WorldWideScience

Sample records for bandwidth

  1. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  2. Low-bandwidth authentication.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Patrick Joseph; McIver, Lauren; Gaines, Brian R.; Anderson, Erik; Collins, Michael Joseph; Thomas,Kurt Adam; McDaniel, Austin

    2007-09-01

    Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

  3. Bandwidth in bolometric interferometry

    CERN Document Server

    Charlassier, R; Hamilton, J -Ch; Kaplan, J; Malu, S

    2009-01-01

    Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. Using an angular power spectrum estimator ...

  4. Radio Interferometers with wide bandwidths

    OpenAIRE

    Subrahmanyan, Ravi

    2003-01-01

    The Australia Telescope Compact Array and the Very Large Array are currently being upgraded to operate with wide bandwidths; interferometers dedicated to the measurement of cosmic microwave background anisotropies are being designed with large instantaneous bandwidths for high sensitivity. Interferometers with wide instantaneous bandwidths that do not operate with correlators capable of decomposing the bands into narrow channels suffer from `bandwidth smearing' effects in wide-field imaging. ...

  5. Cutter Connectivity Bandwidth Study

    Science.gov (United States)

    2002-10-01

    The goal of this study was to determine how much bandwidth is required for cutters to meet emerging data transfer requirements. The Cutter Connectivity Business Solutions Team with guidance front the Commandant's 5 Innovation Council sponsored this study. Today, many Coast Guard administrative and business functions are being conducted via electronic means. Although our larger cutters can establish part-time connectivity using commercial satellite communications (SATCOM) while underway, there are numerous complaints regarding poor application performance. Additionally, smaller cutters do not have any standard means of underway connectivity. The R&D study shows the most important factor affecting web performance and enterprise applications onboard cutters was latency. Latency describes the time it takes the signal to reach the satellite and come back down through space. The latency due to use of higher orbit satellites is causing poor application performance and inefficient use of expensive SATCOM links. To improve performance, the CC must, (1) reduce latency by using alternate communications links such as low-earth orbit satellites, (2) tailor applications to the SATCOM link and/or (3) optimize protocols used for data communication to minimize time required by present applications to establish communications between the user and the host systems.

  6. Bandwidth of Gaussian weighted Chirp

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.

    1993-01-01

    Four major time duration and bandwidth expressions are calculated for a linearly frequency modulated sinusoid with Gaussian shaped envelope. This includes a Gaussian tone pulse. The bandwidth is found to be a nonlinear function of nominal time duration and nominal frequency excursion of the chirp...

  7. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  8. Steel Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF 133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  9. Mining Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  10. DYNAMIC BANDWIDTH ALLOCATION ALGORITHM UTILIZING FULL BAND

    Institute of Scientific and Technical Information of China (English)

    Han Guodong; Wen Jianhua; Wu Jiangxing

    2006-01-01

    A kind of Dynamic Full Bandwidth Utilized (DFBU) allocation algorithm is introduced. This algorithm allows a single link to use bandwidth far beyond its fair share bandwidth in a multi-service packet transporting system. Three important parameters as the bound on maximum and minimum bandwidth, the maximum packet delay and the minimum band width utilization are discussed and analyzed. Results of experiments show that the DFBU-algorithm is capable of making a single link in the system to use all the spare bandwidth (up to full-bandwidth) while the performance of fairness and QoS requirement is still guaranteed.

  11. OPTIMAL BANDWIDTH ALLOCATION WITH BANDWIDTH RESERVATION AND ADAPTATION IN WIRELESS COMMUNICATION NETWORKS

    OpenAIRE

    Ali Amiri

    2016-01-01

    Efficient management of bandwidth in wireless networks is a critical factor for a successful communication system. Special features of wireless networks such user mobility and growth of wireless applications and their high bandwidth intensity create a major challenge to utilize bandwidth resources optimally. In this research, we propose a model for an adaptable network bandwidth management method that combines bandwidth reservation and bandwidth adaptation to reduce call blocking ...

  12. Algorithms and Requirements for Measuring Network Bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Guojun

    2002-12-08

    This report unveils new algorithms for actively measuring (not estimating) available bandwidths with very low intrusion, computing cross traffic, thus estimating the physical bandwidth, provides mathematical proof that the algorithms are accurate, and addresses conditions, requirements, and limitations for new and existing algorithms for measuring network bandwidths. The paper also discusses a number of important terminologies and issues for network bandwidth measurement, and introduces a fundamental parameter -Maximum Burst Size that is critical for implementing algorithms based on multiple packets.

  13. Dynamic bandwidth allocation in GPON networks

    DEFF Research Database (Denmark)

    Ozimkiewiez, J.; Ruepp, Sarah Renée; Dittmann, Lars; Wessing, Henrik; Smolorz, S.

    2009-01-01

    Two Dynamic Bandwidth Allocation algorithms used for coordination of the available bandwidth between end users in a GPON network have been simulated using OPNET to determine and compare the performance, scalability and efficiency of status reporting and non status reporting dynamic bandwidth...

  14. Bandwidth requirements for fine resolution squinted SAR

    Energy Technology Data Exchange (ETDEWEB)

    DOERRY,ARMIN W.

    2000-03-01

    The conventional rule-of-thumb for Synthetic Aperture Radar is that an RF bandwidth of c/(2{rho}{sub r}) is required to image a scene at the desired slant-range resolution {rho}{sub r}, and perhaps a little more to account for window functions and sidelobe control. This formulation is based on the notion that the total bandwidth required is the same bandwidth that is required for a single pulse. What is neglected is that efficient processing of an entire synthetic aperture of pulses will often require different frequency content for each of the different pulses that makeup a synthetic aperture. Consequently, the total RF bandwidth required of a Synthetic Aperture Radar may then be substantially wider than the bandwidth of any single pulse. The actual RF bandwidth required depends strongly on flight geometry, owing to the desire for a radar to maintain a constant projection of the Fourier space collection surface onto the {omega}{sub y} axis. Long apertures required for fine azimuth resolution, and severe squint angles with steep depression angles may require total RF bandwidths well beyond the minimum bandwidth required of any single transmitted pulse, perhaps even by a factor of two or more. Accounting for this is crucial to designing efficient versatile high-performance imaging radars. This paper addresses how a data set conducive to efficient processing might increase the total RF bandwidth, and presents examples of how a fixed RF bandwidth might then limit SAR geometries.

  15. Multiple-bandwidth photoacoustic tomography

    International Nuclear Information System (INIS)

    Photoacoustic tomography, also referred to as optoacoustic tomography, employs short laser pulses to generate ultrasonic waves in biological tissues. The reconstructed images can be characterized by the convolution of the structure of samples, the laser pulse and the impulse response of the ultrasonic transducer used for detection. Although the laser-induced ultrasonic waves cover a wide spectral range, a single transducer can receive only part of the spectrum because of its limited bandwidth. To systematically analyse this problem, we constructed a photoacoustic tomographic system that uses multiple ultrasonic transducers simultaneously, each at a different central frequency. The photoacoustic images associated with the different transducers were compared and analysed. The system was tested by imaging both mouse brains and phantom samples. The vascular vessels in the brain were revealed by all of the transducers, but the image resolutions differed. The higher frequency detectors provided better image resolution while the lower frequency detectors delineated the major structural traits with a higher signal-noise ratio

  16. Improving the Bandwidth Utilization by Recycling the Unused Bandwidth in IEEE 802.16 Networks

    Directory of Open Access Journals (Sweden)

    Gowri T

    2012-03-01

    Full Text Available The Physical and MAC layers have been specified in IEEE 802.16 networks. The quality of service is ensured by the bandwidth reservation. The subscriber station should reserve the bandwidth more than its demand. But the bandwidth is fully utilized by SS but not all the time. So the bandwidth has recycled by the process of recycling the unused bandwidth. The main objective of the proposed scheme is to utilize the unused bandwidth by recycling and maintain the QOS service. By recycling the throughput can be improved which maintains the QOS in the proposed scheme. During this recycling process to maintain the QOS services, the amount of reserved bandwidth is not changed. The proposed scheme can utilize the unused bandwidth up to 70% on average. Protocols and the scheduling algorithms are used to improve the utilization and throughput.

  17. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  18. Energy Bandwidth for Petroleum Refining Processes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  19. Directing Traffic: Managing Internet Bandwidth Fairly

    Science.gov (United States)

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  20. High-Bandwidth Hybrid Sensor (HYSENS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA has demonstrated the primary innovation of combining a precision MEMS gyro (BAE SiRRS01) with a high bandwidth angular rate sensor, ATA's ARS-14 resulting in a...

  1. Average Bandwidth Allocation Model of WFQ

    Directory of Open Access Journals (Sweden)

    Tomáš Balogh

    2012-01-01

    Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.

  2. Large scale probabilistic available bandwidth estimation

    CERN Document Server

    Thouin, Frederic; Rabbat, Michael

    2010-01-01

    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a pa...

  3. Adaptable bandwidth planning using reinforcement learning

    Directory of Open Access Journals (Sweden)

    Dirk Hetzer

    2006-08-01

    Full Text Available In order to improve the bandwidth allocation considering feedback of operational environment, adaptable bandwidth planning based on reinforcement learning is proposed. The approach is based on new constrained scheduling algorithms controlled by reinforcement learning techniques. Different constrained scheduling algorithms,, such as "conflict free scheduling with minimum duration", "partial displacement" and "pattern oriented scheduling" are defined and implemented. The scheduling algorithms are integrated into reinforcement learning strategies. These strategies include: - Q-learning for selection of optimal planning schedule using Q-values; - Informed Q-learning for exploitation and handling of prior-knowledge (patterns of network behaviour; - Relational Q-learning for improving of bandwidth allocation policies dynamically in operational networks considering actual network performance data. Scenarios based on integration of the scheduling algorithms and reinforcement learning techniques in the experimental monitoring and bandwidth planning system called QORE (QoS and resource optimisation are given. The proposed adaptable bandwidth planning is required for more efficient usage of network resources.

  4. Teleoperation over low bandwidth communication links

    International Nuclear Information System (INIS)

    Teleoperation is well established for many areas of hazardous environment working. Where such environments are well structured and contained, such as within a working plant, communications bandwidths need not be a constraining factor. However where the worksite is remote, large, poorly structured or damaged communications rapidly become a critical factor in the efficient deployment and use of teleoperation equipment. The paper justifies and describes means which we are exploring to reduce the required communications bandwidth for teleoperation whist retaining full functionality. Techniques involved include incorporation of local intelligence at the worksite, with bandwidth devoted to high-level up-link control signals and down-link feedback, and the use of highly compressed video feeding 'virtual reality type' HMDs to provide maximum system transparency for the operator. The work is drawing on previous experience with an 'anthropomorphic robot heat' for telepresence work, and proprietary algorithms capable of compressing full colour video to standard telephone modem data rates. (Author)

  5. Simulation technique for available bandwidth estimation

    CERN Document Server

    Sultanov, T G

    2010-01-01

    The paper proposes a method for measuring available bandwidth, based on testing network packets of various sizes (Variable Packet Size method, VPS). The boundaries of applicability of the model have been found, which are based on the accuracy of measurements of packet delays, also we have derived a formula of measuring the upper limit of bandwidth. The computer simulation has been performed and relationship between the measurement error of available bandwidth and the number of measurements has been found. Experimental verification with the use of RIPE Test Box measuring system has shown that the suggested method has advantages over existing measurement techniques. Pathload utility has been chosen as an alternative technique of measurement, and to ensure reliable results statistics by SNMP agent has been withdrawn directly from the router.

  6. Dealing Bandwidth to Mobile Clients Using Games

    Science.gov (United States)

    Sofokleous, Anastasis A.; Angelides, Marios C.

    This chapter exploits a gaming approach to bandwidth sharing in a network of non-cooperative clients whose aim is to satisfy their selfish objectives and be served in the shortest time and who share limited knowledge of one another. The chapter models this problem as a game in which players consume the bandwidth of a video streaming server. The rest of this chapter is organized in four sections: the proceeding section presents resource allocation taxonomies, following that is a section on game theory, where our approach is sourced from, and its application to resource allocation. The penultimate section presents our gaming approach to resource allocation. The final section concludes.

  7. 47 CFR 87.135 - Bandwidth of emission.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth of emission. 87.135 Section 87.135... Technical Requirements § 87.135 Bandwidth of emission. (a) Occupied bandwidth is the width of a frequency... equal to 0.5 percent of the total mean power of a given emission. (b) The authorized bandwidth is...

  8. Dynamic bandwidth allocation algorithm for full-band utilization

    Institute of Scientific and Technical Information of China (English)

    Han Guodong; Wang Hui; Wu Jiangxing

    2006-01-01

    To improve and optimize the bandwidth utilization for multi-service packet transporting system, a kind of Dynamic Full Bandwidth Utilized (DFBU) allocation algorithm allowing a single link to use far beyond its fair share bandwidth is presented. Three important parameters as the bound on max and minimum bandwidth, the maximum packet delay and the minimum bandwidth utilization are discussed and analyzed. Results of experiments show that the DFBU-algorithm is capable of making a single link in the system use all the spare bandwidth (up to full-bandwidth) while the performance of fairness and QoS requirement is still guaranteed.

  9. Bandwidth Enhancement Techniques of Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    ARCHANA SHARMA

    2011-07-01

    Full Text Available The paper briefly reviews the historical background of dielectric resonator antenna and its bandwidth enhancement techniques. The main focus is on a compact DRA that can offer broad band operation. It has been illustrated that dual resonance and multi resonance operation can be much effective to give wide band characteristics of DRA.

  10. Dynamic resource management using bandwidth brokers

    Institute of Scientific and Technical Information of China (English)

    Yu Chengzhi; Song Hantao; Hou Xianjun; Pan Chengsheng

    2006-01-01

    The admission control issue in the design of a centralized bandwidth broker model for dynamic control and management of QoS provisioning is studied. A two-phase differentiated flow treatment based dynamic admission control scheme under the centralized bandwidth broker model is proposed. In the proposed scheme, the flow requests are classified into two classes and get differentiated treatment according to their QoS demands. We demonstrate that this admission control scheme can not only improve the resource utilization but also guarantee the flows' QoS. Furthermore, the admission control is divided into two phases: edge admission control and interior admissio-n control. During the interior phase, the PoQ scheme is adopted, which enhances the call processing capability of the bandwidth broker. The simulation results show that the proposed scheme can result in lower flow blocking probability and higher resource utilization. And it also reduces the number of QoS state accesses/updates, thereby increasing the overall call processing capability of the bandwidth broker.

  11. DBAS: A Deployable Bandwidth Aggregation System

    CERN Document Server

    Habak, Karim; Harras, Khaled A

    2012-01-01

    The explosive increase in data demand coupled with the rapid deployment of various wireless access technologies have led to the increase of number of multi-homed or multi-interface enabled devices. Fully exploiting these interfaces has motivated researchers to propose numerous solutions that aggregate their available bandwidths to increase overall throughput and satisfy the end-user's growing data demand. These solutions, however, have faced a steep deployment barrier that we attempt to overcome in this paper. We propose a Deployable Bandwidth Aggregation System (DBAS) for multi-interface enabled devices. Our system does not introduce any intermediate hardware, modify current operating systems, modify socket implementations, nor require changes to current applications or legacy servers. The DBAS architecture is designed to automatically estimate the characteristics of applications and dynamically schedule various connections or packets to different interfaces. Since our main focus is deployability, we fully i...

  12. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  13. Reconstitution of Low Bandwidth Reaction History

    International Nuclear Information System (INIS)

    The goal of the Test Readiness Program is to transition to a 24 month test readiness posture and if approved move to an 18-month posture. One of the key components of the Test Readiness Program necessary to meet this goal is the reconstitution of the important diagnostics. Since the end of nuclear testing, the ability to field diagnostics on a nuclear test has deteriorated. Reconstitution of diagnostics before those who had experience in nuclear testing either retire or leave is essential to achieving a shorter test readiness posture. Also, the data recording systems have not been used since the end of testing. This report documents the reconstitution of one vital diagnostic: the low bandwidth reaction history diagnostic for FY04. Reaction history is one of the major diagnostics that has been used on all LLNL and LANL tests since the early days of nuclear testing. Reaction history refers to measuring the time history of the gamma and neutron output from a nuclear test. This gives direct information on the nuclear reactions taking place in the device. The reaction history measurements are one of the prime measurements the nuclear weapon scientists use to validate their models of device performance. All tests currently under consideration require the reaction history diagnostic. Thus moving to a shorter test readiness posture requires the reconstitution of the ability to make reaction history measurements. Reconstitution of reaction history was planned to be in two steps. Reaction history measurements that have been used in the past can be broadly placed into two categories. The most common type of reaction history and the one that has been performed on virtually all nuclear tests is termed low bandwidth reaction history. This measurement has a time response that is limited by the bandpass of kilometer length coaxial cables. When higher bandwidth has been required for specific measurements, fiber optic techniques have been used. This is referred to as high-bandwidth

  14. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  15. Maximum-Bandwidth Node-Disjoint Paths

    Directory of Open Access Journals (Sweden)

    Mostafa H. Dahshan

    2012-03-01

    Full Text Available This paper presents a new method for finding the node-disjoint paths with maximum combined bandwidth in communication networks. This problem is an NP-complete problem which can be optimally solved in exponential time using integer linear programming (ILP. The presented method uses a maximum-cost variant of Dijkstra algorithm and a virtual-node representation to obtain the maximum-bandwidth node-disjoint path. Through several simulations, we compare the performance of our method to a modern heuristic technique and to the ILP solution. We show that, in a polynomial execution time, our proposed method produces results that are almost identical to ILP in a significantly lower execution time

  16. Digital demodulator for wide bandwidth SAR

    DEFF Research Database (Denmark)

    Jørgensen, Jørn Hjelm

    2000-01-01

    A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator with the...... output decimator. The filter required by the other channel is optimized through global search using the system level performance metrics integrated sidelobe level ratio (ISLR) and peak sidelobe level ratio (PSLR)....

  17. Creating memory bandwidth contention with best intentions

    OpenAIRE

    Chiramel, George John

    2016-01-01

    Heterogeneous System Architecture (HSA) is a computing system architecture that integrates central processing unit (CPU) and graphics processing unit (GPU) with a shared off-chip main memory. On one hand, sharing the memory reduces the communication latency between CPU and GPU but on the other hand, sharing can lead to contention for shared resources. The programs which execute concurrently on the GPU and CPU cores, share the off-chip memory bandwidth. This sharing can result in contention fo...

  18. Terahertz quantum cascade laser bandwidth prediction

    OpenAIRE

    Agnew, G; Grier, A; Taimre, T; Lim, YL; Ikonic, Z.; Dean, P.; Khanna, SP; Lachab, M.; Valavanis, A.; Cooper, JD; Harrison, P.; Linfield, EH; Davies, AG; D Indjin; Rakic, AD

    2015-01-01

    Recent research shows that terahertz quantum cascade lasers are well-suited to high speed free space communication. The results of both theoretical and laboratory work indicate the devices are able to deliver bandwidths in the gigahertz to tens of gigahertz range without the burden of relaxation oscillations found in diode lasers. Using a novel rate equation model we explore the frequency response characteristics of a real device and report on the finding of a strongly peaked bias current-dep...

  19. Measuring Bandwidth for Super Computer Workloads

    OpenAIRE

    Madheswari, A. Neela; Banu, R. S. D. Wahida

    2010-01-01

    Parallel computing plays a major role in almost all the fields from research to major concern problem solving purposes. Many researches are till now focusing towards the area of parallel processing. Nowadays it extends its usage towards the end user application such as GPU as well as multi-core processor development. The bandwidth measurement is essential for resource management and for studying the various performance factors of the existing super computer systems which will be helpful for b...

  20. Gaussian entanglement distribution with GHz bandwidth

    CERN Document Server

    Ast, Stefan; Mehmet, Moritz; Schnabel, Roman

    2016-01-01

    The distribution of Gaussian entanglement can be used to generate a mathematically-proven secure key for quantum cryptography. The distributed secret key rate is limited by the bandwidth of the nonlinear resonators used for entanglement generation, which is less than 100 MHz for current state-of-the-art setups. The development of an entanglement source with a higher bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a continuous-variable entanglement source with a bandwidth of more than 1.25 GHz. The measured entanglement spectrum was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. The measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic PPKTP crystal resonators to generate tw...

  1. Dynamic Bandwidth Allocation Strategy for Marine VHF Communications

    OpenAIRE

    Ding Yuan-Ming; Zhang Fang

    2013-01-01

    In order to achieve the efficient management of marine VHF communications bandwidth resources under the battlefield environment and to maximize the bandwidth utilization while ensuring high-priority business access channel, the context puts forward a kind of dynamic bandwidth allocation strategy based on business priorities. When the bandwidth resources are sufficient, the system can accommodate more business, otherwise it can call the dynamic allocation st...

  2. Bandwidth Constrained Multi-interface Networks

    Science.gov (United States)

    D'Angelo, Gianlorenzo; di Stefano, Gabriele; Navarra, Alfredo

    In heterogeneous networks, devices can communicate by means of multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost, and provides a communication bandwidth. In this paper, we consider the problem of activating the cheapest set of interfaces among a network G = (V,E) in order to guarantee a minimum bandwidth B of communication between two specified nodes. Nodes V represent the devices, edges E represent the connections that can be established. In practical cases, a bounded number k of different interfaces among all the devices can be considered. Despite this assumption, the problem turns out to be NP-hard even for small values of k and Δ, where Δ is the maximum degree of the network. In particular, the problem is NP-hard for any fixed k ≥ 2 and Δ ≥ 3, while it is polynomially solvable when k = 1, or Δ ≤ 2 and k = O(1). Moreover, we show that the problem is not approximable within ηlogB or Ω(loglog|V|) for any fixed k ≥ 3, Δ ≥ 3, and for a certain constant η, unless P={NP}. We then provide an approximation algorithm with ratio guarantee of b max , where b max is the maximum communication bandwidth allowed among all the available interfaces. Finally, we focus on particular cases by providing complexity results and polynomial algorithms for Δ ≤ 2.

  3. Polybinary modulation for bandwidth limited optical links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Jurado-Navas, Antonio

    2015-01-01

    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards...... form of partial response modulation, employs simple codification and filtering at the transmitter to drastically increase the spectral efficiency. At the receiver side, poly binary modulation requires low complexity direct detection and very little digital signal processing. This talk will review the...

  4. Bandwidth Efficient OFDM Transmitter Diversity Techniques

    Directory of Open Access Journals (Sweden)

    King F. Lee

    2004-09-01

    Full Text Available Space-time block-coded orthogonal frequency division multiplexing (OFDM transmitter diversity techniques have been shown to be efficient means of achieving near-optimal diversity gain in frequency-selective fading channels. However, these known techniques all require a cyclic prefix to be added to the transmitted symbols, resulting in bandwidth expansion. In this paper, iterative space-time and space-frequency block-coded OFDM transmitter diversity techniques are proposed that exploit spatial diversity to improve spectral efficiency by eliminating the need for a cyclic prefix.

  5. Bandwidth reconfigurable microwave photonic filter based on stimulated Brillouin scattering

    Science.gov (United States)

    Xiao, Yongchuan; Wang, Xin; Zhang, Youdi; Dong, Wei; Zhang, Xindong; Liu, Caixia; Ruan, Shengping; Chen, Weiyou

    2015-01-01

    A bandwidth reconfigurable microwave photonic filter is proposed and numerically analyzed employing Brillouin gain spectrum narrowing and broadening. The stimulated Brillouin scattering (SBS) process is used to convert the phase modulation to intensity modulation to generate filter passband. Due to the fact that the passband is formed by mapping the Brillouin gain spectrum, bandwidth reconfiguration can be implemented by changing Brillouin gain linewidth. In this paper, both bandwidth reduction and increase are included in a single system and the details of gain spectrum narrowing and broadening are demonstrated. Theoretically, nearly 60% bandwidth reduction and hundreds times of bandwidth increase are achieved as compared to the case without gain spectrum process.

  6. Bandwidth Allocation and Session Scheduling using SIP

    Directory of Open Access Journals (Sweden)

    Jean-Marie Garcia

    2006-08-01

    Full Text Available

    Session Initiation Protocol (SIP is a new signaling protocol designed to establish multimedia sessions in telecommunication networks. In this paper, we suggest the extension of SIP functionalities to coordinate QoS mechanisms deployed in IP networks, and especially in DiffServ domain. Indeed, the interaction between small and big TCP sessions may have dramatic consequences on small TCP sessions. Hence, we use SIP to achieve QoS management on a session basis, in which the over all activity of the user during the session is considered. The suggested mechanisms deal with two issues: first, session scheduling based on session duration and/or volume, and second bandwidth allocation on a per-flow basis using equivalent bandwidth estimation techniques. The proposed mechanisms are implemented in the SIP proxy server as QoS management algorithms, and they are validated by simulations.

  7. Bandwidth sharing networks with multiscale traffic

    Directory of Open Access Journals (Sweden)

    Mathieu Feuillet

    2015-03-01

    Full Text Available In multi-class communication networks, traffic surges due to one class of users can significantly degrade the performance for other classes. During these transient periods, it is thus of crucial importance to implement priority mechanisms that conserve the quality of service experienced by the affected classes, while ensuring that the temporarily unstable class is not entirely neglected. In this paper, we examine the complex interaction occurring between several classes of traffic when classes obtain bandwidth proportionally to their incoming traffic. We characterize the evolution of the performance measures of the network from the moment the initial surge takes place until the system reaches its equilibrium. Using a time-space-transition-scaling, we show that the trajectories of the temporarily unstable class can be described by a differential equation, while those of the stable classes retain their stochastic nature. In particular, we show that the temporarily unstable class evolves at a time-scale which is much slower than that of the stable classes. Although the time-scales decouple, the dynamics of the temporarily unstable and the stable classes continue to influence one another. We further proceed to characterize the obtained differential equations for several simple network examples. In particular, the macroscopic asymptotic behavior of the unstable class allows us to gain important qualitative insights on how the bandwidth allocation affects performance. We illustrate these results on several toy examples and we finally build a penalization rule using these results for a network integrating streaming and surging elastic traffic.

  8. Bandwidth Estimation For Mobile Ad hoc Network (MANET

    Directory of Open Access Journals (Sweden)

    Rabia Ali

    2011-09-01

    Full Text Available In this paper we presents bandwidth estimation scheme for MANET, which uses some components of the two methods for the bandwidth estimation: 'Hello Bandwidth Estimation 'Listen Bandwidth Estimation. This paper also gives the advantages of the proposed method. The proposed method is based on the comparison of these two methods. Bandwidth estimation is an important issue in the Mobile Ad-hoc Network (MANET because bandwidth estimation in MANET is difficult, because each host has imprecise knowledge of the network status and links change dynamically. Therefore, an effective bandwidth estimation scheme for MANET is highly desirable. Ad hoc networks present unique advanced challenges, including the design of protocols for mobility management, effective routing, data transport, security, power management, and quality-of-service (QoS provisioning. Once these problems are solved, the practical use of MANETs will be realizable.

  9. Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters

    Science.gov (United States)

    Vaughn, Israel Jacob

    Polarimetric systems design has seen recent utilization of linear systems theory for system descriptions. Although noise optimal systems have been shown, bandwidth performance has not been addressed in depth generally and is particularly lacking for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in a systematic way for remote sensing polarimetric systems design. The systematic approach facilitates both understanding of fundamental constraints and design of higher bandwidth polarimetric systems. Fundamental bandwidth constraints result in production of polarimetric "artifacts" due to channel crosstalk upon Mueller matrix reconstruction. This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric positioning of channels in the Fourier (channel) space, however channel positioning for polarimetric systems is constrained both physically and by design parameters like domain separability. We present the physical channel constraints and the constraints imposed when the carriers are separable between space and time. Polarimetric systems are also constrained by noise performance, and there is a trade-off between noise performance and bandwidth. I develop cost functions which account for the trade-off between noise and bandwidth for spatio-temporal polarimetric systems. The cost functions allow a systems designer to jointly optimize systems with good bandwidth and noise performance. Optimization is implemented for a candidate spatio-temporal system design, and high temporal bandwidth systems resulting from the optimization are presented. Systematic errors which impact the bandwidth performance and mitigation strategies for these systematic errors are also presented. Finally, a portable imaging Mueller matrix system is built and analyzed based on the theoretical bandwidth analysis and system bandwidth optimization. Temporal bandwidth performance is

  10. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network to...... utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  11. A high-bandwidth spintronic position sensor

    International Nuclear Information System (INIS)

    Position sensing with resolution down to the scale of a single atom is of key importance in nanoscale science and engineering. However, only optical-sensing methods are currently capable of non-contact sensing at such resolution over a high bandwidth. Here, we report a new non-contact, non-optical position-sensing concept based on detecting changes in a high-gradient magnetic field of a microscale magnetic dipole by means of spintronic sensors. Experimental measurements show a sensitivity of up to 40 Ω/μm, a linear range greater than 10 μm and a noise floor of 0.5 pm/√( Hz). Also shown is the use of the sensor for position measurements for closed-loop control of a high-speed atomic force microscope with a frame rate of more than 1 frame/s. (paper)

  12. An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks

    OpenAIRE

    A.Sandeep Kumar ,Second Author

    2012-01-01

    wireless mesh networks (WMNs) has been widely used for the new generation wireless network. The capability of self-organization in WMNs reduces the complexity of wireless network deployment and maintenance. So, the perfect estimation of the bandwidth available of the mesh nodes is the required to admission control mechanism which provides QOs confirmation in wireless mesh networks. The bandwidth estimation of schemes do not give clear output. Here we are proposing bandwidth scheme estimation ...

  13. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  14. Frequency Bandwidth Optimization of Left-Handed Metamaterial

    Science.gov (United States)

    Chevalier, Christine T.; Wilson, Jeffrey D.

    2004-01-01

    Recently, left-handed metamaterials (LHM s) have been demonstrated with an effective negative index of refraction and with antiparallel group and phase velocities for microwave radiation over a narrow frequency bandwidth. In order to take advantage of these characteristics for practical applications, it will be beneficial to develop LHM s with increased frequency bandwidth response and lower losses. In this paper a commercial three-dimensional electromagnetic simulation code is used to explore the effects of geometry parameter variations on the frequency bandwidth of a LHM at microwave frequencies. Utilizing an optimizing routine in the code, a geometry was generated with a bandwidth more than twice as large as the original geometry.

  15. Schottky Heterodyne Receivers With Full Waveguide Bandwidth

    Science.gov (United States)

    Hesler, Jeffrey; Crowe, Thomas

    2011-01-01

    Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.

  16. Modeling of Bandwidth Aggregation over Heterogeneous Wireless Access Networks

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana; Dittmann, Lars

    2012-01-01

    transfer deals with the problem on how to effectively aggregate the bandwidth by simultaneous usage of heterogeneous networks that a host is attached to in order to improve the throughput. This paper deals with a simulation based analysis of bandwidth aggregation techniques and their impact on higher layer...

  17. Evaluation of dynamic bandwidth allocation algorithms in GPON networks

    DEFF Research Database (Denmark)

    Ozimkiewicz, J.; Ruepp, Sarah Renée; Dittmann, Lars;

    2010-01-01

    In this paper, two approaches for Dynamic Bandwidth Allocation in GPON networks are proposed, and validated through simulations in the OPNET modeler. One approach address a Status Reporting scheme, where the bandwidth allocation originates from the client request. The second use a centralized Non...... services....

  18. E-Readiness Assessment Model for Low Bandwidth Environment

    Directory of Open Access Journals (Sweden)

    Nazir Ahmad Suhail

    Full Text Available This paper reports on assessment of an e-readiness model for low bandwidth environment. The main focus of the model is on technological (bandwidth related critical factors that are barrier to the adoption of technology mediated learning in developing cou ...

  19. 47 CFR 101.515 - Emissions and bandwidth.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emissions and bandwidth. 101.515 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.515 Emissions and bandwidth. Different types of emissions may be authorized if the applicant describes fully the...

  20. A Study of Bandwidth Measurement Technique in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Ajeet Kumar Singh

    2011-09-01

    Full Text Available Wireless mesh networks (WMNs have been proposed as a key technology for next generation wireless networking to provide last-mile broadband access. H ere we have given our observation and study for end to-end bandwidth estimation in WMNs. End-to-end Ban dwidth Estimation is an important metric for network management and monitoring. It can also impr ove the effectiveness of congestion control mechanism, audio/video stream adoration and dynamic overlay. In recent years, many techniques have been developed for bandwidth estimation in the wire d as well as the last-hop wireless networks, but th ey under-perform in WMNs. We investigate attributes th at can affect the bandwidth estimation in WNMs; we found existing techniques do not consider the effec t of attributes like CSMA/CA-based contending traff ic and high interference interference that leads to th e error full estimation. In this paper, we present an active bandwidth measu rement technique called Bandwidth Probe based on th e packet dispersion principle. It measures the steady state bandwidth of the system while considering th e effects of the FIFO cross and CSMA/CA-based contend ing traffic. It is also mitigating the effect of interference. We also show how to achieve the stati onary state behaviour of the system to limit the nu mber of probe packets. On simulation, Bandwidth Probe gi ves a accurate estimation of the available bandwidt h using average convergence time and lower intrusiven ess.

  1. Utility-based bandwidth allocation algorithm for heterogeneous wireless networks

    Institute of Scientific and Technical Information of China (English)

    CHAI Rong; WANG XiuJuan; CHEN QianBin; SVENSSON Tommy

    2013-01-01

    In next generation wireless network (NGWN), mobile users are capable of connecting to the core network through various heterogeneous wireless access networks, such as cellular network, wireless metropolitan area network (WMAN), wireless local area network (WLAN), and ad hoc network. NGWN is expected to provide high-bandwidth connectivity with guaranteed quality-of-service to mobile users in a seamless manner; however, this desired function demands seamless coordination of the heterogeneous radio access network (RAN) technologies. In recent years, some researches have been conducted to design radio resource management (RRM) architectures and algorithms for NGWN; however, few studies stress the problem of joint network performance optimization, which is an essential goal for a cooperative service providing scenario. Furthermore, while some authors consider the competition among the service providers, the QoS requirements of users and the resource competition within access networks are not fully considered. In this paper, we present an interworking integrated network architecture, which is responsible for monitoring the status information of different radio access technologies (RATs) and executing the resource allocation algorithm. Within this architecture, the problem of joint bandwidth allocation for heterogeneous integrated networks is formulated based on utility function theory and bankruptcy game theory. The proposed bandwidth allocation scheme comprises two successive stages, i.e., service bandwidth allocation and user bandwidth allocation. At the service bandwidth allocation stage, the optimal amount of bandwidth for different types of services in each network is allocated based on the criterion of joint utility maximization. At the user bandwidth allocation stage, the service bandwidth in each network is optimally allocated among users in the network according to bankruptcy game theory. Numerical results demonstrate the efficiency of

  2. Microwave photonic bandstop filter with wide tunability and adjustable bandwidth.

    Science.gov (United States)

    Li, Wei; Yang, Chengwu; Wang, Ling; Yuan, Zhilin; Liu, Jianguo; Li, Ming; Zhu, Ninghua

    2015-12-28

    A microwave photonic bandstop filter is proposed and experimentally demonstrated in this work. The filter exhibits promising performance combination of reconfigurability, frequency tunability, and bandwidth adjustment. The phase modulation on two orthogonal polarization states produces a bandpass and a lowpass MPF, respectively. The key concept of destructive interference between the bandpass and lowpass MPF enables the reconfiguration of MPF from bandpass to bandstop. By adjusting the wavelength of two orthogonally polarized optical carriers and the bandwidth of an optical bandpass filter, the bandstop filter is tunable in terms of center frequency and bandwidth. PMID:26832021

  3. Ultra-broad bandwidth parametric amplification at degeneracy.

    Science.gov (United States)

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762

  4. Gain and bandwidth in stagger-tuned gyroklystrons

    International Nuclear Information System (INIS)

    An analytical theory describing the trade-off in the bandwidth and gain in multicavity, stagger-tuned gyroklystrons (GKLs) is developed. The assumption that the cavities are short and therefore the electron ballistic bunching proceeds in long drift sections (point-gap model) allows us to develop analytically both the small-signal and large-signal theories of stagger-tuned GKLs. The results for two-, three-, and four-cavity GKLs are presented which illustrate the bandwidth increase, the gain degradation, and the increase in gain-bandwidth product due to the stagger tuning. copyright 1997 American Institute of Physics

  5. 3600 digital phase detector with 100-kHz bandwidth

    International Nuclear Information System (INIS)

    The general availability of digital circuit components with propagation delay times of a few nanoseconds makes a digital phase detector with good bandwidth feasible. Such a circuit has a distinct advantage over its analog counterpart because of its linearity over wide range of phase shift. A phase detector that is being built at Los Alamos National Laboratory for the Fusion Materials Irradiation Test (FMIT) project is described. The specifications are 100-kHz bandwidth, linearity of +- 10 over +- 1800 of phase shift, and 0.660 resolution. To date, the circuit has achieved the bandwidth and resolution. The linearity is approximately +- 30 over +- 1800 phase shift

  6. MULTILAYER MICROSTRIP ANTENNA QUALITY FACTOR OPTIMIZATION FOR BANDWIDTH ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    M.C. SRIVASTAVA

    2012-12-01

    Full Text Available The impedance bandwidth, one of the important characteristics of microstrip patch antennas, can be significantly improved by using a multilayer dielectric configuration. In this paper the focus is on bandwidth enhancement technique of a multilayer patch antenna for X-band applications. In order to enhance the bandwidth, antenna losses are contained by controlling those quality factors which can have a significant impact on the bandwidth for a given permittivity and thickness of the substrate. This has been achieved by conformal transformation of the multidielectric microstrip antenna. For the ease of analysis Wheelers transformation is used to map the complex permittivity of a multilayer substrate to a single layer. Method of Moments and Finite Difference Time Domain approaches are used for the computation of results.

  7. Bandwidth allocation and pricing problem for a duopoly market

    Directory of Open Access Journals (Sweden)

    You Peng-Sheng

    2011-01-01

    Full Text Available This research discusses the Internet service provider (ISP bandwidth allocation and pricing problems for a duopoly bandwidth market with two competitive ISPs. According to the contracts between Internet subscribers and ISPs, Internet subscribers can enjoy their services up to their contracted bandwidth limits. However, in reality, many subscribers may experience the facts that their on-line requests are denied or their connection speeds are far below their contracted speed limits. One of the reasons is that ISPs accept too many subscribers as their subscribers. To avoid this problem, ISPs can set limits for their subscribers to enhance their service qualities. This paper develops constrained nonlinear programming to deal with this problem for two competitive ISPs. The condition for reaching the equilibrium between the two competitive firms is derived. The market equilibrium price and bandwidth resource allocations are derived as closed form solutions.

  8. Available Bandwidth Estimation Strategy Based on the Network Allocation Vector

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    2012-12-01

    Full Text Available Available bandwidth is of great importance to network Quality of Service assurance, network load balancing, streaming media rate control, routing, and congestion control, etc.. In this paper, the available bandwidth estimation strategy based on the Network Allocation Vector for Wireless Sensor Networks is proposed. According to the size of the average contention window, network nodes predict the probability of collision in process of frame transmission, and then estimate the number of retransmission. Through the collection of Hello packets periodically sent by neighbors, nodes obtain their Network Allocation Vector, and then estimate the available bandwidth. The simulation results show that the strategy is simple and effective, can accurately estimate the collision of data frames as well as the available bandwidth of Wireless Sensor Networks.

  9. An Improved Dynamic Bandwidth Allocation Algorithm for Ethernet PON

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper proposes an improved Dynamic Bandwidth Allocation (DBA) algorithm for EPON, which combines static and traditional dynamic allocation schemes. Simulation result shows that the proposed algorithm may effectively improve the performance of packet delay.

  10. Performance Investigation of Virtual Private Networks with Different Bandwidth Allocations

    OpenAIRE

    Ramaswamy Muthiah; Mahalakshmi Chidambara Natarajan; Alamelu Nachiappan

    2010-01-01

    A Virtual Private Network (VPN) provides private network connections over a publicly accessible shared network. The effective allocation of bandwidth for VPNs assumes significance in the present scenario due to varied traffic. Each VPN endpoint specifies bounds on the total amount of traffic that it is likely to send or receive at any time. The network provider tailors the VPN so that there is sufficient bandwidth for any traffic matrix that is consistent with these bounds. The approach incor...

  11. A Bandwidth Allocation Model Provisioning Framework with Autonomic Characteristics

    OpenAIRE

    Rafael F. Reale; Romildo M. da S. Bezerra; Martins, Joberto S. B.

    2013-01-01

    The Bandwidth Allocation Models (MAM, RDM, G-RDM and AllocTC-Sharing) are managementalternatives currently available which propose different resource (bandwidth) allocation strategies inmultiservice networks. The BAM adoption by a network is typically a management choice andconfiguration task executed by the network operations and management system setup in a static or nearlystatic way. This paper proposes and explores the alternative ofallowing BAM definition and configurationon a more dynam...

  12. Available Bandwidth Estimation Strategy Based on the Network Allocation Vector

    OpenAIRE

    Hongtao Liu; Lianglun Cheng

    2012-01-01

    Available bandwidth is of great importance to network Quality of Service assurance, network load balancing, streaming media rate control, routing, and congestion control, etc.. In this paper, the available bandwidth estimation strategy based on the Network Allocation Vector for Wireless Sensor Networks is proposed. According to the size of the average contention window, network nodes predict the probability of collision in process of frame transmission, and then estimate the number of retrans...

  13. Limits To Certainty in QoS Pricing and Bandwidth

    OpenAIRE

    Gideon, Carolyn; Camp, L Jean

    2001-01-01

    Advanced services require more reliable bandwidth than currently provided by the Internet Protocol, even with the reliability enhancements provided by TCP. More reliable bandwidth will be provided through QoS (quality of service), as currently discussed widely. Yet QoS has some implications beyond providing ubiquitous access to advance Internet service, which are of interest from a policy perspective. In particular, what are the implications for price of Internet services? Further, how will t...

  14. Review of high bandwidth fiber optics radiation sensors

    International Nuclear Information System (INIS)

    This paper summarizes the use of fiber optics or guided optical systems for radiation sensors. It is limited a passive systems wherein electrical is not required at the sensor location. However, electrically powered light sources, receivers and/or recorders may still be required for detection and data storage in sensor system operation. This paper emphasizes sensor technologies that permit high bandwidth measurements of transient radiation levels, and will also discuss several low bandwidth applications. 60 refs

  15. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  16. Performance Investigation of Virtual Private Networks with Different Bandwidth Allocations

    Directory of Open Access Journals (Sweden)

    Ramaswamy Muthiah

    2010-01-01

    Full Text Available A Virtual Private Network (VPN provides private network connections over a publicly accessible shared network. The effective allocation of bandwidth for VPNs assumes significance in the present scenario due to varied traffic. Each VPN endpoint specifies bounds on the total amount of traffic that it is likely to send or receive at any time. The network provider tailors the VPN so that there is sufficient bandwidth for any traffic matrix that is consistent with these bounds. The approach incorporates the use of Ad-hoc On demand Distance Vector (AODV protocol, with a view to accomplish an enhancement in the performance of the mobile networks. The NS2 based simulation results are evaluated in terms of its metrics for different bandwidth allocations, besides analyzing its performance in the event of exigencies such as link failures. The results highlight the suitability of the proposed strategy in the context of real time applications.

  17. Performance Investigation of Virtual Private Networks with Different Bandwidth Allocations

    CERN Document Server

    Natarajan, Mahalakshmi Chidambara; Nachiappan, Alamelu

    2010-01-01

    A Virtual Private Network (VPN) provides private network connections over a publicly accessible shared network. The effective allocation of bandwidth for VPNs assumes significance in the present scenario due to varied traffic. Each VPN endpoint specifies bounds on the total amount of traffic that it is likely to send or receive at any time. The network provider tailors the VPN so that there is sufficient bandwidth for any traffic matrix that is consistent with these bounds. The approach incorporates the use of Ad-hoc On demand Distance Vector (AODV) protocol, with a view to accomplish an enhancement in the performance of the mobile networks. The NS2 based simulation results are evaluated in terms of its metrics for different bandwidth allocations, besides analyzing its performance in the event of exigencies such as link failures. The results highlight the suitability of the proposed strategy in the context of real time applications.

  18. Benefits of Bandwidth Feedback in Learning a Complex Gymnastic Skill

    Science.gov (United States)

    Sadowski, Jerzy; Mastalerz, Andrzej; Niznikowski, Tomasz

    The aim of this study was to examine the effects of two different frequencies of feedback during the process of learning a complex gymnastic skill, the round-off salto backward tucked. Thirty male acrobats participated in the study. They were randomly assigned to two groups: B - bandwidth feedback (n=15) or C - 100% feedback (n=15). Group B was provided with error information regarding the key elements of movement techniques only (bandwidth feedback). Our research demonstrates the advantage of augmented feedback information related to errors in the key elements. Information about errors in the key elements during learning a complex gymnastic skill prevents the gymnast from becoming overwhelmed, which promotes better motor control. These results provide support for the generalisation of bandwidth feedback principles to a complex task. Our research shows that the guidance hypothesis can also be tested in practical settings for a complex movement task. PMID:24146719

  19. The bandwidth of optimized nonlinear vibration-based energy harvesters

    International Nuclear Information System (INIS)

    In an attempt to improve the performance of vibration-based energy harvesters, many authors suggest that nonlinearities can be exploited to increase the bandwidths of linear devices. Nevertheless, the complex dependence of the response upon the input excitation has made a realistic comparison of linear harvesters with nonlinear energy harvesters challenging. In a previous work it has been demonstrated that for a given frequency of excitation, it is possible to achieve the same maximum power for a nonlinear harvester as that for a linear harvester, provided that the resistance and the linear stiffness of both are optimized. This work focuses on the bandwidths of linear and nonlinear harvesters and shows which device is more suitable for harvesting energy from vibrations. The work considers different levels of excitation as well as different frequencies of excitation. In addition, the effect of the mechanical damping of the oscillator on the power bandwidth is shown for both the linear and nonlinear cases. (paper)

  20. Analysis of bandwidth measurement methodologies over WLAN systems

    CERN Document Server

    Portoles-Comeras, Marc; Mangues-Bafalluy, Josep; Domingo-Pascual, Jordi

    2009-01-01

    WLAN devices have become a fundamental component of nowadays network deployments. However, even though traditional networking applications run mostly unchanged over wireless links, the actual interaction between these applications and the dynamics of wireless transmissions is not yet fully understood. An important example of such applications are bandwidth estimation tools. This area has become a mature research topic with well-developed results. Unfortunately recent studies have shown that the application of these results to WLAN links is not straightforward. The main reasons for this is that the assumptions taken to develop bandwidth measurements tools do not hold any longer in the presence of wireless links (e.g. non-FIFO scheduling). This paper builds from these observations and its main goal is to analyze the interaction between probe packets and WLAN transmissions in bandwidth estimation processes. The paper proposes an analytical model that better accounts for the particularities of WLAN links. The mod...

  1. INCREASING BANDWIDTH ON CELL BREATHING TECHNOLOGY USING RAT ALGORITHM

    Directory of Open Access Journals (Sweden)

    S.Manikandan*

    2015-08-01

    Full Text Available In a typical enterprise WLAN, it is difficult to identify and implement the types of network settings which cause poor performance where number of hosts may attain larger share of the available bandwidth in a access point within a limited boundary under the con cept of cell breathing technique. This approach can leads to unequal load sharing and diminished system performance. Our work can be focused on the process of regulating the bandwidth so that no user can access data more than the specified limit for a part icular access point and provide large bandwidth wherever needed. In this way the different users will get an efficient access over the network. We consider the RAT (Rate Access Technologies policy which leads to better system performance. The RAT policy h as been applied on home - grown centralized WLAN controller, ADWISER and reveals that the RAT policy definitely affords to be effective system performance

  2. Performance Analysis of a DEKF for Available Bandwidth Measurement

    Directory of Open Access Journals (Sweden)

    Diego Santoro

    2016-01-01

    Full Text Available The paper presents a characterisation analysis of a measurement algorithm based on a Discrete-time Extended Kalman Filter (DEKF, which has recently been proposed for the estimation and tracking of end-to-end available bandwidth. The analysis is carried out by means of simulations for different rates of variations of the available bandwidth and permits assessing the performance of the measurement algorithm for different values of the filter parameters, that is, the covariance matrixes of the measurement and process noise.

  3. Small Bandwidth Asymptotics for Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels and the standard errors are...... errors developed in this paper coincide (approximately) with the nominal coverage rates across a nontrivial range of bandwidths....... "robust" in the sense that they accommodate (but do not require) bandwidths that are smaller than those for which conventional standard errors are valid. Moreover, the results of a Monte Carlo experiment suggest that the finite sample coverage rates of con…dence intervals constructed using the standard...

  4. Programmable bandwidth management in software-defined EPON architecture

    Science.gov (United States)

    Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming

    2016-07-01

    This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.

  5. 120 nm Bandwidth Erbium-doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    姜淳; 曾庆济; 肖石林

    2002-01-01

    A new dual band erbium-doped fiber amplifier configuration that provides 120 nm of optical bandwidth is simulated. This configuration employs a split-band architecture in which optical signals are splitted using a 1550/1610 nm port filter into two independent sub-bands which then pass in parallel through separate branches of the optical amplifier. Each branch may be optimized for the sub-band that traverses it. The independent sub-bands are combined and flattened before output, resulting in a 120 nm bandwidth gain-flattened optical amplifier.

  6. Bandwidth Enhancement of Probe Fed Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2013-01-01

    Full Text Available Microstrip patch antenna becomes verypopular day by day because of its ease of analysis andfabrication, low cost, light weight, easy to feed and theirattractive radiation characteristics. Although patchantenna has numerous advantages, it has also somedrawbacks such as restricted bandwidth, and a potentialdecrease in radiation pattern. Different techniques forbandwidth enhancement of conventional rectangularmicrostrip antenna are proposed in this paper. Byincreasing the height of patch , increasing the substratethickness and decreasing the permittivity of substrate the%bandwidth is increased. HFSS Software is used for thesimulation and design calculation of microstrip patchantenna. The return loss, vswr curve, directivity and gainare evaluated.

  7. Iterative Available Bandwidth Estimation for Mobile Transport Networks

    DEFF Research Database (Denmark)

    Ubeda Castellanos, Carlos; López Villa, Dimas; Teyeb, Oumer Mohammed; Elling, Jan

    2007-01-01

    Available bandwidth estimation has lately been proposed to be used for end-to-end resource management in existing and emerging mobile communication systems, whose transport networks could end up being the bottleneck rather than the air interface. Algorithms for admission control, handover and...

  8. A Preliminary Evaluation of Bandwidth Allocation Model Dynamic Switching

    Directory of Open Access Journals (Sweden)

    Rafael F. Reale

    2014-06-01

    Full Text Available Bandwidth Allocation Models (BAMs are used in order to define Bandwidth Constraints (BCs in a per-class basis for MPLS/DS-TE networks and effectively define how network resources like bandwidth are obtained and shared by applications. The BAMs proposed (MAM – Maximum Allocation Model, RDM – Russian Dolls Model, G-RDM – Generic RDM and AllocTC-Sharing attempt to optimize the use of bandwidth resources on a per-link basis with different allocation and resource sharing characteristics. As such, the adoption of distinct BAMs and/or changes in network resource demands (network traffic profile may result in different network traffic allocation and operational behavior for distinct BAMs. This paper evaluates the resulting network characteristics (li nk utilization, preemption and flows blocking of using BAMs dynamically with different traffic scenarios. In brief, it is investigated the dynamics of BAM switching with distinct traffic scenarios. The paper presents initially the investigated BAMs in relation to their behavior and resource allocation characteristics. Then, distinct BAMs are compared using different traffic scenarios in order to investigate the impact of a dynamic change of the BAM configured in the network. Finally, the paper shows that the adoption of a dynamic BAM allocation strategy may result in benefits for network operation in terms of link utilization, preemption and flows blocking.

  9. Bandwidth utilization maximization of scientific RF communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D. [Sandia National Lab., Albuquerque, NM (United States); Ryan, W. [New Mexico State Univ., Las Cruces, NM (United States); Ross, M.

    1997-01-01

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, was developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.

  10. Gain-switched all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, M.; Nyga, S.;

    2013-01-01

    Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted...

  11. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...

  12. 47 CFR 74.535 - Emission and bandwidth.

    Science.gov (United States)

    2010-10-01

    ... bandwidth: As specified by the following equation but in no event less than 50 decibels: A = 35 + 0.8(G − 50) + 10 Log10 B. (Attenuation greater than 80 decibels is not required.) Where: A = Attenuation (in decibels) below the mean output power level. G = Percent removed from the carrier frequency. B =...

  13. Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures

    Directory of Open Access Journals (Sweden)

    R. C. Hadarig

    2012-01-01

    Full Text Available A microstrip patch antenna with bandwidth enhancement by means of artificial magnetic conductor (AMC/electromagnetic band-gap structure (EGB is presented. The electrical characteristics of the embedded structure are evaluated using MoM simulations. The manufactured prototypes are characterized in terms of return loss, gain, and radiation pattern measurements in an anechoic chamber.

  14. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  15. A Practical Approach For Excess Bandwidth Distribution for EPONs

    KAUST Repository

    Elrasad, Amr

    2014-03-09

    This paper introduces a novel approach called Delayed Excess Scheduling (DES), which practically reuse the excess bandwidth in EPONs system. DES is suitable for the industrial deployment as it requires no timing constraint and achieves better performance compared to the previously reported schemes.

  16. Bandwidth trading under misaligned objectives: decentralized measurement-based control

    NARCIS (Netherlands)

    Mandjes, M.R.H.; Ramakrishnan, M.

    2006-01-01

    This paper studies the interplay between a profit-maximizing network and a number of users competing for the finite bandwidth on each link. In our setting, the objectives of the network and the users are ‘misaligned’, in that the prices that optimize the network’s profit do not maximize the aggregat

  17. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr Elsayed M.

    2016-05-15

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption. Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks. In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme. Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints. Regarding excess bandwidth allocation, we develop an effective DBA scheme called Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved

  18. Conical Emission Patterns by Femtosecond Pulses with Different Spectral Bandwidths

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; ZENG Zhi-Nan; GE Xiao-Chun; CHEN Xiao-Wei; LI Ru-Xin; XU Zhi-Zhan

    2008-01-01

    @@ Different conical emission (CE) patterns are obtained experimentally at various incident powers and beam sizes of pump laser pulses with pulse durations of 7fs, 44fs and lOOfs.The results show that it is the incident power but not the incident power density that determines a certain CE pattern.In addition, the critical powers for similar CE patterns are nearly the same for the laser pulses with the same spectral bandwidth.Furthermore, as far as a certain CE pattern is concerned, the wider the spectral bandwidth of pump laser pulse is, the higher the critical power is.This will hopefully provide new insights for the generation of CE pattern in optical medium.

  19. On Free-Electron Laser Growing Modes and their Bandwidth

    CERN Document Server

    Webb, Stephen; Litvinenko, Vladimir

    2011-01-01

    Free-electron lasers play an increasing role in science, from generating unique femtosecond X- ray pulses for single short recording of the protein structures to amplifying feeble interactions in advanced cooling systems for high-energy hadron colliders. While modern Free-electron laser codes can describe their amplification mechanism, a deep analytical understanding of the mechanism is of extreme importance for a number of applications. Mode competition, their growth rates and amplification bandwidth are among the most important parameters of a free-electron laser. A dispersion relation, which defines these important characteristics, can be solved analytically only for a very few simple cases. In this letter we show that for a typical bell-shape energy distribution in electron beam there is no more that one growing mode. We also derive an analytical expression which determines the bandwidth of the free-electron laser.

  20. Two genetic algorithms for the bandwidth multicoloring problem

    Directory of Open Access Journals (Sweden)

    Fijuljanin Jasmina

    2012-01-01

    Full Text Available In this paper the Bandwidth Multicoloring Problem (BMCP and the Bandwidth Coloring Problem (BCP are considered. The problems are solved by two genetic algorithms (GAs which use the integer encoding and standard genetic operators adapted to the problems. In both proposed implementations, all individuals are feasible by default, so search is directed into the promising regions. The first proposed method named GA1 is a constructive metaheuristic that construct solution, while the second named GA2 is an improving metaheuristic used to improve an existing solution. Genetic algorithms are tested on the publicly-available GEOM instances from the literature. Proposed GA1 has achieved a much better solution than the calculated upper bound for a given problem, and GA2 has significantly improved the solutions obtained by GA1. The obtained results are also compared with the results of the existing methods for solving BCP and BMCP.

  1. Bandwidth-sharing in LHCONE, an analysis of the problem

    Science.gov (United States)

    Wildish, T.

    2015-12-01

    The LHC experiments have traditionally regarded the network as an unreliable resource, one which was expected to be a major source of errors and inefficiency at the time their original computing models were derived. Now, however, the network is seen as much more capable and reliable. Data are routinely transferred with high efficiency and low latency to wherever computing or storage resources are available to use or manage them. Although there was sufficient network bandwidth for the experiments’ needs during Run-1, they cannot rely on ever-increasing bandwidth as a solution to their data-transfer needs in the future. Sooner or later they need to consider the network as a finite resource that they interact with to manage their traffic, in much the same way as they manage their use of disk and CPU resources. There are several possible ways for the experiments to integrate management of the network in their software stacks, such as the use of virtual circuits with hard bandwidth guarantees or soft real-time flow-control, with somewhat less firm guarantees. Abstractly, these can all be considered as the users (the experiments, or groups of users within the experiment) expressing a request for a given bandwidth between two points for a given duration of time. The network fabric then grants some allocation to each user, dependent on the sum of all requests and the sum of available resources, and attempts to ensure the requirements are met (either deterministically or statistically). An unresolved question at this time is how to convert the users’ requests into an allocation. Simply put, how do we decide what fraction of a network's bandwidth to allocate to each user when the sum of requests exceeds the available bandwidth? The usual problems of any resourcescheduling system arise here, namely how to ensure the resource is used efficiently and fairly, while still satisfying the needs of the users. Simply fixing quotas on network paths for each user is likely to lead

  2. Available Network Bandwidth Schema to Improve Performance in TCP Protocols

    Directory of Open Access Journals (Sweden)

    Marcos Talau

    2013-09-01

    Full Text Available The TCP congestion control mechanism in standard implementations presents several problems, for example, large queue lengths in network routers and packet losses, a misleading reduce of the transmission rate when there are link failures, among others. This paper proposes a schema to congestion control in TCP protocols, called NGWA, witch is based on the network bandwidth. The NGWA provides information considering the available bandwidth of the network infrastructure to the endpoints of the TCP connection.Hence, it helps in choosing a better transmission rate for TCP improving its performance. Simulation results show superior performance of the proposed scheme when compared to those obtained by TCP New Reno and standard TCP. A physical implementation in the Linux kernel was performed to prove the correct operation of the proposal.

  3. Long-pulse-width narrow-bandwidth solid state laser

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  4. Novel Design of Microstrip Antenna with Improved Bandwidth

    Directory of Open Access Journals (Sweden)

    Km. Kamakshi

    2014-01-01

    Full Text Available A novel design of broadband patch antenna is presented in this paper. The broadband property of the proposed antenna is achieved by choosing a proper selection of dimensions and positions of slot and notch on the radiating patch. The bandwidth of the proposed antenna is found to be 30.5% with operating frequency band from 1.56 GHz to 2.12 GHz. Antenna characteristics are observed for different inclination angles “α” and its effect on bandwidths is also reported. The maximum gain of the antenna is found to be 9.86 dBi and it achieves broadside radiation pattern in the direction of maximum radiation over the operating band. The proposed antenna structure is simulated, fabricated, and tested for obtaining the desired performance. The simulated results are verified with experimental results which are in good agreement.

  5. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  6. The Bandwidths of a Matrix. A Survey of Algorithms

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-12-01

    Full Text Available The bandwidth, average bandwidth, envelope, profile and antibandwidth of the matrices have been the subjects of study for at least 45 years. These problems have generated considerable interest over the years because of them practical relevance in areas like: solving the system of equations, finite element methods, circuit design, hypertext layout, chemical kinetics, numerical geophysics etc. In this paper a brief description of these problems are made in terms of their definitions, followed by a comparative study of them, using both approaches: matrix geometry and graph theory. Time evolution of the corresponding algorithms as well as a short description of them are made. The work also contains concrete real applications for which a large part of presented algorithms were developed.

  7. Variable bandwidth and one-step local M-estimator

    Institute of Scientific and Technical Information of China (English)

    范剑青; 蒋建成

    2000-01-01

    A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of least-squares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M- estimators and makes them possible to cope well with spatially inho-mogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the one-step local M-estimators reduce significantly the computation cost of the fully iterative M-estim

  8. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements

    Science.gov (United States)

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6Hzto1.4MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  9. Exploiting material softening in hard PZTs for resonant bandwidth enhancement

    Science.gov (United States)

    Leadenham, S.; Moura, A.; Erturk, A.

    2016-04-01

    Intentionally designed nonlinearities have been employed by several research groups to enhance the frequency bandwidth of vibration energy harvesters. Another type of nonlinear resonance behavior emerges from the piezoelectric constitutive behavior for high excitation levels and is manifested in the form of softening stiffness. This material nonlinearity does not result in the jump phenomenon in soft piezoelectric ceramics, e.g. PZT-5A and PZT-5H, due to their large internal dissipation. This paper explores the potential for wideband energy harvesting using a hard (relatively high quality factor) PZT-8 bimorph by exploiting its material softening. A wide range of base excitation experiments conducted for a set of resistive electrical loads confirms the frequency bandwidth enhancement.

  10. Transportation dynamic on coupled networks with limited bandwidth

    CERN Document Server

    Li, Ming; Wang, Bing-Hong

    2016-01-01

    The communication networks in real world often couple with each other to save costs, which results in any network does not have a stand-alone function and efficiency. To investigate this, in this paper we propose a transportation model on two coupled networks with bandwidth sharing. We find that the free-flow state and the congestion state can coexist in the two coupled networks, and the free-flow path and congestion path can coexist in each network. Considering three bandwidth-sharing mechanisms, random, assortative and disassortative couplings, we also find that the transportation capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only affects the performance of the system in the congestion state, such as the traveling time. In addition, with assortative coupling, the traffic capacity of the system will decrease significantly. However, the disassortative coupling has little influence on the transportation capacity of the system, which provides a good strategy t...

  11. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    OpenAIRE

    Ke Chen; Zhongjie Yang; Yijun Feng; Bo Zhu; Junming Zhao; Tian Jiang

    2015-01-01

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase ch...

  12. Bandwidth Management in Wireless Home Networks for IPTV Solutions

    OpenAIRE

    Tamás Jursonovics; Sándor Imre

    2013-01-01

    The optimal allocation of the retransmission bandwidth is essential for IPTV service providers to ensure maximal service quality. This paper highlights the relevance of the wireless transport in today’s IPTV solution and discusses how this new media affects the existing broadcast technologies. A new Markovian channel model is developed to address the optimization issues of the retransmission throughput, and a new method is presented which is evaluated by empirical measurements followed by mat...

  13. Biometric recognition system using low bandwidth ECG signals

    OpenAIRE

    Matos, André Cigarro; Lourenço, André Ribeiro; Nascimento, José M. P.

    2013-01-01

    Biometric recognition has recently emerged as part of applications where the privacy of the information is crucial, as in the health care field. This paper presents a biometric recognition system based on the Electrocardiographic signal (ECG). The proposed system is based on a state-of-the-art recognition method which extracts information from the frequency domain. In this paper we propose a new method to increase the spectral resolution of low bandwidth ECG signals due to the limited bandwid...

  14. Designing large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Søndergaard, Thomas

    Our waveguide design is characterized by first of all a large bandwidth, and secondly it is characterized by a relatively high group velocity giving a better modal dispersion match with the modes of standard waveguides used for coupling light into the planar crystal waveguide (PCW). We consider t...... dispersion properties for a PCW based on introducing a line defect in a photonic crystal with air-holes arranged periodically on a triangular lattice in silicon....

  15. Power--bandwidth limitations of an optical resonance

    CERN Document Server

    Miller, Owen D; Anquillare, Emma; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2015-01-01

    We present shape-independent upper limits to the power--bandwidth product for a single resonance in an optical scatterer, with the bound depending only on the material susceptibility. We show that quasistatic metallic scatterers can nearly reach the limits, and we apply our approach to the problem of designing $N$ independent, subwavelength scatterers to achieve flat, broadband response even if they individually exhibit narrow resonant peaks.

  16. Amplifier similariton laser with extra-broad bandwidth output pulse

    Science.gov (United States)

    Korobko, D. A.; Okhotnikov, O. G.; Zolotovskii, I. O.

    2016-03-01

    We propose an advanced scheme of amplifier similariton laser providing an output pulse spectrum much wider than the gain bandwidth. The upgrade is an additional dispersive element introduced into the cavity to locally increase the peak pulse power. The proposed scheme demonstrates a drastic increase in the output pulse spectrum width, reduction of the pulse duration, and an increase in the output peak pulse power after compression.

  17. Advanced Control Schemes for High-Bandwidth Multiphase Voltage Regulators

    OpenAIRE

    Liu, Pei-Hsin

    2015-01-01

    Advances in transistor-integration technology and multi-core technology of the latest microprocessors have driven transient requirements to become more and more stringent. Rather than relying on the bulky output capacitors as energy-storage devices, increasing the control bandwidth (BW) of the multiphase voltage regulator (VR) is a more cost-effective and space-saving approach. However, it is found that the stability margin of current-mode control in high-BW design is very sensitive to operat...

  18. An experimental study on bandwidth assurance in IP networks

    OpenAIRE

    Cano Baños, María Dolores; Cerdán Cartagena, José Fernando

    2005-01-01

    Inside DiffServ, the Assured Forwarding per hop behavior defines a service that guarantees the contracted target rate to the users and allows consuming more bandwidth if the network load is low. In this paper we perform an experimental study, whose key contribution is that current techniques and commercial equipment do not meet the goals of the AF PHB service in a scalable way.

  19. Artificial bandwidth extension of spectral envelope along a Viterbi path

    OpenAIRE

    Yağlı, Can; Turan, M. A. Tuğtekin; Erzin, Engin

    2013-01-01

    In this paper, we propose a hidden Markov model (HMM)-based wideband spectral envelope estimation method for the artificial bandwidth extension problem. The proposed HMM-based estimator decodes an optimal Viterbi path based on the temporal contour of the narrowband spectral envelope and then performs the minimum mean square error (MMSE) estimation of the wideband spectral envelope on this path. Experimental evaluations are performed to compare the proposed estimator to the state-of-the-art HM...

  20. A Construction of Systematic MDS Codes with Minimum Repair Bandwidth

    CERN Document Server

    Wu, Yunnan

    2009-01-01

    In a distributed storage system based on erasure coding, an important problem is the \\emph{repair problem}: If a node storing a coded piece fails, in order to maintain the same level of reliability, we need to create a new encoded piece and store it at a new node. This paper presents a construction of systematic $(n,k)$-MDS codes for $2k\\le n$ that achieves the minimum repair bandwidth when repairing from $k+1$ nodes.

  1. Terahertz bandwidth integrated radio frequency spectrum analyzer via nonlinear optics

    CERN Document Server

    Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Clerici, Matteo; Caspani, Lucia; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Moss, David J

    2014-01-01

    We report an integrated all-optical radio frequency spectrum analyzer based on a ~ 4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahigh repetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other techniques.

  2. Bandwidth Enhancement Technique of the Meandered Monopole Antenna

    OpenAIRE

    Chien-Jen Wang; Dai-Heng Hsieh

    2015-01-01

    A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW t...

  3. BECSI: Bandwidth Efficient Certificate Status Information Distribution Mechanism for VANETs

    OpenAIRE

    Carlos Gañán; Muñoz, Jose L.; Oscar Esparza; Jonathan Loo; Jorge Mata-Díaz; Juanjo Alins

    2013-01-01

    Certificate revocation is a challenging task, especiallyin mobile network environments such as vehicular ad Hoc networks (VANETs).According to the IEEE 1609.2 security standard for VANETs, public keyinfrastructure (PKI) will provide this functionality by means of certificate revocation lists (CRLs).When a certificate authority (CA)needs to revoke a certificate, itglobally distributes CRLs.Transmitting these lists pose a problem as they require high update frequencies and a lot of bandwidth. I...

  4. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  5. Large-bandwidth data acquisition network for XFEL facility, SACLA

    International Nuclear Information System (INIS)

    The SACLA (SPring-8 Angstrom Compact Free Electron Laser) facility consists of an accelerator building, an undulator building and an experimental facility. SACLA is designed to produce X-ray with a wavelength as short as 0.06 nm and with a repetition rate of 60 Hz. X-ray Free-Electron Laser (XFEL) experiments demands large bandwidth network for data acquisition (DAQ). At SACLA the experimental data rate is to be up to 5.8 Giga bit per second (Gbps). Some of the experiments demands preprocessing and on-line analysis by high-performance computers. In order to fulfill these requirements, a dedicated network system for DAQ and data analysis has been developed. A DAQ network consists of a dedicated 10 Gbps Ethernet (10 GbE) physical layer to secure the data bandwidth and a 1 GbE layer for instrument controls. The DAQ network is connected to a primary storage and indirectly to a PC cluster for data preprocessing. A fire-wall system with virtual private network (VPN) features is also implemented in order to secure remote access from off-site institutes. The use of a large-bandwidth data transfer technique allows the efficient transfer of pre-processed data from SACLA to an off-site supercomputer

  6. Allocating Bandwidth in Datacenter Networks:A Survey

    Institute of Scientific and Technical Information of China (English)

    陈丽; 李葆春; 李波

    2014-01-01

    Datacenters have played an increasingly essential role as the underlying infrastructure in cloud computing. As implied by the essence of cloud computing, resources in these datacenters are shared by multiple competing entities, which can be either tenants that rent virtual machines (VMs) in a public cloud such as Amazon EC2, or applications that embrace data parallel frameworks like MapReduce in a private cloud maintained by Google. It has been generally observed that with traditional transport-layer protocols allocating link bandwidth in datacenters, network traffic from competing applications interferes with each other, resulting in a severe lack of predictability and fairness of application performance. Such a critical issue has drawn a substantial amount of recent research attention on bandwidth allocation in datacenter networks, with a number of new mechanisms proposed to efficiently and fairly share a datacenter network among competing entities. In this article, we present an extensive survey of existing bandwidth allocation mechanisms in the literature, covering the scenarios of both public and private clouds. We thoroughly investigate their underlying design principles, evaluate the trade-off involved in their design choices and summarize them in a unified design space, with the hope of conveying some meaningful insights for better designs in the future.

  7. Improved Radiation and Bandwidth of Triangular and Star Patch Antenna

    Directory of Open Access Journals (Sweden)

    M. Ramkumar Prabhu

    2012-06-01

    Full Text Available This study presents a hexagonal shape Defected Ground Structure (DGS implemented on two element triangular patch microstrip antenna array. The radiation performance of the antenna is characterized by varying the geometry and dimension of the DGS and also by locating the DGS at specific position which were simulated. Simulation and measurement results have verified that the antenna with DGS had improved the antenna without DGS. Measurement results of the hexagonal DGS have axial ratio bandwidth enhancement of 10 MHz, return loss improvement of 35%, mutual coupling reduction of 3 dB and gain enhancement of 1 dB. A new wideband and small size star shaped patch antenna fed capacitively by a small diamond shape patch is proposed. To enhance the impedance bandwidth, posts are incorporated under the patch antenna. HFSS high frequency simulator is employed to analyze the proposed antenna and simulated results on the return loss, the E- and H-plane radiation patterns and Gain of the proposed antenna are presented at various frequencies. The antenna is able to achieve in the range of 4-8.8 GHz an impedance bandwidth of 81% for return loss of less than-10 dB.

  8. Cost-Bandwidth Tradeoff In Distributed Storage Systems

    CERN Document Server

    Akhlaghi, Soroush; Ghanavati, Mohammad Reza

    2010-01-01

    Distributed storage systems are mainly justified due to the limited amount of storage capacity and improving the reliability through distributing data over multiple storage nodes. On the other hand, it may happen the data is stored in unreliable nodes, while it is desired the end user to have a reliable access to the stored data. So, in an event that a node is damaged, to prevent the system reliability to regress, it is necessary to regenerate a new node with the same amount of stored data as the damaged node to retain the number of storage nodes, thereby having the previous reliability. This requires the new node to connect to some of existing nodes and downloads the required information, thereby occupying some bandwidth, called the repair bandwidth. On the other hand, it is more likely the cost of downloading varies across different nodes. This paper aims at investigating the theoretical cost-bandwidth tradeoff, and more importantly, it is demonstrated that any point on this curve can be achieved through th...

  9. Bandwidth Enhancement Technique of the Meandered Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Chien-Jen Wang

    2015-01-01

    Full Text Available A small dual-band monopole antenna with coplanar waveguide (CPW feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4% at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3% at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.

  10. A General Kernel Functional Estimator with Generalized Bandwidth : Strong Consistency and Applications

    OpenAIRE

    Weißbach, Rafael

    2004-01-01

    We consider the problem of uniform asymptotics in kernel functional estimation where the bandwidth can depend on the data. In a unified approach we investigate kernel estimates of the density and the hazard rate for uncensored and right-censored observations. The model allows for the fixed bandwidth as well as for various variable bandwidths, e.g. the nearest neighbor bandwidth. An elementary proof for the strong consistency of the generalized estimator is given that builds on the local conve...

  11. Bandwidth Improvement of EBG Resonator Antennas Using Double-Layer FSS

    OpenAIRE

    Bernard Jecko; Lina Moustafa

    2008-01-01

    A double-layer frequency selective surface (FSS) is proposed as a means to enhance the bandwidth of an electromagnetic band gap (EBG) resonator antenna. Due to its inverted reflection phase variation and its wide selectivity bandwidth, the structure used in the radiating wall of the resonator allows increasing the radiating bandwidth of the last one. The resonator is fed by a patch feeding source placed inside the cavity at the proximity of its metallic ground. The antenna bandwidth is signif...

  12. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José;

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  13. Optimization of bandwidth of communication channels of corporate networks

    Directory of Open Access Journals (Sweden)

    G. I. Bondarenko

    2014-09-01

    Full Text Available Introduction. This article contains overview of the organization of communication between applications on the corporate network. It is stated that the main digital channel (channel B - 64 kbit/s and the primary digital channel (channel E1 the digital stream - 2048 kbit/s are used as the main channels in corporate networks. Problem areas of the functioning of the corporate network are identified. There are the rent of communication channels, which is growing rapidly with increasing the quality and speed of data transmission, and optimal use of bandwidth of communication channels. Setting of task. Optimal use of transmission channels bandwidth and minimizing the rent cost of channels is possible in two ways - the use of compression techniques of voice and video information and the application of variable structure of channels by using various-speed transmission channels. Differential pulse code modulation, adaptive differential pulse code modulation are the modern methods of speech signals processing. Organization of various-speed channels is performed in the structure of the BCC (for speech signals or PCR (for video. Suggestions for optimizing the structure of the channel signals. Proposed method of various-speed channels formation by using the channel intervals appropriate BCC (octets in the structure of signals E1 as envelopes containing various-speed channels. Channels can be selected for synchronization procedure CRC to simplify recognition of channels in the structure of E1. In this case, the minimal speed in the channel is 4 kbit/s. Conclusions. The proposed structure of envelopes is based on octet channel intervals of standard group signal of the primary group plesiochronous hierarchy E1 when transferring various-speed digital signals maximum allows to use the bandwidth at a fixed structure of channel interval, it makes possible to agree on the structure of the various-speed signals with the existing in communication networks.

  14. Wide-bandwidth piezoelectric energy harvester with polymeric structure

    International Nuclear Information System (INIS)

    A polymer based energy harvester with wide bandwidth is designed, fabricated and tested in this work. A polymer based structure has a lower resonance frequency compared to a silicon based structure with the same dimensions due to the much lower stiffness of polymeric materials. Therefore, a polymeric energy harvester is more useful for situations with lower ambient vibration frequencies. Aluminum nitride pads are fabricated on an SU-8 membrane to convert mechanical vibration of the membrane to electrical voltage. A new and scalable microfabrication process flow is proposed to properly fabricate piezoelectric layers on SU-8 structures. The nonlinear stiffness due to the stretching strain in the membrane provides a wider harvestable frequency bandwidth than conventional linear oscillators. Wideband energy harvesters are more useful for practical applications due to uncontrollable ambient vibration frequency. The load-deflection equation of the device is calculated using finite element simulation. This equation is then used in an analytical solution to estimate the nonlinear effect of the structure. A bandwidth of ∼146 Hz is obtained for the fabricated device and a maximum open circuit voltage of 1.42 V, maximum power of 1.37 µW, and power density of 3.81 µW cm−2 were measured at terminal load of 357.4 kΩ under an excitation acceleration of 4 g. A power output of 10.1 µW and power density of 28.1 µW cm−2 was estimated using a synchronized switch harvesting on interface (SSHI) electrical interface with electrical quality factor of 5. In addition, the lumped element model has been employed to investigate the scaling effect on a polymeric circular diaphragm. (paper)

  15. Bandwidth allocation for video under quality of service constraints

    CERN Document Server

    Anjum, Bushra

    2014-01-01

    We present queueing-based algorithms to calculate the bandwidth required for a video stream so that the three main Quality of Service constraints, i.e., end-to-end delay, jitter and packet loss, are ensured. Conversational and streaming video-based applications are becoming a major part of the everyday Internet usage. The quality of these applications (QoS), as experienced by the user, depends on three main metrics of the underlying network, namely, end-to-end delay, jitter and packet loss. These metrics are, in turn, directly related to the capacity of the links that the video traffic trave

  16. Systems for measuring response statistics of gigahertz bandwidth photomultipliers

    Science.gov (United States)

    Abshire, J. B.; Rowe, H. E.

    1977-01-01

    New systems have been developed for measuring the average impulse response, the pulse-height spectrum, the transit-time statistics as a function of signal level, and the dark-count spectrum of gigahertz bandwidth photomultipliers. Measurements showed that the 0.53 microns pulse used as an optical test source had a 30 picoseconds and less than 70 ps pulse width. Calibration data showed the system resolution to be less than 20 ps for root mean square transit-time measurements. Test data for a static crossed-field photomultiplier showed 2-photoelectron resolution and less than 30-ps time jitter over the 1- to 100-photoelectron range.

  17. Narrow-Bandwidth Diode-Laser-Based Ultraviolet Light Source

    International Nuclear Information System (INIS)

    A compact, tunable and narrow-bandwidth laser source for ultraviolet radiation is presented. A grating stabilized diode laser at 1064 nm is frequency-stabilized to below 10 kHz by using a ultra low expansion (ULE) cavity. Injecting light of the diode laser into a tapered amplifier yields a power of 290 mW. In a first frequency-doubling stage, about 47 mW of green light at 532 nm is generated by using a periodically poled KTP crystal. Subsequent second-harmonic generation employing a BBO crystal leads to about 30 μW of ultraviolet light at 266 nm. (fundamental areas of phenomenology (including applications))

  18. Bandwidth Extension Method Based on Spectral Envelope Estimation

    Directory of Open Access Journals (Sweden)

    Bo Hang

    2011-06-01

    Full Text Available In current communication system, high quality audio signal is supposed to be provided with low bit rate and low computational complexity. This paper proposed a novel audio coding bandwidth extension method, which can improve decoded audio quality with increasing only a few coding bits per frame and a little computational complexity. This method calculate high-frequency synthesis filter by using codebook mapping method, and transmit only quantified gain corrections in high-frequency part of multiplexing coding bit stream. The preliminary test show that this method can provide comparable audio quality with lower bit consumption and computational complexity compared to the high frequency regeneration of AMR-WB+.

  19. Modulator reliability and bandwidth improvement: replacing tetrodes with MOSFETs

    International Nuclear Information System (INIS)

    Three types of power MOS field effect transistors were studied with the intent of replacing a parallel pair of vacuum tube tetrodes in a linear modulator. The tetrodes have the shortest lifetimes of any other tubes in the system. The FETs offer definite performance advantages when compared to bipolar transistors and definite cost advantages when compared to vacuum tubes. Replacement of the tetrodes does however require careful consideration of voltage, current and to a lesser extent bandwidth capability in order to enhance overall modulator reliability without compromising present performance

  20. Routing Bandwidth Guaranteed Paths with Restoration in Label Switched Networks

    OpenAIRE

    Norden, Samphel; Buddhikot, Milind M.; Waldvogel, Marcel; Suri, Subhash

    2001-01-01

    A Network Service Provider (NSP) operating a label-switched networks such as ATM or Multi-Protocol Label Switching (MPLS) networks, sets up end-to-end bandwidth-guaranteed Label-Switched Paths (LSPs) to satisfy the connectivity requirements of its client networks. To make such a service highly available, the NSP may set up one or more backup LSPs for every active LSP. The backup LSPs are activated when the corresponding active LSP fails. Accordingly, the problem of LSP routing with and withou...

  1. Efficient and Fair Bandwidth Allocation AQM Scheme for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Rafe Alasem

    2010-05-01

    Full Text Available Heterogeneous Wireless Networks are considered nowadays as one of the potential areas in research and development. The traffic management’s schemes that have been used at the fusion points between the different wireless networks are classical and conventional. This paper is focused on developing a novel scheme to overcome the problem of traffic congestion in the fusion point router interconnected the heterogeneous wireless networks. The paper proposed an EF-AQM algorithm which provides an efficient and fair allocation of bandwidth among different established flows. Finally, the proposed scheme developed, tested and validated through a set of experiments to demonstrate the relative merits and capabilities of a proposed scheme

  2. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  3. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    International Nuclear Information System (INIS)

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation

  4. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun, E-mail: yjfeng@nju.edu.cn; Zhu, Bo; Zhao, Junming; Jiang, Tian [Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China)

    2015-06-15

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  5. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  6. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    Science.gov (United States)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  7. An exponential time 2-approximation algorithm for bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Kasiviswanathan, Shiva [Los Alamos National Laboratory; Furer, Martin [PENNSYLVANIA STATE U; Gaspers, Serge [U OF MONTPELLIER, FRANCE

    2009-01-01

    The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case {Omicron}(1.9797{sup n}) = {Omicron}(3{sup 0.6217n}) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have an {Omicron}*(3{sup n}) and {Omicron}*(2{sup n}) worst-case time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to achieve this improved time bound.

  8. Bandwidth Optimization in Centralized WLANs for Different Traffic Types

    Directory of Open Access Journals (Sweden)

    R. J. Haines

    2007-03-01

    Full Text Available Allocating bandwidth between different forms of coexisting traffic (such as web-browsing, streaming, and telephony within a wireless LAN is a challenging and interesting problem. Centralized coordination functions in wireless LANs offer several advantages over distributed approaches, having the benefit of a system overview at the controller, but obtaining a stable configuration of bandwidth allocation for the system is nontrivial. We present, review, and compare different mechanisms to achieve this end, and a number of different means of obtaining the configurations themselves. We describe an analytical model of the system under consideration and present two mathematical approaches to derive solutions for any system configuration and deployment, along with an adaptive feedback-based solution. We also describe a comprehensive simulation-based model for the problem, and a prototype that allows comparison of these approaches. Our investigations demonstrate that a self-adaptive dynamic approach far outperforms any static scheme, and that using a mathematical model to produce the configurations themselves confers several advantages.

  9. Bandwidth Optimization in Centralized WLANs for Different Traffic Types

    Directory of Open Access Journals (Sweden)

    Haines RJ

    2007-01-01

    Full Text Available Allocating bandwidth between different forms of coexisting traffic (such as web-browsing, streaming, and telephony within a wireless LAN is a challenging and interesting problem. Centralized coordination functions in wireless LANs offer several advantages over distributed approaches, having the benefit of a system overview at the controller, but obtaining a stable configuration of bandwidth allocation for the system is nontrivial. We present, review, and compare different mechanisms to achieve this end, and a number of different means of obtaining the configurations themselves. We describe an analytical model of the system under consideration and present two mathematical approaches to derive solutions for any system configuration and deployment, along with an adaptive feedback-based solution. We also describe a comprehensive simulation-based model for the problem, and a prototype that allows comparison of these approaches. Our investigations demonstrate that a self-adaptive dynamic approach far outperforms any static scheme, and that using a mathematical model to produce the configurations themselves confers several advantages.

  10. Bandwidth characteristics for the stepped conical-zoned antenna

    Science.gov (United States)

    Wiltse, James C.

    2002-07-01

    The stepped conical zoned lens antenna has better overall efficiency than a true lens, and provides an excellent antenna pattern. It also exhibits somewhat different bandwidth characteristics than the Fresnel zone plate antenna. This paper examines the frequency behavior in detail, particularly for microwave and millimeter-wave applications. For the usual zone plate antenna employed at microwave or millimeter wavelengths, path length adjustment (i.e., phase correction) is accomplished by cutting different depths (grooves) in a dielectric plate or by using two or more dielectrics having different dielectric constants. The new design uses a tilted cut in a flat dielectric plate, which more accurately matches the shape of a true lens and produces much lower phase error. The construction is still linear (i.e. spherical or hyperboloidal curves do not have to be cut), and can be made, for example, by a milling machine with a tilted bit. For a circular zone plate, the lens is a stepped conical shape. The phase correction steps are small, usually a few degrees, which is much smaller than for the typical Fresnel zone plate. The bandwidth characteristics are calculated for specific cases.

  11. A Bandwidth Allocation Model Provisioning Framework with Autonomic Characteristics

    Directory of Open Access Journals (Sweden)

    Rafael F. Reale

    2013-11-01

    Full Text Available The Bandwidth Allocation Models (MAM, RDM, G-RDM and AllocTC-Sharing are managementalternatives currently available which propose different resource (bandwidth allocation strategies inmultiservice networks. The BAM adoption by a network is typically a management choice andconfiguration task executed by the network operations and management system setup in a static or nearlystatic way. This paper proposes and explores the alternative ofallowing BAM definition and configurationon a more dynamic way. In effect, one of the basic motivations towards BAM dynamic allocation is the factthat multiservice networks characteristics (traffic loadmay change considerably in daily networkoperation and, as such, some dynamics in BAM allocation should be introduced in order to improveperformance. A framework is presented supporting BAM dynamicallocation. The framework adopts anOpenFlow-based software-defined networking (SDN implementation approach in order to supportscalability issues with a centralized controller and managementnetwork view. The framework architecturealso supports the implementation of some autonomic characteristics which, in brief, look for improving andfacilitating the decision-making process involved with BAM provisioning in a multiservice network. Aproof of concept is presented evaluating different BAM performance under different traffic loads in order todemonstrate the framework strategy adopted.

  12. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    David Malah

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately 3⋅10−4. In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in 92.5% of the test utterances.

  13. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    Sagi Ariel

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately . In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in of the test utterances.

  14. Punctured Turbo Codes for Bandwidth-efficient Transmission

    Directory of Open Access Journals (Sweden)

    Shobha Rekh

    2006-10-01

    Full Text Available Turbo codes are the error-coding schemes applied nowadays in wireless networks. In navalapplications, the information is mostly sent through wireless networks and the data is moreprone to noise. Since very important data has to be communicated, it is necessary to get backthe original data in the receiver. In military applications also, the soldiers wear electronic jacketswhich are connected by wireless networks. In such applications, the data loss is not affordableand there is also a need to utilise the bandwidth efficiently through puncturing by means ofwhich certain bits are deleted before transmission from the output of encoder. By means of thispunctured turbo codes, bandwidth-efficient coding is achieved. Hence, it is necessary to designturbo codes with an efficient puncturing pattern so that the performance of the punctured codeis also improved in spite of deletion of few bits before transmission. This paper deals in choosingthe puncturing patterns that lead to systematic rate-compatible punctured turbo codes (RCPTCswhich also give a reduction in bit-error rate. The design criterion for choosing the best puncturingpatterns is based on the minimum weight of code words and their multiplicities. The best puncturingpattern chosen is tested for its performance by simulating turbo codes for an additive whiteGaussian noise (AWGN channel. Compared with the existing puncturing pattern, the patternproposed is able to achieve a gain of 0.5 dB at a bit-error rate of 10-3.

  15. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    International Nuclear Information System (INIS)

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave

  16. Variable bandwidth and one-step local M-estimator

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of least-squares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the one-step local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.

  17. BECSI: Bandwidth Efficient Certificate Status Information Distribution Mechanism for VANETs

    Directory of Open Access Journals (Sweden)

    Carlos Gañán

    2013-01-01

    Full Text Available Certificate revocation is a challenging task, especiallyin mobile network environments such as vehicular ad Hoc networks (VANETs.According to the IEEE 1609.2 security standard for VANETs, public keyinfrastructure (PKI will provide this functionality by means of certificate revocation lists (CRLs.When a certificate authority (CAneeds to revoke a certificate, itglobally distributes CRLs.Transmitting these lists pose a problem as they require high update frequencies and a lot of bandwidth. In this article, we propose BECSI, aBandwidth Efficient Certificate Status Informationmechanism to efficiently distributecertificate status information (CSI in VANETs.By means of Merkle hash trees (MHT, BECSI allowsto retrieve authenticated CSI not onlyfrom the infrastructure but also from vehicles actingas mobile repositories.Since these MHTs are significantly smaller than the CRLs, BECSIreduces the load on the CSI repositories and improves the response time for the vehicles.Additionally, BECSI improves the freshness of the CSIby combining the use of delta-CRLs with MHTs.Thus, vehicles that have cached the most current CRLcan download delta-CRLs to have a complete list of revoked certificates.Once a vehicle has the whole list of revoked certificates, it can act as mobile repository.

  18. Study and Analysis of Bandwidth Flow Estimation Techniques for Wired/Wireless Networks

    Directory of Open Access Journals (Sweden)

    Pallavi Sharma

    2012-01-01

    Full Text Available In this topic, an analysis will be made on bandwidth flow estimation technique which comes under networking domain. Correct bandwidth constrained applications and tools are required for proper bandwidth estimation. A proper monitoring of available bandwidth is required during execution to avoid degradation in performance. A several measurement tools have been proposed in the last few years. After the implementation of 802.11e Wireless Sensor Networks are capable to provide good level of QoS but research works are not much for improving performance of bandwidth constraint applications by checking sufficiency of bandwidth available in transmission route. In this topic we will do the analysis of bandwidth flow estimation technique for wired/wireless networks and we will do comparisons of existing estimation tools.

  19. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  20. Ultrawide Bandwidth Receiver Based on a Multivariate Generalized Gaussian Distribution

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2015-04-01

    Multivariate generalized Gaussian density (MGGD) is used to approximate the multiple access interference (MAI) and additive white Gaussian noise in pulse-based ultrawide bandwidth (UWB) system. The MGGD probability density function (pdf) is shown to be a better approximation of a UWB system as compared to multivariate Gaussian, multivariate Laplacian and multivariate Gaussian-Laplacian mixture (GLM). The similarity between the simulated and the approximated pdf is measured with the help of modified Kullback-Leibler distance (KLD). It is also shown that MGGD has the smallest KLD as compared to Gaussian, Laplacian and GLM densities. A receiver based on the principles of minimum bit error rate is designed for the MGGD pdf. As the requirement is stringent, the adaptive implementation of the receiver is also carried out in this paper. Training sequence of the desired user is the only requirement when implementing the detector adaptively. © 2002-2012 IEEE.

  1. UNIFORM—PRICE AUCTION FOR BANDWIDTH ALLOCATION IN THE INTERNET

    Institute of Scientific and Technical Information of China (English)

    WeiJiaolong; ZhangChi

    2002-01-01

    It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources.Previous works focus on vickrey auction which is incentive compatible in classic auction theory.In the beginning of this letter,the faults of the most representative auction-based mechanisms are discussed.And then a new method called Uniform-Price Auction(UPA),which has the simplest auctiopn rule is proposed and its incentive compatibility in the network environment is also proved.Finally,the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market.and a market mechanism for network resource allocation which is predictable,riskless,and simple for eng-users is completed.

  2. UNIFORM-PRICE AUCTION FOR BANDWIDTH ALLOCATION IN THE INTERNET

    Institute of Scientific and Technical Information of China (English)

    Wei Jiaolong; Zhang Chi

    2002-01-01

    It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this letter, the faults of the most representative auction-based mechanisms are discussed. And then a new method called Uniform-Price Auction (UPA), which has the simplest auction rule is proposed and its incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.

  3. Bandwidth Reservation Using Velocity and Handoff Statistics for Cellular Networks

    Institute of Scientific and Technical Information of China (English)

    Chuan-Lin Zhang; Kam Yiu Lam; Wei-Jia Jia

    2006-01-01

    The percentages of blocking and forced termination rates as parameters representing quality of services (QoS)requirements are presented. The relation between the connection statistics of mobile users in a cell and the handoff number and new call number in next duration in each cell is explored. Based on the relation, statistic reservation tactics are raised.The amount of bandwidth for new calls and handoffs of each cell in next period is determined by using the strategy. Using this method can guarantee the communication system suits mobile connection request dynamic. The QoS parameters:forced termination rate and blocking rate can be maintained steadily though they may change with the offered load. Some numerical experiments demonstrate this is a practical method with affordable overhead.

  4. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter. The......An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations in...... experimental results of measured loop-gain at different operating points are presented to validate the theoretical performance of the controller....

  5. Multi-rate asynchronous sampling of bandwidth-limited signals

    CERN Document Server

    Feldster, Alfred; Horowitz, Moshe; Rosenthal, Amir; Zach, Shlomo; Singer, Lea

    2008-01-01

    We demonstrate experimentally an optical system for under-sampling several bandwidth limited signals with carrier frequencies that are not known apriori that can be located anywhere within a very broad frequency region between 0-18 GHz. The system is based on under-sampling asynchronously at three different sampling rates. The pulses required for the under-sampling are generated by a combination of an electrical comb generator and an electro-absorption modulator. To reduce loss and improve performance the implementation of the optical system is based on a wavelength division multiplexing technique. An accurate reconstruction of both the phase and the amplitude of the signals was obtained when two chirped signals generated simultaneously were sampled.

  6. High bandwidth absorption spectroscopy with a dispersed supercontinuum source.

    Science.gov (United States)

    Hult, Johan; Watt, Rosalynne S; Kaminski, Clemens F

    2007-09-01

    An optical gas sensor is presented, making use of a dispersed supercontinuum source, capable of acquiring broad bandwidth spectra at ultrahigh wavelength sweep and repetition rates. Wavelength sweeps from 1100 nm to 1700 nm can be performed in 800 ns at a spectral resolution of 40 pm. This is comparable to line-widths of molecular spectra at atmospheric pressure. Quantitative measurements are presented of CH(4) employing 80 nm wide sweeps over the P- Q- and R-branches of the 2nu(3) transition near 1665 nm, at rates exceeding 100 kHz. The effective acquisition rate is determined by the amount of averaging required, and the effect of this averaging on observed precision is investigated. PMID:19547496

  7. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  8. Auction-based Bandwidth Allocation Mechanisms for Wireless Future Internet

    CERN Document Server

    Dramitinos, Emmanouil

    2010-01-01

    An important aspect of the Future Internet is the efficient utilization of (wireless) network resources. In order for the - demanding in terms of QoS - Future Internet services to be provided, the current trend is evolving towards an "integrated" wireless network access model that enables users to enjoy mobility, seamless access and high quality of service in an all-IP network on an "Anytime, Anywhere" basis. The term "integrated" is used to denote that the Future Internet wireless "last mile" is expected to comprise multiple heterogeneous geographically coexisting wireless networks, each having different capacity and coverage radius. The efficient management of the wireless access network resources is crucial due to their scarcity that renders wireless access a potential bottleneck for the provision of high quality services. In this paper we propose an auction mechanism for allocating the bandwidth of such a network so that efficiency is attained, i.e. social welfare is maximized. In particular, we propose a...

  9. Techniques in molecular spectroscopy: from broad bandwidth to high resolution

    Science.gov (United States)

    Cossel, Kevin C.

    This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying

  10. Fibre Bragg grating based accelerometer with extended bandwidth

    Science.gov (United States)

    Basumallick, Nandini; Biswas, Palas; Chakraborty, Rajib; Chakraborty, Sushanta; Dasgupta, Kamal; Bandyopadhyay, Somnath

    2016-03-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer.

  11. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    Directory of Open Access Journals (Sweden)

    Mushfiqul Alam

    2015-02-01

    Full Text Available MEMS (micro-electro-mechanical system-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU, which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor’s behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer’s data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing.

  12. Adaptive data filtering of inertial sensors with variable bandwidth.

    Science.gov (United States)

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  13. Bandwidth-Aware Scheduling of Workflow Application on Multiple Grid Sites

    OpenAIRE

    Harshadkumar B. Prajapati; Shah, Vipul A.

    2014-01-01

    Bandwidth-aware workflow scheduling is required to improve the performance of a workflow application in a multisite Grid environment, as the data movement cost between two low-bandwidth sites can adversely affect the makespan of the application. Pegasus WMS, an open-source and freely available WMS, cannot fully utilize its workflow mapping capability due to unavailability of integration of any bandwidth monitoring infrastructure in it. This paper develops the integration of Network Weather Se...

  14. Effect of Free Bandwidth on VoIP Performance in 802.11b WLAN Networks

    OpenAIRE

    Narbutt, Miroslaw; Davis, Mark

    2006-01-01

    In this paper we experimentally study the relationship between bandwidth utilization in the wireless LAN and the quality of VoIP calls transmitted over the wireless medium. Specifically we evaluate how the amount of free bandwidth decreases as the number of calls increases and how this influences transmission impairments (i.e. delay, loss and jitter) and thus degrades call quality. We show that the amount of free bandwidth is a good indicator for predicting VoIP call quality.

  15. Real-Time Virtual Instruments for Remote Sensor Monitoring Using Low Bandwidth Wireless Networks

    OpenAIRE

    Biruk Gebre; Liwen Guo; Nishit Patel; Kishore Pochiraju

    2008-01-01

    The development of a peer-to-peer virtual instrumentation system for remote acquisition, analysis and transmission of data on low bandwidth networks is described. The objective of this system is to collect high frequency/high bandwidth data from multiple sensors placed at remote locations and adaptively adjust the resolution of this data so that it can be transmitted on bandwidth limited networks to a central monitoring and command center. This is achieved by adaptively re-sampling (decimatin...

  16. Bandwidth allocation strategy for traffic systems of scale-free network

    International Nuclear Information System (INIS)

    In this Letter, the bandwidth resource allocation strategy is considered for traffic systems of complex networks. With a finite resource of bandwidth, an allocation strategy with preference parameter α is proposed considering the links importance. The performance of bandwidth allocation strategy is studied for the local routing protocol and the shortest path protocol. When important links are slightly favored in the bandwidth allocation, the system can achieve the optimal traffic performance for the two routing protocols. For the shortest path protocol, we also give a method to estimate the network traffic capacity theoretically.

  17. A Novel Dynamic Bandwidth Assignment Algorithm for Multi-Services EPONs

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue; ZHANG Yang; HUANG Xiang; DENG Yu; SUN Shu-he

    2005-01-01

    In this paper we propose a novel Dynamic Bandwidth Assignment (DBA) algorithm for Ethernet-based Passive Optical Networks (EPON) which offers multiple kinds of services. To satisfy crucial Quality of Service (QoS) requirement for Time Division Multiplexing (TDM) service and achieve fair and high bandwidth utilization simultaneously, the algorithm integrates periodic, for TDM service, and polling granting for Ethernet service. Detailed simulation shows that the algorithm guarantees carrier-grade QoS for TDM service, high bandwidth utilization and good fairness of bandwidth assignment among Optical Network Units (ONU).

  18. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-range optical telecommunications (LROT) impose challenging requirements on detector array sensitivity at 1064nm and arrays timing bandwidth. Large photonic...

  19. The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation

    Directory of Open Access Journals (Sweden)

    Ikhthison Mekongga

    2014-02-01

    Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network.  ANN  is  chosen  to  predict  the  consumption  of  the  bandwidth  because  ANN  has  good  approachability  to  non-linearity.  The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks  with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation

  20. High resolution, high bandwidth global shutter CMOS area scan sensors

    Science.gov (United States)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  1. Extraction of spatial information for low-bandwidth telerehabilitation applications

    Directory of Open Access Journals (Sweden)

    Kok Kiong Tan, PhD

    2014-09-01

    Full Text Available Telemedicine applications, based on two-dimensional (2D video conferencing technology, have been around for the past 15 to 20 yr. They have been demonstrated to be acceptable for face-to-face consultations and useful for visual examination of wounds and abrasions. However, certain telerehabilitation assessments need the use of spatial information in order to accurately assess the patient’s condition and sending three-dimensional video data over low-bandwidth networks is extremely challenging. This article proposes an innovative way of extracting the key spatial information from the patient’s movement during telerehabilitation assessment based on 2D video and then presenting the extracted data by using graph plots alongside the video to help physicians in assessments with minimum burden on existing video data transfer. Some common rehabilitation scenarios are chosen for illustrations, and experiments are conducted based on skeletal tracking and color detection algorithms using the Microsoft Kinect sensor. Extracted data are analyzed in detail and their usability discussed.

  2. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm−1) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  3. Optimizing bandwidth and dynamic range of lumped Josephson parametric amplifiers

    Science.gov (United States)

    Eddins, A.; Vijay, R.; Macklin, C.; Minev, Z.; Siddiqi, I.

    2013-03-01

    Superconducting parametric amplifiers have revolutionized the field of quantum measurement by providing high gain, ultra-low noise amplification. They have been used successfully for high-fidelity qubit state measurements, probing nano-mechanical resonators, quantum feedback, and for microwave quantum optics experiments. Though several designs exist, a simple and robust architecture is the Lumped Josephson Parametric Amplifier (LJPA). This device consists of a capacitively shunted SQUID directly coupled to a transmission line to form a low quality factor (Q) nonlinear resonator. We discuss amplifiers which can be tuned over the full 4-8 GHz band with 20-25 dB of gain and 10 - 50 MHz of signal bandwidth. However, similar to other parametric amplifiers employing a resonant circuit, the LJPA suffers from low dynamic range and has a -1 dB gain compression point of order -130 dBm. We explore new designs comprised of an array of SQUIDs to improve the dynamic range. We will present the results of numerical simulations and preliminary experiments. We will also briefly discuss improvements obtained from different biasing methods and packaging. This research was supported by the Army Research Office under a QCT grant.

  4. Automatic Bandwidth Adjustment for Content Distribution in MPLS Networks

    Directory of Open Access Journals (Sweden)

    D. Moltchanov

    2008-04-01

    Full Text Available Aggregates of real-time traffic may experience changes in their statistical characteristics often manifesting non stationary behavior. In multi protocol label switching (MPLS networks this type of the traffic is assigned constant amount of resources. This may result in ineffective usage of resources when the load is below than expected or inappropriate performance when the load is higher. In this paper we propose new algorithm for dynamic resource adaptation to temporarily changing traffic conditions. Assuming that network nodes may reallocate resources on-demand using automatic bandwidth adjustment capability of MPLS framework, the proposed algorithm, implemented at ingress MPLS nodes, dynamically decides which amount of resources is currently sufficient to handle arriving traffic with given performance metrics. This decision is then communicated to interior MPLS nodes along the label switched path. As a basic tool of the algorithm we use change-point statistical test that signals time instants at which statistical characteristics of traffic aggregates change. The major advantage of the proposed approach is that it is fully autonomous, that is, network nodes do not need any support from hosts in terms of resource reservation requests. The proposed algorithm is well suited for traffic patterns experiencing high variability, especially, for non stationary type of the traffic.

  5. A scanning SQUID microscope with 200 MHz bandwidth

    International Nuclear Information System (INIS)

    We developed a scanning DC SQUID microscope with novel readout electronics capable of wideband sensing of RF magnetic fields from 50 to 200 MHz and simultaneously providing closed-loop response at kHz frequencies. To overcome the 20 MHz bandwidth limitation of traditional closed-loop SQUIDs, a flux-modulated closed-loop simultaneously locks the SQUID quasi-static flux and flux-biases the SQUID for amplification of the RF flux up to Φ0/4 in amplitude. Demodulating the SQUID voltage with a double lock-in technique yields a signal representative of both the amplitude and phase of the RF flux. This provides 80 dB of a linear dynamic range with a flux noise density of 4 μΦ0 Hz−1/2 at 200 MHz for a Y Ba2Cu3O7 bi-crystal SQUID at 77 K. We describe the electronics’ performance and present images for RF magnetic field of the travelling wave in a coplanar waveguide, the standing wave in an open-circuited microstrip, and a surface mounted device antenna. (paper)

  6. QoS routing via multiple paths using bandwidth reservation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S.V.; Batsell, S.G.

    1997-11-01

    The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate. They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete and propose a polynomial-time approximate solution.

  7. QoS routing via multiple paths using bandwidth reservation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S.V.; Batsell, S.G.

    1998-01-01

    The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate.They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete, and propose a polynomial-time approximately solution.

  8. Spatial frequency bandwidth used in the recognition of facial images.

    Science.gov (United States)

    Näsänen, R

    1999-11-01

    The purpose of the study was to find out what spatial frequency information human observers use in the recognition of face images. Signal-to-noise ratio thresholds for the recognition of facial images were measured as a function of the centre spatial frequency of narrow-band additive spatial noise. The relative sensitivity of recognition to different spatial frequencies was derived from these results. The maximum sensitivity was found at 8-13 c/face width and the bandwidth was just under two octaves. Qualitatively similar results were obtained with stimuli in which Fourier phase was randomised within a narrow band of different centre spatial frequencies. This resulted in a considerable increase of energy threshold around 8 c/face width and less elsewhere. Further, contrast energy thresholds were measured as a function of the centre spatial frequency of band-pass filtered face images. As a function of object spatial frequency (c/face width), energy threshold first decreased and then increased. The lowest energy thresholds found around 10 c/face width were lower than the energy threshold for unfiltered images. This is what one would expect if face recognition is narrow-band, since band-pass filtered images of optimal centre spatial frequency do not contain unused contrast energy at low and high spatial frequencies. In conclusion, the results suggest that the recognition of facial images is tuned to a relatively narrow band (object spatial frequencies. PMID:10748918

  9. Social value of high bandwidth networks: creative performance and education.

    Science.gov (United States)

    Mansell, Robin; Foresta, Don

    2016-03-01

    This paper considers limitations of existing network technologies for distributed theatrical performance in the creative arts and for symmetrical real-time interaction in online learning environments. It examines the experience of a multidisciplinary research consortium that aimed to introduce a solution to latency and other network problems experienced by users in these sectors. The solution builds on the Multicast protocol, Access Grid, an environment supported by very high bandwidth networks. The solution is intended to offer high-quality image and sound, interaction with other network platforms, maximum user control of multipoint transmissions, and open programming tools that are flexible and modifiable for specific uses. A case study is presented drawing upon an extended period of participant observation by the authors. This provides a basis for an examination of the challenges of promoting technological innovation in a multidisciplinary project. We highlight the kinds of technical advances and cultural and organizational changes that would be required to meet demanding quality standards, the way a research consortium planned to engage in experimentation and learning, and factors making it difficult to achieve an open platform that is responsive to the needs of users in the creative arts and education sectors. PMID:26809576

  10. Bandwidth and chirp characterisation of wavelength conversion based on electroabsorption modulators

    DEFF Research Database (Denmark)

    Xu, Lin; Oxenløwe, Leif Katsuo; Chi, Nan;

    2002-01-01

    It is demonstrated experimentally that the frequency chirp of a data modulated signal can be reduced and the modulation bandwidth increased through wavelength conversion in an electroabsorption modulator.......It is demonstrated experimentally that the frequency chirp of a data modulated signal can be reduced and the modulation bandwidth increased through wavelength conversion in an electroabsorption modulator....

  11. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    Directory of Open Access Journals (Sweden)

    Taner Cevik

    2013-01-01

    Full Text Available One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT which is the only competent authority, each optical network unit (ONU runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand.

  12. Bandwidth Management in Universities in Zimbabwe: Towards a Responsible User Base through Effective Policy Implementation

    Science.gov (United States)

    Chitanana, Lockias

    2012-01-01

    This research was undertaken to investigate the issue of how to maximise or make efficient use of bandwidth. In particular, the research sought to find out about what universities in Zimbabwe are doing to manage their bandwidth. It was, therefore, appropriate to survey a sample of five universities and to catalogue their experiences. Results show…

  13. Dynamic Bit Allocation for Object Tracking in Bandwidth Limited Sensor Networks

    CERN Document Server

    Masazade, Engin; Varshney, Pramod K

    2011-01-01

    In this paper, we study the target tracking problem in wireless sensor networks (WSNs) using quantized sensor measurements under limited bandwidth availability. At each time step of tracking, the available bandwidth $R$ needs to be distributed among the $N$ sensors in the WSN for the next time step. The optimal solution for the bandwidth allocation problem can be obtained by using a combinatorial search which may become computationally prohibitive for large $N$ and $R$. Therefore, we develop two new computationally efficient suboptimal bandwidth distribution algorithms which are based on convex relaxation and approximate dynamic programming (A-DP). We compare the mean squared error (MSE) and computational complexity performances of convex relaxation and A-DP with other existing suboptimal bandwidth distribution schemes based on generalized Breiman, Friedman, Olshen, and Stone (GBFOS) algorithm and greedy search. Simulation results show that, A-DP, convex optimization and GBFOS yield similar MSE performance, w...

  14. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    Science.gov (United States)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  15. Bandwidth Resource Dynamic Allocation in Differentiated Services Model%Diffserv中带宽代理BB的实现

    Institute of Scientific and Technical Information of China (English)

    邱瑜; 朱淼良

    2003-01-01

    To employ Differentiated Services, efficient and flexible resource allocation mechanism is needed. Static bandwidth resource allocation Is not suitable for the situations in which traffic varies greatly with times. If customers bought bandwidth according to their highest traffic demands, some resource will be wasted when traffic load is light. On the other hand, the static allocated bandwidth may not satisfy the growing traffic demands. So it is necessary to allocate bandwidth resource in dynamic way. We bring up a prototype of BB, discussing the necessary components to realize the dynamic bandwidth resource allocation and further more, our BB can provides advanced reservation for bandwidth resource. Simulation tests show our design is feasible.

  16. High-Density, High-Bandwidth, Multilevel Holographic Memory

    Science.gov (United States)

    Chao, Tien-Hsin

    2008-01-01

    A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing

  17. Real-Time Virtual Instruments for Remote Sensor Monitoring Using Low Bandwidth Wireless Networks

    Directory of Open Access Journals (Sweden)

    Biruk Gebre

    2008-06-01

    Full Text Available The development of a peer-to-peer virtual instrumentation system for remote acquisition, analysis and transmission of data on low bandwidth networks is described. The objective of this system is to collect high frequency/high bandwidth data from multiple sensors placed at remote locations and adaptively adjust the resolution of this data so that it can be transmitted on bandwidth limited networks to a central monitoring and command center. This is achieved by adaptively re-sampling (decimating the data from the sensors at the remote location before transmission. The decimation is adjusted to the available bandwidth of the communications network which is characterized in real-time. As a result, the system allows users at the remote command center to view high bandwidth data (at a lower resolution with user-aware and minimized latency. This technique is applied to an eight hydrophone data acquisition system that requires a 25.6 Mbps connection for the transmission of the full data set using a wireless connection with 1 – 3.5 Mbps variable bandwidth. This technique can be used for applications that require monitoring of high bandwidth data from remote sensors in research and education fields such as remote scientific instruments and visually driven control applications.

  18. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    Science.gov (United States)

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%. PMID:26192666

  19. Cyclic polling-based dynamic wavelength and bandwidth allocation in wavelength division multiplexing passive optical networks

    Institute of Scientific and Technical Information of China (English)

    Zhengcheng Xie; Hui Li; Yuefeng Ji

    2009-01-01

    Cyclic polling-based dynamic wavelength and bandwidth allocation algorithm supporting differentiated classes of services in wavelength division multiplexing (WDM) passive optical networks (PONs) is proposed. In this algorithm, the optical line terminal (OLT) polls for optical network unit (ONU) requests to transmit data in a cyclic manner. Services are categorized into three classes: expedited forward (EF) priority, assured forwarding (AF) priority, and best effort (BE) priority. The OLT assigns bandwidth for different priorities with different strategies. Simulation results show that the proposed algorithm saves a lot of downstream bandwidth under low load and does not show the light-load penalty compared with the simultaneous and interleaved polling schemes.

  20. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  1. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  2. Breaking the energy-bandwidth limit of electro-optic modulators: theory and a device proposal

    CERN Document Server

    Lin, Hongtao; Liu, Jifeng; Zhang, Lin; Michel, Jurgen; Hu, Juejun

    2013-01-01

    In this paper, we quantitatively analyzed the trade-off between energy per bit for switching and modulation bandwidth of classical electro-optic modulators. A formally simple energy-bandwidth limit (Eq. 10) is derived for electro-optic modulators based on intra-cavity index modulation. To overcome this limit, we propose a dual cavity modulator device which uses a coupling modulation scheme operating at high bandwidth (> 200 GHz) not limited by cavity photon lifetime and simultaneously features an ultra-low switching energy of 0.26 aJ, representing over three orders of magnitude energy consumption reduction compared to state-of-the-art electro-optic modulators.

  3. High bandwidth based on a tapped delay line equalization in visible light communications

    Science.gov (United States)

    Zhang, Minglun; Guo, Xujing; Zhu, Hetian; Wang, Chao; Bai, Xiaonan; Zhai, Xiangwen

    2015-08-01

    In the visible light communication, the white LED bandwidth severely limits the transmission rate of information. This paper presents an analog pre-equalization technology to compensate for the bandwidth of white LED. The technology not only can debug according to the actual channel changing, but also avoid the high costs of using FPGA technology. The pre-equalization technology is implemented by an analog circuit of tapped-delay-line, in the circuit we select an appropriate delay line and a digital to analog converter. In our LED visible light communication system, we can achieve a bandwidth of 150MHz which was proved theoretically in the paper.

  4. Multi-rate synchronous optical undersampling of several bandwidth-limited signals.

    Science.gov (United States)

    Fleyer, M; Horowitz, M; Feldtser, A; Smulakovsky, V

    2010-08-01

    We demonstrate experimentally an optical system for undersampling several bandwidth-limited signals with carrier frequencies that are not known apriori and can be located within a broad frequency region of 0-20 GHz. The system is based on undersampling synchronously at three different rates. The optical undersampling down-converts the entire system bandwidth into a low frequency region called baseband. The synchronous sampling at several rates enables to accurately reconstruct signals even in cases in which different signals overlap in the baseband region of all sampling channels. Reconstruction of three simultaneously generated chirped signals, each with a bandwidth of about 200 MHz, was experimentally demonstrated. PMID:20721083

  5. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs.

    Science.gov (United States)

    Brown, M

    1998-10-15

    The fourth-harmonic generation of broadband 243-nm radiation is reported. The broadband radiation is achieved by implementation of a multicrystal design to overcome spectral bandwidth limitations, and a plane-wave analysis is developed that shows increased spectral bandwidths for these designs. The fourth harmonic of a Cr:LiSAF laser operating at 972 nm is generated in beta-barium borate (BBO). The results demonstrate a spectral bandwidth at 243 nm more than five times broader than that which is expected from a single BBO crystal of equivalent length. PMID:18091854

  6. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, M. A.

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  7. Location Aware Opportunistic Bandwidth Sharing between Static and Mobile Users with Stochastic Learning in Cellular Networks

    OpenAIRE

    Chattopadhyay, Arpan; Błaszczyszyn, Bartłomiej; Altman, Eitan

    2016-01-01

    We consider location-dependent opportunistic bandwidth sharing between static and mobile downlink users in a cellular network. Each cell has some fixed number of static users. Mobile users enter the cell, move inside the cell for some time and then leave the cell. In order to provide higher data rate to mobile users, we propose to provide higher bandwidth to the mobile users at favourable times and locations, and provide higher bandwidth to the static users in other times. We formulate the pr...

  8. Study of TCP Available Bandwidth Using NS2 and Its Forecasting Based on Genetic Algorithm

    OpenAIRE

    Sanchez Vizcaino, Francisco Domingo; Hernandez Benet, Cristian

    2014-01-01

    On the one hand, the available bandwidth in a bandwidth-limited medium as the wireless medium is a highly demanded topic of study. On the other hand, the Transport Control Protocol (TCP) is one of the most used transport protocols on the Internet. The available bandwidth study and TCP constitute the most typical scenario in the Wireless Local Area Networks (WLAN). This Thesis locates the study in the 2.4GHz frequency band where Primary Users can be present modifying the behaviour of the WLAN ...

  9. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    Science.gov (United States)

    Zeng, Lingzhen; Bennett, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approximately 7 degrees full width at half maximum (FWHM) is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A return loss better than -28 dB was measured across the band.

  10. Continuous-wave non-classical light with GHz squeezing bandwidth

    CERN Document Server

    Ast, Stefan; Mehmet, Moritz; Steinlechner, Sebastian; Eberle, Tobias; Schnabel, Roman

    2012-01-01

    Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a non-classical continuous-wave laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric down-conversion via a periodically poled potassium titanyl phosphate crystal (PPKTP). We did not use any resonant enhancement for the funda- mental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the non-linear crystal.

  11. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    Science.gov (United States)

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated. PMID:23988981

  12. New scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Long-wavelength liquid scintillators have been developed for fiber-optic plasma-diagnostic experiments. Relative system sensitivity and bandwidth data as a function of fiber length for several scintillator systems will be presented

  13. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the demands of future high-capacity free space optical communications links, a high bandwidth, near infrared (NIR), single photon sensitive optoelectronic...

  14. A Novel Framework for Distributed Dynamic Bandwidth Allocation in EPONWiMAX Networks

    Directory of Open Access Journals (Sweden)

    S.Ramya

    2014-01-01

    Full Text Available In Ethernet Passive Optical Networks (EPON, allocation of bandwidth to the Optical Network Units (ONU is a critical issue in determining the performance of the network. The resource allocation process in EPON is carried out by the Dynamic Bandwidth Allocation (DBA algorithm. The onus of resource allocation or DBA estimation is bore solely by Optical Line Terminal (OLT which results in more idle time at the OLT, thereby resulting in wastage of bandwidth and increased delay in data transmission. In this paper, a new framework for EPON is proposed, wherein, the DBA estimation is shared by the OLT and ONU, thereby reducing the idle time in OLT and improving the bandwidth utilization. The proposed framework is evaluated under heavy load conditions with the help of OPNET simulations and it has been demonstrated that the proposed framework outperforms the conventional scheme in terms of throughput, percentage of utilization and other QoS services.

  15. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  16. A 750MHz and a 8GHz High Bandwidth Digital FFT Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The scope of this project is to to develop a wide bandwidth, low power, and compact single board digital Fast Fourier Transform spectrometer (FFTS) optimized for...

  17. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  18. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser optical communications offer the potential to dramatically increase the link bandwidth and decrease the emitter power in long-range space communications....

  19. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    International Nuclear Information System (INIS)

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  20. All-optical central-frequency-programmable and bandwidth-tailorable radar

    OpenAIRE

    Weiwen Zou; Hao Zhang; Xin Long; Siteng Zhang; Yuanjun Cui; Jianping Chen

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-loc...

  1. Bandwidth comparison of photonic crystal fibers and conventional single mode fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal; Folkenberg, Jacob Riis; Mortensen, Niels Asger;

    2004-01-01

    We experimentally compare the optical bandwidth of a conventional single-mode fiber (SMF) with 3 different photonic crystal fibers (PCF) all optimized for visible applications. The spectral attenuation, single-turn bend loss, and mode-field diameters (MFD) are measured and the PCF is found to have...... a significantly larger bandwidth than the SMF for an identical MFD. It is shown how this advantage can be utilized for realizing a larger MFD for the PCF while maintaining a bending resistant fiber....

  2. Comparison of steering angle and bandwidth for various phased array antenna concepts

    Science.gov (United States)

    Bonjour, Romain; Singleton, Matthew; Leuchtmann, Pascal; Leuthold, Juerg

    2016-08-01

    In this paper we compare different integratable ultra-fast tunable true-time delay concepts with respect to their performances in a phased array system. The performances of the schemes are assessed with respect to the supported range, i.e. the range within which beam steering for a given fractional bandwidth can be achieved with a gain flatness better than 3 dB. We also compare the array gain as of function of steering angle and fractional bandwidth.

  3. Transmission Bandwidth Tunability of a Liquid-Filled Photonic Bandgap Fiber

    Institute of Scientific and Technical Information of China (English)

    ZOU Bing; LIU Yan-Ge; DU Jiang-Sing; WANG Zhi; HAN Ting-Ting; XU Jian-Bo; LI Yuan; LIU Bo

    2009-01-01

    @@ A temperature tunable photonic bandgap tiber (PBGF) is demonstrated by an index-guiding photonic crystal fiber filled with high-index liquid. The temperature tunable characteristics of the fiber axe experimentally and numerically investigated. Compression of transmission bandwidth of the PBGF is demonstrated by changing the temperature of part of the fiber. The tunable transmission bandwidth with a range of 250 nm is achieved by changing the temperature from 30℃ to 90℃.

  4. Adaptive High-Bandwidth Digitally Controlled Buck Converter with Improved Line and Load Transient Response

    OpenAIRE

    Lee, ATL; Sin, JKO; Chan, PCH

    2014-01-01

    Digitally controlled switching converter suffers from bandwidth limitation because of the additional phase delay in the digital feedback control loop. In order to overcome the bandwidth limitation without using a high sampling rate, this paper presents an adaptive third-order digital controller for regulating a voltage-mode buck converter with a modest 2x oversampling ratio. The phase lag due to the ADC conversion time delay is virtually compensated by providing an early estimation of the err...

  5. Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput

    OpenAIRE

    Jin, Guojun; Tierney, Brian

    2003-01-01

    Distinguishing available bandwidth and achievable throughput is essential for improving network applications' performance. Achiveable throughput is the throughput considering a number of factors such as network protocol, host speed, network path, and TCP buffer space, where as available bandwidth only considers the network path. Without understanding this difference, trying to improve network applications' performance is like "blind men feeling the elephant" [4]. In this paper, we defin...

  6. On Bandwidth Characteristics of Tuning Fork Micro-Gyroscope with Mechanically Coupled Sense Mode

    Directory of Open Access Journals (Sweden)

    Yunfang Ni

    2014-07-01

    Full Text Available The bandwidth characteristics of a tuning fork micro-gyroscope with mechanically coupled sense mode were investigated in this paper to provide some references for mechanical bandwidth design. The concept of sense mode mechanical coupling is introduced first. Theoretical frequency response analyses were then carried out on the mechanical part of the gyroscope. Equations representing the relationships between the differential output signal and the frequency of the input angular rate were deduced in full frequency range and further simplified in low frequency range. Based on these equations, bandwidth characteristics under ideal and non-ideal conditions are discussed. Analytical results show that under ideal conditions, the bandwidth characteristics of a tuning fork micro-gyroscope are similar to those of a single mass micro-gyroscope, but under non-ideal conditions, especially when sense mass and/or stiffness are asymmetric, the bandwidth characteristics would be quite different because the in-phase mode would participate in the anti-phase vibration response. Experimental verifications were carried out on two micro-gyroscope prototypes designed in our laboratory. The deduced equations and analytical results can be used in guiding the mechanical bandwidth design of tuning fork micro-gyroscopes with mechanically coupled sense mode.

  7. Experimental studies of bandwidth and power production in a three-cavity, 35 GHz gyroklystron amplifier

    Science.gov (United States)

    Calame, J. P.; Garven, M.; Choi, J. J.; Nguyen, K.; Wood, F.; Blank, M.; Danly, B. G.; Levush, B.

    1999-01-01

    The operating characteristics of a three-cavity, Ka-Band gyroklystron employing a large amount of stagger-tuning are reported. Particular attention is given to examining how the frequency response (peak power, bandwidth, and overall shape) is altered by changes in operating parameters. A peak power of 225 kW at 34.90 GHz, with a 2 μs pulse length, 32% efficiency, 30.3 dB saturated gain, and a 3 dB bandwidth of 0.82% (286 MHz) was obtained with a 70.2 kV, 10.0 A beam at a magnetic field of 13.07 kG. This operating point represents a compromise between the output power and the bandwidth. The operating magnetic field was found to have a dramatic influence on the power-bandwidth tradeoff; a lower field of 12.91 kG produced 245 kW with 0.63% bandwidth, while a higher field of 13.39 kG increased the bandwidth to 0.94% at a lower power of 200 kW. The results are in excellent agreement with large signal simulations.

  8. Compression of Video Tracking and Bandwidth Balancing Routing in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2015-12-01

    Full Text Available There has been a tremendous growth in multimedia applications over wireless networks. Wireless Multimedia Sensor Networks(WMSNs have become the premier choice in many research communities and industry. Many state-of-art applications, such as surveillance, traffic monitoring, and remote heath care are essentially video tracking and transmission in WMSNs. The transmission speed is constrained by the big file size of video data and fixed bandwidth allocation in constant routing paths. In this paper, we present a CamShift based algorithm to compress the tracking of videos. Then we propose a bandwidth balancing strategy in which each sensor node is able to dynamically select the node for the next hop with the highest potential bandwidth capacity to resume communication. Key to this strategy is that each node merely maintains two parameters that contain its historical bandwidth varying trend and then predict its near future bandwidth capacity. Then, the forwarding node selects the next hop with the highest potential bandwidth capacity. Simulations demonstrate that our approach significantly increases the data received by the sink node and decreases the delay on video transmission in Wireless Multimedia Sensor Network environments.

  9. Application of high-bandwidth linear adjustment branch in switching power supply

    International Nuclear Information System (INIS)

    Background: China Spallation Neutron Source (CSNS) is a medium-sized high-flux spallation neutron source under construction with Rapid Cycling Synchrotron (RCS) of 25 Hz as the main accelerator. The RF cavity of RCS requires that the output bandwidth of bias current source is greater than 10 kHz, while the maximum output bandwidth of switching power supply prototype is only 3 kHz, which can't meet the design requirements. Purpose: In order to improve the output bandwidth of the entire system, the linear adjustment branch is added to the switching power supply in a formal bias current source. Methods: This paper introduced the principle of selecting the linear adjustment branch, analyzed the advantages and disadvantages of the different methods and showed the test results of output bandwidth after adding linear adjustment branch. Results: The output bandwidth of the system after adding linear adjustment branch is greater than 10 kHz. Conclusion: Linear adjustment branch can compensate for the output bandwidth of the switching power supply. (authors)

  10. An improved scheduled traffic model utilizing bandwidth splitting in elastic optical networks

    Science.gov (United States)

    Vyas, Upama; Prakash, Shashi

    2016-07-01

    The surge of traffic in today's networks gave birth to elastic optical networking paradigm. In this paper, first we propose to use the scheduled traffic model (STM) in elastic optical networks (EONs) to ensure guaranteed availability of resources to demands which enter into the network with a predetermined start and end times. In optical networks, such demands are referred to as scheduled lightpath demands (SLDs). To increase the amount of bandwidth accepted in network, next we introduce a time aware routing and spectrum assignment (TA-RSA) approach. We observed that provisioning of bulky SLDs has become more challenging in EONs due to enforcement of RSA constraints. To address this challenge, we improve the proposed STM and designed three heuristics for its implementation in EONs. In this work, we collectively refer to these heuristics as bandwidth segmented RSA (BSRSA). The improved STM (iSTM) allows splitting of SLDs in bandwidth dimension by utilizing the knowledge of attributes viz. demand holding time, overlapping in time and bandwidth requested by SLDs. Our numerical results show that BSRSA consistently outperformed over TA-RSA under all distinctive experimental cases that we considered and achieved fairness in serving heterogeneous bandwidth SLDs. The impact of splitting on the number and capacity of transponders at nodes is also gauged. It is observed that ingenious splitting of demands increases the number of resources (on links and nodes) used, and their utilization, leading to an increase in bandwidth accepted in the network.

  11. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    Science.gov (United States)

    Li, X.; Zheng, C.; Zhou, Y.; Kubota, H.; Yuasa, S.; Pong, Philip W. T.

    2016-06-01

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model. The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.

  12. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography

    Science.gov (United States)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie L.; Cobbold, Mark; Dehghani, Hamid

    2015-09-01

    Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.

  13. Varactor-tuned superconducting filter with constant absolute bandwidth at VHF-band

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Cao, Bisong, E-mail: bscao@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Guo, Xubo; Zhang, Xiaoping [Department of Physics, Tsinghua University, Beijing 100084 (China); Chen, Yidong [Superconductor Technology Co., Ltd, Beijing 100085 (China); Wei, Bin; Jiang, Linan [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • A four-pole superconducting tunable filter at VHF-band with constant absolute bandwidth is proposed. • The novel resonator consists of a spiral-in-spiral-out (SISO) microstrip line with one end shorted to ground and the other loaded with a varactor diode. • Both combline and interdigital constructions for coupling are introduced, and tuned to meet the constant bandwidth requirements. • The measurements show bandwidth variation is less than 1.3% while tuning from 247.28 to 266.58 MHz, and a high Q{sub u} of 1600–5500 is archived. - Abstract: A four-pole superconducting tunable filter at VHF-band with constant absolute bandwidth is proposed. The resonator consists of a spiral-in-spiral-out (SISO) resonator with one end shorted to ground and the other end loaded with a varactor diode. Both combline and interdigital constructions for coupling are introduced, and tuned to meet the constant bandwidth requirement. The fabricated device has a compact size, a tuning range of 7.3% from 247.28 to 266.58, a 3-dB bandwidth of 2.32 ± 0.03 MHz. The insertion loss ranges from 0.5 to 1.6 dB, yielding a high unloaded Q of 1600–5500. The simulated and measured results show an excellent agreement.

  14. Spectrum Assignment with Non-Deterministic Bandwidth of Spectrum Holein Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Huang Jie

    2016-01-01

    Full Text Available The spectrum allocation for cognitive radio networks (CRNs has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes is time-varied due to primary user/secondary user (PU/SU activity and mobility, which result in non-determinacy. This paper studies the spectrum allocation for CRNs with non-deterministic bandwidth of spectrum holes. We present a novel probability density function (PDF model through order statistic to describe the non-deterministic bandwidth of spectrum holes and provide a bound to approximate it. After that, a statistical spectrum allocation model based on stochastic multiple knapsack problem (MKP is established for spectrum allocation with non-deterministic bandwidth of spectrum holes. To reduce the computational complexity, we transform this stochastic programming probleminto a constant MKP though exploiting the properties of cumulative distribution function (CDF, which can be solved via MTHG algorithm by using auxiliary variable. Simulation results illustrate that the proposed statistical spectrum allocation algorithm can achieve better performances compared to the existing algorithms when the bandwidth of spectrum holes istime-varied.

  15. Optimization of Inter-network Bandwidth Resources for Large-Scale Data Transmission

    Directory of Open Access Journals (Sweden)

    Mu Zhang

    2014-03-01

    Full Text Available In order to solve problems such as low resources utilization of data center backbone bandwidth and expensive daily expenses caused by the tidal effect in the transition of large-scale network data, the new optimization method of bandwidth resource for bulk data transfer is proposed. This method finishes the bulk data transfer by taking full advantage of the idle channel bandwidth. Firstly, the dynamic idle network bandwidth resource was switched into the static flow network; and then the max-min fair multi-commodity flow model is built on the basis of static network; finally, the iterative technique is used to solve the programming model for getting the maximum transport flows and the corresponding transmission path of bulk data transfer. The simulation method was used to test this optimization project. The results show that the optimization method proposed by the paper can significantly improve the utilization of data center backbone bandwidth resource, and the maximum amount of data transmission and the speed of data transfer have been obviously increased

  16. Improvement on Diversity Gain with Filter Bandwidth Enlargement in Fractional Sampling OFDM Receiver

    Science.gov (United States)

    Shinkai, Toshiya; Nishimura, Haruki; Sanada, Yukitoshi

    A diversity scheme with Fractional Sampling (FS) in an OFDM receiver has been investigated recently. Through FS, it is possible to separate multipath components and obtain diversity gain in OFDM systems. Enlargement of the bandwidth of the total frequency response between transmit and receive baseband filters allows the FS scheme to achieve path diversity. However, the transmit filter has to be designed according to the spectrum mask of the wireless standards such as IEEE802.11a/g to avoid interference to the other communication systems and the frequency response of the composite channel including the transmit and receive filters has often been set to minimal bandwidth to eliminate adjacent channel signals. In order to achieve the maximum signal-to-noise ratio (SNR), the same filter is commonly used in the transmitter and the receiver. In this paper, the trade-off among the SNR deterioration, adjacent channel interference, and the diversity gain due to the enlargement of the bandwidth of the receive filter is investigated. Numerical results from computer simulations indicate that the BER performance with wider bandwidth in the receiver shows better performance than that with the minimal bandwidth for maximizing the SNR in certain conditions.

  17. Movie approximation technique for the implementation of fast bandwidth-smoothing algorithms

    Science.gov (United States)

    Feng, Wu-chi; Lam, Chi C.; Liu, Ming

    1997-12-01

    Bandwidth smoothing algorithms can effectively reduce the network resource requirements for the delivery of compressed video streams. For stored video, a large number of bandwidth smoothing algorithms have been introduced that are optimal under certain constraints but require access to all the frame size data in order to achieve their optimal properties. This constraint, however, can be both resource and computationally expensive, especially for moderately priced set-top-boxes. In this paper, we introduce a movie approximation technique for the representation of the frame sizes of a video, reducing the complexity of the bandwidth smoothing algorithms and the amount of frame data that must be transmitted prior to the start of playback. Our results show that the proposed approximation technique can accurately approximate the frame data with a small number of piece-wise linear segments without affecting the performance measures that the bandwidth soothing algorithms are attempting to achieve by more than 1%. In addition, we show that implementations of this technique can speed up execution times by 100 to 400 times, allowing the bandwidth plan calculation times to be reduced to tens of milliseconds. Evaluation using a compressed full-length motion-JPEG video is provided.

  18. SPDC correlated photon source filtered for narrowed bandwidth using volume Bragg grating

    Science.gov (United States)

    Slattery, Oliver; Kuo, Paulina; Kim, Yong-Su; Ma, Lijun; Tang, Xiao

    2012-10-01

    A Volume Bragg Grating (VBG) can be used to efficiently extract a narrow bandwidth, highly collimated beam from an otherwise broad spectrum beam. We use a VBG to extract a narrow bandwidth of signal spectrum from a broadband Spontaneous Parametric Down-Conversion source to optimally match the narrow detection bandwidth of our idler upconversion detector. Improved coincidence count rates and visibility can be achieved when limiting signal-spectrum detection to the narrow signal bandwidth whose photons are correlated with a narrow idler-spectrum bandwidth that has been selected by the up-conversion detector. We compare coincidence count rate and visibility for when the entire signal spectrum is detected and when the spectrum has been filtered by the VBG. We further relax the collection techniques and show that following the VBG, the coincidence count rate improves with minimal loss in visibility compared to when the entire spectrum is detected. We introduce our initial efforts at using the VBG to further narrow the signal spectrum by placing it inside a multipass cavity. Additionally, we further adapt the single photon level up-conversion spectrometer, previously developed for idler spectrum measurement, to indirectly measure the single photon level signal spectrum. We verify its capability for several different wavelength and linewidth selections.

  19. Maximum Bandwidth Enhancement of Current Mirror using Series-Resistor and Dynamic Body Bias Technique

    Directory of Open Access Journals (Sweden)

    V. Niranjan

    2014-09-01

    Full Text Available This paper introduces a new approach for enhancing the bandwidth of a low voltage CMOS current mirror. The proposed approach is based on utilizing body effect in a MOS transistor by connecting its gate and bulk terminals together for signal input. This results in boosting the effective transconductance of MOS transistor along with reduction of the threshold voltage. The proposed approach does not affect the DC gain of the current mirror. We demonstrate that the proposed approach features compatibility with widely used series-resistor technique for enhancing the current mirror bandwidth and both techniques have been employed simultaneously for maximum bandwidth enhancement. An important consequence of using both techniques simultaneously is the reduction of the series-resistor value for achieving the same bandwidth. This reduction in value is very attractive because a smaller resistor results in smaller chip area and less noise. PSpice simulation results using 180 nm CMOS technology from TSMC are included to prove the unique results. The proposed current mirror operates at 1Volt consuming only 102 µW and maximum bandwidth extension ratio of 1.85 has been obtained using the proposed approach. Simulation results are in good agreement with analytical predictions.

  20. Bandwidth Allocation for Wireless Data Dissemination in Multi-Cell Environments Using Optimization Techniques

    Directory of Open Access Journals (Sweden)

    K. Madhavi

    2011-11-01

    Full Text Available Effective data management and resource management are vital to the success of emerging mobile data applications. the allocation of resources such as Bandwidth, buffer in mobile cellular networks becomes an increasingly important issue. In addition, varying mobility and various service class requirements of the present multimedia applications makes it a challenging one. It is mostly realized in the present Third generation (3G and beyond 3G (B3G mobile network system. Hence an effective and efficient utilization of resources such as bandwidth in mobile cellular system using better optimization schemes are needed. This paper investigates the problem of bandwidth allocation for data dissemination in a multicell environment. The performance objective is to minimize the overall expected access latency also addresses the critical issues of resource allocation - in particular about optimization of bandwidth with adaptive Quality of Service (QoS requirements. In order to have optimized bandwidth applications, optimization schemes- Linear Programming (LP.LP methods solve optimization problem having linear objective function and constraints.

  1. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    Science.gov (United States)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  2. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory

    Science.gov (United States)

    Fisher, Kent A. G.; England, Duncan G.; Maclean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.

    2016-04-01

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.

  3. Bandwidth Impacts of Localizing Peer-to-Peer IP Video Traffic in Access and Aggregation Networks

    Directory of Open Access Journals (Sweden)

    Kerpez Kenneth

    2008-01-01

    Full Text Available Abstract This paper examines the burgeoning impact of peer-to-peer (P2P traffic IP video traffic. High-quality IPTV or Internet TV has high-bandwidth requirements, and P2P IP video could severely strain broadband networks. A model for the popularity of video titles is given, showing that some titles are very popular and will often be available locally; making localized P2P attractive for video titles. The bandwidth impacts of localizing P2P video to try and keep traffic within a broadband access network area or within a broadband access aggregation network area are examined. Results indicate that such highly localized P2P video can greatly lower core bandwidth usage.

  4. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    CERN Document Server

    Zagorodnov, I; Limberg, T

    2016-01-01

    The usage of x-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.

  5. Bandwidth and resolution of super-resolution imaging with perforated solids

    Science.gov (United States)

    Liang, Zixian; Li, Jensen

    2011-12-01

    Recent experiments on acoustic superlens and hyperlens found anisotropic metamaterials constructed from periodic perforated solids can be used for super-resolution imaging. Here, we present a theoretical study on the operational bandwidth of these imaging devices using the emerging framework of transformation acoustics. Within the transformation approach, both the microstructural superlens and hyperlens can be discussed using the transfer matrix method on the same footing. We show that the geometrical structure of the periodic metamaterials induces that an acoustics hyperlens has a very wide operational frequency bandwidth with its subwavelength resolution limited by the ratio of image magnification while an acoustics superlens has a very deep subwavelength resolution limited only by the periodicity of the perforations but intrinsically working at a narrow frequency bandwidth. Such investigation will become useful for designing future transformation acoustical imaging devices.

  6. Bandwidth and resolution of super-resolution imaging with perforated solids

    Directory of Open Access Journals (Sweden)

    Zixian Liang

    2011-12-01

    Full Text Available Recent experiments on acoustic superlens and hyperlens found anisotropic metamaterials constructed from periodic perforated solids can be used for super-resolution imaging. Here, we present a theoretical study on the operational bandwidth of these imaging devices using the emerging framework of transformation acoustics. Within the transformation approach, both the microstructural superlens and hyperlens can be discussed using the transfer matrix method on the same footing. We show that the geometrical structure of the periodic metamaterials induces that an acoustics hyperlens has a very wide operational frequency bandwidth with its subwavelength resolution limited by the ratio of image magnification while an acoustics superlens has a very deep subwavelength resolution limited only by the periodicity of the perforations but intrinsically working at a narrow frequency bandwidth. Such investigation will become useful for designing future transformation acoustical imaging devices.

  7. Dynamic Online Bandwidth Adjustment Scheme Based on Kalai-Smorodinsky Bargaining Solution

    Science.gov (United States)

    Kim, Sungwook

    Virtual Private Network (VPN) is a cost effective method to provide integrated multimedia services. Usually heterogeneous multimedia data can be categorized into different types according to the required Quality of Service (QoS). Therefore, VPN should support the prioritization among different services. In order to support multiple types of services with different QoS requirements, efficient bandwidth management algorithms are important issues. In this paper, I employ the Kalai-Smorodinsky Bargaining Solution (KSBS) for the development of an adaptive bandwidth adjustment algorithm. In addition, to effectively manage the bandwidth in VPNs, the proposed control paradigm is realized in a dynamic online approach, which is practical for real network operations. The simulations show that the proposed scheme can significantly improve the system performances.

  8. Narrow Bandwidth 850-nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Wu; Markos, Christos;

    2011-01-01

    We report on the inscription and characterization of narrow bandwidth fiber Bragg gratings (FBGs) with 850-nm resonance wavelength in polymer optical fibers (POFs). We use two fibers: an in-house fabricated microstructured POF (mPOF) with relative hole size of 0.5 and a commercial step-index POF......, which supports six modes at 850 nm. The gratings have been written with the phase-mask technique and a 325-nm HeCd laser. The mPOF grating has a full-width at half-maximum (FWHM) bandwidth of 0.29 nm and the step-index POF has a bandwidth of 0.17 nm. For both fibers, the static tensile strain...

  9. Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects

    Science.gov (United States)

    Wang, Chao; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2016-02-01

    Practical security of the continuous-variable quantum key distribution (CVQKD) system with finite sampling bandwidth of analog-to-digital converter (ADC) at the receiver's side is investigated. We find that the finite sampling bandwidth effects may decrease the lower bound of secret key rate without awareness of the legitimate communicators. This leaves security loopholes for Eve to attack the system. In addition, this effect may restrains the linear relationship of secret key bit rate with repetition rate of the system; subsequently, there is a saturation value for the secret key bit rate with the repetition rate. To resist such kind of effects, we propose a dual sampling detection approach in which two ADCs are employed so that the finite sampling bandwidth effects are removed.

  10. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-988, Mianyang, China, 621900 (China); Bin, L [School of Computer and Communication Engineering, Southwest Jiaotong University, Chengdu. China, 610031 (China)], E-mail: sujingqin@tom.com

    2008-05-15

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  11. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Science.gov (United States)

    Su, J.; Liu, L.; Luo, B.; Wang, W.; Jing, F.; Wei, X.; Zhang, X.

    2008-05-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  12. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    International Nuclear Information System (INIS)

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP

  13. MHBCDA: Mobility and Heterogeneity aware Bandwidth Efficient Cluster based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2013-01-01

    Data Aggregation (MHBCDA) algorithm for the randomly distributed nodes. It considers the mobile sink based packet aggregation for the heterogeneous WSN. It uses predefined region for the aggregation at cluster head to minimize computation and communication cost. The MHBCDA is energy and bandwidth......Wireless Sensor Network (WSN) offers a variety of novel applications for mobile targets. It generates the large amount of redundant sensing data. The data aggregation techniques are extensively used to reduce the energy consumption and increase the network lifetime, although it has the side effect...... of reduced reliability. In the mobile environment, it is necessary to consider the techniques which minimize the communication cost with efficient bandwidth utilization by decreasing the packet count reached at the sink. This paper proposes the mobility and heterogeneity aware bandwidth efficient Cluster-based...

  14. Bandwidth efficient cluster-based data aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    the available bandwidth efficiently. The proposed Bandwidth Efficient Cluster- based Data Aggregation (BECDA) algorithm presents the solution for the effective data gathering with in-network aggregation. It considers the network with heterogeneous nodes in terms of energy and mobile sink to aggregate the data......A fundamental challenge in the design of Wireless Sensor Network (WSNs) is the proper utilization of resources that are scarce. The critical challenge is to maximize the bandwidth utilization in data gathering and forwarding from sensor nodes to the sink. The main design objective is to utilize...... packets. The optimal approach is achieved by intra and inter-cluster aggregation on the randomly distributed nodes with the variable data generation rate. The proposed algorithm uses the correlation of data within the packet for applying the aggregation function on the data generated by nodes. BECDA shows...

  15. Performance Enhancement and Bandwidth Guarantee in IEEE 802.11 Wireless LANs

    Institute of Scientific and Technical Information of China (English)

    Yong Peng; Shi-Duan Cheng

    2004-01-01

    This paper first revisits the previously proposed NSAD (New Self-Adapt DCF) mechanism. Some modifications are presented to further enhance the performance of NSAD in the error-prone environment. Then a new MAC mechanism is proposed that can realize bandwidth guarantee by assigning different self-adapt parameters to users at different priority levels. The bandwidth guarantee property of this new mechanism is analyzed and the high priority users are found to have bandwidth guaranteed even in heavy contention condition, which is proved true not only by theoretical analysis but also by simulation results. At the same time the new scheme keeps the self-adapt character of NSAD, sothe overall system utilization is kept very high in heavy contention condition compared with the previously studied DCF-based QoS mechanisms.

  16. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    Science.gov (United States)

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  17. Global path and bandwidth scheduling in inter-data-center IP/optical transport network

    Science.gov (United States)

    Zhao, Yang; Wang, Lei; Chen, Xue; Yang, Futao; Shi, Sheping; Wang, Huitao

    2016-07-01

    We propose a flow-oriented global path and bandwidth scheduling scheme for inter-data-center IP/optical network. To improve the throughput of network and reduce the mutual impact between flows, we allow each flow to be carried by a multi-path optical channel data unit (ODU) channel. In addition bandwidth is allocated to flows fairly according to weight. Simulation results reveal that compared to high-priority-first mechanism, the method proposed improves average bandwidth allocation ratio by about 15% and allocation fairness between flows by 30%. Furthermore, compared to pure IP network, router ports are significantly saved and network cost can be reduced by up to 40% with scheme proposed in unified controlled IP/optical network.

  18. Weighted Measurement Fusion Quantized Filtering with Bandwidth Constraints and Missing Measurements in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2014-01-01

    Full Text Available This paper is concerned with the estimation problem of a dynamic stochastic variable in a sensor network, where the quantization of scalar measurement, the optimization of the bandwidth scheduling, and the characteristic of transmission channels are considered. For the imperfect channels with missing measurements in sensor networks, two weighted measurement fusion (WMF quantized Kalman filters based on the quantized measurements arriving at the fusion center are presented. One is dependent on the known message of whether a measurement is received. The other is dependent on the probability of missing measurements. They have the reduced computational cost and same accuracy as the corresponding centralized fusion filter. The approximate solution for the optimal bandwidth-scheduling problem is given under a limited bandwidth constraint. Furthermore, the vector measurement case is also discussed. The simulation research shows the effectiveness.

  19. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    Institute of Scientific and Technical Information of China (English)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrodinger equation.The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth.For a given input pulse,by choosing a small initial gain coefficient and gain variation rate,the whole gain for the pulse amplification limited by the gain bandwidth may be higher,which is helpful for the enhancement of the output linearly chirped pulse energy.Compared to the decreasing gain distributed fiber amplifier,the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy.

  20. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    International Nuclear Information System (INIS)

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  1. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    Science.gov (United States)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  2. Bandwidth Enhancement with Ψ-Shape Microstrip Patch Antenna Using Photonic Bandga

    Directory of Open Access Journals (Sweden)

    Santosh Tyagi

    2013-05-01

    Full Text Available A specific design strategy using Photonic band gap structure on ground to achieve wider bandwidth and large gain for microstrip patch antenna is presented in this paper. Proposed antenna has wide band operation from 3.8GHz to 6.5GHz with large impedance bandwidth and gain using modified patch and PBG on ground. Impedance bandwidth has improved upto 53% and gain has measured upto 6dB. Square patch antenna’s geometry is modified with ψ-shape to improved antenna characteristics. All results are verified in IE3D simulator. This proposed antenna is used for various applications of C band such as C-band ISM (802.11a, satellite and wireless communication (WLAN Europe and WIMAX

  3. Bandwidth Impacts of Localizing Peer-to-Peer IP Video Traffic in Access and Aggregation Networks

    Directory of Open Access Journals (Sweden)

    Kenneth Kerpez

    2008-10-01

    Full Text Available This paper examines the burgeoning impact of peer-to-peer (P2P traffic IP video traffic. High-quality IPTV or Internet TV has high-bandwidth requirements, and P2P IP video could severely strain broadband networks. A model for the popularity of video titles is given, showing that some titles are very popular and will often be available locally; making localized P2P attractive for video titles. The bandwidth impacts of localizing P2P video to try and keep traffic within a broadband access network area or within a broadband access aggregation network area are examined. Results indicate that such highly localized P2P video can greatly lower core bandwidth usage.

  4. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  5. ECG feature extraction based on the bandwidth properties of variational mode decomposition.

    Science.gov (United States)

    Mert, Ahmet

    2016-04-01

    It is a difficult process to detect abnormal heart beats, known as arrhythmia, in long-term ECG recording. Thus, computer-aided diagnosis systems have become a supportive tool for helping physicians improve the diagnostic accuracy of heartbeat detection. This paper explores the bandwidth properties of the modes obtained using variational mode decomposition (VMD) to classify arrhythmia electrocardiogram (ECG) beats. VMD is an enhanced version of the empirical mode decomposition (EMD) algorithm for analyzing non-linear and non-stationary signals. It decomposes the signal into a set of band-limited oscillations called modes. ECG signals from the MIT-BIH arrhythmia database are decomposed using VMD, and the amplitude modulation bandwidth B AM, the frequency modulation bandwidth B FM and the total bandwidth B of the modes are used as feature vectors to detect heartbeats such as normal (N), premature ventricular contraction (V), left bundle branch block (L), right bundle branch block (R), paced beat (P) and atrial premature beat (A). Bandwidth estimations based on the instantaneous frequency (IF) and amplitude (IA) spectra of the modes indicate that the proposed VMD-based features have sufficient class discrimination capability regarding ECG beats. Moreover, the extracted features using the bandwidths (B AM, B FM and B) of four modes are used to evaluate the diagnostic accuracy rates of several classifiers such as the k-nearest neighbor classifier (k-NN), the decision tree (DT), the artificial neural network (ANN), the bagged decision tree (BDT), the AdaBoost decision tree (ABDT) and random sub-spaced k-NN (RSNN) for N, R, L, V, P, and A beats. The performance of the proposed VMD-based feature extraction with a BDT classifier has accuracy rates of 99.06%, 99.00%, 99.40%, 99.51%, 98.72%, 98.71%, and 99.02% for overall, N-, R-, L-, V-, P-, and A-type ECG beats, respectively. PMID:26987295

  6. Improving the chaos bandwidth of a semiconductor laser with phase-conjugate feedback

    Science.gov (United States)

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-04-01

    Common applications using optical chaos in a semiconductor laser include, among others, random number generation and chaos-encrypted communications. They rely on chaos of high dimension with a large bandwidth and a high entropy growth rate to achieve good results. Optical chaos from a semiconductor laser with conventional optical feedback (COF) is typically used as the primary source of chaos. Additional enhancing techniques are used to enlarge the chaos bandwidth. In this contribution, we show experimentally how using phase-conjugate feedback (PCF) can naturally produce a chaos of higher bandwidth than COF. PCF is an alternative to COF which consists of feeding the conjugate of the optical output back into the laser cavity, with a time-delay. Thanks to an oscilloscope with a fast sampling rate, and a large bandwidth, we were able to measure and observe the time-resolved frequency dynamics with a good precision. In the regime of low-frequency fluctuations (LFF), where dropouts of optical power occur randomly, we were able to compare the difference in dynamics before and after a dropout, for PCF and COF. In the range of attainable reflectivities, we measured a bandwidth increase of up to 27 % with PCF when compared to COF. Interestingly, we found that high-frequency dynamics are enabled before dropouts in PCF, where it was theoretically shown that the system jumps between destabilized self-pulsing states at harmonics of the external-cavity frequency, the so-called external-cavity modes (ECMs). This observation tends to confirm that ECMs in PCF are indeed fundamentally different than ECMs in COF, where they are simple steady-states. Finally, we believe that the enhancing techniques used with COF could also be used with PCF to obtain even wider chaotic bandwidths. These results could lead to studies about the dimension and the entropy growth rate of chaos from a laser diode with PCF.

  7. A Heuristic Algorithm for Multicast Routing with Delay and Bandwidth Constrains

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An improved heuristic algorithm is developed which can optimize the mu lticast routing under the condition that both delay and bandwidth are constraine d. Performance analysis and computer simulation show that the routing mechanism can successfully solve the QoS problem in the case of many-to-many cast sessio n. The scheme can make the cost of routing tree optimized and the bandwidth and en d-to-end delay guaranteed. Because complexity of algorithm is limited, it is suitable to deal with networks of large size.

  8. Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry

    Science.gov (United States)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    The spectrum of the temporal traces obtained from a phase-sensitive optical time-domain reflectometer is theoretically and experimentally analysed, demonstrating its dependence on the incident optical pulse shape. Numerical simulations and theoretical results are validated experimentally, showing a good matching for rectangular optical pulses. The influence of the photodetector bandwidth on the temporal trace quality is also investigated by simulation and experiment. Results show that the photodetector bandwidth needs to be ~ 40 % wider than the pulse spectrum to acquire time-domain traces of the Rayleigh backscattered light with direct detection.

  9. QoS Study Based On IEEE 802.16 Bandwidth Scheduling Strategy

    Directory of Open Access Journals (Sweden)

    Jun Tu

    2012-02-01

    Full Text Available on the basis of presenting the existing problems of the QoS multimedia services in IEEE802.16, this paper analyzes the disadvantage and advantage of current bandwidth scheduling strategy based on IEEE802.16. Then an improvement strategy of IEEE802.16 PMP network model is proposed based on existing strict priority scheduling strategy. Finally, through the simulation data, it proves that the strategy can ensure the QoS performance and fairness of bandwidth allocation between various multimedia communication services.  

  10. Chemical potential landscape in band filling and bandwidth-control of manganites: Photoemission spectroscopy measurements

    OpenAIRE

    Ebata, K.; Takizawa, M.; A. Fujimori; Kuwahara, H; Tomioka, Y.; Y. Tokura

    2008-01-01

    We have studied the effects of band filling and bandwidth control on the chemical potential in perovskite manganites $R_{1-x}A_x$MnO$_3$ ($R$ : rare earth, $A$ : alkaline earth) by measurements of core-level photoemission spectra. A suppression of the doping-dependent chemical potential shift was observed in and around the CE-type charge-ordered composition range, indicating that there is charge self-organization such as stripe formation or its fluctuations. As a function of bandwidth, we obs...

  11. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  12. A large bandwidth photonic delay line using passive cascaded silicon-on-insulator microring resonators

    International Nuclear Information System (INIS)

    This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Coherence bandwidth characterization in an urban microcell at 62.4 GHz

    DEFF Research Database (Denmark)

    Sánchez, M. G.; Hammoudeh, A. M.; Grindrod, E.;

    2000-01-01

    Results of experiments made at 62.4 GHz in an urban mobile radio environment to characterize the coherence bandwidth are presented. The correlation coefficients between signal envelopes separated in frequency are measured and expressed as functions of distance from the base station. Due to the hi...... this parameter from the frequency correlation function obtained at each position may yield incorrect results. The coherence bandwidths for correlation levels of 0.5, 0.7, and 0.9 are given. A ray-tracing tool has been used to assist in interpreting experimental results....

  14. Confidentiality & Authentication Mechanism for Biometric Information Transmitted over Low Bandwidth & Unreliable channel

    CERN Document Server

    Singh, Raju

    2011-01-01

    The security of bio-metric information - finger print, retina mapping, DNA mapping and some other chemical and biological modified genes related information - transfer through low bandwidth and unreliable or covert channel is challenging task. Therefore, Security of biometric information is essential requirement in this fast developing communication world. Thus, in this paper, we propose efficient and effective mechanism for confidentiality and authentication for biometric information transmitted by using arithmetic encoding representation over low bandwidth and unreliable channel. It enhances the speed of encryption, decryption and authentication process. It uses arithmetic encoding scheme and public key cryptography e.g. modified version of RSA algorithm called RSA-2 algorithm.

  15. A Scheduling Discipline for Latency and Bandwidth Guarantees in Asynchronous Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2005-01-01

    Guaranteed services (GS) are important in that they provide predictability in the complex dynamics of shared communication structures. This paper discusses the implementation of GS in asynchronous Network-on-Chip. We present a novel scheduling discipline called Asynchronous Latency Guarantee (ALG......) scheduling, which provides latency and bandwidth guarantees in accessing a shared media, e.g. a physical link shared between a number of virtual channels. ALG overcomes the drawbacks of existing scheduling disciplines, in particular the coupling between latency and bandwidth guarantees. A 0.12 &956;m CMOS...

  16. Slow light in tunable low dispersion wide bandwidth photonic crystal waveguides infiltrated with magnetic fluids

    Science.gov (United States)

    Guillan-Lorenzo, Omar; Diaz-Otero, Francisco J.

    2016-01-01

    We analyze the properties of a photonic crystal waveguide as a device capable of producing slow light along a wide bandwidth. The proposed structure consists of a square lattice of hollow silicon cylinders rotated 45° immersed on a colloidal suspension of magnetic nanoparticles; this arrangement produces "U-type" group index-frequency curves. The cylinder inner radius is carefully chosen to maximize the normalized delay bandwidth product (NDBP) and the concentration of the magnetic fluid is changed in order to make the device tunable in frequency.

  17. Simulation of quantum-well slipping effect on optical bandwidth in transistor laser

    Institute of Scientific and Technical Information of China (English)

    Hassan Kaatuzian; Seyed Iman Taghavi

    2009-01-01

    An optical bandwidth analysis of a quantum-well(16 nm)transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region.At constant bias current,the simulation shows significant enhancement in optical bandwidth due to moving the quantum well in the direction of collector-base junction.No remarkable resonance peak,limiting factor in laser diodes,is observed during this modification in transistor laser structure.The method can be utilized for transistor laser structure design.

  18. Bandwidth Selection for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method

    Directory of Open Access Journals (Sweden)

    Yousri Slaoui

    2014-01-01

    Full Text Available We propose an automatic selection of the bandwidth of the recursive kernel estimators of a probability density function defined by the stochastic approximation algorithm introduced by Mokkadem et al. (2009a. We showed that, using the selected bandwidth and the stepsize which minimize the MISE (mean integrated squared error of the class of the recursive estimators defined in Mokkadem et al. (2009a, the recursive estimator will be better than the nonrecursive one for small sample setting in terms of estimation error and computational costs. We corroborated these theoretical results through simulation study.

  19. Low Voltage CMOS Fully Differential Current Feedback Amplifier with Controllable 3-dB Bandwidth

    International Nuclear Information System (INIS)

    This paper presents a new CMOS fully differential current feedback operational amplifier with controllable 3-dB bandwidth suitable for analog data processing and acquisition applications. The FDCFOA has the advantage of a wide range controllable 3-dB bandwidth (∼57 MHz to 500 MHz) without changing the feedback resistance this guarantee the stability of the circuit. The FDCFOA has a standby current of 320μA. PSpice simulations of the FDCFOA block were given using 0.25μm CMOS technology from AMI MOSIS and dual supply voltages ±0.75 V

  20. Confidentiality & Authentication Mechanism for Biometric Information Transmitted over Low Bandwidth & Unreliable channel

    Directory of Open Access Journals (Sweden)

    Raju Singh

    2011-03-01

    Full Text Available The security of bio-metric information – finger print, retina mapping, DNA mapping and some otherchemical and biological modified genes related information - transfer through low bandwidth andunreliable or covert channel is challenging task. Therefore, Security of biometric information is essentialrequirement in this fast developing communication world. Thus, in this paper, we propose efficient andeffective mechanism for confidentiality and authentication for biometric information transmitted by usingarithmetic encoding representation over low bandwidth and unreliable channel. It enhances the speed ofencryption, decryption and authentication process. It uses arithmetic encoding scheme and public keycryptography e.g. modified version of RSA algorithm called RSA-2 algorithm.

  1. From L-shaped Planar Monopoles to a Novel Folded Antenna with Wide Bandwidth

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2006-01-01

    A novel folded monopole antenna is investigated numerically and experimentally. The proposed antenna comprises a short folded monopole suitably shaped at the base with two vertical grounding probes. This small antenna is shown to have a fractional impedance bandwidth up to 125% (1.6 GHz to 7.5 GHz) for a 10 dB return loss. An interesting compromise between impedance bandwidth and pattern control is found by tuning a double side bevel at the base of the monopole, the position of the feeding po...

  2. An Open Slot Antenna with Bandwidth Extension for WLAN/UWB Applications

    OpenAIRE

    Jing-Ya Deng; Tian-Qi Fan; Yan Zhang; Xiang Wen; Guo-Qiang Liu; Li-Xin Guo

    2015-01-01

    An open slot antenna with extended bandwidth for WLAN and UWB applications is proposed. The radiating structure is composed of a rectangular microstrip patch antenna exciting an L-shaped slot etched on the ground plane. The feed position is optimized to get better impedance match for the higher range of the UWB spectrum, while a step in the slot, realized in the ground plane, is employed to extend the lower limit of the bandwidth so as to cover the 2.4 GHz WLAN frequency band. Using these des...

  3. An efficient Bandwidth Demand Estimation for Delay Reduction in IEEE 802.16j MMR WiMAX Networks

    Directory of Open Access Journals (Sweden)

    Fath Elrahman Ismael

    2010-01-01

    Full Text Available IEEE 802.16j MMR WiMAX networks allow the number of hops between the user andthe MMR-BS to be more than two hops. The standard bandwidth request procedure inWiMAX network introduces much delay to the user data and acknowledgement of theTCP packet that affects the performance and throughput of the network. In this paper,we propose a new scheduling scheme to reduce the bandwidth request delay in MMRnetworks. In this scheme, the MMR-BS allocates bandwidth to its direct subordinate RSswithout bandwidth request using Grey prediction algorithm to estimate the requiredbandwidth of each of its subordinate RS. Using this architecture, the access RS canallocate its subordinate MSs the required bandwidth without notification to the MMR-BS.Our scheduling architecture with efficient bandwidth demand estimation able to reducedelay significantly.

  4. All-optical characterization of large-signal modulation bandwidth of a monolithically integrated DFB-EA

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mulvad, Hans Christian Hansen; Oxenløwe, Leif Katsuo; Chacinski, Marek; Westergren, Urban; Stoltz, Björn

    We use an all-optical method to characterize the modulation bandwidth of a DFB-EA designed for 100 Gb/s Ethernet. In a large-signal wavelength conversion set-up, we show the device has an all-optical bandwidth of 83 GHz.......We use an all-optical method to characterize the modulation bandwidth of a DFB-EA designed for 100 Gb/s Ethernet. In a large-signal wavelength conversion set-up, we show the device has an all-optical bandwidth of 83 GHz....

  5. Investigation of bandwidth, efficiency, and quality factor for circular patch antennas with magneto-dielectric substrate

    DEFF Research Database (Denmark)

    Nour, Baqer; Breinbjerg, Olav

    2011-01-01

    This article documents an investigation of the effect of a magneto-dielectric substrate on the performance of a circular patch antenna; in particular, the radiation efficiency, the quality factor, and the bandwidth. Both analytical and numerical methods have been used to model the patch antenna...

  6. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Pu, Minhao; Liu, Liu;

    2011-01-01

    A novel and simple bandwidth and wavelength-tunable optical bandpass filter based on silicon microrings in a Mach-Zehnder interferometer (MZI) structure is proposed and demonstrated. In this filter design, the drop transmissions of two microring resonators are combined to provide the desired...

  7. Efficient Bandwidth Allocation for Integrated Services in Broadband Wireless ATM Networks

    DEFF Research Database (Denmark)

    Liu, Hong; Dittmann, Lars; Gliese, Ulrik Bo;

    1999-01-01

    An efficient bandwidth allocation scheme is proposed for supporting intergrated services in wireless ATM networks. These include CBR, VBR amd ABR types of traffic. The proposed scheme is based om A-PRMA for carrying ATM traffic in a dynamic TDMA type access system. It allows mobile users to adjust...

  8. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    Science.gov (United States)

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope. PMID:27131718

  9. Gain-switched, Yb-doped, all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, Martin; Nyga, Sebastian; Fitzau, Oliver; Hoffmann, Hans Dieter; Bang, Ole

    2013-01-01

    We demonstrate that an all-fiber, narrow bandwidth, high pulse energy pulsed laser can be constructed from commercially available components by applying gain-switching. After single-stage amplification the pulses are frequency doubled in ppSLT with high efficiency....

  10. Staged optimization algorithms based MAC dynamic bandwidth allocation for OFDMA-PON

    Science.gov (United States)

    Liu, Yafan; Qian, Chen; Cao, Bingyao; Dun, Han; Shi, Yan; Zou, Junni; Lin, Rujian; Wang, Min

    2016-06-01

    Orthogonal frequency division multiple access passive optical network (OFDMA-PON) has being considered as a promising solution for next generation PONs due to its high spectral efficiency and flexible bandwidth allocation scheme. In order to take full advantage of these merits of OFDMA-PON, a high-efficiency medium access control (MAC) dynamic bandwidth allocation (DBA) scheme is needed. In this paper, we propose two DBA algorithms which can act on two different stages of a resource allocation process. To achieve higher bandwidth utilization and ensure the equity of ONUs, we propose a DBA algorithm based on frame structure for the stage of physical layer mapping. Targeting the global quality of service (QoS) of OFDMA-PON, we propose a full-range DBA algorithm with service level agreement (SLA) and class of service (CoS) for the stage of bandwidth allocation arbitration. The performance of the proposed MAC DBA scheme containing these two algorithms is evaluated using numerical simulations. Simulations of a 15 Gbps network with 1024 sub-carriers and 32 ONUs demonstrate the maximum network throughput of 14.87 Gbps and the maximum packet delay of 1.45 ms for the highest priority CoS under high load condition.

  11. 4Bs or Not 4Bs: Bricks, Bytes, Brains, and Bandwidth

    Science.gov (United States)

    Treat, Tod

    2011-01-01

    The effective integration of planning to include bricks, bytes, brains, and bandwidth (the 4Bs) represents an opportunity for community colleges to extend their capacity as knowledge-intensive organizations, coupling knowledge, technology, and learning. Integration is important to ensure that the interplay among organizations, agents within them,…

  12. Durations required to distinguish noise and tone: Effects of noise bandwidth and frequency.

    Science.gov (United States)

    Taghipour, Armin; Moore, Brian C J; Edler, Bernd

    2016-05-01

    Perceptual audio coders exploit the masking properties of the human auditory system to reduce the bit rate in audio recording and transmission systems; it is intended that the quantization noise is just masked by the audio signal. The effectiveness of the audio signal as a masker depends on whether it is tone-like or noise-like. The determination of this, both physically and perceptually, depends on the duration of the stimuli. To gather information that might improve the efficiency of perceptual coders, the duration required to distinguish between a narrowband noise and a tone was measured as a function of center frequency and noise bandwidth. In experiment 1, duration thresholds were measured for isolated noise and tone bursts. In experiment 2, duration thresholds were measured for tone and noise segments embedded within longer tone pulses. In both experiments, center frequencies were 345, 754, 1456, and 2658 Hz and bandwidths were 0.25, 0.5, and 1 times the equivalent rectangular bandwidth of the auditory filter at each center frequency. The duration thresholds decreased with increasing bandwidth and with increasing center frequency up to 1456 Hz. It is argued that the duration thresholds depended mainly on the detection of amplitude fluctuations in the noise bursts. PMID:27250144

  13. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators.

    Science.gov (United States)

    Lowery, Arthur James; Du, Liang

    2011-08-15

    An Arrayed-Waveguide Grating Router (AWGR) can be used as a demultiplexer for an optical OFDM system, as it provides both the serial-to-parallel converter and the optical Fourier transform (FT) in one component. Because an inverse FT is topologically identical to a Fourier transform, the AWGR can also be used as a FT in an OFDM transmitter. In most all-optical OFDM systems the optical modulators are fed with CW tones; however, the subcarriers (SC) will only be perfectly orthogonal if the bandwidth of the data modulators is similar to the total bandwidth of all subcarriers. Using simulations, this paper investigates the reduction in modulator bandwidth that could be achieved if the modulators are placed before an AWGR designed as a FT. This arrangement also allows the complex (IQ) modulators to be replaced with simpler and more-compact phase modulators. We show that these design improvements enable 7.5-GHz bandwidth modulators to be used in a 4 × 10 Gsymbol/s (80 Gbit/s) per polarization per wavelength system. PMID:21934931

  14. Bandwidth optimization of a Planar Inverted-F Antenna using binary and real coded genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    AMEERUDDEN Mohammad Riyad; RUGHOOPUTH Harry C S

    2009-01-01

    With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.

  15. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    Science.gov (United States)

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (˜0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  16. Bandwidth-length trade-off figures of merit for electro-optic traveling wave modulators

    OpenAIRE

    Ibarra Fusté, Jose Antonio; Santos Blanco, M. Concepción

    2013-01-01

    Closed-form expressions explicitly relating modulation bandwidth and active length in electro-optic traveling wave modulators are presented which fully account for skin-effect electrode loss and optical-electrical wave velocities mismatch. Four operative margins have been identified where the bandwidth–length trade-off figure of merit takes simple forms. Peer Reviewed

  17. The effect of noise fluctuation and spectral bandwidth on gap detection.

    Science.gov (United States)

    Hall, Joseph W; Buss, Emily; Ozmeral, Erol J; Grose, John H

    2016-04-01

    Experiment 1 investigated gap detection for random and low-fluctuation noise (LFN) markers as a function of bandwidth (25-1600 Hz), level [40 or 75 dB sound pressure level (SPL)], and center frequency (500-4000 Hz). Gap thresholds for random noise improved as bandwidth increased from 25 to 1600 Hz, but there were only minor effects related to center frequency and level. For narrow bandwidths, thresholds were lower for LFN than random markers; this difference extended to higher bandwidths at the higher center frequencies and was particularly large at high stimulus level. Effects of frequency and level were broadly consistent with the idea that peripheral filtering can increase fluctuation in the encoded LFN stimulus. Experiment 2 tested gap detection for 200-Hz-wide noise bands centered on 2000 Hz, using high-pass maskers to examine spread of excitation effects. Such effects were absent or minor for random noise markers and the 40-dB-SPL LFN markers. In contrast, some high-pass maskers substantially worsened performance for the 75-dB-SPL LFN markers. These results were consistent with an interpretation that relatively acute gap detection for the high-level LFN gap markers resulted from spread of excitation to higher-frequency auditory filters where the magnitude and phase characteristics of the LFN stimuli are better preserved. PMID:27106308

  18. TOLPA (Tripod Omnidirectional Low Profile Antenna): a vertically polarized antenna with 90% bandwidth

    OpenAIRE

    Zürcher, J.-F.

    2013-01-01

    A new vertically polarized omnidirectional antenna, inspired by an old design, has been studied, optimized, realized and measured. With a radiation pattern similar to the classical monopole on a ground plane, the proposed antenna concept provides a much larger bandwidth and a very low profile. This antenna has numerous potential applications for mobile communications, UWB and others.

  19. Towards Bandwidth Scalable Transceiver Technology for Optical Metro-Access Networks

    DEFF Research Database (Denmark)

    Spolitis, Sandis; Bobrovs, Vjaceslavs; Wagner, Christoph; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Massive fiber-to-the-home network deployment is creating a challenge for telecommunications network operators: exponential increase of the power consumption at the central offices and a never ending quest for equipment upgrades operating at higher bandwidth. In this paper, we report on flexible...

  20. MOS current gain cells with electronically variable gain and constant bandwidth

    OpenAIRE

    Klumperink, Eric A.M.; Seevinck, Evert

    1989-01-01

    Two MOS current gain cells are proposed that provide linear amplification of currents supplied by several linear MOS V-I converters. The gain is electronically variable by a voltage or a current and can be made insensitive to temperature and IC processing. The gain cells have a constant (gain-independent) bandwidth

  1. An Improved QoS Multipath Routing Using Bandwidth Estimation and Rate Adaptation

    Directory of Open Access Journals (Sweden)

    S. Suganya

    2014-06-01

    Full Text Available Mobile Adhoc Networks (MANETs are composed of nodes which communicate with one another without network infrastructure. Their advantage being that they can be used in isolation or along with wired infrastructure, usually via a gateway node to ensure traffic relay for both networks. Quality of Service (QoS is harder to ensure in ad hoc networks than in other network types, as wireless bandwidth is shared by adjacent nodes with network topology changing as nodes move. Most QoS protocols are implemented for specific scenarios and consider parameters such as network topologies, bandwidth, mobility, security and so on. This work proposes a novel multipath routing protocol which is an extension of AOMDV by discovering routes based on available bandwidth and rate adaptation. The method with Hello message box is used to calculate available bandwidth for a route. Relative Fairness and Optimized Throughput is an approach for rate adaptation in this paper which is to ensure fairness and allow nodes to adapt transmission rates and contention windows to channel quality. In sequence this is determined by calculating the access probability of a channel for each node in a distributed manner approximating successful and failed transmissions.

  2. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth

    NARCIS (Netherlands)

    Epping, J.P.; Hellwig, T.; Hoekman, M.; Mateman, R.; Leinse, A.; Heideman, R.G.; Rees, van A.; Slot, van der P.J.M.; Lee, C.J.; Fallnich, C.; Boller, K-J.

    2015-01-01

    We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum

  3. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators

    Science.gov (United States)

    Lowery, Arthur James; Du, Liang

    2011-08-01

    An Arrayed-Waveguide Grating Router (AWGR) can be used as a demultiplexer for an optical OFDM system, as it provides both the serial-to-parallel converter and the optical Fourier transform (FT) in one component. Because an inverse FT is topologically identical to a Fourier transform, the AWGR can also be used as a FT in an OFDM transmitter. In most all-optical OFDM systems the optical modulators are fed with CW tones; however, the subcarriers (SC) will only be perfectly orthogonal if the bandwidth of the data modulators is similar to the total bandwidth of all subcarriers. Using simulations, this paper investigates the reduction in modulator bandwidth that could be achieved if the modulators are placed before an AWGR designed as a FT. This arrangement also allows the complex (IQ) modulators to be replaced with simpler and more-compact phase modulators. We show that these design improvements enable 7.5-GHz bandwidth modulators to be used in a 4 - 10 Gsymbol/s (80 Gbit/s) per polarization per wavelength system.

  4. Electroencephalographic effects of ketamine on power, cross-frequency coupling and connectivity in the alpha bandwidth

    Directory of Open Access Journals (Sweden)

    Stefanie Blain-Moraes

    2014-07-01

    Full Text Available Recent studies of propofol-induced unconsciousness have identified characteristic properties of electroencephalographic alpha rhythms that may be mediated by drug activity at -aminobutyric acid (GABA receptors in the thalamus. However, the effect of ketamine, a non-GABAergic anesthetic drug, on alpha oscillations has not been systematically evaluated. We analyzed the electroencephalogram of 28 surgical patients during consciousness and ketamine-induced unconsciousness with a focus on frontal power, frontal cross-frequency coupling, frontal-parietal functional connectivity (measured by coherence and phase lag index, and frontal-to-parietal directional connectivity (measured by directed phase lag index in the alpha bandwidth. Unlike past studies of propofol, ketamine-induced unconsciousness was not associated with increases in the power of frontal alpha rhythms, characteristic cross-frequency coupling patterns of frontal alpha power and slow-oscillation phase, or decreases in coherence in the alpha bandwidth. Like past studies of propofol using undirected and directed phase lag index, ketamine reduced frontal-parietal (functional and frontal-to-parietal (directional connectivity in the alpha bandwidth. These results suggest that directional connectivity changes in the alpha bandwidth may be state-related markers of unconsciousness induced by both GABAergic and non-GABAergic anesthetics.

  5. Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams.

  6. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  7. Effects of Stimulus Bandwidth on the Imitation of English Fricatives by Normal-Hearing Children

    Science.gov (United States)

    Stelmachowicz, Patricia G.; Nishi, Kanae; Choi, Sangsook; Lewis, Dawna E.; Hoover, Brenda M.; Dierking, Darcia; Lotto, Andrew

    2008-01-01

    Purpose: Recent studies from the authors' laboratory have suggested that reduced audibility in the high frequencies (because of the bandwidth of hearing instruments) may play a role in the delays in phonological development often exhibited by children with hearing impairment. The goal of the current study was to extend previous findings on the…

  8. Enhancement of the Modulation Bandwidth for surface Plasmon coupled LEDs for Visible Light Communication

    DEFF Research Database (Denmark)

    Li, Jiehui; Fadil, Ahmed; Ou, Haiyan;

    2016-01-01

    The modulation bandwidth of surface plasmon coupled GaN-based LEDs is increased by ~1.2 times to 434.5 MHz compared with normal LED by applying Ag nanoparticles. These findings will help for the industrialization of VLC system....

  9. ICE-based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    CERN Document Server

    Bandura, Kevin; Dobbs, Matt; Gilbert, Adam; Ittah, David; Parra, Juan Mena; Smecher, Graeme

    2016-01-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2048 digitizer inputs across 400~MHz of bandwidth. Measured in $N^2~\\times $ bandwidth, it is the largest radio correlator that has been built. Its digital back-end must exchange and reorganize the 6.6~terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256-node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. `corner-turn'). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct,...

  10. Bandwidth control of wavelength-selective uncooled infrared sensors using two-dimensional plasmonic absorbers

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Kimata, Masafumi

    2016-05-01

    Although standard uncooled infrared (IR) sensors can be used to record information such as the shape, position, and average radiant intensity of objects, these devices cannot capture color (that is, wavelength) data. Achieving wavelength selectivity would pave the way for the development of advanced uncooled IR sensors capable of providing color information as well as multi-color image sensors that would have significant advantages in applications such as fire detection, gas analysis, hazardous material recognition, and biological analysis. We have previously demonstrated an uncooled IR sensor incorporating a two-dimensional plasmonic absorber (2D PLA) that exhibits wavelength selectivity over a wide range in the mid- and long-IR regions. This PLA has a 2D Au-based periodic array of dimples, in which surface plasmon modes are induced and wavelength-selective absorption occurs. However, the dependence of the absorption bandwidth on certain structural parameters has yet to be clarified. The bandwidth of such devices is a vital factor when considering the practical application of these sensors to tasks such as gas detection. In the present study, control of the bandwidth was theoretically investigated using a rigorous coupled wave analysis approach. It is demonstrated that the dimple sidewall structure has a significant impact on the bandwidth and can be used to control both narrow- and broadband absorption. Increasing the sidewall slope was found to decrease the bandwidth due to suppression of cavity-mode resonance in the depth direction of the dimples. These results will contribute to the development of high-resolution, wavelength-selective uncooled IR sensors.

  11. Design of zone-based bandwidth management scheme in IEEE 802.16 multi-hop relay networks

    Directory of Open Access Journals (Sweden)

    Chen Kuo-Yang

    2011-01-01

    Full Text Available Abstract IEEE 802.16 Wireless Network technology is a hot research issue in recent years. It provides wider coverage of radio and higher speed wireless access, and Quality-of-Service plays an important part in the standard. For mobile multi-hop wireless network, IEEE 802.16j/MR network not only can supply large area wireless deployment, but also can provide high quality network service to mobile users. Although Mobile QoS supporting has been extensively investigated, Mobile QoS supporting in the IEEE 802.16-MR network is relatively unexplored. In this article, the probability of a mobile user who visits a Relay Station (RS is known beforehand. With the visiting probability at each RS and the system specified size of the range for bandwidth allocation, Base Station (BS can calculate the required bandwidth to meet the mobile user's demand and allocate appropriate bandwidth for a mobile user roaming in the range of the bandwidth allocation. The range of bandwidth allocation for mobile users is called the Zone in this article, which includes the user's current RS and the nearby RSs. The proposed scheme is therefore called Zone-based bandwidth management scheme. The simulation results demonstrate that Zone-based bandwidth management scheme can reduce QoS degradation and bandwidth re-allocation overhead.

  12. Single-shot rotational Raman thermometry for turbulent flames using a low-resolution bandwidth technique

    International Nuclear Information System (INIS)

    An alternative optical thermometry technique that utilizes the low-resolution (order 101 cm−1) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent CH4–air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis

  13. Single-Shot Rotational Raman Thermometry for Turbulent Flames Using a Low-Resolution Bandwidth Technique

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.

  14. A NEW DATA TRANSFER SCHEME BASED ON BANDWIDTH ALLOCATION FOR VIRTUAL PRIVATE NETWORKS

    Directory of Open Access Journals (Sweden)

    Mahalakshmi C

    2010-05-01

    Full Text Available This paper attempts to develop a data transfer scheme with a view to sufficiently provision the hose model of the Virtual Private Network (VPN and accomplish the desired degree of performance. The basic ideais to extract a service comparable to that of a private dedicated network with leased lines for the endpoints of the VPN. The service providers are expected to guarantee the required bandwidth, in order to address Quality of Service (QoS issues while employing a VPN over a shared network. Thus a tree based mechanism is generated through which well defined resource management procedures are devised to optimize the available bandwidth. The data packets forwarded through such predetermined paths serve to ensure secure communication betweencustomer sites. The NS2 based simulation results are included to demonstrate the merits of the designed approach and highlight the suitability of VPN for real time applications.

  15. Bandwidth optimization of compact microstrip antenna for PCS/DCS/bluetooth application

    Science.gov (United States)

    Singh, Vinod; Ali, Zakir; Ayub, Shahanaz; Singh, Ashutosh

    2014-09-01

    A novel compact broadband microstrip patch antenna is presented for various wireless applications. The proposed antenna has been fabricated and the impedance bandwidth and radiation pattern are measured. The simulated and measured antenna characteristics along with radiation pattern and gain are presented. It is stated that the proposed designed antenna can completely cover the required band widths of Digital communication system (DCS 1.71-1.88 GHz), Personal communication system (PCS 1.85-1.88 GHz) and IEEE 802.11b/g (2.4-2.485 GHz) with satisfactory radiation characteristics. The Experimental result shows that the proposed antenna presents a bandwidth 60.25% covering the range of 1.431-2.665 GHz with the maximum radiation efficiency 90%.

  16. MEMS based Nonlinear Monostable Electromagnetic Vibrational Energy Harvester for Wider Bandwidth

    Science.gov (United States)

    Mallick, D.; Amann, A.; Roy, S.

    2015-12-01

    This paper reports a wideband vibrational energy harvesting scheme using a MEMS based nonlinear electromagnetic transducer. The nonlinearity is incorporated in the proposed device through the stretching strain in addition to the bending of the fixed-guided configured beams of the designed structure. The thin spring structure is fabricated on Silicon-On-Insulator substrate with device layer thickness of 50 m. The MEMS spring structure is packaged and characterized with wire wound copper coil (NE1) and micro fabricated double layer copper coil (NE2) for comparison. Measurement results show that ∼80 Hz half power bandwidth is obtained for the fabricated devices with maximum load powers of 2.8 W (NE1) and 0.4 W (NE2) respectively at 0.5g which improves the ‘power-bandwidth gain’ to one of the highest among reported works.

  17. Linear and Nonlinear Analysis of Magnetic Bearing Bandwidth Due to Eddy Current Limitations

    Science.gov (United States)

    Kenny, Andrew; Palazzolo, Alan

    2000-01-01

    Finite element analysis was used to study the bandwidth of alloy hyperco50a and silicon iron laminated rotors and stators in magnetic bearings. A three dimensional model was made of a heteropolar bearing in which all the flux circulated in the plane of the rotor and stator laminate. A three dimensional model of a plate similar to the region of a pole near the gap was also studied with a very fine mesh. Nonlinear time transient solutions for the net flux carried by the plate were compared to steady state time harmonic solutions. Both linear and quasi-nonlinear steady state time harmonic solutions were calculated and compared. The finite element solutions for power loss and flux bandwidth were compared to those determined from classical analytical solutions to Maxwell's equations.

  18. On Impedance Bandwidth of Resonant Patch Antennas Implemented Using Structures with Engineered Dispersion

    CERN Document Server

    Ikonen, P; Tretyakov, S; Alitalo, Pekka; Ikonen, Pekka; Tretyakov, Sergei

    2006-01-01

    We consider resonant patch antennas, implemented using loaded transmission-line networks and other exotic structures having engineered dispersion. An analytical expression is derived for the ratio of radiation quality factors of such antennas and conventional patch antennas loaded with (reference) dielectrics. In the ideal case this ratio depends only on the propagation constant and wave impedance of the structure under test, and it can be conveniently used to study what kind of dispersion leads to improved impedance bandwidth. We illustrate the effect of dispersion by implementing a resonant patch antenna using a periodic network of LC elements. The analytical results predicting enhanced impedance bandwidth compared to the reference results are validated using a commercial circuit simulator. Discussion is conducted on the practical limitations for the use of the proposed expression.

  19. The Mutual Interaction effects between Array Antenna Parameters and Receiving Signals Bandwidth

    Directory of Open Access Journals (Sweden)

    Shahad D. Sateaa

    2014-03-01

    Full Text Available The presence of a single complex adaptive weight in each element channel of an adaptive array antenna is sufficient for processing of narrowband signals. The ability of an adaptive array antenna to null interference deteriorates rapidly as the interference bandwidth increases. The performance of narrowband adaptive array antenna with LMCV Beamforming algorithm is examined. The interaction effects between received signal angle of arrival and array parameters like the interelement spacing and the number of array element and the received signal bandwidth were studied. The output Signal to Interference plus Noise Ratio (SINR and Interference to Noise Ratio (INR are used as performance parameters for evaluation of these effects. It is found that the amount of degradation in the output SINR is increased significantly with the increase of array interelement spacing, number of array elements and when the angle of arrival of received signals are closet to end fire.

  20. Jointly optimal bandwidth selection for the planar kernel-smoothed density-ratio.

    Science.gov (United States)

    Davies, Tilman M

    2013-06-01

    The kernel-smoothed density-ratio or 'relative risk' function for planar point data is a useful tool for examining disease rates over a certain geographical region. Instrumental to the quality of the resulting risk surface estimate is the choice of bandwidth for computation of the required numerator and denominator densities. The challenge associated with finding some 'optimal' smoothing parameter for standalone implementation of the kernel estimator given observed data is compounded when we deal with the density-ratio per se. To date, only one method specifically designed for calculation of density-ratio optimal bandwidths has received any notable attention in the applied literature. However, this method exhibits significant variability in the estimated smoothing parameters. In this work, the first practical comparison of this selector with a little-known alternative technique is provided. The possibility of exploiting an asymptotic MISE formulation in an effort to control excess variability is also examined, and numerical results seem promising. PMID:23725887

  1. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    International Nuclear Information System (INIS)

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  2. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion

    Science.gov (United States)

    Guo, Yinghui; Wang, Yanqin; Pu, Mingbo; Zhao, Zeyu; Wu, Xiaoyu; Ma, Xiaoliang; Wang, Changtao; Yan, Lianshan; Luo, Xiangang

    2015-02-01

    Dispersion engineering of metamaterials is critical yet not fully released in applications where broadband and multispectral responses are desirable. Here we propose a strategy to circumvent the bandwidth limitation of metamaterials by implementing two-dimensional dispersion engineering in the meta-atoms. Lorentzian resonances are exploited as building blocks in both dimensions of the dedicatedly designed meta-atoms to construct the expected dispersion. We validated this strategy by designing and fabricating an anisotropic metamirror, which can accomplish achromatic polarization transformation in 4-octave bandwidth (two times of previous broadband converters). This work not only paves the way for broadband metamaterials design but also inspire potential applications of dispersion management in nano-photonics.

  3. Holographic mode-selective launch for bandwidth enhancement in multimode fiber.

    Science.gov (United States)

    Amphawan, Angela

    2011-05-01

    With rapidly growing bandwidth demands in Local Area Networks, it is imperative to support next generation speeds beyond 40 Gbit/s. Various holographic optimization techniques using spatial light modulators have recently been explored for adaptive channel impulse response improvement of MMF links. Most of these experiments are algorithmic-oriented. In this paper, a set of lenses and a spatial light modulator, acting as a binary amplitude filter, played the pivotal role in generating the input modal electric field into a graded-index MMF, rather than algorithms. By using a priori theoretical information to generate the incident modal electric field at the MMF, the bandwidth was increased by up to 3.4 times. PMID:21643160

  4. Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability

    DEFF Research Database (Denmark)

    Pu, Shengli; Wang, Haotian; Wang, Ning;

    2013-01-01

    and c are the period of the lattice and the light speed in vacuum, respectively). Simultaneously, the normalized delay-bandwidth product is relatively large and almost invariant with magnetic field strength. It is indicated that using magnetic fluid as one of the constitutive materials of the photonic......A line-defect waveguide within a two-dimensional magnetic-fluid-based photonic crystal with 45o-rotated square lattice is presented to have excellent slow light properties. The bandwidth centered at $$ \\lambda_{0} $$ = 1,550 nm of our designed W1 waveguide is around 66 nm, which is very large than...... crystal structures can enable the magnetically fine tunability of the slow light in online mode. The concept and results of this work may give a guideline for studying and realizing tunable slow light based on the external-stimulus-responsive materials....

  5. Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers

    International Nuclear Information System (INIS)

    In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices. (paper)

  6. BHCDA: Bandwidth Efficient Heterogeneity aware Cluster based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2013-01-01

    The fundamental challenge in the design of Wireless sensor Network (WSNs) is proper utilization of resources which are scare. One of the critical challenges is to maximize the bandwidth utilization in data gathering from sensor nodes and forward to sink. The main design objective of this paper...... is to utilize the available bandwidth efficiently with reduced packet delivery ratio and throughput. BHCDA presents the solution for effective data gathering with in-network aggregation. It considers the network with heterogeneous nodes in terms of energy and mobile sink to aggregate the data packets....... It embodies the optimal approach by Intra and inter-cluster aggregation on the randomly distributed nodes with variable data generation rate while routing data to sink. It uses the correlation of data within the packet for applying the aggregation function on data generated by nodes. BHCDA shows significant...

  7. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters

    Science.gov (United States)

    Miao, Haixing; Ma, Yiqiu; Zhao, Chunnong; Chen, Yanbei

    2015-11-01

    Advanced interferometric gravitational-wave detectors use optical cavities to resonantly enhance their shot-noise-limited sensitivity. Because of positive dispersion of these cavities—signals at different frequencies pick up different phases, there is a tradeoff between the detector bandwidth and peak sensitivity, which is a universal feature for quantum measurement devices having resonant cavities. We consider embedding an active unstable filter inside the interferometer to compensate the phase, and using feedback control to stabilize the entire system. We show that this scheme in principle can enhance the bandwidth without sacrificing the peak sensitivity. However, the unstable filter under our current consideration is a cavity-assisted optomechanical device operating in the instability regime, and the thermal fluctuation of the mechanical oscillator puts a very stringent requirement on the environmental temperature and the mechanical quality factor.

  8. Optimal Resource Allocation and Relay Selection in Bandwidth and Time Exchange Based Cooperative Forwarding

    CERN Document Server

    Islam, Muhammad Nazmul; Kompella, Sastry

    2011-01-01

    In this paper, we investigate joint optimal relay selection and resource allocation that are fundamental to the understanding of bandwidth exchange (BE) and time exchange (TE) enabled incentivized cooperative forwarding in wireless networks. We consider a network where N nodes transmit data in the uplink to an access point (AP) or base station (BS). We first consider the scenario where each node gets an initial amount (equal, optimal or arbitrary) of resource in the form of bandwidth or time, and uses this resource as a flexible incentive for two hop relaying. We focus on ?-fair network utility maximization (NUM) and total power minimization in this environment. For both BE and TE, we show the concavity or convexity of the resource allocation problem for a fixed relay set. Defining the link weights of each relay pair as the utility gain due to cooperation (over noncooperation), we show that the optimal relay selection, often a combinatorially cumbersome problem, reduces to the maximum weighted matching (MWM) ...

  9. Estimating individual listeners’ auditory-filter bandwidth in simultaneous and non-simultaneous masking

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Caminade, Sabine; Strelcyk, Olaf;

    2010-01-01

    Frequency selectivity in the human auditory system is often measured using simultaneous masking of tones presented in notched noise. Based on such masking data, the equivalent rectangular bandwidth (ERB) of the auditory filters can be derived by applying the power spectrum model of masking...... and assuming a rounded-exponential filter shape. If a forward masking paradigm is used instead of simultaneous masking, filter estimates typically show significantly sharper tuning. This difference in frequency selectivity has commonly been related to spectral suppression mechanisms observed in the cochlea...... the reliability of the individual estimates, a statistical resampling method is applied. It is demonstrated that a rather large set of experimental data is required to reliably estimate auditory filter bandwidth, particularly in the case of simultaneous masking. The poor overall reliability of the filter...

  10. Steady-state entanglement of cavity arrays in finite-bandwidth squeezed reservoirs

    CERN Document Server

    Zippilli, Stefano

    2014-01-01

    When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth of the reservoir.

  11. Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters

    CERN Document Server

    Miao, Haixing; Zhao, Chunnong; Chen, Yanbei

    2015-01-01

    For gravitational-wave interferometric detectors, there is a tradeoff between the detector bandwidth and peak sensitivity when focusing on the shot noise level. This has to do with the frequency-dependent propagation phase lag (positive dispersion) of the signal. We consider embedding an active unstable filter---a cavity-assisted optomechanical device operating in the instability regime---inside the interferometer to compensate the phase, and using feedback control to stabilize the entire system. We show that this scheme in principle can enhance the bandwidth without sacrificing the peak sensitivity. However, there is one practical difficulty for implementing it due to the thermal fluctuation of the mechanical oscillator in the optomechanical filter, which puts a very stringent requirement on the environmental temperature and the mechanical quality factor.

  12. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-03-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  13. Real-time full bandwidth measurement of spectral noise in supercontinuum generation

    CERN Document Server

    Wetzel, B; Larger, L; Lacourt, P A; Merolla, J M; Sylvestre, T; Kudlinski, A; Mussot, A; Genty, G; Dias, F; Dudley, J M; 10.1038/srep00882

    2012-01-01

    The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave solitons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures...

  14. Blended Learning Resources in Constrained Bandwidth Environment: Considerations for Network and Multimedia Optimization

    Directory of Open Access Journals (Sweden)

    Jude Lubega

    2013-09-01

    Full Text Available The potential of multimedia teaching and learning approach at higher education is well recognized by researchers, as it is a powerful tool to increase the perceived level of user satisfaction, leading to enhance the blended learning process. However, the learning process can be improved significantly by delivering the content using visual media (video, audio, and graphics. On the other hand, such multimedia contents require larger bandwidth for transmission over the Internet, which is limited in developing environments where demand always exceeds the resource. This paper constructs a framework comprising of network optimization and multimedia optimization, as two main components, aimed to improve the multimedia performance in the context of constrained bandwidth environment.

  15. BANDWIDTH AND GAIN INCREMENT OF MICROSTRIP PATCH ANTENNA WITH SHIFTED ELLIPTICAL SLOT

    Directory of Open Access Journals (Sweden)

    ISHA PURI

    2011-07-01

    Full Text Available This paper describes the increment in Bandwidth and Gain of Rectangular Microstrip Patch antenna with Shifted Elliptical slot. First we have designed a Rectangular microstrip patch antenna. After that an elliptical slot is cut inside a rectangular patch which is shifted towards right. The results of both the designs are compared and it was found that an increase in the bandwidth of 21% and gain of 7.21 dBi is being achieved as that of a simple Rectangular microstrip patch antenna. Microstrip patch antenna is designed on a Duroid 5880 substrate with a dielectric constant of 2.2. The antenna is fed by a Coaxial probe feed. The antenna designs and performances are analyzed using Zealand IE3D software. The antenna can be used for many modern communication systems.

  16. Efficient, multi-gigawatt, narrow bandwidth operation of the reditron oscillator

    International Nuclear Information System (INIS)

    The REDITRON HPM source is a new type of virtual cathode device which uses an electron range thick anode to prevent electrons from reflexing back into the diode thus producing radiation solely from virtual cathode oscillations. In initial experiments, a number of theoretically predicted features of this device have been verified and Gigawatt level radiation has been observed. Diagnostic limitations did not allow predictions of very narrow bandwidth (less than 1%) to be tested, and predicted efficiencies above those observed with other virtual cathode devices were not demonstrated experimentally. In recent experiments, pulse length limited bandwidths, on the order of one percent, have been observed both with and without resonant cavities. The authors discuss use of a new diagnostic technique, employing both magnetic and electric field probes, to determine microwave power and dominant waveguide mode on a single firing

  17. Exact Minimum-Repair-Bandwidth Cooperative Regenerating Codes for Distributed Storage Systems

    CERN Document Server

    Shum, Kenneth W

    2011-01-01

    In order to provide high data reliability, we distribute data with redundancy to the nodes in a storage network in such a way that the data can be retrieved even if some of the storage nodes are not available. When the storage network becomes larger, node failure becomes more frequent, and it is not uncommon to see two or more node failures at the same time. We exploit the opportunity of repairing the failed nodes cooperatively, and investigate a repair mechanism in which the new storage nodes can exchange data among themselves. A lower bound on the repair-bandwidth for cooperative repair is derived and an explicit construction of a family of exact-regenerating codes matching this lower bound on the repair-bandwidth is presented.

  18. Wideband Spectroscopy: The Design and Implementation of a 3 GHz Bandwidth, 8192 Channel, Polyphase Digital Spectrometer

    Science.gov (United States)

    Monroe, Ryan M.

    2011-01-01

    A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters, (ADC). This 6 Gsps (giga-sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. the implementation, results and underlying math for this spectrometer, as well as, potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.

  19. Using FTT-CAN to the Flexible Control of Bus Redundancy and Bandwidth Usage

    OpenAIRE

    Silva, Valter; Fonseca, José; Ferreira, Joaquim

    2006-01-01

    Controller Area Network (CAN) is a popular and very well-known bus system, both in academia and in industry, initially targeted to automotive applications as a single digital bus to replace the wiring that were growing complexity, weight and cost with the advent of new automotive appliances. However, requirements have evolved and CAN’s dependability and bandwidth limitations led to the emergence of alternative networks such as FlexRay and TTP/C. Nevertheless, we believe that it...

  20. Finite bandwidth, long wavelength convection with boundary imperfectons: near-resonant wavelength excitation

    OpenAIRE

    Riahi, D. N.

    1998-01-01

    Finite amplitude thermal convection with continuous finite bandwidth of long wavelength modes in a porous layer between two horizontal poorly conducting walls is studied when spatially nonuniform temperature is prescribed at the lower wall. The weakly nonlinear problem is solved by using multiple scales and perturbation techniques. The preferred long wavelength flow solutions are determined by a stability analysis. The case of near resonant wavelength excitation is considered to determine the...

  1. Single period profit maximization problem for intermediaries in telecommunication networks under stochastic bandwidth demand

    OpenAIRE

    Turan, Hasan Hüseyin; Turan, Hasan Huseyin; Kasap, Nihat; Seraslan, Mehmet Nahit

    2011-01-01

    During the last decade telecommunications has become very competitive environment with many vendors, carriers, and services. Intermediaries are one of the main players in the telecom network market and they may acquire network capacity from market of telecommunication backbone providers who offer different pricing and quality of service schemes and sell purchased capacity to end-users in order to earn some profit. Unfortunately, customers’ bandwidth demands are not known in advance. Therefore...

  2. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  3. Bandwidth and resolution of super-resolution imaging with perforated solids

    OpenAIRE

    Zixian Liang; Jensen Li

    2011-01-01

    Recent experiments on acoustic superlens and hyperlens found anisotropic metamaterials constructed from periodic perforated solids can be used for super-resolution imaging. Here, we present a theoretical study on the operational bandwidth of these imaging devices using the emerging framework of transformation acoustics. Within the transformation approach, both the microstructural superlens and hyperlens can be discussed using the transfer matrix method on the same footing. We show that the ge...

  4. Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window

    International Nuclear Information System (INIS)

    We study the bandwidth and multiplexing capacity of an erbium-doped optical memory for quantum storage purposes. We concentrate on the protocol revival of a silenced echo because it has the largest potential multiplexing capacity. Our analysis is applicable to other protocols that involve strong optical excitation. We show that the memory performance is limited by instantaneous spectral diffusion and we describe how this effect can be minimized to achieve optimal performance. (paper)

  5. Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    OpenAIRE

    Anquillare, E. L.; Miller, O D; Hsu, C. W.; DeLacy, B. G.; Joannopoulos, J. D.; Johnson, S. G.; Soljacic, M.

    2016-01-01

    Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are two-to-ten-times more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering fo...

  6. Generation of different Bell states within the SPDC phase-matching bandwidth

    OpenAIRE

    Brida, G.; Chekhova, M. V.; Genovese, M.; Krivitsky, L. A.

    2007-01-01

    We study the frequency-angular lineshape for a phase-matched nonlinear process producing entangled states and show that there is a continuous variety of maximally-entangled states generated for different mismatch values within the natural bandwidth. Detailed considerations are made for two specific methods of polarization entanglement preparation, based on type-II spontaneous parametric down-conversion (SPDC) and on SPDC in two subsequent type-I crystals producing orthogonally polarized photo...

  7. Human Medial Olivocochlear Reflex: Effects as Functions of Contralateral, Ipsilateral, and Bilateral Elicitor Bandwidths

    OpenAIRE

    Lilaonitkul, Watjana; Guinan, John J.

    2009-01-01

    Animal studies have led to the view that the acoustic medial olivocochlear (MOC) efferent reflex provides sharply tuned frequency-specific feedback that inhibits cochlear amplification. To determine if MOC activation is indeed narrow band, we measured the MOC effects in humans elicited by 60-dB sound pressure level (SPL) contralateral, ipsilateral, and bilateral noise bands as a function of noise bandwidth from 1/2 to 6.7 octaves. MOC effects were quantified by the change in stimulus frequenc...

  8. Scalable Network-layer Defense Against Internet Bandwidth-Flooding Attacks

    OpenAIRE

    Argyraki, Katerina; Cheriton, David R.

    2009-01-01

    In a bandwidth-flooding attack, compromised sources send high-volume traffic to the target with the purpose of causing congestion in its tail circuit and disrupting its legitimate communications. In this paper, we present Active Internet Traffic Filtering (AITF), a network-layer defense mechanism against such attacks. AITF enables a receiver to contact misbehaving sources and ask them to stop sending it traffic; each source that has been asked to stop is policed by its own Internet service pr...

  9. Influence of carrier dynamics on the modulation bandwidth of quantum-dot based nanocavity devices

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2010-01-01

    We theoretically investigate the modulation response of quantum-dot based nanocavity light emitting devices. For high Purcell enhancement factors, our theory predicts the possibility of decreasing the modulation bandwidth with increasing scattering rate into the lasing quantum-dot state. This cou...... counterintuitive effect is investigated using a microscopic semiconductor model. The resulting guidelines for possible optimizations of quantum-dot based nanocavity laser devices are given....

  10. Single passband microwave photonic filter with wideband tunability and adjustable bandwidth.

    Science.gov (United States)

    Chen, Tong; Yi, Xiaoke; Li, Liwei; Minasian, Robert

    2012-11-15

    A new and simple structure for a single passband microwave photonic filter is presented. It is based on using an electro-optical phase modulator and a tunable optical filter and only requires a single wavelength source and a single photodetector. Experimental results are presented that demonstrate a single passband, flat-top radio-frequency filter response without free spectral range limitations, along with the capability of tuning the center frequency and filter bandwidth independently. PMID:23164884

  11. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    OpenAIRE

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementin...

  12. Quantifying Data Rate and Bandwidth Requirements for Immersive 5G Experience

    OpenAIRE

    Qi, Yinan; Hunukumbure, Mythri; Nekovee, Maziar; Lorca, Javier; Sgardoni, Victoria

    2016-01-01

    The proliferation of smartphones/mobile devices that support a wide range of broadband applications and services has driven the volume of mobile data traffic to an unprecedented high level, requiring a next generation mobile communication system, i.e., the fifth generation (5G). Millimeter wave bands, due to the large available spectrum bandwidth, are considered as one of the most promising approaches to significantly boost the capacity. In this paper, we define a typical use case envisaged i...

  13. Potential Upgrade of the CMS Tracker Analog Readout Optical Links using Bandwidth Efficient Digital Modulation

    CERN Document Server

    Dris, Stefanos; Gill, K; Grabit, R; Ricci, D; Troska, J; Vasey, F

    2007-01-01

    The potential application of advanced digital communication schemes in a future upgrade of the CMS Tracker readout optical links is currently being investigated at CERN. We show experimentally that multi-Gbit/s data rates are possible over the current 40 MSamples/s analog optical links by employing techniques similar to those used in ADSL. The concept involves using one or more digitally-modulated sinusoidal carriers in order to make efficient use of the available bandwidth.

  14. Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides. As a...... dynamics of the switching operation, and the results show optimum parameter ranges that may serve as design guidelines in device fabrication. © 2011 Optical Society of America....

  15. Design of equalized ROADMs devices with flexible bandwidth based on LCoS technology

    OpenAIRE

    Carrero Mora, Mónica; Martín Minguez, Alfredo; Rodríguez Horche, Paloma

    2014-01-01

    This paper describes the theory, design, applications and performance of a new Reconfigurable Add-drop Multiplexer (ROADM) with flexible bandwidth allocation. The device can address several wavelengths at the input to four output fibers, according to the holograms stored in a SLM (Spatial Light Modulator), where all the outputs are equalized in power. All combinations of the input wavelengths are possible at the different output fibers. Each fiber has assigned all the signals with the same ba...

  16. A Synthetic Bandwidth Method for High-Resolution SAR Based on PGA in the Range Dimension

    OpenAIRE

    Jincheng Li; Jie Chen; Wei Liu; Pengbo Wang; Chunsheng Li

    2015-01-01

    The synthetic bandwidth technique is an effective method to achieve ultra-high range resolution in an SAR system. There are mainly two challenges in its implementation. The first one is the estimation and compensation of system errors, such as the timing deviation and the amplitude-phase error. Due to precision limitation of the radar instrument, construction of the sub-band signals becomes much more complicated with these errors. The second challenge lies in the combination method, that is h...

  17. Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems

    OpenAIRE

    Perret, Luc; Chassagne, Luc; Topsu, Suat; Ruaux, Pascal; Cagneau, Barthélemy; Alayli, Yasser

    2010-01-01

    International audience In this paper, we report fiber optics sensor with sub-nanometric resolution and wide bandwidth. It relies on an increase of the reception fibers number and on low-noise electronics. Moreover, a reference channel has been implemented using a semi-reflective plate to eliminate the source fluctuations and the fiber sensor was isolated to limit external influence of temperature and pressure. Thus we achieve both a sub-nanometric resolution on a 400 ms integration time an...

  18. Analysis in the allocation of bandwidth applied to the concept of flexible optical networks

    Science.gov (United States)

    Puche, William S.; Sierra, Javier E.; Amaya, Ferney O.

    2015-09-01

    The continued increase in the capabilities and performance in fiber optic networks today require more robust network designs to allow high consumption of information and thus enable users to have greater capacity and data content. That's why we in the task of analyzing and implementing the concept of flexible optical networks to optimize the use of bandwidth at high transmission rates and improved spectral efficiency, which represents the industry an effective economy, and energy.

  19. Compression of Video Tracking and Bandwidth Balancing Routing in Wireless Multimedia Sensor Networks

    OpenAIRE

    Wang, Yin; Yang, Jianjun; Shen, Ju; Guo, Juan; Hua, Kun

    2014-01-01

    There has been a tremendous growth in multimedia applications over wireless networks. Wireless Multimedia Sensor Networks(WMSNs) have become the premier choice in many research communities and industry. Many state-of-art applications, such as surveillance, traffic monitoring, and remote heath care are essentially video tracking and transmission in WMSNs. The transmission speed is constrained by big size of video data and fixed bandwidth allocation in constant routing path. In this paper, we p...

  20. Compression of Video Tracking and Bandwidth Balancing Routing in Wireless Multimedia Sensor Networks

    OpenAIRE

    Yin Wang; Jianjun Yang; Ju Shen; Bryson Payne; Juan Guo; Kun Hua

    2015-01-01

    There has been a tremendous growth in multimedia applications over wireless networks. Wireless Multimedia Sensor Networks(WMSNs) have become the premier choice in many research communities and industry. Many state-of-art applications, such as surveillance, traffic monitoring, and remote heath care are essentially video tracking and transmission in WMSNs. The transmission speed is constrained by the big file size of video data and fixed bandwidth allocation in constant routing paths. In this p...

  1. Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding

    OpenAIRE

    M. R. Ahsan; Islam, M. T.; M. Habib Ullah; N. Misran

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, th...

  2. Investigation of Bandwidth Requirement of Smart Meter Network Using OPNET Modeler

    OpenAIRE

    Rahman, M; Amanullah Mto

    2013-01-01

    Smart meter networks are the backbone for smart electrical distribution grid. Smart meter network requires the bidirectional communications medium and interoperability capability. As thousands of meters are interconnected in the smart meter network, it is vital to select an appropriate communication bandwidth to facilitate real-time two-way information flows and this will also allow further uptake of greenhouse-friendly technology options and enhance energy security. Optimized Network Enginee...

  3. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    Science.gov (United States)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  4. A Bandwidth Control Method Providing Entrance QoS for Multimedia Communication

    Institute of Scientific and Technical Information of China (English)

    LUO Qiang-qiang; ZHU Zhi-xiang; HUANG Ting-xue

    2005-01-01

    With the development of wideband IP network, many new IP-Based multimedia applications appear ceaselessly. The real-time multimedia application requires that the IP network provides QoS. To the end-to-end real-time multimedia communication, the QoS service includes the trunk QoS and the entrance QoS. The trunk QoS has some feasible technologies, such as RSVP and DiffServ. But, the entrance QoS has few technologies at the moment. So, this paper introduces the entrance bandwidth control to get the end-to-end QoS. The design and scheme of bandwidth controller applying to the usual Internet application and real-time media communication is provided in this paper. It distinguishes between the usual Internet applications, such as HTTP and FTP, and the real-time multimedia applications, such as Internet telephony and videoconferencing. Then they will be dealt with in different ways in order to satisfy the QoS requirements of different types of services. In this paper, we propose a new bandwidth control method for real-time multimedia communication. The principle, the implementing flow, the control policy and the application scheme are discussed.

  5. Wide-frequency-bandwidth whisker-inspired MEMS vector hydrophone encapsulated with parylene

    International Nuclear Information System (INIS)

    In order to eliminate polyurethane hat resonance frequency intervention and reduce fluid influence, a whisker-inspired MEMS vector hydrophone (WIVH) encapsulated with parylene is proposed to broaden frequency bandwidth and improve sensitivity-frequency response performance, compared to the lateral line-inspired MEMS vector hydrophone (LLIVH). Parylene that is conformally deposited on the device surface replaces polyurethane encapsulating hat and silicone oil existing in current encapsulation technology. The main advantage of WIVH as demonstrated by modelling and characterization is the enhanced bandwidth response, which is the critical factor in hydrophone design. Acoustic pressure gradient properties of the WIVH and LLIVH are analyzed to demonstrate the influence of the polyurethane hat. The interactions of the parylene membrane with fluid and the influences on vibrating performance are also investigated. Resonance measurement and sensitivity-frequency response analysis demonstrate the frequency bandwidth of the WIVH could be extended twice compared to that of the LLIVH. Moreover, the WIVH is proved to act as a typical pressure gradient hydrophone with an increment of 6 dB per octave in the linear region. (letter)

  6. Bandwidth Enhancement of a U-Slot Patch Antenna Using Embedded HIS Structure

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singhal

    2012-10-01

    Full Text Available This paper proposes a new generation of antenna that applies metamaterial as a base construction. With the use of dual band high impedance surface (HIS structures, the bandwidth, return loss, and gain of U-slot patch antenna is improved at resonant frequencies 2.24 GHz and 5.8 GHz. The proposed new modified U-slot antenna has dual band impedance bandwidth from about 2.1886 to 2.27 GHz and 5.6149 to 7.2259 GHz. From the simulation result it was found that the upper frequency band of the proposed antenna lies in the band of $5.725 sim 5.825$ GHz regulated by IEEE 802.11a (upper band and can be used for bluetooth and WLAN applications. We perform this analysis on structures which composed of rectangular lattice patches periodic arrangements. All the dimensions and shapes of the unit cell geometry are optimized in order to get a broad bandwidth and high return loss. The lattice structure comprises of an array of $7 imes 5$ rectangular patches embedded in the substrate.

  7. Recent Approaches for Broadening the Spectral Bandwidth in Resonant Cavity Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Gun Wu Ju

    2015-01-01

    Full Text Available Resonant cavity optoelectronic devices, such as vertical cavity surface emitting lasers (VCSELs, resonant cavity enhanced photodetectors (RCEPDs, and electroabsorption modulators (EAMs, show improved performance over their predecessors by placing the active device structure inside a resonant cavity. The effect of the optical cavity, which allows wavelength selectivity and enhancement of the optical field due to resonance, allows the devices to be made thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. However, the narrow spectral bandwidth significantly reduces operating tolerances, which leads to severe problems in applications such as optical communication, imaging, and biosensing. Recently, in order to overcome such drawbacks and/or to accomplish multiple functionalities, several approaches for broadening the spectral bandwidth in resonant cavity optoelectronic devices have been extensively studied. This paper reviews the recent progress in techniques for wide spectral bandwidth that include a coupled microcavity, asymmetric tandem quantum wells, and high index contrast distributed Bragg-reflectors. This review will describe design guidelines for specific devices together with experimental considerations in practical applications.

  8. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  9. All-optical central-frequency-programmable and bandwidth-tailorable radar

    Science.gov (United States)

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution.

  10. Ultra-wide bandwidth measurement of partial discharge current pulses in SF6

    International Nuclear Information System (INIS)

    This paper presents ultra-wide bandwidth measurements of partial discharge (PD) current pulses. Using a 33 GHz bandwidth oscilloscope together with a direct, matched coaxial connection to the PD source, pulses have been characterized with a greater degree of accuracy than has previously been achieved, with a minimum observed rise time of 24 ps. The PD source consists of a sharp protrusion in pressurized sulfur hexaflouride (SF6) with a tip radius of 25 µm. Both positive and negative corona pulses were recorded, revealing previously indistinguishable frequency content and features such as the appearance of groups of multiple component pulses occurring within a nanosecond time scale. The upper bandwidth limitation of the complete measurement set-up was established. This was calculated by cross-correlating current pulses with corresponding pulses filtered at lower frequencies to determine their similarity. The tendency for multiple consecutive pulses to occur within a short time period was evident. The results provide valuable data for researchers investigating fundamental physical phenomena of SF6 ionization and PD activity. (paper)

  11. Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas

    Energy Technology Data Exchange (ETDEWEB)

    Hasiviswanthan, Shiva [Los Alamos National Laboratory; Zhao, Bo [PENN STATE UNIV.; Vasudevan, Sudarshan [UNIV OF MASS AMHERST; Yrgaonkar, Bhuvan [PENN STATE UNIV.

    2009-01-01

    Motivated by the widespread proliferation of wireless networks employing directional antennas, we study the problem of provisioning bandwidth in such networks. Given a set of subscribers and one or more access points possessing directional antennas, we formalize the problem of orienting these antennas in two fundamental settings: (1) subscriber-centric, where the objective is to fairly allocate bandwidth among the subscribers and (2) provider-centric, where the objective is to maximize the revenue generated by satisfying the bandwidth requirements of subscribers. For both the problems, we first design algorithms for a network with only one access point working under the assumption that the number of antennas does not exceed the number of noninterfering channels. Using the well-regarded lexicographic max-min fair allocation as the objective for a subscriber-centric network, we present an optimum dynamic programming algorithm. For a provider-centric network, the allocation problem turns out to be NP-hard. We present a greedy heuristic based algorithm that guarantees almost half of the optimum revenue. We later enhance both these algorithms to operate in more general networks with multiple access points and no restrictions on the relative numbers of antennas and channels. A simulation-based evaluation using OPNET demonstrates the efficacy of our approaches and provides us further in insights into these problems.

  12. Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening

    Science.gov (United States)

    Chen, Shih-Jui; Wu, Jia-Yin

    2016-09-01

    A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral–cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.

  13. Estimated Bandwidth Distribution with Admission Control for Enhanced QoS Multicast Routing in MANETs

    Directory of Open Access Journals (Sweden)

    P.Revathi

    2009-09-01

    Full Text Available Wireless networks become more widely used to support advanced services. Traditional approaches to guarantee quality of service (QoS work well only with predictable channel and network access. The Multicast transmission is a more efficient mechanism when compared to uni-casting in supporting group communication applications and hence is an important aspect of future network developments. To enable high QoS for all admitted traffic, the Admission Control monitors the wireless channel and dynamically adapts admission control decisions to enable high network utilization while preventing congestion. Mobile Adhoc networks can provide multimedia users with mobility, if efficient QoS multicast strategies were developed. In load balancing QoS Multicast Routing QMR, constant available bandwidth for the link is assumed. A cross-layer framework to support QoS multicasting is extended for more effective than QMR. The extension reflects good packet delivery ratios associated with lower control overhead and lower packet delivery delay. If minimum real-time requirements are not met, these unusable packets waste scarce bandwidth and hinder other traffic, compounding the problem. Whereas the dynamically adapted mobility with control overhead monitors the high QoS for all admitted traffic, and the bandwidth for each node is enhanced to reflect the good packet delivery ratio associated with lower control overhead and lower packet delivery delay.

  14. The effect of recording and analysis bandwidth on acoustic identification of delphinid species

    Science.gov (United States)

    Oswald, Julie N.; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n=484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours..

  15. Optimal bandwidth-aware VM allocation for Infrastructure-as-a-Service

    CERN Document Server

    Dutta, Debojyoti; Post, Ian; Shinde, Rajendra

    2012-01-01

    Infrastructure-as-a-Service (IaaS) providers need to offer richer services to be competitive while optimizing their resource usage to keep costs down. Richer service offerings include new resource request models involving bandwidth guarantees between virtual machines (VMs). Thus we consider the following problem: given a VM request graph (where nodes are VMs and edges represent virtual network connectivity between the VMs) and a real data center topology, find an allocation of VMs to servers that satisfies the bandwidth guarantees for every virtual network edge---which maps to a path in the physical network---and minimizes congestion of the network. Previous work has shown that for arbitrary networks and requests, finding the optimal embedding satisfying bandwidth requests is $\\mathcal{NP}$-hard. However, in most data center architectures, the routing protocols employed are based on a spanning tree of the physical network. In this paper, we prove that the problem remains $\\mathcal{NP}$-hard even when the phys...

  16. A dispersive nanoSQUID magnetometer for ultra-low noise, high bandwidth flux detection

    International Nuclear Information System (INIS)

    We describe a dispersive nanoSQUID (nanoscale superconducting quantum interference device) magnetometer comprised of two variable thickness aluminum weak-link Josephson junctions shunted in parallel with an on-chip capacitor. This arrangement forms a nonlinear oscillator with a tunable 4–8 GHz resonant frequency with a quality factor Q = 30 when coupled directly to a 50 Ω transmission line. In the presence of a near-resonant microwave carrier signal, a low frequency flux input generates sidebands that are readily detected using microwave reflectometry. If the carrier excitation is sufficiently strong, then the magnetometer also exhibits parametric gain, resulting in a minimum effective flux noise of 30 nΦ0 Hz−1/2 with 20 MHz of instantaneous bandwidth. If the magnetometer is followed with a near-quantum-noise-limited Josephson parametric amplifier, we can increase the bandwidth to 60 MHz without compromising sensitivity. This combination of high sensitivity and wide bandwidth with no on-chip dissipation makes this device ideal for local sensing of spin dynamics, both classical and quantum. (paper)

  17. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers

    Science.gov (United States)

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30–58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth. PMID:27270944

  18. All-optical central-frequency-programmable and bandwidth-tailorable radar.

    Science.gov (United States)

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  19. Distributed Vector Estimation for Power- and Bandwidth-Constrained Wireless Sensor Networks

    Science.gov (United States)

    Sani, Alireza; Vosoughi, Azadeh

    2016-08-01

    We consider distributed estimation of a Gaussian vector with a linear observation model in an inhomogeneous wireless sensor network, where a fusion center (FC) reconstructs the unknown vector, using a linear estimator. Sensors employ uniform multi-bit quantizers and binary PSK modulation, and communicate with the FC over orthogonal power- and bandwidth-constrained wireless channels. We study transmit power and quantization rate (measured in bits per sensor) allocation schemes that minimize mean-square error (MSE). In particular, we derive two closed-form upper bounds on the MSE, in terms of the optimization parameters and propose coupled and decoupled resource allocation schemes that minimize these bounds. We show that the bounds are good approximations of the simulated MSE and the performance of the proposed schemes approaches the clairvoyant centralized estimation when total transmit power or bandwidth is very large. We study how the power and rate allocation are dependent on sensors observation qualities and channel gains, as well as total transmit power and bandwidth constraints. Our simulations corroborate our analytical results and illustrate the superior performance of the proposed algorithms.

  20. Available Link Bandwidth Based Network Selection in Multi-access Networks

    Directory of Open Access Journals (Sweden)

    Kiran Ahuja

    2014-02-01

    Full Text Available In a heterogeneous wireless environment, one of the important aspects of seamless communication for ubiquitous computing is the dynamic selection of the best access network. The problem of access network selection has been addressed through various decision methods based on available network information. Available link bandwidth is one of the important information parameters, which can be used as criterion for network selection. In this paper, we consider available bandwidth as a dynamic parameter to select the network in heterogeneous environment. First, we propose a bootstrap approximation based technique to estimate available bandwidth and then utilize it for the selection of the best suitable network in the heterogeneous environment consisting of 2G and 3G standards based wireless networks. The proposed algorithm is implemented in temporal and spatial domains to check its robustness. Estimation time with varying size of files is used as the performance metric. Through numerical results, it is shown that the proposed algorithm gives improved performance as compared to the existing algorithm.

  1. Wide-frequency-bandwidth whisker-inspired MEMS vector hydrophone encapsulated with parylene

    Science.gov (United States)

    Wang, Renxin; Liu, Yuan; Bai, Bing; Guo, Nan; Guo, Jing; Wang, Xubo; Liu, Mengran; Zhang, Guojun; Zhang, Binzhen; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2016-02-01

    In order to eliminate polyurethane hat resonance frequency intervention and reduce fluid influence, a whisker-inspired MEMS vector hydrophone (WIVH) encapsulated with parylene is proposed to broaden frequency bandwidth and improve sensitivity-frequency response performance, compared to the lateral line-inspired MEMS vector hydrophone (LLIVH). Parylene that is conformally deposited on the device surface replaces polyurethane encapsulating hat and silicone oil existing in current encapsulation technology. The main advantage of WIVH as demonstrated by modelling and characterization is the enhanced bandwidth response, which is the critical factor in hydrophone design. Acoustic pressure gradient properties of the WIVH and LLIVH are analyzed to demonstrate the influence of the polyurethane hat. The interactions of the parylene membrane with fluid and the influences on vibrating performance are also investigated. Resonance measurement and sensitivity-frequency response analysis demonstrate the frequency bandwidth of the WIVH could be extended twice compared to that of the LLIVH. Moreover, the WIVH is proved to act as a typical pressure gradient hydrophone with an increment of 6 dB per octave in the linear region.

  2. Modern Fiber Optic Submarine Cable Telecommunication Systems Planning for Explosive Bandwidth Needs at Different Deployment Depths

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-10-01

    Full Text Available The explosive bandwidth needs, especially in the inter data center market, have pushed transmission data rates to 100 Gbit/sec and beyond. Current terrestrial fibers are inadequate for long haul, high bandwidth deployments. To solve these problems a new fiber is introduced for terrestrial high bandwidth deployments: different polymeric core fibers with enlarged effective area with a significant optical signal to noise ratio improvement over other conventional terrestrial single mode fibers. To ensure the new fiber may be deployed robustly a new coating structure was employed. A rigorous cable structure was then chosen for evaluation. Based on experimental data, both the deep ocean water temperature and pressure are tailored as functions of the water depth. As well as the product of the transmitted bit rate and the repeater spacing is processed over wide ranges of the affecting parameters. It is taken into account the estimation of the total cost of the submarine fiber cable system for transmission technique under considerations. The system capacity as well as the spectral losses, and the dispersion effects are parametrically investigated over wide range ranges of the set of affecting parameters {wavelength, ocean depth (and consequently the ocean pressure and temperature, and the chemical structure}.

  3. Multi-path Probabilistic Available Bandwidth Estimation through Bayesian Active Learning

    CERN Document Server

    Thouin, Frederic; Rabbat, Michael

    2010-01-01

    Knowing the largest rate at which data can be sent on an end-to-end path such that the egress rate is equal to the ingress rate with high probability can be very practical when choosing transmission rates in video streaming or selecting peers in peer-to-peer applications. We introduce probabilistic available bandwidth, which is defined in terms of ingress rates and egress rates of traffic on a path, rather than in terms of capacity and utilization of the constituent links of the path like the standard available bandwidth metric. In this paper, we describe a distributed algorithm, based on a probabilistic graphical model and Bayesian active learning, for simultaneously estimating the probabilistic available bandwidth of multiple paths through a network. Our procedure exploits the fact that each packet train provides information not only about the path it traverses, but also about any path that shares a link with the monitored path. Simulations and PlanetLab experiments indicate that this process can dramatical...

  4. A Novel Approach for Gain and Bandwidth Re-Configurability in Helical Antenna

    Directory of Open Access Journals (Sweden)

    Rahul Yadav

    2013-09-01

    Full Text Available A Pi-wall shaped partial cavity backed 1½ turn helical antenna has been designed. The helix turns are kept low to provide compact design. The gain and bandwidth re-configurability is achieved by placing the helix in center of the Pi-wall shaped partial cavity which thus can be rotated about its axis providing reflections from the walls at various rotation angle. The rotational angles of the helix are varied with the incremental step size of 45o in anticlockwise direction. The odd number of turns will provide asymmetry of the helix with respect to the cavity walls and will thus excite various resonant bands as the helix is rotated inside the designed cavity. A Computer Simulation Tool is used for the design verification. The antenna is operating in the range of 5-15 GHz and has a peak gain of 7.5 dB and a highest bandwidth of 3.69 GHz. The Pi-shaped partial cavity is fabricated with lightweight aluminum metal and the helix is made of copper. Slight geometrical modification was made during the process of fabrication to improve the bandwidth response of the antenna. The antenna being conformal and robust in design may find its application for personal wireless communication and rough terrain areas.

  5. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.

    2014-12-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In our framework, we propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as an amplify-and-forward two-way relays, they are used to support PUs to achieve their target data rates over the remaining bandwidth. More specifically, CUs acts as relays for the PUs and gain some spectrum as long as they respect a specific power budget and primary quality-of-service constraints. In this context, we first derive closed-form expressions for optimal transmit power allocated to PUs and CUs in order to maximize the cognitive objective. Then, we employ a strong optimization tool based on particle swarm optimization algorithm to find the optimal relay amplification gains and optimal cognitive released bandwidths as well. Our numerical results illustrate the performance of our proposed algorithm for different utility metrics and analyze the impact of some system parameters on the achieved performance.

  6. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    International Nuclear Information System (INIS)

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency response of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power

  7. QoS-aware dynamic bandwidth allocation algorithm for Gigabit-capable PONS

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; ZHAO Yang; GU Wanyi

    2007-01-01

    The Gigabit-capable passive optical network (GPON)technology is being considered as a promising solution for the next-generation broadband access network.Since the network topology of the GPON is point-to-multipoint,a media access control called dynamic bandwidth allocation(DBA)algorithm is an important factor for determining the performance of the GPON.In this paper,we propose a new DBA algorithm to effectively and fairly allocate bandwidths among end users.This DBA algorithm supports difierentiated services-a cmcial requirement for a converged broadband access network with heterogeneous traffic.In this article we first reviewed the signaling and configuration of the DBA,and then proposed a new DBA scheme that implemented QoS-based priority for this need to maximally satisfy the requirements of all optical network units(ONUs)and provide difierentiated services.Analyses and simulation results show that the new algorithm can improve the bandwidth utilization and realize the fairness for both different ONUs and services.

  8. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    Science.gov (United States)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  9. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  10. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  11. Plasma Sensor for High Bandwidth Mass-Flow Measurements at High Mach Numbers with RF Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal is aimed at the development of a miniature high bandwidth (1 MHz class) plasma sensor for flow measurements at high enthalpies. This device uses a...

  12. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    Science.gov (United States)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  13. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    OpenAIRE

    Yue Ji; Xingfei Li; Tengfei Wu; Cheng Chen

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model ...

  14. Impact of bandwidth for various services in heterogeneous network and quality of service via communication technologies in Malaysian higher educational

    OpenAIRE

    Ismail, Mohd Nazri; Zin, Abdullah Mohd

    2007-01-01

    This study focuses on heterogeneous services and communication technologies for retrieving and sending information between students and lecturers in Malaysian higher educational institutes. It intends to investigate pattern and significant level of various services implementation, convergence of communication technologies and bandwidth capacity for last mile users (students and lecturers). It is designed to determine which communication technologies, services, bandwidth capacity and QoS will ...

  15. Damping effect of the inner band electrons on the optical absorption and bandwidth of metal nanoparticles

    International Nuclear Information System (INIS)

    Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).

  16. Damping effect of the inner band electrons on the optical absorption and bandwidth of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ochoo, Lawrence, E-mail: lawijapuonj@yahoo.com; Migwi, Charles; Okumu, John [Kenyatta University, Physics Department (Kenya)

    2012-12-15

    Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).

  17. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    International Nuclear Information System (INIS)

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  18. Broad-bandwidth Metamaterial Antireflection Coatings for Sub-Millimeter Astronomy and CMB Foreground Removal

    Science.gov (United States)

    McMahon, Jeff

    Sub-millimeter observations are crucial for answering questions about star and galaxy formation; understanding galactic dust foregrounds; and for removing these foregrounds to detect the faint signature of inflationary gravitational waves in the polarization of the Cosmic Microwave Background (CMB). Achieving these goals requires improved, broad-band antireflection coated lenses and half-wave plates (HWPs). These optical elements will significantly boost the sensitivity and capability of future sub-millimeter and CMB missions. We propose to develop wide-bandwidth metamaterial antireflection coatings for silicon lenses and sapphire HWPs with 3:1 ratio bandwidth that are scalable across the sub-millimeter band from 300 GHz to 3 THz. This is an extension of our successful work on saw cut metamaterial AR coatings for silicon optics at millimeter wave lengths. These, and the proposed coatings consist of arrays of sub-wavelength scale features cut into optical surfaces that behave like simple dielectrics. We have demonstrated saw cut 3:1 bandwidth coatings on silicon lenses, but these coatings are limited to the millimeter wave band by the limitations of dicing saw machining. The crucial advance needed to extend these broad band coatings throughout the sub-millimeter band is the development of laser cut graded index metamaterial coatings. The proposed work includes developing the capability to fabricate these coatings, optimizing the design of these metamaterials, fabricating and testing prototype lenses and HWPs, and working with the PIPER collaboration to achieve a sub-orbital demonstration of this technology. The proposed work will develop potentially revolutionary new high performance coatings for the sub-millimeter bands, and cary this technology to TRL 7 paving the way for its use in space. We anticipate that there will be a wide range of applications for these coatings on future NASA balloons and satellites.

  19. Non Classical Design in MOSFETs for Improving OTA gain-bandwidth trade off

    OpenAIRE

    Armstrong, Alastair

    2010-01-01

    In this paper, gain-bandwidth (GB) trade-off associated with analog device/circuit design due to conflicting requirements for enhancing gain and cutoff frequency is examined. It is demonstrated that the use of a nonclassical source/drain (S/D) profile (also known as underlap channel) can alleviate the GB trade-off associated with analog design. Operational transconductance amplifier (OTA) with 60 nm underlap S/D MOSFETs achieve 15 dB higher open loop voltage gain along with three times higher...

  20. Managing Supply and Demand of Bandwidth in Peer-to-Peer Communities

    OpenAIRE

    Meulpolder, M

    2011-01-01

    On today's Internet, millions of people participate in peer-to-peer communities where they share content such as audio and video files. Contrary to websites such as Youtube, which rely on large and expensive computer servers to store and deliver all of their content, peer-to-peer communities rely on storage and delivery by the PCs of the users themselves. Because of this, a peer-to-peer community can only be successful if there are enough users willing to provide content and bandwidth to othe...

  1. Toward quantum processing in molecules: A THz-bandwidth coherent memory for light

    CERN Document Server

    Bustard, Philip J; England, Duncan G; Sussman, Benjamin J

    2013-01-01

    The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to 1ns, enabling 10,000 operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.

  2. IPTV Resource and Performance Management using End-to-End Available Bandwidth Estimation Techniques

    OpenAIRE

    Meskill, Brian

    2014-01-01

    Over-The-Top IPTV services have seen a huge increase in popularity in recent years. This fact coupled with the ever increasing resource requirements of IPTV services has created a necessity for e�cient and e�ective management of these IPTV services. This thesis presents contributions and �ndings into the use of end-to-end Available Bandwidth estimation to help govern Over-The-Top IPTV service delivery. An ex- amination is presented of the conditions under which end-to-end Avail...

  3. Task Mapping and Bandwidth Reservation for Mixed Hard/Soft Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Saraswat, Prabhat Kumar; Pop, Paul; Madsen, Jan

    reserved for the servers determines the quality of service (QoS) for soft tasks. CBS enforces temporal isolation, such that soft task overruns do not affect the timing guarantees of hard tasks. Transient faults in hard tasks are tolerated using checkpointing with rollback recovery. We have proposed a Tabu...... Search-based approach for task mapping and CBS bandwidth reservation, such that the deadlines for the hard tasks are satisfied, even in the case of transient faults, and the QoS for the soft tasks is maximized. Researchers have used fixed execution time models, such as the worst-case execution times for...

  4. A NEW DATA TRANSFER SCHEME BASED ON BANDWIDTH ALLOCATION FOR VIRTUAL PRIVATE NETWORKS

    OpenAIRE

    Mahalakshmi C; Ramaswamy M; Alamelu Nachiappan

    2010-01-01

    This paper attempts to develop a data transfer scheme with a view to sufficiently provision the hose model of the Virtual Private Network (VPN) and accomplish the desired degree of performance. The basic ideais to extract a service comparable to that of a private dedicated network with leased lines for the endpoints of the VPN. The service providers are expected to guarantee the required bandwidth, in order to address Quality of Service (QoS) issues while employing a VPN over a shared network...

  5. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    International Nuclear Information System (INIS)

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera® FPGA, are provided.

  6. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes.

    Science.gov (United States)

    Bernier, Maxime; Gaborit, Gwenaël; Duvillaret, Lionel; Paupert, Alain; Lasserre, Jean-Louis

    2008-05-01

    We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h, a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 Vm(-1)Hz(-(1/2)), and a temperature accuracy of 40 mK. PMID:18449315

  7. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  8. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    CERN Document Server

    Ammendola, Roberto; Frezza, Ottorino; Cicero, Francesca Lo; Lonardo, Alessandro; Paolucci, Pier Stanislao; Rossetti, Davide; Salamon, Andrea; Salina, Gaetano; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2011-01-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.

  9. A Low Power High Bandwidth Four Quadrant Analog Multiplier in 32 NM CNFET Technology

    Directory of Open Access Journals (Sweden)

    Ishit Makwana

    2012-04-01

    Full Text Available Carbon Nano tube Field Effect Transistor (CNFET is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on 32nm CNFET technology shows that the proposed multiplier has very low harmonic distortion (<0.45%, large input range (±400mV, large bandwidth (~50GHz and low power consumption (~247µW, while operating at a supply voltage of ±0.9V.

  10. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    OpenAIRE

    Silvio Fuchs; Christian Rödel; Alexander Blinne; Ulf Zastrau; Martin Wünsche; Vinzenz Hilbert; Leif Glaser; Jens Viefhaus; Eugene Frumker; Paul Corkum; Eckhart Förster; Paulus, Gerhard G.

    2016-01-01

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extre...

  11. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth.

    Science.gov (United States)

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S; DenBaars, Steven P; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-09-01

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ~9 nm at 20 mW optical power. Owing to the fast recombination (τe-3 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications. PMID:27607634

  12. A Low Power High Bandwidth Four Quadrant Analog Multiplier in 32 NM CNFET Technology

    Directory of Open Access Journals (Sweden)

    Vitrag Sheth

    2012-05-01

    Full Text Available Carbon Nanotube Field Effect Transistor (CNFET is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on 32nm CNFET technology shows that the proposed multiplier has very low harmonic distortion (<0.45%, large input range (±400mV, large bandwidth (~50GHz and low power consumption (~247µW, while operating at a supply voltage of ±0.9V.

  13. Efficient broad- and tunable-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    CERN Document Server

    Anquillare, Emma L; Hsu, Chia Wei; DeLacy, Brendan G; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    Sub-wavelength resonators typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad, tunable frequency windows. We show that metallic nanodisks are two- to twenty-times more efficient in absorbing and scattering light than common structures. Per-volume efficiency increases away from the plasma frequency of the underlying metal. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.

  14. Printed Circularly-Polarized Antenna with Ultra-Wide Axial-Ratio Bandwidth

    OpenAIRE

    Bao, Xiulong; Ammann, Max

    2011-01-01

    A circularly polarised printed dipole-like antenna employing asymmetrical arms and an orthogonal slit in the ground plane is presented. It is fed by a stepped microstrip line which connects to the shorter arm. By utilising surface currents on the asymmetrical arms and the orthogonal feedline structure, circular polarisation is realised. Experimental and numerical data are in agreement and the measured results show a fractional impedance bandwidth of 41.3% (1.77–2.69 GHz) and a wide axial-rati...

  15. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, D. [Fermilab; Bockelman, B. [Nebraska U.; Blomer, J. [CERN; Herner, K. [Fermilab; Levshina, T. [Fermilab; Slyz, M. [Fermilab

    2015-12-23

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached

  16. BANDWIDTH AND EFFICIENT ENCODING SCHEME COMBINING TCM-UGM TO STBC

    Directory of Open Access Journals (Sweden)

    ABDELMOUNAIM MOULAY LAKHDAR

    2011-01-01

    Full Text Available In this paper, a bandwidth efficient encoding scheme is proposed. It combines the modified version of trellis coded-modulation (called trellis coded-modulation with Ungerboeck-Gray mapping, TCM-UGM to space-time block code (STBC. The performance of this encoding scheme is investigated over memoryless Rayleigh fading (MRF channel for throughput 2 bits/s/Hz. The simulation result, using 2/3 rate 16-state TCM-UGM encoder, two transmit antennas and two receive antennas, shows clearly that the proposed scheme outperforms the performance of the association TCM/STBC by 0.67 dB at FER=10-2.

  17. Investigation of cryogenic charge sensitive amplifier structures for improved spectrometer bandwidth and noise performance

    International Nuclear Information System (INIS)

    An experimental distributed Charge Sensitive Amplifier (CSA) architecture incorporating a multi-stage cryogenic hybrid gain block is described. The hybrid device is of sufficiently small size to be mounted adjacent to a cooled detector with minimal heat load increment, and is intended for X-ray/gamma-ray spectrometer applications. It is shown in the sequel that this architecture affords a more fortuitous placement of CSA Transfer Function (TF) poles for a specified charge conversion gain, resulting in improved bandwidth and Noise Figure (NF). ((orig.))

  18. Bandwidth Studies for the Upgrade of the Trigger system during Run III

    CERN Document Server

    Meloni, Simone

    2016-01-01

    The LHCb experiment will be upgraded between 2018 and 2019 in order to reach unprecedented pre- cision on the b and c-quarks sector. The Trigger system will be upgraded to a full software trigger and will process the full inelastic collision rate to reduce the amount of data saved to disk. One of the main challenges is to find a way to divide the limited available output bandwidth amongst the planned physics analyses. This document presents studies performed during the CERN Summer Stu- dent Programme in the LHCb trigger group. A new quantitative strategy is presented and applied to the charm sector as a case study.

  19. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    OpenAIRE

    Geloni, G.; Kocharyan, V.; Saldin, E.

    2011-01-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg-transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an abso...

  20. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Science.gov (United States)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the

  1. Mechanical Einstein-Podolsky-Rosen entanglement with a finite-bandwidth squeezed reservoir

    Science.gov (United States)

    Asjad, Muhammad; Zippilli, Stefano; Vitali, David

    2016-06-01

    We describe a scheme for entangling mechanical resonators which is efficient beyond the resolved sideband regime. It employs the radiation pressure force of the squeezed light produced by a degenerate optical parametric oscillator, which acts as a reservoir of quantum correlations (squeezed reservoir), and it is effective when the spectral bandwidth of the reservoir and the field frequencies are appropriately selected. It allows for the steady-state preparation of mechanical resonators in entangled Einstein-Podolsky-Rosen states and can be extended to the preparation of many entangled pairs of resonators which interact with the same light field, in a situation in which the optomechanical system realizes a starlike harmonic network.

  2. Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    CERN Document Server

    Anquillare, E L; Hsu, C W; DeLacy, B G; Joannopoulos, J D; Johnson, S G; Soljacic, M

    2016-01-01

    Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are two-to-ten-times more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering for subwavelength particles. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.

  3. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    Science.gov (United States)

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-01-01

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130

  4. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    Directory of Open Access Journals (Sweden)

    Patricia Noriega-Vivas

    2013-07-01

    Full Text Available Thanks to the research on Vehicular Ad Hoc Networks (VANETs, we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.

  5. A 15 MHz bandwidth, 60 Vpp, low distortion power amplifier for driving high power piezoelectric transducers

    International Nuclear Information System (INIS)

    This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented

  6. High-bandwidth transfer of phase stability through a fiber frequency comb

    CERN Document Server

    Scharnhorst, Nils; Hannig, Stephan; Jakobsen, Kornelius; Kramer, Johannes; Leroux, Ian D; Schmidt, Piet O

    2015-01-01

    We demonstrate phase locking of a 729 nm diode laser to a 1542 nm master laser via an erbium-doped-fiber frequency comb. Thanks to a transfer-oscillator feedforward scheme which suppresses the effect of comb noise in an unprecedented 1.8 MHz bandwidth, the phase lock requires no pre-stabilization of the slave diode laser. We illustrate the performance of the system by carrying out coherent manipulations of a trapped calcium ion with a fidelity in excess of 99% even at few-microsecond timescales.

  7. Temperature dependence of nu3 and nu4 bandwidths and complex refractive indices for crystalline methane

    Science.gov (United States)

    Ngoh, M. A.; Khanna, R. K.; Fox, K.

    1993-01-01

    Infrared spectra of thin films of pure CH4 have been measured for a range of temperatures from 22 to 68 K. The bandwidth for the fundamental nu3 near 3000/cm varies from 12.7 to 33.2/cm, while that for nu4 near 1300/cm varies from 6.2 to 16.0/cm. The real and imaginary parts of the index of refraction also exhibit significant dependence on temperature. These broadband measurements at low temperatures are useful for an understanding of clouds and hazes in the atmosphere of Uranus, clouds and ices in the atmosphere of Titan, and ices on the surfaces of Pluto and Triton.

  8. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    KAUST Repository

    Xu, Yanlong

    2015-09-01

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. © 2015.

  9. 120 nm Bandwidth noise-like pulse generation in an erbium-doped fiber laser

    Science.gov (United States)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Tam, H. Y.; Lu, C.

    2008-01-01

    We report on the generation of noise-like pulses with up to 120 nm bandwidth in a passively mode-locked erbium-doped fiber ring laser. By inserting a segment of slightly normal dispersion fiber in a mode-locked fiber laser cavity, we found that the spectrum of the noise-like pulse emission of the laser can be significantly broadened as a result of the four-wave-mixing and the soliton self-frequency shift effects in the inserted fiber.

  10. Gas-filled cell as a narrow bandwidth bandpass filter in the VUV wavelength range

    International Nuclear Information System (INIS)

    We propose a method for spectrally filtering radiation in the VUV wavelength range by means of a monochromator constituted by a cell filled with a resonantly absorbing rare gas. Around particular wavelengths, the gas exhibits narrow-bandwidth absorbing resonances following the Fano profile. In particular, within the photon energy range 60 eV-65 eV, the correlation index of the Fano profiles for the photoionization spectra in Helium is equal to unity, meaning that the minimum of the cross-section is exactly zero. For sufficiently large column density in the gas cell, the spectrum of the incoming radiation will be attenuated by the background cross-section of many orders of magnitude, except for those wavelengths close to the point where the cross-section is zero. Remarkable advantages of a gas monochromator based on this principle are simplicity, efficiency and narrow-bandwidth. A gas monochromator installed in the experimental hall of a VUV SASE FEL facility would enable the delivery of a single-mode VUV laser beam. The design is identical to that of already existing gas attenuator systems for VUV or X-ray FELs. We present feasibility study and exemplifications for the FLASH facility in the VUV regime. (orig.)

  11. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity

    CERN Document Server

    Ast, Stefan; Schnabel, Roman

    2013-01-01

    We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.

  12. Design of RFID Cloud Services in a Low Bandwidth Network Environment

    Directory of Open Access Journals (Sweden)

    John P.T. Mo

    2011-02-01

    Full Text Available The use of Information and Communication Technologies has significantly improved the efficiency of modern supply chains. Existing IT architecture is too rigid to allow new technologies such as RFID technologies to be implemented. With the aid of virtualisation and integrated with cloud services, infrastructure hardware and network devices can be consolidated into a physical device, reducing the cost of ownership. However, for such cloud services model to work correctly, a high speed network is required between each site and the cloud service provider. This poses huge challenges for real‐time system such as RFID‐enabled supply chains. Since modern supply chains operate on a global platform, it is almost impossible to assure availability of high speed networks across the global supply chain. This paper proposes two solutions to supplement the virtualisation and cloud services model. A sub‐cloud services solution, where each service is distributed across multiple hosts across different countries and regions is proposed to enhance accessibility to higher bandwidth networks. The second solution is the Queued Burst Device Compression system incorporates a compression service that compresses RFID data sets into much smaller packages. This solution is proved to work by a multiple‐in‐single‐out queuing model and is suitable for low bandwidth networks such as GPRS and 3G wireless environmenst.

  13. Graphene electro-optic modulator with 30 GHz bandwidth

    Science.gov (United States)

    Phare, Christopher T.; Daniel Lee, Yoon-Ho; Cardenas, Jaime; Lipson, Michal

    2015-08-01

    Graphene has generated exceptional interest as an optoelectronic material because its high carrier mobility and broadband absorption promise to make extremely fast and broadband electro-optic devices possible. Electro-optic graphene modulators previously reported, however, have been limited in bandwidth to a few gigahertz because of the large capacitance required to achieve reasonable voltage swings. Here, we demonstrate a graphene electro-optic modulator based on resonator loss modulation at critical coupling that shows drastically increased speed and efficiency. Our device operates with a 30 GHz bandwidth and with a state-of-the-art modulation efficiency of 15 dB per 10 V. We also show the first high-speed large-signal operation in a graphene modulator, paving the way for fast digital communications using this platform. The modulator uniquely uses silicon nitride waveguides, an otherwise completely passive material platform, with promising applications for ultra-low-loss broadband structures and nonlinear optics.

  14. The enhancement of inner stainless steel image by the bandwidth increment of vertically spatial frequency

    International Nuclear Information System (INIS)

    The ultrasonic test for maintaining the integrity of the primary loop in nuclear power plants is restricted by the structure and shape of the material. The size of material crystalline becomes the cause of scattering noise. In this paper, the internal image of stainless steel specimen same material nuclear power plants is to be improved through the band width increment of the verify spacial frequency. Generally, the ultrasonic image obtained from ultrasonic microscope is acquired using a operational frequency and the resolution is confined by the spacial frequency determined by the operational frequency and ultrasonic convertor. In this study, an improved image acquiring method was investigated, which was obtained from synthesizing the images varying the operational frequency in the ultrasonic microscope and then increasing the vertically spatial frequency bandwidth. In the experiment, an ultrasonic microscope was assembled using an ultrasonic convert of which operational frequency was 5Mhz and ratio bandwidth is 95%, and a quadrature detector is used to acquire the amplitude and phase simultaneously because the amplitude and phase image data are required for the signal processing. A specimen with four round flat type for detector was fabricated, which is in different depths. Although the shape of the defects was appeared using a single frequency, the strength of the images was not proportional to the depth of the defects. On the other hand, the strength of the images was proportional to the depth of the defects in the improved image

  15. ±25 ppm repeatable measurement of trapezoidal pulses with 5 MHz bandwidth

    International Nuclear Information System (INIS)

    High-quality measurements of pulses are nowadays widely used in fields such as radars, pulsed lasers, electromagnetic pulse generators, and particle accelerators. Whilst literature is mainly focused on fast systems for nanosecond regime with relaxed metrological requirements, in this paper, the high-performance measurement of slower pulses in microsecond regime is faced. In particular, the experimental proof demonstration for a 15 MS/s, ±25 ppm repeatable acquisition system to characterize the flat-top of 3 μs rise-time trapezoidal pulses is given. The system exploits a 5 MHz bandwidth circuit for analogue signal processing based on the concept of flat-top removal. The requirements, as well as the conceptual and physical designs are illustrated. Simulation results aimed at assessing the circuit performance are also presented. Finally, an experimental case study on the characterization of a pulsed power supply for the klystrons modulators of the Compact Linear Collider (CLIC) under study at CERN is reported. In particular, the metrological characterization of the prototype in terms of bandwidth, repeatability, and linearity is presented

  16. Mode-size converter with high coupling efficiency and broad bandwidth.

    Science.gov (United States)

    Fang, Qing; Song, Junfeng; Luo, Xianshu; Yu, Mingbin; Lo, Guoqiang; Liu, Yuliang

    2011-10-24

    An ultralow coupling loss and broad bandwidth fiber-to-waveguide mode-size converter is demonstrated for nano-scale waveguides on SOI platform using CMOS technology in this paper. The mode-size converter consists of a cantilevered PECVD SiO(2) waveguide and a-Si nano-tapers by removing the adjacent SiO(2) layer and underlying substrate Si. The a-Si waveguide is located at the center of the cantilevered SiO(2) waveguide. We characterized the cantilevered mode-size converter using cleaved optical single mode fiber with 10.5 µm mode field diameter. With refractive index (1.375) matching oil, the measured coupling efficiencies between the cleaved optical fiber and this converter are higher than 80% per facet and 70% per facet for TE and TM modes at 1600 nm, respectively. The polarization dependent loss and the coupling loss variation of this converter are less than 1.0 dB at the wavelength range of 1520~1640 nm. The 1-dB bandwidths for both TE and TM modes are more than 120 nm. The alignment tolerances for TE and TM modes are ± 2.8 µm and ± 2.1 µm at 1-dB excess loss in horizontal direction and vertical direction, respectively. PMID:22109007

  17. Design optimization for relative bandwidth of left-handed metamaterials with split-ring resonators

    International Nuclear Information System (INIS)

    Due to their special properties, left-handed metamaterials have important potential applications in engineering. When an incident wave propagates through a periodic material with the dimension of its microstructure much smaller than the wavelength, the metamaterial can be regarded as a homogeneous medium, and its effective electromagnetic parameters (permittivity and permeability) in the frequency domain can be obtained with the S-parameters retrieval method. From this perspective, the design of a material with the desired left-handed characteristics becomes possible. By establishing automatic parametric modeling technology, we can study the transmission and reflection properties of left-handed metamaterials with arrays of split-ring resonators. Next, a whole flow chart of design optimization for improving left-handed metamaterial performance is proposed. Finally, the design method is illustrated through a numerical example including the shape and the size design of split-ring resonators to max relative bandwidth, based on parametric analysis of the left-handed relative bandwidths. Sequential quadratic programming and enumeration optimization are applied to solve the optimization problem

  18. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    Science.gov (United States)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, M. A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  19. Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths

    Science.gov (United States)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, Manuel A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  20. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David [Los Alamos National Laboratory; Bent, John [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory; Brandt, Scott [UCSC

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long as possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.

  1. Reference Chaser Bandwidth Controller for Wireless QoS Mapping under Delay Constraints

    Directory of Open Access Journals (Sweden)

    Marchese M

    2010-01-01

    Full Text Available Telecommunications networks are composed of functional layers acting in cascade. Quality of Service (QoS derives from the action of each layer that must assure a specific level of quality to the upper layer in terms of performance parameters (e.g., loss, delay, jitter of the packets. Appropriate algorithms are needed to compute the bandwidth necessary so to assure the requested QoS when information is transferred from one layer to the next one below. This paper proposes a scheme that adapts the bandwidth to be allocated to a buffer which conveys heterogeneous traffic (both concerning traffic sources and QoS requirements in a layer-in-cascade model. The proposal is focused on delay constraints. The proposed algorithm is based only on measures and does not use closed-form expressions, a priori information about traffic statistical properties, and assumptions about buffer dimension. Simulation results show the reliability of the approach in comparison with other techniques at the state of the art, thus corroborating the application of the algorithm for a large set of operative situations, including fading conditions.

  2. Memory bandwidth efficient two-layer reduced-resolution decoding of high-definition video

    Science.gov (United States)

    Comer, Mary L.

    2000-12-01

    This paper addresses the problem of efficiently decoding high- definition (HD) video for display at a reduced resolution. The decoder presented in this paper is intended for applications that are constrained not only in memory size, but also in peak memory bandwidth. This is the case, for example, during decoding of a high-definition television (HDTV) channel for picture-in-picture (PIP) display, if the reduced resolution PIP-channel decoder is sharing memory with the full-resolution main-channel decoder. The most significant source of video quality degradation in a reduced-resolution decoder is prediction drift, which is caused by the mismatch between the full-resolution reference frames used by the encoder and the subsampled reference frames used by the decoder. to mitigate the visually annoying effects of prediction drift, the decoder described in this paper operates at two different resolutions -- a lower resolution for B pictures, which do not contribute to prediction drift and a higher resolution for I and P pictures. This means that the motion-compensation unit (MCU) essentially operates at the higher resolution, but the peak memory bandwidth is the same as that required to decode at the lower resolution. Storage of additional data, representing the higher resolution for I and P pictures, requires a relatively small amount of additional memory as compared to decoding at the lower resolution. Experimental results will demonstrate the improvement in video quality achieved by the addition of the higher-resolution data in forming predictions for P pictures.

  3. Numerical analysis on bandwidth and growth rate of plasma-filled gyrotron devices

    International Nuclear Information System (INIS)

    The linear theory of a plasma-loaded gyrotron amplifier is studied in the fast and mixed wave modes. The analysis is done for an infinitely hollow thin electron beam, as the electrons have the same energy and angular momentum. The plasma is assumed to be cold. In the numerical analysis, the plasma has electrons and ions, with dielectric coefficient ε. The system configuration consists of the cylindrical plasma column loaded inside the electron beam and is placed parallel to the axis of conductive cylinder. There is a strong magnetic field, B0êz along the axis of the cylinder. The dispersion relation is derived with the Vlasov-Maxwell's equations. The effects of beam location, plasma column radius, electron beam parameters and azimuthal harmonic number on the growth rate for fast and mixed wave modes are investigated. Results show that the growth rate and bandwidth of the mixed wave mode is larger than the fast wave mode. It is shown that the bandwidth of this structure is largest for small value of the axial momentum spread. (author)

  4. A voltage regulator system with dynamic bandwidth boosting for passive UHF RFID transponders

    International Nuclear Information System (INIS)

    This paper presents a voltage regulator system for passive UHF RFID transponders, which contains a rectifier, a limiter, and a regulator. The rectifier achieves power by rectifying the incoming RF energy. Due to the huge variation of the rectified voltage, a limiter at the rectifier output is used to clamp the rectified voltage. In this paper, the design of a limiter circuit is discussed in detail, which can provide a stable limiting voltage with low sensitivity to temperature variation and process dispersion. The key aspect of the voltage regulator system is the dynamic bandwidth boosting in the regulator. By sensing the excess current that is bypassed in the limiter during periods of excess energy, the bias current as well as the bandwidth of the regulator are increased, the output supply voltage can recover quickly from line transients during the periods of no RF energy to a full blast of RF energy. This voltage regulator system is implemented in a 0.18 μm CMOS process. (semiconductor integrated circuits)

  5. Addressing the Bandwidth issue in End-to-End Header Compression over IPv6 Tunneling Mechanism

    Directory of Open Access Journals (Sweden)

    Dipti Chauhan

    2015-08-01

    Full Text Available One day IPv6 is going to be the default protocol used over the internet. But till then we are going to have the networks which IPv4, IPv6 or both networks. There are a number of migration technologies which support this transition like dual stack, tunneling & header translation. In this paper we are improving the efficiency of IPv6 tunneling mechanism, by compressing the IPv6 header of the tunneled packet as IPv6 header is of largest length of 40 bytes. Here the tunnel is a multi hop wireless tunnel and results are analyzed on the basis of varying bandwidth of wireless network. Here different network performance parameters like throughput, End-to-End delay, Jitter, and Packet delivery ratio are taken into account and the results are compared with uncompressed network. We have used Qualnet 5.1 Simulator and the simulation results shows that using header compression over multi hop IPv6 tunnel results in better network performance and bandwidth savings than uncompressed network.

  6. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg-transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron b...

  7. State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy

    CERN Document Server

    Kang, W N; Lee, N H; Williams, R J; 10.1214/08-AAP591

    2009-01-01

    We consider a connection-level model of Internet congestion control, introduced by Massouli\\'{e} and Roberts [Telecommunication Systems 15 (2000) 185--201], that represents the randomly varying number of flows present in a network. Here, bandwidth is shared fairly among elastic document transfers according to a weighted $\\alpha$-fair bandwidth sharing policy introduced by Mo and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] [$\\alpha\\in (0,\\infty)$]. Assuming Poisson arrivals and exponentially distributed document sizes, we focus on the heavy traffic regime in which the average load placed on each resource is approximately equal to its capacity. A fluid model (or functional law of large numbers approximation) for this stochastic model was derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083] by two of the authors. Here, we use the long-time behavior of the solutions of the fluid model established in that paper to derive a property called multiplicative state space col...

  8. Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond

    Science.gov (United States)

    Chipaux, M.; Toraille, L.; Larat, C.; Morvan, L.; Pezzagna, S.; Meijer, J.; Debuisschert, T.

    2015-12-01

    We propose an original analog method to perform instantaneous and quantitative spectral analysis of microwave signals. An ensemble of nitrogen-vacancy (NV) centers held in a diamond plate is pumped by a 532 nm laser. Its photoluminescence is imaged through an optical microscope and monitored by a digital camera. An incoming microwave signal is converted into a microwave field in the area of the NV centers by a loop shaped antenna. The resonances induced by the magnetic component of that field are detected through a decrease of the NV centers photoluminescence. A magnetic field gradient induces a Zeeman shift of the resonances and transforms the frequency information into spatial information, which allows for the simultaneous analysis of the microwave signal in the entire frequency bandwidth of the device. The time dependent spectral analysis of an amplitude modulated microwave signal is demonstrated over a bandwidth of 600 MHz , associated to a frequency resolution of 7 MHz , and a refresh rate of 4 ms . With such integration time, a field of a few hundreds of μ W can be detected. Since the optical properties of NV centers can be maintained even in high magnetic field, we estimate that an optimized device could allow frequency analysis in a range of 30 GHz , only limited by the amplitude of the magnetic field gradient. In addition, an increase of the NV centers quantity could lead both to an increase of the microwave sensitivity and to a decrease of the minimum refresh rate down to a few μ s .

  9. Power allocation, bit loading and sub-carrier bandwidth sizing for OFDM-based cognitive radio

    Directory of Open Access Journals (Sweden)

    Desai Uday

    2011-01-01

    Full Text Available Abstract The function of the Radio Resource Management module of a Cognitive Radio (CR system is to evaluate the available resources and assign them to meet the Quality of Service (QoS objectives of the Secondary User (SU, within some constraints on factors which limit the performance of the Primary User (PU. While interference mitigation to the PU spectral band from the SU's transmission has received a lot of attention in recent literature; the novelty of our work is in considering a more realistic and effective approach of dividing the PU into sub-bands, and ensuring that the interference to each of them is below a specified threshold. With this objective, and within a power budget, we execute the tasks of power allocation, bit loading and sizing the sub-carrier bandwidth for an orthogonal frequency division multiplexing (OFDM-based SU. After extensively analyzing the solution form of the optimization problems posed for the resource allocation, we suggest iterative algorithms to meet the aforementioned objectives. The algorithm for sub-carrier bandwidth sizing is novel, and not previously presented in literature. A multiple SU scenario is also considered, which entails assigning sub-carriers to the users, besides the resource allocation. Simulation results are provided, for both single and multi-user cases, which indicate the effectiveness of the proposed algorithms in a CR environment.

  10. High-gain, high-bandwidth, rail-to-rail, constant-gm CMOS operational amplifier

    Science.gov (United States)

    Huang, Hong-Yi; Wang, Bo-Ruei

    2013-01-01

    This study presents a high-gain, high-bandwidth, constant-gm , rail-to-rail operational amplifier (op-amp). The constant transconductance is improved with a source-to-bulk bias control of an input pair. A source degeneration scheme is also adapted to the output stage for receiving wide input range without degradation of the gain. Additionally, several compensation schemes are employed to enhance the stability. A test chip is fabricated in a 0.18 µm complementary metal-oxide semiconductor process. The active area of the op-amp is 181 × 173 µm2 and it consumes a power of 2.41 mW at a supply voltage of 1.8 V. The op-amp achieves a dc gain of 94.3 dB and a bandwidth of 45 MHz when the output capacitive load is connected to an effective load of 42.5 pF. A class-AB output stage combining a slew rate (SR) boost circuit provides a sinking current of 6 mA and an SR of 17 V/µs.

  11. Fast Stiffness Mapping of Cells Using High-Bandwidth Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Andrew; Vijayraghavan, Karthik; Solgaard, Olav; Butte, Manish J

    2016-01-26

    The cytoskeleton controls cellular morphology and mediates the mechanical interactions between a cell and its environment. Atomic force microscopy (AFM) has the unique capability to map cytoskeletal mechanics and structures with nanometer resolution. However, whole-cell cytomechanical imaging with conventional AFM techniques is limited by low imaging speed. Here, we present fast nanomechanical mapping of cells using high-bandwidth AFM (HB-AFM), where >10(6) nanoindentation measurements were acquired in ∼10 min-a task that would take weeks to finish using conventional AFM. High-bandwidth measurements enabled capture of the entire tip-sample interaction for each tap on cells, engendering a new measurement ("force phase") that exceeds the contrast of conventional tapping mode and enabling spectral visualization of >10 harmonics. The abundance of measurements allowed discovery of subtle cytomechanical features, including the stiffness of fibers of the cellular spectrin network in situ. This approach bridges HB-AFM and high-harmonic imaging and opens future opportunities for measuring the dynamic mechanical properties of living cells. PMID:26554581

  12. Narrow-bandwidth high-order harmonics driven by long-duration hot spots

    Science.gov (United States)

    Kozlov, Maxim; Kfir, Ofer; Fleischer, Avner; Kaplan, Alex; Carmon, Tal; Schwefel, Harald G. L.; Bartal, Guy; Cohen, Oren

    2012-06-01

    We predict and investigate the emission of high-order harmonics by atoms that cross intense laser hot spots that last for a nanosecond or longer. An atom that moves through a nanometer-scale hot spot at characteristic thermal velocity can emit high-order harmonics in a similar fashion to an atom that is irradiated by a short-duration (picosecond-scale) laser pulse. We analyze the collective emission from a thermal gas and from a jet of atoms. In both cases, the line shape of a high-order harmonic exhibits a narrow spike with spectral width that is determined by the bandwidth of the driving laser. Finally, we discuss a scheme for producing long-duration laser hot spots with intensity in the range of the intensity threshold for high-harmonic generation. In the proposed scheme, the hot spot is produced by a long laser pulse that is consecutively coupled to a high-quality micro-resonator and a metallic nano-antenna. This system may be used for generating ultra-narrow bandwidth extreme-ultraviolet radiation through frequency up-conversion of a low-cost compact pump laser.

  13. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications. PMID:24723832

  14. Biases caused by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers

    Directory of Open Access Journals (Sweden)

    V. Meunier

    2012-11-01

    Full Text Available More so than the traditional fixed radiometers, the scanning radiometer requires a careful design to ensure high quality measurements. Here the impact of the radiometer characteristics (e.g. antenna beam width, receiver bandwidth and atmospheric propagation (e.g. curvature of the earth and refractivity on the scanning radiometer measurements are presented. A forward radiative transfer model that includes all these effects to represent the instrument measurements is used to estimate the biases as differences between the measurement with and without these characteristics for three commonly used frequency bands: K, V and W-band. The receiver channel bandwidth errors are not so important in K-band and W-band. Thus, the use of a wider bandwidth to improve detection at low signal-to-noise conditions is acceptable. The impact of the antenna beam width is higher than the receiver bandwidth, but, for V-band where they are of similar importance. Using simple regression algorithms, the effects of the bandwidth and beam width biases in liquid water path, integrated water vapor, and temperature are also examined. The largest errors in liquid water path and integrated water vapor are associated with the beam width errors.

  15. A method for the possible species discrimination of juvenile gadoids by broad-bandwidth backscattering spectra vs. angle of incidence

    DEFF Research Database (Denmark)

    Lundgren, Bo; Nielsen, J. Rasmus

    2008-01-01

    Measurements were made of the broad-bandwidth (80-220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad-bandwidth ec......Measurements were made of the broad-bandwidth (80-220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad......-bandwidth echosounder and echo-processor system, a narrowband 120 kHz split-beam echosounder, a large tank, and a fishnet cage. The net cage was centred on the acoustic beams and was virtually transparent, both acoustically and optically. Accurate three-dimensional positions and angular orientations of individual fish......, alignment of acoustic and optical-reference frames, and automatic position-fitting of fish models to manually marked fix-points on fish images. The software also performs Fourier spectrum analysis and pulse-shape analysis of broad-bandwidth echoes. Therefore, several measurement series on free...

  16. Bandwidth broadening effect in a traveling-wave-tube amplifier by using impulse electron beam

    International Nuclear Information System (INIS)

    This paper reports on a wideband amplification mechanism involving an impulse electron beam. To prove broadband amplification with the impulse beam, we perform 3-dimensional particle-in-cell (3D PIC) code simulation. An impulse electron beam with a pulse width of 1 ns with electric potential 17.2 kV is injected into an interaction circuit of a coupled-cavity traveling-wave-tube (CCTWT) driven by a continuous-wave (CW) signal of 29.1 GHz. The resulting output bandwidth was 2.96%, and the peak output power of 713 W was the same as that obtained with CW operation at a single frequency. The simulation yielded very similar results with ultra short impulse signal from the simulation.

  17. Propagation of the ultrashort pulsed beam with ultrabroad bandwidth in the dispersive medium

    International Nuclear Information System (INIS)

    In this paper we have investigated the propagation of the ultrashort pulsed beam with ultrabroad spectral width in the dispersive medium. A general (3+1)-dimensional [(3+1)D] propagation equation first order in the propagation coordinate is derived by using the extended paraxial approximation, which does not resort to the envelope and carrier frequency. This equation can provide an accurate description of the evolution of the ultrashort pulsed beam through the nonlinear dispersive medium, with the numerical value of the spectral bandwidth being bigger than the carrier frequency and considering the absolute frequency. The dispersive and loss coefficients are introduced, and their impacts on the pulse propagation are discussed. In the case of linear propagation, a family of exact solutions of the (3+1)D equation in dispersive media has been obtained, which represents the ultrashort pulse evolving due to gain (loss), dispersion, and diffraction

  18. ±25ppm repeatable measurement of trapezoidal pulses with 5MHz bandwidth

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Cerqueira Bastos, Miguel; Martino, Michele

    2015-01-01

    High-quality measurements of pulses are nowadays widely used in fields such as radars, pulsed lasers, electromagnetic pulse generators, and particle accelerators. Whilst literature is mainly focused on fast systems for nanosecond regime with relaxed metrological requirements, in this paper, the high-performance measurement of slower pulses in microsecond regime is faced. In particular, the experimental proof demonstration for a 15 MS/s,_25 ppm repeatable acquisition system to characterize the flat-top of 3 ms rise-time trapezoidal pulses is given. The system exploits a 5MHz bandwidth circuit for analogue signal processing based on the concept of flat-top removal. The requirements, as well as the conceptual and physical designs are illustrated. Simulation results aimed at assessing the circuit performance are also presented. Finally, an experimental case study on the characterization of a pulsed power supply for the klystrons modulators of the Compact Linear Collider (CLIC) under study at CERN is reported. In ...

  19. Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads

    DEFF Research Database (Denmark)

    Gautier, Laurent; Lund, Ole

    2013-01-01

    reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this...... approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script....... Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future...

  20. Effect of Source Bandwidth, Focusing and Fluence on the Depth Of Cure in Polymer Dental Composites

    Science.gov (United States)

    Pradhan, Ranjit; Melikechi, Noureddine; Eichmiller, Frederick

    2000-03-01

    Photo-curable polymer dental composites are widely used in restorative dental applications. These composites are typically cured using a conventional curing lamp with broad band visible irradiation between 400-500 nm. Argon ion laser-based sources are now available in dentistry for curing applications. This work reports on the dependence of depth of cure on the wavelength bandwidth, the focusing geometry and the irradiation fluence of the curing light source. The depth of cure resulting from a narrow band irradiation source such as the 488 line of the Argon ion laser is observed to be higher than that resulting from broadband irradiation sources such as the curing lamp or the multiline Argon ion laser with lines between 450-500 nm. For the same total irradiation energy deposited into the polymer a focused beam yields higher depth of cure than a non-focused beam.

  1. Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe

    Science.gov (United States)

    Wincheski, Russell A.; Simpson, John

    2010-01-01

    The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.

  2. Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth

    International Nuclear Information System (INIS)

    We study the frequency-angular line shape for a phase-matched nonlinear process producing entangled states and show that there is a continuous variety of maximally entangled states generated for different mismatch values within the natural bandwidth. Detailed considerations are made for two specific methods of polarization entanglement preparation, based on type-II spontaneous parametric down-conversion (SPDC) and on SPDC in two subsequent type-I crystals producing orthogonally polarized photon pairs. It turns out that different Bell states are produced at the center of the SPDC line and on its slopes, corresponding to about half-maximum intensity level. These Bell states can be filtered out by either frequency selection or angular selection, or both. Our theoretical calculations are confirmed by a series of experiments, performed for the two above-mentioned schemes of producing polarization-entangled photon pairs and with two kinds of measurements: frequency selective and angular selective

  3. On Bandwidth Efficient Modulation for High-Data-Rate Wireless LAN Systems

    Directory of Open Access Journals (Sweden)

    Stolpman Victor

    2002-01-01

    Full Text Available We address the problem of high-data-rate orthogonal frequency division multiplexed (OFDM systems under restrictive bandwidth constraints. Based on recent theoretic results, multiple-input multiple-output (MIMO configurations are best suited for this problem. In this paper, we examine several MIMO configurations suitable for high rate transmission. In all scenarios considered, perfect channel state information (CSI is assumed at the receiver. In constrast, availability of CSI at the transmitter is addressed separately. We show that powerful space-time codes can be developed by combining some simple well-known techniques. In fact, we show that for certain configurations, these space-time MIMO configurations are near optimum in terms of outage capacity as compared to previously published codes. Performance evaluation of these techniques is demonstrated within the IEEE 802.11a framework via Monte Carlo simulations.

  4. High bandwidth pickup design for bunch arrival-time monitors for free-electron laser

    Science.gov (United States)

    Angelovski, Aleksandar; Kuhl, Alexander; Hansli, Matthias; Penirschke, Andreas; Schnepp, Sascha M.; Bousonville, Michael; Schlarb, Holger; Bock, Marie Kristin; Weiland, Thomas; Jakoby, Rolf

    2012-11-01

    In this paper, we present the design and realization of high bandwidth pickup electrodes with a cutoff frequency above 40 GHz. The proposed cone-shaped pickups are part of a bunch arrival-time monitor designed for high (>500pC) and low (20 pC) bunch charge operation mode providing for a time resolution of less than 10 fs for both operation modes. The proposed design has a fast voltage response, low ringing, and a resonance-free spectrum. For assessing the influence of manufacturing tolerances on the performance of the pickups, an extensive tolerance study has been performed via numerical simulations. A nonhermetic model of the pickups was built for measurement and validation purposes. The measurement and simulation results are in good agreement and demonstrate the capability of the proposed pickup system to meet the given specifications.

  5. High Bandwidth Pickup Design for Bunch Arrival-time Monitors for Free-Electron Laser

    CERN Document Server

    Angelovski, Aleksandar; Hansli, Matthias; Penirschke, Andreas; Schnepp, Sascha M; Bousonville, Michael; Schlarb, Holger; Bock, Marie Kristin; Weiland, Thomas; Jakoby, Rolf

    2012-01-01

    In this paper, we present the design and realization of high bandwidth pickup electrodes with a cutoff frequency above 40 GHz. The proposed cone-shaped pickups are part of a bunch arrival-time monitor (BAM) designed for high (> 500 pC) and low (20 pC) bunch charge operation mode providing for a time resolution of less than 10 fs for both operation modes. The proposed design has a fast voltage response, low ringing, and a resonance-free spectrum. For assessing the influence of manufacturing tolerances on the performance of the pickups, an extensive tolerance study has been performed via numerical simulations. A non-hermetic model of the pickups was built for measurement and validation purposes. The measurement and simulation results are in good agreement and demonstrate the capability of the proposed pickup system to meet the given specifications.

  6. A novel low-swing interconnect optimization model with delay and bandwidth constraints

    International Nuclear Information System (INIS)

    Interconnect power and repeater area are important in the interconnect optimization of nanometer scale integrated circuits. Based on the RLC interconnect delay model, by wire sizing, wire spacing and adopting low-swing interconnect technology, this paper proposed a power-area optimization model considering delay and bandwidth constraints simultaneously. The optimized model is verified based on 65-nm and 90-nm complementary metal-oxide semiconductor (CMOS) interconnect parameters. The verified results show that averages of 36% of interconnect power and 26% of repeater area can be saved under 65-nm CMOS process. The proposed model is especially suitable for the computer-aided design of nanometer scale systems-on-chip. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

    Science.gov (United States)

    Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith; Griffin, Robert G; Temkin, Richard J

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  8. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization

    Science.gov (United States)

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  9. High bandwidth secondary electron detection in variable pressure scanning electron microscopy using a Frisch grid

    Science.gov (United States)

    Morgan, S. W.; Phillips, M. R.

    2008-03-01

    The bandwidth and contrast of secondary electron (SE) images obtained using variable pressure scanning electron microscopy are enhanced when a grounded Frisch grid is placed between the SE detecting anode and the negatively biased stage. The improvement in SE image quality occurs as a consequence of the grounded Frisch grid electrostatically screening the 'slow' induced ion current signal, generated below the grid, from the induced current detected above the grid by the anode. Ion induced artefacts, such as image smearing at fast scan rates, are virtually eliminated using a Frisch grid. Gas amplification data are presented to illustrate that gas gain can be optimized by varying the Frisch grid-stage (amplification region) separation Frisch grid-anode (drift region) separation and stage bias.

  10. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  11. Broad-bandwidth and low-loss metamaterials:theory, design and realization

    Institute of Scientific and Technical Information of China (English)

    LI Le-wei; YAO Hai-ying; WU Qun; CHEN Zhi-ning

    2006-01-01

    In this paper, we summarize some recent activities in the field ofmetamaterial research at the National University of Singapore (NUS). Integral equations are applied for electromagnetic modelling of supernatural materials. Some special characteristics of the metamaterials are shown. Moreover, quasi-static Lorentz theory and numerical method (i.e., the method of moments for solving the electric field integral equation) and the transmission line theory are both presented to obtain the effective constitutive relations of metamaterials, respectively. Finally, feasibility of fabricating metamaterials based on analysis of equivalent transmission line model in the microwave spectrum and even higher is also shown and correspondingly some broad-bandwidth and low-loss metamaterial structures are designed and synthesized.

  12. Virtual queueing techniques for UBR+ service in ATM with fair access and minimum bandwidth guarantee

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.Y.; Wu, Y.; Ren, W.

    1998-11-01

    The ATM Forum is currently discussing the need for a new best-effort service called UBR+, which is an enhancement to the existing UBR service, to support data traffic. The objective of the UBR+ service is to provide each user with a minimum service rate guarantee and a fair access to any excess available bandwidth. In this paper, the authors present a new efficient scheme for supporting this service. The key advantage of the scheme is that it employs only FIFO queueing (instead of per-VC queueing) and admits simple implementation in ATM switches. The ideas involve a simple scheduling mechanism that is based on per-VC queueing and incorporate the virtual queueing technique that can efficiently emulate per-VC queueing on a shared FIFO queue. Simulation results are presented to show that the schemes can deliver almost ideal performance for supporting the new service requirements of UBR+.

  13. An adaptive mechanism to guarantee the bandwidth fairness of TCP flows

    Institute of Scientific and Technical Information of China (English)

    张顺亮; 叶澄清

    2004-01-01

    End-to-end TCP (transmission control protocol) congestion control can cause unfairness among multiple TCP connections with different RTT (Round Trip Time). The throughput of TCP connection is inversely proportional to its RTT. To resolve this problem, researchers have proposed many methods. The existing proposals for RTT-aware conditioner work well when congestion level is low. However, they over-protect long RTT flows and starve short RTT flows when congestion level is high. Due to this reason, an improved method based on adaptive thought is proposed. According to the congestion level of networks, the mechanism can adaptively adjust the degree of the protection to long RTT flows. Extensive simulation experiments showed that the proposed mechanism can guarantee the bandwidth fairness of TCP flows effectively and outperforms the existing methods.

  14. An adaptive mechanism to guarantee the bandwidth fairness of TCP flows

    Institute of Scientific and Technical Information of China (English)

    张顺亮; 叶澄清

    2004-01-01

    End-to-end TCP(transmission control protocol)congestion control can cause unfairness among multiple TCP connections with different RTT(Round Trip Time). The throughput of TCP connection is inversely proportional to its RTT.To resolve this problem,researchers have proposed many methods. The existing proposals for RTT-aware conditioner work well when congestion level is low. However,they over-protect long RTT flows and starve short RTT flows when congestion level is high. Due to this reason,an improved method based on adaptive thought is proposed. According to the congestion level of networks,the mechanism can adaptively adjust the degree of the protection to long RTT flows. Extensive simulation experiments showed that the proposed mechanism can guarantee the bandwidth fairness of TCP flows effectively and outperforms the existing methods.

  15. High laser bandwidth single colour multiphoton ionization spectroscopy of uranium by galvanic detection

    International Nuclear Information System (INIS)

    The uranium single colour multiphoton ionization spectrum, with high laser bandwidth excitation, was measured, in the spectral range of R6G, using the fast pulsed (∝10-9s) optogalvanic signal generated by photoionization in the dark space of a hollow cathode discharge. Results indicate that this spectrum is dense in the 570 to 610 nm spectral range. A list of the 74 most intense lines is given. The results of a try at explaining these lines by a three photon resonant or quasi-resonant scheme, using known levels of uranium, are presented. The multiphoton ionization line at 591.54 nm is a special case which is discussed more thoroughly. (orig.)

  16. Performance Analysis for Bandwidth Allocation in IEEE 802.16 Broadband Wireless Networks using BMAP Queueing

    CERN Document Server

    Kafhali, Said El; Hanini, Mohamed; Haqiq, Abdelkrim; 10.5121/ijwmn.2012.4110

    2012-01-01

    This paper presents a performance analysis for the bandwidth allocation in IEEE 802.16 broadband wireless access (BWA) networks considering the packet-level quality-of-service (QoS) constraints. Adaptive Modulation and Coding (AMC) rate based on IEEE 802.16 standard is used to adjust the transmission rate adaptively in each frame time according to channel quality in order to obtain multiuser diversity gain. To model the arrival process and the traffic source we use the Batch Markov Arrival Process (BMAP), which enables more realistic and more accurate traffic modelling. We determine analytically different performance parameters, such as average queue length, packet dropping probability, queue throughput and average packet delay. Finally, the analytical results are validated numerically.

  17. Performance Analysis for Bandwidth Allocation in IEEE 802.16 Broadband Wireless Networks using BMAP Queueing

    Directory of Open Access Journals (Sweden)

    Said EL KAFHALI

    2012-03-01

    Full Text Available This paper presents a performance analysis for the bandwidth allocation in IEEE 802.16 broadband wireless access (BWA networks considering the packet-level quality-of-service (QoS constraints. Adaptive Modulation and Coding (AMC rate based on IEEE 802.16 standard is used to adjust the transmission rate adaptively in each frame time according to channel quality in order to obtain multiuser diversity gain. To model the arrival process and the traffic source we use the Batch Markov Arrival Process (BMAP, which enables more realistic and more accurate traffic modelling. We determine analytically different performance parameters, such as average queue length, packet dropping probability, queue throughput and average packet delay. Finally, the analytical results are validated numerically.

  18. Bandwidth manipulation of quantum light by an electro-optic time lens

    CERN Document Server

    Karpinski, Michal; Wright, Laura J; Smith, Brian J

    2016-01-01

    The ability to manipulate the spectral-temporal waveform of optical pulses has enabled a wide range of applications from ultrafast spectroscopy to high-speed communications. Extending these concepts to quantum light has the potential to enable breakthroughs in optical quantum science and technology. However, filtering and amplifying often employed in classical pulse shaping techniques are incompatible with non-classical light. Controlling the pulsed mode structure of quantum light requires efficient means to achieve deterministic, unitary manipulation that preserves fragile quantum coherences. Here we demonstrate an electro-optic method for modifying the spectrum of non-classical light by employing a time lens. In particular we show highly-efficient wavelength-preserving six-fold compression of single-photon spectral intensity bandwidth, enabling over a two-fold increase of single-photon flux into a spectrally narrowband absorber. These results pave the way towards spectral-temporal photonic quantum informati...

  19. Performance of the CMS Tracker Optical Links and Future Upgrade Using Bandwidth Efficient Digital Modulation

    CERN Document Server

    Dris, Stefanos; Troska, J

    2006-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator will begin operation in 2007. The innermost CMS subdetector, the Tracker, comprises ~10 million detector channels read out by ~40 000 analog optical links. The optoelectronic components have been designed to meet the stringent requirements of a high energy physics (HEP) experiment in terms of radiation hardness, low mass and low power. Extensive testing has been performed on the components and on complete optical links in test systems. Their functionality and performance in terms of gain, noise, linearity, bandwidth and radiation hardness is detailed. Particular emphasis is placed on the gain, which directly affects the dynamic range of the detector data. It has been possible to accurately predict the variation in gain that will be observed throughout the system. A simulation based on production test data showed that the average gain would be ~38% higher than the design target at the Tracker operating temperatur...

  20. Bistatic synthetic aperture radar imaging using wide-bandwidth continuous-wave sources

    Science.gov (United States)

    Soumekh, Mehrdad

    1998-10-01

    Monostatic and bistatic Synthetic Aperture Radar (SAR) imaging systems with Wide-Bandwidth Continuous-Wave (WB-CW) sources have been utilized for military reconnaissance. WB-CW sources are less susceptible than FM-CW sources to Electronic Counter Measures (ECM). The main shortcoming of the WB-CW microwave illumination is that its resultant SAR echoed signal is not composed of distinct Doppler spreading around specific tones; this creates difficulties to formulate the image formation in the WB-CW SAR systems via the conventional pulse or FM-CW SAR imaging algorithms. The current paper outlines a Time Domain Correlation (TDC) processing method and a Fourier-based processing method for image formation in WB-CW monostatic and bistatic SAR systems. Results are provided.

  1. High bandwidth secondary electron detection in variable pressure scanning electron microscopy using a Frisch grid

    International Nuclear Information System (INIS)

    The bandwidth and contrast of secondary electron (SE) images obtained using variable pressure scanning electron microscopy are enhanced when a grounded Frisch grid is placed between the SE detecting anode and the negatively biased stage. The improvement in SE image quality occurs as a consequence of the grounded Frisch grid electrostatically screening the 'slow' induced ion current signal, generated below the grid, from the induced current detected above the grid by the anode. Ion induced artefacts, such as image smearing at fast scan rates, are virtually eliminated using a Frisch grid. Gas amplification data are presented to illustrate that gas gain can be optimized by varying the Frisch grid-stage (amplification region) separation Frisch grid-anode (drift region) separation and stage bias

  2. A fourth-order bandwidth-reconfigurable delta—sigma modulator for audio applications

    International Nuclear Information System (INIS)

    A single loop fourth-order delta—sigma modulator is presented for audio applications. A reconfigurable mechanism is adopted for two bandwidth-based modes (8 kHz/16 kHz). Manufactured in the SMIC 0.13 μm CMOS mixed signal process, the chip consumes low power (153.6 μW) and occupies a core area of 0.98 × 0.46 mm2. The presented modulator achieves an 89.3 dB SNR and 90.2 dB dynamic range in 16 kHz mode, as well as a 90.2 dB SNR and 86 dB dynamic range in 8 kHz mode. The designed modulator shows a very competitive figure of merit among state-of-the-art low voltage modulators. (semiconductor integrated circuits)

  3. Broad working bandwidth and "endlessly" single-mode guidance within hybrid silicon photonics.

    Science.gov (United States)

    Bougot-Robin, K; Hugonin, J-P; Besbes, M; Benisty, H

    2015-08-01

    The successes of nonlinear photonics and hybrid silicon photonics with a growing variety of functional materials entail ever-enlarging bandwidths. It is best exemplified by parametric comb frequency generation. Such operation challenges the dielectric channel waveguide as the basis for guidance, because of the adverse advent of higher order modes at short wavelengths. Surprisingly, the popular mechanism of endlessly single-mode guidance [Opt. Lett.22, 961 (1997).] operating in photonic crystal fibers has not been transposed within silicon photonics yet. We outline here the strategy and potential of this approach within planar and hybrid silicon photonics, whereby in-plane and vertical confinement are shown to be amenable to near-single-mode behavior in the typical silicon band, i.e., λ=1.1  μm to ∼5  μm. PMID:26258345

  4. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  5. Asynchronous detection of optical code division multiple access signals using a bandwidth-efficient and wavelength-aware receiver.

    Science.gov (United States)

    Fok, Mable P; Deng, Yanhua; Prucnal, Paul R

    2010-04-01

    We experimentally demonstrate what we believe to be a novel detection scheme for interfacing asynchronous optical code division multiple access (CDMA) signals with an electronic clock and data recovery system that operates only at the baseband bandwidth. This allows using a large optical bandwidth expansion factor in which the optical chip rate is much larger than the bandwidth of the optoelectronic receiver. The received optical CDMA signal is launched into a four-wave-mixing-based wavelength-aware all-optical front end that rejects multiaccess interference, followed by an amplitude-noise suppression stage comprised of a semiconductor optical amplifier. The clean signal is then converted into a non-return-to-zero-like signal by a baseband receiver. Using the proposed detection scheme, asynchronous transmission and detection of optical CDMA signals is implemented. With the novel detection scheme, the classic CDMA near-far problem is mitigated, and error-free detection is easily obtained. PMID:20364229

  6. Incident IR Bandwidth Effects on Efficiency and Shaping for Third Harmonic Generation of Quasi-Rectangular UV Longitudinal Profiles

    International Nuclear Information System (INIS)

    The photocathode of the proposed LCLS RF Photoinjector will be irradiated by uv laser light which is generated as the third harmonic of incident fundamental ir laser light. We have investigated quantitatively the effect of input ir spectral bandwidth on the exiting longitudinal intensity profiles, energy conversion efficiencies and spectral bandwidths that characterize the third harmonic generation (THG) process with a pair of crystals. These profiles, efficiencies and bandwidths include the residual fundamental and residual second harmonic light exiting the second crystal. The intrinsic acceptance bandwidth for THG is determined by crystal material and thickness as well as the type of phase matching that is used. For our case of BBO material with type I phase matching these bandwidths are approximately 0.9 nm*cm and 0.1 nm*cm for second and third harmonic generation respectively. Consequently for fixed crystal thicknesses and a fixed input ir longitudinal profile, the specified input ir bandwidth will determine the profiles, efficiencies and bandwidths exiting the second crystal. The results reported here are predictions of the SNLO code that is available as 'freeware' from the Sandia National Laboratories. It has been modified for this work. It is critical to note that this modification has enabled us to generate SNLO predictions of the 'coupled' case in which the output of the first crystal is used as input to the second crystal. Our focus is the dependence of uv longitudinal intensity profile and THG efficiency on the input ir bandwidth and crystal thicknesses. We include here cases that best illustrate input bandwidth effects. The criteria for selection of reported cases are highest efficiency generation of quasi-rectangular uv profiles with proportional intensity ripple less than 5% rms on the plateau of the pulse. Maximizing THG efficiency typically amounts to maximizing the crystal thicknesses with the longitudinal profile constraint. The specified incident

  7. Incident IR Bandwidth Effects on Efficiency and Shaping for Third Harmonic Generation of Quasi-Rectangular UV Longitudinal Profiles

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-07

    The photocathode of the proposed LCLS RF Photoinjector will be irradiated by uv laser light which is generated as the third harmonic of incident fundamental ir laser light. We have investigated quantitatively the effect of input ir spectral bandwidth on the exiting longitudinal intensity profiles, energy conversion efficiencies and spectral bandwidths that characterize the third harmonic generation (THG) process with a pair of crystals. These profiles, efficiencies and bandwidths include the residual fundamental and residual second harmonic light exiting the second crystal. The intrinsic acceptance bandwidth for THG is determined by crystal material and thickness as well as the type of phase matching that is used. For our case of BBO material with type I phase matching these bandwidths are approximately 0.9 nm*cm and 0.1 nm*cm for second and third harmonic generation respectively. Consequently for fixed crystal thicknesses and a fixed input ir longitudinal profile, the specified input ir bandwidth will determine the profiles, efficiencies and bandwidths exiting the second crystal. The results reported here are predictions of the SNLO code that is available as 'freeware' from the Sandia National Laboratories. It has been modified for this work. It is critical to note that this modification has enabled us to generate SNLO predictions of the 'coupled' case in which the output of the first crystal is used as input to the second crystal. Our focus is the dependence of uv longitudinal intensity profile and THG efficiency on the input ir bandwidth and crystal thicknesses. We include here cases that best illustrate input bandwidth effects. The criteria for selection of reported cases are highest efficiency generation of quasi-rectangular uv profiles with proportional intensity ripple less than 5% rms on the plateau of the pulse. Maximizing THG efficiency typically amounts to maximizing the crystal thicknesses with the longitudinal profile constraint

  8. On-demand QoS routing protocol based on energy and bandwidth requirement in Ad Hoc networks

    Institute of Scientific and Technical Information of China (English)

    Shi Weiren; Huang Chao; Lei Luning; Huang Jian

    2008-01-01

    Along with the emergence of real-time muhi-media, interactive service, real-time voice and other services calling for high quality of service, there should be a good network to support those services. Most present route algo-rithms with computational complexity hardly consider the restriction of node energy, so it degrades the whole capabil-ity of network. Bandwidth guarantee is one of the most crucial factors in real-time application, and this paper brings forward a distributed on-demand QoS routing protocol based on energy and bandwidth requirement. This QoS routing protocol makes use of bandwidth calculation algorithm and analyzes its route mechanism. The simulation results veri-fy its validity. The QoS routing protocol improves the packet delivery fraction and average end-to-end delay, prolongs the network lifetime, enhances the network performance and satisfies the route requirement for ad hoc networks.

  9. Bandwidth smearing in infrared long-baseline interferometry. Application to stellar companion search in fringe-scanning mode

    CERN Document Server

    Lachaume, Régis

    2013-01-01

    In long-baseline interferometry, bandwidth smearing of an extended source occurs at finite bandwidth when its different components produce interference packets that only partially overlap. In this case, traditional model fitting or image reconstruction using standard formulas and tools lead to biased results. We propose and implement a method to overcome this effect by calculating analytically a corrective term for the conventional interferometric observables: the visibility amplitude and closure phase. For that purpose, we model the interferogram taking into account the finite bandwidth and the instrumental differential phase. We obtain generic expressions for the visibility and closure phase in the case of temporally-modulated interferograms, either processed using Fourier analysis or with the ABCD method. The expressions can be used to fit arbitrary models to the data. We then apply our results to the search and characterisation of stellar companions with PIONIER at the Very Large Telescope Interferometer,...

  10. Optimization Design Parameters of Electro-optic Modulators for Low Loss Wide Bandwidth Capability of Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-06-01

    Full Text Available The effects of temperature, and operating signal wavelength on high frequency radio frequency transmission characteristics are deeply investigated against various materials based electro optic modulator devices such as lithium Niobate (LiNbO3, polymer, and semiconductor materials. On the other hand, we have developed the optimization of the electro optic modulator parameters where the effective index plays an essential role in the evaluation of the bandwidth structure. The effects of design parameters on the modulating voltage and optical bandwidth are also investigated for different materials based electro optic modulators by using rigorous transmission modeling techniques. The low loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high capacity optical communication systems has required the use of modulation techniques in optical transmitters and receivers. This paper has presented the low loss wide bandwidth for different electrooptic modulators based on design of optimization parameters for high speed transmission performance.

  11. Joint Bandwidth and Power Allocation for MIMO Two-Way Relays-Assisted Overlay Cognitive Radio Systems

    KAUST Repository

    Alsharoa, Ahmad

    2015-10-08

    This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.

  12. A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    YAO Xin-feng; YAO Xia; TIAN Yong-chao; NI Jun; LIU Xiao-jun; CAO Wei-xing; ZHU Yan

    2013-01-01

    Plant nitrogen (N) uptake is a good indicator of cropNstatus. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plantNuptake (gNm-2) in winter wheat (Triticum aestivum L.). The data were collected from the ground-based hyperspectral reflectance measurements in eight field experiments on winter wheat of different years, eco-sites, varieties,Nrates, sowing dates, and densities. The plantNuptake index (PNUI) based on NDVI of 807 nm combined with 736 nm was selected as the optimal vegetation index, and a linear model was developed with R2 of 0.870 and RMSE of 1.546 gNm-2 for calibration, and R2 of 0.834, RMSE of 1.316 gNm-2, slope of 0.934, and intercept of 0.001 for validation. Then, the effect of the bandwidth of central wavelengths on model performance was determined based on the interaction between central wavelength and bandwidth expansion. The results indicated that the optimal bandwidth varies with the changes of the central wavelength and with the interaction between the two bands in one vegetation index. These findings are important for prediction and diagnosis of plantNuptake more precise and accurate in crop management.

  13. Tunnel diode amplifiers and their background noise as a function of the polarization point, the temperature, and the bandwidth

    International Nuclear Information System (INIS)

    The author presents mathematical and graphical methods for the study of the stability of tunnel diode circuits. He gives an application to the realization of three amplifiers. Then he describes a theoretical and experimental investigation of the noise of these amplifiers and of its variations with the bias, the temperature and the bandwidth. (author)

  14. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian;

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in...

  15. Towards 400GBASE 4-lane Solution Using Direct Detection of MultiCAP Signal in 14 GHz Bandwidth per Lane

    OpenAIRE

    Iglesias Olmedo, Miguel; Tianjian, Zuo; Jensen, Jesper Bevensee; Qiwen, Zhong; Xu, Xiaogeng; TAFUR MONROY, Idelfonso

    2013-01-01

    We report on an experimental demonstration of 102 Gbit/s transmission over a 15km single wavelength and polarization fiber link with 14GHz 3dB bandwidth. Novel multiband CAP signaling allows for a 4-lane 400GBASE long reach solution.

  16. ARMA-based spectral bandwidth for evaluation of bowel motility by the analysis of bowel sounds

    International Nuclear Information System (INIS)

    Approximately 10%–20% of adults and adolescents suffer from irritable bowel syndrome (IBS) worldwide. IBS is characterized by chronic gastrointestinal dysfunction which may reflect in altered motility. Currently, the diagnosis of IBS is made through expensive invasive radiographic and endoscopic examinations. However these are inconvenient and unsuited for community screening. Bowel sounds (BSs) can be easily recorded with non-invasive and low-cost equipment. Recently, several researchers have pointed out changes in features obtained from BS according to the pathological condition of bowel motility. However a widely accepted, simple automatic BS detection algorithm still has to be found, and the appropriate recording period needs to be investigated for further evaluation of bowel motility. In this study we propose a novel simple automatic method to detect the BSs based on the 3 dB bandwidth of the frequency peaks in the autoregressive moving average spectrum. We use the measure, sound-to-sound interval (SSI) obtained by the proposed method, to capture bowel motility. In this paper, we show that the proposed method for automatic detection could achieve a sensitivity of 87.8±5.88%, specificity of 91.7±4.33% and area under the curve of 0.923 when working on 16 healthy volunteers during mosapride administrations. Furthermore, we show that the measured SSI averaged over a period of 30 min can clearly capture bowel motility. Our findings should have the potential to contribute toward developing automated BS-based diagnosis of IBS. (paper)

  17. Relaxor-PT single crystals for broad bandwidth, high power sonar projectors

    Science.gov (United States)

    Sherlock, Nevin P.

    2010-06-01

    The high piezoelectric response of the ferroelectric relaxor (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMNT) in single crystal form has generated significant interest in producing broad bandwidth SONAR systems. Both the piezoelectric coefficient (d33 > 2000 pC/N) and coupling coefficient (k33 > 0.90) are superior to those of conventional piezoelectric ceramics. Within the context of a high power acoustic projector, its high losses and low temperature stability have limited its development. Second generation single crystals with compositions modified from the base PMNT have been recently developed to decrease the electromechanical losses and mitigate the thermal property dependence. In this work, the electromechanical properties were measured using single crystals which have been modified in various ways. The modified crystals exhibit electromechanically "hard" behavior with lower losses (tan delta = 0.1--0.2% and QM = 230--950) than unmodified PMNT (tan delta = 0.26% and QM = 190). The measured d33 values of modified single crystals (d33 = 760--1490 pm/V) are also lower than unmodified PMNT (d33 = 1540 pm/V), but the lower piezoelectric response is compensated by the greater stability of the modified single crystals. These modified single crystal properties were also compared to conventional high power piezoelectric ceramics ( d33 = 240 pm/V and QM = 1050) to show similar losses but significantly greater response in the modified PMNT single crystals. Although most piezoelectric materials are measured under small signal conditions (small signal defined by a completely linear relationship between the input and output signals), the high power nature of SONAR projectors demands that these modified single crystals also be evaluated under high power conditions. A test procedure was developed to measure the electromechanical properties of each material as a function of applied electric field over a frequency range which includes the resonance frequency. Modified single crystals

  18. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems

    Science.gov (United States)

    Rosenberg, Louis B.

    1998-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  19. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths

    CERN Document Server

    Datta, R; Niemack, M D; McMahon, J J; Britton, J; Wollack, E J; Beall, J; Devlin, M J; Fowler, J; Gallardo, P; Hubmayr, J; Irwin, K; Newburgh, L; Nibarger, J P; Page, L; Quijada, M A; Schmitt, B L; Staggs, S T; Thornton, R; Zhang, L

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 degrees with low cross-polarization. We describe the design, tolerance, m...

  20. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanlong, E-mail: xuyanlong814@sina.com

    2015-09-04

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. - Highlights: • Shear horizontal wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. • Calculations on band structure and transmission show that the graded layered media possess very large band gaps. • Finite element method confirms that waves in band gaps are spatially enhanced and stopped by the graded units. • The study suggests that the graded structure possesses the property of manipulating elastic waves spatially.