WorldWideScience

Sample records for bang collider restart

  1. Brookhaven collider opens its quest for Big Bang conditions

    CERN Multimedia

    Nadis, S

    2000-01-01

    The collision of two gold nuclei releasing 10 x 10 to the power 12 electron volts of energy, marked the debut of the Relativistic Heavy Ion Collider. Over the next few weeks, scientists hope to increase the accelerator's power to generate collisions 40 x 10 to the power 12 eVs of energy to simulate the conditions that existed immediately after the Big Bang (1 page).

  2. Probing the Big Bang at the Relativistic Heavy Ion Collider (RHIC) (or Probing the Big Bang 13.7 billion years later)

    International Nuclear Information System (INIS)

    Lee, David M

    2010-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the USA is a variable energy proton-proton and ion-ion collider that is the first accelerator capable of colliding heavy ions. RHIC was designed to do experiments that provide important information about the Standard Model of particle physics, Quantum Chromodynamics (QCD). QCD predicts that in the early part of the Universe just after the Big Bang the world consisted of a Quark Gluon Plasma, a weakly interacting collection of quarks and gluons. At RHIC we can recreate the conditions of the early Universe by colliding heavy ions at 200 GeV. This paper will give a general overview of the physics motivation for studying the QGP, how our experiments are designed to study the QGP, what we have learned over the last 9 years, and what the future holds.

  3. Physics and guitars collide to make a big bang in schools

    CERN Multimedia

    2008-01-01

    Rock guitars, superstrings, 11 dimensions and the world's largest and highest energy particle accelerator are the lead instruments for the Institute of Physics' loudest schools lecture to date. "Rock in 11 dimensions: where physics and guitars collide" is an exciting, interactive and inspiring free talk for school students throughout the UK, building on everyday physics to explain groundbreaking research.

  4. Physics and guitars collide to make a big bang in schools

    CERN Multimedia

    2008-01-01

    Rock guitars, superstrings, 11 dimensions and the world's largest and highest energy particle accelerator are the lead instruments for the Institute of Physics' loudest schools lecture to date. 'Rock in 11 dimensions: where physics and guitars collide' is an exciting, interactive and inspiring free talk for school students throughout the UK, building on everyday physics to explain groundbreaking research.

  5. Large hadron collider will get us closer to the Big Bang

    CERN Multimedia

    Khadilkar, Dhananjay

    2006-01-01

    The LHC consists of a 27 km tunnel located 100 meters under the ground near Geneva in Switzerland, lined with hundreds of superconducting magnets which will accelerate protons and subsequently collide them at mind-boggling energies of 14 terra electorn Volts. The result will be conditions prevalent just microseconds after the Big Band 15 billion years ago (1/2 page)

  6. The adventures of the Large Hadron Collider from the Big Bang to the Higgs boson

    CERN Document Server

    Denegri, Daniel; Hoecker, Andreas; Roos, Lydia

    2018-01-01

    An introduction to the world of quarks and leptons, and of their interactions governed by fundamental symmetries of nature, as well as an introduction to the connection that exists between worlds of the infinitesimally small and the infinitely large. The book starts with a simple presentation of the theoretical framework, the so-called Standard Model, which evolved gradually since the 1960's. This is followed by its main experimental successes, and its weaknesses and incompleteness. We proceed then with the incredible story of the Large Hadron Collider at CERN — the largest purely scientific project ever realized. What follows is the discussion of the conception, design and construction of the detectors of size and complexity without precedent in scientific history. The book summarizes the main physics results obtained firstly during the initial phase of operation of the LHC, which culminated in the discovery of the Higgs boson in 2012 (the Nobel Prize in Physics in 2013). This is followed by the results o...

  7. Beleaguered LHC gears up for restart

    CERN Multimedia

    Cartwright, Jon

    2009-01-01

    "The Large Hadron Collider (LHC) is finally set to restart in mid-November following last year's accident. Initially it will collide protons at an energy of only 3.5 TeV per beam, and staff at Cern will have to wait until late next year before trying to run the collider at its maximum energy" (0.75 page)

  8. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  9. Big Bang test delayed at CERN's LHC until 2008

    CERN Multimedia

    Atkins, William

    2007-01-01

    "Scientists at the proton-proton Large Hadron Collider (LHC) particle accelerator and collider will postpone a test that could help solve the mystery of what happened a few nanoseconds after the Big Bang." (1 page)

  10. Thomas Bang

    DEFF Research Database (Denmark)

    Petersen, Anne Ring; Bogh, Mikkel; Troelsen, Anders

    Monografi om kunstneren Thomas Bangs malerier, tegninger, skulpturer og installationer der følger hans virke fra de tidligste malerier fra begyndelsen af 1960erne til de seneste års store skupturinstallationer.......Monografi om kunstneren Thomas Bangs malerier, tegninger, skulpturer og installationer der følger hans virke fra de tidligste malerier fra begyndelsen af 1960erne til de seneste års store skupturinstallationer....

  11. Restarts in Conversation and Literature.

    Science.gov (United States)

    Person, Raymond F., Jr.

    1996-01-01

    Analyzes restarts, a common feature of conversation, in literary discourse. The term "restart" refers to the repetition of a word or words within an utterance by the same speaker. Restarts in literary discourse are of two types: (1) those produced by the characters in their "real" narrative world and (2) those produced by the narrators themselves.…

  12. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  13. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  14. Big Bang

    CERN Multimedia

    Lyons, Daniel

    2006-01-01

    "It will be the world's largest machine. It could explain the origins of the universe. But first a team of engineers has the gargantuan logistic challenge of putting the Large Hadron Collider together" (2 pages)

  15. Scientists hope collider makes a big bang

    CERN Multimedia

    Nickerson, Colin

    2007-01-01

    "In a 17-ile circular tunnel curving beneath the Swiss-French border, scientists are poised to recreate the universe's first trillionth of a second. The aim of the audacious undertaking is to solve one of the most perturbing puzzles of physics: How did matter attain mass and form the cosmos? (2 pages)

  16. Press Conference: LHC Restart, Season 2

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    PRESS BRIEFING ON THE LARGE HADRON COLLIDER (LHC) RE-START, SEASON 2 AT CERN, GLOBE OF SCIENCE AND INNOVATION Where :   http://cern.ch/directions   at the Globe of Science and Innovation When : Thursday, 12 March from 2.30 to 3.30pm - Open seating as from 2.15pm Speakers : CERN’s Director General, Rolf Heuer and Director of Accelerators, Frédérick Bordry, and representatives of the LHC experiments Webcast : https://webcast.web.cern.ch/webcast/ Dear Journalists, CERN is pleased to invite you to the above press briefing which will take place on Thursday 12 March, in the Globe of Science and Innovation, 1st floor, from 2.30 to 3.30pm. The Large Hadron Collider (LHC) is ready to start up for its second three-year run. The 27km LHC is the largest and most powerful particle accelerator in the world operating at a temperature of -217 degrees Centigrade and powered to a current of 11,000 amps. Run 2 of the LHC follows a two-year technical s...

  17. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  18. The big bang

    International Nuclear Information System (INIS)

    Chown, Marcus.

    1987-01-01

    The paper concerns the 'Big Bang' theory of the creation of the Universe 15 thousand million years ago, and traces events which physicists predict occurred soon after the creation. Unified theory of the moment of creation, evidence of an expanding Universe, the X-boson -the particle produced very soon after the big bang and which vanished from the Universe one-hundredth of a second after the big bang, and the fate of the Universe, are all discussed. (U.K.)

  19. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  20. Big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    2001-01-01

    The precision of measurements in modern cosmology has made huge strides in recent years, with measurements of the cosmic microwave background and the determination of the Hubble constant now rivaling the level of precision of the predictions of big bang nucleosynthesis. However, these results are not necessarily consistent with the predictions of the Standard Model of big bang nucleosynthesis. Reconciling these discrepancies may require extensions of the basic tenets of the model, and possibly of the reaction rates that determine the big bang abundances

  1. Big-bang nucleosynthesis revisited

    Science.gov (United States)

    Olive, Keith A.; Schramm, David N.; Steigman, Gary; Walker, Terry P.

    1989-01-01

    The homogeneous big-bang nucleosynthesis yields of D, He-3, He-4, and Li-7 are computed taking into account recent measurements of the neutron mean-life as well as updates of several nuclear reaction rates which primarily affect the production of Li-7. The extraction of primordial abundances from observation and the likelihood that the primordial mass fraction of He-4, Y(sub p) is less than or equal to 0.24 are discussed. Using the primordial abundances of D + He-3 and Li-7 we limit the baryon-to-photon ratio (eta in units of 10 exp -10) 2.6 less than or equal to eta(sub 10) less than or equal to 4.3; which we use to argue that baryons contribute between 0.02 and 0.11 to the critical energy density of the universe. An upper limit to Y(sub p) of 0.24 constrains the number of light neutrinos to N(sub nu) less than or equal to 3.4, in excellent agreement with the LEP and SLC collider results. We turn this argument around to show that the collider limit of 3 neutrino species can be used to bound the primordial abundance of He-4: 0.235 less than or equal to Y(sub p) less than or equal to 0.245.

  2. LHC Report: Restart preparations continue

    CERN Multimedia

    Katy Foraz for the LHC team and Julia Trummer for the RP Group

    2012-01-01

    Maintenance and consolidation work has been progressing well in both the machine and the experiments in preparation for the March restart.   A sample material is attached to the LHC (the white bag taped to the green line), to measure the radiation doses. Additional work was required around Point 5 due to the discovery and repair of a problem with the RF fingers at the connection of two beam vacuum chambers in CMS. The repair has been completed successfully and the sector is now under vacuum. In order to avoid rushing the delicate final operations required for closing the detector, the restart of the machine has been postponed by one week, from 7 March to 14 March. In the machine, the first cool-down to 1.9 K has started in several sectors ,and the cool-down of the whole machine is still planned to be finished by 21 February. The time window between 22 February and 14 March will be dedicated to powering and cryogenic tests. Since 12 December, the Radiation Protection (RP) group has been deep...

  3. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  4. Big Bang baryosynthesis

    International Nuclear Information System (INIS)

    Turner, M.S.; Chicago Univ., IL

    1983-01-01

    In these lectures I briefly review Big Bang baryosynthesis. In the first lecture I discuss the evidence which exists for the BAU, the failure of non-GUT symmetrical cosmologies, the qualitative picture of baryosynthesis, and numerical results of detailed baryosynthesis calculations. In the second lecture I discuss the requisite CP violation in some detail, further the statistical mechanics of baryosynthesis, possible complications to the simplest scenario, and one cosmological implication of Big Bang baryosynthesis. (orig./HSI)

  5. On the entrance distribution in RESTART simulation

    NARCIS (Netherlands)

    Garvels, M.J.J.; Kroese, Dirk

    The RESTART method is a widely applicable simulation technique for the estimation of rare event probabilities. The method is based on the idea to restart the simulation at certain intermediate stages, in order to generate more occurrences of the rare event. In many cases we are interested in the

  6. Public communication toward Monju restart

    International Nuclear Information System (INIS)

    Aoki, Tadao

    2001-01-01

    Five years have gone by since the sodium leak took place at a prototype FBR Monju. Looking back upon that time, one journalist said, The Monju accident was technically far from the serious one as being reported in the media. Had it not been for the infamous 'accident cover-up', an uproar must have calmed down in a month. But an unexpectedly large negative public reaction has kept Monju idle all these years. What had really happened? There was a false report on the time of first entry to the piping room or the sodium-leak spot. Contrary to the fact that five staffs did enter the room at 2:00 am, PNC failed to mention it at a first press conference held at 8:30 am. Instead, PNC created a fictitious time of entry at 10:00 am and reported it to the authorities in a formal document. Another mishap was a video cover-up operation. A year and three months later, an explosion accident took place at PNC's Tokai Reprocessing Facility and similar mishap was repeated then, causing a fatal damage to the PNC's reputation. Public opinion polls taken by mass media have concluded that PNC is 'bureaucratic, closed, slow in coping with situation and untrustworthy'. PNC struggle began - struggle to regain public trust. A series of mishaps at PNC have created an anxiety and distrust about nuclear energy among the nation. In order to restore the trust of the nation, STA, a government agency supervising PNC, decided that PNC be reorganised to make a new start as Japan Nuclear Cycle Development Institute (JNC) on October 1, 1998. In the start of the new organisation, JNC is expected to carry out operations placing priority on the locality of its facilities. The most precious lesson learned from the Monju accident is the importance of public communication. Currently undertaking activities toward Monju restart are; 1) public opinion monitoring, 2) social meetings, 3) strengthening publicity activities, 4) dialogue with local administration officials and opinion leaders, 5) 'open meeting

  7. The promise of the large collider

    CERN Multimedia

    2007-01-01

    "In 2007, the most powerful particle accelerator ever built, CERN's new Large hadron Collider, will probe the secrets of matter in the energy states prevailing in the moments after the Big Bang. By colliding particles together when they are moving at close to the speed of ight, physicists hope to find out about matter in its earliest forms, using the energy produced by the collisions." (2 pages)

  8. Film Presentation: The Big Bang Machine by BBC (2008)

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Professor Brian Cox visits Geneva to take a look around CERN's Large Hadron Collider before the vast, 27km long machine is sealed off and a simulation experiment begins to try to create the conditions that existed a billionth of a second after the Big Bang. Cox is joined by fellow scientists, including CERN theorist John Ellis and Nobel Laureate Leon Lederman from Fermilab, who hope that the LHC will change our understanding of the early Universe and solve some of its mysteries. The Big Bang Machine will be presented on Friday, 15 October from 13:00 to 14:00 in the Council Chamber, Bldg.503 Language: English

  9. LHC Report: A tough restart

    CERN Multimedia

    Jan Uythoven for the LHC team

    2012-01-01

    The third LHC Technical Stop of five days took place in the week of September 17. Getting back to normal operation after a technical stop  can sometimes be difficult, with debugging, testing and requalification required on the systems that have seen interventions. Folding in a selection of other problems can make for a frustrating time.   The new injector magnet is transported to the LHC. Photo: TE/ABT group. The restart experienced over the last days was one of the tougher ones. Many problems occurred, both small and large, one after the other; in the end it took until Sunday afternoon, 9 days after the end of the technical stop, to have a physics fill in the machine that delivered an initial luminosity similar to those before the technical stop. Most problems encountered were, in fact, not related to the technical stop. The technical stop consisted of the usual maintenance and consolidation of the various systems, but two items stand out: the replacement of the mirrors an...

  10. The Big Bang

    CERN Multimedia

    Moods, Patrick

    2006-01-01

    How did the Universe begin? The favoured theory is that everything - space, time, matter - came into existence at the same moment, around 13.7 thousand million years ago. This event was scornfully referred to as the "Big Bang" by Sir Fred Hoyle, who did not believe in it and maintained that the Universe had always existed.

  11. Finding the big bang

    CERN Document Server

    Page, Lyman A; Partridge, R Bruce

    2009-01-01

    Cosmology, the study of the universe as a whole, has become a precise physical science, the foundation of which is our understanding of the cosmic microwave background radiation (CMBR) left from the big bang. The story of the discovery and exploration of the CMBR in the 1960s is recalled for the first time in this collection of 44 essays by eminent scientists who pioneered the work. Two introductory chapters put the essays in context, explaining the general ideas behind the expanding universe and fossil remnants from the early stages of the expanding universe. The last chapter describes how the confusion of ideas and measurements in the 1960s grew into the present tight network of tests that demonstrate the accuracy of the big bang theory. This book is valuable to anyone interested in how science is done, and what it has taught us about the large-scale nature of the physical universe.

  12. Big Bang Circus

    Science.gov (United States)

    Ambrosini, C.

    2011-06-01

    Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…

  13. Big Bang 5

    CERN Document Server

    Apolin, Martin

    2007-01-01

    Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. Der Band 5 RG behandelt die Grundlagen (Maßsystem, Größenordnungen) und die Mechanik (Translation, Rotation, Kraft, Erhaltungssätze).

  14. Big Bang 8

    CERN Document Server

    Apolin, Martin

    2008-01-01

    Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. Band 8 vermittelt auf verständliche Weise Relativitätstheorie, Kern- und Teilchenphysik (und deren Anwendungen in der Kosmologie und Astrophysik), Nanotechnologie sowie Bionik.

  15. Big Bang 6

    CERN Document Server

    Apolin, Martin

    2008-01-01

    Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. Der Band 6 RG behandelt die Gravitation, Schwingungen und Wellen, Thermodynamik und eine Einführung in die Elektrizität anhand von Alltagsbeispielen und Querverbindungen zu anderen Disziplinen.

  16. Big Bang 7

    CERN Document Server

    Apolin, Martin

    2008-01-01

    Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. In Band 7 werden neben einer Einführung auch viele aktuelle Aspekte von Quantenmechanik (z. Beamen) und Elektrodynamik (zB Elektrosmog), sowie die Klimaproblematik und die Chaostheorie behandelt.

  17. Big Bang Darkleosynthesis

    OpenAIRE

    Krnjaic, Gordan; Sigurdson, Kris

    2014-01-01

    In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis , a dark-sector version of big-bang nucleosynthesis (BBN), in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD , which generica...

  18. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  19. Was there a big bang

    International Nuclear Information System (INIS)

    Narlikar, J.

    1981-01-01

    In discussing the viability of the big-bang model of the Universe relative evidence is examined including the discrepancies in the age of the big-bang Universe, the red shifts of quasars, the microwave background radiation, general theory of relativity aspects such as the change of the gravitational constant with time, and quantum theory considerations. It is felt that the arguments considered show that the big-bang picture is not as soundly established, either theoretically or observationally, as it is usually claimed to be, that the cosmological problem is still wide open and alternatives to the standard big-bang picture should be seriously investigated. (U.K.)

  20. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  1. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  2. Detailed behavioral modeling of bang-bang phase detectors

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Andreani, Pietro; Keil, U. D.

    2006-01-01

    In this paper, the metastability of current-mode logic (CML) latches and flip-flops is studied in detail. Based on the results of this analysis, a behavioral model of bang-bang phase detectors (BBPDs) is proposed, which is able to reliably capture the critical deadzone effect. The impact of jitter...

  3. A Matrix Big Bang

    OpenAIRE

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matr...

  4. LHC Experiments: refinements for the restart

    CERN Multimedia

    2009-01-01

    As the LHC restart draws closer, the Bulletin will be taking a look at how the six LHC experiments are preparing and what they have been up to since last September. In this issue we start with a roundup of the past 10 months of activity at CMS and ATLAS, both technical work and outreach activities.

  5. Failure Recovery via RESTART: Wallclock Models

    DEFF Research Database (Denmark)

    Asmussen, Søren; Rønn-Nielsen, Anders

    A task such as the execution of a computer program or the transfer of a file on a communications link may fail and then needs to be restarted. Let the ideal task time be a constant $\\ell$ and the actual task time $X$, a random variable. Tail asymptotics for $\\mathbb{P}(X>x)$ is given under three ...

  6. Was the big bang hot

    International Nuclear Information System (INIS)

    Wright, E.L.

    1983-01-01

    The author considers experiments to confirm the substantial deviations from a Planck curve in the Woody and Richards spectrum of the microwave background, and search for conducting needles in our galaxy. Spectral deviations and needle-shaped grains are expected for a cold Big Bang, but are not required by a hot Big Bang. (Auth.)

  7. Passport to the Big Bang

    CERN Multimedia

    De Melis, Cinzia

    2013-01-01

    Le 2 juin 2013, le CERN inaugure le projet Passeport Big Bang lors d'un grand événement public. Affiche et programme. On 2 June 2013 CERN launches a scientific tourist trail through the Pays de Gex and the Canton of Geneva known as the Passport to the Big Bang. Poster and Programme.

  8. Big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Fields, Brian D.; Olive, Keith A.

    2006-01-01

    We present an overview of the standard model of big bang nucleosynthesis (BBN), which describes the production of the light elements in the early universe. The theoretical prediction for the abundances of D, 3 He, 4 He, and 7 Li is discussed. We emphasize the role of key nuclear reactions and the methods by which experimental cross section uncertainties are propagated into uncertainties in the predicted abundances. The observational determination of the light nuclides is also discussed. Particular attention is given to the comparison between the predicted and observed abundances, which yields a measurement of the cosmic baryon content. The spectrum of anisotropies in the cosmic microwave background (CMB) now independently measures the baryon density to high precision; we show how the CMB data test BBN, and find that the CMB and the D and 4 He observations paint a consistent picture. This concordance stands as a major success of the hot big bang. On the other hand, 7 Li remains discrepant with the CMB-preferred baryon density; possible explanations are reviewed. Finally, moving beyond the standard model, primordial nucleosynthesis constraints on early universe and particle physics are also briefly discussed

  9. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    CERN Multimedia

    2008-01-01

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

  10. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  11. Colliding druthers

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Johnson, R.P.

    1977-01-01

    Recommendations are made to maximize the usefulness of the colliding beam facility of the Main Ring and Energy Doubler at the Fermilab accelerator. The advantages of the transposed crossing geometry over the kissing geometry are pointed out

  12. Rate Change Big Bang Theory

    Science.gov (United States)

    Strickland, Ken

    2013-04-01

    The Rate Change Big Bang Theory redefines the birth of the universe with a dramatic shift in energy direction and a new vision of the first moments. With rate change graph technology (RCGT) we can look back 13.7 billion years and experience every step of the big bang through geometrical intersection technology. The analysis of the Big Bang includes a visualization of the first objects, their properties, the astounding event that created space and time as well as a solution to the mystery of anti-matter.

  13. Nonstandard big bang models

    International Nuclear Information System (INIS)

    Calvao, M.O.; Lima, J.A.S.

    1989-01-01

    The usual FRW hot big-bang cosmologies have been generalized by considering the equation of state ρ = Anm +(γ-1) -1 p, where m is the rest mass of the fluid particles and A is a dimensionless constant. Explicit analytic solutions are given for the flat case (ε=O). For large cosmological times these extended models behave as the standard Einstein-de Sitter universes regardless of the values of A and γ. Unlike the usual FRW flat case the deceleration parameter q is a time-dependent function and its present value, q≅ 1, obtained from the luminosity distance versus redshift relation, may be fitted by taking, for instance, A=1 and γ = 5/3 (monatomic relativistic gas with >> k B T). In all cases the universe cools obeying the same temperature law of the FRW models and it is shown that the age of the universe is only slightly modified. (author) [pt

  14. The Last Big Bang

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Austin D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    As one of the very few people in the world to give the “go/no go” decision to detonate a nuclear device, Austin “Mac” McGuire holds a very special place in the history of both the Los Alamos National Laboratory and the world. As Commander of Joint Task Force Unit 8.1.1, on Christmas Island in the spring and summer of 1962, Mac directed the Los Alamos data collection efforts for twelve of the last atmospheric nuclear detonations conducted by the United States. Since data collection was at the heart of nuclear weapon testing, it fell to Mac to make the ultimate decision to detonate each test device. He calls his experience THE LAST BIG BANG, since these tests, part of Operation Dominic, were characterized by the dramatic displays of the heat, light, and sounds unique to atmospheric nuclear detonations – never, perhaps, to be witnessed again.

  15. A matrix big bang

    International Nuclear Information System (INIS)

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control

  16. A matrix big bang

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Verlinde, Erik [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2005-10-15

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.

  17. Collider Physics

    OpenAIRE

    Zeppenfeld, D.

    1999-01-01

    These lectures are intended as a pedagogical introduction to physics at $e^+e^-$ and hadron colliders. A selection of processes is used to illustrate the strengths and capabilities of the different machines. The discussion includes $W$ pair production and chargino searches at $e^+e^-$ colliders, Drell-Yan events and the top quark search at the Tevatron, and Higgs searches at the LHC.

  18. Restart of the LHC in 2009

    CERN Multimedia

    Corinne Pralavorio

    The restart of the LHC during the summer 2009 has been confirmed today, the 5 December. An updated report on the incident which damaged sector 3-4 has just been published. It gives details on the damage caused by the incident and explains the ongoing repairs and the new systems being put into place to reinforce the safety of the machine. Click here to see the report.

  19. Waxy crude oil flow restart ability

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Andre Gaona; Varges, Priscilla Ribeiro; Mendes, Paulo Roberto de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do Rio de Janeiro, RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [PETROBRAS S.A, R.J., Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    Under the hot reservoir conditions, waxy crudes behave like Newtonian fluids but once they experience very cold temperatures on the sea floor, the heavy paraffin's begin to precipitate from the solution impacting non- Newtonian flow behavior to the crude (Chang 2000, Lee 2009, Davidson 2004) and begin to deposit on the pipe wall leave blocked of pipeline. This gel cannot be broken with the original steady state flow operating pressure applied before gelation (Chang 1998). Restarting waxy crude oil flows in pipelines is a difficult issue because of the complex rheological behavior of the gelled oil. Indeed, below the WAT, the gelled oil exhibits viscoplastic, thixotropic, temperature-dependent, and compressible properties due to the interlocking gel-like structure formed by the crystallized paraffin compounds and the thermal shrinkage of the oil. The main objective of this work is to determine the minimal pressure to restart the flow, and the relationship between the fluid rheology , pipe geometry and the restart pressure of the flow. Experiments will be performed to investigate the displacement of carbopol aqueous solutions (viscoplastic fluid without thixotropic effects) by Newtonian oil flowing through a strait pipe to validate the experimental apparatus. Therefore, tests will be made with different fluids, like Laponite and waxy crude oils. (author)

  20. The Big Bang on the laboratory bench

    International Nuclear Information System (INIS)

    Roy, Ch.; Daninos, F.; Baruch, J.O.

    2006-01-01

    For a few fractions of a second after the Big-Bang, the temperature of the universe reached several thousands milliards degrees and till now quarks and gluons have been thought to be dissociated in a kind of primordial plasma but recent experimental results from the RHIC (relativistic heavy ions collider in Brookhaven) show that the quark and gluon plasma flows like a fluid and that the interaction between quarks generates that flow. Another feature of the quark and gluon plasma is an ability to behave like an almost perfect gas: it shows very low viscosity and reaches thermal equilibrium very quickly. Alice, a huge particle detection system that will equip the future LHC (large hadron collider in CERN), will shed light on an energy range that has been scarcely touched by RHIC. Confirmation of RHIC results is expected but the discovery of totally new phenomena like the creation of mini black holes or the existence of extra spatial dimensions remains possible. Another issue concerns nucleosynthesis and the problem that nuclear models predict a ratio of helium 7 in stars 3 times as high as what is really found in the oldest stars of our galaxy. (A.C.)

  1. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  2. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  3. Japan: Sendai, first reactor to restart. Sendai restart: how does it work? Japan: restart will be 'progressive'. 2015: which role for nuclear energy in Japan?

    International Nuclear Information System (INIS)

    Le Ngoc, Boris; Jouette, Isabelle

    2015-01-01

    A set of articles addresses the restart of nuclear plants in Japan. The first one presents the Sendai nuclear plant, evokes the commitment of the Japanese nuclear safety authority (the NRA) at each step of the restart process, the agreement of local populations, the loading of the nuclear fuel, a successful crisis exercise, and the benefits expected from this restart. The second article addresses the restart process with its administrative aspects, the implication of local authorities, its technical aspects, and investments made to improve nuclear safety. The third article proposes an interview of the nuclear expert of the French embassy in Tokyo. He outlines that the restart of nuclear plants will be progressive, comments how Sendai restart has been commented in the Japanese press, evokes how this restart is part of the Japanese Prime Minister's policy, evokes the role and challenges of nuclear energy in Japan for the years to come, and the role France may play. The last article discusses the role of nuclear energy in Japan in 2015: importance of the old 3E policy (Energy, Environment, Economy) which is put into question again by the Fukushima accident, creation of a new nuclear safety authority as a first step before restarting nuclear reactors

  4. Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps

    International Nuclear Information System (INIS)

    Avrutin, V; Granados, A; Schanz, M

    2011-01-01

    Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs

  5. Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps

    Science.gov (United States)

    Avrutin, V.; Granados, A.; Schanz, M.

    2011-09-01

    Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs.

  6. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  7. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  8. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  9. Big bang darkleosynthesis

    Directory of Open Access Journals (Sweden)

    Gordan Krnjaic

    2015-12-01

    Full Text Available In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis, a dark-sector version of big-bang nucleosynthesis (BBN, in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD, which generically yields large (≫MeV/dark-nucleon binding energies. These bounds further suggest the mediator is relatively weakly coupled, so repulsive forces between dark-sector nuclei are much weaker than Coulomb repulsion between standard-model nuclei, which results in an exponential barrier-tunneling enhancement over standard BBN. Thus, darklei are easier to make and harder to break than visible species with comparable mass numbers. This process can efficiently yield a dominant population of states with masses significantly greater than the confinement scale and, in contrast to dark matter that is a fundamental particle, may allow the dominant form of dark matter to have high spin (S≫3/2, whose discovery would be smoking gun evidence for dark nuclei.

  10. Predicting big bang deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, N.; Scherrer, R.J.; Steigman, G.; Thomas, D.; Walker, T.P. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

    1996-02-01

    We present new upper and lower bounds to the primordial abundances of deuterium and {sup 3}He based on observational data from the solar system and the interstellar medium. Independent of any model for the primordial production of the elements we find (at the 95{percent} C.L.): 1.5{times}10{sup {minus}5}{le}(D/H){sub {ital P}}{le}10.0{times}10{sup {minus}5} and ({sup 3}He/H){sub {ital P}}{le}2.6{times}10{sup {minus}5}. When combined with the predictions of standard big bang nucleosynthesis, these constraints lead to a 95{percent} C.L. bound on the primordial abundance deuterium: (D/H){sub best}=(3.5{sup +2.7}{sub {minus}1.8}){times}10{sup {minus}5}. Measurements of deuterium absorption in the spectra of high-redshift QSOs will directly test this prediction. The implications of this prediction for the primordial abundances of {sup 4}He and {sup 7}Li are discussed, as well as those for the universal density of baryons. {copyright} {ital 1996 The American Astronomical Society.}

  11. Big bang darkleosynthesis

    Science.gov (United States)

    Krnjaic, Gordan; Sigurdson, Kris

    2015-12-01

    In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis, a dark-sector version of big-bang nucleosynthesis (BBN), in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD, which generically yields large (≫MeV /dark-nucleon) binding energies. These bounds further suggest the mediator is relatively weakly coupled, so repulsive forces between dark-sector nuclei are much weaker than Coulomb repulsion between standard-model nuclei, which results in an exponential barrier-tunneling enhancement over standard BBN. Thus, darklei are easier to make and harder to break than visible species with comparable mass numbers. This process can efficiently yield a dominant population of states with masses significantly greater than the confinement scale and, in contrast to dark matter that is a fundamental particle, may allow the dominant form of dark matter to have high spin (S ≫ 3 / 2), whose discovery would be smoking gun evidence for dark nuclei.

  12. Restarting Automata with Auxiliary Symbols and Small Lookahead

    DEFF Research Database (Denmark)

    Schluter, Natalie Elaine

    2012-01-01

    We present a study on lookahead hierarchies for restarting automata with auxiliary symbols and small lookahead. In particular, we show that there are just two different classes of languages recognised by RRWW automata, through the restriction of lookahead size. We also show that the respective...... (left-) monotone restarting automaton models characterise the context-free languages and that the respective right-left-monotone restarting automata characterise the linear languages both with just lookahead length 2....

  13. Future colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1996-10-01

    The high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, pp), of lepton (e + e - , μ + μ - ) and photon-photon colliders are considered. Technical arguments for increased energy in each type of machine are presented. Their relative size, and the implications of size on cost are discussed

  14. Collider Physics

    Indian Academy of Sciences (India)

    This is summary of the activities of the working group on collider physics in the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9) held at the Institute of Physics, Bhubaneswar, India in January 2006. Some of the work subsequently done on these problems by the subgroups formed during the workshop is ...

  15. The Big Bang and the Search for a Theory of Everything

    Science.gov (United States)

    Kogut, Alan

    2010-01-01

    How did the universe begin? Is the gravitational physics that governs the shape and evolution of the cosmos connected in a fundamental way to the sub-atomic physics of particle colliders? Light from the Big Bang still permeates the universe and carries within it faint clues to the physics at the start of space and time. I will describe how current and planned measurements of the cosmic microwave background will observe the Big Bang to provide new insight into a "Theory of Everything" uniting the physics of the very large with the physics of the very small.

  16. LHC Report: Rocky re-start

    CERN Multimedia

    Barbara Holzer for the LHC Team

    2012-01-01

    A rocky re-start with beam followed a successful machine development period and the first technical stop of 2012. Today, Friday 11 May, the machine began running again with 1380 bunches.   A short, two-day machine development period was successfully completed on 21-22 April. It focused on topics relevant for the 2012 physics beam operation. This was then followed by a five-day technical stop, the first of the year. The technical stop finished on time on Friday 26 April. The re-start with beam was somewhat tortuous and hampered by an unlucky succession of technical faults leading to extended periods of downtime. The planned intensity increase was put on hold for three days with the machine operating with 1092 bunches and a moderate bunch intensity of 1.3x1011 protons. This delivered a reasonable peak luminosity of 3.6x1033 cm-2s-1 to ATLAS and CMS. Higher than usual beam losses were observed in the ramp and squeeze, and time was required to investigate the causes and to implement mitigati...

  17. Probing the pre-big bang universe

    International Nuclear Information System (INIS)

    Veneziano, G.

    2000-01-01

    Superstring theory suggests a new cosmology whereby a long inflationary phase preceded a non singular big bang-like event. After discussing how pre-big bang inflation naturally arises from an almost trivial initial state of the Universe, I will describe how present or near-future experiments can provide sensitive probes of how the Universe behaved in the pre-bang era

  18. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  19. The Inverted Big-Bang

    OpenAIRE

    Vaas, Ruediger

    2004-01-01

    Our universe appears to have been created not out of nothing but from a strange space-time dust. Quantum geometry (loop quantum gravity) makes it possible to avoid the ominous beginning of our universe with its physically unrealistic (i.e. infinite) curvature, extreme temperature, and energy density. This could be the long sought after explanation of the big-bang and perhaps even opens a window into a time before the big-bang: Space itself may have come from an earlier collapsing universe tha...

  20. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  1. Operational readiness reviews for restart of L reactor

    International Nuclear Information System (INIS)

    Finley, R.H.

    1984-01-01

    The L Reactor at the Savannah River Plant is being restarted after being in a standby status since 1968. Operational Readiness Reviews (ORRs) were conducted by DOE-SR and contractor personnel concurrent with the restart activity. This paper summarizes the ORR activity

  2. Los Alamos National Laboratory Omega West Reactor restart

    International Nuclear Information System (INIS)

    1993-01-01

    This report is a critical evaluation of the effort for the restart of the Omega West reactor. It is divided into the following areas: progress made; difficulties in restart effort; current needs; and suggested detailed steps for improvement. A brief discussion is given for each area of study

  3. Bang-bang Model for Regulation of Local Blood Flow

    Science.gov (United States)

    Golub, Aleksander S.; Pittman, Roland N.

    2013-01-01

    The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2−) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the “bang-bang” or “on/off” regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2− into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen. PMID:23441827

  4. Physics programmes of the restarted LHC

    International Nuclear Information System (INIS)

    Tokushuku, Katsuo

    2011-01-01

    Experimental programs at the Large Hadron Collider (LHC) have started. On March 30th in 2010, proton beams collided at 7 TeV in the LHC, at the highest center-of-mass energy the humankind has ever produced. The machine will be operated almost continuously until the end of 2011, providing many collision data to explore new physics in the TeV region. The LHC has recovered from the unfortunate helium-leak incident in September 2009. In this article, after describing the history of the consolidation works in the LHC, physics prospects from the 2 year run are discussed. (author)

  5. ALICE & LHCb: refinements for the restart

    CERN Multimedia

    2009-01-01

    Following the previous issue, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. Previously we looked at CMS and ATLAS; this issue we will round up the past 10 months of activity at ALICE and LHCb. LHCb The cavern of the LHCb experiment. This year has given LHCb the chance to install the 5th and final plane of muon chambers, which will improve the triggering at nominal luminosity. This is the final piece of the experiment to be installed. "Now the detector looks exactly as it does in the technical design report," confirms Andrei Golutvin, LHCb Spokesperson. "We also took advantage of this shutdown to make several improvements. For example, we modified the high voltage system of the electromagnetic calorimeter to reduce noise further to a negligible level. We also took some measures to improve ...

  6. Restart of R reactor at SRP

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1983-01-01

    Restart of the Savannah River R-Reactor is an alternative to L-Reactor operation for increased production of defense nuclear material. R-Reactor was shut down in 1964 after 11-years operation and has been on standby for 19 years. This report presents a description of R-Reactor operation to serve as a basis for analysis of environmental impacts after restoration to meet current SRP performance standards. R-Reactor operation would differ from L-Reactor operation principally in discharge and recycle of effluent cooling water to Par Pond, rather than direct discharge to the Savannah River by way of Steel Creek. Significant differences in environmental effects could result. A costly renovation program would be required to restore R-Reactor to operability, and the reactor could not contribute to material production before about 1989

  7. Re-starting an Arnoldi iteration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, R.B. [Argonne National Lab., IL (United States)

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  8. From Big Bang to Eternity?

    Indian Academy of Sciences (India)

    at different distances (that is, at different epochs in the past) to come to this ... that the expansion started billions of years ago from an explosive Big Bang. Recent research sheds new light on the key cosmological question about the distant ...

  9. A Quantum Universe Before the Big Bang(s)?

    Science.gov (United States)

    Veneziano, Gabriele

    2017-08-01

    The predictions of general relativity have been verified by now in a variety of different situations, setting strong constraints on any alternative theory of gravity. Nonetheless, there are strong indications that general relativity has to be regarded as an approximation of a more complete theory. Indeed theorists have long been looking for ways to connect general relativity, which describes the cosmos and the infinitely large, to quantum physics, which has been remarkably successful in explaining the infinitely small world of elementary particles. These two worlds, however, come closer and closer to each other as we go back in time all the way up to the big bang. Actually, modern cosmology has changed completely the old big bang paradigm: we now have to talk about (at least) two (big?) bangs. If we know quite something about the one closer to us, at the end of inflation, we are much more ignorant about the one that may have preceded inflation and possibly marked the beginning of time. No one doubts that quantum mechanics plays an essential role in answering these questions: unfortunately a unified theory of gravity and quantum mechanics is still under construction. Finding such a synthesis and confirming it experimentally will no doubt be one of the biggest challenges of this century’s physics.

  10. Environmental consequences of alternatives to L Reactor restart

    International Nuclear Information System (INIS)

    1983-01-01

    Alternatives to renewed L-Reactor operation for increased production of nuclear materials are: restart of R Reactor, construction and operation of a New Production Reactor (NPR), increased throughput of SRP reactors C, K, and P and N Reactor at Hanford, restart of K Reactors at Hanford, and no action - standby ready state for L Reactor. This report compares the environmental consequences from the proposed L-Reactor restart and these alternatives. The environmental consequences considered are radiological releases, radiocesium remobilization, nonradiological releases, ecological impacts and transportation

  11. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  12. Did the Big Bang begin?

    International Nuclear Information System (INIS)

    Levy-Leblond, J.

    1990-01-01

    It is argued that the age of the universe may well be numerically finite (20 billion years or so) and conceptually infinite. A new and natural time scale is defined on a physical basis using group-theoretical arguments. An additive notion of time is obtained according to which the age of the universe is indeed infinite. In other words, never did the Big Bang begin. This new time scale is not supposed to replace the ordinary cosmic time scale, but to supplement it (in the same way as rapidity has taken a place by the side of velocity in Einsteinian relativity). The question is discussed within the framework of conventional (big-bang) and classical (nonquantum) cosmology, but could easily be extended to more elaborate views, as the purpose is not so much to modify present theories as to reach a deeper understanding of their meaning

  13. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  14. Big bang is not needed

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A.D.

    1976-02-01

    Recent computer simulations indicate that a system of n gravitating masses breaks up, even when the total energy is negative. As a result, almost any initial phase-space distribution results in a universe that eventually expands under the Hubble law. Hence Hubble expansion implies little regarding an initial cosmic state. Especially it does not imply the singularly dense superpositioned state used in the big bang model.

  15. Big Bang nucleosynthesis: Accelerator tests and can Ω/sub B/ really be large

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1987-10-01

    The first collider tests of cosmological theory are now underway. The number of neutrino families in nature, N/sub nu/, plays a key role in elementary particle physics as well as in the synthesis of the light elements during the early evolution of the Universe. Standard Big Bang Nucleosynthesis argues for N/sub nu/ = 3 +- 1. Current limits on N/sub nu/ from the CERN anti pp collider and e + e - colliders are presented and compared to the cosmological bound. Supernova SN 1987A is also shown to give a limit on N/sub nu/ comparable to current accelerator bounds. All numbers are found to be small thus verifying the Big Bang model at an earlier epoch than is possible by traditional astronomical observations. Future measurements at SLC and LEP will further tighten this argument. Another key prediction of the standard Big Bang Nucleosynthesis is that the baryon density must be small (Ω/sub B/ ≤ 0.1). Recent attempts to try to subvert this argument using homogeneities of various types are shown to run afoul of the 7 Li abundance which has now become a rather firm constraint. 18 refs., 2 figs

  16. TOTEM and LHCf: refinements for the restart

    CERN Multimedia

    2009-01-01

    Following the previous two issues, the Bulletin continues its series to find out what the six LHC experiments have been up to since last September, and how they are preparing for the restart. We covered CMS, ATLAS, LHCb and ALICE in previous issues. In this issue we will round up the past 10 months of activity at TOTEM and LHCf. Roman Pots of the TOTEM experiment.TOTEM The past 10 months at TOTEM have been amongst the busiest since the project’s inception. The delay in the LHC startup has certainly had a silver lining for the TOTEM collaboration - not only has it given them a much-needed opportunity to test and install many crucial new detector parts, but also the lower energy range that the LHC will initially operate at in 2009 is perfect for TOTEM physics. "In fact, the LHC almost seems to be following the schedule of TOTEM!" jokes Karsten Eggert, TOTEM spokesperson. TOTEM is made up of three different detectors spread out...

  17. Preparing for the re-start

    CERN Multimedia

    2009-01-01

    The end of a Council week is a good opportunity to bring you up to date with the status of the LHC, and I’m pleased to say that we had a good deal of positive news to report to the delegations today. The bottom line is that we remain on course to restart the LHC safely this year, albeit currently about 2-3 weeks later than we’d hoped at Chamonix. This Council week has seen many important developments for our future. I am particularly pleased that Council approved the Medium Term Plan and budget for 2010 as presented by the management. This is a strong vote of confidence in all of you. The President of Council is reporting on Council business in this issue of the Bulletin, so I will focus on the status of the LHC. A tremendous amount of work has been done to understand fully the splices in the LHC’s superconducting cable and copper stabilizers. One of these splices was the root cause of the incident last September that brought ...

  18. Current status of JMTR for restart

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Kimura, Nobuaki; Ooka, Makoto

    2013-01-01

    After the 2011 off the Pacific Coast of Tohoku Earthquake on March 11, 2011, JMTR has been challenging to the inspection of facility equipment, seismic soundness evaluation through earthquake response analysis, repair of facilities, correspondence to the report matters stipulated by laws and regulations, and improvement of irradiation facilities, and based on these, it have formulated the operation schedule from FY2013. In the future, JMTR will explain the soundness of the facilities to the Nuclear Regulatory Commission, and receive the facility's regular inspection after the completion of piping updating work related to the report matters stipulated by laws and regulations. After obtaining the understanding of local municipalities, it aims to restart the facilities in August 2013. After the reoperation, it will make efforts to safely and stably operate the facilities with a target of the operating rate of world top class. In addition, the following challenges are planned: (1) improvement of the facilities based on external funds for expanding utilization, (2) human resource development in the nuclear field by utilizing JMTR, and (3) development of an advanced monitoring system for improving the safety of nuclear power plants by utilizing the irradiation technology that has been accumulated in JMTR. With the aim for JMTR becoming the international hub, JMTR will continue aggressive activities. (A.O.)

  19. Thick-Restart Lanczos Method for Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Simon, Horst D.; Wang, L.-W.; Wu, Kesheng

    1999-01-01

    This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations

  20. Temperature fluctuations in little bang : hydrodynamical approach

    International Nuclear Information System (INIS)

    Basu, Sumit; Chatterjee, Rupa; Nayak, Tapan K.

    2015-01-01

    The physics of heavy-ion collisions at ultra-relativistic energies, popularly known as little bangs, has often been compared to the Big Bang phenomenon of early universe. The matter produced at extreme conditions of energy density (ε) and temperature (T) in heavy-ion collisions is a Big Bang replica in a tiny scale. In little bangs, the produced fireball goes through a rapid evolution from an early state of partonic quark-gluon plasma (QGP) to a hadronic phase, and finally freezes out within a few tens of fm

  1. Retour vers le Big Bang

    CERN Multimedia

    Pentier, Olivier

    2007-01-01

    A laboratory from Grenoble participated in the building of LHC (Large Hadron Collider) at CERN. This particle accelerator, operational at the end of 2007, will help to understand how the universe was born. (1 page)

  2. Thermal equilibrium control by frequent bang-bang modulation.

    Science.gov (United States)

    Yang, Cheng-Xi; Wang, Xiang-Bin

    2010-05-01

    In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.

  3. Inhomogeneous Big Bang Nucleosynthesis Revisited

    OpenAIRE

    Lara, J. F.; Kajino, T.; Mathews, G. J.

    2006-01-01

    We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set baryon-to-photon ratio the new lifetime reduces the mass fraction of He4 by 0.0015 but does not significantly change the abundances of other isotopes. This enlarges the region of concordance between He4 and deuterium in the parameter space of the b...

  4. An embedding for the big bang

    Science.gov (United States)

    Wesson, Paul S.

    1994-01-01

    A cosmological model is given that has good physical properties for the early and late universe but is a hypersurface in a flat five-dimensional manifold. The big bang can therefore be regarded as an effect of a choice of coordinates in a truncated higher-dimensional geometry. Thus the big bang is in some sense a geometrical illusion.

  5. Big bang nucleosynthesis - The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  6. Solution of a braneworld big crunch/big bang cosmology

    International Nuclear Information System (INIS)

    McFadden, Paul L.; Turok, Neil; Steinhardt, Paul J.

    2007-01-01

    We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-dimensional description fails at the first nontrivial order in (V/c) 2 . At this order, there is nontrivial mixing of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the boundary branes move from the narrowly separated limit described by Kaluza-Klein theory to the well-separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological significance of the result and compute other quantities of interest in five-dimensional cosmological scenarios

  7. Big bang nucleosynthesis: The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).

  8. Georges et le big bang

    CERN Document Server

    Hawking, Lucy; Parsons, Gary

    2011-01-01

    Georges et Annie, sa meilleure amie, sont sur le point d'assister à l'une des plus importantes expériences scientifiques de tous les temps : explorer les premiers instants de l'Univers, le Big Bang ! Grâce à Cosmos, leur super ordinateur, et au Grand Collisionneur de hadrons créé par Éric, le père d'Annie, ils vont enfin pouvoir répondre à cette question essentielle : pourquoi existons nous ? Mais Georges et Annie découvrent qu'un complot diabolique se trame. Pire, c'est toute la recherche scientifique qui est en péril ! Entraîné dans d'incroyables aventures, Georges ira jusqu'aux confins de la galaxie pour sauver ses amis...Une plongée passionnante au coeur du Big Bang. Les toutes dernières théories de Stephen Hawking et des plus grands scientifiques actuels.

  9. Key U.S.-built part fails during testing for world's largest particle collider

    CERN Multimedia

    2007-01-01

    "Scientists are scrambling to redesign a key U.S.-built part that broke "with a loud bang and a cloud of dust" during a high-pressure test for the world's largest particle physics collider that is supposed to start up in November, officials sais Tuesday." (1,5 page)

  10. Restarting TMI unit one: social and psychological impacts

    International Nuclear Information System (INIS)

    Sorensen, J.; Soderstrom, J.; Bolin, R.; Copenhaver, E.; Carnes, S.

    1983-12-01

    A technical background is provided for preparing an environmental assessment of the social and psychological impacts of restarting the undamaged reactor at Three Mile Island (TMI). Its purpose is to define the factors that may cause impacts, to define what those impacts might be, and to make a preliminary assessment of how impacts could be mitigated. It does not attempt to predict or project the magnitude of impacts. Four major research activities were undertaken: a literature review, focus-group discussions, community profiling, and community surveys. As much as possible, impacts of the accident at Unit 2 were differentiated from the possible impacts of restarting Unit 1. It is concluded that restart will generate social conflict in the TMI vicinity which could lead to adverse effects. Furthermore, between 30 and 50 percent of the population possess characteristics which are associated with vulnerability to experiencing negative impacts. Adverse effects, however, can be reduced with a community-based mitigation strategy

  11. Restarting TMI unit one: social and psychological impacts

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, J.; Soderstrom, J.; Bolin, R.; Copenhaver, E.; Carnes, S.

    1983-12-01

    A technical background is provided for preparing an environmental assessment of the social and psychological impacts of restarting the undamaged reactor at Three Mile Island (TMI). Its purpose is to define the factors that may cause impacts, to define what those impacts might be, and to make a preliminary assessment of how impacts could be mitigated. It does not attempt to predict or project the magnitude of impacts. Four major research activities were undertaken: a literature review, focus-group discussions, community profiling, and community surveys. As much as possible, impacts of the accident at Unit 2 were differentiated from the possible impacts of restarting Unit 1. It is concluded that restart will generate social conflict in the TMI vicinity which could lead to adverse effects. Furthermore, between 30 and 50 percent of the population possess characteristics which are associated with vulnerability to experiencing negative impacts. Adverse effects, however, can be reduced with a community-based mitigation strategy.

  12. John C. Mather, the Big Bang, and the COBE

    Science.gov (United States)

    Bang theory and showing that the Big Bang was complete in the first instants, with only a tiny fraction dropdown arrow Site Map A-Z Index Menu Synopsis John C. Mather, the Big Bang, and the COBE Resources with collaborative work on understanding the Big Bang. Mather and Smoot analyzed data from NASA's Cosmic Background

  13. Big Bang Day: Engineering Solutions

    CERN Multimedia

    Lyn Evans; Austin Ball; Jim Virdee; Adam Hart-Davis

    2008-01-01

    CERN's Large Hadron Collider is the most complicated scientific apparatus ever built. Many of the technologies it uses hadn't even been invented when scientists started building it. Adam Hart-Davis discovers what it takes to build the world's most intricate discovery machine.

  14. Bruce A restart (execution and lessons-learned)

    International Nuclear Information System (INIS)

    Soini, J.

    2011-01-01

    Lessons learned with the Bruce Units 3 and 4 restart have been incorporated into the current refurbishment of Units 1 and 2. In addition, lessons learned on the lead unit (U2) are aggressively applied on the lagging unit (U1) to maximize efficiency and productivity. There will be a discussion on how this internal OPEX, along with external lessons learned, are used to continuously improve all aspects of the Bruce A Restart project management cycle, from scope selection, through planning and scheduling, to execution.

  15. Hot big bang or slow freeze?

    Science.gov (United States)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple ;crossover model; without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  16. George and the big bang

    CERN Document Server

    Hawking, Lucy; Parsons, Gary

    2012-01-01

    George has problems. He has twin baby sisters at home who demand his parents’ attention. His beloved pig Freddy has been exiled to a farm, where he’s miserable. And worst of all, his best friend, Annie, has made a new friend whom she seems to like more than George. So George jumps at the chance to help Eric with his plans to run a big experiment in Switzerland that seeks to explore the earliest moment of the universe. But there is a conspiracy afoot, and a group of evildoers is planning to sabotage the experiment. Can George repair his friendship with Annie and piece together the clues before Eric’s experiment is destroyed forever? This engaging adventure features essays by Professor Stephen Hawking and other eminent physicists about the origins of the universe and ends with a twenty-page graphic novel that explains how the Big Bang happened—in reverse!

  17. Bugs and the big bang.

    Science.gov (United States)

    Parsons, Jenni

    2008-10-01

    Now that's a cheery thought! Somewhere more than 100 km below the Geneva countryside two parallel beams of subatomic particles are whizzing around a 27 km circuit in opposite directions at about 99% of the speed of light, doing over 11 000 laps per second. Physicists hope to create a 'bang' that won't end the world, but will unlock some of its mysteries. I confess I have never thought of physicists as poets, but they certainly come up with some evocative models to explain the unknown such as 'dark matter', the invisible skeleton stretching through space; or 'dark energy', which drives the expansion of the universe; or the grandiose 'God's particle' (officially named 'Higgs boson') postulated to endow other particles with mass. These are concepts both too large and too small to grasp.

  18. Was the Big Bang hot?

    Science.gov (United States)

    Wright, E. L.

    1983-01-01

    Techniques for verifying the spectrum defined by Woody and Richards (WR, 1981), which serves as a base for dust-distorted models of the 3 K background, are discussed. WR detected a sharp deviation from the Planck curve in the 3 K background. The absolute intensity of the background may be determined by the frequency dependence of the dipole anisotropy of the background or the frequency dependence effect in galactic clusters. Both methods involve the Doppler shift; analytical formulae are defined for characterization of the dipole anisotropy. The measurement of the 30-300 GHz spectra of cold galactic dust may reveal the presence of significant amounts of needle-shaped grains, which would in turn support a theory of a cold Big Bang.

  19. Big Bang nucleosynthesis in crisis?

    International Nuclear Information System (INIS)

    Hata, N.; Scherrer, R.J.; Steigman, G.; Thomas, D.; Walker, T.P.; Bludman, S.; Langacker, P.

    1995-01-01

    A new evaluation of the constraint on the number of light neutrino species (N ν ) from big bang nucleosynthesis suggests a discrepancy between the predicted light element abundances and those inferred from observations, unless the inferred primordial 4 He abundance has been underestimated by 0.014±0.004 (1σ) or less than 10% (95% C.L.) of 3 He survives stellar processing. With the quoted systematic errors in the observed abundances and a conservative chemical evolution parametrization, the best fit to the combined data is N ν =2.1±0.3 (1σ) and the upper limit is N ν ν =3) at the 98.6% C.L. copyright 1995 The American Physical Society

  20. Physics at Future Colliders

    CERN Document Server

    Ellis, John R.

    1999-01-01

    After a brief review of the Big Issues in particle physics, we discuss the contributions to resolving that could be made by various planned and proposed future colliders. These include future runs of LEP and the Fermilab Tevatron collider, B factories, RHIC, the LHC, a linear electron-positron collider, an electron-proton collider in the LEP/LHC tunnel, a muon collider and a future larger hadron collider (FLHC). The Higgs boson and supersymmetry are used as benchmarks for assessing their capabilities. The LHC has great capacities for precision measurements as well as exploration, but also shortcomings where the complementary strengths of a linear electron-positron collider would be invaluable. It is not too soon to study seriously possible subsequent colliders.

  1. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  2. Linear colliders - prospects 1985

    International Nuclear Information System (INIS)

    Rees, J.

    1985-06-01

    We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs

  3. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  4. Restart plan for the prototype vertical denitration calciner

    Energy Technology Data Exchange (ETDEWEB)

    SUTTER, C.S.

    1999-09-01

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing.

  5. Markov Renewal Methods in Restart Problems in Complex Systems

    DEFF Research Database (Denmark)

    Asmussen, Søren; Lipsky, Lester; Thompson, Stephen

    A task with ideal execution time L such as the execution of a computer program or the transmission of a file on a data link may fail, and the task then needs to be restarted. The task is handled by a complex system with features similar to the ones in classical reliability: failures may...

  6. Restart plan for the prototype vertical denitration calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing

  7. Cosmic relics from the big bang

    International Nuclear Information System (INIS)

    Hall, L.J.

    1988-12-01

    A brief introduction to the big bang picture of the early universe is given. Dark matter is discussed; particularly its implications for elementary particle physics. A classification scheme for dark matter relics is given. 21 refs., 11 figs., 1 tab

  8. Cosmic relics from the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.

    1988-12-01

    A brief introduction to the big bang picture of the early universe is given. Dark matter is discussed; particularly its implications for elementary particle physics. A classification scheme for dark matter relics is given. 21 refs., 11 figs., 1 tab.

  9. The Big bang and the Quantum

    Science.gov (United States)

    Ashtekar, Abhay

    2010-06-01

    General relativity predicts that space-time comes to an end and physics comes to a halt at the big-bang. Recent developments in loop quantum cosmology have shown that these predictions cannot be trusted. Quantum geometry effects can resolve singularities, thereby opening new vistas. Examples are: The big bang is replaced by a quantum bounce; the `horizon problem' disappears; immediately after the big bounce, there is a super-inflationary phase with its own phenomenological ramifications; and, in presence of a standard inflation potential, initial conditions are naturally set for a long, slow roll inflation independently of what happens in the pre-big bang branch. As in my talk at the conference, I will first discuss the foundational issues and then the implications of the new Planck scale physics near the Big Bang.

  10. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-01-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ''Big Bang.'' The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful

  11. Artificial Intelligence for the Bang! Game

    OpenAIRE

    Daniláková, Monika

    2017-01-01

    This work explores artificial intelligence (AI) algorithms for the game Bang!, a Wild West-themed card game created by Italian game designer Emiliano Sciarra. The aim of this work was to design three different AIs for this game and to compare them theoretically and experimentally. First, we analyzed game Bang! with regards to game theory, and researched some of the AI algorithms used in similar games. We then designed three different AIs algorithms and compared their advantages and disadvanta...

  12. COBE looks back to the Big Bang

    Science.gov (United States)

    Mather, John C.

    1993-01-01

    An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.

  13. 'Big bang' of quantum universe

    International Nuclear Information System (INIS)

    Pawlowski, M.; Pervushin, V.N.

    2000-01-01

    The reparametrization-invariant generating functional for the unitary and causal perturbation theory in general relativity in a finite space-time is obtained. The classical cosmology of a Universe and the Faddeev-Popov-DeWitt functional correspond to different orders of decomposition of this functional over the inverse 'mass' of a Universe. It is shown that the invariant content of general relativity as a constrained system can be covered by two 'equivalent' unconstrained systems: the 'dynamic' (with 'dynamic' time as the cosmic scale factor and conformal field variables) and 'geometric' (given by the Levi-Civita type canonical transformation to the action-angle variables which determine initial cosmological states with the arrow of the proper time measured by the watch of an observer in the comoving frame). 'Big Bang', the Hubble evolution, and creation of 'dynamic' particles by the 'geometric' vacuum are determined by 'relations' between the dynamic and geometric systems as pure relativistic phenomena, like the Lorentz-type 'relation' between the rest and comoving frames in special relativity

  14. Neutrinos and Big Bang Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Gary Steigman

    2012-01-01

    Full Text Available According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN and the cosmic microwave background (CMB radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation, on the baryon asymmetry (baryon density, and on a possible lepton asymmetry (neutrino degeneracy are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of ~3.

  15. Deuterium and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Burles, S.

    2000-01-01

    Measurements of deuterium absorption in high redshift quasar absorption systems provide a direct inference of the deuterium abundance produced by big bang nucleosynthesis (BBN). With measurements and limits from five independent absorption systems, we place strong constraints on the primordial ratio of deuterium to hydrogen, (D/H) p = 3.4 ± 0.3 x 10 -5 [1,2]. We employ a direct numerical treatment to improve the estimates of critical reaction rates and reduce the uncertainties in BBN predictions of D/H and 7 Li/H by a factor of three[3] over previous efforts[4]. Using our measurements of (D/H) p and new BBN predictions, we find at 95% confidence the baryon density ρ b = (3.6 ± 0.4) x 10 -31 g cm -3 (Ω b h 2 65 = 0.045 ± 0.006 in units of the critical density), and cosmological baryon-photon ratio η = (5.1 ± 0.6) x 10 -10

  16. Cool Cosmology: ``WHISPER" better than ``BANG"

    Science.gov (United States)

    Carr, Paul

    2007-10-01

    Cosmologist Fred Hoyle coined ``big bang'' as a term of derision for Belgian priest George Lemaitre's prediction that the universe had originated from the expansion of a ``primeval atom'' in space-time. Hoyle referred to Lamaitre's hypothesis sarcastically as ``this big bang idea'' during a program broadcast on March 28, 1949 on the BBC. Hoyle's continuous creation or steady state theory can not explain the microwave background radiation or cosmic whisper discovered by Penzias and Wilson in 1964. The expansion and subsequent cooling of Lemaitre's hot ``primeval atom'' explains the whisper. ``Big bang'' makes no physical sense, as there was no matter (or space) to carry the sound that Hoyle's term implies. The ``big bang'' is a conjecture. New discoveries may be able to predict the observed ``whispering cosmos'' as well as dark matter and the nature of dark energy. The ``whispering universe'' is cooler cosmology than the big bang. Reference: Carr, Paul H. 2006. ``From the 'Music of the Spheres' to the 'Whispering Cosmos.' '' Chapter 3 of Beauty in Science and Spirit. Beech River Books. Center Ossipee, NH, http://www.MirrorOfNature.org.

  17. Savannah River Site peer evaluator standards: Operator assessment for restart

    International Nuclear Information System (INIS)

    1990-01-01

    Savannah River Site has implemented a Peer Evaluator program for the assessment of certified Central Control Room Operators, Central Control Room Supervisors and Shift Technical Engineers prior to restart. This program is modeled after the nuclear Regulatory Commission's (NRC's) Examiner Standard, ES-601, for the requalification of licensed operators in the commercial utility industry. It has been tailored to reflect the unique differences between Savannah River production reactors and commercial power reactors

  18. Applications of implicit restarting in optimization and control Dan Sorensen

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, D. [Rice Univ., Houston, TX (United States)

    1996-12-31

    Implicit restarting is a technique for combining the implicitly shifted QR mechanism with a k-step Arnoldi or Lanczos factorization to obtain a truncated form of the implicitly shifted QR-iteration suitable for large scale eigenvalue problems. The software package ARPACK based upon this technique has been successfully used to solve large scale symmetric and nonsymmetric (generalized) eigenvalue problems arising from a variety of applications.

  19. The dynamic storage and restart facilities in MABEL-2

    International Nuclear Information System (INIS)

    Nye, M.T.S.

    1983-12-01

    MABEL-2 is a FORTRAN program for calculating clad ballooning in a PWR during a LOCA. Originally written with fixed array storage, the use of the code has been extended by including dynamic storage. The lengths of the arrays in the program are set at execution time, varying from run to run. This allows much greater freedom in the choice of mesh and the size of case run. The use of computer memory is also more efficient. In addition a restart facility has been included which allows the user to break off and restart execution of the program (once or many times) during a transient. By using this facility much longer calculations can be run. Should an error in either input data or program become apparent late in a transient, the case need only be re-run from the last dump because some input data can be altered at restart. The use of these new facilities and the coding changes are described. (author)

  20. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1997-03-01

    During the period of the 50's and the 60's colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible

  1. Pre-big bang cosmology and quantum fluctuations

    International Nuclear Information System (INIS)

    Ghosh, A.; Pollifrone, G.; Veneziano, G.

    2000-01-01

    The quantum fluctuations of a homogeneous, isotropic, open pre-big bang model are discussed. By solving exactly the equations for tensor and scalar perturbations we find that particle production is negligible during the perturbative Pre-Big Bang phase

  2. Hot big bang or slow freeze?

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C.

    2014-09-07

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  3. Quantum nature of the big bang.

    Science.gov (United States)

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  4. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    Wetterich, C.

    2014-01-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  5. One Second After the Big Bang

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    A new experiment called PTOLEMY (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield) is under development at the Princeton Plasma Physics Laboratory with the goal of challenging one of the most fundamental predictions of the Big Bang – the present-day existence of relic neutrinos produced less than one second after the Big Bang. Using a gigantic graphene surface to hold 100 grams of a single-atomic layer of tritium, low noise antennas that sense the radio waves of individual electrons undergoing cyclotron motion, and a massive array of cryogenic sensors that sit at the transition between normal and superconducting states, the PTOLEMY project has the potential to challenge one of the most fundamental predictions of the Big Bang, to potentially uncover new interactions and properties of the neutrinos, and to search for the existence of a species of light dark matter known as sterile neutrinos.

  6. Hot big bang or slow freeze?

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2014-09-01

    Full Text Available We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  7. Big bang nucleosynthesis - Predictions and uncertainties

    International Nuclear Information System (INIS)

    Krauss, L.M.; Romanelli, P.

    1990-01-01

    A detailed reexamination is made of primordial big-bang nucleosynthesis (BBN), concentrating on the data for the main nuclear reactions leading to the production of Li-7, He-3 and D, and on the neutron half-life, relevant for He-4 production. The new values for reaction rates and uncertainties are then used as input in a Monte Carlo analysis of big bang nucleosynthesis of light elements. This allows confidence levels for the predictions of the standard BBN model to be high. 70 refs

  8. The 13 000 000 000 year bang

    International Nuclear Information System (INIS)

    Rees, M.

    1976-01-01

    The new observational techniques which have revealed, in the past 20 years, a great range and richness of cosmic phenomena are reviewed. Especial reference is made to cosmological observations that have helped to firmly establish the Big Bang theory including; radio astronomy, discovery of the 2.7 K microwave background radiation, cosmochemistry, the discovery of quasars, and the evolution of galaxies. Accepting that the Universe exploded from an initial big bang the question whether expansion will continue for ever is discussed. (U.K.)

  9. The big bang cosmology - enigmas and nostrums

    International Nuclear Information System (INIS)

    Dicke, R.H.; Peebles, P.J.E.

    1979-01-01

    Some outstanding problems in connection with the big bang cosmology and relativity theory are reviewed under the headings: enigmas; nostrums and elixirs (the universe as Phoenix (an oscillating universe), the anthropomorphic universe (existence of observers in the present universe), reproducing universes (could a mini big bang bounce, perhaps adding entropy and matter and eventually developing into a suitable home for observers), variable strength of the gravitational interaction and oscillating universes (possible bounce models that have led eventually to the present hospitable environment). (U.K.)

  10. How quantum is the big bang?

    Science.gov (United States)

    Bojowald, Martin

    2008-06-06

    When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.

  11. New physics and the new big bang

    International Nuclear Information System (INIS)

    Davies, P.

    1985-01-01

    The old concept of the big bang is reviewed, and modifications that have recently occurred in the theory are described. The concept of the false vacuum is explained, and its role in the cosmic inflation scenario is shown. The way inflation solves critical problems of the old big bang scenario is indicated. The potential of supersymmetry and Kaluza-Klein theories for the development of a superunified theory of physical forces is discussed. Superstrings and their possible role in a superunified theory, including their usefulness in solving the problem of infinities, is considered

  12. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  13. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  14. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  15. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  16. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  17. The SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.

    1985-01-01

    A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built

  18. Lifting gear crucial in Big Bang experiment

    CERN Multimedia

    2007-01-01

    "On November 26 2007, the most complex scientific instrument ever built will be turned on in an attempt to rerun the Big Bang - but i would never have got off the ground - litteraly - without the hundreds of hoists and cranes on site." (1/2 page)

  19. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  20. Inhomogeneous Pre-Big Bang String Cosmology

    OpenAIRE

    Veneziano, Gabriele

    1997-01-01

    An inhomogeneous version of pre--Big Bang cosmology emerges, within string theory, from quite generic initial conditions, provided they lie deeply inside the weak-coupling, low-curvature regime. Large-scale homogeneity, flatness, and isotropy appear naturally as late-time outcomes of such an evolution.

  1. Teoria del Big Bang e buchi neri

    CERN Document Server

    Wald, Robert M

    1980-01-01

    Un giovane fisico americano delinea con chiarezza in questo volume le attuali concezioni dello spazio, del tempo e della gravitazione, cosi come si sono andate delineando dopo e innovazioni teoriche aperte da Einstein. Esse investono problemi affascinanti, come la teoria del big bang, da cui avrebbe avuto origine l'universo, e l'enigma dei buchi neri.

  2. The Big Bang (one more time)

    CERN Multimedia

    Spotts, P

    2002-01-01

    For 20 years, Paul Steinhardt has played a key role in helping to write and refine the inflationary "big bang" origin of the universe. But over the past few years, he decided to see if he could come up with a plausible alternative to the prevailing notion (1 page).

  3. a New Look at the Big Bang

    Science.gov (United States)

    Wesson, Paul S.

    We give a mathematically exact and physically faithful embedding of curved 4D cosmology in a flat 5D space, thereby enabling visualization of the big bang in a new and informative way. In fact, in unified theories of fields and particles with real extra dimensions, it is possible to dispense with the initial singularity.

  4. Space Time Quantization and the Big Bang

    OpenAIRE

    Sidharth, B. G.

    1998-01-01

    A recent cosmological model is recapitulated which deduces the correct mass, radius and age of the universe as also the Hubble constant and other well known apparently coincidental relations. It also predicts an ever expanding accelerating universe as is confirmed by latest supernovae observations. Finally the Big Bang model is recovered as a suitable limiting case.

  5. Brane big bang brought on by a bulk bubble

    International Nuclear Information System (INIS)

    Gen, Uchida; Ishibashi, Akihiro; Tanaka, Takahiro

    2002-01-01

    We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by a small mismatch between the vacuum energy in the five-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, causing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, a sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1 mm. We find that a fine-tuning is needed in order to satisfy the first and the second requirements simultaneously, although the other constraints are satisfied in a wide range of the model parameters

  6. Non-collider searches for stable massive particles

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, S. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Fairbairn, M. [Department of Physics, King’s College London, London WC2R 2LS (United Kingdom); Mermod, P., E-mail: philippe.mermod@cern.ch [Particle Physics Department, University of Geneva, 1211 Geneva 4 (Switzerland); Milstead, D., E-mail: milstead@physto.se [Department of Physics, Stockholm University, 106 91 Stockholm (Sweden); Pinfold, J. [Physics Department, University of Alberta, Edmonton, Alberta, Canada T6G 0V1 (Canada); Sloan, T. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Taylor, W. [Department of Physics and Astronomy, York University, Toronto, ON, Canada M3J 1P3 (Canada)

    2015-06-26

    The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be sufficiently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive such that they are typically beyond the reach of any conceivable accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter and the unification of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs in cosmic rays and bound in matter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given.

  7. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  8. Additional information for impact response of the restart safety rods

    International Nuclear Information System (INIS)

    Yau, W.W.F.

    1991-01-01

    WSRC-RP-91-677 studied the structural response of the safety rods under the conditions of brake failure and accidental release. It was concluded that the maximum impact loading to the safety rod is 6020 pounds based on conservative considerations that energy dissipation attributable to fluid resistance and reactor superstructure flexibility. The staffers of the Defense Nuclear Facility Safety Board reviewed the results and inquired about the extent of conservatism. By request of the RESTART team, I reassessed the impact force due to these conservative assumptions. This memorandum reports these assessments

  9. SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described

  10. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  11. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  12. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  13. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  14. Fixing the Big Bang Theory's Lithium Problem

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    How did our universe come into being? The Big Bang theory is a widely accepted and highly successful cosmological model of the universe, but it does introduce one puzzle: the cosmological lithium problem. Have scientists now found a solution?Too Much LithiumIn the Big Bang theory, the universe expanded rapidly from a very high-density and high-temperature state dominated by radiation. This theory has been validated again and again: the discovery of the cosmic microwave background radiation and observations of the large-scale structure of the universe both beautifully support the Big Bang theory, for instance. But one pesky trouble-spot remains: the abundance of lithium.The arrows show the primary reactions involved in Big Bang nucleosynthesis, and their flux ratios, as predicted by the authors model, are given on the right. Synthesizing primordial elements is complicated! [Hou et al. 2017]According to Big Bang nucleosynthesis theory, primordial nucleosynthesis ran wild during the first half hour of the universes existence. This produced most of the universes helium and small amounts of other light nuclides, including deuterium and lithium.But while predictions match the observed primordial deuterium and helium abundances, Big Bang nucleosynthesis theory overpredicts the abundance of primordial lithium by about a factor of three. This inconsistency is known as the cosmological lithium problem and attempts to resolve it using conventional astrophysics and nuclear physics over the past few decades have not been successful.In a recent publicationled by Suqing Hou (Institute of Modern Physics, Chinese Academy of Sciences) and advisorJianjun He (Institute of Modern Physics National Astronomical Observatories, Chinese Academy of Sciences), however, a team of scientists has proposed an elegant solution to this problem.Time and temperature evolution of the abundances of primordial light elements during the beginning of the universe. The authors model (dotted lines

  15. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    Hargrove, Paul H; Duell, Jason C

    2006-01-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  16. Friction Stir Weld Restart+Reweld Repair Allowables

    Science.gov (United States)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  17. Asymptotic optimality of RESTART estimators in highly dependable systems

    International Nuclear Information System (INIS)

    Villén-Altamirano, J.

    2014-01-01

    We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10 −42 are accurately estimated with little computational effort. - Highlights: • Rare event probabilities of highly reliable systems are estimated by simulation. • The asymptotic optimality of the application is proved. • A better importance function for highly reliable systems is provided in the paper

  18. Keeping checkpoint/restart viable for exascale systems.

    Energy Technology Data Exchange (ETDEWEB)

    Riesen, Rolf E.; Bridges, Patrick G. (IBM Research, Ireland, Mulhuddart, Dublin); Stearley, Jon R.; Laros, James H., III; Oldfield, Ron A.; Arnold, Dorian (University of New Mexico, Albuquerque, NM); Pedretti, Kevin Thomas Tauke; Ferreira, Kurt Brian; Brightwell, Ronald Brian

    2011-09-01

    Next-generation exascale systems, those capable of performing a quintillion (10{sup 18}) operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoint) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms.

  19. Restart oversight assessment of Hanford 242-A evaporator: Summary report

    International Nuclear Information System (INIS)

    1994-08-01

    This report summarizes a January 17--28, 1994, oversight assessment of restart activities for the 242-A Evaporator at the US Department of Energy's (DOE's) Hanford Site about 25 miles northeast of Hanford, Washington. The assessment was conducted by qualified staff and consultants from the DOE Office of Environment, Safety and Health (EH). Its focus was the readiness of the facility for the resumption of safe operations, in particular those operations involved in the treatment and disposal of condensate from the evaporation of liquid radioactive waste, a key element of the tank waste remediation project administered by the DOE Richland Operations Office (DOE-RL). Overall, the assessment yielded eight programmatic concerns, supported by 38 individual findings. Of the concerns, four have already been closed, and the other four have been resolved. Results pointed up strengths in management and engineering design, as well as effective support of facility training programs by the management and operating contractor, Westinghouse Hanford Company (WHC). Weaknesses were evident, however, in conduct of operations, maintenance, and radiological practices. Furthermore, problems in the submittal and approval of Compliance Schedule Approvals--that is, WHC documentation of the status of compliance with DOE orders--were indicative of a programmatic breakdown in the DOE Order compliance process. According to the results of this assessment, there are no safety and health issues that would preclude or delay restart of the evaporator

  20. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  1. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  2. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  3. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  4. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The int...

  5. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The in...

  6. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  7. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  8. An atomic model of the Big Bang

    Science.gov (United States)

    Lasukov, V. V.

    2013-03-01

    An atomic model of the Big Bang has been developed on the basis of quantum geometrodynamics with a nonzero Hamiltonian and on the concept of gravitation developed by Logunov asymptotically combined with the Gliner's idea of a material interpretation of the cosmological constant. The Lemaître primordial atom in superpace-time, whose spatial coordinate is the so-called scaling factor of the Logunov metric of the effective Riemann space, acts as the Big Bang model. The primordial atom in superspace-time corresponds to spatialtime structures(spheres, lines, and surfaces of a level) of the Minkowski spacetime real within the Logunov gravitation theory, the foregoing structures being filled with a scalar field with a negative density of potential energy.

  9. Science: Big Bang comes to the Alps

    CERN Multimedia

    Cookson, Clive

    2008-01-01

    "The most extensive and expensive scientific instrument in history is due to start working this summer at CERN, the European particle physics laboratory near Geneva. Two beams of protons will accelerate in opposite directions around a 27 km tunnel under the alpine foothills until they are travelling almost at the speed of light - and then smash together, reproducing on a tiny scale the intense energy of the new-born universe after the inaugural Big Bang 15bn years ago. (1 page)

  10. Science Big Bang comes to the Alps

    CERN Multimedia

    2008-01-01

    The most extensive and expensive scientific instrument in history is due to start working this summer at Cern, the European particle physics laboratory near Geneva. Two beams of protons will accelerate in opposite directions around a 27km tunnel under the Alpine foothills until they are travelling almost at the speed of light - and then smash together, reproducing on a tiny scale the intense energy of the new-born universe after the inaugural Big Bang 15bn years ago.

  11. Neutrino mixing and big bang nucleosynthesis

    Science.gov (United States)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  12. Gravitation, phase transitions, and the big bang

    International Nuclear Information System (INIS)

    Krauss, L.M.

    1982-01-01

    Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined

  13. MODEL PENGANGKUTAN SAMPAH DI KOTA BANGLI

    OpenAIRE

    Pande N Sari Saraswati; I G. B Sila Dharma; I Gst Ketut Sudipta

    2013-01-01

    The garbage transportation in Bangli City is currently done using a direct individual pattern (door to door). The vehicles used are dump trucks which are not covered, so they pollute the areas they pass by. Most of the vehicles are in bad condition. This study was aimed at identifying the transportation routes, the number of vehicles needed, the temporary place of garbage disposal ‘Tempat Pembuangan Sementara’ (TPS), and the rate of garbage retribution. The research method included the sample...

  14. Laser interferometry for the Big Bang Observer

    OpenAIRE

    Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl

    2006-01-01

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  15. Laser interferometry for the Big Bang Observer

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)

    2006-08-07

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  16. Photodisintegration of deuterium and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Hara, K.Y.; Utsunomiya, H.; Goko, S.; Akimune, H.; Yamagata, T.; Ohta, M.; Toyokawa, H.; Kudo, K.; Uritani, A.; Shibata, Y.; Lui, Y.-W.; Ohgaki, H.

    2003-01-01

    Photodisintegration cross sections were measured for deuterium with Laser-Compton scattering γ beams at seven energies near threshold. Combined with the preceding data, R(E)=N a σv for the p(n,γ)D reaction is for the first time evaluated based on experimental data with 6% uncertainty in the energy region relevant to the big bang nucleosynthesis (BBN). The result confirms the theoretical evaluation on which the BBN in the precision era relies

  17. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    International Nuclear Information System (INIS)

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig

  18. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  19. Krylov-Schur-Type restarts for the two-sided arnoldi method

    NARCIS (Netherlands)

    Zwaan, I.N.; Hochstenbach, M.E.

    2017-01-01

    We consider the two-sided Arnoldi method and propose a two-sided Krylov-Schurtype restarting method. We discuss the restart for standard Rayleigh-Ritz extraction as well as harmonic Rayleigh-Ritz extraction. Additionally, we provide error bounds for Ritz values and Ritz vectors in the context of

  20. IAEA issues recommendations regarding temporary restart of Dutch reactor

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: An IAEA-led international team of nuclear reactor safety experts completed a safety review mission on 18 February at the High Flux Reactor (HFR) at Petten, in the Netherlands. The mission was conducted at the request of the Government of the Netherlands to review a set of previous evaluations made by the Dutch regulatory authority regarding the reactor's safety. The IAEA mission made a series of recommendations to enhance the safety of the year-long temporary restart. The recommendations included: - Performance of the monitoring system for leaks should be rigorously checked during the interim year of operation; - Temporary operation of the HFR cannot be extended beyond 1 March 2010; and - In case of any detected leakage from the coolant pipes, the reactor should be shut down immediately and repaired before restarting. The international team was composed of one IAEA staff member and five external experts from Argentina, Canada, France, India and South Africa. The IAEA's main conclusions and recommendations were presented in The Hague to the Ministry of Housing, Spatial Planning and the Environment and several other ministries. The team also provided a summary of its findings to the Netherlands Regulatory Authority. The team's final report will be submitted within two weeks. The HFR at Petten is one of five research reactors in the world that produces radioactive medical isotopes, used an estimated 40 million times annually for cancer treatment and the diagnosis of heart attacks. Prolonged outages at any of these five reactors have a far-reaching impact on medical treatments and diagnoses for patients around the globe. Since August 2008, the HFR reactor has been in shut-down status due to corrosion of pipes in its primary cooling circuit. The Nuclear Research and Consultancy Group (NRG), the operating organization for Petten, proposed a one-year restart of the HFR reactor, which was approved by the Dutch regulatory body. The reactor then resumed operation

  1. Matter sources for a null big bang

    International Nuclear Information System (INIS)

    Bronnikov, K A; Zaslavskii, O B

    2008-01-01

    We consider the properties of stress-energy tensors compatible with a null big bang, i.e., cosmological evolution starting from a Killing horizon rather than a singularity. For Kantowski-Sachs cosmologies, it is shown that if matter satisfies the null energy condition, then (i) regular cosmological evolution can only start from a Killing horizon, (ii) matter is absent at the horizon and (iii) matter can only appear in the cosmological region due to interaction with vacuum. The latter is understood phenomenologically as a fluid whose stress tensor is insensitive to boosts in a particular direction. We also argue that matter is absent in a static region beyond the horizon. All this generalizes the observations recently obtained for a mixture of dust and a vacuum fluid. If, however, we admit the existence of phantom matter, its certain special kinds (with the parameter w ≤ -3) are consistent with a null big bang without interaction with vacuum (or without vacuum fluid at all). Then in the static region there is matter with w ≥ -1/3. Alternatively, the evolution can begin from a horizon in an infinitely remote past, leading to a scenario combining the features of a null big bang and an emergent universe

  2. Bang! the complete history of the universe

    CERN Document Server

    May, Brian; Lintott, Chris

    2012-01-01

    Bang! Space, time, matter...the Universe was born 13.7 billion years ago. Infinitely small at first, it expanded more rapidly than anyone can contemplate. Brian May, Patrick Moore and Chris Lintott explain how all this came about, from the moment when time and space came into existence, to the formation of the first stars, galaxies and planets, and to the evolution of human beings able to contemplate our own origins and ultimate destiny. Then on towards that destiny in the infinite future, long after the Earth has been consumed by the Red Giant Sun. The story is told in clear, straight forward terms, in the strict order in which the events happened, and uses no mathematics. "Bang!" is an amazing story and this newly revised text brings it "Bang!" up to date. Is it fiction? The authors hope not, since it is based upon lifetimes work by great scientists such as Albert Einstein, Stephen Hawking and hundreds of other brilliant minds. Enjoy, and let your imagination run riot.

  3. Rotational inhomogeneities from pre-big bang?

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2005-01-01

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric

  4. Rotational inhomogeneities from pre-big bang?

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)

    2005-01-21

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.

  5. The hot big bang and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Departments of Physics and of Astronomy & Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637-1433 (United States)]|[NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States)

    1995-08-01

    The hot big-bang cosmology provides a reliable accounting of the Universe from about 10{sup {minus}2} sec after the bang until the present, as well as a robust framework for speculating back to times as early as 10{sup {minus}43} sec. Cosmology faces a number of important challenges; foremost among them are determining the quantity and composition of matter in the Universe and developing a detailed and coherent picture of how structure (galaxies, clusters of galaxies, superclusters, voids, great walls, and so on) developed. At present there is a working hypothesis{emdash}cold dark matter{emdash}which is based upon inflation and which, if correct, would extend the big bang model back to 10{sup {minus}32} sec and cast important light on the unification of the forces. Many experiments and observations, from CBR anisotropy experiments to Hubble Space Telescope observations to experiments at Fermilab and CERN, are now putting the cold dark matter theory to the test. At present it appears that the theory is viable only if the Hubble constant is smaller than current measurements indicate (around 30 km s{sup {minus}1} Mpc{sup {minus}1}), or if the theory is modified slightly, e.g., by the addition of a cosmological constant, a small admixture of hot dark matter (5 eV {open_quote}{open_quote}worth of neutrinos{close_quote}{close_quote}), more relativistic particle or a tilted spectrum of density perturbations.

  6. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices

  7. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  8. Psychological adaptation among residents following restart of Three Mile Island.

    Science.gov (United States)

    Prince-Embury, S; Rooney, J F

    1995-01-01

    Psychological adaptation is examined in a sample of residents who remained in the vicinity of Three Mile Island following the restart of the nuclear generating facility which had been shut down since the 1979 accident. Findings indicate a lowering of psychological symptoms between 1985 and 1989 in spite of increased lack of control, less faith in experts and increased fear of developing cancer. The suggestion is made that reduced stress might have been related to a process of adaptation whereby a cognition of emergency preparedness was integrated by some of these residents as a modulating cognitive element. Findings also indicate that "loss of faith in experts" is a persistently salient cognition consistent with the "shattered assumptions" theory of victimization.

  9. The ISRN has stated on the CABRI reactor restarting

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presents the different issues examined by the ISRN (the French Institute of Radioprotection and Nuclear Safety) for the restarting of the pool type research CABRI reactor which is briefly described in appendix. These issues are: the design, realisation and monitoring of the new pressurised water test loop, the reassessment of the protection system limiting the reactivity injection during tests, inspection of fuel pencil condition, reassessment of safety studies, inspection of the condition of existing equipment which are essential for safety, reassessment of the seismic risk and of the fire risk, reassessment of operation conditions (personal radioprotection, human and organisational factors). An appendix contains the report by the Permanent Group of Experts for Nuclear Reactors with its recommendations

  10. Stop and Restart Effects on Modern Vehicle Starting System Components

    Energy Technology Data Exchange (ETDEWEB)

    Windover, Paul R. [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Terry M. [Argonne National Lab. (ANL), Argonne, IL (United States); Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  11. COLLIDE Pro Helvetia Award

    CERN Multimedia

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  12. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  13. Collide@CERN Geneva

    CERN Multimedia

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  14. The Colliding Beams Sequencer

    International Nuclear Information System (INIS)

    Johnson, D.E.; Johnson, R.P.

    1989-01-01

    The Colliding Beam Sequencer (CBS) is a computer program used to operate the pbar-p Collider by synchronizing the applications programs and simulating the activities of the accelerator operators during filling and storage. The Sequencer acts as a meta-program, running otherwise stand alone applications programs, to do the set-up, beam transfers, acceleration, low beta turn on, and diagnostics for the transfers and storage. The Sequencer and its operational performance will be described along with its special features which include a periodic scheduler and command logger. 14 refs., 3 figs

  15. Superphysics at UNK collider

    International Nuclear Information System (INIS)

    Kereselidze, A.R.; Liparteliani, A.G.; Sokolov, A.A.; Volkov, G.G.

    1988-01-01

    The theoretical incompleteness of standard model and the way of going beyond frames on the basis of supersymmetry are considered. The most important directions of experimental researches at the colliders of a new generation are given. Theoretical estimates of masses of supersymmetrical particles in the framework of N=1 supergravity obtained from compactification of the popular E 8 xE 8 superstring theories are presented. The experimental search for supersymmetrical particles at the UNK pp-collider (√s=6 TeV) is performed

  16. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  17. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  18. QCD and collider physics

    CERN Document Server

    Stirling, William James

    1991-12-01

    1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.

  19. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  20. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  1. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  2. LINEAR COLLIDERS: 1992 workshop

    International Nuclear Information System (INIS)

    Settles, Ron; Coignet, Guy

    1992-01-01

    As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus

  3. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  4. Review of linear colliders

    International Nuclear Information System (INIS)

    Takeda, Seishi

    1992-01-01

    The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab

  5. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  6. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  7. Hadron collider physics

    International Nuclear Information System (INIS)

    Pondrom, L.

    1991-01-01

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs

  8. Correlation between fuel rack sticking and unintentional re-starting of EDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Chung, Woo geun; Kang, Seung Hee; Kim, Myeong hoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Emergency Diesel Generator (EDG) was being tested after overhaul maintenance. While the EDG was running at the rated speed (450 rpm), an operator pressed the manual stop button. But the EDG failed to stop and unintentionally started again. After the unintentional re-start, the EDG maintained running speed of 340 rpm. In the category of a governing system, this paper analyzes the cause of unintentional restart of the EDG that unintentionally re-started and maintained a speed at 340 rpm. The results of the analysis were then verified by a test run. Finally, we identified a correlation between fuel rack sticking and unintentional re-starting of the EDG. An analysis was conducted to confirm the cause of an EDG which was unintentionally restarting and running at 340rpm (rated speed is 450 rpm). Through a test run, it was confirmed that the results of the analysis are correct. The cause of the EDG unintentionally restarting was that it still rotated at 55 rpm over the minimum starting speed at the moment when the shutdown cylinder stopped blocking the fuel, because of a stuck fuel rack at the R7 cylinder. At the same time, the fuel that had been supplied into the cylinders (combustion chamber) by the governing system exploded and the EDG restarted unintentionally.

  9. B factory with hadron colliders

    International Nuclear Information System (INIS)

    Lockyer, N.S.

    1990-01-01

    The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)

  10. Probing the Big Bang with LEP

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is {approximately}6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs.

  11. Probing the Big Bang with LEP

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is ∼6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs

  12. Hot origin of the Little Bang

    Energy Technology Data Exchange (ETDEWEB)

    Akkelin, S.V. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute EMMI, Darmstadt (Germany)

    2017-12-15

    Ultrarelativistic heavy ion collisions produce a quark-gluon matter which lies in the future light cone originating from given points on the t = z = 0 plane of the Minkowski spacetime manifold. We show that in a weak coupling regime the Minkowski vacuum of massless fields presents itself in the ''Little Bang'' region as a thermal state of low p{sub T} particles, in close analogy to the Unruh effect for uniformly accelerated observers which are causally restricted to a Rindler wedge. It can shed some light on the mechanisms of early time thermalization in ultrarelativistic heavy ion collisions. (orig.)

  13. Big Bang nucleosynthesis: The standard model

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    Current observational data on the abundances of deuterium, helium-3, helium-4 and lithium-7 are reviewed and these data are used to infer (or to bound) the primordial abundances of these elements. The physics of primordial nucleosynthesis in the context of the ''standard'' (isotropic, homogeneous,...) hot big bang model is outlined and the primordial abundances predicted within the context of this model are presented. The theoretical predictions are then confronted with the observational data. This confrontation reveals the remarkable consistency of the standard model, constrains the nucleon abundance to lie within a narrow range and, permits the existence of no more than one additional flavor of light neutrinos

  14. Probing the Big Bang with LEP

    Science.gov (United States)

    Schramm, David N.

    1990-01-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.

  15. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Pregeometric origin of the big bang

    International Nuclear Information System (INIS)

    Akama, K.; Terazawa, H.; Tokyo Univ., Tanashi

    1981-07-01

    The temperature-dependent effective action for gravity is calculated in pregeometry. It indicates that the effective potential for the space-time metric has the minimum at the origin for extremely high temperature. The origin of the big bang can be taken as a local and spontaneous phase transition of the space-time from the pregeometric phase to the geometric one. It is suggested that in our universe there may exist ''pregeometric holes'' where the space-time metric absolutely vanishes and/or ''space-time discontinuities'' where the metric discretely changes. (author)

  17. Big bang nucleosynthesis constraints on bulk neutrinos

    International Nuclear Information System (INIS)

    Goh, H.S.; Mohapatra, R.N.

    2002-01-01

    We examine the constraints imposed by the requirement of successful nucleosynthesis on models with one large extra hidden space dimension and a single bulk neutrino residing in this dimension. We solve the Boltzmann kinetic equation for the thermal distribution of the Kaluza-Klein modes and evaluate their contribution to the energy density at the big bang nucleosynthesis epoch to constrain the size of the extra dimension R -1 ≡μ and the parameter sin 2 2θ which characterizes the mixing between the active and bulk neutrinos

  18. Dual of big bang and big crunch

    International Nuclear Information System (INIS)

    Bak, Dongsu

    2007-01-01

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory

  19. Pre - big bang inflation requires fine tuning

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Weinberg, Erick J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    1997-10-01

    The pre-big-bang cosmology inspired by superstring theories has been suggested as an alternative to slow-roll inflation. We analyze, in both the Jordan and Einstein frames, the effect of spatial curvature on this scenario and show that too much curvature --- of either sign --- reduces the duration of the inflationary era to such an extent that the flatness and horizon problems are not solved. Hence, a fine-tuning of initial conditions is required to obtain enough inflation to solve the cosmological problems.

  20. Big bang models in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-11-07

    These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.

  1. Big bang nucleosynthesis and the cosmic neutrino background

    International Nuclear Information System (INIS)

    Cao Yun; Xing Zhizhong

    2013-01-01

    We present a brief overview of the neutrino decoupling and big bang nucleosynthesis in the early universe. The big bang relic neutrinos formed one of the backgrounds of the universe. A few possible ways to directly detect the cosmic neutrino background are briefly introduced, and particular attention is paid to the relic neutrino capture on b-decaying nuclei. (authors)

  2. The Whole Shebang: How Science Produced the Big Bang Model.

    Science.gov (United States)

    Ferris, Timothy

    2002-01-01

    Offers an account of the accumulation of evidence that has led scientists to have confidence in the big bang theory of the creation of the universe. Discusses the early work of Ptolemy, Copernicus, Kepler, Galileo, and Newton, noting the rise of astrophysics, and highlighting the birth of the big bang model (the cosmic microwave background theory…

  3. Mental health effects of the Three Mile Island nuclear reactor restart.

    Science.gov (United States)

    Dew, M A; Bromet, E J; Schulberg, H C; Dunn, L O; Parkinson, D K

    1987-08-01

    Controversy over potential mental health effects of the Three Mile Island Unit-1 restart led the authors to examine prospectively the pattern of psychiatric symptoms in a sample of Three Mile Island area mothers of young children. Symptom levels after restart were elevated over previous levels; a sizable subcohort of the sample reported relatively serious degrees of postrestart distress. History of diagnosable major depression and generalized anxiety following the Three Mile Island accident, plus symptoms and beliefs about personal risk prior to the restart, best predicted postrestart symptoms.

  4. Mental health effects of the Three Mile Island nuclear reactor restart

    International Nuclear Information System (INIS)

    Dew, M.A.; Bromet, E.J.; Schulberg, H.C.; Dunn, L.O.; Parkinson, D.K.

    1987-01-01

    Controversy over potential mental health effects of the Three Mile Island Unit-1 restart led the authors to examine prospectively the pattern of psychiatric symptoms in a sample of Three Mile Island area mothers of young children. Symptom levels after restart were elevated over previous levels; a sizable subcohort of the sample reported relatively serious degrees of postrestart distress. History of diagnosable major depression and generalized anxiety following the Three Mile Island accident, plus symptoms and beliefs about personal risk prior to the restart, best predicted postrestart symptoms

  5. The great adventure of the LHC - From big bang to the Higgs boson

    International Nuclear Information System (INIS)

    Denegri, D.; Guyot, C.; Hoecker, A.; ); Roos, L.; Rubbia, C.

    2014-03-01

    This book presents what has been the biggest scientific equipment ever designed on earth: the LHC (large hadron collider) and its associated experiments (ATLAS, CMS, LHCb and ALICE) that led to the discovery of the Higgs boson in 2012. About 10.000 physicists and engineers from 50 countries have taken part into the project that began in 1989. This book is composed of the following chapters: 1) the standard model (SM) of particle physics, 2) the experimental success of SM, 3) the shortfalls of SM, 4) the new physics, 5) the original big bang, 6) the LHC, 7) particle detection, 8) ATLAS and CMS experiments, 9) the first data from LHC, 10) data analysis, 11) the quest for the Higgs boson, 12) the search for new physics, 13) LHCb and ALICE experiments, and 14) future prospects

  6. Classical propagation of strings across a big crunch/big bang singularity

    International Nuclear Information System (INIS)

    Niz, Gustavo; Turok, Neil

    2007-01-01

    One of the simplest time-dependent solutions of M theory consists of nine-dimensional Euclidean space times 1+1-dimensional compactified Milne space-time. With a further modding out by Z 2 , the space-time represents two orbifold planes which collide and re-emerge, a process proposed as an explanation of the hot big bang [J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001).][P. J. Steinhardt and N. Turok, Science 296, 1436 (2002).][N. Turok, M. Perry, and P. J. Steinhardt, Phys. Rev. D 70, 106004 (2004).]. When the two planes are near, the light states of the theory consist of winding M2-branes, describing fundamental strings in a particular ten-dimensional background. They suffer no blue-shift as the M theory dimension collapses, and their equations of motion are regular across the transition from big crunch to big bang. In this paper, we study the classical evolution of fundamental strings across the singularity in some detail. We also develop a simple semiclassical approximation to the quantum evolution which allows one to compute the quantum production of excitations on the string and implement it in a simplified example

  7. More bad connections may limit LHC energy or delay restart

    CERN Multimedia

    Cho, Adrian

    2009-01-01

    "Last September, the world's highest-engery particle smasher - the Large Hadron Collider, or LHC - mangled itself when a splice in a superconducting electrical line melted and set off a chain reaction of mechanical failure [..]. Since then, physicists here at the European particle physics laboratory, Cern, have installed exquisitely sensitive warning systems to monitor the delicate splices and head off a similar catastrophe" (1.5 pages)

  8. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Crease, Robert P.

    2007-01-01

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In 'Recombinant Science: The Birth of the Relativistic Heavy Ion Collider,' Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

  9. Big Bang Cosmic Titanic: Cause for Concern?

    Science.gov (United States)

    Gentry, Robert

    2013-04-01

    This abstract alerts physicists to a situation that, unless soon addressed, may yet affect PRL integrity. I refer to Stanley Brown's and DAE Robert Caldwell's rejection of PRL submission LJ12135, A Cosmic Titanic: Big Bang Cosmology Unravels Upon Discovery of Serious Flaws in Its Foundational Expansion Redshift Assumption, by their claim that BB is an established theory while ignoring our paper's Titanic, namely, that BB's foundational spacetime expansion redshifts assumption has now been proven to be irrefutably false because it is contradicted by our seminal discovery that GPS operation unequivocally proves that GR effects do not produce in-flight photon wavelength changes demanded by this central assumption. This discovery causes the big bang to collapse as quickly as did Ptolemaic cosmology when Copernicus discovered its foundational assumption was heliocentric, not geocentric. Additional evidence that something is amiss in PRL's treatment of LJ12135 comes from both Brown and EiC Gene Spouse agreeing to meet at my exhibit during last year's Atlanta APS to discuss this cover-up issue. Sprouse kept his commitment; Brown didn't. Question: If Brown could have refuted my claim of a cover-up, why didn't he come to present it before Gene Sprouse? I am appealing LJ12135's rejection.

  10. Endless universe beyond the big bang

    CERN Document Server

    Steinhardt, Paul J

    2007-01-01

    The Big Bang theory—widely regarded as the leading explanation for the origin of the universe—posits that space and time sprang into being about 14 billion years ago in a hot, expanding fireball of nearly infinite density. Over the last three decades the theory has been repeatedly revised to address such issues as how galaxies and stars first formed and why the expansion of the universe is speeding up today. Furthermore, an explanation has yet to be found for what caused the Big Bang in the first place. In Endless Universe, Paul J. Steinhardt and Neil Turok, both distinguished theoretical physicists, present a bold new cosmology. Steinhardt and Turok “contend that what we think of as the moment of creation was simply part of an infinite cycle of titanic collisions between our universe and a parallel world” (Discover). They recount the remarkable developments in astronomy, particle physics, and superstring theory that form the basis for their groundbreaking “Cyclic Universe” theory. According to t...

  11. SP-100 initial startup and restart control strategy

    International Nuclear Information System (INIS)

    Halfen, F.J.; Wong, K.K.; Switick, D.M.; Shukla, J.N.

    1992-01-01

    This paper reports that recent Generic Flight System (GFS) updates have necessitated revisions in the initial startup and restart control strategies. The design changes that have had the most impact on the control strategies are the addition of the Auxiliary Cooling and Thaw (ACT) system for preheating the lithium filled components, changes in the reactivity worths of the reflectors and safety-rods such that initial cold criticality is achieved with only a small amount of reflector movement following the withdrawal of the safety-rods, and the removal of the scram function from the reflectors. Revised control and operating strategies have been developed and tested using the SP-100 dynamic simulation model, ARIES-GFS. The change in the total reactivity worths of the reflectors and safety-rods has eliminated the need for the use of fast and slow reflector drive speeds during the initial on-orbit approach to criticality. The relatively fast removal of the safety-rods results in a near-critical condition so that the use of slow moving (single speed) reflector drives does not add significant time to achieve full power for the initial startup. The use of the ACT system (with its NaK trace-lines for preheating and auxiliary cooling) affects the main Thermoelectric Electro-Magnetic (TEM) pump startup and the time after a shutdown before freezing occurs in the main heat transfer systems

  12. Restart oversight assessment of Hanford 242-A evaporator: Technical report

    International Nuclear Information System (INIS)

    Lagdon, R.; Lasky, R.

    1994-08-01

    An assessment team from the Office of Environment, Safety and Health (EH), US Department of Energy (DOE), conducted an independent assessment of the 242-A Evaporator at the Hanford Site during January 17--28, 1994. An EH team member remained on-site following the assessment to track corrective actions and resolve prestart findings. The primary objective of this assessment was independent assurance that the DOE Office of Environmental Management (EM), the DOE Richland Operations Office (DOE-RL), and Westinghouse Hanford Company (WHC) can safely restart the evaporator. Another objective of the EH team was to assess EM's Operational Readiness Evaluation (ORE) to determine if the programs, procedures, and management systems implemented for operation of the 241-A Evaporator ensure the protection of worker safety and health. The following section of this report provides background information on the 242-A Evaporator and Operational Readiness Review (ORR) activities conducted to date. The next chapter is divided into sections that address the results of discrete assessment activities. Each section includes a brief statement of conclusions for the functional area in question, descriptions of the review bases and methods, and a detailed discussion of the results. Concerns identified during the assessment are listed for the section to which they apply, and the specific findings upon which the concern is based can be found immediately thereafter

  13. Europe faces up to NSP restart and two new crackers

    International Nuclear Information System (INIS)

    Roberts, M.

    1993-01-01

    European cracker operators are hurting-most have not been covering cash costs for the past six months-and they are determined to ease the pain by boosting prices. But since olefins demand remains weak, price gains will have to come via lower production. That appears to be difficult, given the startup of two new world-scale crackers-BP Chemicals (London) 350,000-m.t./year expansion at Grangemouth, UK and EniChem's (Milan) 360,000-m.t./year plant at Brindisi, Italy - and the restart of North Sea Petrochemical's (NSP; Antwerp) 250,000-m.t./year propane dehydrogenation unit. Although the two new crackers have the potential to boost Europe's net olefins output by 4% in 1993, to 18.5 million m.t./year, according to Trichem Consultants (London), the increase will be smaller because EniChem and BP will reduce capacity at other plants as the new units come onstream. EniChem says that the startup of Brindisi will not have an effect on the market. We will not allow the startup to further depress prices

  14. Freeze and restart of the DWPF Scale Glass Melter

    International Nuclear Information System (INIS)

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  15. Latest news from the YETS: all restarting except the LHC

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    With the closure of the SPS at 3 p.m. on Friday, 19 February, maintenance work is now ongoing only at the LHC. All activities are on track for a smooth restart in a few weeks’ time.   At the LHC, all general maintenance activities are proceeding well and according to schedule. In particular, the electrical tests on the general emergency stops have been completed, while the cooling and ventilation maintenance, including leak repairs at various points, will be completed by the end of this week for the whole machine. By the end of next week, the teams will also have completed the bakeout and commissioning of all the collimators, while the installation of coaxial cable for clock distribution for CMS TOTEM has been postponed to the Extended Year-End Technical Stop (EYETS), scheduled to start in December. Following a recent decision, additional electrical tests of the circuits (ELQA and energy extraction insulation tests) for the whole machine have been added to the schedule. The SPS is currentl...

  16. Bruce A units 1 and 2 restart project

    International Nuclear Information System (INIS)

    Routledge, K.

    2006-01-01

    This presentation provides an overview of the Bruce A Units 1 and 2 Restart project from the vantage point of the Project Management Contractor (PMC). The presentation will highlight the unique structure of the project, which has been designed to maximize project efficiencies while minimizing the impact to the Bruce Power operational reactors. Efficiency improvements covered in the presentation includes: support services provided to the direct work contractors, radiation protection, worker protection, engineering, field execution, maintenance and facilities. The presentation focusses on the roles of the PMC in helping to ensure the successful outcome of this ambitious reactor refurbishment project. In addition, the Construction Island concept that has been implemented on the project will be presented, with some of the innovative thinking that has gone into its creation. The organization of the PMC and an overview of the project schedule is also presented. AMEC NCL is a privately held consultancy in the Canadian nuclear industry which provides experienced and flexible multi-disciplined resources to support full project management, engineering solutions and safety consultancy services throughout the life cycle of nuclear facilities in Canada, and for customers in related markets in North America and overseas. AMEC NCL is a wholly-owned subsidiary of AMEC plc

  17. Large Hadron Collider manual

    CERN Document Server

    Lavender, Gemma

    2018-01-01

    What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the world’s largest particle smasher – the Large Hadron Collider – at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerator’s greatest discoveries – from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.

  18. The International Linear Collider

    Directory of Open Access Journals (Sweden)

    List Benno

    2014-04-01

    Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  19. The International Linear Collider

    Science.gov (United States)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  20. The SLAC linear collider

    International Nuclear Information System (INIS)

    Phinney, N.

    1992-01-01

    The SLAC Linear Collider has begun a new era of operation with the SLD detector. During 1991 there was a first engineering run for the SLD in parallel with machine improvements to increase luminosity and reliability. For the 1992 run, a polarized electron source was added and more than 10,000 Zs with an average of 23% polarization have been logged by the SLD. This paper discusses the performance of the SLC in 1991 and 1992 and the technical advances that have produced higher luminosity. Emphasis will be placed on issues relevant to future linear colliders such as producing and maintaining high current, low emittance beams and focusing the beams to the micron scale for collisions. (Author) tab., 2 figs., 18 refs

  1. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  2. Linear Colliders TESLA

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz

  3. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  4. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  5. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  6. The Stanford Linear Collider

    International Nuclear Information System (INIS)

    Emma, P.

    1995-01-01

    The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed

  7. ESP – Data from Restarted Life Tests of Various Silicon Materials

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  8. Stuck fermentation: development of a synthetic stuck wine and study of a restart procedure.

    Science.gov (United States)

    Maisonnave, Pierre; Sanchez, Isabelle; Moine, Virginie; Dequin, Sylvie; Galeote, Virginie

    2013-05-15

    Stuck fermentation is a major problem in winemaking, resulting in large losses in the wine industry. Specific starter yeasts are used to restart stuck fermentations in conditions determined essentially on the basis of empirical know-how. We have developed a model synthetic stuck wine and an industrial process-based procedure for restarting fermentations, for studies of the conditions required to restart stuck fermentations. We used a basic medium containing 13.5% v/v ethanol and 16 g/L fructose, pH 3.3, to test the effect of various nutrients (vitamins, amino acids, minerals, oligoelements), with the aim of developing a representative and discriminative stuck fermentation model. Cell growth appeared to be a key factor for the efficient restarting of stuck fermentations. Micronutrients, such as vitamins, also strongly affected the efficiency of the restart procedure. For the validation of this medium, we compared the performances of three wine yeast strains in the synthetic stuck fermentation and three naturally stuck wine fermentations. Strain performance was ranked similar in the synthetic medium and in the "Malbec" and "Sauvignon" natural stuck wines. However, two strains were ranked differently in the "Gros Manseng" stuck wine. Nutrient content seemed to be a crucial factor in fermentation restart conditions, generating differences between yeast strains. However, the specific sensitivity of yeast strains to the composition of the wine may also have had an effect. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Still waiting for that Big Bang...

    CERN Multimedia

    2009-01-01

    "It has been called the greatest and most ambitious science experiment ever built by man. When operating at full power, the Large Hadron Collider - Europe's 3.2 billion (pounds) particle accelerator - will hurl beams of protons around its rings at a fraction of a per cent less than the speed of light" (2 pages)

  10. Pa spaning efter Big Bang i underjorden

    CERN Multimedia

    Granström, Helena

    2008-01-01

    The LHC will start this summer; an accelerator placed in a 27km long annel. The machine will collide particles in order to test the theory of dark matter, dark energy and supersymmetry. We will get to know much more, but maybe understand even less. (4 pages)

  11. Bang-bang control of feeding: role of hypothalamic and satiety signals.

    Directory of Open Access Journals (Sweden)

    B Silvano Zanutto

    2007-05-01

    Full Text Available Rats, people, and many other omnivores eat in meals rather than continuously. We show by experimental test that eating in meals is regulated by a simple bang-bang control system, an idea foreshadowed by Le Magnen and many others, shown by us to account for a wide range of behavioral data, but never explicitly tested or tied to neurophysiological facts. The hypothesis is simply that the tendency to eat rises with time at a rate determined by satiety signals. When these signals fall below a set point, eating begins, in on-off fashion. The delayed sequelae of eating increment the satiety signals, which eventually turn eating off. Thus, under free conditions, the organism eats in bouts separated by noneating activities. We report an experiment with rats to test novel predictions about meal patterns that are not explained by existing homeostatic approaches. Access to food was systematically but unpredictably interrupted just as the animal tried to start a new meal. A simple bang-bang model fits the resulting meal-pattern data well, and its elements can be identified with neurophysiological processes. Hypothalamic inputs can provide the set point for longer-term regulation carried out by a comparator in the hindbrain. Delayed gustatory and gastrointestinal aftereffects of eating act via the nucleus of the solitary tract and other hindbrain regions as neural feedback governing short-term regulation. In this way, the model forges real links between a functioning feedback mechanism, neuro-hormonal data, and both short-term (meals and long-term (eating-rate regulation behavioral data.

  12. MANAJEMEN RISIKO OPERASIONAL DAN PEMELIHARAAN TEMPAT PEMBUANGAN AKHIR (TPA REGIONAL BANGLI DI KABUPATEN BANGLI

    Directory of Open Access Journals (Sweden)

    I W Wedana Yasa

    2013-07-01

    Full Text Available To obtain the maximum and sustainable advantage it needs to carry out the operational and maintenance (OP activities of TPA. It is necessary to maintain the Bangli Regional TPA so that it will give maximum and sustainable advantages. This study was aimed at identifying various major risks which may interfere with the TPA operating and maintenance so that mitigation can be done and to determine the risk ownership. The collected data were analyzed using descriptive qualitative method through the following stages: the risks were identified, the risks were evaluated, the risks were coped with, and the risk ownership could be identified. The risks identified totaled 72 consisting of: 9 (12.5% risks which were under the unacceptable category, 16 (22.22% risks which were under the acceptable category, and 1 (1.39% risk which was under the negligible category. The major risks amounted to 55 risks (76.39%, included the obstacle to establishing the institution which was fully responsible for the operating and maintenance of the Bangli Regional TPA, the limited amounts of funds allocated by the central government, the provincial government, and the regency governments which were integrated into the Regional TPA, the obstacle to creating an affiliation between the government and the private institutions, and other risks. The risk mitigation was done by avoiding risks, reducing risks, and transferring risks starting from the institutional, regulation and financial aspects, and technical and non technical problems. Most risk ownerships were the responsibility of the Bangli Regional TPA management.

  13. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    International Nuclear Information System (INIS)

    Audouze, J.; Lindley, D.; Silk, J.; and Laboratoire Rene Bernas, Orsay, France)

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements ( 2 H, 3 He, 4 He, and 7 Li) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate 4 He (formed in the standard hot big bang) to produce 2 H and 3 He. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that 4 He is synthesized by a later generation of massive stars

  14. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    Science.gov (United States)

    Audouze, J.; Lindley, D.; Silk, J.

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.

  15. Antimatter questions the big-bang theory

    International Nuclear Information System (INIS)

    Daninos, F.

    2005-01-01

    A few moments after the big-bang matter an antimatter existed in the same quantities. Today the universe seems to be exclusively composed of matter. Nature prefers matter to antimatter but scientists do not know why. Experimental results from Babar and Belle experiments have confirmed the existence of CP violation in quark systems. This article draws the story of the quest for symmetry violation since the discovery of P violation in cobalt decay in the end of the fifties. Our understanding of CP violation is by far insufficient for explaining the matter-antimatter imbalance and may be we will have to admit that CP violation might concern other systems like neutrinos or super-symmetric particles. (A.C.)

  16. Big Bang Tumor Growth and Clonal Evolution.

    Science.gov (United States)

    Sun, Ruping; Hu, Zheng; Curtis, Christina

    2018-05-01

    The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. 20. Vous avez dit Big Bang ?

    OpenAIRE

    Uzan, Jean-Philippe

    2017-01-01

    La cosmologie est la discipline scientifique qui vise à construire une description cohérente de notre Univers. Pour cela, nous devons formuler un modèle cosmologique, c’est-à-dire une représentation idéalisée de l’univers qui se fonde sur nos connaissances des lois de la nature et les observations du ciel. Le modèle cosmologique contemporain est connu sous le nom très médiatique de Big Bang. Ce terme a été forgé lors d’une émission de la BBC le 28 mars 1949 par l’astronome Fred Hoyle, farouch...

  18. Quarks, leptons and the big bang

    CERN Document Server

    Allday, Jonathan

    2016-01-01

    Quarks, Leptons and The Big Bang, Third Edition, is a clear, readable and self-contained introduction to particle physics and related areas of cosmology. It bridges the gap between non-technical popular accounts and textbooks for advanced students. The book concentrates on presenting the subject from the modern perspective of quarks, leptons and the forces between them. This book will be of interest to students, teachers and general science readers interested in fundamental ideas of modern physics. This edition brings the book completely up to date by including advances in particle physics and cosmology, such as the discovery of the Higgs boson, the LIGO gravitational wave discovery and the WMAP and PLANCK results.

  19. L'Univers avant le Big Bang

    CERN Document Server

    Rouat, Sylvie

    2003-01-01

    "Tout n'a pas commencé par une explosion. L'historie du cosmos avait débuté biena vant le Big Bang, si l'on suit la théorie défendue par les partisans d'une nouvelle cosmologie issue de la mystérieuse théorie des cordes. A l'heure où vacillent les scénarios classiques du XXe siècle, se prépare un grand chamboulement de nos idées sur la naissance de l'Univers et son devenir, sur l'existence possible d'univers parallèles. Des théories séduisantes qui seront mises à l'épreuve au cours de la prochaine décennie" (11 pages)

  20. Big-Bang nucleosynthesis and lithium abundance

    International Nuclear Information System (INIS)

    Singh, Vinay; Lahiri, Joydev; Bhowmick, Debasis; Basu, D.N.

    2017-01-01

    The predictions of the standard big-bang nucleosynthesis (BBN) theory depend on the astrophysical nuclear reaction rates and on additional three parameters, the number of flavours of light neutrinos, the neutron lifetime and the baryon-to-photon ratio in the uni- verse. The effect of the modification of thirty-five reaction rates on light element abundance yields in BBN was investigated earlier by us. In the present work we have replaced the neutron lifetime, baryon-to-photon ratio by the most recent values and further modified 3 He( 4 He,γ) 7 Be reaction rate which is used directly for estimating the formation of 7 Li as a result of β + decay by the most recent equation. We find that these modifications reduce the calculated abundance of 7 Li by ∼ 12%

  1. Recreating the aftermath of the Big Bang

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    A few microseconds after the Big Bang, the Universe was most likely a fiery soup of quarks and gluons – the quark-gluon plasma, or 'quagma' – with the gluons carrying the inter-quark 'colour' force. As this cooled, quarks froze into 'colourless' bricks of nuclear matter – protons, neutrons and other strongly interacting particles – and have remained this way ever since. However in the past few years, Brookhaven and CERN began supplying experiments with high energy beams of heavy nuclei. When such heavy projectiles slam into nuclear targets, the component quarks might be squeezed together and heated, breaking loose and recreating, fleetingly, something approaching quark-gluon plasma

  2. What's Next for Big Bang Nucleosynthesis?

    International Nuclear Information System (INIS)

    Cyburt, R.H.

    2005-01-01

    Big bang nucleosynthesis (BBN) plays an important role in the standard hot big bang cosmology. BBN theory is used to predict the primordial abundances of the lightest elements, hydrogen, helium and lithium. Comparison between the predicted and observationally determined light element abundances provides a general test of concordance and can be used to fix the baryon content in the universe. Measurements of the cosmic microwave background (CMB) anisotropies now supplant BBN as the premier baryometer, especially with the latest results from the WMAP satellite. With the WMAP baryon density, the test of concordance can be made even more precise. Any disagreement between theory predictions and observations requires careful discussion. Several possibilities exist to explain discrepancies; (1) observational systematics (either physical or technical) may not be properly treated in determining primordial light element abundances (2) nuclear inputs that determine the BBN predictions may have unknown systematics or may be incomplete, and (3) physics beyond that included in the standard BBN scenario may need to be included in the theory calculation. Before we can be absolutely sure new physics is warranted, points (1) and (2) must be addressed and ruled out. All of these scenarios rely on experimental or observational data to make definitive statements of their applicability and range of validity, which currently is not at the level necessary to discern between these possibilities with high confidence. Thus, new light element abundance observations and nuclear experiments are needed to probe these further. Assuming concordance is established, one can use the light element observations to explore the evolution from their primordial values. This can provide useful information on stellar evolution, cosmic rays and other nuclear astrophysics. When combined with detailed models, BBN, the CMB anisotropy and nuclear astrophysics can provide us with information about the populations

  3. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  4. The super collider revisited

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1992-01-01

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC

  5. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  6. Hadron collider physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines

  7. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  8. Safety Evaluation Report Restart of K-Reactor Savannah River Site

    International Nuclear Information System (INIS)

    1991-10-01

    In April 1991, the Department of Energy (DOE) issued DOE/DP-0084T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site.'' The Safety Evaluation Report (SER) documents the results of DOE reviews and evaluations of the programmatic aspects of a large number of issues necessary to be satisfactorily addressed before restart. The issues were evaluated for compliance with the restart criteria included in the SER. The results of those evaluations determined that the restart criteria had been satisfied for some of the issues. However, for most of the issues at least part of the applicable restart criteria had not been found to be satisfied at the time the evaluations were prepared. For those issues, open or confirmatory items were identified that required resolution. In August 1991, DOE issued DOE/DP-0090T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site Supplement 1.'' That document was the first Supplement to the April 1991 SER, and documented the resolution of 62 of the open items identified in the SER. This document is the second Supplement to the April 1991 SER. This second SER Supplement documents the resolution of additional open times identified in the SER, and includes a complete list of all remaining SER open items. The resolution of those remaining open items will be documented in future SER Supplements. Resolution of all open items for an issue indicates that its associated restart criteria have been satisfied, and that DOE concludes that the programmatic aspects of the issue have been satisfactorily addressed

  9. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  10. Estudiarán el Big Bang por Internet

    CERN Multimedia

    2007-01-01

    The most powerful Internet, star of the present, goes for another challenge that mixes past and future: to join the scientific world community to clarify the orígines of the universe, the Big Bang. (1/2 page)

  11. Prospects for NATO Enlargement: Examining the "Big Bang" Approach

    National Research Council Canada - National Science Library

    Moyer, Andrew

    2000-01-01

    ...) aspire to membership. Led by the Baltic states, these nine countries have signed the May 2000 Vilnius Declaration, advocating the admission of all nine aspirants simultaneously, a so called "big bang" approach to the next...

  12. Pre-big bang cosmology: A long history of time?

    International Nuclear Information System (INIS)

    Veneziano, G.

    1999-01-01

    The popular myth according to which the Universe - and time itself - started with/near a big bang singularity is questioned. After claiming that the two main puzzles of standard cosmology allow for two possible logical answers, I will argue that superstring theory strongly favours the the pre-big bang (PBB) alternative. I will then explain why PBB inflation is as generic as classical gravitational collapse, and why, as a result of symmetries in the latter problem, recent fine-tuning objections to the PBB scenario are unfounded. A hot big bang state naturally results from the powerful amplification of vacuum quantum fluctuations before the big bang, a phenomenon whose observable consequences will be briefly summarized. (author)

  13. Indian microchip for Big Bang research in Geneva

    CERN Multimedia

    Bhabani, Soudhriti

    2007-01-01

    "A premier nuclear physics institute here has come up with India's first indigenously designed microchip that will facilitate research on the Big Bang theory in Geneva's CERN, the world's largest particle physics laboratory." (1 page)

  14. Scientists seek to explain how Big Bang let us live

    CERN Multimedia

    Hawke, N

    2000-01-01

    Scientists at CERN have opened an antimatter factory, the Antiproton Decelerator. They hope to discover why, in the Big Bang, the amount of matter and antimatter produced was not equal, so allowing the universe to exist at all (1 page).

  15. Inside the big-bang machine

    CERN Multimedia

    Boyle, Alan

    2007-01-01

    "The future of particle physics is being built below ground, in a setting that's more appropriate for construction hardhats than lab coats. To get to the caverns where the world's most powerful particle collider is taking shape, you have to take an industrial-issue elevator down just one floor. But that floor is a doozy: it's about 100 meters below ground, roughly as deep as a 30-story building is tall." (2 pages)

  16. Seeking nature of God in Big Bang

    CERN Multimedia

    2008-01-01

    ""The most exciting thing of all," says Professor Peter Watkins with a smile, "is we have absolutely no idea what will happen until we switch it on." When you realise that the University of Birmingham academic is referring to the world's largest particle physics experiment, it is a little disconcerting. After 13 years of planning and construction, the Large Hadron Collider (LHC), is due to begin its work in the spring of 2008."

  17. Majorana Higgses at colliders

    Science.gov (United States)

    Nemevšek, Miha; Nesti, Fabrizio; Vasquez, Juan Carlos

    2017-04-01

    Collider signals of heavy Majorana neutrino mass origin are studied in the minimal Left-Right symmetric model, where their mass is generated spontaneously together with the breaking of lepton number. The right-handed triplet Higgs boson Δ, responsible for such breaking, can be copiously produced at the LHC through the Higgs portal in the gluon fusion and less so in gauge mediated channels. At Δ masses below the opening of the V V decay channel, the two observable modes are pair-production of heavy neutrinos via the triplet gluon fusion gg → Δ → NN and pair production of triplets from the Higgs h → ΔΔ → 4 N decay. The latter features tri- and quad same-sign lepton final states that break lepton number by four units and have no significant background. In both cases up to four displaced vertices may be present and their displacement may serve as a discriminating variable. The backgrounds at the LHC, including the jet fake rate, are estimated and the resulting sensitivity to the Left-Right breaking scale extends well beyond 10 TeV. In addition, sub-dominant radiative modes are surveyed: the γγ, Zγ and lepton flavour violating ones. Finally, prospects for Δ signals at future e + e - colliders are presented.

  18. Pre-big-bang model on the brane

    International Nuclear Information System (INIS)

    Foffa, Stefano

    2002-01-01

    The equations of motion and junction conditions for a gravidilaton brane world scenario are studied in the string frame. It is shown that they allow Kasner-like solutions on the brane, which makes the dynamics of the brane very similar to the low curvature phase of pre-big-bang cosmology. Analogies and differences of this scenario with the Randall-Sundrum one and with the standard bulk pre-big-bang dynamics are also discussed

  19. Big bang and big crunch in matrix string theory

    OpenAIRE

    Bedford, J; Papageorgakis, C; Rodríguez-Gómez, D; Ward, J

    2007-01-01

    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  20. A numerical simulation of pre-big bang cosmology

    CERN Document Server

    Maharana, J P; Veneziano, Gabriele

    1998-01-01

    We analyse numerically the onset of pre-big bang inflation in an inhomogeneous, spherically symmetric Universe. Adding a small dilatonic perturbation to a trivial (Milne) background, we find that suitable regions of space undergo dilaton-driven inflation and quickly become spatially flat ($\\Omega \\to 1$). Numerical calculations are pushed close enough to the big bang singularity to allow cross checks against previously proposed analytic asymptotic solutions.

  1. The Efficacy of a Restart Break for Recycling with Optimal Performance Depends Critically on Circadian Timing

    Science.gov (United States)

    Van Dongen, Hans P.A.; Belenky, Gregory; Vila, Bryan J.

    2011-01-01

    Objectives: Under simulated shift-work conditions, we investigated the efficacy of a restart break for maintaining neurobehavioral functioning across consecutive duty cycles, as a function of the circadian timing of the duty periods. Design: As part of a 14-day experiment, subjects underwent two cycles of five simulated daytime or nighttime duty days, separated by a 34-hour restart break. Cognitive functioning and high-fidelity driving simulator performance were tested 4 times per day during the two duty cycles. Lapses on a psychomotor vigilance test (PVT) served as the primary outcome variable. Selected sleep periods were recorded polysomnographically. Setting: The experiment was conducted under standardized, controlled laboratory conditions with continuous monitoring. Participants: Twenty-seven healthy adults (13 men, 14 women; aged 22–39 years) participated in the study. Interventions: Subjects were randomly assigned to a nighttime duty (experimental) condition or a daytime duty (control) condition. The efficacy of the 34-hour restart break for maintaining neurobehavioral functioning from the pre-restart duty cycle to the post-restart duty cycle was compared between these two conditions. Results: Relative to the daytime duty condition, the nighttime duty condition was associated with reduced amounts of sleep, whereas sleep latencies were shortened and slow-wave sleep appeared to be conserved. Neurobehavioral performance measures ranging from lapses of attention on the PVT to calculated fuel consumption on the driving simulators remained optimal across time of day in the daytime duty schedule, but degraded across time of night in the nighttime duty schedule. The 34-hour restart break was efficacious for maintaining PVT performance and other objective neurobehavioral functioning profiles from one duty cycle to the next in the daytime duty condition, but not in the nighttime duty condition. Subjective sleepiness did not reliably track objective neurobehavioral

  2. Risk perception in an interest group context: an examination of the TMI restart issue

    International Nuclear Information System (INIS)

    Soderstrom, E.J.; Sorensen, J.H.; Copenhaver, E.D.; Carnes, S.A.

    1984-01-01

    Human response to environmental hazards and risks has been the subject of considerable research by social scientists. Work has traditionally focused on either individual response to the risks of an ongoing or future threat (hazards research), or group and organizational response to a specific disaster event (disaster research). As part of a larger investigation of the restart of the Unit 1 reactor at Three Mile Island (TMI), the response of interest groups active in the restart issue to the continued threat of TMI and to future risks due to restart was examined. After reviewing the restart issue in general, the local dimensions of the restart issue from interest group perspectives are discussed. A method for defining appropriate issues at the community level is reviewed. Differences in the perceived local impacts of alternative decisions, and systems of beliefs associated with differing perceptions are discussed. Finally, the implications of interest group versus individual perceptions of local issues for decision making about TMI, in particular, and about technological hazards management, in general, are discussed. Associated implications for determining socially acceptable risk levels are identified

  3. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, A.F.; Spangler, J.B.

    1995-04-05

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

  4. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    International Nuclear Information System (INIS)

    McFarlane, A.F.; Spangler, J.B.

    1995-01-01

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH ampersand QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment

  5. Vanilla Technicolor at Linear Colliders

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco

    2011-01-01

    We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...

  6. Future prospects for electron colliders

    CERN Document Server

    Toge, N

    2001-01-01

    An overview on the future prospects for electron colliders is presented. In the first part of this paper we will walk through the status of current development of next-generation electron linear colliders of sub-TeV to TeV energy range. Then we will visit recent results from technological developments which aim at longer term future for higher energy accelerators.

  7. Linear colliders for photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The enthusiasm of the first international workshop on photonphoton colliders and associated physics, held at the Lawrence Berkeley Laboratory from 28 March - 1 April, could have set a ball rolling. According to proponents of this physics, the particle physics one can study with a high energy linear collider is special and complements that of a hadron supercollider

  8. The photon collider at TESLA

    Czech Academy of Sciences Publication Activity Database

    Badelek, B.; Bloechinger, C.; Blümlein, J.; Boos, E.; Brinkman, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chýla, Jiří; Ciftci, A.K.

    2004-01-01

    Roč. 19, č. 30 (2004), s. 5097-5186 ISSN 0217-751X Institutional research plan: CEZ:AV0Z1010920 Keywords : photon collider * linear collider * gamma-gamma * photon-photon * photon electron * Compton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.054, year: 2004

  9. Overview of colliding beam facilities

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    A review is presented of the colliding beam facilities in existence today. The major high energy physics facilities around the world are described, and a view is presented of the beam collisions in which the instruments used to make the beams collide and those used to detect the products of particle interactions in the beam overlap region are described

  10. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  11. Towards the International Linear Collider

    International Nuclear Information System (INIS)

    Lopez-Fernandez, Ricardo

    2006-01-01

    The broad physics potential of e+e- linear colliders was recognized by the high energy physics community right after the end of LEP in 2000. In 2007, the Large Hadron Collider (LHC) now under construction at CERN will obtain its first collisions. The LHC, colliding protons with protons at 14 TeV, will discover a standard model Higgs boson over the full potential mass range, and should be sensitive to new physics into the several TeV range. The program for the Linear Collider (LC) will be set in the context of the discoveries made at the LHC. All the proposals for a Linear Collider will extend the discoveries and provide a wealth of measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. For the mexican groups is the right time to join such an effort

  12. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  13. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  14. Making quark matter at brook haven's new collider

    International Nuclear Information System (INIS)

    Jones, P.

    2002-01-01

    Quarks are believed to come in 6 flavours, only the lightest of which, the up and down quarks, are found in protons and neutrons. Isolated quarks have never been observed. As quarks are brought closer together, the force between them decreases dramatically, vanishing as the separation becomes very small. This suggests that quarks may become unbound if the density of quarks could be increased by squeezing a nucleus. The nucleus would have melted their constituent quarks, now free to roam the extended volume of the compressed nucleus. This situation would make a significant change in the structure of matter corresponding to a change of phase, rather like the transition from solid to liquid, but in this case from quark confined matter, to a quark gluon plasma (QGP). This new state of matter is thought to have been the natural phase of matter until 10 micro-seconds after the big-bang, and also to exist today in the core of neutron stars. Calculations show that the energy density needed to observe the phase transition is around 1 GeV/fm 3 , approximately 8 times that of normal nuclear matter. Attempts to recreate QGP have been underway at the relativistic heavy ion collider (RHIC) and at the CERN by colliding heavy-ion beams at the maximal energy possible. Between 4000 and 5000 charged particles are produced in the most violent events. The experimental challenge is to establish the existence of QGP from all this wealth of data. (A.C.)

  15. Big-bang nucleosynthesis - observational aspects

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Extrapolation of observational data on the abundances of D, 3 He, 4 He and 7 Li in various astrophysical objects to derive their primordial values leads to results in good accordance with calculations from Standard Big Bang nucleosynthesis theory over 9 orders of magnitude in abundance and has led to the following predictions: There are not more than 3 light neutrino species or other particles contributing relativistic degrees of freedom at temperatures of a few MeV; the neutron half-life is less than 10.4 minutes; and baryonic dark matter exists, but not in sufficient quantities to close the universe. (The first two of these predictions have been confirmed by laboratory experiments). Searches for a primordial component in the abundance of any other element heavier than hydrogen - such as might have resulted from inhomogeneities due to phase transitions in the early universe, notably the quark-hadron transition - have so far proved completely negative. The primordial helium abundance is found from observations of extragalactic ionized hydrogen clouds to be close to 0.230 by mass, a little lower than predicted, but the difference does not exceed likely errors. (orig.)

  16. Big Bang synthesis of nuclear dark matter

    International Nuclear Information System (INIS)

    Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.

    2015-01-01

    We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark “nucleon” number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳10 8 , may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫10 8 , are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

  17. Inhomogeneous neutrino degeneracy and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Whitmire, Scott E.; Scherrer, Robert J.

    2000-01-01

    We examine big bang nucleosynthesis (BBN) in the case of inhomogeneous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representative cases: degeneracy of the electron neutrino alone and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio η. Inhomogeneous degeneracy allows for little change in the lower bound on η, but the upper bound in this case can be as large as η=1.1x10 -8 (only ν e degeneracy) or η=1.0x10 -9 (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background. (c) 2000 The American Physical Society

  18. Safety Evaluation Report: Restart of K-Reactor, Savannah River Site

    International Nuclear Information System (INIS)

    1991-08-01

    In April 1991, the Department of Energy (DOE) issued DOE/DP-0084T, ''Safety Evaluation Report Restart of K-Reactor Savannah River Site.'' The Safety Evaluation Report (SER) documents the results of DOE reviews and evaluations of the programmatic aspects of a large number of issues which need to be satisfactorily addressed before restart. The issues were evaluated for compliance with the restart criteria included in the SER. The results of those evaluations determined that the restart criteria had been satisfied for some of the issues. However, for most of the issues at least part of the applicable restart criteria had not been found to be satisfied a the time the evaluations were prepared. For those issues, open or confirmatory items were identified that required resolution. This document supplements the April 1991 SER. The SER Supplement documents the resolution of several of the open items identified in the SER. Only those issues (sections) for which at least one open item identified in the SER has now been closed are addressed in this Supplement. Additionally, some SER sections had no open items identified. Therefore, this Supplement does not include all sections that were addressed in the SER. If there are any open items remaining to be resolved for the sections included in this Supplement, that is so identified at the end of the section. The resolution of those remaining open times, and all remaining open items for those SER sections not included in this first Supplement, will be documented in future SER Supplements. Resolution of all open items for an issue indicates that its associated restart criteria have been satisfied, and that DOE concludes that the programmatic aspects of the issue have been satisfactorily addressed

  19. Topics in Collider Physics

    Energy Technology Data Exchange (ETDEWEB)

    Petriello, Frank J

    2003-08-27

    It is an exciting time for high energy physics. Several experiments are currently exploring uncharted terrain; the next generation of colliders will begin operation in the coming decade. These experiments will together help us understand some of the most puzzling issues in particle physics: the mechanism of electroweak symmetry breaking and the generation of flavor physics. It is clear that the primary goal of theoretical particle physics in the near future is to support and guide this experimental program. These tasks can be accomplished in two ways: by developing experimental signatures for new models which address outstanding problems, and by improving Standard Model predictions for precision observables. We present here several results which advance both of these goals. We begin with a study of non-commutative field theories. It has been suggested that TeV-scale non-commutativity could explain the origin of CP violation in the SM. We identify several distinct signatures of non-commutativity in high energy processes. We also demonstrate the one-loop quantum consistency of a simple spontaneously broken non-commutative U(1) theory; this result is an important preface to any attempt to embed the SM within a non-commutative framework. We then investigate the phenomenology of extra-dimensional theories, which have been suggested recently as solutions to the hierarchy problem of particle physics. We first examine the implications of allowing SM fields to propagate in the full five-dimensional spacetime of the Randall-Sundrum model, which solves the hierarchy problem via an exponential ''warping'' of the Planck scale induced by a five-dimensional anti de-Sitter geometry. In an alternative extra-dimensional theory, in which all SM fields are permitted to propagate in flat extra dimensions, we show that properties of the Higgs boson are significantly modified. Finally, we discuss the next-to-next-to leading order QCD corrections to the dilepton

  20. Hadron collider physics 2005. Proceedings

    International Nuclear Information System (INIS)

    Campanelli, M.; Clark, A.; Wu, X.

    2006-01-01

    The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)

  1. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  2. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  3. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  4. The universe before the Big Bang cosmology and string theory

    CERN Document Server

    Gasperini, Maurizio

    2008-01-01

    Terms such as "expanding Universe", "big bang", and "initial singularity", are nowadays part of our common language. The idea that the Universe we observe today originated from an enormous explosion (big bang) is now well known and widely accepted, at all levels, in modern popular culture. But what happens to the Universe before the big bang? And would it make any sense at all to ask such a question? In fact, recent progress in theoretical physics, and in particular in String Theory, suggests answers to the above questions, providing us with mathematical tools able in principle to reconstruct the history of the Universe even for times before the big bang. In the emerging cosmological scenario the Universe, at the epoch of the big bang, instead of being a "new born baby" was actually a rather "aged" creature in the middle of its possibly infinitely enduring evolution. The aim of this book is to convey this picture in non-technical language accessibile also to non-specialists. The author, himself a leading cosm...

  5. Passport to the Big Bang moves across the road

    CERN Document Server

    Corinne Pralavorio

    2015-01-01

    The ATLAS platform of the Passport to the Big Bang circuit has been relocated in front of the CERN Reception.   The ATLAS platform of the Passport to the Big Bang, outside the CERN Reception building. The Passport to the Big Bang platform of the ATLAS Experiment has been moved in front of the CERN Reception to make it more visible and accessible. It had to be dismantled and moved from its previous location in the garden of the Globe of Science and Innovation due to the major refurbishment work in progress on the Globe, and is now fully operational in its new location on the other side of the road, in the Main Reception car-park. The Passport to the Big Bang circuit, inaugurated in 2013, comprises ten platforms installed in front of ten CERN sites and aims to help local residents and visitors to the region understand CERN's research. Dedicated Passport to the Big Bang flyers, containing all necessary information and riddles for you to solve, are available at the CERN Rec...

  6. Accessibility of the pre-big-bang models to LIGO

    International Nuclear Information System (INIS)

    Mandic, Vuk; Buonanno, Alessandra

    2006-01-01

    The recent search for a stochastic background of gravitational waves with LIGO interferometers has produced a new upper bound on the amplitude of this background in the 100 Hz region. We investigate the implications of the current and future LIGO results on pre-big-bang models of the early Universe, determining the exclusion regions in the parameter space of the minimal pre-big-bang scenario. Although the current LIGO reach is still weaker than the indirect bound from big bang nucleosynthesis, future runs by LIGO, in the coming year, and by Advanced LIGO (∼2009) should further constrain the parameter space, and in some parts surpass the Big Bang nucleosynthesis bound. It will be more difficult to constrain the parameter space in nonminimal pre-big bang models, which are characterized by multiple cosmological phases in the yet not well understood stringy phase, and where the higher-order curvature and/or quantum-loop corrections in the string effective action should be included

  7. Collider, direct and indirect detection of supersymmetric dark matter

    International Nuclear Information System (INIS)

    Baer, Howard; Park, Eun-Kyung; Tata, Xerxes

    2009-01-01

    We present an overview of supersymmetry (SUSY) searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the DM sector. In contrast to the minimal supergravity (mSUGRA) model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m 0 -m 1/2 plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early Universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared with generic predictions from mSUGRA. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the next-lightest-supersymmetric-particle (NLSP) is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.

  8. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  9. MODEL PENGANGKUTAN SAMPAH DI KOTA BANGLI

    Directory of Open Access Journals (Sweden)

    Pande N Sari Saraswati

    2013-07-01

    Full Text Available The garbage transportation in Bangli City is currently done using a direct individual pattern (door to door. The vehicles used are dump trucks which are not covered, so they pollute the areas they pass by. Most of the vehicles are in bad condition. This study was aimed at identifying the transportation routes, the number of vehicles needed, the temporary place of garbage disposal ‘Tempat Pembuangan Sementara’ (TPS, and the rate of garbage retribution. The research method included the sample of garbage from the place of residence and the place of non residence based on SNI-19-3964-1994 used as a reference. This model used five compactor trucks for carrying garbage from 283 container bins with capacity of 0.36 m3, and one armroll truck for carrying the market garbage from four loudhaul with capacity of 6 m3 per day. The amount of retribution is analyzed based on the calculation of investment feasibility for 10 years time at 18% MARR interest rate, with an assumption that there was subsidy from the government. It was found that the value of NPV (Net Present Value was Rp. 35.673.540,99, the value of BCR (Benefit of Cost Ratio was 1.021 and the value of IRR (Internal Rate of Return was 19.11%. The monthly rates of retribution were Rp. 2,000.00/family, Rp. 20,000.00/school unit, Rp. 25,000.00/office unit, Rp. 8,000.00/shop unit, Rp. 20.000.00/restaurant unit, Rp. 2,000.00/hotel/accommodation unit, and Rp. 6,000.00/market trader.

  10. International Linear Collider Technical Review Committee: Second Report, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Loew, Gregory

    2003-02-21

    As this report is being published, the international high energy physics (HEP) community finds itself confronting a set of fascinating discoveries and new questions regarding the nature of matter and its fundamental particles and forces. The observation of neutrino oscillations that indicates that neutrinos have mass, measurements of the accelerating expansion of the universe that may be due to dark energy, and evidence for a period of rapid inflation at the beginning of the Big Bang are stimulating the entire field. Looming on the horizon are the potential discoveries of a Higgs particle that may reveal the origin of mass and of a whole family of supersymmetric particles that may be part of the cosmic dark matter. For the HEP community to elucidate these mysteries, new accelerators are indispensable. At this time, after careful deliberations, all three regional organizations of the HEP community (ACFA in Asia, HEPAP in North America, and ECFA in Europe) have reached the common conclusion that the next accelerator should be an electron-positron linear collider with an initial center-of-mass energy of 500 Giga-electronvolts (GeV), later upgradable to higher energies, and that it should be built and operated in parallel with the Large Hadron Collider under construction at CERN. Hence, this second report of the International Linear Collider Technical Review Committee (ILC-TRC) comes at a very timely moment. The report was requested by the International Committee on Future Accelerators (ICFA) in February 2001 to assess the current technical status of electron-positron linear collider designs in the various regions. Note that the ILC-TRC was not asked to concern itself with either cost studies or the ultimate selection process of a machine. This Executive Summary gives a short outline of the genesis of the report, the charge given to the committee, and its organization. It then presents a brief description of four electron-positron linear collider designs at hand. The

  11. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  12. Collider Physics an Experimental Introduction

    International Nuclear Information System (INIS)

    Elvezio Pagliarone, Carmine

    2011-01-01

    This paper reviews shortly a small part of the contents of a set of lectures, presented at the XIV International School of Particles and Fields in Morelia, state of Michoacan, Mexico, during November 2010. The main goal of those lectures was to introduce students to some of the basic ideas and tools required for experimental and phenomenological analysis of collider data. In particular, after an introduction to the scientific motivations, that drives the construction of powerful accelerator complexes, and the need of reaching high center of mass energies and luminosities, some basic concept about collider particle detectors will be discussed. A status about the present running colliders and collider experiments as well as future plans and research and development is also given.

  13. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-10-20

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  14. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  15. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  16. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  17. Restart Plan for the Prototype Vertical Denitration Calciner [SD Coversheet has Incorrect Document Number

    Energy Technology Data Exchange (ETDEWEB)

    SUTTER, C.S.

    1999-07-26

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing.

  18. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    Science.gov (United States)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  19. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.R.; Hanson, C.

    1994-10-03

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103.

  20. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    International Nuclear Information System (INIS)

    Wilson, T.R.; Hanson, C.

    1994-01-01

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103

  1. Restart Testing Program for piping following steam generator replacement at North Anna Unit 1

    International Nuclear Information System (INIS)

    Bain, R.A.; Bayer, R.K.

    1993-01-01

    In order to provide assurance that the effects of performing steam generator replacement (SGR) at North Anna unit 1 had no adverse impact on plant piping systems, a cold functional verification restart testing program was developed. This restart testing program was implemented in lieu of a hot functional testing program normally used during the initial startup of a nuclear plant. A review of North Anna plant-specific and generic U.S. Nuclear Regulatory Commission requirements for restart testing was performed to ensure that no mandatory hot functional testing was required. This was determined to be the case, and the development of a cold functional test program was initiated. The cold functional test had inherent advantages as compared to the hot functional testing, while still providing assurance of piping system adequacy. The advantages of the cold verification program included reducing risk to personnel from hot piping, increasing the accuracy of measurements with the improvement in work conditions, eliminating engineering activities during the heatup process, and being able to record measurements as construction work was completed allowing for rework or repair of components if required. To ensure the effectiveness of the cold verification program, a project procedure was generated to identify the personnel, equipment, and measurement requirements. An engineering calculation was issued to document the scope of the restart test program, and an additional calculation was developed to provide acceptance criteria for the critical commodity measurements

  2. 78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart

    Science.gov (United States)

    2013-11-19

    ... of Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the... financing from RUS to facilitate the restart of Unit 2 and for improvements to the Healy Plant, which... DOE and AIDEA. The decision documented in RUS's ROD is that RUS agrees to consider, subject to...

  3. The rise of colliding beams

    International Nuclear Information System (INIS)

    Richter, B.

    1992-06-01

    It is a particular pleasure for me to have this opportunity to review for you the rise of colliding beams as the standard technology for high-energy-physics accelerators. My own career in science has been intimately tied up in the transition from the old fixed-target technique to colliding-beam work. I have led a kind of double life both as a machine builder and as an experimenter, taking part in building and using the first of the colliding-beam machines, the Princeton-Stanford Electron-Electron Collider, and building the most recent advance in the technology, the Stanford Linear Collider. The beginning was in 1958, and in the 34 years since there has been a succession of both electron and proton colliders that have increased the available center-of-mass energy for hard collisions by more than a factor of 1000. For the historians here, I regret to say that very little of this story can be found in the conventional literature. Standard operating procedure for the accelerator physics community has been publication in conference proceedings, which can be obtained with some difficulty, but even more of the critical papers are in internal laboratory reports that were circulated informally and that may not even have been preserved. In this presentation I shall review what happened based on my personal experiences and what literature is available. I can speak from considerable experience on the electron colliders, for that is the topic in which I was most intimately involved. On proton colliders my perspective is more than of an observer than of a participant, but I have dug into the literature and have been close to many of the participants

  4. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  5. "Beyond the Big Bang: a new view of cosmology"

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    and parameters? Can one conceive of a completion of the scenario which resolves the big bang singularity and explains the dark energy now coming to dominate? Are we forced to resort to anthropic explanations? In this talk, I will develop an alternate picture, in which the big bang singularity is resolved and in which the value of the dark energy might be fixed by physical processes. The key is a resolution of the singularity. Using a combination of arguments,involving M theory and holography as well as analytic continuation in time within the low energy effective theory, I argue that there is a unique way to match cosmic evolution across the big bang singularity. The latter is no longer the beginning of time but is instead the gateway to an eternal, cyclical universe. If time permits, I shall describe new work c...

  6. What if the big bang didn't happen?

    International Nuclear Information System (INIS)

    Narlikar, J.

    1991-01-01

    Although it has wide support amongst cosmologists, the big bang theory of the origin of the Universe is brought into question in this article because of several recent observations. The large red shift observed in quasars does not fit with Hubble's Law which is so successful for galaxies. Some quasars appear to be linked to companion galaxies by filaments and, again, anomalous red shifts have been observed. The cosmic microwave background, or relic radiation, seems to be too uniform to fit with the big bang model. Lastly, the dark matter, necessary to explain the coalescing of galaxies and clusters, has yet to be established experimentally. A new alternative to the big bang model is offered based on recent work on cosmic grains. (UK)

  7. Regularization of the big bang singularity with random perturbations

    Science.gov (United States)

    Belbruno, Edward; Xue, BingKan

    2018-03-01

    We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.

  8. Generating ekpyrotic curvature perturbations before the big bang

    International Nuclear Information System (INIS)

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-01-01

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n s tends to range from slightly blue to red, with 0.97 s <1.02 for the simplest models, a range compatible with current observations but shifted by a few percent towards the blue compared to the prediction of the simplest, large-field inflationary models

  9. Challenges to the standard model of Big Bang nucleosynthesis

    International Nuclear Information System (INIS)

    Steigman, G.

    1993-01-01

    Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2 H, 3 He, 4 He, and 7 Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 ≤ η 10 ≤ 4.0. Increased accuracy in the estimate of primordial 4 he and observations of Be and B in Pop II stars are offering new challenges to the standard model and suggest that no new light particles may be allowed (N ν BBN ≤ 3.0, where N ν is the number of equivalent light neutrinos). 23 refs

  10. What if the big bang didn't happen

    Energy Technology Data Exchange (ETDEWEB)

    Narlikar, J. (Inter-University Centre for Astronomy and Astrophysics, Pune (India))

    1991-03-02

    Although it has wide support amongst cosmologists, the big bang theory of the origin of the Universe is brought into question in this article because of several recent observations. The large red shift observed in quasars does not fit with Hubble's Law which is so successful for galaxies. Some quasars appear to be linked to companion galaxies by filaments and, again, anomalous red shifts have been observed. The cosmic microwave background, or relic radiation, seems to be too uniform to fit with the big bang model. Lastly, the dark matter, necessary to explain the coalescing of galaxies and clusters, has yet to be established experimentally. A new alternative to the big bang model is offered based on recent work on cosmic grains. (UK).

  11. A cosmological analogy between the big bang and a supernova

    International Nuclear Information System (INIS)

    Sen, S.

    1983-01-01

    The author presents an objection to Brown's (1981) analogy between a supernova and the Big Bang. According to Brown an expanding spherical shell is quite similar to an ejected supernova shell. However, the fragmented shell of a supernova moves outward in pre-existing space. The force of repulsion which makes the fragments of the shell drift apart can be regarded as equivalent to the force of attraction of the rest of the universe on the supernova. By definition, such a force of attraction is absent in the case of the Big Bang. Energy is supposed suddenly to appear simultaneously at all points throughout the universe at the time of the Big Bang. As the universe expands, space expands too. In the relativistic cosmology, the universe cannot expand in pre-existing space. (Auth.)

  12. Cosmological analogy between the big bang and a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S. (Hamburg, Germany, F.R.)

    1983-10-01

    The author presents an objection to Brown's (1981) analogy between a supernova and the Big Bang. According to Brown an expanding spherical shell is quite similar to an ejected supernova shell. However, the fragmented shell of a supernova moves outward in pre-existing space. The force of repulsion which makes the fragments of the shell drift apart can be regarded as equivalent to the force of attraction of the rest of the universe on the supernova. By definition, such a force of attraction is absent in the case of the Big Bang. Energy is supposed suddenly to appear simultaneously at all points throughout the universe at the time of the Big Bang. As the universe expands, space expands too. In the relativistic cosmology, the universe cannot expand in pre-existing space.

  13. Introduction to big bang nucleosynthesis and modern cosmology

    Science.gov (United States)

    Mathews, Grant J.; Kusakabe, Motohiko; Kajino, Toshitaka

    Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the testing ground upon which many cosmological models must ultimately rest. It is our only probe of the universe during the important radiation-dominated epoch in the first few minutes of cosmic expansion. This paper reviews the basic equations of space-time, cosmology, and big bang nucleosynthesis. We also summarize the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measurements are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we analyze the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.

  14. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  15. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  16. When Moons Collide

    Science.gov (United States)

    Rufu, Raluca; Aharonson, Oded

    2017-10-01

    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  17. Head banging persisting during adolescence: A case with polysomnographic findings

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2014-01-01

    Full Text Available Head banging is a sleep-related rhythmic movement disorder of unknown etiology. It is common during infancy; however, available literature suggests that prevalence decreases dramatically after childhood. We report the case of a 16-year-old male who presented with head banging. The symptoms were interfering with his functioning and he had been injured because of the same in the past. We are presenting the video-polysomnographic data of the case. Possible differential diagnoses, etiology, and treatment modalities are discussed. The boy was prescribed clonazepam and followed up for 3 months. Parents did not report any episode afterward.

  18. Big bang and big crunch in matrix string theory

    International Nuclear Information System (INIS)

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-01-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe

  19. A cosmogonical analogy between the Big Bang and a supernova

    International Nuclear Information System (INIS)

    Brown, W.K.

    1981-01-01

    The Big Bang may be discussed most easily in analogy with an expanding spherical shell. An expanding spherical shell, in turn, is quite similar to an ejected supernova shell. In both the Big Bang and the supernova, fragmentation is postulated to occur, where each fragment of the universe becomes a galaxy, and each fragment of supernova shell becomes a solar system. By supporting the presence of shearing flow at the time of fragmentation, a model has been constructed to examine the results in both cases. It has been shown that the model produces a good description of reality on both the galactic and solar system scales. (Auth.)

  20. Evolution of the early universe and big-bang nucleosynthesis

    International Nuclear Information System (INIS)

    Kajino, T.

    1995-01-01

    Cosmological phase transition can create strongly inhomogeneous baryon density distribution. Inhomogeneous big-bang model for primordial nucleosynthesis allows higher universal mass density parameter of baryons than the standard model does, which is marginally consistent with recent astronomical suggestion that some kind of dark matter is made of baryons. Enhanced heavy-element abundances in halo dwarfs is shown to be an observational signature for the inhomogeneous big-bang model. The studies of radioactive nuclear reactions help predict the theoretical abundances of these elements more precisely. (author). 53 refs., 8 figs

  1. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  2. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    Science.gov (United States)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  3. Nonuniversal scalar-tensor theories and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2009-01-01

    We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.

  4. pp wave big bangs: Matrix strings and shrinking fuzzy spheres

    International Nuclear Information System (INIS)

    Das, Sumit R.; Michelson, Jeremy

    2005-01-01

    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate matrix string theory in these backgrounds. Near the big bang 'singularity', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-Abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times

  5. Big Bang-Like Phenomenon in Multidimensional Data

    OpenAIRE

    Jiřina, M. (Marcel)

    2014-01-01

    Notion of the Big Bang in Data was introduced, when it was observed that the quantity of data grows very fast and the speed of this growth rises with time. This is parallel to the Big Bang of the Universe which expands and the speed of the expansion is the larger the farther the object is, and the expansion is isotropic. We observed another expansion in data embedded in metric space. We found that when distances in data space are polynomially expanded with a proper exponent, the space around ...

  6. Nonuniversal scalar-tensor theories and big bang nucleosynthesis

    Science.gov (United States)

    Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2009-05-01

    We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.

  7. BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION

    International Nuclear Information System (INIS)

    Bertulani, C. A.; Fuqua, J.; Hussein, M. S.

    2013-01-01

    The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1 - 0.12 +0.05 , indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1) is highly unlikely.

  8. Film Presentation: Big Bang, mes ancêtres et moi

    CERN Multimedia

    2010-01-01

    Big Bang, mes ancêtres et moi, by Franco-German TV producer ARTE (2009)   What do we know about the origins of the world today? This documentary presents a voyage into the mystery of these origins, accompanied by passionate scientists such as paleoanthropologist Pascal Picq, astrophysicist Hubert Reeves, physicist Etienne Klein and quantum gravity theorist Abhay Ashtekar. Organized around three key moments – the birth of the Universe, the appearance of life and the origins of mankind – this investigation takes us to various research areas around the world, including the large underground particle accelerator at CERN. The German version of this film, Big Bang im Labor, will be presented on 1st October. Big Bang, mes ancêtres et moi will be shown on Friday, 24 September from 13:00 to 14:00 in room 222-R-001 Language: French Big Bang im Labor will be shown on Friday, 1 October from 13:00 to 14:00 in the Main Auditorium Language : German   &nbs...

  9. Small wormholes change our picture of the big bang

    CERN Multimedia

    1990-01-01

    Matt Visser has studied tiny wormholes, which may be produced on a subatomic scale by quantum fluctuations in the energy of the vacuum. He believes these quantum wormholes could change our picture of the origin of the Universe in the big bang (1/2 p)

  10. Overexpression of CFH gene in pterygiumv patients | Bang | Tropical ...

    African Journals Online (AJOL)

    Overexpression of CFH gene in pterygiumv patients. Man-Seok Bang, Chang Rae Rho, Bong-Hui Kang, Kyong Jin Cho, Chung-Hun Oh. Abstract. Purpose: To investigate the expression of complement factors in pterygium tissues compared to normal conjunctival samples, using next-generation RNA sequencing. Methods: ...

  11. Leadership in the Big Bangs of European Integration

    DEFF Research Database (Denmark)

    ? and, more importantly, what factors allowed specific actors to provide leadership in a given context? These conclusions provide a major step forward in the literature on the history-making bargains in the EU, allowing us to answer with more confidence the question of which actors have guided the big...... bangs in the European integration process in the past two decades, and why.  ...

  12. A Guided Inquiry on Hubble Plots and the Big Bang

    Science.gov (United States)

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  13. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    Science.gov (United States)

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  14. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  15. EMR implementation: big bang or a phased approach?

    Science.gov (United States)

    Owens, Kathleen

    2008-01-01

    There are two major strategies to implementing an EMR: the big-bang approach and the phased, or incremental, approach. Each strategy has pros and cons that must be considered. This article discusses these approaches and the risks and benefits of each as well as some training strategies that can be used with either approach.

  16. American Connections: The Early Works of Thomas Bang

    Directory of Open Access Journals (Sweden)

    Ring Petersen, Anne

    2015-09-01

    Full Text Available The Danish artist Thomas Bang spent his early years in the USA. The works he created in this formative period were thus profoundly shaped by the contemporary movements in American art of the 1960s and 1970s when sculpture, or to be more precise, three-dimensional work became a hotbed of expansive experiments. This article traces how Bang made a radical move from painting to sculpture, which was characteristic of that time, and how he developed his artistic idiom by taking an active part in some of the seminal new departures in American art, in particular process art and post-minimalism. By leaping forward to Bang's later works produced after his return to Denmark, the article also demonstrates how the sculptural syntax and working principles developed in the early works still underlie and structure the artist's more allegorical sculptures and installations from the 2000s, thus testifying to the lasting impact of Bang's American period, which remains the key to understanding his works.

  17. Constructing "Nerdiness": Characterisation in "The Big Bang Theory"

    Science.gov (United States)

    Bednarek, Monika

    2012-01-01

    This paper analyses the linguistic construction of the televisual character Sheldon--the "main nerd" in the sitcom "The Big Bang Theory" (CBS, 2007-), approaching this construction of character through both computerised and "manual" linguistic analysis. More specifically, a computer analysis of dialogue (using concordances and keyword analysis) in…

  18. Cosmologie L'Univers avant le Big Bang

    CERN Multimedia

    Rouat, Sylvie

    2003-01-01

    Tout n'a pas commencé par une explosion. L'histoire du cosmos avait débuté bien avant le Big Bang, si l'on suit la théorie défendue par les partisans d'une nouvelle cosmologie issue de la mystérieuse théorie des cordes

  19. Pre-big bang in M-theory

    OpenAIRE

    Cavaglia, Marco

    2001-01-01

    We discuss a simple cosmological model derived from M-theory. Three assumptions lead naturally to a pre-big bang scenario: (a) 11-dimensional supergravity describes the low-energy world; (b) non-gravitational fields live on a three-dimensional brane; and (c) asymptotically past triviality.

  20. "Big Bang"test put off until May 2008

    CERN Multimedia

    2007-01-01

    "First tests in a scientific project aimed at solving mysteries of the universe and the "Big Bang" which created it have been put off from November to late april or early May next year, an official said yesterday." (2/3 page)

  1. Recrean el Big Bang a nivel microscópico

    CERN Multimedia

    2007-01-01

    Although the scientists assure that the Universe was created from great explosion or Big Bang, that gave origin to the matter which we know today - including the alive beings - What happened after this strong snap is still a mystery regarding the formation of the cosmos. (1 page)

  2. Mapping the cold glow of the big bang

    International Nuclear Information System (INIS)

    Bennett, Charles

    1991-01-01

    The United States has recently launched a satellite solely dedicated to cosmology in an attempt to provide insight into the early formation of the Universe. The Cosmic Background Explorer (COBE) satellite is producing astonishing precise data which supports the Big Bang theory of the Universe's origins. Continued analysis of COBE data may provide clues as to how stars and galaxies formed. (UK)

  3. Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology

    Science.gov (United States)

    Manin, Yuri I.; Marcolli, Matilde

    2014-07-01

    We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point x. This creates a boundary which consists of the projective space of tangent directions to x and possibly of the light cone of x. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from ''the end of previous aeon'' of the expanding and cooling Universe to the ''beginning of the next aeon'' is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.

  4. Big bang in a universe with infinite extension

    Energy Technology Data Exchange (ETDEWEB)

    Groen, Oeyvind [Oslo College, Department of Engineering, PO Box 4, St Olavs Pl, 0130 Oslo (Norway); Institute of Physics, University of Oslo, PO Box 1048 Blindern, 0316 Oslo (Norway)

    2006-05-01

    How can a universe coming from a point-like big bang event have infinite spatial extension? It is shown that the relativity of simultaneity is essential in answering this question. Space is finite as defined by the simultaneity of one observer, but it may be infinite as defined by the simultaneity of all the clocks participating in the Hubble flow.

  5. Big bang in a universe with infinite extension

    International Nuclear Information System (INIS)

    Groen, Oeyvind

    2006-01-01

    How can a universe coming from a point-like big bang event have infinite spatial extension? It is shown that the relativity of simultaneity is essential in answering this question. Space is finite as defined by the simultaneity of one observer, but it may be infinite as defined by the simultaneity of all the clocks participating in the Hubble flow

  6. [Fatal alveolar haemorrhage following a "bang" of cannabis].

    Science.gov (United States)

    Grassin, F; André, M; Rallec, B; Combes, E; Vinsonneau, U; Paleiron, N

    2011-09-01

    The new methods of cannabis consumption (home made water pipe or "bang") may be responsible for fatal respiratory complications. We present a case, with fatal outcome, of a man of 19 years with no previous history other than an addiction to cannabis using "bang". He was admitted to intensive care with acute dyspnoea. A CT scan showed bilateral, diffuse alveolar shadowing. He was anaemic with an Hb of 9.3g/l. Bronchoalveolar lavage revealed massive alveolar haemorrhage. Investigations for infection and immunological disorder were negative and toxicology was negative except for cannabis. Antibiotic treatment was given and favourable progress allowed early discharge. Death occurred 15 days later due to alveolar haemorrhage following a further "bang" of cannabis. Autopsy showed toxic alveolar haemorrhage. The probable mechanism is pulmonary damage due to acid anhydrides released by the incomplete combustion of cannabis in contact with plastic. These acids have a double effect on the lungs: a direct toxicity with severe inflammation of the mucosa leading to alveolar haemorrhage and subsequently the acid anhydrides may lead to the syndrome of intra-alveolar haemorrhage and anaemia described in occupational lung diseases by Herbert in Oxford in 1979. It manifests itself by haemoptysis and intravascular haemolysis. We draw attention to the extremely serious potential consequences of new methods of using cannabis, particularly the use of "bang" in homemade plastic materials. Copyright © 2011 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  7. Final Report for the Restart of the Waste Characterization, Reduction and Repackaging Facility (WCRRF) Contractor Readiness Assessment (CRA)

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Gregory Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-22

    The Los Alamos National Laboratory (LANL or Laboratory) Contractor Readiness Assessment (CRA) required for restart of the Technical Area (TA) 50 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) for remediated nitrate salt (RNS) waste operations was performed in compliance with the requirements of Department of Energy (DOE) Order (O) 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, and LANL procedure FSD-115-001, Verification of Readiness to Start Up or Restart LANL Nuclear Facilities, Activities, and Operations.

  8. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  9. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  10. TMI-1 restart: an evaluation of the licensee's management integrity as it affects restart of Three Mile Island Nuclear Station (Unit 1 Docket 50-289). Supplement 5

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 5 to the Safety Evaluation Report (SER) on TMI-1 Restart documents the review by the Nuclear Regulatory Commission (NRC) staff of nine investigations conducted by the NRC Office of Investigations into matters identified as relevant and material to an evaluation of the licensee's management integrity. The staff has included, as part of its evaluation, materials from its review of the GPU v. B and W lawsuit record (NUREG-1020LD, GPU, v. B and W Lawsuit Review and Its Effect on TMI-1) as well as other relevant materials developed since the close of the record in the TMI-1 Restart proceeding. In developing its position on General Public Utilities Nuclear Corporation's character (i.e., management integrity), the staff evaluated matters that cast doubt on the licensee's character, individually and collectively; considered the remedial actions taken by the licensee; and balanced past improper conduct of the licensee against its subsequent record of remedial actions and performance and record of current senior management of the licensee. The staff concluded that, while the past improper conduct was grave, the remedial actions taken, the subsequent record of performance, and the record of current senior management support a finding that GPUN can and will operate TMI-1 without undue risk to the health and safety of the public

  11. Recent results from hadron colliders

    International Nuclear Information System (INIS)

    Frisch, H.J.

    1990-01-01

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs

  12. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  13. Physics beyond Colliders Kickoff Workshop

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kickoff workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  14. Workshop on Physics Beyond Colliders

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kick-off workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  15. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-01-01

    Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

  16. Commentary: restarting NTD programme activities after the Ebola outbreak in Liberia.

    Science.gov (United States)

    Thomas, Brent C; Kollie, Karsor; Koudou, Benjamin; Mackenzie, Charles

    2017-05-01

    It is widely known that the recent Ebola Virus Disease (EVD) in West Africa caused a serious disruption to the national health system, with many of ongoing disease focused programmes, such as mass drug administration (MDA) for onchocerciasis (ONC), lymphatic filariasis (LF) and schistosomiasis (SCH), being suspended or scaled-down. As these MDA programmes attempt to restart post-EVD it is important to understand the challenges that may be encountered. This commentary addresses the opinions of the major health sectors involved, as well as those of community members, regarding logistic needs and challenges faced as these important public health programmes consider restarting. There appears to be a strong desire by the communities to resume NTD programme activities, although it is clear that some important challenges remain, the most prominent being those resulting from the severe loss of trained staff.

  17. Analysis of reactivity worth for xenon poisoning during restart-up of reactor in iodine pit

    International Nuclear Information System (INIS)

    Li Xaofeng; Chen Wenzhen; Zhu Qian; Xu Guojun

    2009-01-01

    The reactivity worth of xenon poisoning and the densities of 135 I and 135 Xe were derived when the reactor was restarted up in iodine pit. Through the expressions obtained we can find the physics characteristics of reactor restarted up in iodine pit comprehensively and essentially. The results were analyzed and discussed. The reactor power before shutdown, the start-up power, the position where the reactor starts up in iodine pit, and so on, all have effect on the reactivity worth of xenon poisoning, and the different conditions can lead to totally different physics characteristics. In addition, the time when the reactor starts up in iodine pit is a very important factor for nuclear reactors safety. The conclusions are very important to the maneuverability and operation safety of ship nuclear reactors. (authors)

  18. Feasibility study to restart the research reactor RA with a converted core

    International Nuclear Information System (INIS)

    Matausek, M.V.; Plecas, I.; Marinkovic, N.

    1999-01-01

    Main options are specified for the future status of the 6.5 MW heavy water research reactor RA. Arguments pro and contra restarting the reactor are presented. When considering the option to restart the RA reactor, possibilities to improve its neutronic parameters, such as neutron flux values and irradiation capabilities, are discussed, as well as the compliance with the worldwide activities of Reduced Enrichment for Research and Test Reactors (RERTR) program. Possibility of core conversion is examined. Detailed reactor physics design calculations are performed for different fuel types and uranium loading. For different fuel management schemes results are presented for the effective multiplication factor, power distribution, fuel burnup and consumption. It is shown that, as far as reactor core parameters are considered, conversion to lower enrichment fuel could be easily accomplished. However, conversion to the lower enrichment could only be justified if combined with improvement of some other reactor attributes. (author)

  19. Status of High Flux Isotope Reactor (HFIR) post-restart safety analysis and documentation upgrades

    International Nuclear Information System (INIS)

    Cook, D.H.; Radcliff, T.D.; Rothrock, R.B.; Schreiber, R.E.

    1990-01-01

    The High Flux Isotope Reactor (HFIR), an experimental reactor located at the Oak Ridge National Laboratory (ORNL) and operated for the US Department of Energy by Martin Marietta Energy Systems, was shut down in November, 1986 after the discovery of unexpected neutron embrittlement of the reactor vessel. The reactor was restarted in April, 1989, following an extensive review by DOE and ORNL of the HFIR design, safety, operation, maintenance and management, and the implementation of several upgrades to HFIR safety-related hardware, analyses, documents and procedures. This included establishing new operating conditions to provide added margin against pressure vessel failure, as well as the addition, or upgrading, of specific safety-related hardware. This paper summarizes the status of some of the follow-on (post-restart) activities which are currently in progress, and which will result in a comprehensive set of safety analyses and documentation for the HFIR, comparable with current practice in commercial nuclear power plants. 8 refs

  20. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  1. Economic evaluation of strategies for restarting anticoagulation therapy after a first event of unprovoked venous thromboembolism.

    Science.gov (United States)

    Monahan, M; Ensor, J; Moore, D; Fitzmaurice, D; Jowett, S

    2017-08-01

    Essentials Correct duration of treatment after a first unprovoked venous thromboembolism (VTE) is unknown. We assessed when restarting anticoagulation was worthwhile based on patient risk of recurrent VTE. When the risk over a one-year period is 17.5%, restarting is cost-effective. However, sensitivity analyses indicate large uncertainty in the estimates. Background Following at least 3 months of anticoagulation therapy after a first unprovoked venous thromboembolism (VTE), there is uncertainty about the duration of therapy. Further anticoagulation therapy reduces the risk of having a potentially fatal recurrent VTE but at the expense of a higher risk of bleeding, which can also be fatal. Objective An economic evaluation sought to estimate the long-term cost-effectiveness of using a decision rule for restarting anticoagulation therapy vs. no extension of therapy in patients based on their risk of a further unprovoked VTE. Methods A Markov patient-level simulation model was developed, which adopted a lifetime time horizon with monthly time cycles and was from a UK National Health Service (NHS)/Personal Social Services (PSS) perspective. Results Base-case model results suggest that treating patients with a predicted 1 year VTE risk of 17.5% or higher may be cost-effective if decision makers are willing to pay up to £20 000 per quality adjusted life year (QALY) gained. However, probabilistic sensitivity analysis shows that the model was highly sensitive to overall parameter uncertainty and caution is warranted in selecting the optimal decision rule on cost-effectiveness grounds. Univariate sensitivity analyses indicate variables such as anticoagulation therapy disutility and mortality risks were very influential in driving model results. Conclusion This represents the first economic model to consider the use of a decision rule for restarting therapy for unprovoked VTE patients. Better data are required to predict long-term bleeding risks during therapy in this

  2. The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G.; Miro, R. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Vidal, V. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Valencia (Spain)

    1999-05-01

    To calculate the neutronic steady state of a nuclear power reactor core and its subcritical modes, it is necessary to solve a partial eigenvalue problem. In this paper, an implicit restarted Arnoldi method is presented as an advantageous alternative to classical methods as the Power Iteration method and the Subspace Iteration method. The efficiency of these methods, has been compared calculating the dominant Lambda modes of several configurations of the Three Mile Island reactor core.

  3. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  4. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2014-11-01

    Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

  5. Checkpoint-dependent RNR induction promotes fork restart after replicative stress.

    Science.gov (United States)

    Morafraile, Esther C; Diffley, John F X; Tercero, José Antonio; Segurado, Mónica

    2015-01-20

    The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.

  6. An asynchronous writing method for restart files in the gysela code in prevision of exascale systems*

    Directory of Open Access Journals (Sweden)

    Thomine O.

    2013-12-01

    Full Text Available The present work deals with an optimization procedure developed in the full-f global GYrokinetic SEmi-LAgrangian code (GYSELA. Optimizing the writing of the restart files is necessary to reduce the computing impact of crashes. These files require a very large memory space, and particularly so for very large mesh sizes. The limited bandwidth of the data pipe between the comput- ing nodes and the storage system induces a non-scalable part in the GYSELA code, which increases with the mesh size. Indeed the transfer time of RAM to data depends linearly on the files size. The necessity of non synchronized writing-in-file procedure is therefore crucial. A new GYSELA module has been developed. This asynchronous procedure allows the frequent writ- ing of the restart files, whilst preventing a severe slowing down due to the limited writing bandwidth. This method has been improved to generate a checksum control of the restart files, and automatically rerun the code in case of a crash for any cause.

  7. Gigantic particle collision machine does "mini Big Bangs"

    CERN Multimedia

    2007-01-01

    "The world's largest machine is reputed to be the Large Hadron Collider (LHC) at CERN in Geneva and everything about it is big. Designed to carry out high energy particle collisions, when completed next year, one of the collider's experiments includes a 10'000 ton detector." (1/2 page)

  8. Collider Scaling and Cost Estimation

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1986-01-01

    This paper deals with collider cost and scaling. The main points of the discussion are the following ones: 1) scaling laws and cost estimation: accelerating gradient requirements, total stored RF energy considerations, peak power consideration, average power consumption; 2) cost optimization; 3) Bremsstrahlung considerations; 4) Focusing optics: conventional, laser focusing or super disruption. 13 refs

  9. Working group report: Collider Physics

    Indian Academy of Sciences (India)

    11KEK, Tsukuba, Japan. 12Cornell University ... This is summary of the activities of the working group on collider physics in the IXth ... In view of the requirements of the hour and the available skills and interests, it was decided to .... The actual computation, which is long and somewhat tedious, is currently under way and is ...

  10. Collider physics: A theorist's view

    International Nuclear Information System (INIS)

    Ellis, S.D.

    1986-06-01

    Recent experimental results from the CERN anti p p Collider are reviewed from a theorist's perspective. The conclusion is that the standard model is impressively verified and nothing else seems to be present. Some other relevant phenomenological and theoretical issues are also reviewed

  11. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  12. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  13. Hard QCD at hadron colliders

    International Nuclear Information System (INIS)

    Moch, S.

    2008-02-01

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)

  14. The SPS panti p collider

    International Nuclear Information System (INIS)

    Gareyte, J.

    1984-01-01

    The purpose of this lecture is to give a general idea of how the collider works. The fact that one of the beams is composed of scarce precious antiprotons imposes strong constraints on the operation of such a machine. Solutions to these specific problems will be described. (orig./HSI)

  15. Fast Timing for Collider Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  16. Top production at hadron colliders

    Indian Academy of Sciences (India)

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including ...

  17. Electroweak results from hadron colliders

    International Nuclear Information System (INIS)

    Demarteau, Marcel

    1997-01-01

    A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings

  18. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged magnet and retrofit others to correct the underlynig design flaw, which could delay the start-up of the mammouth subterranean machine." (1,5 page)

  19. The collider of the future?

    CERN Multimedia

    2009-01-01

    Why are two studies for one linear collider being conducted in parallel? This is far from a duplication of effort or a waste of resources, since the two studies reflect a complementary strategy aimed at providing the best technology for future physics. On Friday 12 June CERN hosted the first joint meeting between CLIC, ILC and the CERN management.

  20. CERN's Large Hadron Collider project

    Science.gov (United States)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  1. CERN's Large Hadron Collider project

    International Nuclear Information System (INIS)

    Fearnley, Tom A.

    1997-01-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B

  2. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  3. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  4. Summary of the Linear Collider Working Group

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1989-01-01

    The focus of the Linear Collider Working Group was on a next generation linear collider. Topics discussed are: parameters; damping rings; bunch compression and pre-acceleration; linac; final focus; and multibunch effects. 8 refs., 3 figs., 7 tabs

  5. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  6. Physics at hadron colliders: Experimental view

    International Nuclear Information System (INIS)

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs

  7. Strings and superstrings. Electron linear colliders

    International Nuclear Information System (INIS)

    Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.

    1989-01-01

    Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr

  8. Tau physics at p bar p colliders

    International Nuclear Information System (INIS)

    Konigsberg, J.

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments

  9. NOVOSIBIRSK/STANFORD: colliding linac beams

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Plans to use colliding beams from linear accelerators are being considered at Novosibirsk and Stanford. The VLEPP scheme proposed for Novosibirsk and the Stanford single pass collider scheme are described. (W.D.L.).

  10. World lays groundwork for future linear collider

    CERN Multimedia

    Feder, Toni

    2010-01-01

    "New physics from the Large Hadron Collider can best be explored with a large lepton collider; realizing one will require mobilizing accelerator and particle physicists, funding agencies, and politicians" (3 pages)

  11. Multi-TeV muon colliders

    International Nuclear Information System (INIS)

    Neuffer, D.

    1986-01-01

    The possibility that muons may be used in a future generation of high-energy high-luminosity μ + μ - and μ - p colliders is presented. The problem of collecting and cooling high-intensity muon bunches is discussed and ionization cooling is described. High-energy collider scenarios are outlined; muon colliders may become superior to electron colliders in the multi-TeV energy range

  12. The Sounds of the Little and Big Bangs

    Directory of Open Access Journals (Sweden)

    Edward Shuryak

    2017-11-01

    Full Text Available Studies on heavy ion collisions have discovered that tiny fireballs of a new phase of matter—quark gluon plasma (QGP—undergo an explosion, called the Little Bang. In spite of its small size, not only is it well described by hydrodynamics, but even small perturbations on top of the explosion turned out to be well described by hydrodynamical sound modes. The cosmological Big Bang also went through phase transitions, related with Quantum Chromodynamics (QCD and electroweak/Higgs symmetry breaking, which are also expected to produce sounds. We discuss their subsequent evolution and hypothetical inverse acoustic cascade, amplifying the amplitude. Ultimately, the collision of two sound waves leads to the formation of one gravity waves. We briefly discuss how these gravity waves can be detected.

  13. Introduction to Big Bang nucleosynthesis - Open and closed models, anisotropies

    Science.gov (United States)

    Tayler, R. J.

    1982-10-01

    A variety of observations suggest that the universe had a hot dense origin and that the pregalactic composition of the universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early universe.

  14. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    CERN Multimedia

    2008-01-01

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  15. Big Bang nucleosynthesis and abundances of light elements

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1991-01-01

    Big Bang nucleosynthesis (BBNS) theory is sketched, indicating the dependence of primordial abundances of D, 3 He, 4 He and 7 Li on the mean baryonic density of the universe and the dependence of 4 He on the number of neutrino families and the neutron half-life. Observational data and inferred primordial abundances of these elements are reviewed and shown to be consistent (within errors) either with standard BBNS in a homogeneous universe about 100 seconds after the Big Bang or with moderately inhomogeneous BBNS models resulting from earlier phase transitions like the quark-hadron transition if this is first order. However, models with closure density supplied by baryons are apparently ruled out. Finally, implications for the existence of baryonic and non-baryonic dark matter are briefly discussed. (orig.)

  16. The Sounds of the Little and Big Bangs

    Science.gov (United States)

    Shuryak, Edward

    2017-11-01

    Studies of heavy ion collisions have discovered that tiny fireballs of new phase of matter -- quark gluon plasma (QGP) -- undergoes explosion, called the Little Bang. In spite of its small size, it is not only well described by hydrodynamics, but even small perturbations on top of the explosion turned to be well described by hydrodynamical sound modes. The cosmological Big Bang also went through phase transitions, the QCD and electroweak ones, which are expected to produce sounds as well. We discuss their subsequent evolution and hypothetical inverse acoustic cascade, amplifying the amplitude. Ultimately, collision of two sound waves leads to formation of gravity waves, with the smallest wavelength. We briefly discuss how those can be detected.

  17. Particle Physics Catalysis of Thermal Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Pospelov, Maxim

    2007-01-01

    We point out that the existence of metastable, τ>10 3 s, negatively charged electroweak-scale particles (X - ) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X - with helium, formed at temperatures of about T=10 8 K, lead to the catalytic enhancement of 6 Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X - does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X - particles (τ>10 5 s) relative to entropy of n X - /s -17 , which is one of the most stringent probes of electroweak scale remnants known to date

  18. From big bang to big crunch and beyond

    International Nuclear Information System (INIS)

    Elitzur, Shmuel; Rabinovici, Eliezer; Giveon, Amit; Kutasov, David

    2002-01-01

    We study a quotient Conformal Field Theory, which describes a 3+1 dimensional cosmological spacetime. Part of this spacetime is the Nappi-Witten (NW) universe, which starts at a 'big bang' singularity, expands and then contracts to a 'big crunch' singularity at a finite time. The gauged WZW model contains a number of copies of the NW spacetime, with each copy connected to the preceding one and to the next one at the respective big bang/big crunch singularities. The sequence of NW spacetimes is further connected at the singularities to a series of non-compact static regions with closed timelike curves. These regions contain boundaries, on which the observables of the theory live. This suggests a holographic interpretation of the physics. (author)

  19. Particle physics catalysis of thermal big bang nucleosynthesis.

    Science.gov (United States)

    Pospelov, Maxim

    2007-06-08

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.

  20. Dirac fields in loop quantum gravity and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Bojowald, Martin; Das, Rupam; Scherrer, Robert J.

    2008-01-01

    Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.

  1. Electron screening and its effects on big-bang nucleosynthesis

    International Nuclear Information System (INIS)

    Wang Biao; Bertulani, C. A.; Balantekin, A. B.

    2011-01-01

    We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatment of screening beyond the mean-field theoretical approach.

  2. Negative-mass lagging cores of the big bang

    International Nuclear Information System (INIS)

    Miller, B.D.

    1976-01-01

    Examples are given of spherically symmetric cosmological models containing space-sections with the following properties: at large values of the geometrically defined coordinate R, the mass is positive, while at small values of R, the mass is negative. The negative-mass region of spacetime has local properties similar to those of the negative-mass Schwarzschild solution. The big bang in these models is partially spacelike and partially timelike, so the spacetimes do not obey the strong form of the cosmic censorship hypothesis. The timelike, negative-mass segments of the big bang are unlimited sources of electromagnetic and gravitational radiation, and as such may be attractive as ''lagging core'' models of highly energetic astrophysical phenomena

  3. Introduction to Big Bang nucleosynthesis: open and closed models, anisotropies

    International Nuclear Information System (INIS)

    Taylor, R.J.

    1982-01-01

    A variety of observations suggest that the Universe had a hot dense origin and that the pregalactic composition of the Universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the Universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early Universe. (author)

  4. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  5. Big-Bang nucleosynthesis with updated nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Coc, Alain [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), CNRS/IN2P3, Universite Paris Sud 11, UMR 8609, Batiment 104, F-91405 Orsay Campus (France); Vangioni, Elisabeth, E-mail: Alain.Coc@csnsm.in2p3.f, E-mail: vangioni@iap.f [Institut d' Astrophysique de Paris, UMR-7095 du CNRS, Universite Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France)

    2010-01-01

    Primordial nucleosynthesis is one of the three evidences for the Big-Bang model together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of {sup 4}He, D, {sup 3}He and {sup 7}Li deduced from observations and calculated primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. Big-Bang nucleosynthesis remains, nevertheless, a valuable tool to probe the physics of the early Universe. However, the yet unexplained, discrepancy between the calculated and observed lithium primordial abundances, has not been reduced, neither by recent nuclear physics experiments, nor by new observations.

  6. Negative-mass lagging cores of the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.D.

    1976-09-01

    Examples are given of spherically symmetric cosmological models containing space-sections with the following properties: at large values of the geometrically defined coordinate R, the mass is positive, while at small values of R, the mass is negative. The negative-mass region of spacetime has local properties similar to those of the negative-mass Schwarzschild solution. The big bang in these models is partially spacelike and partially timelike, so the spacetimes do not obey the strong form of the cosmic censorship hypothesis. The timelike, negative-mass segments of the big bang are unlimited sources of electromagnetic and gravitational radiation, and as such may be attractive as ''lagging core'' models of highly energetic astrophysical phenomena. (AIP)

  7. Generating a hot big bang via a change in topology

    International Nuclear Information System (INIS)

    Kandvup, H.E.

    1990-01-01

    This paper uses ideas developed recently in semiclassical quantum gravity to argue that many qualitative features of the hot big bang generally assumed in cosmology may be explained by the hypothesis that, interpreted semiclassically, the universe tunnelled into being via a quantum fluctuation from a small (Planck-sized), topologically complex entity to a topologically trivial entity (like a Friedmann universe) that rapidly grew to a more macroscopic size

  8. Possible evidence for dark radiation from Big Bang Nucleosynthesis data

    Energy Technology Data Exchange (ETDEWEB)

    Flambaum, V.V. [New South Wales Univ., School of Physics, Sydney NSW (Australia); Argonne National Laboratory, Physics Div., Argonne, IL (United States); Shuryak, E.V. [State University of New York Stony Brook, Dept. of Physics and Astronomy, NY (United States)

    2006-06-15

    We address the emerging discrepancy between the Big Bang Nucleosynthesis data and standard cosmology, which asks for a bit longer evolution time. If this effect is real, one possible implication (in a framework of brane cosmology model) is that there is a 'dark radiation' component which is negative and makes few percents of ordinary matter density. If so, all scales of this model can be fixed, provided brane-to-bulk leakage problem is solved. (authors)

  9. Possible evidence for dark radiation from Big Bang Nucleosynthesis data

    International Nuclear Information System (INIS)

    Flambaum, V.V.; Shuryak, E.V.

    2006-01-01

    We address the emerging discrepancy between the Big Bang Nucleosynthesis data and standard cosmology, which asks for a bit longer evolution time. If this effect is real, one possible implication (in a framework of brane cosmology model) is that there is a 'dark radiation' component which is negative and makes few percents of ordinary matter density. If so, all scales of this model can be fixed, provided brane-to-bulk leakage problem is solved. (authors)

  10. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Joern [The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste (Italy); Schmidt-Hoberg, Kai, E-mail: jkersten@ictp.it, E-mail: kai.schmidt-hoberg@ph.tum.de, E-mail: kai.schmidt.hoberg@desy.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  11. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    Science.gov (United States)

    Kersten, Jörn; Schmidt-Hoberg, Kai

    2008-01-01

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m1/2. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  12. Era of superheavy-particle dominance and big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Polnarev, A.G.; Khlopov, M.Y.

    1982-01-01

    The observed primordial He/sup 4/ abundance imposes astrophysical constraints on the possible departures from radiation dominance in the big bang universe during the neutron hardening era (at epoch t roughly-equal1 sec). Limits are obtained which, along with the data on the spectrum of the cosmic background radiation, practically rule out any stages of superheavy stable-particle dominance in the era 1< or approx. =t<10/sup 10/ sec, thereby setting restrictions on current elementary-particle theories.

  13. Generating a hot big bang via a change in topology

    Energy Technology Data Exchange (ETDEWEB)

    Kandvup, H.E. (Florida Univ., Gainesville, FL (USA). Space Astronomy Lab.); Masur, P.O. (Institute for Fundamental Theory, Univ. of Florida, Gainesville, FL (US))

    1990-08-01

    This paper uses ideas developed recently in semiclassical quantum gravity to argue that many qualitative features of the hot big bang generally assumed in cosmology may be explained by the hypothesis that, interpreted semiclassically, the universe tunnelled into being via a quantum fluctuation from a small (Planck-sized), topologically complex entity to a topologically trivial entity (like a Friedmann universe) that rapidly grew to a more macroscopic size.

  14. Mapping the cold glow of the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Charles (National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center)

    1991-08-10

    The United States has recently launched a satellite solely dedicated to cosmology in an attempt to provide insight into the early formation of the Universe. The Cosmic Background Explorer (COBE) satellite is producing astonishing precise data which supports the Big Bang theory of the Universe's origins. Continued analysis of COBE data may provide clues as to how stars and galaxies formed. (UK).

  15. The gravitino–stau scenario after catalyzed big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Kersten, Jörn; Schmidt-Hoberg, Kai

    2008-01-01

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m 1/2 . As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints

  16. Analisis Rugi Daya Pada Penyulang Bangli Dengan Beroperasinya PLTS Kayubihi

    Directory of Open Access Journals (Sweden)

    I GN Dion Adiputra

    2015-06-01

    Full Text Available Analisis rugi daya pada Penyulang Bangli dilakukan untuk mengetahui perbanding an rugi daya pada jaringan distribusi setelah penempatan pembangkit tersebar jenis PLTS berkapasitas 1 MWp. Lokasi penempatan PLTS ditentukan berdasarkan analisis sensitivitas bus. Nilai sensitivitas bus(?didapat dengan cara membandingkan nilai rugi daya pada sistem dengan total beban yang terhubung pada bus. Penelitian ini menggunakan simulasi aliran daya dengan metode aliran daya Newton-Raphson. Hasil penelitian menunjukkan bus TK 0041 memiliki sensitivitas terbesar dengan nilai ?= 0,178. Dari hasil simulasi aliran daya, penempatan PLTS 1MWp pada lokasi alternatif 1 menghasilkan rugi daya minimum pada Penyulang Bangli yaitu 103,1 kW atau 3,3% dari total suplai daya 3071 kW. Pemasangan PLTS dapat menurunkan rugi daya pada Penyulang Bangli sebesar 57 kW dari total rugi daya pada kondisi tanpa PLTS yaitu 160,1 kW. Bila dibandingkan dengan kondisi eksisting, penem patan PLTS pada lokasi alternatif 1 memiliki selisih rugi daya 7,3 kW lebih kecil dari total rugi daya yang dihasilkan kondisi eksisting sebesar 110,4kW.

  17. From big bang to bing bang - from the origin of the universe to the origin of the solar system

    International Nuclear Information System (INIS)

    Lee, L.

    1986-01-01

    An outline is given of the evolution of the Galaxy between the Big Bang and the Bing Bang (explosions of supernovae billions of years ago, providing materials and possibly the impetus for the formation of the solar system). During the long interval prior to the birth of the sun, the Galaxy evolved by converting gas to stars and by enriching the gas with heavy elements created in the stars. Some radioactive nuclides suggest that the interval between their production in stellar sources and the accumulation of planets of at least a few kilometers in size was only a few million years. The formation of the sun may have taken place in a stellar association and may have been preceded immediately by SN-type explosions, which may even have been the triggering mechanism of the formation process. 7 references

  18. Conventional power sources for colliders

    International Nuclear Information System (INIS)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 μsec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 μsec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 μsec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths

  19. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  20. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  1. Perspectives on large linear colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-11-01

    Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs

  2. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  3. Collective accelerator for electron colliders

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1985-01-01

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch

  4. New collider scheme at LBL

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1984-07-01

    This paper presents current ideas from Berkeley concerning a possible new facility for studying the phase transition from hadronic matter to quark matter. The physics ideas have evolved over a period of more than five years, the VENUS concept for a 25 GeV/nucleon colliding beam facility having been presented in 1979. The concept for the Minicollider has been, like that of VENUS, the work of Hermann Grunder and Christoph Leemann

  5. Perspectives on large Linear Colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1987-01-01

    The accelerator community now generally agrees that the Linear Collider is the most cost-effective technology for reaching much higher energies in the center-of-mass than can be attained in the largest of the e + e - storage rings, LEP. Indeed, even as the first linear collider, the SLC at SLAC, is getting ready to begin operations groups, at SLAC, Novosibirsk, CERN and KEK are doing R and D and conceptual design studies on a next generation machine in the 1 TeV energy region. In this perspectives talk I do not want to restrict my comments to any particular design, and so I will talk about a high-energy machine as the NLC, which is shorthand for the Next Linear Collider, and taken to mean a machine with a center-of-mass energy someplace in the 0.5 to 2 TeV energy range with sufficient luminosity to carry out a meaningful experimental program. I want to discuss three main items with you. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder. Next, I will give an introduction to linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder.Then, I want to give my impressions of the state of the technology available for building these kinds of machines within the next decade

  6. Stanford Linear Collider magnet positioning

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-08-01

    For the installation of the Stanford Linear Collider (SLC) the positioning and alignment of the beam line components was performed in several individual steps. In the following the general procedures for each step are outlined. The calculation of ideal coordinates for the magnets in the entire SLC will be discussed in detail. Special emphasis was given to the mathematical algorithms and geometry used in the programs to calculate these ideal positions. 35 refs., 21 figs

  7. Physics goals of future colliders

    International Nuclear Information System (INIS)

    Kane, G.L.

    1987-01-01

    These lectures describe some of the physics goals that future colliders are designed to achieve. Emphasis is on the SSC, but its capabilities are compared to those of other machines, and set in a context of what will be measured before the SSC is ready. Physics associated with the Higgs sector is examined most thoroughly, with a survey of the opportunities to find evidence of extended gauge theories

  8. FUTURE CIRCULAR COLLIDER LOGISTICS STUDY

    CERN Document Server

    Beißert, Ulrike; Kuhlmann, Gerd; Nettsträter, Andreas; Prasse, Christian; Wohlfahrt, Andreas

    2018-01-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research CERN in Geneva is the largest and most powerful collider in the world. CERN and its research and experimental infrastructure is not only a focus for the science community but is also very much in the public eye. With the Future Circular Collider (FCC) Study, CERN has begun to examine the feasibility of a new underground accelerator ring with a length of approximately 100 kilometres. Logistics is of great importance for the construction, assembly and operation of the FCC. During the planning, construction and assembly of the LHC, logistics proved to be one of the key factors. As the FCC is even larger than the LHC, logistics will also become more and more significant. This report therefore shows new concepts, methods and analytics for logistics, supply chain and transport concepts as part of the FCC study. This report deals with three different logistics aspects for the planning and construction phase of FCC: 1. A discussion of d...

  9. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  10. From the big bang to the eureka moment

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Peter

    2002-02-01

    A Brief History of Time made Stephen Hawking famous, but he was already a world leader in cosmology. Peter Rodgers reports from the celebrations to mark Hawking's 60th birthday. Masters of the universe Stephen Hawking is the most famous physicist in the world. Indeed, the sales of Hawking's books and his appearances on The Simpsons and Star Trek have tended to overshadow his scientific achievements. But that was not the case in Cambridge last month when Hawking's contributions to physics and cosmology were celebrated at a week-long conference to mark his 60th birthday. 'We organized the meeting to look back on the immense contribution that Stephen has made to many areas of gravitational physics and cosmology,' said Gary Gibbons, one of Hawking's colleagues at Cambridge. 'We also wanted to look forward to what the future might hold for theoretical physics and cosmology, with special reference to the areas that Stephen has been most interested and most active in.' Hawking made his name with a series of papers in the 1960s on singularities in cosmology. Building on work by Roger Penrose, he showed that Einstein's general theory of relativity implied that space and time would have a beginning in the big bang and would end in a singularity. 'How unlike particle physics, where people were falling over themselves to latch onto the latest idea. They still are.' Hawking then switched his attention to black holes - regions of space where gravity is so strong that nothing can escape. He was also one of the first physicists to make progress in combining general relativity - the classical theory of gravity - and quantum mechanics. First he showed that when two black holes collide and merge, the area of the 'event horizon' around the resulting black hole is greater than the sum of the two original areas. This led Hawking and co-workers to link the area of the event horizon, A, with the entropy of a black hole, S

  11. All the makings of a resounding Big Bang

    CERN Multimedia

    Thomas, Paul J

    2008-01-01

    "As their communications team has demnstrated, CERN's Large Hadron Collider is capable of more than worrying us over mini black holes; rather, it brings both scientists and the public together to celebrate human progress." (3 pages)

  12. Review of Savannah River Site K Reactor inservice inspection and testing restart program

    International Nuclear Information System (INIS)

    Anderson, M.T.; Hartley, R.S.; Kido, C.

    1992-09-01

    Inservice inspection (ISI) and inservice testing (IST) programs are used at commercial nuclear power plants to monitor the pressure boundary integrity and operability of components in important safety-related systems. The Department of Energy (DOE) - Office of Defense Programs (DP) operates a Category A (> 20 MW thermal) production reactor at the Savannah River Site (SRS). This report represents an evaluation of the ISI and IST practices proposed for restart of SRS K Reactor as compared, where applicable, to current ISI/IST activities of commercial nuclear power facilities

  13. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    Science.gov (United States)

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  14. The accuracy evaluation according to dose delivery interruption and restart for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyung; Bae, Sun Myung; Kwak, Jung Won; Kang, Tae Young; Bck, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul(Korea, Republic of)

    2013-03-15

    The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. As a result, We could make sure that the interruption of this investgation are not

  15. Big Bang and bucks set to collide in inner space The price of exploring inner space went up this week

    CERN Multimedia

    Overbye, Dennis

    2007-01-01

    "At a news conference in Beijing this Thursday, an international consortium of physicists released the first detailed design of what they believe will be the Next Big Thing in physics: a machine 20 miles long that will slam together electrons and their evil-twin opposites, positrons, to produce fireballs of energy recreating conditions when the universe was only a trillionth of a second old." (1.5 page)

  16. Effect of PWR Re-start ramp rate on pellet-cladding interactions

    International Nuclear Information System (INIS)

    Yagnik, S.K.; Chang, B.C.; Sunderland, D.J.

    2005-01-01

    To mitigate pellet-cladding interaction (PCI) leading to fuel rod failures, fuel suppliers specify reactor power ramp rate limitations during reactor start-up after an outage. Typical re-start ramp rates are restricted and range between 3-4% per hour of full reactor power above a threshold power level. Relaxation of threshold power and ramp rate restrictions has the potential to improve plant economics. The paper will compare known re-start power ascension procedures employed in the US, German, French and Korean PWRs after a refuelling outage. A technical basis for optimising power ascension procedures during reactor start-up can be developed using analytical modelling. The main objective of the modelling is to determine the potential for PCI failure for various combinations of threshold power levels and ramp rate levels. A key element of our analysis is to estimate the decrease in margin to cladding failure by ISCC based on a time-temperature-stress failure criterion fashioned Act a cumulative cladding damage index. The analysis approach and the cladding damage model will be described and the results from three case studies based on the FALCON fuel rod behaviour code will be reported. We conclude that the PCI behaviour is more affected by ramp rate and threshold power than by the fuel design and that the fuel power history is the most important parameter. (authors)

  17. RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems

    International Nuclear Information System (INIS)

    Villen-Altamirano, Jose

    2010-01-01

    The reliability of consecutive-k-out-of-n: F repairable systems and (k-1)-step Markov dependence is studied. The model analyzed in this paper is more general than those of previous studies given that repair time and component lifetimes are random variables that follow a general distribution. The system has one repair service which adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly dependable systems, the RESTART method was used for the estimation of steady-state unavailability, MTBF and unreliability. Probabilities up to the order of 10 -16 have been accurately estimated with little computational effort. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty for the application of this method is to find a suitable function, called the importance function, to define the regions. Given the simplicity involved in changing some model assumptions with RESTART, the importance function used in this paper could be useful for dependability estimation of many systems.

  18. The application of modern safety criteria to restarting and operating the USDOE K-Reactor

    International Nuclear Information System (INIS)

    Dimenna, R.A.; Taylor, G.A.; Brandyberry, M.D.

    1993-01-01

    The United States Department of Energy's (USDOE's) K-reactor, a defense production reactor located at the Savannah River Site in Aiken, South Carolina, was shut down in the summer of 1988 for safety upgrades to bring it into conformance with modern safety standards prior to restart. Over the course of the succeeding four years, all aspects of the 35-year old reactor, including hardware, operations, and analysis, were upgraded to ensure that the reactor could operate safely according to standards similar to those applied to modern nuclear reactors. This paper describes the decision making processes by which issues were identified, priorities assigned, and analysis improved to enhance reactor safety. Special emphasis is given to the probabilistic risk assessment (PRA) decision making processes used to quantify the risks and consequences of operating the K-reactor, the analytical hierarchy process (AHP) used to identify key phenomena, and modifications made to the RELAP5 computer code to make it applicable to K-reactor analysis. The success of the project was demonstrated when the K-reactor was restarted in the summer of 1992

  19. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  20. Rheology and FTIR studies of model waxy crude oils with relevance to gelled pipeline restart

    Energy Technology Data Exchange (ETDEWEB)

    Magda, J.J.; Guimeraes, K.; Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Venkatesan, R.; Montesi, A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    Gels composed of wax crystals may sometimes form when crude oils are transported in pipelines when ambient temperatures are low. The gels may stop the pipe flow, making it difficult or even impossible to restart the flow without breaking the pipe. Rheology and FTIR techniques were used to study the problem and to characterize transparent model waxy crude oils in pipeline flow experiments. These model oils were formulated without any highly volatile components to enhance the reproducibility of the rheology tests. Results were presented for the time- and temperature-dependent rheology of the model waxy crude oils as obtained in linear oscillatory shear and in creep-recovery experiments. The model oils were shown to exhibit many of the rheological features reported for real crude oils, such as 3 distinct apparent yield stresses, notably static yield stress, dynamic yield stress, and elastic-limit yield stress. It was concluded that of the 3, the static yield stress value, particularly its time dependence, can best be used to predict the restart behaviour observed for the same gel in model pipelines.

  1. The Large Hadron Collider project

    CERN Document Server

    Maiani, Luciano

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10/sup -16/ cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10/sup 2/ GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range-a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10/sup 3/ GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the con...

  2. Fast feedback for linear colliders

    International Nuclear Information System (INIS)

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-01-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies

  3. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  4. Beam dynamics in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-09-01

    In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig

  5. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  6. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  7. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  8. Solution structure of the N-terminal domain of a replication restart primosome factor, PriC, in Escherichia coli

    Science.gov (United States)

    Aramaki, Takahiko; Abe, Yoshito; Katayama, Tsutomu; Ueda, Tadashi

    2013-01-01

    In eubacterial organisms, the oriC-independent primosome plays an essential role in replication restart after the dissociation of the replication DNA-protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N-terminal and a C-terminal domain. In the present study, we determined the solution structure of the N-terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC-ssDNA complex, which is important for the replication restart primosome. PMID:23868391

  9. Evidence for Evolution as Support for Big Bang

    Science.gov (United States)

    Gopal-Krishna

    1997-12-01

    With the exception of ZERO, the concept of BIG BANG is by far the most bizarre creation of the human mind. Three classical pillars of the Big Bang model of the origin of the universe are generally thought to be: (i) The abundances of the light elements; (ii) the microwave back-ground radiation; and (iii) the change with cosmic epoch in the average properties of galaxies (both active and non-active types). Evidence is also mounting for redshift dependence of the intergalactic medium, as discussed elsewhere in this volume in detail. In this contribution, I endeavour to highlight a selection of recent advances pertaining to the third category. The widely different levels of confidence in the claimed observational constraints in the field of cosmology can be guaged from the following excerpts from two leading astrophysicists: "I would bet odds of 10 to 1 on the validity of the general 'hot Big Bang' concept as a description of how our universe has evolved since it was around 1 sec. old" -M. Rees (1995), in 'Perspectives in Astrophysical Cosmology' CUP. "With the much more sensitive observations available today, no astrophysical property shows evidence of evolution, such as was claimed in the 1950s to disprove the Steady State theory" -F. Hoyle (1987), in 'Fifty years in cosmology', B. M. Birla Memorial Lecture, Hyderabad, India. The burgeoning multi-wavelength culture in astronomy has provided a tremendous boost to observational cosmology in recent years. We now proceed to illustrate this with a sequence of examples which reinforce the picture of an evolving universe. Also provided are some relevant details of the data used in these studies so that their scope can be independently judged by the readers.

  10. Big Bang à Genève - French version only

    CERN Multimedia

    2005-01-01

    C'est la dernière conférence du cycle organisé par la section de physique de l'Université de Genève à l'occasion de l'Année internationale de la physique. Pour le bouquet final, la section de physique a choisi le grand boum du Big Bang. Intitulée « Big Bang à Genève », la conférence donnée par Laurent Chevalier de l'institut français CEA Saclay évoquera les expériences qui se préparent au CERN avec le LHC. Leur but est de reproduire et d'analyser les conditions qui prévalaient à l'origine de l'Univers, juste après le Big Bang. L'exposé décrira de façon simple les techniques utilisées pour cette exploration, qui démarrera en 2007. Laurent Chevalier se demandera avec le public quels phénomènes nouveaux les physiciens espèrent découvrir dans ce monde inexploré. Comme les précédentes, la conférence débutera par une démonstration de détection de rayons cosmiques dans l'auditoire et l'utilisation de ces signaux pour créer une « musique cosmique », en collaboration avec le Pr...

  11. Kinematics and resolution at future ep colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Klein, M.

    1992-01-01

    Limitations due to resolution and kinematics are discussed of the (Q 2 , x) range accessible with electron-proton colliders after HERA. For the time after HERA one may think of two electron-proton colliders: an asymmetric energy machine and a rather symmetric one. Both colliders are compared here in order to study the influence of the different E l /E p ratios on the accessible kinematic range which is restricted due to angular coverage, finite detector resolution and calibration uncertainties

  12. International Workshop on Linear Colliders 2010

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  13. Estimates of Fermilab Tevatron collider performance

    International Nuclear Information System (INIS)

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex

  14. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  15. SLAC linear collider conceptual design report

    International Nuclear Information System (INIS)

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds

  16. Colloquium spectroscopicum internationale XXIV: From big bang to unsolved problems

    International Nuclear Information System (INIS)

    Schrader, B.

    1985-01-01

    Brief report on the Colloquium Spectroscopicum Internationale 1985, held in Garmisch-Partenkirchen (FRG). The opening lecture, ''From Big Bang to Black Holes'', unfolded the current knowledge of the universe, whereas two thirds of the following 61 plenary lectures dealt with problems of atomic spectroscopy and the remaining papers with molecular spectroscopy. In 40 poster sessions 350 posters were briefly discussed, and the conference was accompanied by an exhibition of latest spectrometric equipment. Experimental methods were the centre of discussions of atomic spectroscopy experts, whereas in the field of moclecular spectroscopy issues such as standards for digitised spectra, databases and information exchange via data networks met with great interest. (RB) [de

  17. 10-35 seconds after the big bang

    International Nuclear Information System (INIS)

    Guth, A.H.

    1982-01-01

    The status of the inflationary model of the very early universe is summarized. In this model the universe supercools many orders of magnitude below the critical temperature of a grand unified theory phase transition, and in the process it expands by many orders of magnitude. The model can solve the monopole, horizon, and flatness problems of the standard hot big-bang cosmology, and at the same time it offers an explanation of the origin of all matter, energy, and entropy of the universe. There are still uncertainties concerning the mechanism which ends the inflationary era, but the new ending proposed by Linde and by Albrecht and Steinhardt appears very promising

  18. Quark mass variation constraints from Big Bang nucleosynthesis

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Luu, Thomas; Platter, Lucas

    2011-01-01

    We study the impact on the primordial abundances of light elements created by a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way, we use lattice QCD data and a hierarchy of effective field theories. We find that the measured 4 He abundances put a bound of -1% q /m q q /m q .

  19. Kantowski--Sachs cosmological models as big-bang models

    International Nuclear Information System (INIS)

    Weber, E.

    1985-01-01

    In the presence of a nonzero cosmological constant Λ, we classify the anisotropic cosmological models of the Kantowski--Sachs type by means of the quantities epsilon 2 0 , q 0 , summation 0 corresponding, respectively, to the relative root-mean-square deviation from isotropy, the deceleration parameter, and the density parameter of the perfect fluid at a given time t = t 0 . We obtain for Λ>0 a set of big-bang models of zero measure as well as a set of cosmological models of nonzero measure evolving toward the de Sitter solution

  20. Making a Big Bang on the small screen

    Science.gov (United States)

    Thomas, Nick

    2010-01-01

    While the quality of some TV sitcoms can leave viewers feeling cheated out of 30 minutes of their lives, audiences and critics are raving about the science-themed US comedy The Big Bang Theory. First shown on the CBS network in 2007, the series focuses on two brilliant postdoc physicists, Leonard and Sheldon, who are totally absorbed by science. Adhering to the stereotype, they also share a fanatical interest in science fiction, video-gaming and comic books, but unfortunately lack the social skills required to connect with their 20-something nonacademic contemporaries.