikolaev, Evgeni V.; Atlas, Jordan C.; Shuler, Michael L.

    2006-09-01

    We discuss a modular modelling framework to rapidly develop mathematical models of bacterial cells that would explicitly link genomic details to cell physiology and population response. An initial step in this approach is the development of a coarse-grained model, describing pseudo-chemical interactions between lumped species. A hybrid model of interest can then be constructed by embedding genome-specific detail for a particular cellular subsystem (e.g. central metabolism), called here a module, into the coarse-grained model. Specifically, a new strategy for sensitivity analysis of the cell division limit cycle is introduced to identify which pseudo-molecular processes should be delumped to implement a particular biological function in a growing cell (e.g. ethanol overproduction or pathogen viability). To illustrate the modeling principles and highlight computational challenges, the Cornell coarsegrained model of Escherichia coli B/r-A is used to benchmark the proposed framework.

  15. Barcoding, types and the Hirudo files: using information content to critically evaluate the identity of DNA barcodes.

    Science.gov (United States)

    Kvist, Sebastian; Oceguera-Figueroa, Alejandro; Siddall, Mark E; Erséus, Christer

    2010-12-01

    Species identifications based on DNA barcoding rely on the correct identity of previously barcoded specimens, but little attention has been given to whether deposited barcodes include correspondence to the species' name-bearing type. The information content associated with COX1 sequences in the two most commonly used repositories of barcodes, GenBank and the Barcode of Life Data System (BOLD), is often insufficient for subsequent evaluation of the robustness of the identification procedure. We argue that DNA barcoding and taxonomy alike will benefit from more information content in the annotations of barcoded specimens as this will allow for validation and re-evaluation of the initial specimen identification. The aim should be to closely connect specimens from which reference barcodes are generated with the holotype through straight-forward taxonomy, and geographical and genetic correlations. Annotated information should also include voucher specimens and collector/identifier information. We examine two case studies based on empirical data, in which barcoding and taxonomy benefit from increased information content. On the basis of data from the first case study, we designate a barcoded neotype of the European medicinal leech, Hirudo medicinalis, on morphological and geographical grounds.

  16. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice

    2010-01-01

    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  17. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.

    Science.gov (United States)

    Helfrich, Stefan; Pfeifer, Eugen; Krämer, Christina; Sachs, Christian Carsten; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina; Frunzke, Julia

    2015-11-01

    Almost all bacterial genomes contain DNA of viral origin, including functional prophages or degenerated phage elements. A frequent but often unnoted phenomenon is the spontaneous induction of prophage elements (SPI) even in the absence of an external stimulus. In this study, we have analyzed SPI of the large, degenerated prophage CGP3 (187 kbp), which is integrated into the genome of the Gram-positive Corynebacterium glutamicum ATCC 13032. Time-lapse fluorescence microscopy of fluorescent reporter strains grown in microfluidic chips revealed the sporadic induction of the SOS response as a prominent trigger of CGP3 SPI but also displayed a considerable fraction (∼30%) of RecA-independent SPI. Whereas approx. 20% of SOS-induced cells recovered from this stress and resumed growth, the spontaneous induction of CGP3 always led to a stop of growth and likely cell death. A carbon source starvation experiment clearly emphasized that SPI only occurs in actively proliferating cells, whereas sporadic SOS induction was still observed in resting cells. These data highlight the impact of sporadic DNA damage on the activity of prophage elements and provide a time-resolved, quantitative description of SPI as general phenomenon of bacterial populations.

  18. Total bacterial count and somatic cell count in refrigerated raw milk stored in communal tanks

    Directory of Open Access Journals (Sweden)

    Edmar da Costa Alves

    2014-09-01

    Full Text Available The current industry demand for dairy products with extended shelf life has resulted in new challenges for milk quality maintenance. The processing of milk with high bacterial counts compromises the quality and performance of industrial products. The study aimed to evaluate the total bacteria counts (TBC and somatic cell count (SCC in 768 samples of refrigerated raw milk, from 32 communal tanks. Samples were collected in the first quarter of 2010, 2011, 2012 and 2013 and analyzed by the Laboratory of Milk Quality - LQL. Results showed that 62.5%, 37.5%, 15.6% and 27.1% of the means for TBC in 2010, 2011, 2012 and 2013, respectively, were above the values established by legislation. However, we observed a significant reduction in the levels of total bacterial count (TBC in the studied periods. For somatic cell count, 100% of the means indicated values below 600.000 cells/mL, complying with the actual Brazilian legislation. The values found for the somatic cell count suggests the adoption of effective measures for the sanitary control of the herd. However, the results must be considered with caution as it highlights the need for quality improvements of the raw material until it achieves reliable results effectively.

  19. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    Science.gov (United States)

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  20. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    Science.gov (United States)

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  1. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  2. Identifying Canadian freshwater fishes through DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Nicolas Hubert

    Full Text Available BACKGROUND: DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. METHODOLOGY/PRINCIPAL FINDINGS: We bi-directionally sequenced the standard 652 bp "barcode" region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%. Most species were represented by multiple individuals (7.6 on average, the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases. The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. CONCLUSIONS/SIGNIFICANCE: The present study evidenced that freshwater fish

  3. A STUDY ON BACTERIAL CONTAMINATION OF CELL PHONES OF HEALTH CARE WORKERS (HCW AT KIMS HOSPITAL, AMALAPURAM

    Directory of Open Access Journals (Sweden)

    Padmaja

    2014-04-01

    Full Text Available A random 100 samples of cell phones of HCWs workers and Doctors working in various wards, OPDs and laboratories, Blood Bank, Causality, ICU of KIMS Hospital were subjected to bacterial analysis by conventional methods to know about the Bacterial contamination of the cell phones from July 2011 to December 2011. The commonest organism isolated from the contaminated cell phone is MRSA - 20%, followed by MSSA - 5%, CONS - 10 %, Micrococcus - 15 %. The obvious observation is none of the doctors’ cell phones are contaminated. In the present study, the contamination rate is compared to the controlled group consisting patients, relatives attending in OPD’s and not working in health care setting.

  4. Current advances of DNA barcoding study in plants

    OpenAIRE

    Shuping Ning; Haifei Yan; Gang Hao; Xuejun Ge

    2008-01-01

    DNA barcoding has become one of hotspots of biodiversity research in the last five years. It is a method of rapid and accurate species identification and recognition using a short, standardized DNA region. DNA barcoding is now well established for animals, using a portion of the mitochondrial cytochrome c oxidase subunit 1 (COI or cox1) as the standard universal barcode. However, in plants, progress has been hampered by slow substitution rates in mitochondrial DNA. A number of different chlor...

  5. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

    Science.gov (United States)

    Sawant, Prachi; Eissenberger, Kristina; Karier, Laurence; Mascher, Thorsten; Bramkamp, Marc

    2016-09-01

    In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress.

  6. The Barcode of Life Data Portal: bridging the biodiversity informatics divide for DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Indra Neil Sarkar

    Full Text Available With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence-based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form--often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG of the Consortium for the Barcode of Life (CBOL, the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum.

  7. Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter.

    Science.gov (United States)

    Johansson, Cecilia; Wick, Mary Jo

    2004-02-15

    The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.

  8. The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Directory of Open Access Journals (Sweden)

    Oliveira S.C.

    1998-01-01

    Full Text Available Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

  9. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments.

    Science.gov (United States)

    Yang, Desirée C; Blair, Kris M; Salama, Nina R

    2016-03-01

    Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.

  10. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  11. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  12. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  13. Ion Channels Activated by Mechanical Forces in Bacterial and Eukaryotic Cells.

    Science.gov (United States)

    Sokabe, Masahiro; Sawada, Yasuyuki; Kobayashi, Takeshi

    2015-01-01

    Since the first discovery of mechanosensitive ion channel (MSC) in non-sensory cells in 1984, a variety of MSCs has been identified both in prokaryotic and eukaryotic cells. One of the central issues concerning MSCs is to understand the molecular and biophysical mechanisms of how mechanical forces activate/open MSCs. It has been well established that prokaryotic (mostly bacterial) MSCs are activated exclusively by membrane tension. Thus the problem to be solved with prokaryotic MSCs is the mechanisms how the MSC proteins receive tensile forces from the lipid bilayer and utilize them for channel opening. On the other hand, the activation of many eukaryotic MSCs crucially depends on tension in the actin cytoskeleton. By using the actin cytoskeleton as a force sensing antenna, eukaryotic MSCs have obtained sophisticated functions such as remote force sensing and force-direction sensing, which bacterial MSCs do not have. Actin cytoskeletons also give eukaryotic MSCs an interesting and important function called "active touch sensing", by which cells can sense rigidity of their substrates. The contractile actin cytoskeleton stress fiber (SF) anchors its each end to a focal adhesion (FA) and pulls the substrate to generate substrate-rigidity-dependent stresses in the FA. It has been found that those stresses are sensed by some Ca2+-permeable MSCs existing in the vicinity of FAs, thus the MSCs work as a substrate rigidity sensor that can transduce the rigidity into intracellular Ca2+ levels. This short review, roughly constituting of two parts, deals with molecular and biophysical mechanisms underlying the MSC activation process mostly based on our recent studies; (1) structure-function in bacterial MSCs activation at the atomic level, and (2) roles of actin cytoskeletons in the activation of eukaryotic MSCs.

  14. FACTORS WHICH MODIFY THE EFFECT OF SODIUM AND POTASSIUM ON BACTERIAL CELL MEMBRANES.

    Science.gov (United States)

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Factors which modify the effect of sodium and potassium on bacterial cell membranes. J. Bacteriol. 87:1266-1273. 1964.-Suspensions of Escherichia coli B, when placed in 0.2 to 0.5 m solutions of NaCl, KCl, or LiCl, show an increased turbidity. With NaCl, this increased turbidity is stable with time; with KCl and LiCl, it is gradually lost. The stability to NaCl with time is due to substances removable from the cell by incubation in phosphate buffer; these materials exist in water washings from such phosphate-incubated cells.

  15. Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Mølbak, Lars; Jensen, Tim Kåre

    2005-01-01

    Direct cultivation-independent sequence retrieval of unidentified bacteria from histological tissue sections has been limited by the difficulty of selectively isolating specific bacteria from a complex environment. Here, a new DNA isolation approach is presented for prokaryotic cells....... By this method, a potentially pathogenic strain of the genus Brachyspira from formalin-fixed human colonic biopsies were visualized by fluorescence in situ hybridization (FISH) with a 16S rRNA-targeting oligonucleotide probe, followed by laser capture microdissection (LCM) of the targeted cells. Direct 16S r......RNA gene PCR was performed from the dissected microcolonies, and the subsequent DNA sequence analysis identified the dissected bacterial cells as belonging to the Brachyspira aalborgi cluster 1. The advantage of this technique is the ability to combine the histological recognition of the specific bacteria...

  16. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  17. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

    Science.gov (United States)

    Muir, Elizabeth M; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W; Keynes, Roger J; Rogers, John H

    2010-01-15

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.

  18. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis.

    Science.gov (United States)

    Manuse, Sylvie; Fleurie, Aurore; Zucchini, Laure; Lesterlin, Christian; Grangeasse, Christophe

    2016-01-01

    Bacteria possess a repertoire of versatile protein kinases modulating diverse aspects of their physiology by phosphorylating proteins on various amino acids including histidine, cysteine, aspartic acid, arginine, serine, threonine and tyrosine. One class of membrane serine/threonine protein kinases possesses a catalytic domain sharing a common fold with eukaryotic protein kinases and an extracellular mosaic domain found in bacteria only, named PASTA for 'Penicillin binding proteins And Serine/Threonine kinase Associated'. Over the last decade, evidence has been accumulating that these protein kinases are involved in cell division, morphogenesis and developmental processes in Firmicutes and Actinobacteria. However, observations differ from one species to another suggesting that a general mechanism of activation of their kinase activity is unlikely and that species-specific regulation of cell division is at play. In this review, we survey the latest research on the structural aspects and the cellular functions of bacterial serine/threonine kinases with PASTA motifs to illustrate the diversity of the regulatory mechanisms controlling bacterial cell division and morphogenesis.

  19. Oncostatin M production by human dendritic cells in response to bacterial products.

    Science.gov (United States)

    Suda, Takafumi; Chida, Kingo; Todate, Akihito; Ide, Kyotaro; Asada, Kazuhiro; Nakamura, Yutaro; Suzuki, Kenichiro; Kuwata, Hirofumi; Nakamura, Hirotoshi

    2002-03-21

    Oncostatin M (OSM) is a pleiomorphic cytokine that belongs to the IL-6 cytokine family. It is produced by activated T cells and monocytes/macrophages and plays an important role in the process of inflammatory responses. Although dendritic cells (DCs) have been shown to secrete a variety of cytokines, it is not elucidated whether DCs are able to produce OSM. To clarify this, using human DCs derived from peripheral blood cells, we measured the protein levels of OSM in the supernatants of DC cultures by ELISA and examined the expression of OSM mRNA by RT-PCR after stimulation with lipopolysaccharide (LPS) or fixed Staphylococcus aureus (SACS). Upon stimulation with bacterial products, DCs secreted a large amount of OSM protein in a dose- and time-dependent manner. Concomitantly, the expression of OSM mRNA by DCs was markedly up-regulated. Compared the ability of DCs to produce OSM with that of monocytes, which are major producers of OSM, DCs released significantly higher amounts of OSM protein in the culture supernatants than monocytes. These findings indicate for the first time that human monocyte-derived DCs can synthesize and secrete large amounts of OSM in response to bacterial products, suggesting that OSM produced by DCs at infectious sites may play a role in modulating inflammatory responses.

  20. Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity.

    Science.gov (United States)

    Bulyha, Iryna; Lindow, Steffi; Lin, Lin; Bolte, Kathrin; Wuichet, Kristin; Kahnt, Jörg; van der Does, Chris; Thanbichler, Martin; Søgaard-Andersen, Lotte

    2013-04-29

    Cell polarity is essential for many bacterial activities, but the mechanisms responsible for its establishment are poorly understood. In Myxococcus xanthus, the type IV pili (T4P) motor ATPases PilB and PilT localize to opposite cell poles and switch poles during cellular reversals. We demonstrate that polar localization of PilB and PilT depends on the small GTPase SofG and BacP, a bactofilin cytoskeletal protein. Polymeric BacP localizes in both subpolar regions. SofG interacts directly with polymeric BacP and associates with one of these patches, forming a cluster that shuttles to the pole to establish localization of PilB and PilT at the same pole. Next, the small GTPase MglA sorts PilB and PilT to opposite poles to establish their correct polarity. During reversals, the Frz chemosensory system induces the inversion of PilB and PilT polarity. Thus, three hierarchically organized systems function in a cascade to regulate dynamic bacterial cell polarity.

  1. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit

  2. Microarray Analysis of Human Vascular Smooth Muscle Cell Responses to Bacterial Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Joe Minta

    2007-01-01

    Full Text Available Accumulating evidence suggest a causal role of bacterial and viral infections in atherogenesis. Bacterial lipopolysaccharide (LPS has been shown to stimulate resting vascular smooth muscle cells (SMC with the production of inflammatory cytokines and modulation of quiescent cells to the proliferative and synthetic phenotype. To comprehensively identify biologically important genes associated with LPS-induced SMC phenotype modulation, we compared the transcriptomes of quiescent human coronary artery SMC and cells treated with LPS for 4 and 22 h. The SMCs responded robustly to LPS treatment by the differential regulation of several genes involved in chromatin remodeling, transcription regulation, translation, signal transduction, metabolism, host defense, cell proliferation, apoptosis, matrix formation, adhesion and motility and suggest that the induction of clusters of genes involved in cell proliferation, migration and ECM production may be the main force that drives the LPS-induced phenotypic modulation of SMC rather than the differential expression of a single gene or a few genes. An interesting observation was the early and dramatic induction of four tightly clustered interferon-induced genes with tetratricopeptide repeats (IFIT1, 2, 4, 5. siRNA knock-down of IFIT1 in SMC was found to be associated with a remarkable up-regulation of TP53, CDKN1A and FOS, suggesting that IFIT1 may play a role in cell proliferation. Our data provide a comprehensive list of genes involved in LPS biology and underscore the important role of LPS in SMC activation and phenotype modulation which is a pivotal event in the onset of atherogenesis.

  3. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  4. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide.

    Science.gov (United States)

    Nocker, Andreas; Camper, Anne K

    2006-03-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into "dead" cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology.

  5. Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

    CERN Document Server

    Bos, E G Patrick; Kitaura, Francisco; Cautun, Marius

    2016-01-01

    We describe the Bayesian BARCODE formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the ...

  6. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells.

    Science.gov (United States)

    Green, Luke R; Monk, Peter N; Partridge, Lynda J; Morris, Paul; Gorringe, Andrew R; Read, Robert C

    2011-06-01

    The tetraspanins are a superfamily of transmembrane proteins with diverse functions and can form extended microdomains within the plasma membrane in conjunction with partner proteins, which probably includes receptors for bacterial adhesins. Neisseria meningitidis, the causative agent of meningococcal disease, attaches to host nasopharyngeal epithelial cells via type IV pili and opacity (Opa) proteins. We examined the role of tetraspanin function in Neisseria meningitidis adherence to epithelial cells. Tetraspanins CD9, CD63, and CD151 were expressed by HEC-1-B and DETROIT 562 cells. Coincubation of cells with antibodies against all three tetraspanin molecules used individually or in combination, with recombinant tetraspanin extracellular domains (EC2), or with small interfering RNAs (siRNAs) significantly reduced adherence of Neisseria meningitidis. In contrast, recombinant CD81, a different tetraspanin, had no effect on meningococcal adherence. Antitetraspanin antibodies reduced the adherence to epithelial cells of Neisseria meningitidis strain derivatives expressing Opa and pili significantly more than isogenic strains lacking these determinants. Adherence to epithelial cells of strains of Staphylococcus aureus, Neisseria lactamica, Escherichia coli, and Streptococcus pneumoniae was also reduced by pretreatment of cells with tetraspanin antibodies and recombinant proteins. These data suggest that tetraspanins are required for optimal function of epithelial adhesion platforms containing specific receptors for Neisseria meningitidis and potentially for multiple species of bacteria.

  7. Metabolic activity of bacterial cell enumerated by direct viable count. [Escherichia coli; Salmonella enteritidis

    Energy Technology Data Exchange (ETDEWEB)

    Roszak, D.B.; Colwell, R.R.

    1987-12-01

    The direct viable count (DVC) method was modified by incorporation radiolabeled substrates in microautoradiographic analyses to assess bacterial survival in controlled laboratory microcosms. The DVC method, which permits enumeration of culturable and nonculturable cells, discriminates those cells that are responsive to added nutrients but in which division is inhibited by the addition of nalidixic acid. The resulting elongated cells represent all viable cells; this includes those that are culturable on routine media and those that are not. Escherichia coli and Salmonella enteritidis were employed in the microcosm studies, and radiolabeled substrates included (methyl-/sup 3/H) thymidine or (U-/sup 14/C) glutamic acid. Samples taken at selected intervals during the survival experiments were examined by epifluorescence microscopy to enumerate cells by the DVC and acridine orange direct count methods, as well as by culture methods. Good correlation was obtained for cell-associated metabolic activity, measured by microautoradiography and substrate responsiveness (by the DVC method) at various stages of survival. Of the cells responsive to nutrients by the DVC method, ca. 90% were metabolically active by the microautoradiographic method. No significant difference was observed between DVC enumerations with or without added radiolabeled substrate.

  8. Accuracy of the automated cell counters for management of spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Oliviero Riggio; Stefania Angeloni; Antonella Parente; Cinzia Leboffe; Giorgio Pinto; Teresa Aronne; Manuela Merli

    2008-01-01

    AIM: To evaluate the accuracy of automated blood cell counters for ascitic polymorphonuclear (PMN)determination for: (1) diagnosis,(2) efficacy of the ongoing antibiotic therapy,and (3) resolution of spontaneous bacterial peritonitis (SBP).METHODS: One hundred and twelve ascitic fluid samples were collected from 52 consecutive cirrhotic patients,16 of them with SBR The agreement between the manual and the automated method for PMN count was assessed.The sensitivity/specificity and the positive/negative predictive value of the automated blood cell counter were also calculated by considering the manual method as the "gold standard"RESULTS: The mean + SD of the difference between manual and automated measurements was 7.8±58cells/mm3,while the limits of agreement were +124 cells/mm3 [95% confidence interval (CI): +145 to +103] and -108 cells/mm3 (95% CI: -87 to -129).The automated cell counter had a sensitivity of 100% and a specificity of 97.7% in diagnosing SBP,and a sensitivity of 91% and a specificity of 100% for the efficacy of the ongoing antibiotic therapy.The two methods showed a complete agreement for the resolution of infection.CONCLUSION: Automated cell counters not only have a good diagnostic accuracy,but are also very effective in monitoring the antibiotic treatment in patients with SBP.Because of their quicker performance,they should replace the manual counting for PMN determination in the ascitic fluid of patients with SBR

  9. Fate study of water-borne gram positive vegetative bacterial cells with Raman microscopy

    Science.gov (United States)

    Guicheteau, Jason; Tripathi, Ashish; Minter, Jennifer; Wilcox, Phillip; Christesen, Steven

    2010-04-01

    We present an initial bacterial fate study of Gram positive vegetative cells suspended in water and stored at ambient room temperature via Raman spectroscopy monitoring. Two types of cells were considered for this study: vegetative cells of Bacillus cereus, Bacillus thuringiensis which contain the polyhydroxybutyric acid (PHBA) as an energy storage compound and Bacillus subtlilis cells which do not. The cells were cultured specifically for this project. Immediately following the culturing phase, the bacteria were extracted, cleaned and at the onset of the study were suspended in de-ionized water and stored at room temperature. Aliquots of suspensions were deposited onto aluminum slides at different times and allowed to dry for Raman analysis. Spectra from multiple regions of each dried spot and each deposit time were acquired along with the bright-field and fluorescence images. Results were examined to investigate the effect of suspension time on the spectral signatures as well as the fate behavior of the three types of cells investigated. The cells were monitored daily for over a 14 period during which time the onset of starvation induced sporulation was observed.

  10. Peripheral T Cell Apoptosis and Its Role in Generalized Bacterial Infections: A Minireview.

    Science.gov (United States)

    Chernykh, Helen R.; Norkin, Maxim N.; Leplina, Olga Yu.; Khonina, Nataliya A.; Tihonova, Marina A.; Ostanin, Alexander A.

    2001-07-01

    In the present review we have attempted to analyze recent findings concerning apoptosis of mature peripheral T cells. The great attention is made to the factors underlying resistance or sensitivity of mature T lymphocytes to activation-induced cell death. The role of preactivation and altered costimulation is discussed in this regard. Besides, the possible role of cytokines in the modulation of T cell apoptosis is emphasized. Particular attention is paid to the studies of apoptosis disorders in the pathogenesis of generalized bacterial infections. In this connection some own results are summarized as well. To characterize T cell death and its role in the pathogenesis of bacterial infections an anti-CD3-mAb or Con A-induced apoptosis in patients with severe and generalized forms of surgical infections have been investigated. We have found a significant increase of activation-induced lymphocyte apoptosis and a high level of apoptosis in freshly isolated lymphocytes in patients with surgical infections. Alternatively, peripheral blood mononuclear cells from surgical patients without infectious complications did not exhibit a marked enhancement of activation-induced cell death. Activation-induced T cell death in surgical infections appeared to be Fas-dependent, involved reactive oxygen intermediates and was partly prevented by pro-inflammatory cytokines, among which IL-2 exhibited the most pronounced anti-apoptotic activity. Likewise, APACHE II score, as a marker of the infection severity, directly correlated with a rate of activation-induced T cell apoptosis. Accelerated T cell apoptosis at the early stage of infection was revealed in survivors and non-survivors, that appears to designate a common pathway for the restriction of systemic inflammation. At the late stage of infection altered T cell apoptosis could account for different outcomes, since the patients with lethal outcome showed 2-fold increase in activation-induced cell death compared to the opposite group

  11. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  12. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  13. Barcode Payment System in Trusted Mobile Devices

    OpenAIRE

    Vibha Kaw Raina

    2012-01-01

    Mobile payment is an application of mobile commerce which facilitates mobile commerce transactions by providing the mobile customer with a convenient means to pay. Many mobile payment methods have been proposed and implemented like user friendly, customer centric, merchant centric where security concerns are highly addressed. This paper proposes a mobile payment model with barcodes for mobile users to improve mobile user experience in mobile payment. Unlike other existing mobile payment syste...

  14. Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

    Science.gov (United States)

    Bos, E. G. Patrick; van de Weygaert, Rien; Kitaura, Francisco; Cautun, Marius

    2016-10-01

    We describe the Bayesian \\barcode\\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.

  15. Advancing taxonomy and bioinventories with DNA barcodes

    Science.gov (United States)

    2016-01-01

    We use three examples—field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae—to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the ‘taxonomic impediment’, especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481791

  16. Highlighting Astyanax Species Diversity through DNA Barcoding

    Science.gov (United States)

    Oliveira, Carlos Alexandre Miranda; de Melo, Filipe Augusto Gonçalves; Bertaco, Vinicius de Araújo; de Astarloa, Juan M. Díaz; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio

    2016-01-01

    DNA barcoding has been used extensively to solve taxonomic questions and identify new species. Neotropical fishes are found in a wide variety of shapes and sizes, with a large number of species yet to be described, many of which are very difficult to identify. Characidae is the most species-rich family of the Characiformes, and many of its genera are affected by taxonomic uncertainties, including the widely-distributed, species-rich genus Astyanax. In this study, we present an extensive analysis of Astyanax covering almost its entire area of occurrence, based on DNA barcoding. The use of different approaches (ABGD, GMYC and BIN) to the clustering of the sequences revealed ample consistency in the results obtained by the initial cutoff value of 2% divergence for putative species in the Neighbor-Joining analysis using the Kimura-2-parameter model. The results indicate the existence of five Astyanax lineages. Some groups, such as that composed by the trans-Andean forms, are mostly composed of well-defined species, and in others a number of nominal species are clustered together, hampering the delimitation of species, which in many cases proved impossible. The results confirm the extreme complexity of the systematics of the genus Astyanax and show that DNA barcoding can be an useful tool to address these complexes questions. PMID:27992537

  17. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N; Nielen, M; Lipman, L. J. A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  18. A Pro-Drug Approach for Selective Modulation of AI-2-Mediated Bacterial Cell-to-Cell Communication

    Directory of Open Access Journals (Sweden)

    Herman O. Sintim

    2012-03-01

    Full Text Available The universal quorum sensing autoinducer, AI-2, is utilized by several bacteria. Analogs of AI-2 have the potential to modulate bacterial behavior. Selectively quenching the communication of a few bacteria, in the presence of several others in an ecosystem, using analogs of AI-2 is non-trivial due to the ubiquity of AI-2 processing receptors in many bacteria that co-exist. Herein, we demonstrate that when an AI-2 analog, isobutyl DPD (which has been previously shown to be a quorum sensing, QS, quencher in both Escherichia coli and Salmonella typhimurium is modified with ester groups, which get hydrolyzed once inside the bacterial cells, only QS in E. coli, but not in S. typhimurium, is inhibited. The origin of this differential QS inhibition could be due to differences in analog permeation of the bacterial membranes or ester hydrolysis rates. Such differences could be utilized to selectively target QS in specific bacteria amongst a consortium of other species that also use AI-2 signaling.

  19. Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Rae; Premier, Giuliano C. [Glamorgan Univ., Pontypridd (United Kingdom). Faculty of Advnaced Technology; Beecroft, Nelli J.; Avignone-Rossa, Claudio [Surrey Univ., Guildford (United Kingdom). Microbial Sciences; Varcoe, John R.; Slade, Robert C.T. [Surrey Univ., Guildford (United Kingdom). Chemical Sciences; Dinsdale, Richard M.; Guwy, Alan J. [Glamorgan Univ., Pontypridd (United Kingdom). Faculty of Health, Sport and Science; Thumser, Alfred [Surrey Univ., Guildford (United Kingdom). Biochemical Sciences

    2011-05-15

    The spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard's coefficient, shows 80-90% similarity in species composition. Biofilm development through fed-batch start-up and subsequent stable continuous operation results in a population shift from {gamma}-Proteobacteria- and Bacteroidetes- to Firmicutes-dominated communities, with other diverse species present at much lower relative proportions. DGGE patterns were analysed by range-weighted richness (Rr) and Pareto-Lorenz evenness distribution curves to investigate the evolution of the bacterial community. The first modules shifted from dominance by species closely related to Bacteroides graminisolvens, Raoultella ornithinolytica and Klebsiella sp. BM21 at the start of continuous-mode operation to a community dominated by Paludibacter propionicigenes-, Lactococcus sp.-, Pantoea agglomerans- and Klebsiella oxytoca-related species with stable power generation (6.0 W/m{sup 3}) at day 97. Operational strategies that consider the dynamics of the population will provide useful parameters for evaluating system performance in the practical application of microbial fuel cells. (orig.)

  20. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum.

    Directory of Open Access Journals (Sweden)

    Yan-Yan Guo

    Full Text Available Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper, a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%. Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%, whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%. Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation.

  1. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum).

    Science.gov (United States)

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation.

  2. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    Science.gov (United States)

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-03-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.

  3. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence.

    OpenAIRE

    2012-01-01

    BACKGROUND: An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission. METHODS: We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and ...

  4. Plug-and-playable fluorescent cell imaging modular toolkits using the bacterial superglue, SpyTag/SpyCatcher.

    Science.gov (United States)

    Moon, Hyojin; Bae, Yoonji; Kim, Hansol; Kang, Sebyung

    2016-11-29

    Simple plug-and-playable fluorescent cell imaging modular toolkits are established using the bacterial superglue SpyTag/SpyCatcher protein ligation system. A variety of affibody-fluorescent protein conjugates (AFPCs) are post-translationally generated via the isopeptide bond formation, and each AFPC effectively recognizes and binds to its targeting cells, visualizing them with selective colors on demand.

  5. Nutritional stress induces exchange of cell material and energetic coupling between bacterial species.

    Science.gov (United States)

    Benomar, Saida; Ranava, David; Cárdenas, María Luz; Trably, Eric; Rafrafi, Yan; Ducret, Adrien; Hamelin, Jérôme; Lojou, Elisabeth; Steyer, Jean-Philippe; Giudici-Orticoni, Marie-Thérèse

    2015-02-23

    Knowledge of the behaviour of bacterial communities is crucial for understanding biogeochemical cycles and developing environmental biotechnology. Here we demonstrate the formation of an artificial consortium between two anaerobic bacteria, Clostridium acetobutylicum (Gram-positive) and Desulfovibrio vulgaris Hildenborough (Gram-negative, sulfate-reducing) in which physical interactions between the two partners induce emergent properties. Molecular and cellular approaches show that tight cell-cell interactions are associated with an exchange of molecules, including proteins, which allows the growth of one partner (D. vulgaris) in spite of the shortage of nutrients. This physical interaction induces changes in expression of two genes encoding enzymes at the pyruvate crossroads, with concomitant changes in the distribution of metabolic fluxes, and allows a substantial increase in hydrogen production without requiring genetic engineering. The stress induced by the shortage of nutrients of D. vulgaris appears to trigger the interaction.

  6. The Gut Microbiota and Human Health with an Emphasis on the Use of Microencapsulated Bacterial Cells

    Directory of Open Access Journals (Sweden)

    Satya Prakash

    2011-01-01

    Full Text Available The gut microbiota plays a crucial role in maintaining health. Alterations of the gut bacterial population have been associated with a number of diseases. Past and recent studies suggest that one can positively modify the contents of the gut microbiota by introducing prebiotics, probiotics, synbiotics, and other therapeutics. This paper focuses on probiotic modulation of the gut microbiota by their delivery to the lower gastrointestinal tract (GIT. There are numerous obstacles to overcome before microorganisms can be utilized as therapeutics. One important limitation is the delivery of viable cells to the lower GIT without a significant loss of cell viability and metabolic features through the harsh conditions of the upper GIT. Microencapsulation has been shown to overcome this, with various types of microcapsules available for resolving this limitation. This paper discusses the gut microbiota and its role in disease, with a focus on microencapsulated probiotics and their potentials and limitations.

  7. DNA barcoding: species delimitation in tree peonies

    Institute of Scientific and Technical Information of China (English)

    ZHANG JinMei; WANG JianXiu; XIA Tao; ZHOU ShiLiang

    2009-01-01

    Delimitations of species are crucial for correct and precise identification of taxa. Unfortunately "spe-cies" is more a subjective than an objective concept in taxonomic practice due to difficulties in re-vealing patterns of infra- or inter-specific variations. Molecular phylogenetic studies at the population level solve this problem and lay a sound foundation for DNA barcoding. In this paper we exemplify the necessity of adopting a phylogenetic concept of species in DNA barcoding for tree peonies (Paeonia sect. Moutan). We used 40 samples representing all known populations of rare and endangered species and several populations of widely distributed tree peonies. All currently recognized species and majorbvariants have been included in this study. Four chloroplast gene fragments, I.e. ndhF, rps16-trnQ, trnL.F and trnS-G (a total of 5040 characters, 96 variable and 69 parsimony-informative characters) and one variable and single-copy nuclear GPAT gene fragment (2093-2197 bp, 279 variable and 148 parsi-mony-informative characters) were used to construct phylogenetic relationships among the taxa. The evolutionary lineages revealed by the nuclear gene and the chloroplast genes are inconsistent with the current circumscriptions of P. Decomposita, P. Jishanensis, P. Qiui, and P. Rockii based on morphology. The inconsistencies come from (1) significant chloroplast gene divergence but little nuclear GPAT gene divergence among population systems of P. Decomposita + P. Rockii, and (2) well-diverged nuclear GPAT gene but little chloroplast gene divergence between P. Jishanensis and P. Qiui. The incongruence of the phylogenies based on the chloroplast genes and the nuclear GPAT gene is probably due to the chloro-plast capture event in evolutionary history, as no reproductive barriers exist to prevent inter-specific hybridization. We also evaluated the suitability of these genes for use as DNA barcodes for tree peonies. The variability of chloroplast genes among well

  8. Analysis of a stochastic model for bacterial growth and the lognormality in the cell-size distribution

    CERN Document Server

    Yamamoto, Ken

    2016-01-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell divisions and linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We derive that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values which give good lognormal approximation, so the experimental cell-size distribution is in good agreement with a lognormal distribution.

  9. Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding

    OpenAIRE

    Best, Katharine; Oakes, Theres; Heather, James M.; Shawe-Taylor, John; Chain, Benny

    2015-01-01

    The polymerase chain reaction (PCR) is one of the most widely used techniques in molecular biology. In combination with High Throughput Sequencing (HTS), PCR is widely used to quantify transcript abundance for RNA-seq, and in the context of analysis of T and B cell receptor repertoires. In this study, we combine DNA barcoding with HTS to quantify PCR output from individual target molecules. We develop computational tools that simulate both the PCR branching process itself, and the subsequent ...

  10. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  11. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.

    Science.gov (United States)

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim

    2014-10-01

    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  12. Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion

    Science.gov (United States)

    van Wijk, Xander M.; Döhrmann, Simon; Hallström, Björn M.; Li, Shangzhong; Voldborg, Bjørn G.; Meng, Brandon X.; McKee, Karen K.; van Kuppevelt, Toin H.; Yurchenco, Peter D.; Palsson, Bernhard O.; Lewis, Nathan E.; Nizet, Victor

    2017-01-01

    ABSTRACT To understand the role of glycosaminoglycans in bacterial cellular invasion, xylosyltransferase-deficient mutants of Chinese hamster ovary (CHO) cells were created using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (CRISPR-cas9) gene targeting. When these mutants were compared to the pgsA745 cell line, a CHO xylosyltransferase mutant generated previously using chemical mutagenesis, an unexpected result was obtained. Bacterial invasion of pgsA745 cells by group B Streptococcus (GBS), group A Streptococcus, and Staphylococcus aureus was markedly reduced compared to the invasion of wild-type cells, but newly generated CRISPR-cas9 mutants were only resistant to GBS. Invasion of pgsA745 cells was not restored by transfection with xylosyltransferase, suggesting that an additional mutation conferring panresistance to multiple bacteria was present in pgsA745 cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2β1γ1/laminin-α2β2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2 is important for cellular invasion by a number of bacterial pathogens. PMID:28074024

  13. A laboratory information management system for DNA barcoding workflows

    NARCIS (Netherlands)

    Vu, D.; Eberhardt, U.; Szöke, S.; Groenewald, M.; Robert, V.

    2012-01-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA

  14. New Aspects in Chinese Herb Materials Identification by DNA Barcoding

    OpenAIRE

    Guo, Hui; Siyang JIN; Liu, Han; Zhenyue WANG

    2016-01-01

    The numerous noxious reactions have overwhelming concerning by misusing medicinal plant ingredients. This phenomenon has aroused the worldwide demand over the safe application in pharmaceuticals. DNA barcoding offers a powerful means to complement morphological and chemical processes for distinguishing Chinese medicinal plants. Consequently, a DNA barcoding system should be continuous renewal containing mass information about authentic plant materials and potentially substitutes or adulterant...

  15. Multilocus inference of species trees and DNA barcoding

    Science.gov (United States)

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  16. Dissecting host-associated communities with DNA barcodes

    Science.gov (United States)

    Pierce, Naomi E.

    2016-01-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes. Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481780

  17. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers.

    Science.gov (United States)

    Xu, Yueshuang; Zhang, Xiaoping; Luan, Chengxin; Wang, Huan; Chen, Baoan; Zhao, Yuanjin

    2017-01-15

    Barcodes-based suspension array have for demonstrated values in multiplex assay of tumor markers. Photonic barcodes which are encoded by their characteristic reflection peaks are the important supports for suspension array due to their stable code, low fluorescent background and high surface-volume ratio. Attempts to develop this technology tend to improve the function of the photonic barcodes. Here, we present a new type of hybrid hydrogel photonic barcodes for efficient multiplex assays. This photonic barcodes are hybrid inverse opal hydrogel composed of poly(ethylene glycol) diacrylate (PEG-DA) and agarose. The polymerized PEG-DA hydrogel could guarantee the stabilities of the inverse opal structure and its resultant code, while the agarose could offer active chemical groups for the probe immobilization and homogeneous water surrounding for the bioassay. In addition, the interconnected pores inverse opal structure could provide channels for biomolecules diffusing and reaction into the voids of barcodes. These features imparted the hybrid hydrogel photonic barcodes with limits of detection (LOD) of 0.78ng/mL for carcinoembryonic antigen (CEA) and 0.21ng/mL for α-fetoprotein (AFP), respectively. It was also demonstrated that the proposed barcodes showed acceptable accuracy and detection reproducibility, and the results were in acceptable agreement with those from common clinic method for the detections of practical clinical samples. Thus, our technique provides a new platform for simultaneous multiplex immunoassay.

  18. Dissecting host-associated communities with DNA barcodes.

    Science.gov (United States)

    Baker, Christopher C M; Bittleston, Leonora S; Sanders, Jon G; Pierce, Naomi E

    2016-09-05

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data.This article is part of the themed issue 'From DNA barcodes to biomes'.

  19. Binding domains of Bacillus anthracis phage endolysins recognize cell culture age-related features on the bacterial surface.

    Science.gov (United States)

    Paskaleva, Elena E; Mundra, Ruchir V; Mehta, Krunal K; Pangule, Ravindra C; Wu, Xia; Glatfelter, Willing S; Chen, Zijing; Dordick, Jonathan S; Kane, Ravi S

    2015-01-01

    Bacteriolytic enzymes often possess a C-terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria. The bactericidal activity of this enzyme, however, appears to be strongly dependent on the age of the bacterial culture. Although highly bactericidal against cells in the early exponential phase, the enzyme is substantially less effective against stationary phase cells, thus limiting its application in real-world settings. We hypothesized that the binding domain of PlyPH may differ in affinity to cells in different Bacillus growth stages and may be primarily responsible for the age-restricted activity. We therefore employed an in silico approach to identify phage lysins differing in their specificity for the bacterial cell wall. Specifically we focused our attention on Plyβ, an enzyme with improved cell wall-binding ability and age-independent bactericidal activity. Although PlyPH and Plyβ have dissimilar binding domains, their catalytic domains are highly homologous. We characterized the biocatalytic mechanism of Plyβ by identifying the specific bonds cleaved within the cell wall peptidoglycan. Our results provide an example of the diversity of phage endolysins and the opportunity for these biocatalysts to be used for broad-based protection from bacterial pathogens.

  20. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jennifer C Regan

    2013-10-01

    Full Text Available Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of

  1. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    Science.gov (United States)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  2. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    Directory of Open Access Journals (Sweden)

    Watson CY

    2015-06-01

    Full Text Available Christa Y Watson, Ramon M Molina, Andressa Louzada, Kimberly M Murdaugh, Thomas C Donaghey, Joseph D BrainCenter for Nanotechnology and Nanotoxicology, Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USABackground: Zinc oxide engineered nanoparticles (ZnO ENPs have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV administration.Materials and methods: First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively.Results: We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, reflecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of

  3. DNA Barcoding for Identification of "Candidatus Phytoplasmas" Using a Fragment of the Elongation Factor Tu Gene

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta;

    2012-01-01

    barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied...

  4. Identifying Chinese species of Gammarus (Crustacea: Amphipoda) using DNA barcoding

    Institute of Scientific and Technical Information of China (English)

    Zhong-e HOU; Zhu LI; Shu-qiang LI

    2009-01-01

    Using a standard cytochrome c oxidase I sequence, DNA barcoding has been shown to be effective to distinguish known species and to discover cryptic species. Here we assessed the efficiency of DNA barcoding for the amphipod genus Gammarus from China. The maximum intraspecific divergence for widespread species, Gammarus lacustris, was 3.5%, and mean interspecific divergence reached 21.9%. We presented a conservative benchmark for determining provisional species using maximum intraspecific divergence of Gammarus lacustris. Thirty-one species possessed distinct barcode clusters. Two species were comprised of highly divergent clades with strong neighbor-joining bootstrap values, and likely indicated the presence of cryptic species. Although DNA barcoding is effective, future identification of species of Gammarus should incorporate DNA barcoding and morphological detection[Current Zoology 55(2):158-164,2009].

  5. [Hydrophidae identification through analysis on Cyt b gene barcode].

    Science.gov (United States)

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  6. Identification of herbal medicinal materials using DNA barcodes

    Institute of Scientific and Technical Information of China (English)

    Ming LI; Hui CAO; Paul Pui-Hay BUT; pang-Chui SHAW

    2011-01-01

    Herbal medicinal materials have been used worldwide for centuries to maintain health and to treat disease. However, adulteration of herbal medicines remains a major concern of users and industry for reasons of safety and efficacy. Identification of herbal medicinal materials by DNA technology has been widely applied,started from the mid-1990s. In recent years, DNA barcoding of global plant species using four standard barcodes (rbcL, matK, trnH-psbA and ITS) has been a major focus in the fields of biodiversity and conservation. These DNA barcodes can also be used as reliable tools to facilitate the identification of herbal medicinal materials for the safe use of herbs, quality control, and forensic investigation. Many studies have applied these DNA barcodes for the identification of herbal medicinal species and their adulterants. The present article reviews efforts in the identification of herbal medicinal materials using the standard DNA barcodes and other DNA sequence-based markers.

  7. DNA Barcoding and the International Barcode of Life Project in China

    Institute of Scientific and Technical Information of China (English)

    CHE Jing; HUANG Dawei; LI Dezhu; MA Juncai; ZHANG Yaping

    2010-01-01

    @@ 1.Scientific and Social Benefits of DNA Barcoding Along with the accelerated global trade and climate change,the needs for sustainable development and for understanding biodiversity are increasing.Rapid and accurate species identification and sustainable utility of biodiversity resources have become a great need for the world.

  8. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera

    Science.gov (United States)

    Hu, Yun-Fei; Zhao, Dun; Yu, Xing-Long; Hu, Yu-Li; Li, Run-Cheng; Ge, Meng; Xu, Tian-Qi; Liu, Xiao-Bo; Liao, Hua-Yuan

    2017-01-01

    Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species. PMID:28184219

  9. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance.

    Science.gov (United States)

    Fallon, Ann M

    2015-10-01

    The plant allelochemical L-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6-7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30-35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels.

  10. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus.

    Science.gov (United States)

    Matsui, Takashi; Yamane, Junji; Mogi, Nobuyuki; Yamaguchi, Hiroto; Takemoto, Hiroshi; Yao, Min; Tanaka, Isao

    2012-09-01

    FtsZ is a key molecule in bacterial cell division. In the presence of GTP, it polymerizes into tubulin-like protofilaments by head-to-tail association. Protofilaments of FtsZ seem to adopt a straight or a curved conformation in relation to the bound nucleotide. However, although several bacterial and archaeal FtsZ structures have been determined, all of the structures reported previously are considered to have a curved conformation. In this study, structures of FtsZ from Staphylococcus aureus (SaFtsZ) were determined in apo, GDP-bound and inhibitor-complex forms and it was found that SaFtsZ undergoes marked conformational changes. The accumulated evidence suggests that the GDP-bound structure has the features of the straight form. The structural change between the curved and straight forms shows intriguing similarity to the eukaryotic cytoskeletal protein tubulin. Furthermore, the structure of the apo form showed an unexpectedly large conformational change in the core region. FtsZ has also been recognized as a novel target for antibacterial drugs. The structure of the complex with the inhibitor PC190723, which has potent and selective antistaphylococcal activity, indicated that the inhibitor binds at the cleft between the two subdomains.

  11. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities.

    Science.gov (United States)

    Penesyan, Anahit; Gillings, Michael; Paulsen, Ian T

    2015-03-24

    Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  12. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Anahit Penesyan

    2015-03-01

    Full Text Available Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  13. SLiCE: a novel bacterial cell extract-based DNA cloning method.

    Science.gov (United States)

    Zhang, Yongwei; Werling, Uwe; Edelmann, Winfried

    2012-04-01

    We describe a novel cloning method termed SLiCE (Seamless Ligation Cloning Extract) that utilizes easy to generate bacterial cell extracts to assemble multiple DNA fragments into recombinant DNA molecules in a single in vitro recombination reaction. SLiCE overcomes the sequence limitations of traditional cloning methods, facilitates seamless cloning by recombining short end homologies (≥15 bp) with or without flanking heterologous sequences and provides an effective strategy for directional subcloning of DNA fragments from Bacteria Artificial Chromosomes (BACs) or other sources. SLiCE is highly cost effective as a number of standard laboratory bacterial strains can serve as sources for SLiCE extract. In addition, the cloning efficiencies and capabilities of these strains can be greatly improved by simple genetic modifications. As an example, we modified the DH10B Escherichia coli strain to express an optimized λ prophage Red recombination system. This strain, termed PPY, facilitates SLiCE with very high efficiencies and demonstrates the versatility of the method.

  14. An In silico approach for the evaluation of DNA barcodes

    Directory of Open Access Journals (Sweden)

    Shehzad Wasim

    2010-07-01

    Full Text Available Abstract Background DNA barcoding is a key tool for assessing biodiversity in both taxonomic and environmental studies. Essential features of barcodes include their applicability to a wide spectrum of taxa and their ability to identify even closely related species. Several DNA regions have been proposed as barcodes and the region selected strongly influences the output of a study. However, formal comparisons between barcodes remained limited until now. Here we present a standard method for evaluating barcode quality, based on the use of a new bioinformatic tool that performs in silico PCR over large databases. We illustrate this approach by comparing the taxonomic coverage and the resolution of several DNA regions already proposed for the barcoding of vertebrates. To assess the relationship between in silico and in vitro PCR, we also developed specific primers amplifying different species of Felidae, and we tested them using both kinds of PCR Results Tests on specific primers confirmed the correspondence between in silico and in vitro PCR. Nevertheless, results of in silico and in vitro PCRs can be somehow different, also because tuning PCR conditions can increase the performance of primers with limited taxonomic coverage. The in silico evaluation of DNA barcodes showed a strong variation of taxonomic coverage (i.e., universality: barcodes based on highly degenerated primers and those corresponding to the conserved region of the Cyt-b showed the highest coverage. As expected, longer barcodes had a better resolution than shorter ones, which are however more convenient for ecological studies analysing environmental samples. Conclusions In silico PCR could be used to improve the performance of a study, by allowing the preliminary comparison of several DNA regions in order to identify the most appropriate barcode depending on the study aims.

  15. Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages.

    Science.gov (United States)

    Veszelka, Szilvia; Pásztói, Mária; Farkas, Attila E; Krizbai, István; Ngo, Thi Khue Dung; Niwa, Masami; Abrahám, Csongor S; Deli, Mária A

    2007-01-01

    Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.

  16. Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells.

    Science.gov (United States)

    Uprety, Rajendra; Luo, Ji; Liu, Jihe; Naro, Yuta; Samanta, Subhas; Deiters, Alexander

    2014-08-18

    We report the genetic incorporation of caged cysteine and caged homocysteine into proteins in bacterial and mammalian cells. The genetic code of these cells was expanded with an engineered pyrrolysine tRNA/tRNA synthetase pair that accepts both light-activatable amino acids as substrates. Incorporation was validated by reporter assays, western blots, and mass spectrometry, and differences in incorporation efficiency were explained by molecular modeling of synthetase-amino acid interactions. As a proof-of-principle application, the genetic replacement of an active-site cysteine residue with a caged cysteine residue in Renilla luciferase led to a complete loss of enzyme activity; however, upon brief exposure to UV light, a >150-fold increase in enzymatic activity was observed, thus showcasing the applicability of the caged cysteine in live human cells. A simultaneously conducted genetic replacement with homocysteine yielded an enzyme with greatly reduced activity, thereby demonstrating the precise probing of a protein active site. These discoveries provide a new tool for the optochemical control of protein function in mammalian cells and expand the set of genetically encoded unnatural amino acids.

  17. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  18. Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line

    Science.gov (United States)

    Close, Dan M.; Patterson, Stacey S.; Ripp, Steven; Baek, Seung J.; Sanseverino, John; Sayler, Gary S.

    2010-01-01

    Background The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo. Methodology/Principal Findings Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background. Conclusions/Significance The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies. PMID:20805991

  19. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell.

    Science.gov (United States)

    Hunter, William J; Manter, Daniel K

    2011-02-01

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. This study examined the formation in culture of an unidentified bacterial oxidant and investigated the performance of this oxidant in a two-chambered MFC with a proton exchange membrane and an uncoated carbon cathode. DNA, FAME profile and characterization studies identified the microorganism that produced the oxidant as Burkholderia cenocepacia. The oxidant was produced by log phase cells, oxidized the dye 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), had a mass below 1 kD, was heat stable (121°C) and was soluble in ethanol. In a MFC with a 1000 Ω load and ABTS as a mediator, the oxidizer increased cell voltage 11 times higher than atmospheric oxygen and 2.9 times higher than that observed with ferricyanide in the cathode chamber. No increase in cell voltage was observed when no mediator was present. Organisms that produce and release oxidizers into the media may prove useful as bio-cathodes by improving the electrical output of MFCs.

  20. Elucidation of the molecular recognition of bacterial cell wall by modular pneumococcal phage endolysin CPL-1.

    Science.gov (United States)

    Pérez-Dorado, Inmaculada; Campillo, Nuria E; Monterroso, Begoña; Hesek, Dusan; Lee, Mijoon; Páez, Juan A; García, Pedro; Martínez-Ripoll, Martín; García, José L; Mobashery, Shahriar; Menéndez, Margarita; Hermoso, Juan A

    2007-08-24

    Pneumococcal bacteriophage-encoded lysins are modular proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) in treatment of streptococcal infections. The first x-ray crystal structures of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1, in complex with three bacterial cell wall peptidoglycan (PG) analogues are reported herein. The Cpl-1 structure is folded in two well defined modules, one responsible for anchoring to the pneumococcal cell wall and the other, a catalytic module, that hydrolyzes the PG. Conformational rearrangement of Tyr-127 is a critical event in molecular recognition of a stretch of five saccharide rings of the polymeric peptidoglycan (cell wall). The PG is bound at a stretch of the surface that is defined as the peptidoglycan-binding sites 1 and 2, the juncture of which catalysis takes place. The peptidoglycan-binding site 1 binds to a stretch of three saccharides of the peptidoglycan in a conformation essentially identical to that of the peptidoglycan in solution. In contrast, binding of two peptidoglycan saccharides at the peptidoglycan-binding site 2 introduces a kink into the solution structure of the peptidoglycan, en route to catalytic turnover. These findings provide the first structural evidence on recognition of the peptidoglycan and shed light on the discrete events of cell wall degradation by Cpl-1.

  1. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens

    Science.gov (United States)

    Moniuszko, Anna; Rückert, Claudia; Alberdi, M. Pilar; Barry, Gerald; Stevenson, Brian; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2014-01-01

    Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72 h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen–pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence

  2. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens.

    Science.gov (United States)

    Moniuszko, Anna; Rückert, Claudia; Alberdi, M Pilar; Barry, Gerald; Stevenson, Brian; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2014-06-01

    Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen-pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence.

  3. Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Zhou, Yingxing; Zhu, Shaobin; Huang, Tianxun; Wu, Lina; Yan, Xiaomei

    2012-02-07

    Cellular autofluorescence can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with or even precluding the detection of low-level specific fluorescence. Here we developed a method to detect and quantify bacterial autofluorescence in the green region of the spectrum at the single-cell level using a laboratory-built high-sensitivity flow cytometer (HSFCM). The detection of the very weak bacterial autofluorescence was confirmed by analyzing polystyrene beads of comparable and larger size than bacteria in parallel. Dithionite reduction and air re-exposure experiments verified that the green autofluorescence mainly originates from endogenous flavins. Bacterial autofluorescence was quantified by calibrating the fluorescence intensity of nanospheres with known FITC equivalents, and autofluorescence distribution was generated by analyzing thousands of bacterial cells in 1 min. Among the eight bacterial strains tested, it was found that bacterial autofluorescence can vary from 80 to 1400 FITC equivalents per cell, depending on the bacterial species, and a relatively large cell-to-cell variation in autofluorescence intensity was observed. Quantitative measurements of bacterial autofluorescence provide a reference for the background signals that can be expected with bacteria, which is important in guiding studies of low-level gene expression and for the detection of low-abundance biological molecules in individual bacterial cells. This paper presents the first quantification of bacterial autofluorescence in FITC equivalents.

  4. CAP-D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters

    Science.gov (United States)

    Kemp, Jacqueline R.; Nickerson, Kourtney P.; Deutschman, Emily; Kim, Yeojung; West, Gail; Sadler, Tammy; Stylianou, Eleni; Krokowski, Dawid; Hatzoglou, Maria; de la Motte, Carol; Rubin, Brian P.; Fiocchi, Claudio

    2015-01-01

    BACKGROUND & AIMS Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The chromosome-associated protein D3 (dCAP-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, whose products heterodimerize to form an amino acid transporter in HT-29 cells following bacterial infection; levels of SLC7A5–SLC3A2 were increased in tissues from patients with UC, compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5–SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3– deficient cells. CONCLUSIONS CAP-D3 downregulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with

  5. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing.

    Science.gov (United States)

    Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E

    2016-06-20

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants.

  6. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Favi, Pelagie M.; Benson, Roberto S. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Neilsen, Nancy R. [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Hammonds, Ryan L. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Bates, Cassandra C. [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Stephens, Christopher P. [Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Center for Materials Processing, University of Tennessee, Knoxville, TN 37996 (United States); Dhar, Madhu S., E-mail: mdhar@utk.edu [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-05-01

    The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications. - Highlights: ► Critical point drying induces fibre bundling unlike lyophilisation. ► Cells positively expressed undifferentiated pluripotent stem cell markers. ► BCs were cytocompatible, supported cell adhesion, proliferation and differentiation ► Cells seeded on BC scaffolds were viable and metabolically active. ► Findings demonstrate that BC and EqMSCs are promising tissue engineered constructs.

  7. Direct measurement of cell wall stress-stiffening and turgor pressure in live bacterial cells

    CERN Document Server

    Deng, Yi; Shaevitz, Joshua W

    2011-01-01

    The mechanical properties of gram-negative bacteria are governed by a rigid peptidoglycan (PG) cell wall and the turgor pressure generated by the large concentration of solutes in the cytoplasm. The elasticity of the PG has been measured in bulk and in isolated sacculi and shown to be compliant compared to the overall stiffness of the cell itself. However, the stiffness of the cell wall in live cells has not been measured. In particular, the effects that pressure-induced stress might have on the stiffness of the mesh-like PG network have not been addressed even though polymeric materials often exhibit large amounts of stress-stiffening. We study bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress-stiffening in the E. coli cell wall, with an exponent of $1.07 \\pm 0.25$, such that the wall is significantly stiffer in live cells ($E\\sim32\\pm10$ MPa) than in unpres...

  8. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells.

    Science.gov (United States)

    Croese, Elsemiek; Jeremiasse, Adriaan W; Marshall, Ian P G; Spormann, Alfred M; Euverink, Gert-Jan W; Geelhoed, Jeanine S; Stams, Alfons J M; Plugge, Caroline M

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (large versus small) including electrode material and flow path and in carbon source provided at the cathode (bicarbonate or acetate). A hydrogenase gene-based DNA microarray (Hydrogenase Chip) was used to analyze hydrogenase genes present in the three large setups. The small setups showed dominant groups of Firmicutes and two of the large setups showed dominant groups of Proteobacteria and Bacteroidetes. The third large setup received acetate but no sulfate (no sulfur source). In this setup an almost pure culture of a Promicromonospora sp. developed. Most of the hydrogenase genes detected were coding for bidirectional Hox-type hydrogenases, which have shown to be involved in cytoplasmatic H2 production.

  9. Identification of Amazonian trees with DNA barcodes.

    Directory of Open Access Journals (Sweden)

    Mailyn Adriana Gonzalez

    Full Text Available BACKGROUND: Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. METHODOLOGY/PRINCIPAL FINDINGS: Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS, matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone to 96% (morphology and molecular of the individuals assigned to a known tree taxon. CONCLUSION/SIGNIFICANCE: We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.

  10. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  11. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  12. Improved method for bacterial cell capture after flow cytometry cell sorting.

    Science.gov (United States)

    Guillebault, D; Laghdass, M; Catala, P; Obernosterer, I; Lebaron, P

    2010-11-01

    Fixed cells with different nucleic acid contents and scatter properties (low nucleic acid [LNA], high nucleic acid 1 [HNA1], and HNA2) were sorted by flow cytometry (FCM). For each sort, 10,000 cells were efficiently captured on poly-l-lysine-coated microplates, resulting in efficient and reproducible PCR amplification.

  13. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael;

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specificall...

  14. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    Science.gov (United States)

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  15. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  16. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification.

    Science.gov (United States)

    Manti, Anita; Boi, Paola; Amalfitano, Stefano; Puddu, Alberto; Papa, Stefano

    2011-12-01

    Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7%±18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities.

  17. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  18. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.

    Science.gov (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the I(β) content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (X(C)(RAMAN)%) varied from -25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose I(β). However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm(-1). Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls.

  19. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Artur Zdunek

    2011-05-01

    Full Text Available Raman and Fourier Transform Infrared (FT-IR spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN% varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX has the most similar structure to those observed in natural primary cell walls.

  20. Ascites bacterial burden and immune cell profile are associated with poor clinical outcomes in the absence of overt infection.

    Directory of Open Access Journals (Sweden)

    Kevin J Fagan

    Full Text Available Bacterial infections, most commonly spontaneous bacterial peritonitis in patients with ascites, occur in one third of admitted patients with cirrhosis, and account for a 4-fold increase in mortality. Bacteria are isolated from less than 40% of ascites infections by culture, necessitating empirical antibiotic treatment, but culture-independent studies suggest bacteria are commonly present, even in the absence of overt infection. Widespread detection of low levels of bacteria in ascites, in the absence of peritonitis, suggests immune impairment may contribute to higher susceptibility to infection in cirrhotic patients. However, little is known about the role of ascites leukocyte composition and function in this context. We determined ascites bacterial composition by quantitative PCR and 16S rRNA gene sequencing in 25 patients with culture-negative, non-neutrocytic ascites, and compared microbiological data with ascites and peripheral blood leukocyte composition and phenotype. Bacterial DNA was detected in ascitic fluid from 23 of 25 patients, with significant positive correlations between bacterial DNA levels and poor 6-month clinical outcomes (death, readmission. Ascites leukocyte composition was variable, but dominated by macrophages or T lymphocytes, with lower numbers of B lymphocytes and natural killer cells. Consistent with the hypothesis that impaired innate immunity contributes to susceptibility to infection, high bacterial DNA burden was associated with reduced major histocompatibility complex class II expression on ascites (but not peripheral blood monocytes/macrophages. These data indicate an association between the presence of ascites bacterial DNA and early death and readmission in patients with decompensated cirrhosis. They further suggest that impairment of innate immunity contributes to increased bacterial translocation, risk of peritonitis, or both.

  1. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  2. Simultaneous determination of gene expression and bacterial identity in single cells in defined mixtures of pure cultures

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Dalton, Helen M.; Angels, Mark;

    1997-01-01

    A protocol was developed to achieve the simultaneous determination of gene expression and bacterial identity at the level of single cells: a chromogenic beta-galactosidase activity assay was combined with in situ hybridization of Fluorescently labelled oligonucleotide probes to rRNA. The method a...

  3. DNA barcoding identifies Argentine fishes from marine and brackish waters.

    Directory of Open Access Journals (Sweden)

    Ezequiel Mabragaña

    Full Text Available BACKGROUND: DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. METHODOLOGY/PRINCIPAL FINDINGS: Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species, and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org. Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125 examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. CONCLUSIONS/SIGNIFICANCE: This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha

  4. Barcode Payment System in Trusted Mobile Devices

    Directory of Open Access Journals (Sweden)

    Vibha Kaw Raina

    2012-11-01

    Full Text Available Mobile payment is an application of mobile commerce which facilitates mobile commerce transactions by providing the mobile customer with a convenient means to pay. Many mobile payment methods have been proposed and implemented like user friendly, customer centric, merchant centric where security concerns are highly addressed. This paper proposes a mobile payment model with barcodes for mobile users to improve mobile user experience in mobile payment. Unlike other existing mobile payment systems, the proposed payment solution provides distinct advantages to support buy-and-sale products and services based on 2D Barcodes. The aim of this work is to integrate a model of payment with the financial services, including payment and banking ones, based on two primary capabilities: the use of computational resources of a trusted mobile device and the establishment of a user controlled channel with the customer’s bank. The proposed architecture is characterized bank-centric, since the bank acts consultatively, informatively and protectively for the end user and it offers flexibility, adaptability and continuous extendibility to open technologies.

  5. Ag nanoparticle/polymer composite barcode nanorods

    Institute of Scientific and Technical Information of China (English)

    Hongxu Chen[1; Tieqiang Wang[2; Huaizhong Shen[1; Wendong Liu[1; Shuli Wang[1; Kun Liu[1; Junhu Zhang[1; Bai Yang[1

    2015-01-01

    We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag~. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.

  6. Exploring Canadian Echinoderm Diversity through DNA Barcodes

    Science.gov (United States)

    2016-01-01

    DNA barcoding has proven an effective tool for species identification in varied groups of marine invertebrates including crustaceans, molluscs, polychaetes and echinoderms. In this study, we further validate its utility by analyzing almost half of the 300 species of Echinodermata known from Canadian waters. COI sequences from 999 specimens were assigned to 145 BINs. In most cases, species discrimination was straightforward due to the large difference (25-fold) between mean intra- (0.48%) and inter- (12.0%) specific divergence. Six species were flagged for further taxonomic investigation because specimens assigned to them fell into two or three discrete sequence clusters. The potential influence of larval dispersal capacity and glacial events on patterns of genetic diversity is discussed for 19 trans-oceanic species. Although additional research is needed to clarify biogeographic patterns and resolve taxonomic questions, this study represents an important step in the assembly of a DNA barcode library for all Canadian echinoderms, a valuable resource for future biosurveillance programs. PMID:27870868

  7. DNA barcodes for marine fungal identification and discovery

    Digital Repository Service at National Institute of Oceanography (India)

    Velmurugan, S.; Prasannakumar, C.; Manokaran, S.; AjithKumar, T.; Samkamaleson, A.; Palavesam, A.

    history: Received 1 May 2012 Revision received 24 February 2013 Accepted 7 May 2013 Available online 5 July 2013 Corresponding editor: Felix B€arlocher Keywords: Barcoding gap DNA barcode Internal transcribed spacer Species boundary 5.8S rRNA 18S rRNA 28S... rRNA a b s t r a c t We employed DNA barcodes for identification of fungal species in marine sediments. Sediments were collected seasonally along the Southeast coast of India from which a cul- turable fungal library was constructed. All cultured...

  8. X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes.

    Science.gov (United States)

    Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo

    2015-02-01

    The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding.

  9. Electricity producing property and bacterial community structure in microbial fuel cell equipped with membrane electrode assembly.

    Science.gov (United States)

    Rubaba, Owen; Araki, Yoko; Yamamoto, Shuji; Suzuki, Kei; Sakamoto, Hisatoshi; Matsuda, Atsunori; Futamata, Hiroyuki

    2013-07-01

    It is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs. MEA-I was made with Nafion 117 solution and the other MEAs were made with different configurations of three kinds of polymers. MFC-I equipped with MEA-I exhibited the highest performance with a stable current density of 55 ± 3 mA m⁻². MFC-III equipped with MEA-III with the highest platinum concentration, exhibited the lowest performance with a stable current density of 1.7 ± 0.1 mA m⁻². SEM observation revealed that there were cracks on MEA-III. These results demonstrated that it is significantly important to prevent oxygen-intrusion for improved MFC performance. By comparing the data of DGGE and phylogenetic analyzes, it was suggested that the dominant bacterial communities of MFC-I were constructed with lactate-fermenters and Fe(III)-reducers, which consisted of bacteria affiliated with the genera of Enterobacter, Dechlorosoma, Pelobacter, Desulfovibrio, Propioniferax, Pelosinus, and Firmicutes. A bacterium sharing 100% similarity to one of the DGGE bands was isolated from MFC-I. The 16S rRNA gene sequence of the isolate shared 98% similarity to gram-positive Propioniferax sp. P7 and it was confirmed that the isolate produced electricity in an MFC. These results suggested that these bacteria are valuable for constructing the electron transfer network in MFC.

  10. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope

    Directory of Open Access Journals (Sweden)

    Tran Ngat

    2011-05-01

    Full Text Available Abstract Background A decline in the discovery of new antibacterial drugs, coupled with a persistent rise in the occurrence of drug-resistant bacteria, has highlighted antibiotics as a diminishing resource. The future development of new drugs with novel antibacterial activities requires a detailed understanding of adaptive responses to existing compounds. This study uses Streptomyces coelicolor A3(2 as a model system to determine the genome-wide transcriptional response following exposure to three antibiotics (vancomycin, moenomycin A and bacitracin that target distinct stages of cell wall biosynthesis. Results A generalised response to all three antibiotics was identified which involves activation of transcription of the cell envelope stress sigma factor σE, together with elements of the stringent response, and of the heat, osmotic and oxidative stress regulons. Attenuation of this system by deletion of genes encoding the osmotic stress sigma factor σB or the ppGpp synthetase RelA reduced resistance to both vancomycin and bacitracin. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. Sensitivity studies using mutants constructed on the basis of the transcriptome profiling confirmed a role for several such genes in antibiotic resistance, validating the usefulness of the approach. Conclusions Antibiotic inhibition of bacterial cell wall biosynthesis induces both common and compound-specific transcriptional responses. Both can be exploited to increase antibiotic susceptibility. Regulatory networks known to govern responses to environmental and nutritional stresses are also at the core of the common antibiotic response, and likely help cells survive until any specific resistance mechanisms are fully functional.

  11. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    OpenAIRE

    Catherine Tomaro-Duchesneau; Shyamali Saha; Meenakshi Malhotra; Imen Kahouli; Satya Prakash

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of ...

  12. Modeling nucleotide excision repair and its impact on UV-induced mutagenesis during SOS-response in bacterial cells.

    Science.gov (United States)

    Bugay, Aleksandr N; Krasavin, Evgeny A; Parkhomenko, Aleksandr Yu; Vasilyeva, Maria A

    2015-01-01

    A model of the UV-induced mutation process in Escherichia coli bacteria has been developed taking into account the whole sequence of molecular events starting from initial photo-damage and finishing with the fixation of point mutations. The wild-type phenotype bacterial cells are compared with UV-sensitive repair-deficient mutant cells. Attention is mainly paid to excision repair system functioning as regards induced mutagenesis.

  13. Construction and application of riboswitch-based sensors that detect metabolites within bacterial cells.

    Science.gov (United States)

    Fowler, Casey C; Li, Yingfu

    2014-01-01

    A riboswitch is an RNA element that detects the level of a specific metabolite within the cell and regulates the expression of co-transcribed genes. By fusing a riboswitch to a reporter protein in a carefully designed and tested construct, this ability can be exploited to create an intracellular sensor that detects the level of a particular small molecule within live bacterial cells. There is a great deal of flexibility in the design of such a sensor and factors such as the molecule to be detected and the downstream experiments in which the sensor will be applied should guide the specific blueprint of the final construct. The completed sensor plasmid needs to be rigorously tested with appropriate controls to ensure that its dynamic range, signal strength, sensitivity and specificity are suitable for its intended applications. In this chapter, methods for the design, assessment and use of riboswitch sensors are provided along with those for one example application for which riboswitch sensors are ideally suited.

  14. Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections.

    Science.gov (United States)

    Pashenkov, Mikhail; Teleshova, Natalia; Kouwenhoven, Mathilde; Smirnova, Tatiana; Jin, Ya Ping; Kostulas, Vasilios; Huang, Yu Min; Pinegin, Boris; Boiko, Alexey; Link, Hans

    2002-01-01

    Dendritic cells (DC) accumulate in the CNS during inflammation and may contribute to local immune responses. Two DC subsets present in human cerebrospinal fluid (CSF) are probably recruited from myeloid (CD11c(+)CD123(dim)) and plasmacytoid (CD11c(-)CD123(high)) blood DC. In bacterial meningitis and especially in Lyme meningoencephalitis, numbers of myeloid and plasmacytoid DC in CSF were increased, compared to non-inflammatory neurological diseases, and correlated with chemotactic activity of CSF for immature monocyte-derived DC (moDC). Multiple DC chemoattractants, including macrophage inflammatory protein (MIP)-1beta, monocyte chemotactic protein (MCP)-1, MCP-3, RANTES and stromal cell-derived factor (SDF)-1alpha were elevated in CSF in these two neuroinfections. Chemotaxis of immature moDC induced by these CSFs could be partially inhibited by mAbs against CXCR4, the receptor for SDF-1alpha, and CD88, the receptor for C5a. SDF-1alpha present in CSF also chemoattracted mature moDC, which in vivo could correspond to a diminished migration of antigen-bearing DC from the CSF to secondary lymphoid organs. Regulation of DC trafficking to and from the CSF may represent a mechanism of controlling the CNS inflammation.

  15. An improved haemolytic plaque assay for the detection of cells secreting antibody to bacterial antigens

    DEFF Research Database (Denmark)

    Barington, T; Heilmann, C

    1992-01-01

    Recent advances in the development of conjugate polysaccharide vaccines for human use have stimulated interest in the use of assays detecting antibody-secreting cells (AbSC) with specificity for bacterial antigens. Here we present improved haemolytic plaque-forming cell (PFC) assays detecting Ab......SC with specificity for tetanus and diphtheria toxoid as well as for Haemophilus influenzae type b and pneumococcal capsular polysaccharides. These assays were found to be less time consuming, more economical and yielded 1.9-3.4-fold higher plaque numbers than traditional Jerne-type PFC assays. In the case of anti......-polysaccharide AbSC of the IgG isotype, the increase was as high as 7.4-11.8 times. Evidence is presented that the pronounced improvement in the detection of the latter is due to the presence of aggregating anti-IgG antibody from the beginning of the assay. It is proposed that in the case of low affinity of anti...

  16. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.

    Science.gov (United States)

    Cacicedo, Maximiliano L; León, Ignacio E; Gonzalez, Jimena S; Porto, Luismar M; Alvarez, Vera A; Castro, Guillermo R

    2016-04-01

    Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer-Emmett-Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett-Joyner-Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film. Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95-53% after 24h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors.

  17. Structural insights into alginate binding by bacterial cell-surface protein.

    Science.gov (United States)

    Temtrirath, Kanate; Murata, Kousaku; Hashimoto, Wataru

    2015-03-02

    A gram-negative Sphingomonas sp. strain A1 inducibly forms a mouth-like pit on the cell surface in the presence of alginate and directly incorporates polymers into the cytoplasm via the pit and ABC transporter. Among the bacterial proteins involved in import of alginate, a cell-surface EfeO-like Algp7 shows an ability to bind alginate, suggesting its contribution to accumulate alginate in the pit. Here, we show identification of its positively charged cluster involved in alginate binding using X-ray crystallography, docking simulation, and site-directed mutagenesis. The tertiary structure of Algp7 was determined at a high resolution (1.99Å) by molecular replacement, although no alginates were included in the structure. Thus, an in silico model of Algp7/oligoalginate was constructed by docking simulation using atomic coordinates of Algp7 and alginate oligosaccharides, where some charged residues were found to be potential candidates for alginate binding. Site-directed mutagenesis was conducted and five purified mutants K68A, K69A, E194A, N221A, and K68A/K69A were subjected to a binding assay. UV absorption difference spectroscopy along with differential scanning fluorimetry analysis indicated that K68A/K69A exhibited a significant reduction in binding affinity with alginate than wild-type Algp7. Based on these data, Lys68/Lys69 residues of Algp7 probably play an important role in binding alginate.

  18. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-08-01

    Full Text Available Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs, have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated proteins in bacterial cells and the perspectives on how to overcome the issues.

  19. Structure of Ristocetin A in Complex with a Bacterial Cell-wall Mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, V.; Spector, S; Loll, P

    2009-01-01

    Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide. A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between dimerization and ligand binding.

  20. Representing high throughput expression profiles via perturbation barcodes reveals compound targets.

    Science.gov (United States)

    Filzen, Tracey M; Kutchukian, Peter S; Hermes, Jeffrey D; Li, Jing; Tudor, Matthew

    2017-02-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound's high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data.

  1. Representing high throughput expression profiles via perturbation barcodes reveals compound targets

    Science.gov (United States)

    Kutchukian, Peter S.; Li, Jing; Tudor, Matthew

    2017-01-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound’s high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data. PMID:28182661

  2. Relationship among specific bacterial counts and total bacterial and somatic cell counts and factors influencing their variation in ovine bulk tank milk.

    Science.gov (United States)

    de Garnica, M L; Linage, B; Carriedo, J A; De La Fuente, L F; García-Jimeno, M C; Santos, J A; Gonzalo, C

    2013-02-01

    To analyze the relationship among the counts of different organisms and total bacterial count (BTTBC) and somatic cell count (BTSCC) as determined in dairy laboratories in ovine bulk tank milk, 751 bulk tank milk samples from 205 dairy sheep flocks belonging to Consortium for Ovine Promotion (CPO) were collected between January and December 2011. Four samplings were carried out in each flock, once per season, throughout 1 yr. Variables analyzed were bulk tank counts of thermoduric, psychrotrophic, coliform, and gram-positive catalase-negative cocci (GPCNC) bacterial groups. Thermoduric, psychrotrophic, and coliform species were significantly related to BTTBC, whereas GPCNC were correlated with both BTTBC and BTSCC variables. Highest counts were for psychrotroph and coliform groups, and a moderate to high correlation (r=0.51) was found between both variables, indicating that poor cleaning practices in the flocks tend to select for less-resistant organisms, such as gram-negative rods. In addition, BTTBC correlated with BTSCC (r=0.42). Some variation factors for specific bacterial counts, such as breed, season, milking type, dry therapy, and milk yield, were also analyzed. Flock information was collected from flock books, annual audits, and the CPO traceability system. Psychrotrophs and coliforms had elevated counts in winter, whereas GPCNC were higher in summer and in hand-milked flocks. Dry therapy contributed to the reduction in psychrotrophic bacteria; therefore, some strains of mammary pathogens could also be psychrotrophic bacteria. Results of this study would be helpful for troubleshooting milk quality problems and developing premium payment systems in dairy sheep.

  3. Interference of bacterial cell-to-cell communication: A new concept of antimicrobial chemotherapy breaks antibiotic

    Directory of Open Access Journals (Sweden)

    Hidetada eHirakawa

    2013-05-01

    Full Text Available Bacteria use a cell-to-cell communication activity termed Quorum sensing to coordinate group behaviors in a cell-density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called Auto-inducers. During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL called auto-inducer 1 (AI-1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant (MDR pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled.

  4. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  5. Vigorous, but differential mononuclear cell response of cirrhotic patients to bacterial ligands

    Institute of Scientific and Technical Information of China (English)

    Varenka J Barbero-Becerra; María Concepción Gutiérrez-Ruiz; Carmen Maldonado-Bernal; Félix I Téllez-Avila; Roberto Alfaro-Lara; Florencia Vargas-Vorácková

    2011-01-01

    AIM: To study the role of gram-positive and gram-negative bacteria in the pathogenesis of liver injury, specifically the activation of inflammatory mediators. METHODS: Peripheral blood mononuclear cells of 20 out-patients were studied, 10 of them with cirrhosis. Peripheral blood mononuclear cells were isolated and exposed to lipopolysaccharide or lipoteichoic acid. CD14, Toll-like receptor 2 and 4 expression was determined by flow cytometry, and tumor necrosis factor (TNF) α, interleukin (IL)-1β, IL-6, IL-12 and IL-10 secretion in supernatants was determined by ELISA. RESULTS: Higher CD14, Toll-like receptor 2 and 4 expression was observed in peripheral blood mononuclear cells from cirrhotic patients, (P < 0.01, P < 0.006, P < 0.111) respectively. Lipopolysaccharide and lipoteichoic acid induced a further increase in CD14 expression (P < 0.111 lipopolysaccharide, P < 0.013 lipoteichoic acid), and a decrease in Toll-like receptor 2 (P < 0.008 lipopolysaccharide, P < 0.008 lipoteichoic acid) and Toll-like receptor 4 (P < 0.008 lipopolysaccharide, P < 0.028 lipoteichoic acid) expression. With the exception of TNFα, absolute cytokine secretion of peripheral blood mononuclear cells was lower in cirrhotic patients under nonexposure conditions (P < 0.070 IL-6, P < 0.009 IL-1β, P < 0.022 IL-12). Once exposed to lipopolysaccharide or lipoteichoic acid, absolute cytokine secretion of peripheral blood mononuclear cells was similar in cirrhotic and non-cirrhotic patients, determining a more vigorous response in the former (P < 0.005 TNFα, IL-1β, IL-6, IL-2 and IL-10 lipopolysaccharide; P < 0.037 TNFα; P < 0.006 IL-1β; P < 0.005 IL-6; P < 0.007 IL-12; P < 0.014 IL-10 lipoteichoic acid). Response of peripheral blood mononuclear cells was more intense after lipopolysaccharide than after lipoteichoic acid exposure. CONCLUSION: Peripheral blood mononuclear cells of cirrhotic patients are able to respond to a sudden bacterial ligand exposure, particularly lipopolysaccharide

  6. Studies on interfacial interactions of TiO2 nanoparticles with bacterial cells under light and dark conditions

    Indian Academy of Sciences (India)

    Swayamprava Dalai; Sunandan Pakrashi; Sujay Chakravarty; Shamima Hussain; N Chandrasekaran; Amitava Mukherjee

    2014-05-01

    The probable underlying mechanism(s) of bacterial cell–TiO2 nanoparticles (TiO2 NPs) interaction in the absence of photo-irradiation has been less studied since most of the prior cytotoxicity studies focused on irradiated TiO2. The present study draws attention to the possible role of cell surface–TiO2 NP interactions under dark conditions, through an array of spectroscopic and microscopic investigations. A dominant freshwater bacterial isolate, Bacillus licheniformis, which interacted with environmentally relevant concentrations of TiO2 NPs (1 g/mL), was analysed and compared under both light and dark conditions. Aggregation of cells upon NP interaction and adsorption of NPs onto the cell membrane was evident from the scanning electron micrographs under both light and dark conditions. The FT–IR and FT–Raman spectra suggested stress response of bacterial cells by elevated protein and polysaccharide content in the cell–NP interaction. The X-ray photoelectron spectroscopic data substantiated the reduction of titanium from Ti(IV) to Ti(III) species which might have contributed to the redox interactions on the cell surface under light as well as dark conditions. The internalization of NPs in the cytoplasm were obvious from the transmission electron micrographs. The consequent cell death/damage was confirmed through fluorescence spectroscopy and microscopy. To conclude, the current study established the substantial role of interfacial interactions in cytotoxicity of the TiO2 NPs irrespective of the irradiation conditions.

  7. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells.

    Science.gov (United States)

    Hayward, Richard D; Cain, Robert J; McGhie, Emma J; Phillips, Neil; Garner, Matthew J; Koronakis, Vassilis

    2005-05-01

    A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.

  8. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    Science.gov (United States)

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  9. Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division.

    Science.gov (United States)

    Hajduk, Isabella V; Rodrigues, Christopher D A; Harry, Elizabeth J

    2016-05-01

    Proper division site selection is crucial for the survival of all organisms. What still eludes us is how bacteria position their division site with high precision, and in tight coordination with chromosome replication and segregation. Until recently, the general belief, at least in the model organisms Bacillus subtilis and Escherichia coli, was that spatial regulation of division comes about by the combined negative regulatory mechanisms of the Min system and nucleoid occlusion. However, as we review here, these two systems cannot be solely responsible for division site selection and we highlight additional regulatory mechanisms that are at play. In this review, we put forward evidence of how chromosome replication and segregation may have direct links with cell division in these bacteria and the benefit of recent advances in chromosome conformation capture techniques in providing important information about how these three processes mechanistically work together to achieve accurate generation of progenitor cells.

  10. Bacterial β-(1,3)-glucan prevents DSS-induced IBD by restoring the reduced population of regulatory T cells.

    Science.gov (United States)

    Lee, Kwang-Ho; Park, Min; Ji, Kon-Young; Lee, Hwa-Youn; Jang, Ji-Hun; Yoon, Il-Joo; Oh, Seung-Su; Kim, Su-Man; Jeong, Yun-Hwa; Yun, Chul-Ho; Kim, Mi-Kyoung; Lee, In-Young; Choi, Ha-Rim; Ko, Ki-sung; Kang, Hyung-Sik

    2014-10-01

    Bacterial β-(1,3)-glucan has more advantages in terms of cost, yield and efficiency than that derived from mushrooms, plants, yeasts and fungi. We have previously developed a novel and high-yield β-(1,3)-glucan produced by Agrobacterium sp. R259. This study aimed to elucidate the functional mechanism and therapeutic efficacy of bacterial β-(1,3)-glucan in dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD).Mice were orally pretreated with bacterial β-(1,3)-glucan at daily doses of 2.5 or 5mg/kg for 2 weeks. After 6 days of DSS treatment, clinical assessment of IBD severity and expression of pro-inflammatory cytokines were evaluated. In vivo cell proliferation was examined by immunohistochemistry using Ki-67 and ER-TR7 antibodies. The frequency of regulatory T cells (Tregs) was analyzed by flow cytometry. Natural killer (NK) activity and IgA level were evaluated using NK cytotoxicity assay and ELISA.The deterioration of body weight gain, colonic architecture, disease score and histological score was recovered in DSS-induced IBD mice when pretreated with bacterial β-(1,3)-glucan. The recruitment of macrophages and the gene expression of proinflammatory cytokines, such as IL-1β, IL-6 and IL-17A/F, were markedly decreased in the colon of β-(1,3)-glucan-pretreated mice. β-(1,3)-Glucan induced the recovery of Tregs in terms of their frequency in DSS-induced IBD mice. Intriguingly, β-(1,3)-glucan reversed the functional defects of NK cells and excessive IgA production in DSS-induced IBD mice.We conclude that bacterial β-(1,3)-glucan prevented the progression of DSS-induced IBD by recovering the reduction of Tregs, functional defect of NK cells and excessive IgA production.

  11. In vitro behaviors of rat mesenchymal stem cells on bacterial celluloses with different moduli

    Energy Technology Data Exchange (ETDEWEB)

    Taokaew, Siriporn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906 (United States); Phisalaphong, Muenduen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Zhang Newby, Bi-min, E-mail: bimin@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906 (United States)

    2014-05-01

    Compressive moduli of bacteria-synthesized cellulose (BC) were altered by two drying techniques: ambient-air drying and freeze drying. While no significant differences in dry weight were found, their cross-sectional structures and thickness varied greatly. Freeze dried BCs had loose cross-sectional structures and a thickness of ∼ 4.7 mm, whereas air dried BCs had more compacted cross-sectional structures and a thickness of ∼ 0.1 mm. The compressive moduli of the rehydrated freeze dried and rehydrated air dried BCs were measured to be 21.06 ± 0.22 kPa and 90.09 ± 21.07 kPa, respectively. When rat mesenchymal stem cells (rMSCs) were seeded on these BCs, they maintained a round morphology in the first 3 days of cultivation. More spread-out morphology and considerable proliferation on freeze dried BCs were observed in 7 days, but not on air-dried BCs. The cells were further grown for 3 weeks in the absence and presence of differentiation agents. Without using any differentiation agents, no detectable differentiation was noticed for rMSCs further cultivated on both types of BC. With differentiation inducing agents, chondrogenic differentiation, visualized by histological staining, was observed in some area of the rehydrated freeze dried BCs; while osteogenic differentiation was noticed on the stiffer rehydrated air dried BCs. - Graphical abstract: In the presence of induction agents, rat mesenchymal stem cells (rMSCs) preferentially differentiated into osteocytes on stiffer air dried BC films. - Highlights: • Bacterial cellulose (BC) sheets with different moduli generated by drying differently • Air-dried BC exhibited a modulus similar to that of bone. • Freeze-dried BC showed a modulus in the range of that of muscle. • Air-dried BC promoted the differentiation of rMSCs into osteocytes. • Freeze-dried BC promoted the differentiation of rMSCs into chondrocytes.

  12. Application Research of QRCode Barcode in Validation of Express Delivery

    Science.gov (United States)

    Liu, Zhihai; Zeng, Qingliang; Wang, Chenglong; Lu, Qing

    The barcode technology has become an important way in the field of information input and identify automatically. With the outstanding features of big storage capacity, secure, rich encoding character set and fast decoding, the two-dimensional(2D) QRcode(Quick Response Barcode) has become an important choice of commerce barcode. The development of wireless communications technology and the popularization and application of mobile device has set the foundation of 2D barcode used in business. In this paper, the characteristics and the compositions of 2D QRcode are described, the secure validation workflows and contents of QRcode in goods express delivery are discussed, the encoding process of QRcode is showed, and the system framework is analyzed and established. At last, the system compositions and functions of each part are discussed.

  13. DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China.

    Science.gov (United States)

    Yang, Mingsheng; Zhai, Qing; Yang, Zhaofu; Zhang, Yalin

    2016-07-01

    We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification.

  14. 75 FR 56922 - Implementation of the Intelligent Mail Package Barcode

    Science.gov (United States)

    2010-09-17

    ... integration of multiple extra services. IMpb and Electronic Documentation The IMpb will provide piece-level..., reducing the number of barcodes on a package. Permit the use of a 6-digit or 9-digit numeric Mailer ID...

  15. Testing evolutionary hypotheses for DNA barcoding failure in willows.

    Science.gov (United States)

    Twyford, Alex D

    2014-10-01

    The goal of DNA barcoding is to enable the rapid identification of taxa from short diagnostic DNA sequence profiles. But how feasible is this objective when many evolutionary processes, such as hybridization and selective sweeps, cause alleles to be shared among related taxa? In this issue of Molecular Ecology, Percy et al. (2014) test the full suite of seven candidate plant barcoding loci in a broad geographic sample of willow species. They show exceptional plastid haplotype sharing between species across continents, with most taxa not possessing a unique barcode sequence. Using population genetic and molecular dating analyses, they implicate hybridization and selective sweeps, but not incomplete lineage sorting, as the historical processes causing widespread haplotype sharing among willow taxa. This study represents an exceptional case of how poorly barcoding can perform, and highlights methodological issues using universal organellar regions for species identification.

  16. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Directory of Open Access Journals (Sweden)

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  17. DNA barcodes for dragonflies and damselflies (Odonata) of Mindanao, Philippines.

    Science.gov (United States)

    Casas, Princess Angelie S; Sing, Kong-Wah; Lee, Ping-Shin; Nuñeza, Olga M; Villanueva, Reagan Joseph T; Wilson, John-James

    2017-02-03

    Reliable species identification provides a sounder basis for use of species in the order Odonata as biological indicators and for their conservation, an urgent concern as many species are threatened with imminent extinction. We generated 134 COI barcodes from 36 morphologically identified species of Odonata collected from Mindanao Island, representing 10 families and 19 genera. Intraspecific sequence divergences ranged from 0 to 6.7% with four species showing more than 2%, while interspecific sequence divergences ranged from 0.5 to 23.3% with seven species showing less than 2%. Consequently, no distinct gap was observed between intraspecific and interspecific DNA barcode divergences. The numerous islands of the Philippine archipelago may have facilitated rapid speciation in the Odonata and resulted in low interspecific sequence divergences among closely related groups of species. This study contributes DNA barcodes for 36 morphologically identified species of Odonata reported from Mindanao including 31 species with no previous DNA barcode records.

  18. Topological mapping and navigation in indoor environment with invisible barcode

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jin Wook [Agency for Defense Development, Daejeon (Korea, Republic of); Chung, Woong Sik [Microrobot, Seoul (Korea, Republic of); Chung, Wan Kyun [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2006-09-15

    This paper addresses the localization and navigation problem using invisible two dimensional barcodes on the floor. Compared with other methods using natural/artificial landmark, the proposed localization method has great advantages in cost and appearance, since the location of the robot is perfectly known using the barcode information after the mapping is finished. We also propose a navigation algorithm which uses the topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls and many static obstacles. The proposed algorithm also has an advantage that errors occurred in each node are mutually independent and can be compensated exactly after some navigation using barcode. Simulation and experimental results were performed to verify the algorithm in the barcode environment, and the result showed an excellent performance. After mapping, it is also possible to solve the kidnapped case and generate paths using topological information.

  19. Automation of sample preparation for mass cytometry barcoding in support of clinical research: protocol optimization.

    Science.gov (United States)

    Nassar, Ala F; Wisnewski, Adam V; Raddassi, Khadir

    2017-03-01

    Analysis of multiplexed assays is highly important for clinical diagnostics and other analytical applications. Mass cytometry enables multi-dimensional, single-cell analysis of cell type and state. In mass cytometry, the rare earth metals used as reporters on antibodies allow determination of marker expression in individual cells. Barcode-based bioassays for CyTOF are able to encode and decode for different experimental conditions or samples within the same experiment, facilitating progress in producing straightforward and consistent results. Herein, an integrated protocol for automated sample preparation for barcoding used in conjunction with mass cytometry for clinical bioanalysis samples is described; we offer results of our work with barcoding protocol optimization. In addition, we present some points to be considered in order to minimize the variability of quantitative mass cytometry measurements. For example, we discuss the importance of having multiple populations during titration of the antibodies and effect of storage and shipping of labelled samples on the stability of staining for purposes of CyTOF analysis. Data quality is not affected when labelled samples are stored either frozen or at 4 °C and used within 10 days; we observed that cell loss is greater if cells are washed with deionized water prior to shipment or are shipped in lower concentration. Once the labelled samples for CyTOF are suspended in deionized water, the analysis should be performed expeditiously, preferably within the first hour. Damage can be minimized if the cells are resuspended in phosphate-buffered saline (PBS) rather than deionized water while waiting for data acquisition.

  20. Dissociation of a population of Pectobacterium atrosepticum SCRI1043 in tobacco plants: formation of bacterial emboli and dormant cells.

    Science.gov (United States)

    Gorshkov, Vladimir; Daminova, Amina; Ageeva, Marina; Petrova, Olga; Gogoleva, Natalya; Tarasova, Nadezhda; Gogolev, Yuri

    2014-05-01

    The population dynamics of Pectobacterium atrosepticum SCRI1043 (Pba) within tobacco plants was monitored from the time of inoculation until after long-term preservation of microorganisms in the remnants of dead plants. We found and characterised peculiar structures that totally occlude xylem vessels, which we have named bacterial emboli. Viable but non-culturable (VBN) Pba cells were identified in the remnants of dead plants, and the conditions for resuscitation of these VBN cells were established. Our investigation shows that dissociation of the integrated bacterial population during plant colonisation forms distinct subpopulations and cell morphotypes, which are likely to perform specific functions that ensure successful completion of the life cycle within the plant.

  1. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  2. Cytotoxic responses to 405nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species.

    Science.gov (United States)

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J; Anderson, John G; Grant, M Helen

    2016-06-01

    Light at wavelength 405 nm is an effective bactericide. Previous studies showed that exposing mammalian cells to 405 nm light at 36 J/cm(2) (a bactericidal dose) had no significant effect on normal cell function, although at higher doses (54 J/cm(2)), mammalian cell death became evident. This research demonstrates that mammalian and bacterial cell toxicity induced by 405 nm light exposure is accompanied by reactive oxygen species production, as detected by generation of fluorescence from 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. As indicators of the resulting oxidative stress in mammalian cells, a decrease in intracellular reduced glutathione content and a corresponding increase in the efflux of oxidised glutathione were observed from 405 nm light treated cells. The mammalian cells were significantly protected from dying at 54 J/cm(2) in the presence of catalase, which detoxifies H2O2. Bacterial cells were significantly protected by sodium pyruvate (H2O2 scavenger) and by a combination of free radical scavengers (sodium pyruvate, dimethyl thiourea (OH scavenger) and catalase) at 162 and 324 J/cm(2). Results therefore suggested that the cytotoxic mechanism of 405 nm light in mammalian cells and bacteria could be oxidative stress involving predominantly H2O2 generation, with other ROS contributing to the damage.

  3. Improved COI barcoding primers for Southeast Asian perching birds (Aves: Passeriformes).

    Science.gov (United States)

    Lohman, David J; Prawiradilaga, Dewi M; Meier, Rudolf

    2009-01-01

    The All Birds Barcoding Initiative aims to assemble a DNA barcode database for all bird species, but the 648-bp 'barcoding' region of cytochrome c oxidase subunit I (COI) can be difficult to amplify in Southeast Asian perching birds (Aves: Passeriformes). Using COI sequences from complete mitochondrial genomes, we designed a primer pair that more reliably amplifies and sequences the COI barcoding region of Southeast Asian passerine birds. The 655-bp region amplified with these primers overlaps the COI region amplified with other barcoding primer pairs, enabling direct comparison of sequences with previously published DNA barcodes.

  4. DNA barcoding the native flowering plants and conifers of Wales.

    Science.gov (United States)

    de Vere, Natasha; Rich, Tim C G; Ford, Col R; Trinder, Sarah A; Long, Charlotte; Moore, Chris W; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  5. DNA barcoding the native flowering plants and conifers of Wales.

    Directory of Open Access Journals (Sweden)

    Natasha de Vere

    Full Text Available We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species. Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85% are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments, formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  6. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  7. An ethanol biosensor based on a bacterial cell-immobilized eggshell membrane

    Institute of Scientific and Technical Information of China (English)

    Guang Ming Wen; Shao Min Shuang; Chuan Dong; Martin M.F. Choi

    2012-01-01

    An ethanol biosensor was fabricated based on a Methylobacterium organophilium-immobilized eggshell membrane and an oxygen (O2) electrode.A linear response for ethanol was obtained in the range of 0.050-7.5 mmol/L with a detection limit of 0.025 mmol/L (S/N =3) and a R.S.D.of 2.1%.The response time was less than 100 s at room temperature and ambient pressure.The optimal loading of bacterial cells on the biosensor membrane is 40 mg (wet weight).The optimal working conditions for the microbial biosensor are pH 7.0 phosphate buffer (50 mmol/L) at 20-25 ℃.The interference test,operational and storage stability of the biosensor are studied in detail.Finally,the biosensor is applied to determine the ethanol contents in various alcohol samples and the results are comparable to that obtained by gas chromatographic method and the results are satisfactory.Our proposed biosensor provides a convenient,simple and reliable method to determine ethanol content in alcoholic drinks.

  8. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays.

    Science.gov (United States)

    Henriksen, S T; Liu, J; Estiu, G; Oltvai, Z N; Wiest, O

    2010-07-15

    The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of approximately 10(6) compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.

  9. DNA barcoding for species identification in the Palmae family.

    Science.gov (United States)

    Naeem, A; Khan, A A; Cheema, H M N; Khan, I A; Buerkert, A

    2014-12-04

    DNA barcoding is a promising tool for species identification at the molecular level. The barcoding system is well established for species differentiation in animals, while it is less common in plants. We evaluated 2 barcoding regions, maturase K (matK) and ribulose bisphosphate carboxylase (rbcL), to compare species of Palmae according to amplification success, discrimination power, and inter- and intra-specific divergence. Both regions appear to have potential to discriminate most species of Palmae, but 2 species, Phoenix dactylifera and Phoenix sylvestris, did not show variation in the nucleotides of the barcode genes. P. sylvestris is said to be the sister species of P. dactilyfera according to its morphological and genetic proximity to the cultivated date palm. Thus, the status of these 2 species needs to be re-evaluated considering more genes as barcodes. Furthermore, rbcL has a higher discrimination power (90%) than matK (66.6%) and can thus be potentially used as a standard barcode to discriminate the species of Palmae.

  10. Assessment of candidate plant DNA barcodes using the Rutaceae family.

    Science.gov (United States)

    Luo, Kun; Chen, ShiLin; Chen, KeLi; Song, JingYuan; Yao, Hui; Ma, XinYe; Zhu, YingJie; Pang, XiaoHui; Yu, Hua; Li, XiWen; Liu, Zhen

    2010-06-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention. Here, seven regions (psbA-trnH, matK, ycf5, rpoC1, rbcL, ITS2, and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae. To evaluate each barcode's utility for species authentication, PCR amplification efficiency, genetic divergence, and barcoding gaps were assessed. We found that the ITS2 region exhibited the highest inter-specific divergence, and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests. The ITS2 locus had the highest identification efficiency among all tested regions. In a previous study, we found that ITS2 was able to discriminate a wide range of plant taxa, and here we confirmed that ITS2 was also able to discriminate a number of closely related species. Therefore, we propose that ITS2 is a promising candidate barcode for plant species identification.

  11. DNA barcoding of Gaultheria L.in China (Ericaceae: Vaccinioideae)

    Institute of Scientific and Technical Information of China (English)

    He REN; Lu LU; Hong WANG; De-Zhu LI

    2011-01-01

    Four DNA barcoding loci,chloroplast loci rbcL,matK,trnH-psbA,and nuclear locus internal transcribed spacer (ITS),were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P-distance,Wilcoxon signed rank test,and tree-based analyses.This study included 186 individuals from 89 populations representing 30 species.For all individuals,single locus markers showed high levels of sequencing universality but were ineffective for species resolvability.Polymerase chain reaction amplification and sequencing were successful for all four loci.Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH-psbA.A combination ofmatK and ITS was the most efficient DNA barcode among all studied regions,however,they do not represent an appropriate candidate barcode for Chinese Gaultheria,by which only 11 out of 30 species can be separated.Loci rbcL,matK,and trnH-psbA,which were recently proposed as universal plant barcodes,have a very poor capacity for species separation for Chinese Gaultheria.DNA barcodes may be reliable tools to identify the evolutionary units of this group,so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.

  12. DNA barcoding: error rates based on comprehensive sampling.

    Directory of Open Access Journals (Sweden)

    Christopher P Meyer

    2005-12-01

    Full Text Available DNA barcoding has attracted attention with promises to aid in species identification and discovery; however, few well-sampled datasets are available to test its performance. We provide the first examination of barcoding performance in a comprehensively sampled, diverse group (cypraeid marine gastropods, or cowries. We utilize previous methods for testing performance and employ a novel phylogenetic approach to calculate intraspecific variation and interspecific divergence. Error rates are estimated for (1 identifying samples against a well-characterized phylogeny, and (2 assisting in species discovery for partially known groups. We find that the lowest overall error for species identification is 4%. In contrast, barcoding performs poorly in incompletely sampled groups. Here, species delineation relies on the use of thresholds, set to differentiate between intraspecific variation and interspecific divergence. Whereas proponents envision a "barcoding gap" between the two, we find substantial overlap, leading to minimal error rates of approximately 17% in cowries. Moreover, error rates double if only traditionally recognized species are analyzed. Thus, DNA barcoding holds promise for identification in taxonomically well-understood and thoroughly sampled clades. However, the use of thresholds does not bode well for delineating closely related species in taxonomically understudied groups. The promise of barcoding will be realized only if based on solid taxonomic foundations.

  13. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  14. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  15. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.

  16. DNA barcoding of Pedicularis L.(Orobanchaceae): Evaluating four universal barcode loci in a large and hemiparasitic genus

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin YU; pan-Hui HUANG; Richard H. REE; Min-Lu LIU; De-Zhu LI; Hong WANG

    2011-01-01

    One application ofDNA barcoding is species identification based on sequences of a short and standardized DNA region.In plants,various DNA regions,alone or in combination,have been proposed and investigated,but consensus on a universal plant barcode remains elusive.In this study,we tested the utility of four candidate barcoding regions (rbcL,matK,trnH-psbA,and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae).Amplification and sequencing was successful using single primer pairs for rbcL,trnH-psbA,and ITS,whereas two primer pairs were required for matK.Patterns of sequence divergence commonly showed a “barcoding gap”,that is,a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species,respectively Considering primer universality,ease of amplification and sequencing,and performance in discriminating species,we found the most effective single-region barcode for Pedicularis to be ITS,and the most effective two-region barcode to be rbcL +ITS.Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample,and were effective in placing unidentified samples in known species groups.Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis,a species-rich cosmopolitan clade much in need of revision,as well as ecological studies in its center of diversity,the Hengduan Mountains region of China.

  17. Bacterial CD1d-restricted glycolipids induce IL-10 production by human regulatory T cells upon cross-talk with invariant NKT cells.

    Science.gov (United States)

    Venken, Koen; Decruy, Tine; Aspeslagh, Sandrine; Van Calenbergh, Serge; Lambrecht, Bart N; Elewaut, Dirk

    2013-09-01

    Invariant NKT (iNKT) cells and CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) are important immune regulatory T cells with Ag reactivity to glycolipids and peptides, respectively. However, the functional interplay between these cells in humans is poorly understood. We show that Tregs suppress iNKT cell proliferation induced by CD1d-restricted glycolipids, including bacterial-derived diacylglycerols, as well as by innate-like activation. Inhibition was related to the potency of iNKT agonists, making diacylglycerol iNKT responses very prone to suppression. Cytokine production by iNKT cells was differentially modulated by Tregs because IL-4 production was reduced more profoundly compared with IFN-γ. A compelling observation was the significant production of IL-10 by Tregs after cell contact with iNKT cells, in particular in the presence of bacterial diacylglycerols. These iNKT-primed Tregs showed increased FOXP3 expression and superior suppressive function. Suppression of iNKT cell responses, but not conventional T cell responses, was IL-10 dependent, suggesting that there is a clear difference in mechanism between the Treg-mediated inhibition of these cell types. Our data highlight a physiologically relevant interaction between human iNKT and Tregs upon pathogen-derived glycolipid recognition that has a significant impact on the design of iNKT cell-based therapeutics.

  18. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM.

    Science.gov (United States)

    Wong, Alan S L; Choi, Gigi C G; Cui, Cheryl H; Pregernig, Gabriela; Milani, Pamela; Adam, Miriam; Perli, Samuel D; Kazer, Samuel W; Gaillard, Aleth; Hermann, Mario; Shalek, Alex K; Fraenkel, Ernest; Lu, Timothy K

    2016-03-01

    The orchestrated action of genes controls complex biological phenotypes, yet the systematic discovery of gene and drug combinations that modulate these phenotypes in human cells is labor intensive and challenging to scale. Here, we created a platform for the massively parallel screening of barcoded combinatorial gene perturbations in human cells and translated these hits into effective drug combinations. This technology leverages the simplicity of the CRISPR-Cas9 system for multiplexed targeting of specific genomic loci and the versatility of combinatorial genetics en masse (CombiGEM) to rapidly assemble barcoded combinatorial genetic libraries that can be tracked with high-throughput sequencing. We applied CombiGEM-CRISPR to create a library of 23,409 barcoded dual guide-RNA (gRNA) combinations and then perform a high-throughput pooled screen to identify gene pairs that inhibited ovarian cancer cell growth when they were targeted. We validated the growth-inhibiting effects of specific gene sets, including epigenetic regulators KDM4C/BRD4 and KDM6B/BRD4, via individual assays with CRISPR-Cas-based knockouts and RNA-interference-based knockdowns. We also tested small-molecule drug pairs directed against our pairwise hits and showed that they exerted synergistic antiproliferative effects against ovarian cancer cells. We envision that the CombiGEM-CRISPR platform will be applicable to a broad range of biological settings and will accelerate the systematic identification of genetic combinations and their translation into novel drug combinations that modulate complex human disease phenotypes.

  19. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Rachel E Butler

    Full Text Available BACKGROUND: An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission. METHODS: We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237. RESULTS: We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis--both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis. CONCLUSIONS: This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.

  20. Effects of season, milking routine and cow cleanliness on bacterial and somatic cell counts of bulk tank milk.

    Science.gov (United States)

    Zucali, Maddalena; Bava, Luciana; Tamburini, Alberto; Brasca, Milena; Vanoni, Laura; Sandrucci, Anna

    2011-11-01

    The aim of the study was to investigate the effects of season, cow cleanliness and milking routine on bacterial and somatic cell counts of bulk tank milk. A total of 22 dairy farms in Lombardy (Italy) were visited three times in a year in different seasons. During each visit, samples of bulk tank milk were taken for bacterial and somatic cell counts; swabs from the teat surface of a group of cows were collected after teat cleaning and before milking. Cow cleanliness was assessed by scoring udder, flanks and legs of all milking cows using a 4-point scale system. Season affected cow cleanliness with a significantly higher percentage of non-clean (NC) cows during Cold compared with Mild season. Standard plate count (SPC), laboratory pasteurization count (LPC), coliform count (CC) and somatic cell count, expressed as linear score (LS), in milk significantly increased in Hot compared with Cold season. Coagulase-positive staphylococci on teat swabs showed higher counts in Cold season in comparison with the other ones. The effect of cow cleanliness was significant for SPC, psychrotrophic bacterial count (PBC), CC and Escherichia coli in bulk tank milk. Somatic cell count showed a relationship with udder hygiene score. Milking operation routine strongly affected bacterial counts and LS of bulk tank milk: farms that accomplished a comprehensive milking scheme including two or more operations among forestripping, pre-dipping and post-dipping had lower teat contamination and lower milk SPC, PBC, LPC, CC and LS than farms that did not carry out any operation.

  1. DNA barcoding in the media: does coverage of cool science reflect its social context?

    Science.gov (United States)

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  2. JPEG color barcode images analysis: A camera phone capture channel model with auto-focus

    Directory of Open Access Journals (Sweden)

    Keng T. Tan

    2009-12-01

    Full Text Available As camera phones have permeated into our everyday lives, two dimensional (2D barcode has attracted researchers and developers as a cost-effective ubiquitous computing tool. A variety of 2D barcodes and their applications have been developed. Often, only monochrome2D barcodes are used due to their robustness in an uncontrolled operating environment of camera phones. However, we are seeing an emerging use of color 2D barcodes for camera phones. Nonetheless, using a greater multitude of colors introduces errors that can negatively affect the robustness of barcode reading. This is especially true when developing a 2D barcode for camera phones which capture and store these barcode images in the baselineJPEG format. This paper presents one aspect of the errors introduced by such camera phones by modeling the camera phone capture channel for JPEG color barcode images wherein there is camera auto-focus.

  3. A mixture of bacterial mechanical lysates is more efficient than single strain lysate and of bacterial-derived soluble products for the induction of an activating phenotype in human dendritic cells.

    Science.gov (United States)

    Morandi, Barbara; Agazzi, Alessia; D'Agostino, Antonella; Antonini, Francesca; Costa, Gregorio; Sabatini, Federica; Ferlazzo, Guido; Melioli, Giovanni

    2011-07-01

    Dendritic cells (DCs), following an optimal maturation, are able to drive an efficient immune-response. For this, both co-stimulatory molecules (CD80 and CD86), activation molecules (CD83) and peptide presenting molecules (HLA) are over-expressed. The in vitro treatment of immature DC with fragments of bacterial strains, obtained by using a mechanical lysis as well as with bacterial-derived molecules (such as lipopolysaccharide and protido-glycan), induced the maturation of DCs and the secretion of a panel of cytokines and chemokines. Of note, ex vivo treated circulating DCs and plasmacytoid DCs were also activated by these bacterial bodies. However, while the particulate fraction of single bacterial strains or soluble bacterial-derived molecules induced a sub-optimal maturation (as evaluated by the expression of an activating phenotype on DCs and the amount of cytokine secretion), the addition of the mixture of the particulate fractions of the different bacterial strains was able to mediate an optimal maturation. These results were also confirmed by using the secretion of both cytokines and chemokines as markers of DC activation. All these findings suggest that the particulate fraction of bacterial lysate mixtures, because of their ability to interact with different surface structures, might be exploited not only as an immunogen, but also as an adjuvant treatment to boost an immune-response to poorly "antigenic" proteins, such as cancer antigens or allergens.

  4. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  5. International Barcode of Life: Evolution of a global research community.

    Science.gov (United States)

    Adamowicz, Sarah J

    2015-05-01

    The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources.

  6. Patterns of DNA barcode variation in Canadian marine molluscs.

    Directory of Open Access Journals (Sweden)

    Kara K S Layton

    Full Text Available BACKGROUND: Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. METHODOLOGY/PRINCIPAL FINDINGS: This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2% intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%, and showed a significant positive correlation with nearest neighbour distances. CONCLUSIONS/SIGNIFICANCE: DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation

  7. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    Directory of Open Access Journals (Sweden)

    Sauli Haataja

    2013-07-01

    Full Text Available Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP, was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections.

  8. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Ariadna Vilar-Sanz

    Full Text Available The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3 NCC (Net Cathodic Compartment, when nitrate was used as an electron acceptor, to 14.1 A · m(-3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  9. Measuring bacterial adaptation dynamics at the single-cell level using a microfluidic chemostat and time-lapse fluorescence microscopy.

    Science.gov (United States)

    Long, Zhicheng; Olliver, Anne; Brambilla, Elisa; Sclavi, Bianca; Lagomarsino, Marco Cosentino; Dorfman, Kevin D

    2014-10-21

    We monitored the dynamics of cell dimensions and reporter GFP expression in individual E. coli cells growing in a microfluidic chemostat using time-lapse fluorescence microscopy. This combination of techniques allows us to study the dynamical responses of single bacterial cells to nutritional shift-down or shift-up for longer times and with more precision over the chemical environment than similar experiments performed on conventional agar pads. We observed two E. coli strains containing different promoter-reporter gene constructs and measured how both their cell dimensions and the GFP expression change after nutritional upshift and downshift. As expected, both strains have similar adaptation dynamics for cell size rearrangement. However, the strain with a ribosomal RNA promoter dependent reporter has a faster GFP production rate than the strain with a constitutive promoter reporter. As a result, the mean GFP concentration in the former strain changes rapidly with the nutritional shift, while that in the latter strain remains relatively stable. These findings characterize the present microfluidic chemostat as a versatile platform for measuring single-cell bacterial dynamics and physiological transitions.

  10. The effects of non-metabolizing bacterial cells on the precipitation of U, Pb and Ca phosphates

    Science.gov (United States)

    Dunham-Cheatham, Sarrah; Rui, Xue; Bunker, Bruce; Menguy, Nicolas; Hellmann, Roland; Fein, Jeremy

    2011-05-01

    In this study, we test the potential for passive cell wall biomineralization by determining the effects of non-metabolizing bacteria on the precipitation of uranyl, lead, and calcium phosphates from a range of over-saturated conditions. Experiments were performed using Gram-positive Bacillus subtilis and Gram-negative Shewanella oneidensis MR-1. After equilibration, the aqueous phases were sampled and the remaining metal and P concentrations were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES); the solid phases were collected and analyzed using X-ray diffractometry (XRD), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). At the lower degrees of over-saturation studied, bacterial cells exerted no discernable effect on the mode of precipitation of the metal phosphates, with homogeneous precipitation occurring exclusively. However, at higher saturation states in the U system, we observed heterogeneous mineralization and extensive nucleation of hydrogen uranyl phosphate (HUP) mineralization throughout the fabric of the bacterial cell walls. This mineral nucleation effect was observed in both B. subtilis and S. oneidensis cells. In both cases, the biogenic mineral precipitates formed under the higher saturation state conditions were significantly smaller than those that formed in the abiotic controls. The cell wall nucleation effects that occurred in some of the U systems were not observed under any of the saturation state conditions studied in the Pb or Ca systems. The presence of B. subtilis significantly decreased the extent of precipitation in the U system, but had little effect in the Pb and Ca systems. At least part of this effect is due to higher solubility of the nanoscale HUP precipitate relative to macroscopic HUP. This study documents several effects of non-metabolizing bacterial cells on the nature and extent of metal phosphate precipitation. Each of these effects likely contributes to higher

  11. A man-made ATP-binding protein evolved independent of nature causes abnormal growth in bacterial cells.

    Directory of Open Access Journals (Sweden)

    Joshua M Stomel

    Full Text Available Recent advances in de novo protein evolution have made it possible to create synthetic proteins from unbiased libraries that fold into stable tertiary structures with predefined functions. However, it is not known whether such proteins will be functional when expressed inside living cells or how a host organism would respond to an encounter with a non-biological protein. Here, we examine the physiology and morphology of Escherichia coli cells engineered to express a synthetic ATP-binding protein evolved entirely from non-biological origins. We show that this man-made protein disrupts the normal energetic balance of the cell by altering the levels of intracellular ATP. This disruption cascades into a series of events that ultimately limit reproductive competency by inhibiting cell division. We now describe a detailed investigation into the synthetic biology of this man-made protein in a living bacterial organism, and the effect that this protein has on normal cell physiology.

  12. Q-Bank Phytoplasma: A DNA Barcoding Tool for Phytoplasma Identification

    DEFF Research Database (Denmark)

    Contaldo, Nicoletta; Paltrinieri, Samanta; Makarova, Olga;

    2015-01-01

    DNA barcoding is an identification method based on comparison of a short DNA sequence with known sequences from a database. A DNA barcoding tool has been developed for phytoplasma identification. This phytoplasma DNA barcoding protocol based on the tuf gene has been shown to identify phytoplasmas...

  13. Efficiency of ITS sequences for DNA barcoding in Passiflora (Passifloraceae).

    Science.gov (United States)

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-04-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using "best match" and "best close match" methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  14. Assessment of candidate plant DNA barcodes using the Rutaceae family

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention.Here,seven regions (psbA-trnH,matK,ycf5,rpoC1,rbcL,ITS2,and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae.To evaluate each barcode’s utility for species authentication,PCR amplification efficiency,genetic divergence,and barcoding gaps were assessed.We found that the ITS2 region exhibited the highest inter-specific divergence,and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests.The ITS2 locus had the highest identification efficiency among all tested regions.In a previous study,we found that ITS2 was able to discriminate a wide range of plant taxa,and here we confirmed that ITS2 was also able to discriminate a number of closely related species.Therefore,we propose that ITS2 is a promising candidate barcode for plant species identification.

  15. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae

    Directory of Open Access Journals (Sweden)

    Giovanna Câmara Giudicelli

    2015-04-01

    Full Text Available DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1 region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  16. Plant DNA barcoding and framework for biodiversity data sharing platform

    Directory of Open Access Journals (Sweden)

    Chunxia Zeng

    2014-05-01

    Full Text Available DNA barcoding technology provides an opportunity for rapid, accurate, and standardized species-level identification using short DNA sequences. This method speeds up species identification and classification, and presents a new tool for the management, conservation and sustainable development of biodiversity at a global level. Due to improvements in plant barcode database availability and functionality, it is becoming feasible to meet increasing demands for biodiversity information. A framework is needed for a barcoding server platform that utilizes, integrates, and shares among different data types. Such a platform would be an important step towards enabling the public to rapidly identify species and acquire species-related digital information. In this paper, we review current progress on plant DNA barcoding. Secondly, we summarize the current status of, and identify bottlenecks for, plant DNA barcode reference libraries specifically. Thirdly, in the Big Data era, it is indispensable to manage and make good use of massive amounts of plant information. We provide the following suggestions for the framework of server platform: (1 metadata should be substantial, accurate and correlative; (2 data should be normalized; (3 query entrance is convenient, efficient, easy to manage, and available for large-scale data sharing and global communication.

  17. A comparative analysis of DNA barcode microarray feature size

    Directory of Open Access Journals (Sweden)

    Smith Andrew M

    2009-10-01

    Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

  18. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  19. Automation and workflow considerations for embedding Digimarc Barcodes at scale

    Science.gov (United States)

    Rodriguez, Tony; Haaga, Don; Calhoon, Sean

    2015-03-01

    The Digimarc® Barcode is a digital watermark applied to packages and variable data labels that carries GS1 standard GTIN-14 data traditionally carried by a 1-D barcode. The Digimarc Barcode can be read with smartphones and imaging-based barcode readers commonly used in grocery and retail environments. Using smartphones, consumers can engage with products and retailers can materially increase the speed of check-out, increasing store margins and providing a better experience for shoppers. Internal testing has shown an average of 53% increase in scanning throughput, enabling 100's of millions of dollars in cost savings [1] for retailers when deployed at scale. To get to scale, the process of embedding a digital watermark must be automated and integrated within existing workflows. Creating the tools and processes to do so represents a new challenge for the watermarking community. This paper presents a description and an analysis of the workflow implemented by Digimarc to deploy the Digimarc Barcode at scale. An overview of the tools created and lessons learned during the introduction of technology to the market are provided.

  20. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  1. e-DNA meta-barcoding: from NGS raw data to taxonomic profiling.

    Science.gov (United States)

    Bruno, Fosso; Marinella, Marzano; Santamaria, Monica

    2015-01-01

    In recent years, thanks to the essential support provided by the Next-Generation Sequencing (NGS) technologies, Metagenomics is enabling the direct access to the taxonomic and functional composition of mixed microbial communities living in any environmental niche, without the prerequisite to isolate or culture the single organisms. This approach has already been successfully applied for the analysis of many habitats, such as water or soil natural environments, also characterized by extreme physical and chemical conditions, food supply chains, and animal organisms, including humans. A shotgun sequencing approach can lead to investigate both organisms and genes diversity. Anyway, if the purpose is limited to explore the taxonomic complexity, an amplicon-based approach, based on PCR-targeted sequencing of selected genetic species markers, commonly named "meta-barcodes", is desirable. Among the genomic regions most widely used for the discrimination of bacterial organisms, in some cases up to the species level, some hypervariable domains of the gene coding for the 16S rRNA occupy a prominent place. The amplification of a certain meta-barcode from a microbial community through the use of PCR primers able to work in the entire considered taxonomic group is the first task after the extraction of the total DNA. Generally, this step is followed by the high-throughput sequencing of the resulting amplicons libraries by means of a selected NGS platform. Finally, the interpretation of the huge amount of produced data requires appropriate bioinformatics tools and know-how in addition to efficient computational resources. Here a computational methodology suitable for the taxonomic characterization of 454 meta-barcode sequences is described in detail. In particular, a dataset covering the V1-V3 region belonging to the bacterial 16S rRNA coding gene and produced in the Human Microbiome Project (HMP) from a palatine tonsils sample is analyzed. The proposed exercise includes the

  2. Effect of Bacterial Lipopolysaccharide Contamination on Gutta Percha- versus Resilon-Induced Human Monocyte Cell Line Toxicity.

    Directory of Open Access Journals (Sweden)

    Jamshid Hadjati

    2015-04-01

    Full Text Available Cytotoxic effects of obturation materials were tested in presence and absence of endotoxin on human monocytes in vitro.Human monocytes from THP-1 cell line were cultured. Three millimeters from the tip of each Resilon and gutta percha points were cut and directly placed at the bottom of the culture wells. Cultured cells were exposed to gutta percha (groups G1 and G2 and Resilon (R1 and R2. Ten μg/ml bacterial lipopolysaccharide (LPS was added to the culture wells in groups G1 and R1. Positive control included the bacterial LPS without the root canal filling material and the negative control contained the cells in culture medium only. Viability of cells was tested in all groups after 24, 48, and 72 hours using the methylthiazolyldiphenyl-tetrazolium bromide (MTT assay for at least 3 times to obtain reproducible results. Optical density values were read and the data were analyzed using three-way ANOVA and post hoc statistical test.The results showed that cells in G2 had the lowest rate of viability at 24 hours, but the lowest rate of viable cells was recorded in G1 at 48 and 72 hours. The effect of LPS treatment was not statistically significant. Resilon groups showed cell viability values higher than those of gutta percha groups, although statistically non-significant (P=0.105. Cell viability values were lower in gutta percha than Resilon groups when LPS-treated and LPS-untreated groups were compared independently at each time point.It could be concluded that none of the tested root canal filling materials had toxic effects on cultured human monocyte cells whether in presence or absence of LPS contamination.

  3. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria...

  4. Effect of premilking teat disinfection on mastitis incidence, total bacterial count, cell count and milk yield in three dairy herds.

    Science.gov (United States)

    Blowey, R W; Collis, K

    1992-02-29

    An iodophor teat disinfectant was applied before milking by dip or spray to 50 cows and 50 cows were left untreated in each of three commercial herds. The mean incidence of clinical mastitis was reduced by 57 per cent, the total bacterial count by 70 per cent and the count of thermoduric organisms by 32 per cent. These results were not statistically significant, except that one herd showed a significant decrease in total bacterial count. There was no effect on somatic cell count, milk production or milk iodine residues. Atmospheric iodine concentrations increased in the two herds which applied the treatment as a spray, but the levels attained were not likely to be detrimental to human health.

  5. Aggregatibacter actinomycetemcomitans Omp29 is associated with bacterial entry to gingival epithelial cells by F-actin rearrangement.

    Directory of Open Access Journals (Sweden)

    Mikihito Kajiya

    Full Text Available The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29, a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29(+/OmpA(- E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9 than Omp29(-/OmpA(- E. coli. While the entry of Aa and Omp29(+/OmpA(- E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK, a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin and Rho GTPases inhibitor (EDIN, both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway.

  6. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  7. High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics

    Science.gov (United States)

    Venkatapathi, Murugesan; Rajwa, Bartek; Ragheb, Kathy; Banada, Padmapriya P.; Lary, Todd; Robinson, J. Paul; Hirleman, E. Daniel

    2008-02-01

    We describe a model-based instrument design combined with a statistical classification approach for the development and realization of high speed cell classification systems based on light scatter. In our work, angular light scatter from cells of four bacterial species of interest, Bacillus subtilis, Escherichia coli, Listeria innocua, and Enterococcus faecalis, was modeled using the discrete dipole approximation. We then optimized a scattering detector array design subject to some hardware constraints, configured the instrument, and gathered experimental data from the relevant bacterial cells. Using these models and experiments, it is shown that optimization using a nominal bacteria model (i.e., using a representative size and refractive index) is insufficient for classification of most bacteria in realistic applications. Hence the computational predictions were constituted in the form of scattering-data-vector distributions that accounted for expected variability in the physical properties between individual bacteria within the four species. After the detectors were optimized using the numerical results, they were used to measure scatter from both the known control samples and unknown bacterial cells. A multivariate statistical method based on a support vector machine (SVM) was used to classify the bacteria species based on light scatter signatures. In our final instrument, we realized correct classification of B. subtilis in the presence of E. coli,L. innocua, and E. faecalis using SVM at 99.1%, 99.6%, and 98.5%, respectively, in the optimal detector array configuration. For comparison, the corresponding values for another set of angles were only 69.9%, 71.7%, and 70.2% using SVM, and more importantly, this improved performance is consistent with classification predictions.

  8. Possible implication of bacterial infection in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Shigeo eFuji

    2014-04-01

    Full Text Available Graft-versus-host disease (GVHD is still one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (HSCT. In the pathogenesis of acute GVHD, it has been established that donor-derived T cells activated in the recipient play a major role in GVHD in initiation and maintenance within an inflammatory cascade. To reduce the risk of GVHD, intensification of GVHD prophylaxis like T cell depletion is effective, but it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-leukemia effects. Although various cytokines are considered to play an important role in the pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented by means of single inflammatory cytokine inhibition. Thus, efficient methods to control the whole inflammatory milieu both on cellular and humoral view are needed. In this context, infectious diseases can theoretically contribute to an elevation of inflammatory cytokines after allogeneic HSCT and activation of various subtypes of immune effector cells, which might in summary lead to an aggravation of acute GVHD. The appropriate treatments or prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we aim to review the literature addressing the interactions of bacterial infections and GVHD after allogeneic HSCT.

  9. Possible Implication of Bacterial Infection in Acute Graft-Versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Fuji, Shigeo; Kapp, Markus; Einsele, Hermann

    2014-01-01

    Graft-versus-host disease (GVHD) is still one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (HSCT). In the pathogenesis of acute GVHD, it has been established that donor-derived T-cells activated in the recipient play a major role in GVHD in initiation and maintenance within an inflammatory cascade. To reduce the risk of GVHD, intensification of GVHD prophylaxis like T-cell depletion is effective, but it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-leukemia effects. Although various cytokines are considered to play an important role in the pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented by means of single inflammatory cytokine inhibition. Thus, efficient methods to control the whole inflammatory milieu both on cellular and humoral view are needed. In this context, infectious diseases can theoretically contribute to an elevation of inflammatory cytokines after allogeneic HSCT and activation of various subtypes of immune effector cells, which might in summary lead to an aggravation of acute GVHD. The appropriate treatments or prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we aim to review the literature addressing the interactions of bacterial infections and GVHD after allogeneic HSCT. PMID:24795865

  10. DNA barcoding of fungi causing infections in humans and animals.

    Science.gov (United States)

    Irinyi, Laszlo; Lackner, Michaela; de Hoog, G Sybren; Meyer, Wieland

    2016-02-01

    Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.

  11. Pollen DNA barcoding: current applications and future prospects.

    Science.gov (United States)

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications.

  12. A laboratory information management system for DNA barcoding workflows.

    Science.gov (United States)

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  13. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    Science.gov (United States)

    Flaherty, Rebecca A; Lee, Shaun W

    2016-08-19

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.

  14. Counting animal species with DNA barcodes: Canadian insects.

    Science.gov (United States)

    Hebert, Paul D N; Ratnasingham, Sujeevan; Zakharov, Evgeny V; Telfer, Angela C; Levesque-Beaudin, Valerie; Milton, Megan A; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R

    2016-09-05

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy.This article is part of the

  15. DNA barcoding of commercially important catfishes in the Philippines.

    Science.gov (United States)

    Quilang, Jonas P; Yu, Shiny Cathlynne S

    2015-06-01

    Many species of catfish are important resources for human consumption, for sport fishing and for use in aquarium industry. In the Philippines, some species are cultivated and some are caught in the wild for food and a few introduced species have become invasive. In this study, DNA barcoding using the mitochondrial cytochrome c oxidase I (COI) gene was done on commercially and economically important Philippine catfishes. A total of 75 specimens belonging to 11 species and 5 families were DNA barcoded. The genetic distances were computed and Neighbor-Joining (NJ) trees were constructed based on the Kimura 2-Parameter (K2P) method. The average K2P distances within species, genus, family and order were 0.2, 8.2, 12.7 and 21.9%, respectively. COI sequences clustered according to their species designation for 7 of the 11 catfishes. DNA barcoding was not able to discriminate between Arius dispar and A. manillensis and between Pterygoplichthys disjunctivus and P. pardalis. The morphological characters that are used to distinguish between these species do not complement molecular identification through DNA barcoding. DNA barcoding also showed that Clarias batrachus from the Philippines is different from the species found in India and Thailand, which supports earlier suggestions based on morphology that those found in India should be designated as C. magur and those in mainland Southeast Asia as C. aff. batrachus "Indochina". This study has shown that DNA barcoding can be used for species delineation and for tagging some species for further taxonomic investigation, which has implications on proper management and conservation strategies.

  16. Counting animal species with DNA barcodes: Canadian insects

    Science.gov (United States)

    Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R.

    2016-01-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy. This article is part of the

  17. Testing candidate plant barcode regions in the Myristicaceae.

    Science.gov (United States)

    Newmaster, S G; Fazekas, A J; Steeves, R A D; Janovec, J

    2008-05-01

    The concept and practice of DNA barcoding have been designed as a system to facilitate species identification and recognition. The primary challenge for barcoding plants has been to identify a suitable region on which to focus the effort. The slow relative nucleotide substitution rates of plant mitochondria and the technical issues with the use of nuclear regions have focused attention on several proposed regions in the plastid genome. One of the challenges for barcoding is to discriminate closely related or recently evolved species. The Myristicaceae, or nutmeg family, is an older group within the angiosperms that contains some recently evolved species providing a challenging test for barcoding plants. The goal of this study is to determine the relative utility of six coding (Universal Plastid Amplicon - UPA, rpoB, rpoc1, accD, rbcL, matK) and one noncoding (trnH-psbA) chloroplast loci for barcoding in the genus Compsoneura using both single region and multiregion approaches. Five of the regions we tested were predominantly invariant across species (UPA, rpoB, rpoC1, accD, rbcL). Two of the regions (matK and trnH-psbA) had significant variation and show promise for barcoding in nutmegs. We demonstrate that a two-gene approach utilizing a moderately variable region (matK) and a more variable region (trnH-psbA) provides resolution among all the Compsonuera species we sampled including the recently evolved C. sprucei and C. mexicana. Our classification analyses based on nonmetric multidimensional scaling ordination, suggest that the use of two regions results in a decreased range of intraspecific variation relative to the distribution of interspecific divergence with 95% of the samples correctly identified in a sequence identification analysis.

  18. DNA barcoding works in practice but not in (neutral theory.

    Directory of Open Access Journals (Sweden)

    Mark Y Stoeckle

    Full Text Available BACKGROUND: DNA barcode differences within animal species are usually much less than differences among species, making it generally straightforward to match unknowns to a reference library. Here we aim to better understand the evolutionary mechanisms underlying this usual "barcode gap" pattern. We employ avian barcode libraries to test a central prediction of neutral theory, namely, intraspecific variation equals 2 Nµ, where N is population size and µ is mutations per site per generation. Birds are uniquely suited for this task: they have the best-known species limits, are well represented in barcode libraries, and, most critically, are the only large group with documented census population sizes. In addition, we ask if mitochondrial molecular clock measurements conform to neutral theory prediction of clock rate equals µ. RESULTS: Intraspecific COI barcode variation was uniformly low regardless of census population size (n = 142 species in 15 families. Apparent outliers reflected lumping of reproductively isolated populations or hybrid lineages. Re-analysis of a published survey of cytochrome b variation in diverse birds (n = 93 species in 39 families further confirmed uniformly low intraspecific variation. Hybridization/gene flow among species/populations was the main limitation to DNA barcode identification. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first large study of animal mitochondrial diversity using actual census population sizes and the first to test outliers for population structure. Our finding of universally low intraspecific variation contradicts a central prediction of neutral theory and is not readily accounted for by commonly proposed ad hoc modifications. We argue that the weight of evidence-low intraspecific variation and the molecular clock-indicates neutral evolution plays a minor role in mitochondrial sequence evolution. As an alternate paradigm consistent with empirical data, we propose extreme

  19. Administration of a polyvalent mechanical bacterial lysate to elderly patients with COPD: Effects on circulating T, B and NK cells.

    Science.gov (United States)

    Lanzilli, Giulia; Traggiai, Elisabetta; Braido, Fulvio; Garelli, Valentina; Folli, Chiara; Chiappori, Alessandra; Riccio, Anna Maria; Bazurro, Gyada; Agazzi, Alessia; Magnani, Alessandra; Canonica, Giorgio Walter; Melioli, Giovanni

    2013-01-01

    The modifications of the subsets of circulating lymphocytes were evaluated in a group of patients with COPD undergoing treatment with a polyvalent mechanical bacterial lysate (PMBL), a drug that is able to significantly modify the natural history of these patients. Using multicolor immune-florescence and flow cytometry, T, B subsets and NK cells were extensively studied both in the group of treated patients and in a disease and age matched controls. Despite the age, in treated patients, T and NK cells were significantly increased in numbers of circulating cells, but not in percentages, while B cells remained unmodified. CD3+4+T cells were increased in treated patients, while CD3+CD8T cells were unmodified by the treatment. Activated T cells were increased but Treg, resulted reduced both in percentage than in absolute numbers. Transitional B cells resulted increased (in percentage and in absolute numbers) in their late maturation step (T3), while only early Naïve B cells were increased by the treatment, while other naïve subpopulations were unmodified. Memory B cells were reduced in percentage (but remained unmodified as absolute numbers), while the most immature form of memory B cells was significantly increased. Finally, both switch memory B cells and plasma cells resulted unmodified by the PMBL treatment. These results clearly indicated that the administration of the PMBL, even in elderly patients with COPD, was able to induce a significant immune-stimulation and these results, at cellular level, clearly support the evidence that the mechanism of action of PMBL is strictly related to a direct effect on immune-competent cells.

  20. Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces

    NARCIS (Netherlands)

    Chen, Yun; Harapanahalli, Akshay K.; Busscher, Henk J.; Norde, Willem; van der Mei, Henny C.

    2014-01-01

    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of

  1. Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces

    NARCIS (Netherlands)

    Chen, Y.; Harapanahalli, A.K.; Busscher, H.J.; Norde, W.; Mei, van der H.C.

    2014-01-01

    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of

  2. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    Science.gov (United States)

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  3. Prey identification in nests of the potter wasp Hypodynerus andeus (Packard (Hymenoptera, Vespidae, Eumeninae using DNA barcodes

    Directory of Open Access Journals (Sweden)

    Héctor A. Vargas

    2014-06-01

    Full Text Available Prey identification in nests of the potter wasp Hypodynerus andeus (Packard (Hymenoptera, Vespidae, Eumeninae using DNA barcodes. Geometrid larvae are the only prey known for larvae of the Neotropical potter wasp Hypodynerus andeus (Packard, 1869 (Hymenoptera, Vespidae, Eumeninae in the coastal valleys of the northern Chilean Atacama Desert. A fragment of the mitochondrial gene cytochrome oxidase c subunit 1 was amplified from geometrid larvae collected from cells of H. andeus in the Azapa Valley, Arica Province, and used to provide taxonomic identifications. Two species, Iridopsis hausmanni Vargas, 2007 and Macaria mirthae Vargas, Parra & Hausmann, 2005 were identified, while three others could be identified only at higher taxonomic levels, because the barcode reference library of geometrid moths is still incomplete for northern Chile.

  4. ISBN and QR Barcode Scanning Mobile App for Libraries

    OpenAIRE

    Graham McCarthy; Sally Wilson

    2011-01-01

    This article outlines the development of a mobile application for the Ryerson University Library. The application provides for ISBN barcode scanning that results in a lookup of library copies and services for the book scanned, as well as QR code scanning. Two versions of the application were developed, one for iOS and one for Android. The article includes some details on the free packages used for barcode scanning functionality. Source code for the Ryerson iOS and Android applications are fre...

  5. Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae).

    Science.gov (United States)

    Starr, Julian R; Naczi, Robert F C; Chouinard, Brianna N

    2009-05-01

    We investigate the species discriminatory power of a subset of the proposed plant barcoding loci (matK, rbcL, rpoC1, rpoB, trnH-psbA) in Carex, a cosmopolitan genus that represents one of the three largest plant genera on earth (c. 2000 species). To assess the ability of barcoding loci to resolve Carex species, we focused our sampling on three of the taxonomically best-known groups in the genus, sections Deweyanae (6/8 species sampled), Griseae (18/21 species sampled), and Phyllostachyae (10/10 species sampled). Each group represents one of three major phylogenetic lineages previously identified in Carex and its tribe Cariceae, thus permitting us to evaluate the potential of DNA barcodes to broadly identify species across the tribe and to differentiate closely related sister species. Unlike some previous studies that have suggested that plant barcoding could achieve species identification rates around 90%, our results suggest that no single locus or multilocus barcode examined will resolve much greater than 60% of Carex species. In fact, no multilocus combination can significantly increase the resolution and statistical support (i.e., ≥ 70% bootstrap) for species than matK alone, even combinations involving the second most variable region, trnH-psbA. Results suggest that a matK barcode could help with species discovery as 47% of Carex taxa recently named or resolved within cryptic complexes in the past 25 years also formed unique species clusters in upgma trees. Comparisons between the nrDNA internal transcribed spacer region (ITS) and matK in sect. Phyllostachyae suggest that matK not only discriminates more species (50-60% vs. 25%), but it provides more resolved phylogenies than ITS. Given the low levels of species resolution in rpoC1 and rpoB (0-13%), and difficulties with polymerase chain reaction amplification and DNA sequencing in rbcL and trnH-psbA (alignment included), we strongly advocate that matK should be part of a universal plant barcoding system

  6. DNA Barcodes for Marine Biodiversity: Moving Fast Forward?

    Directory of Open Access Journals (Sweden)

    Adriana E. Radulovici

    2010-03-01

    Full Text Available ‘Biodiversity’ means the variety of life and it can be studied at different levels (genetic, species, ecosystem and scales (spatial and temporal. Last decades showed that marine biodiversity has been severely underestimated at all levels. In order to investigate diversity patterns and underlying processes, there is a need to know what species live in the marine environment. An emerging tool for species identification, DNA barcoding can reliably assign unknown specimens to known species, also flagging potential cryptic species and genetically distant populations. This paper will review the role of DNA barcoding for the study of marine biodiversity at the species level.

  7. Denture bar-coding: An innovative technique in forensic dentistry

    Science.gov (United States)

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J.; Anuradha, R.; Mary, Gold Pealin; Pradeep, R.; Senthileagappan, A. R.

    2015-01-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  8. DNA barcoding, phylogenetic relationships and speciation of snappers (genus Lutjanus)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The phylogenetic relationships of 13 snapper species from the South China Sea have been established using the combined DNA sequences of three full-length mitochondrial genes (COI, COII and CYTB) and two partial nuclear genes (RAG1, RAG2). The 13 species (genus Lutjanus) were selected after DNA barcoding 72 individuals, representing 20 species. Our study suggests that although DNA barcoding aims to develop species identification systems, it may also be useful in the construction of phylogenies by aiding the selection of taxa. Combined mitochondrial and nuclear gene data has an advantage over an individual dataset because of its higher resolving power.

  9. A DNA barcoding approach in the study of tardigrades

    Directory of Open Access Journals (Sweden)

    Michele Cesari

    2013-05-01

    Full Text Available DNA barcoding is a technique proposed by Hebert and co-workers in 2003 for discriminating species through analysis of a single gene barcode locus. It aims to obtain a better taxonomic resolution than that achieved through morphological studies, and to avoid the decline in taxonomic knowledge. Today DNA barcoding is a global enterprise, and the implementation of the idea has seen a rapid rise (more than 1900 papers published to date on different organisms. Nonetheless, controversy still arises regarding barcoding and taxonomy. It is important to note that DNA barcoding does not focus on building a tree-of-life or on doing DNA taxonomy, even though sometimes it has been used for these purposes. DNA barcoding rather focuses on producing a universal molecular identification key based on strong taxonomic knowledge that should be included in the barcode reference library. In the phylum Tardigrada, DNA barcoding represents a recent approach to species identification and to help in solving taxonomic problems, especially considering the diminutive size of these animals and the paucity of morphological characters useful for taxonomy. In the framework of the MoDNA Project (Morphology and DNA, carried out by our research group in collaboration with several colleagues, we are combining the study of a fragment of the mitochondrial cytochrome c oxidase subunit I gene (cox1 with morphological data, in a wide sense (cuticular structures, chromosomes, data on sex ratio and reproduction, to form an integrative taxonomy approach for tardigrade species identification. We believe that without verified reference sequences from voucher specimens that have been authenticated by qualified taxonomists, there is no reliable library for newly generated sequences with which to be compared. Methods and protocols for standardized results are focused on obtaining tight correspondence between tardigrade morphology (and egg shell morphology, when useful, possibly both light and

  10. Denture bar-coding: An innovative technique in forensic dentistry.

    Science.gov (United States)

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J; Anuradha, R; Mary, Gold Pealin; Pradeep, R; Senthileagappan, A R

    2015-08-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure.

  11. Reliable DNA barcoding performance proved for species and island populations of comoran squamate reptiles.

    Science.gov (United States)

    Hawlitschek, Oliver; Nagy, Zoltán T; Berger, Johannes; Glaw, Frank

    2013-01-01

    In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research.

  12. Reliable DNA barcoding performance proved for species and island populations of comoran squamate reptiles.

    Directory of Open Access Journals (Sweden)

    Oliver Hawlitschek

    Full Text Available In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented