WorldWideScience

Sample records for bandwidth rotary fast

  1. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, Richard Clement [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  2. High Bandwidth Short Stroke Rotary Fast Tool Servo

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  3. Rotary fast tool servo system and methods

    Science.gov (United States)

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  4. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  5. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ju; Sprau, Gary

    2017-06-25

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.

  6. New methods for more effective use of bandwidth in MPLS networks with fast rerouting

    Science.gov (United States)

    Matsuoka, Yasuyuki; Kurimoto, Takashi; Nishikido, Jun; Urushidani, Shigeo

    2002-09-01

    Multi-protocol label switching (MPLS) technology is useful for IP Virtual Private Networks (IP-VPNs), guaranteeing bandwidth in IP (Internet Protocol) networks, and carrying out traffic engineering with explicit routing. The advantage of MPLS is its high capability to achieve of reliable networks when used with Fast Rerouting. However, Fast Rerouting requires a lot of network resources. This is because, for the rapid recovery of end-to-end communications after detection of failures, secondary LSPs must already have been reserved as detours in case there are failures on primary node-to-node links. The sharing of bandwidth among secondary LSPs is thus significant as a way of reducing the usage of network resources when Fast Rerouting is applied. In this paper, we propose a new routing algorithm in which bandwidth is shared among the secondary LSPs for multiple primary LSPs. This algorithm produces efficient network-level LSP designs. Three approaches to the dynamical changing of Open Shortest Path First (OSPF) link-cost metrics are applied in the algorithm. Each approach improves efficiency in the sharing of LSPs. The approaches are (1) the broader distribution of primary LSPs to reduce the need for detours in cases of single failures, (2) the concentration of secondary LSPs on links to increase the possibilities for bandwidth sharing, and (3) the distribution of secondary LSPs that cater to a certain failure, thus increasing the numbers of detouring LSPs which are independent of each other on the respective links. The scheme provides a slight improvement over the results of the conventional Dijkstra-algorithm calculation which is used in conventional OSPF. The proposed algorithms are applied with various network models that have been proposed in IETF Internet drafts, e.g.,

  7. Reducing the Disk IO Bandwidth Bottleneck through Fast Floating Point Compression using Accelerators

    Directory of Open Access Journals (Sweden)

    Ajith Padyana

    2014-03-01

    Full Text Available Compute-intensive tasks in high-end high performance computing (HPC systems often generate large amounts of data, especially floating-point data that need to be transmitted over the network. Although computation speeds are very high, the overall performance of these applications is affected by the data transfer overhead. Moreover, as data sets are growing in size rapidly, bandwidth limitations pose a serious bottleneck in several scientific applications. Fast floating point compression can ameliorate the bandwidth limitations. If data is compressed well, then the amount of data transfer is reduced. This reduction in data transfer time comes at the expense of the increased computation required by compression and decompression. It is important for compression and decompression rates to be greater than the network bandwidth; otherwise, it will be faster to transmit uncompressed data directly [1]. Accelerators such as Graphics Processing Units (GPU provide much computational power. In this paper, we show that the computational power of GPUs and CellBE processor can be harnessed to provide sufficiently fast compression and decompression for this approach to be effective for data produced by many practical applications. In particularly, we use Holt`s Exponential smoothing algorithm from time series analysis, and encode the difference between its predictions and the actual data. This yields a lossless compression scheme. We show that it can be implemented efficiently on GPUs and CellBE to provide an effective compression scheme for the purpose of saving on data transfer overheads The primary contribution of this work lies in demonstrating the potential of floating point compression in reducing the I/O bandwidth bottleneck on modern hardware for important classes of scientific applications.

  8. Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design.

    Science.gov (United States)

    Liang, Jinyang; Becker, Michael F

    2014-09-20

    Designing near-field computer-generated holograms (CGHs) for a spatial light modulator (SLM) requires backward diffraction calculations. However, direct implementation of the discrete computational model of the Fresnel diffraction integral often produces inaccurate reconstruction. Finite sizes of the SLM and the target image, as well as aliasing, are major sources of error. Here we present a new design prescription for precise near-field CGHs based on comprehensive analysis of the spatial bandwidth. We demonstrate that, by controlling two free variables related to the target image, the designed hologram is free from aliasing and can have minimum error. To achieve this, we analyze the geometry of the target image, hologram, and Fourier transform plane of the target image to derive conditions for minimizing reconstruction error due to truncation of spatial frequencies lying outside of the hologram. The design prescription is verified by examples showing reconstruction error versus controlled parameters. Finally, it is applied to precise three-dimensional image reconstruction.

  9. Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers.

    Science.gov (United States)

    Pesala, Bala; Sedgwick, Forrest; Uskov, Alexander V; Chang-Hasnain, Connie

    2007-11-26

    Ultra fast non-linear processes are used to achieve an advance of 2 ps for a 600 fs pulse propagating through two SOAs in series. This corresponding 3.3-pulse advance is tuned continuously by changing the current applied to the devices. We propose an experimental scheme that uses a single SOA in a loop to emulate the propagation of pulse through multiple cascaded SOAs.

  10. Wide-bandwidth drift-scan pulsar surveys of globular clusters: application to early science observations with FAST

    Science.gov (United States)

    Zhang, Lei; Hobbs, George; Li, Di; Lorimer, Duncan; Zhang, Jie; Yu, Meng; Yue, You-Ling; Wang, Pei; Pan, Zhi-Chen; Dai, Shi

    2016-10-01

    The Five-hundred-meter Aperture Spherical Telescope (FAST) will begin its early-science operations during 2016. Drift-scan pulsar surveys will be carried out during this period using an ultra-wide-band receiver system (covering ∼ 270 to 1620 MHz). We describe a method for accounting for the changes in the telescope beam shape and the pulsar parameters when searching for pulsars over such a wide bandwidth. We applied this method to simulated data sets of pulsars in globular clusters that are visible to FAST and found that a representative observation would have a sensitivity of ∼ 40 μJy. Our results showed that a single drift-scan (lasting less than a minute) is likely to find at least one pulsar for observations of four globular clusters. Repeated observations will increase the likely number of detections. We found that pulsars in ∼16 clusters are likely to be found if the data from 100 drift-scan observations of each cluster are incoherently combined.

  11. Wide-bandwidth drift-scan pulsar surveys of globular clusters: application to early science observations with FAST

    Science.gov (United States)

    Zhang, Lei; Hobbs, George; Li, Di; Lorimer, Duncan; Zhang, Jie; Yu, Meng; Yue, You-Ling; Wang, Pei; Pan, Zhi-Chen; Dai, Shi

    2016-10-01

    The Five-hundred-meter Aperture Spherical Telescope (FAST) will begin its early-science operations during 2016. Drift-scan pulsar surveys will be carried out during this period using an ultra-wide-band receiver system (covering ˜ 270 to 1620 MHz). We describe a method for accounting for the changes in the telescope beam shape and the pulsar parameters when searching for pulsars over such a wide bandwidth. We applied this method to simulated data sets of pulsars in globular clusters that are visible to FAST and found that a representative observation would have a sensitivity of ˜ 40 μJy. Our results showed that a single drift-scan (lasting less than a minute) is likely to find at least one pulsar for observations of four globular clusters. Repeated observations will increase the likely number of detections. We found that pulsars in ˜16 clusters are likely to be found if the data from 100 drift-scan observations of each cluster are incoherently combined.

  12. Design and Implementation of the Control System for a 2 kHz Rotary Fast Tool Servo

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, R C; Trumper, D L

    2004-03-29

    This paper presents a summary of the performance of our 2 kHz rotary fast tool servo and an overview of its control systems. We also discuss the loop shaping techniques used to design the power amplifier current control loop and the implementation of that controller in an op-amp circuit. The design and development of the control system involved a long list of items including: current compensation; tool position compensation; notch filter design and phase stabilizing with an additional pole for a plant with an undamped resonance; adding viscous damping to the fast tool servo; voltage budget for driving real and reactive loads; dealing with unwanted oscillators; ground loops; digital-to-analog converter glitches; electrical noise from the spindle motor switching power supply; and filtering the spindle encoder signal to generate smooth tool tip trajectories. Eventually, all of these topics will be discussed in detail in a Ph.D. thesis that will include this work. For the purposes of this paper, rather than present a diluted discussion that attempts to touch on all of these topics, we will focus on the first item with sufficient detail for providing insight into the design process.

  13. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    Science.gov (United States)

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

  14. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  15. 未来高带宽网络中FAST TCP与TCP Vegas的公平性分析%Fairness analysis of FAST TCP and TCP Vegas over future high-bandwidth internet

    Institute of Scientific and Technical Information of China (English)

    朱小松

    2012-01-01

    FAST TCP, a modern end-to-end protocol adopting queuing delay as a congestion measure. However, the lack of a precise measurement of queuing delay leads to a potential unfairness problem that FAST TCP flows may be discriminated against according to their starting times in a persistent congestion scenario, TCP Vegas also encounters the unfairness problem. The unfairness problem is quantitatively assessed by mathematical analysis and ns2 simulations, then, we compared FAST TCP with TCP Vegas. Consequently, FAST TCP demonstrates a competitive edge over TCP Vegas, under future high bandwidth-delay product environment. This conclusion will contribute to the improvement of FAST TCP for future reference.%FAST TCP是先进的端到端拥塞控制协议,采用队列时延作为拥塞度量.由于不能准确测得精确的队列时延,此协议中存有不公平的隐患,即在某些持续拥塞场景下,不同时刻启动的FAST TCP流会受到差别对待,TCP Vegas中同样存在不公平问题.通过数学分析和ns2仿真对这种不公平问题进行量化,进而比较FASTTCP与TCP Vegas在公平性问题上的性能差异.结果证明了在将来高带宽时延乘积网络环境下,FAST TCP在公平性上要明显优于TCP Vegas.这为对FAST TCP协议的改进给出了有价值的参照.

  16. Estimating neural background input with controlled and fast perturbations: A bandwidth comparison between inhibitory opsins and neural circuits

    Directory of Open Access Journals (Sweden)

    David Eriksson

    2016-08-01

    Full Text Available To test the importance of a certain cell type or brain area it is common to make a lack of function experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 milliseconds before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled lack of function experiments, but, it also suggests that such a lack of function experiment can be used to measure the context of local neural computations.

  17. Rotary Transformer

    Science.gov (United States)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  18. Rotary ATPases

    Science.gov (United States)

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  19. Rotary capacitor

    CERN Multimedia

    1971-01-01

    The rotating wheel of the rotary capacitor representing the most critical part of the new radio-frequency system of the synchro-cyclotron. The three rows of teeth on the circumference of the wheel pass between four rows of stator blades with a minimum clearance of 1 mm at a velocity of 1700 rev/min.

  20. High torque miniature rotary actuator

    Science.gov (United States)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  1. Black Holes, Bandwidths and Beethoven

    CERN Document Server

    Kempf, A

    2000-01-01

    It is usually believed that a function whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component. This is in fact not the case, as Aharonov, Berry and others drastically demonstrated with explicit counter examples, so-called superoscillations. The claim is that even the recording of an entire Beethoven symphony can occur as part of a signal with 1Hz bandwidth. Superoscillations have been suggested to account e.g. for transplanckian frequencies of black hole radiation. Here, we give an exact proof for generic superoscillations. Namely, we show that for every fixed bandwidth there exist functions which pass through any finite number of arbitrarily prespecified points. Further, we show that the behavior of bandlimited functions can be reliably characterized through an uncertainty relation for the standard deviation of the signals' samples taken at the Nyquist rate. This uncertainty relation generalizes to time-varying bandwidths.

  2. Black Holes, Bandwidths and Beethoven

    OpenAIRE

    Kempf, A.

    1999-01-01

    It is usually believed that a function whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component. This is in fact not the case, as Aharonov, Berry and others drastically demonstrated with explicit counter examples, so-called superoscillations. It has been claimed that even the recording of an entire Beethoven symphony can occur as part of a signal with 1Hz bandwidth. Bandlimited functions also occur as ultraviolet regularized fields. Their superoscillations...

  3. Weak-quasi-bandwidth and forward-bandwidth of graphs

    Institute of Scientific and Technical Information of China (English)

    原晋江

    1996-01-01

    Concepts of weak-quasi-bandwidth and forward-bandwidth of graphs are introduced. They are used to studythe following problems in graph theory: bandwidth, topological bandwidth, fill-in, profile, path-width, tree-width.

  4. Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Angmo, Dechan

    2013-01-01

    carbon[5] and copper has been discussed whereas copper is unlikely to yield the necessary cost reduction and resistance to oxidation. Most reports have employed flatbed or rotary screen printing whereas other methods are available and described later on. The important question to answer is which...... technique is most suited for manufacture of polymer solar cell modules in terms of technical yield, materials use and processing speed? Evidently the back electrode has to be of high conductivity, which implies the use of a thick electrode. Therefore thick film printing techniques such as the screen...... printing techniques have proven excellent while they do present disadvantages in speed due to significant drying requirements but also they do require significant amounts of material.[2,6] In this paper we employ four different roll-to-roll (R2R) printing methods for printing silver back electrodes...

  5. Black holes, bandwidths and Beethoven

    Science.gov (United States)

    Kempf, Achim

    2000-04-01

    It is usually believed that a function φ(t) whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component ωmax. This is, in fact, not the case, as Aharonov, Berry, and others drastically demonstrated with explicit counterexamples, so-called superoscillations. It has been claimed that even the recording of an entire Beethoven symphony can occur as part of a signal with a 1 Hz bandwidth. Bandlimited functions also occur as ultraviolet regularized fields. Their superoscillations have been suggested, for example, to resolve the trans-Planckian frequencies problem of black hole radiation. Here, we give an exact proof for generic superoscillations. Namely, we show that for every fixed bandwidth there exist functions that pass through any finite number of arbitrarily prespecified points. Further, we show that, in spite of the presence of superoscillations, the behavior of bandlimited functions can be characterized reliably, namely through an uncertainty relation: The standard deviation ΔT of samples φ(tn) taken at the Nyquist rate obeys ΔT>=1/4ωmax. This uncertainty relation generalizes to variable bandwidths. For ultraviolet regularized fields we identify the bandwidth as the in general spatially variable finite local density of degrees of freedom.

  6. Rotary filtration system

    Science.gov (United States)

    Herman, David T.; Maxwell, David N.

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  7. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  8. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  9. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  10. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  11. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  12. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  13. Bandwidth Reconfigurable Metamaterial Arrays

    Directory of Open Access Journals (Sweden)

    Nathanael J. Smith

    2014-01-01

    Full Text Available Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM array’s bandwidth from 280 MHz to 2800 MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with the wideband MTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s reconfiguration to address a variety of responses.

  14. An Improved Rotary Mechanism Engine

    Directory of Open Access Journals (Sweden)

    M.L Kumar

    1977-01-01

    Full Text Available Developments in the field of rotary engines have been reviewed. Potential of scissor action type rotary engine with suitable innovations on linkage and multirotor configuration has been brought out.

  15. Smart hybrid rotary damper

    Science.gov (United States)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  16. Rotary mechanical latch

    Science.gov (United States)

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  17. Low-bandwidth authentication.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Patrick Joseph; McIver, Lauren; Gaines, Brian R.; Anderson, Erik; Collins, Michael Joseph; Thomas,Kurt Adam; McDaniel, Austin

    2007-09-01

    Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

  18. Low-bandwidth authentication.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Patrick Joseph; McIver, Lauren; Gaines, Brian R.; Anderson, Erik; Collins, Michael Joseph; Thomas,Kurt Adam; McDaniel, Austin

    2007-09-01

    Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

  19. Bandwidth in bolometric interferometry

    Science.gov (United States)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  20. Rotary jagas stipendiume

    Index Scriptorium Estoniae

    2009-01-01

    Pärnu Rotary klubi aastapäevapeol 11. mail Ammende villas anti stipendium viiele Pärnumaa noorele, teiste seas pälvis preemia Pärnu Ülejõe Gümnaasiumi muusikaõpetaja Fred Rõigas ja Pärnu Muusikakoolis trompetit õppiv Chris Sommer

  1. Rotary jagas stipendiume

    Index Scriptorium Estoniae

    2009-01-01

    Pärnu Rotary klubi aastapäevapeol 11. mail Ammende villas anti stipendium viiele Pärnumaa noorele, teiste seas pälvis preemia Pärnu Ülejõe Gümnaasiumi muusikaõpetaja Fred Rõigas ja Pärnu Muusikakoolis trompetit õppiv Chris Sommer

  2. Bandwidth in bolometric interferometry

    CERN Document Server

    Charlassier, R; Hamilton, J -Ch; Kaplan, J; Malu, S

    2009-01-01

    Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. Using an angular power spectrum estimator ...

  3. Bandwidth Trading as Incentive

    Science.gov (United States)

    Eger, Kolja; Killat, Ulrich

    In P2P networks with multi-source download the file of interest is fragmented into pieces and peers exchange pieces with each other although they did not finish the download of the complete file. Peers can adopt different strategies to trade upload for download bandwidth. These trading schemes should give peers an incentive to contribute bandwidth to the P2P network. This chapter studies different trading schemes analytically and by simulations. A mathematical framework for bandwidth trading is introduced and two distributed algorithms, which are denoted as Resource Pricing and Reciprocal Rate Control, are derived. The algorithms are compared to the tit-for-tat principle in BitTorrent. Nash Equilibria and results from simulations of static and dynamic networks are presented. Additionally, we discuss how trading schemes can be combined with a piece selection algorithm to increase the availability of a full copy of the file. The chapter closes with an extension of the mathematical model which takes also the underlying IP network into account. This results in a TCP variant optimised for P2P content distribution.

  4. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  5. Piezoelectric Rotary Tube Motor

    Science.gov (United States)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  6. Rotary deformity in degenerative spondylolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    1994-05-15

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected.

  7. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  8. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  9. Rotary and Magnus balances

    Science.gov (United States)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  10. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    1995-01-01

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the biocompati

  11. Rotary actuator for space applications

    Science.gov (United States)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  12. Ultrahigh bandwidth signal processing

    Science.gov (United States)

    Oxenløwe, Leif Katsuo

    2016-04-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, and hence useful for all types of data signals including coherent multi-level modulation formats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signals. In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral magnification of the OFDM signal. Utilising such telescopic arrangements, it has become possible to perform a number of interesting functionalities, which will be described in the presentation. This includes conversion from OFDM to Nyquist WDM, compression of WDM channels to a single Nyquist channel and WDM regeneration. These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platforms like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described.

  13. Theoretical Calculation of MMF's Bandwidth

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-fu; JIANG De-sheng; YU Hai-hu

    2004-01-01

    The difference between over-filled launch bandwidth (OFL BW) and restricted mode launch bandwidth (RML BW) is described. A theoretical model is founded to calculate the OFL BW of grade index multimode fiber (GI-MMF),and the result is useful to guide the modification of the manufacturing method.

  14. Estimating Bottleneck Bandwidth using TCP

    Science.gov (United States)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  15. Bandwidth of Gaussian weighted Chirp

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.

    1993-01-01

    Four major time duration and bandwidth expressions are calculated for a linearly frequency modulated sinusoid with Gaussian shaped envelope. This includes a Gaussian tone pulse. The bandwidth is found to be a nonlinear function of nominal time duration and nominal frequency excursion of the chirp...

  16. Rotary cup slurry atomization

    Science.gov (United States)

    Sommer, H. T.; Marnicio, R. J.

    1983-06-01

    The theory of a two-phase flow in a rotating cup atomizer is described. The analysis considers the separation of the solid and liquid media thus realistically modeling the flow of two layers along the inner cup wall: a slurry of increasing solids concentration and a supernatent liquid layer. The analysis is based on the earlier work of Hinze and Milborn (1950) which addressed the flow within a rotary cup for a homogeneous liquid. The superimposition of a settling velocity under conditions of high centrifugal acceleration permits the extended analysis of the separation of the two phases. Appropriate boundary conditions have been applied to the film's free surface and the cup wall and to match the flow characteristics at the liquid-slurry interface. The changing slurry viscosity, increasing nonlinearly with growing solid loading, was also considered. A parameter study illustrates the potential for a cup design to provide optimal slurry and liquid film thicknesses for effective atomization.

  17. Upgrade trigger: Bandwidth strategy proposal

    CERN Document Server

    Fitzpatrick, Conor; Meloni, Simone; Boettcher, Thomas Julian; Whitehead, Mark Peter; Dziurda, Agnieszka; Vesterinen, Mika Anton

    2017-01-01

    This document describes a selection strategy for the upgrade trigger using charm signals as a benchmark. The Upgrade trigger uses a 'Run 2-like' sequence consisting of a first and second stage, in between which the calibration and alignment is performed. The first stage, HLT1, uses an inclusive strategy to select beauty and charm decays, while the second stage uses offline-quality exclusive selections. A novel genetic algorithm-based bandwidth division is performed at the second stage to distribute the output bandwidth among different physics channels, maximising the efficiency for useful physics events. The performance is then studied as a function of the available output bandwidth.

  18. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  19. Control of the rotary inverted pendulum through threshold-based communication.

    Science.gov (United States)

    Casanova, Vicente; Alcaína, José; Salt, Julián; Pizá, Ricardo; Cuenca, Ángel

    2016-05-01

    This paper deals with the real implementation of an event-based control structure for the classical rotary inverted pendulum. The communication between controller and plant is performed through Ethernet (TCP/IP) which leads to a Networked Control System. The bandwidth used by the control loop is reduced, compared with the one that needs a conventional control, by using a threshold-based communication. The values of the thresholds have been determined by means of simulation techniques. The results over the real plant show how this technique can reach a significant reduction of the bandwidth consumed with a negligible worsening of the performance.

  20. Adiabatic Wankel type rotary engine

    Science.gov (United States)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  1. Rotary and Rotary-Percussive Drilling of Lunar Simulant

    Science.gov (United States)

    Paulsen, G.; Zacny, K.; Maksymuk, M.; Wilson, J.; Santoro, C.; Chu, P.; Davis, K.; Roberts, D.; Kumar, N.; Kusack, A.

    2008-12-01

    Honeybee Robotics has been developing a rotary and a rotary-preliminary drill system for planetary exploration. This is a test drill with a power rating of 1000 Watt, whose purpose it to test various drill bits and augers in rotary and rotary percussive operation. It is not optimized for power or mass but rather to acquire qualitative drilling data such as penetration rate, power, and torque, temperature, Weight on Bit, vibration energy and others. In addition, the design of the drill allows it to acquire drill bit temperatures and use pneumatic system (instead of augers) for removing of rock cuttings. The drill is designed to have a 1 meter stroke. In addition to the drill system, we have been developing a matching split vacuum chamber, which is 3ft wide, 3ft deep and 11 feet tall. The chamber consists of two smaller chambers (84 inches tall and 48 inches tall) assembled on top of each other. This allows for additional flexibility if only a smaller chamber is required for some testing. The chamber will be able to maintain pressure of below 1 torr. Maintaining sample temperature will be achieved by closed loop cooling system down to -40C or by using liquid nitrogen that allows a temperature of 77K. The test samples can be varied raging from solid rocks, to loose soils to icy soils and pure ice. The sample holder could also be integrated with temperatures for acquiring of thermal data during drilling process.

  2. Upgrade trigger: Bandwidth strategy proposal

    CERN Document Server

    Boettcher, Thomas Julian; Meloni, Simone; Whitehead, Mark Peter; Williams, Mark Richard James

    2017-01-01

    This document describes a proposed selection strategy for the upgrade trigger using charm signals as a benchmark. The Upgrade trigger uses a 'Run2-like' sequence consisting of a first and second stage, in between which the calibration and alignment is performed. The first stage, HLT1, uses an inclusive strategy to select beauty and charm, while the second stage uses offline-quality exclusive selections. A novel genetic algorithm-based bandwidth division is performed at the second stage to maximise the output of useful physics events, and a range of possible signal efficiencies are presented as a function of the available bandwidth.

  3. Mining Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  4. A 750MHz and a 8GHz High Bandwidth Digital FFT Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The scope of this project is to to develop a wide bandwidth, low power, and compact single board digital Fast Fourier Transform spectrometer (FFTS) optimized for the...

  5. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  6. Rotary condenser for SC2

    CERN Multimedia

    1975-01-01

    During 1975 the SC2 performance was improved among other things by redesigning some of the elements of the ROTCO (Annual Report 1975, p. 55). The photo shows an interior wiew of the housing of the rotary condenser and of the sixteen sets of shaped stator blades.

  7. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  8. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng

    2014-01-01

    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  9. Advancements in rotary steerable technology

    Energy Technology Data Exchange (ETDEWEB)

    Buker, M. [Phoenix Technology Services, Calgary, AB (Canada)

    2001-07-01

    The preferred method of drilling horizontal and directional wells is to use conventional measurement while drilling (MWD) systems and mud motors. However, this method has demonstrated some inefficiencies even though it has been used on thousands of wells. The process of slide drilling can result in undesirable doglegs, hole cleaning problems and reduced weight to the bit. A viable alternative to mud motors is rotary steerable technology, which in recent years, has undergone major transformation. Phoenix Technology Services markets and services a rotary steerable system called the Well Director Automatic Directional Drilling System. This paper described rotary steerable technology in general and then focused on the product developed by Phoenix which is in the final stages of becoming commercially available. The mechanical, hydraulic and data transmission methods for the Well Director were described. The tool has to pass a test of drilling without problems for the length of a bit run, and the re-programming function of the tool has to be de-bugged before the Well Director can be commercialized. Phoenix is confident that the tool offers operators a way to drill wellbores more quickly, smoothly and accurately than with conventional technology. 1 tab., 1 fig.

  10. Algorithms and Requirements for Measuring Network Bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Guojun

    2002-12-08

    This report unveils new algorithms for actively measuring (not estimating) available bandwidths with very low intrusion, computing cross traffic, thus estimating the physical bandwidth, provides mathematical proof that the algorithms are accurate, and addresses conditions, requirements, and limitations for new and existing algorithms for measuring network bandwidths. The paper also discusses a number of important terminologies and issues for network bandwidth measurement, and introduces a fundamental parameter -Maximum Burst Size that is critical for implementing algorithms based on multiple packets.

  11. Improving the Bandwidth Selection in Kernel Equating

    Science.gov (United States)

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  12. 47 CFR 2.202 - Bandwidths.

    Science.gov (United States)

    2010-10-01

    ... RULES AND REGULATIONS Emissions § 2.202 Bandwidths. (a) Occupied bandwidth. The frequency bandwidth such.... Facsimile Analogue facsimile by sub-carrier frequency modulation of a single-sideband emission with reduced...: 1980 Hz=1.98 kHz 1K98F3C 5. Composite Emissions (See Table III-B) Radio-relay system,...

  13. Dynamic bandwidth allocation in GPON networks

    DEFF Research Database (Denmark)

    Ozimkiewiez, J.; Ruepp, Sarah Renée; Dittmann, Lars

    2009-01-01

    Two Dynamic Bandwidth Allocation algorithms used for coordination of the available bandwidth between end users in a GPON network have been simulated using OPNET to determine and compare the performance, scalability and efficiency of status reporting and non status reporting dynamic bandwidth allo...

  14. Modeling and Analysis of A Rotary Direct Drive Servovalve

    Institute of Scientific and Technical Information of China (English)

    YU Jue; ZHUANG Jian; YU Dehong

    2014-01-01

    Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces. Current studies mainly focus on enhancing the driving force, which in turn is limited to the development of the magnetic material. Aiming at reducing the flow forces, a novel rotary direct drive servovalve(RDDV) is introduced in this paper. This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber. The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve. In order to study the RDDV servovalve performance, flow rate model and mechanical model are established, wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained. The model analysis shows that the driving torque can be alleviated due to the proposed valve structure. Computational fluid dynamics(CFD) analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis. In addition, experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out. Both simulation and experimental results conform to the results of the theoretical model analysis, which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics. This research proposes a novel rotary direct drive servovalve, which can reduce the flow forces effectively.

  15. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centr

  16. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; Boer, de Hans; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centr

  17. Dynamics of complex fluids in rotary atomization

    Science.gov (United States)

    Keshavarz, Bavand; McKinley, Gareth; MIT, Mechanical Engineering Department Team

    2016-11-01

    We study the dynamics of fragmentation for different Newtonian and viscoelastic liquids in rotary atomization. In this process, at the rim of a spinning cup, the centripetal acceleration destabilizes the formed liquid torus due to the Rayleigh-Taylor instability. The resulting ligaments leave the liquid torus with a remarkably repeatable spacing that scales linearly with the inverse of the rotation rate. Filaments then follow a well-defined geometrical path-line that is described by the involute of the circle. Knowing the geometry of this phenomenon we derive the detailed kinematics of this process and compare it with the experimental observations. We show that the ligaments elongate tangentially to the involute of the circle and thin radially as they separate from the cup. A theoretical form is derived for the spatial variation of the filament deformation rate. Once the ligaments are far from the cup they breakup into droplets since they are not stretched fast enough (compared to the critical rate of capillary thinning). We couple these derivations with the known properties of Newtonian and viscoelastic liquids to provide a physical analysis for this fragmentation process that is compared in detail with our experiments.

  18. Construction and experimental testing of the constant-bandwidth constant-temperature anemometer.

    Science.gov (United States)

    Ligeza, P

    2008-09-01

    A classical constant-temperature hot-wire anemometer enables the measurement of fast-changing flow velocity fluctuations, although its transmission bandwidth is a function of measured velocity. This may be a source of significant dynamic errors. Incorporation of an adaptive controller into the constant-temperature system results in hot-wire anemometer operating with a constant transmission bandwidth. The construction together with the results of experimental testing of a constant-bandwidth hot-wire anemometer prototype are presented in this article. During the testing, an approximately constant transmission bandwidth of the anemometer was achieved. The constant-bandwidth hot-wire anemometer can be used in measurements of high-frequency variable flows characterized by a wide range of velocity changes.

  19. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  20. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  1. Coherent temporal imaging with analog time-bandwidth compression

    CERN Document Server

    Asghari, Mohammad H

    2013-01-01

    We introduce the concept of coherent temporal imaging and its combination with the anamorphic stretch transform. The new system can measure both temporal profile of fast waveforms as well as their spectrum in real time and at high-throughput. We show that the combination of coherent detection and warped time-frequency mapping also performs time-bandwidth compression. By reducing the temporal width without sacrificing spectral resolution, it addresses the Big Data problem in real time instruments. The proposed method is the first application of the recently demonstrated Anamorphic Stretch Transform to temporal imaging. Using this method narrow spectral features beyond the spectrometer resolution can be captured. At the same time the output bandwidth and hence the record length is minimized. Coherent detection allows the temporal imaging and dispersive Fourier transform systems to operate in the traditional far field as well as in near field regimes.

  2. SPH Simulation of Liquid Scattering from the Edge of a Rotary Atomizer

    Science.gov (United States)

    Izawa, Seiichiro; Ito, Takuya; Shigeta, Masaya; Fukunishi, Yu

    2013-11-01

    Three-dimensional incompressible SPH method is used to simulate the behavior of liquid scattering from the edge of a rotary atomizer. Rotary atomizers have been widely used for spraying, painting and coating, for instance, in the automobile industry. However, how the spray droplets are formed after leaving the edge of the rotary atomizer is not well understood, because the scale of the phenomenon is very small and the speed of rotation is very fast. The present computational result shows that while the liquid forms a film on the surface of the rotating disk of the atomizer, it quickly deforms into many thin columns after leaving the disk edge, and these columns soon break up into fine droplets which spread out in the radial direction. The size of droplets tends to become smaller with the increase in the disk rotating speed. The results show good agreement with the experimental observations.

  3. Improving the Bandwidth Utilization by Recycling the Unused Bandwidth in IEEE 802.16 Networks

    Directory of Open Access Journals (Sweden)

    Gowri T

    2012-03-01

    Full Text Available The Physical and MAC layers have been specified in IEEE 802.16 networks. The quality of service is ensured by the bandwidth reservation. The subscriber station should reserve the bandwidth more than its demand. But the bandwidth is fully utilized by SS but not all the time. So the bandwidth has recycled by the process of recycling the unused bandwidth. The main objective of the proposed scheme is to utilize the unused bandwidth by recycling and maintain the QOS service. By recycling the throughput can be improved which maintains the QOS in the proposed scheme. During this recycling process to maintain the QOS services, the amount of reserved bandwidth is not changed. The proposed scheme can utilize the unused bandwidth up to 70% on average. Protocols and the scheduling algorithms are used to improve the utilization and throughput.

  4. Rotary Valve FY 2016 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Fitsos, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-07

    The fiscal year started with the Rotary Valve (RV) being reassembled after having crashed in June of 2015. The crash occurred when the RV inner surface contacted the housing. The cause of the crash was never confirmed. No particles were found in the 2.5 thousandths of an inch gap and the filters the helium gas passed through were all clean. There were marks on the bearings that looked like electrostatic discharge as shown below in Figure 1. These marks hadn’t been seen before and there were similar discharge marks on some of the ball bearings. Examples of this were found in a literature search of bearing failures. This leads to a possible cause due to this arcing affecting the rotational accuracy of the bearings driving the RV into the housing.

  5. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  6. Directing Traffic: Managing Internet Bandwidth Fairly

    Science.gov (United States)

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  7. 47 CFR 95.633 - Emission bandwidth.

    Science.gov (United States)

    2010-10-01

    ... SERVICES Technical Regulations Technical Standards § 95.633 Emission bandwidth. (a) The authorized... frequencies 151.820 MHz, 151.880 MHz, and 151.940 MHz are limited to 11.25 kHz. (2) Emissions on frequencies... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emission bandwidth. 95.633 Section...

  8. Energy Bandwidth for Petroleum Refining Processes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  9. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  10. Unidirectional rotary motion in achiral molecular motors.

    Science.gov (United States)

    Kistemaker, Jos C M; Štacko, Peter; Visser, Johan; Feringa, Ben L

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  11. Rotary endodontics in primary teeth - A review.

    Science.gov (United States)

    George, Sageena; Anandaraj, S; Issac, Jyoti S; John, Sheen A; Harris, Anoop

    2016-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the "gold-standard" over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel-titanium (Ni-Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel-titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  12. Kinetic characteristic for a synchronal rotary compressor

    Institute of Scientific and Technical Information of China (English)

    Qu Zongchang; Feng Jianmei; Zhou Hui; Yang Hua

    2007-01-01

    An angular speed, acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed. The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper. The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle. And some key parameters affected the relative speed are found out, viz, the relative speed depends on the radius of the cylinder and rotary speed of the axis, and the ratio of the cylinder to bladed rotor has not too much influence. It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor. Also a computing formula of leakage related with rotary speed is deduced. It could supply

  13. Analysis of the Rotary Ultrasonic Machining Mechanism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ultrasonic machining (USM) is considered as an effective method for machining hard and brittle materials such as glass, engineering ceramics, semiconductors, diamonds, metal composites and so on. However, the low material removal rate due to using abrasive slurry limits further application of USM. Rotary ultrasonic machining (rotary USM) superimposes rotational movement on the tool head that vibrates at ultrasonic frequency (20 kHz) simultaneously. The tool is made of mild steel coated or bonded with diamon...

  14. Rotary impeller refinement of 7075Al alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Liping; GUO Erjun; HUANG Yongchang; LU Bin

    2009-01-01

    The effects of four parameters, gas flow, rotational speed, refining time, and stewing time, on the rotary impeller refinement of 7075 Al were studied. The effects of C2Cl6refining, rotary impeller refuting, and composite refining of 7075 AI alloy were compared with each other. The results showed that the greatest impact parameter of rotary impeller refinement was rotational speed, followed by gas flow, refining time, and stewing time. The optimum purification parameters obtained by orthogonal analysis were as follows: rotor speed of 400 r/min, inert gas flow of 0.4 mL/h, refining time of 15 min, and stewing time of 6 min. The best degassing effect can be obtained by the composite refuting of C2Cl6 and rotary impeller. The degassing rate of C2Cl6 rotary impeller, and composite refining was 34.5%, 69.2%, and 78%, respectively. The mechanical properties of the specimen refined by rotary impeller were higher than those by C2C16 refining, but lower than those by composite refining.

  15. Tunable-Bandwidth Filter System

    Science.gov (United States)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  16. A System Theoretic Approach to Bandwidth Estimation

    OpenAIRE

    Liebeherr, Jorg; Fidler, Markus; Valaee, Shahrokh

    2008-01-01

    It is shown that bandwidth estimation in packet networks can be viewed in terms of min-plus linear system theory. The available bandwidth of a link or complete path is expressed in terms of a {\\em service curve}, which is a function that appears in the network calculus to express the service available to a traffic flow. The service curve is estimated based on measurements of a sequence of probing packets or passive measurements of a sample path of arrivals. It is shown that existing bandwidth...

  17. Man-made rotary nanomotors: a review of recent developments

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-05-01

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  18. Man-Made Rotary Nanomotors: A Review of Recent Development

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-01-01

    The development rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of the state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery. PMID:27152885

  19. Man-made rotary nanomotors: a review of recent developments.

    Science.gov (United States)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z X; Zhu, F Q; Fan, D L

    2016-05-19

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  20. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  1. High-Bandwidth Hybrid Sensor (HYSENS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA has demonstrated the primary innovation of combining a precision MEMS gyro (BAE SiRRS01) with a high bandwidth angular rate sensor, ATA's ARS-14 resulting in a...

  2. Bandwidth challenge teams at SC2003 conference

    CERN Multimedia

    2003-01-01

    Results from the fourth annual High-Performance Bandwidth Challenge, held in conjunction with SC2003, the international conference on high-performance computing and networking which occurred last week in Phoenix, AZ (1 page).

  3. Polybinary modulation for bandwidth limited optical links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Jurado-Navas, Antonio

    2015-01-01

    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards...... the recent results on poly binary modulation, comprising both binary and multilevel signals as seed signals. The results will show how poly binary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency....

  4. Average Bandwidth Allocation Model of WFQ

    Directory of Open Access Journals (Sweden)

    Tomáš Balogh

    2012-01-01

    Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.

  5. Coal gasification: New challenge for the Beaumont rotary feeder

    Science.gov (United States)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  6. Pneumatic Rotary Actuator Angle Control System

    Institute of Scientific and Technical Information of China (English)

    王鹏; 彭光正; 伍清河

    2003-01-01

    Based on the adaptive control method, a kind of parameter adjustor was used to control pneumatic rotary actuator to track the expected output. The system uses electropneumatic proportional valve as control device, which adjusts the gas flow of actuator 's two cavities, then changes the pressure of cavity and pushes the piston of actuator to move, so the rotary actuator 's axis can be made to revolve to the required angle at last. According to the characteristic of pneumatic system, the control system was described with a fourth-order mathematic model. The control rule is deduced by model reference adaptive control method. By the result of experiment, it was proved that by using the adaptive control method, the output of rotary actuator could track the expected value timely and accurately.

  7. Novel precision piezoelectric step rotary actuator

    Institute of Scientific and Technical Information of China (English)

    LIU Jianfang; YANG Zhigang; ZHAO Hongwei; CHENG Guangming

    2007-01-01

    A novel piezoelectric (PZT) precision step rotary actuator was developed on the basis of PZT technology.It adopts the principle of bionics and works with an inside anchoring/loosening of the stator and a distortion structure of the uniformly distributed thin flexible hinge to solve problems such as ineffective anchoring/loosening,low step rotary frequency,small travel,poor resolution,low speed and unsteady output.The developed actuator is characterized by high frequency (30 Hz),high speed (380 μrad/s),large travel (>270°),high resolution (1 μrad/step),and work stability.It greatly improves the ability to drive the existing PZT step rotary actuator.The new actuator can be applied in the field of micromanipulation and precision engineering,including precision driving and positioning and optics engineering.

  8. FINITE ELEMENT MODELLING OF AN ULTRASONIC ROTARY MOTOR

    Directory of Open Access Journals (Sweden)

    OANA CHIVU

    2014-05-01

    Full Text Available This paper tackles the use of ultrasonic motors with three degrees of freedom in view of various applications. In nanotechnology, due to their high precision values, fast speeds and response, the piezo positioning systems have become a key component in nano printing, nano production, nano assembling, high density data acquisition etc. The present paper deals with an in-depth final element analysis of the piezoceramic and turret disk of the ultrasonic rotary motor. Hence, the variation of nodal displacements for two driving values of the. Electrodes and the angular velocity in time will be illustrated. Moreover, the research renders the frequencies of the piezoelements and ultrasonic motor drive systems according to the travelling wave and various nodal displacements.

  9. Rotary bistable and Parametrically Excited Vibration Energy Harvesting

    Science.gov (United States)

    Kurmann, L.; Jia, Y.; Hoffmann, D.; Manoli, Y.; Woias, P.

    2016-11-01

    Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the periodic modulation of at least one of the system parameters and has the potential to exhibit interesting higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when compared to the conventional direct resonant approach. However, to practically activate the more profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric resonance phenomena.

  10. Ka-band waveguide rotary joint

    KAUST Repository

    Yevdokymov, Anatoliy

    2013-04-11

    The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.

  11. Large scale probabilistic available bandwidth estimation

    CERN Document Server

    Thouin, Frederic; Rabbat, Michael

    2010-01-01

    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a pa...

  12. Ultrawide bandwidth 1.55-um lasers

    Science.gov (United States)

    Morton, Paul A.; Tanbun-Ek, Tawee; Logan, Ralph A.; Ackerman, David A.; Shtengel, Gleb E.; Yadvish, R. D.; Sergent, A. M.; Sciortino, Paul F., Jr.

    1996-04-01

    This paper describes the essential elements for creating a practical wide bandwidth directly modulated laser source. This includes considerations of the intrinsic limitations of the laser structure, due to the resonant frequency and damping of the laser output, together with carrier transport issues to allow carriers in the device active region to be efficiently modulated at high speeds. the use of a P-doped compressively strained multiple-quantum well active region to provide high intrinsic speed and remove transport limitations is described, together with record setting results of 25 GHz modulation bandwidth for a 1.55 micrometer Fabry-Perot laser and 26 GHz bandwidth for a 1.55 micrometer DFB laser. The challenges of providing high bandwidth electrical connections to the laser on a suitable submount, together with fiber attachment and microwave packaging, are discussed. Results of fully packaged 1.55 micrometer DFB lasers with 25 Ghz modulation bandwidth are shown. Digital modulation of the packaged 1.55 micrometer DFB including impedance matching is described, and the transient wavelength chirp is presented. This low chirp is reduced further using an optical filter, to provide a 10 GBit/s source with chirp similar to that of an external electroabsorption modulator.

  13. Reconstruction in Time-Bandwidth Compression Systems

    CERN Document Server

    Chan, Jacky; Asghari, Mohammad H; Jalali, Bahram

    2014-01-01

    Recently it has been shown that the intensity time-bandwidth product of optical signals can be engineered to match that of the data acquisition instrument. In particular, it is possible to slow down an ultrafast signal, resulting in compressed RF bandwidth - a similar benefit to that offered by the Time-Stretch Dispersive Fourier Transform (TS-DFT) - but with reduced temporal record length leading to time-bandwidth compression. The compression is implemented using a warped group delay dispersion leading to non-uniform time stretching of the signal's intensity envelope. Decoding requires optical phase retrieval and reconstruction of the input temporal profile, for the case where information of interest is resides in the complex field. In this paper, we present results on the general behavior of the reconstruction process and its dependence on the signal-to-noise ratio. We also discuss the role of chirp in the input signal.

  14. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the lin......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap.......A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  15. Bandwidth Assessment for MultiRotor UAVs

    Directory of Open Access Journals (Sweden)

    Ferrarese Gastone

    2017-06-01

    Full Text Available This paper is a technical note about the theoretical evaluation of the bandwidth of multirotor helicopters. Starting from a mathematical linear model of the dynamics of a multirotor aircraft, the transfer functions of the state variables that deeply affect the stability characteristics of the aircraft are obtained. From these transfer functions, the frequency response analysis of the system is effected. After this analysis, the bandwidth of the system is defined. This result is immediately utilized for the design of discrete PID controllers for hovering flight stabilization. Numeric simulations are shown to demonstrate that the knowledge of the bandwidth is a valid aid in the design of flight control systems of these machines.

  16. Improved space bandwidth product in image upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2012-01-01

    We present a technique increasing the space bandwidth product of a nonlinear image upconversion process used for spectral imaging. The technique exploits the strong dependency of the phase-matching condition in sum frequency generation (SFG) on the angle of propagation of the interacting fields...... with respect to the optical axis. Appropriate scanning of the phase-match condition (Δk=0) while acquiring images, allow us to perform monochromatic image reconstruction with a significantly increased space bandwidth product. We derive the theory for the image reconstruction process and demonstrate acquisition...... of images with >10 fold increase in space bandwidth product, i.e. the number of pixel elements, when compared to upconversion of images using fixed phase-match conditions....

  17. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  18. Rotary Engine Friction Test Rig Development Report

    Science.gov (United States)

    2011-12-01

    5  4.  Friction Rig Development 7  5.  AutoCAD ...Figure 4. Engine friction test rig AutoCAD model. ........................................................................8  Figure 5. Engine...top dead center. 8 5. AutoCAD Model Development A model of the rotary engine friction test rig was developed to determine the optimal

  19. Conceptual Study of Rotary-Wing Microrobotics

    Science.gov (United States)

    2008-03-27

    xx  I.  Introduction ...Edge TPV Thermo-Photovoltaic CONCEPTUAL STUDY OF ROTARY-WING MICROROBOTICS I. Introduction Flying micro-robots offer unimaginable military...Tweezers 1989 1 cm3 inch robot 1991 Magnetostrictive mover in pipe 1992 Insect-based robot 1993 Ciliary-motion conveyor 1994 Pipe inspection robot

  20. Numerical Modeling of Rotary Kiln Productivity Increase

    NARCIS (Netherlands)

    Romero-Valle, M.A.; Pisaroni, M.; Van Puyvelde, D.; Lahaye, D.J.P.; Sadi, R.

    2013-01-01

    Rotary kilns are used in many industrial processes ranging from cement manufacturing to waste incineration. The operating conditions vary widely depending on the process. While there are many models available within the literature and industry, the wide range of operating conditions justifies furthe

  1. Deformation analysis of rotary combustion engine housings

    Science.gov (United States)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  2. Development of a novel rotary magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime A.; Capovilla, Matheus S.; Trevizoli, Paulo V.

    2016-01-01

    A novel rotary magnetic refrigerator was designed and built at the Federal University of Santa Catarina (UFSC). The optimized magnetic circuit is a two-pole system in a rotor-stator configuration with high flux density regions of approximately 1 T. Eight pairs of stationary regenerator beds filled...

  3. Counteracting ring formation in rotary kilns

    NARCIS (Netherlands)

    Pisaroni, M.; Sadi, R.; Lahaye, D.

    Avoiding the formation of rings in rotary kilns is an issue of primary concern to the cement production industry. We developed a numerical combustion model that revealed that in our case study rings are typically formed in zones of maximal radiative heat transfer. This local overheating causes the o

  4. The performance of rotary power tiller using prototype rotary blades in dry-land field

    Directory of Open Access Journals (Sweden)

    Sirisak Chertkiattipol

    2008-11-01

    Full Text Available The effect of shape of prototype rotary blades on the performance of rotary power tiller was investigated in this study. Three sets of rotors, i.e. 14-blade rotor of the Japanese C-shape blade (4.5 cm tilling width of one blade; T1, 14-blade rotor of the prototype rotary blade no. 1 (4.5 cm tilling width of one blade; T2, and 10-blade rotor of the prototype rotary blade no. 2 (6.5 cm tilling width of one blade; T3 were used. The tests were conducted in a dry-land field of clay loam with soil moisture content of 16.04 % (d.b. and dry bulk density of 1.51 g/cm3 at different rotational speeds of 300, 350 and 400 rpm at one and two tilling passes. For all rotors, experimental results showed that the mean soil clod diameter decreased and soil inversion increased with increasing rotational speed of the rotor. The mean soil clod diameter decreased at pass 2. Soil inversion during pass 2 was higher than pass 1. However, the three sets of rotors showed no significant difference on mean soil clod diameter and soil inversion. The shape of blade prototype rotary blade no. 1 and the decreasing number of prototype rotary blade no. 2 did not affect the tillage performance as compared with the Japanese C-shaped blade.

  5. An Adaptive Bandwidth Allocation for Energy Efficient Wireless Communication Systems

    Institute of Scientific and Technical Information of China (English)

    Yung-Fa Huang,Che-Hao Li; Chuan-Bi Lin; Chia-Chi Chang

    2015-01-01

    Abstract―In this paper, an energy efficient bandwidth allocation scheme is proposed for wireless communication systems. An optimal bandwidth expansion (OBE) scheme is proposed to assign the available system bandwidth for users. When the system bandwidth does not reach the full load, the remaining bandwidth can be energy-efficiently assigned to the other users. Simulation results show that the energy efficiency of the proposed OBE scheme outperforms the traditional same bandwidth expansion (SBE) scheme. Thus, the proposed OBE can effectively assign the system bandwidth and improve energy efficiency.

  6. Confidentiality & Authentication Mechanism for Biometric Information Transmitted over Low Bandwidth & Unreliable channel

    CERN Document Server

    Singh, Raju

    2011-01-01

    The security of bio-metric information - finger print, retina mapping, DNA mapping and some other chemical and biological modified genes related information - transfer through low bandwidth and unreliable or covert channel is challenging task. Therefore, Security of biometric information is essential requirement in this fast developing communication world. Thus, in this paper, we propose efficient and effective mechanism for confidentiality and authentication for biometric information transmitted by using arithmetic encoding representation over low bandwidth and unreliable channel. It enhances the speed of encryption, decryption and authentication process. It uses arithmetic encoding scheme and public key cryptography e.g. modified version of RSA algorithm called RSA-2 algorithm.

  7. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    Science.gov (United States)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  8. Dynamic resource management using bandwidth brokers

    Institute of Scientific and Technical Information of China (English)

    Yu Chengzhi; Song Hantao; Hou Xianjun; Pan Chengsheng

    2006-01-01

    The admission control issue in the design of a centralized bandwidth broker model for dynamic control and management of QoS provisioning is studied. A two-phase differentiated flow treatment based dynamic admission control scheme under the centralized bandwidth broker model is proposed. In the proposed scheme, the flow requests are classified into two classes and get differentiated treatment according to their QoS demands. We demonstrate that this admission control scheme can not only improve the resource utilization but also guarantee the flows' QoS. Furthermore, the admission control is divided into two phases: edge admission control and interior admissio-n control. During the interior phase, the PoQ scheme is adopted, which enhances the call processing capability of the bandwidth broker. The simulation results show that the proposed scheme can result in lower flow blocking probability and higher resource utilization. And it also reduces the number of QoS state accesses/updates, thereby increasing the overall call processing capability of the bandwidth broker.

  9. A System Theoretic Approach to Bandwidth Estimation

    CERN Document Server

    Liebeherr, Jorg; Valaee, Shahrokh

    2008-01-01

    It is shown that bandwidth estimation in packet networks can be viewed in terms of min-plus linear system theory. The available bandwidth of a link or complete path is expressed in terms of a {\\em service curve}, which is a function that appears in the network calculus to express the service available to a traffic flow. The service curve is estimated based on measurements of a sequence of probing packets or passive measurements of a sample path of arrivals. It is shown that existing bandwidth estimation methods can be derived in the min-plus algebra of the network calculus, thus providing further mathematical justification for these methods. Principal difficulties of estimating available bandwidth from measurement of network probes are related to potential non-linearities of the underlying network. When networks are viewed as systems that operate either in a linear or in a non-linear regime, it is argued that probing schemes extract the most information at a point when the network crosses from a linear to a n...

  10. Wide modulation bandwidth terahertz detection in 130 nm CMOS technology

    Science.gov (United States)

    Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.

    2016-11-01

    Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.

  11. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency.

    Science.gov (United States)

    Nikiforov, Alexander; Gamez, Jose A; Thiel, Walter; Filatov, Michael

    2016-01-07

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor.

  12. Design and analysis of a new high frequency double-servo direct drive rotary valve

    Science.gov (United States)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  13. Ultra-broadband and ultra-fast optical signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2015-01-01

    We have recently seen that nanowires can provide unparalleled optical signal processing (OSP) bandwidth and provide ultra-fast operation as well. Utilising the ultra-broad OSP bandwidth for e.g. optical time lenses allows for energy-efficient optical switching. © 2015 OSA.......We have recently seen that nanowires can provide unparalleled optical signal processing (OSP) bandwidth and provide ultra-fast operation as well. Utilising the ultra-broad OSP bandwidth for e.g. optical time lenses allows for energy-efficient optical switching. © 2015 OSA....

  14. Equivalent dynamic model of DEMES rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  15. A new spin on the rotary engine

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, S.

    1995-04-01

    This article reports on a Canadian company that is trying to develop high-power, low-weight motors based on a novel axial-vane rotary engine concept. A promising new attempt at a practical rotary engine is the Rand Cam engine now being developed by Reg Technologies Inc. The Rand Cam engine is a four-stroke, positive-displacement power plant based on an axial-vane compression/expansion mechanism with only nine moving parts (eight vanes and a rotor). The new engine design uses passive ports rather than mechanically operated valves, and it features lighter-weight reciprocating parts than customary pistons. The Rand Cam operates at lower speeds than a typical Wankel engine (less than 2,000 rpm) and at higher compression ratios. Chamber sealing is accomplished using sliding axial vanes rather than the motion of an eccentric rotor.

  16. Rotary-scanning optical resolution photoacoustic microscopy

    Science.gov (United States)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  17. Rotary Mode Core Sample System availability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  18. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  19. DBAS: A Deployable Bandwidth Aggregation System

    CERN Document Server

    Habak, Karim; Harras, Khaled A

    2012-01-01

    The explosive increase in data demand coupled with the rapid deployment of various wireless access technologies have led to the increase of number of multi-homed or multi-interface enabled devices. Fully exploiting these interfaces has motivated researchers to propose numerous solutions that aggregate their available bandwidths to increase overall throughput and satisfy the end-user's growing data demand. These solutions, however, have faced a steep deployment barrier that we attempt to overcome in this paper. We propose a Deployable Bandwidth Aggregation System (DBAS) for multi-interface enabled devices. Our system does not introduce any intermediate hardware, modify current operating systems, modify socket implementations, nor require changes to current applications or legacy servers. The DBAS architecture is designed to automatically estimate the characteristics of applications and dynamically schedule various connections or packets to different interfaces. Since our main focus is deployability, we fully i...

  20. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...... measurements of the much larger reflection parameters, hence commonly used nonprecision instruments can be used to determine the transmission errors with sufficient accuracy for the highest precision obtainable in standard laboratories....

  1. Control of Rotary Cranes Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Amjed A. Al-mousa

    2003-01-01

    Full Text Available Rotary cranes (tower cranes are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them has become difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control attractive.

  2. Numerical Modeling of Rotary Kiln Productivity Increase

    OpenAIRE

    2013-01-01

    Rotary kilns are used in many industrial processes ranging from cement manufacturing to waste incineration. The operating conditions vary widely depending on the process. While there are many models available within the literature and industry, the wide range of operating conditions justifies further modeling work to improve the understanding of the processes taking place within the kiln. The kiln being studied in this work produces calcium aluminate cements (CAC). In a first stage of the pro...

  3. Maintenance cost study of rotary wing aircraft

    Science.gov (United States)

    1977-01-01

    The feasibility was studied of predicting rotary wing operation maintenance costs by using several aircraft design factors for the aircraft dynamic systems. The dynamic systems considered were engines, drives and transmissions, rotors, and flight controls. Multiple regression analysis was used to correlate aircraft design and operational factors with manhours per flight hour, and equations for each dynamic system were developed. Results of labor predictions using the equations compare favorably with actual values.

  4. Digital demodulator for wide bandwidth SAR

    DEFF Research Database (Denmark)

    Jørgensen, Jørn Hjelm

    2000-01-01

    A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...... with the output decimator. The filter required by the other channel is optimized through global search using the system level performance metrics integrated sidelobe level ratio (ISLR) and peak sidelobe level ratio (PSLR)....

  5. The Wankel rotary engine a history

    CERN Document Server

    Hege, John B

    2007-01-01

    "It stands apart from the crowd as the only history of the Wankel rotary engine that brings the story into the 21st Century"--SAH Journal; "this book continues to excel...terrific...technophiles will love this"--Hemmings Motor News; "excellent"--Hemmings Sports & Exotic Car; "a complete history...guaranteed to delight"--Old Cars Weekly; "definitive…a must-read"--Choice; "informative"--SciTech Book News; "goes a long way to explaining everything"--The Automobile. This complete and well-illustrated account traces the full history of the Wankel rotary engine and its use in various cars, motorcycles, snowmobiles and other applications. It clearly explains the working of the engine and the technical challenges it presented--the difficulty of designing effective and durable seals, early emissions troubles, high fuel consumption, and others. The work done by several companies to overcome these problems is described in detail, as are the economic and political troubles that nearly killed the rotary in the 19...

  6. Innovative collaboration important to rotary steerable drilling

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2000-05-01

    Sperry-Sun Drilling Services' recently commercialized Geo-Pilot{sup T}M rotary steerable drilling system is described. The system consists of the Geo-Pilot{sup T}M rotary steerable tool, a logging-while-drilling (LWD) system, specially designed long-gauge bits and the INSITE{sup T}M data acquisition and management system. The system brings a completely new approach to rotary steerable drilling. It uses 'point-the-bit' technology to deflect a rotating drive shaft off center, causing the drive shaft to flex and alter the direction of the drilling. The tool provides real-time steering information and at-bit inclination measurement, both of which are integrated with the INSITE{sup T}M rig information system. The real-time data can be displayed along with other formation evaluation information. The system has been evaluated at the Gas Research Institute's Oklahoma test facility; it has been used commercially by Canadian, Norwegian and US operators, with complete success. Worldwide deployment of the system is in the planning stages.

  7. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  8. INVESTIGATIONS ON OPERATION OF ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-01-01

    Full Text Available Rotary tilting furnace (RTF is a new type of fuel furnaces, that provide the most efficient heating and recycling of polydisperse materials. The paper describes results of the investigations on thermal processes in the RTF, movement of materials and non-isothermal gas flow during kiln rotary process. The investigations have been carried out while using physical and computer simulations and under actual operating conditions applying the pilot plant. Results of the research have served as a basis for development of recommendations on the RTF calculations and designing and they have been also used for constructional design of a rotary tilting furnace for heating and melting of cast iron chips, reduction smelting of steel mill scale, melting of aluminum scrap, melting of lead from battery scrap. These furnaces have a high thermal efficiency (~50 %, technological flexibility, high productivity and profitability. Proven technical solutions for recycling of ferrous and non-ferrous metals develop the use of RTF in the foundry and metallurgical industry as the main technological unit for creation of cost-effective small-tonnage recycling of metal waste generated at the plants. The research results open prospects for organization of its own production for high-quality charging material in Belarus in lieu of imported primary metal. The proposed technology makes it possible to solve environmental challenge pertaining to liquidation of multi-tonnage heaps of metal-containing wastes.

  9. Gaussian entanglement distribution with GHz bandwidth

    CERN Document Server

    Ast, Stefan; Mehmet, Moritz; Schnabel, Roman

    2016-01-01

    The distribution of Gaussian entanglement can be used to generate a mathematically-proven secure key for quantum cryptography. The distributed secret key rate is limited by the bandwidth of the nonlinear resonators used for entanglement generation, which is less than 100 MHz for current state-of-the-art setups. The development of an entanglement source with a higher bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a continuous-variable entanglement source with a bandwidth of more than 1.25 GHz. The measured entanglement spectrum was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. The measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic PPKTP crystal resonators to generate tw...

  10. Tallinna Rotary klubi valis aasta politseiniku ja narkokoera

    Index Scriptorium Estoniae

    2006-01-01

    Tallinna Rotary klubi autasustas parima narkopolitseiniku preemiaga Lõuna politseiprefektuuri narkokuritegude talituse vaneminspektorit Jarek Pavlihhinit ning parima narkokoera tiitliga vene spanjelit Allrighti

  11. modeling the effect of bandwidth allocation on network performance

    African Journals Online (AJOL)

    a control algorithm that regulates the amount of bandwidth allocated to each ... planning, development and optimization of their networks. PROBLEM ... Network bandwidth design, simulation, and management ...... A Dictionary of Mechanical.

  12. Bandwidth Scale for Frequency Spectrum of Sea Waves

    Institute of Scientific and Technical Information of China (English)

    王伟; 孙孚; 钱成春; 邓拥军

    2000-01-01

    It is well known that energy spectrum bandwidth should be able to reflect the degree of energy concentration. However, the commonly used bandwidth factors defined by Longuet-Higgins could not fit the concept satisfactorily. A new kind of spectrum bandwidth scale factor with a clear physical meaning is given in the present paper and a constant is obtained which reveals the intrinsic characteristics of sea waves. Thereby a universal relationship between significant wave height of sea waves and spectrum bandwidth is established.

  13. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    Science.gov (United States)

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  14. A passive available bandwidth estimation methodology

    OpenAIRE

    Cabellos Aparicio, Alberto; Thompson, John; García, Francisco J.; Domingo Pascual, Jordi

    2009-01-01

    The Available Bandwidth (AB) of an end-to-end path is its remaining capacity and it is an important metric for several applications such as overlay routing and P2P networking. That is why many AB estimation tools have been published recently. Most of these tools use the Probe Rate Model, which requires sending packet trains at a rate matching the AB. Its main issue is that it congests the path under measurement. We present a different approach: a novel passive methodology to estimate the AB ...

  15. Confocal microscopy via multimode fibers: fluorescence bandwidth

    Science.gov (United States)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  16. Design Robust Controller for Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.

  17. Static Model of Cement Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available In this paper, a static model of cement rotary kilns is proposed. The system model is obtained through polynomial series. The proposed model is contrasted with data of a real plant, where optimal results are obtained. Expected results are measured with respect to the clinker production and the combustible consumption is measured in relation with the consumption calorific. The expected result of the approach is the increase of the profitability of the factory through the decrease of the consumption of the combustible.

  18. Modelling and optimization of rotary parking system

    Science.gov (United States)

    Skrzyniowski, A.

    2016-09-01

    The increasing number of vehicles in cities is a cause of traffic congestion which interrupts the smooth traffic flow. The established EU policy underlines the importance of restoring spaces for pedestrian traffic and public communication. The overall vehicle parking process in some parts of a city takes so much time that it has a negative impact on the environment. This article presents different kinds of solution with special focus on the rotary parking system (PO). This article is based on a project realized at the Faculty of Mechanical Engineering of Cracow University of Technology.

  19. New Imaging Spectrometric Method for Rotary Object

    Institute of Scientific and Technical Information of China (English)

    方俊永; 赵达尊; 蒋月娟; 楚建军

    2003-01-01

    A new technique for imaging spectrometer for rotary object based on computed-tomography is proposed. A discrete model of this imaging spectrometric system is established, which is accordant to actual measurements and convenient for computation. In computer simulations with this method, projections of the object are detected by CCD while the object is rotating, and the original spectral images are numerically reconstructed from them by using the algorithm of computed-tomography. Simulation results indicate that the principle of the method is correct and it performs well for both broadband and narrow-band spectral objects.

  20. Bandwidth Estimation For Mobile Ad hoc Network (MANET

    Directory of Open Access Journals (Sweden)

    Rabia Ali

    2011-09-01

    Full Text Available In this paper we presents bandwidth estimation scheme for MANET, which uses some components of the two methods for the bandwidth estimation: 'Hello Bandwidth Estimation 'Listen Bandwidth Estimation. This paper also gives the advantages of the proposed method. The proposed method is based on the comparison of these two methods. Bandwidth estimation is an important issue in the Mobile Ad-hoc Network (MANET because bandwidth estimation in MANET is difficult, because each host has imprecise knowledge of the network status and links change dynamically. Therefore, an effective bandwidth estimation scheme for MANET is highly desirable. Ad hoc networks present unique advanced challenges, including the design of protocols for mobility management, effective routing, data transport, security, power management, and quality-of-service (QoS provisioning. Once these problems are solved, the practical use of MANETs will be realizable.

  1. Light-driven rotary molecular motors : an ultrafast optical study

    NARCIS (Netherlands)

    Augulis, Ramunas; Klok, Martin; Loosdrecht, Paul H.M. van; Feringa, Bernard

    2009-01-01

    Molecular rotary motors, though common in nature, were first synthesized rather recently. One of the most promising categories of light-driven rotary molecular motors which allow for optical control is based on helical overcrowded alkenes. In this category of motors, the rotation of the motor’s roto

  2. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; de Boer, Hans L.; Tran, T.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  3. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; Boer, de H.; Tran, T.; Berg, van den A.; Eijkel, J.C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  4. Percutaneous transluminal coronary rotary ablation with rotablator (European experience)

    NARCIS (Netherlands)

    M.E. Bertrand (Michel); J.M. Lablanche (Jean Marc); C. Bauters; P.P.T. de Jaegere (Peter); P.W.J.C. Serruys (Patrick); J. Meyer (Jurgen); U. Dietz; R. Erbel (Raimund)

    1992-01-01

    textabstractThis study reports the results from 3 European centers using rotary ablation with Rotablator, a device that is inserted into the coronary artery and removes atheroma by grinding it into millions of tiny fragments. Rotary ablation was performed in 129 patients. Primary success (reduction

  5. Engineering analysis of a rotary dryer: drying of wood particles

    Energy Technology Data Exchange (ETDEWEB)

    Kamke, F.A.

    1984-01-01

    Rotary dryers are the most commonly used wood drying system in the particleboard industry. These dryers also play an increasingly important role in drying wood residues for fuel. A rotary dryer simulation model was developed, in the form of a computer program, for the purpose of analyzing the drying behavior of wood particles. The approach used in the model development analyzed the rotary drying process in a sequential manner. Beginning with a study of particle residence time in a rotary drum, the process of heat transfer, and then mass transfer, were incorporated to yield a complete rotary dryer simulation model. The resultant computer program does not require empirical constants or equations developed for a particular rotary dryer system. Experiments on a commercially manufactured rotary dryer were performed to check the performance of the simulation model as a predictor of overall residence time and drying behavior. Comparison between the predictions and the measured results were good, indicating a percent root mean square error of 22.2 in the prediction of the outlet particle moisture content. The rotary dryer simulation model developed in this study should prove useful for optimizing process parameters in the drying of wood particles.

  6. Bandwidth Partitioning in Decentralized Wireless Networks

    CERN Document Server

    Jindal, Nihar; Weber, Steven

    2007-01-01

    This paper addresses the following question, which is of interest in the design of a multiuser decentralized network. Given a total system bandwidth of W Hz and a fixed data rate constraint of R bps for each transmission, how many frequency slots N of size W/N should the band be partitioned into in order to maximize the number of simultaneous links in the network? Dividing the available spectrum results in two competing effects. On the positive side, a larger N allows for more parallel, non-interfering communications to take place in the same area. On the negative side, a larger N increases the SINR requirement for each link because the same information rate must be achieved over less bandwidth, which in turn increases the area consumed by each transmission. Exploring this tradeoff and determining the optimum value of N in terms of the system parameters is the focus of the paper. Using stochastic geometry, the optimal SINR threshold - which directly corresponds to the optimal spectral efficiency - is derived ...

  7. Bandwidth sharing networks with multiscale traffic

    Directory of Open Access Journals (Sweden)

    Mathieu Feuillet

    2015-03-01

    Full Text Available In multi-class communication networks, traffic surges due to one class of users can significantly degrade the performance for other classes. During these transient periods, it is thus of crucial importance to implement priority mechanisms that conserve the quality of service experienced by the affected classes, while ensuring that the temporarily unstable class is not entirely neglected. In this paper, we examine the complex interaction occurring between several classes of traffic when classes obtain bandwidth proportionally to their incoming traffic. We characterize the evolution of the performance measures of the network from the moment the initial surge takes place until the system reaches its equilibrium. Using a time-space-transition-scaling, we show that the trajectories of the temporarily unstable class can be described by a differential equation, while those of the stable classes retain their stochastic nature. In particular, we show that the temporarily unstable class evolves at a time-scale which is much slower than that of the stable classes. Although the time-scales decouple, the dynamics of the temporarily unstable and the stable classes continue to influence one another. We further proceed to characterize the obtained differential equations for several simple network examples. In particular, the macroscopic asymptotic behavior of the unstable class allows us to gain important qualitative insights on how the bandwidth allocation affects performance. We illustrate these results on several toy examples and we finally build a penalization rule using these results for a network integrating streaming and surging elastic traffic.

  8. Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters

    Science.gov (United States)

    Vaughn, Israel Jacob

    Polarimetric systems design has seen recent utilization of linear systems theory for system descriptions. Although noise optimal systems have been shown, bandwidth performance has not been addressed in depth generally and is particularly lacking for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in a systematic way for remote sensing polarimetric systems design. The systematic approach facilitates both understanding of fundamental constraints and design of higher bandwidth polarimetric systems. Fundamental bandwidth constraints result in production of polarimetric "artifacts" due to channel crosstalk upon Mueller matrix reconstruction. This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric positioning of channels in the Fourier (channel) space, however channel positioning for polarimetric systems is constrained both physically and by design parameters like domain separability. We present the physical channel constraints and the constraints imposed when the carriers are separable between space and time. Polarimetric systems are also constrained by noise performance, and there is a trade-off between noise performance and bandwidth. I develop cost functions which account for the trade-off between noise and bandwidth for spatio-temporal polarimetric systems. The cost functions allow a systems designer to jointly optimize systems with good bandwidth and noise performance. Optimization is implemented for a candidate spatio-temporal system design, and high temporal bandwidth systems resulting from the optimization are presented. Systematic errors which impact the bandwidth performance and mitigation strategies for these systematic errors are also presented. Finally, a portable imaging Mueller matrix system is built and analyzed based on the theoretical bandwidth analysis and system bandwidth optimization. Temporal bandwidth performance is

  9. Prevention of thinning at disc center during rotary forging

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the simulation and analysis of the rotary forging of a disc using a finite element method, which re veals the thinning at the disc center is caused by higher radial and tangential tensile stresses resulting from the local loading of a rotary die and acting at the center of a workpiece, and proposes a new design of rotary die with a hole opened in its center to prevent the continuous occurrence of shortening in the axial direction and elongation in the tan gential and radial directions, and concludes from simulation results that the rotary die with a hole opened in its center is effective for prevention of thinning or cracking at the center of a disc during rotary forging.

  10. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  11. Fluid Dynamics in Rotary Piston Blood Pumps.

    Science.gov (United States)

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  12. A metering rotary nanopump for microfluidic systems.

    Science.gov (United States)

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  13. Dynamic Analysis of Foundation Supporting Rotary Machine

    Directory of Open Access Journals (Sweden)

    Utkarsh S. Patel

    2015-08-01

    Full Text Available With the advancement of technology in the field of industry, high speed machinery has been developed. As the speed of machinery has increased, vibrations also increased. Machines transmit vibrations to the structure supporting them. Hence, it is important to design and develop such structure which sustains the vibrations of machinery. Hence, in this study it has been aimed to execute the study on foundations supporting rotary type of machine like blower. In this paper, the most important parameters like frequency and amplitude are considered while execution of analysis of machine foundation supporting blower type machine. This paper shows, better interface between foundation designer and machine manufacturer for better performance of machine. The design aids/approaches for foundation design is also described in this paper and an attempt has been made to study the dynamic behaviour of a foundation structure for blower type machine subjected to forces due to operation of blower machine. Two different types of foundations for Rotary type Machine that is Blower have been studied in this paper

  14. Development of natural gas rotary engines

    Science.gov (United States)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  15. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing [School of Aerospace Science and Technology, Xidian University, Xi’an 710071 (China); Guo, Lixin [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Zhang, Hanlu [School of Communication & Information Engineering, Xi’an University of Posts & Telecommunication, Xi’an 710121 (China)

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  16. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  17. Ptychography with broad-bandwidth radiation

    Energy Technology Data Exchange (ETDEWEB)

    Enders, B., E-mail: bjoern.enders@ph.tum.de; Dierolf, M.; Stockmar, M.; Pfeiffer, F. [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 38043 Grenoble (France); Thibault, P. [Department of Physics and Astronomy, University College London, London (United Kingdom)

    2014-04-28

    Ptychography, a scanning Coherent Diffractive Imaging (CDI) technique, has quickly gained momentum as a robust method to deliver quantitative images of extended specimens. A current conundrum for the development of X-ray CDI is the conflict between a need for higher flux to reach higher resolutions and the requirement to strongly filter the incident beam to satisfy the tight coherence prerequisite of the technique. Latest developments in algorithmic treatment of ptychographic data indicate that the technique is more robust than initially assumed, so that some experimental limitations can be substantially relaxed. Here, we demonstrate that ptychography can be conducted in conditions that were up to now considered insufficient, using a broad-bandwidth X-ray beam and an integrating scintillator-based detector. Our work shows the wide applicability of ptychography and paves the way to high-throughput, high-flux diffractive imaging.

  18. Optimal filter bandwidth for pulse oximetry

    Science.gov (United States)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  19. Constant-bandwidth constant-temperature hot-wire anemometer.

    Science.gov (United States)

    Ligeza, P

    2007-07-01

    A constant-temperature anemometer (CTA) enables the measurement of fast-changing velocity fluctuations. In the classical solution of CTA, the transmission band is a function of flow velocity. This is a minor drawback when the mean flow velocity does not significantly change, though it might lead to dynamic errors when flow velocity varies over a considerable range. A modification is outlined, whereby an adaptive controller is incorporated in the CTA system such that the anemometer's transmission band remains constant in the function of flow velocity. For that purpose, a second feedback loop is provided, and the output signal from the anemometer will regulate the controller's parameters such that the transmission bandwidth remains constant. The mathematical model of a CTA that has been developed and model testing data allow a through evaluation of the proposed solution. A modified anemometer can be used in measurements of high-frequency variable flows in a wide range of velocities. The proposed modification allows the minimization of dynamic measurement errors.

  20. Highly precise and compact ultrahigh vacuum rotary feedthrough

    Science.gov (United States)

    Aiura, Y.; Kitano, K.

    2012-03-01

    The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.

  1. Correlation Development for Sauter Mean Diameter of Rotary Atomizer

    Directory of Open Access Journals (Sweden)

    Murali.K

    2016-08-01

    Full Text Available Atomizers are of many types, among that simplex and duplex types of atomizers are used and recognized often as fuel injectors in aircrafts. Types of atomizers and features are read. Among many types of atomizer, rotary type of atomizer is selected due to its naked evident like easy retrofit to existing spreading system , able to handle large quantities, feed is possible, better economy, high peripheral speed and spread of droplets, uniform liquid feed rate, uniform distribution of feed, higher level of atomization etc., The rotary atomizer specifications and its features are listed, the droplets of rotary atomizer are visualized and readings are taken from experimental methods, such as Laser visualization method .After the droplets data alignment, the (SMD Sauter Mean Diameter is to be taken in and considered, SMD means it is a average particle (droplet size of a given particles, and it is further explained with its given relation. By SMD’s given equated form it is used to compare data between rotary atomizer particles and given particle size. By SMD it is simplified further and used to create a co-relation between SMD and rotary atomizer. The rotary atomizer data values are taken through out with the SMD to find and form a co-related derived pattern for ROTARY ATOMIZE

  2. Compact antenna arrays with wide bandwidth and low sidelobe levels

    Science.gov (United States)

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  3. Frequency Bandwidth Optimization of Left-Handed Metamaterial

    Science.gov (United States)

    Chevalier, Christine T.; Wilson, Jeffrey D.

    2004-01-01

    Recently, left-handed metamaterials (LHM s) have been demonstrated with an effective negative index of refraction and with antiparallel group and phase velocities for microwave radiation over a narrow frequency bandwidth. In order to take advantage of these characteristics for practical applications, it will be beneficial to develop LHM s with increased frequency bandwidth response and lower losses. In this paper a commercial three-dimensional electromagnetic simulation code is used to explore the effects of geometry parameter variations on the frequency bandwidth of a LHM at microwave frequencies. Utilizing an optimizing routine in the code, a geometry was generated with a bandwidth more than twice as large as the original geometry.

  4. Effective Bandwidth Utilization in IEEE802.11 for VOIP

    CERN Document Server

    Bhanu, S Vijay; Balakrishnan, V

    2010-01-01

    Voice over Internet protocol (VoIP) is one of the most important applications for the IEEE 802.11 wireless local area networks (WLANs). For network planners who are deploying VoIP over WLANs, one of the important issues is the VoIP capacity. VoIP bandwidth consumption over a WAN is one of the most important factors to consider when building a VoIP infrastructure. Failure to account for VoIP bandwidth requirements will severely limit the reliability of a VoIP system and place a huge burden on the WAN infrastructure. Less bandwidth utilization is the key reasons for reduced number of channel accesses in VOIP. But in the QoS point of view the free bandwidth of atleast 1-5% will improve the voice quality. This proposal utilizes the maximum bandwidth by leaving 1-5% free bandwidth. A Bandwidth Data rate Moderation (BDM) algorithm has been proposed which correlates the data rate specified in IEEE802.11b with the free bandwidth. At each time BDM will calculate the bandwidth utilization before sending the packet to i...

  5. Optimal resource allocation in random networks with transportation bandwidths

    Science.gov (United States)

    Yeung, C. H.; Wong, K. Y. Michael

    2009-03-01

    We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Recursive relations from the Bethe approximation are converted into useful algorithms. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterized by a profile of homogenized resource allocation similar to the Maxwell construction.

  6. Measurement and evaluation of static characteristics of rotary hydraulic motor

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper describes experimental equipment for measurement of static characteristics of rotary hydraulic motor. It is possible to measure flow, pressure, temperature, speed and torque by means of this equipment. It deals with measurement of static characteristics of a gear rotary hydraulic motor. Mineral oil is used as hydraulic liquid in this case. Flow, torque and speed characteristics are evaluated from measured parameters. Measured mechanical-hydraulic, flow and total efficiencies of the rotary hydraulic motor are adduced in the paper. It is possible to diagnose technical conditions of the hydraulic motor (eventually to recommend its exchange from the experimental measurements.

  7. Numerical Evaluation of Brick Lining Status in Rotary Kilns

    OpenAIRE

    2015-01-01

    Rotary kilns are important in a variety of different manufacturing areas for e.g. calcination and sintering of materials. In fact, two of the most produced materials in the world, cement and iron, are likely to start their journey in a rotary kiln.A rotary kiln is a large cylinder-formed furnace which rotates about its axis and where certain chemical and physical reactions take place by the influence of heat. The slope and the rotation make the material inside to move through the kiln from fe...

  8. Formation of technical requirements for flexible rotary machine nodes

    Science.gov (United States)

    Bulenkov, Y.; Mikhaylov, A.

    2016-11-01

    The method of parameters determining for the flexible rotary machines and lines and its individual components is described in this article. The method is based on the analysis of the fail safe performance probability. It allows determining the fail safe performance probability for tools, transportation and tool changing device nodes, elements of flexible rotary machine and is based on the analysis of flexible rotor line structure. The relationships between rational flexible rotary line structure and parameters of the individual nodes are shown on the flexible rotor line for the screws processing.

  9. Wideband Spectroscopy: The Design and Implementation of a 3 GHz Bandwidth, 8192 Channel, Polyphase Digital Spectrometer

    Science.gov (United States)

    Monroe, Ryan M.

    2011-01-01

    A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters, (ADC). This 6 Gsps (giga-sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. the implementation, results and underlying math for this spectrometer, as well as, potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.

  10. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao

    2016-08-25

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  11. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  12. Film riding seals for rotary machines

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward; Ruggiero, Eric John; Raj Mohan, Vivek Raja

    2017-03-07

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.

  13. Rotary seal with improved film distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  14. Rotary seal with improved film distribution

    Science.gov (United States)

    Dietle, Lannie Laroy; Schroeder, John Erick

    2013-10-08

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  15. Schottky Heterodyne Receivers With Full Waveguide Bandwidth

    Science.gov (United States)

    Hesler, Jeffrey; Crowe, Thomas

    2011-01-01

    Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.

  16. Rotary klubi tuli rannarahvale appi / Anu Jürisson

    Index Scriptorium Estoniae

    Jürisson, Anu

    2005-01-01

    Tallinna Vanalinna Rotary klubi kinkis kolmele Rannametsa perele kümme tuhat krooni jaanuaritormi kahjustuste likvideerimiseks. Klubi presidendiks on Allan Martinson, nimekirjas ka Tõnis Palts, Toomas Hendrik Ilves, Rein Kilk, Hans H. Luik, Vahur Kraft jt.

  17. Schlumberger downhole innovations applied at Hibernia : powerdrive rotary steerable systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, P. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2004-07-01

    This presentation described the benefits of using a powerdrive rotary steerable system on the Hibernia offshore drilling platform compared to conventional motor directional drilling. New developments have expanded the operating envelope of rotary steerable services. The powerdrive rotary steerable system has mud actuated pads with fully rotating external parts. This presentation included a series of schematics depicting the control unit; the bias unit and mud flow; and, the drive mechanism. The benefits of the rotary steerable system compared to conventional motors include enhanced performance, better hole quality, less wellbore tortuosity, better hole cleaning, and extra power drive. Graphs depicting the history of power drive performance at Hibernia were included. Greater power drive offers increased drilling footage per year, a smoother well profile, and the ability to hit small targets. Greater power drive also enables extended reach platform wells versus subsea tie-backs. figs.

  18. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  19. Rotation of artificial rotor axles in rotary molecular motors

    National Research Council Canada - National Science Library

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    [F.sub.1]- and [V.sub.1]-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency...

  20. Research on rotary forming mechanism of cartridge bottom by FEM

    Institute of Scientific and Technical Information of China (English)

    刘钢; 姚雄亮; 黄少东; 唐全波

    2003-01-01

    The rotary forging of a cartridge bottom is simulated by finite element method with DEFORMTM. The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis-symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion.

  1. Rotary endodontics in primary teeth – A review

    Directory of Open Access Journals (Sweden)

    Sageena George

    2016-01-01

    Full Text Available Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the “gold-standard” over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel–titanium (Ni–Ti rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel–titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  2. Rotary klubi tuli rannarahvale appi / Anu Jürisson

    Index Scriptorium Estoniae

    Jürisson, Anu

    2005-01-01

    Tallinna Vanalinna Rotary klubi kinkis kolmele Rannametsa perele kümme tuhat krooni jaanuaritormi kahjustuste likvideerimiseks. Klubi presidendiks on Allan Martinson, nimekirjas ka Tõnis Palts, Toomas Hendrik Ilves, Rein Kilk, Hans H. Luik, Vahur Kraft jt.

  3. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    Science.gov (United States)

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  4. 47 CFR 78.104 - Authorized bandwidth and emission designator.

    Science.gov (United States)

    2010-10-01

    ... SERVICES CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.104 Authorized bandwidth and emission... within the frequency limits of the assigned channel. (c) The emission designator shall be specified in... 47 Telecommunication 4 2010-10-01 2010-10-01 false Authorized bandwidth and emission...

  5. Avoiding bandwidth collapse in long chains of coupled optical microresonators.

    Science.gov (United States)

    Mookherjea, Shayan; Schneider, Mark A

    2011-12-01

    Coupled photonic oscillators and resonators are sensitive to unavoidable nanoscale disorder, and localization in periodic structures induced by disorder leads eventually to a complete collapse of the bandwidth, which is generally considered problematic for device applications. Here, we investigate the dependence of bandwidth collapse on the interresonator coupling coefficient, a parameter controllable by lithography or device operation.

  6. E-Readiness Assessment Model for Low Bandwidth Environment

    Directory of Open Access Journals (Sweden)

    Nazir Ahmad Suhail

    Full Text Available This paper reports on assessment of an e-readiness model for low bandwidth environment. The main focus of the model is on technological (bandwidth related critical factors that are barrier to the adoption of technology mediated learning in developing cou ...

  7. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  8. JPL 2-to-the-20th-power channel 300 MHz bandwidth digital spectrum analyzer

    Science.gov (United States)

    Morris, G. A., Jr.; Wilck, H. C.

    1978-01-01

    A million (two to the 20th power) channel, 300 MHz bandwidth, digital spectrum analyzer was considered. The design, fabrication, and maintenance philosophy of the modular, pipelined, fast fourier transform (FFT) hardware are described. The spectrum analyzer will be used to examine the region from 1.4 GHz to 26 GHz for radio frequency interference which may be harmful to present and future tracking missions of the Deep Space Network. The design has application to the search for extraterrestrial intelligence signals and radio science phenomena.

  9. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  10. Gasoline New Timing and Flux Adjustable Rotary Valve Design (Hereinafter: Rotary Valve

    Directory of Open Access Journals (Sweden)

    Du huiqi

    2016-01-01

    Full Text Available Conventional gasoline engine with an umbrella valve control cylinder intake and exhaust, in order to achieve sealing effect, the valve is driven by the spring force; at the same time, when the cam opens the valve to overcome the spring force acting. Sealing the better, the more power consumed in the engine mechanical losses, the valve mechanism consumes about 30%, which is not a small loss! This article describes a new type of rotary valve is to significantly reduce mechanical losses, so as to achieve energy saving purposes.

  11. Ultrabroad Bandwidth Slow Light in Semiconductor Nanostructures

    Science.gov (United States)

    2008-12-31

    an EDFA before entering the cross- correlator. Cross-correlation with the reference enables recording of pulse amplitude and advance as the SOA...including SOA and EDFA . However, pulse broadening due to fast light effect varies only by 50% as the SOA current is varied. Pulse peak amplitude...from lfl to lpJ. A large ABP of 1.5 is observed in this case. An EDFA at the output of SOA can be used to maintain a constant output power as the

  12. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    Science.gov (United States)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  13. Trends toward rotary steerable directional systems

    Energy Technology Data Exchange (ETDEWEB)

    Warren, T.M. [Amoco Exploration and Production Technology Group, Tulsa, OK (United States)

    1997-05-01

    Directional drilling will continue to be important in the petroleum industry for the foreseeable future as reserves in offshore locations, environmentally sensitive areas and locations with restricted surface access are developed. Emphasis on re-entries to extend the life of onshore and offshore production facilities and on horizontal completions to improve production rates and ultimate recovery will continue to place demands on directional drilling technology. Efficiency improvements that may be achieved through introduction of a new technology are often not easy to quantify, even though they may be quite significant. As long as the job gets done with the currently used system, and no better system is immediately available, it is natural to concentrate efforts on improving the existing system rather than introducing a new system. Here, the discussion is aimed at showing that drilling with steerable motor directional systems is inefficient, and that a significant improvement could be gained by introduction of rotary steerable systems. The objective of this article is not to put down motors, which have provided the backbone of directional drilling for three decades, but rather to show that considerable incentive exists for pursuing an alternative system.

  14. Rotary-piston internal combustion engine. Rotationskolbenbrennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D.

    1991-08-08

    Rotary-piston internal combustion engine in trochoidal design with a slide bearing piston which is controlled by a synchronous gear. The gear is covered by an insert unit which is screwed at the eccentric. The insert unit seals the synchronous gear from the remaining machine parts; it has a hollow cylinder which covers the hollow gear of the synchronous gear and is eccentric to the eccentric shaft; it is sealed with a sealing ring from a shoulder of the piston. A further hollow cylinder is coaxial to the eccentric shaft; it surrounds the mount part with a clearance for the pinion; it projects into the boring at the side of the shaft and it is sealed by a sealing ring from the boring. An annular space which is sealed from the remaining engine rooms is on the other side of the bearing. The oil which escapes from the bearing is led from this annular space through the cooling rooms of the piston to the synchronous gear. The oil is carried off into a drain channel through the space which is formed by the coaxial hollow cylinder in the sidewall.

  15. Utility-based bandwidth allocation algorithm for heterogeneous wireless networks

    Institute of Scientific and Technical Information of China (English)

    CHAI Rong; WANG XiuJuan; CHEN QianBin; SVENSSON Tommy

    2013-01-01

    In next generation wireless network (NGWN), mobile users are capable of connecting to the core network through various heterogeneous wireless access networks, such as cellular network, wireless metropolitan area network (WMAN), wireless local area network (WLAN), and ad hoc network. NGWN is expected to provide high-bandwidth connectivity with guaranteed quality-of-service to mobile users in a seamless manner; however, this desired function demands seamless coordination of the heterogeneous radio access network (RAN) technologies. In recent years, some researches have been conducted to design radio resource management (RRM) architectures and algorithms for NGWN; however, few studies stress the problem of joint network performance optimization, which is an essential goal for a cooperative service providing scenario. Furthermore, while some authors consider the competition among the service providers, the QoS requirements of users and the resource competition within access networks are not fully considered. In this paper, we present an interworking integrated network architecture, which is responsible for monitoring the status information of different radio access technologies (RATs) and executing the resource allocation algorithm. Within this architecture, the problem of joint bandwidth allocation for heterogeneous integrated networks is formulated based on utility function theory and bankruptcy game theory. The proposed bandwidth allocation scheme comprises two successive stages, i.e., service bandwidth allocation and user bandwidth allocation. At the service bandwidth allocation stage, the optimal amount of bandwidth for different types of services in each network is allocated based on the criterion of joint utility maximization. At the user bandwidth allocation stage, the service bandwidth in each network is optimally allocated among users in the network according to bankruptcy game theory. Numerical results demonstrate the efficiency of

  16. Bandwidth auction for SVC streaming in dynamic multi-overlay

    Science.gov (United States)

    Xiong, Yanting; Zou, Junni; Xiong, Hongkai

    2010-07-01

    In this paper, we study the optimal bandwidth allocation for scalable video coding (SVC) streaming in multiple overlays. We model the whole bandwidth request and distribution process as a set of decentralized auction games between the competing peers. For the upstream peer, a bandwidth allocation mechanism is introduced to maximize the aggregate revenue. For the downstream peer, a dynamic bidding strategy is proposed. It achieves maximum utility and efficient resource usage by collaborating with a content-aware layer dropping/adding strategy. Also, the convergence of the proposed auction games is theoretically proved. Experimental results show that the auction strategies can adapt to dynamic join of competing peers and video layers.

  17. Ultra-broad bandwidth parametric amplification at degeneracy.

    Science.gov (United States)

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification.

  18. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...... of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different...

  19. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    Science.gov (United States)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  20. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  1. Bandwidth allocation and pricing problem for a duopoly market

    Directory of Open Access Journals (Sweden)

    You Peng-Sheng

    2011-01-01

    Full Text Available This research discusses the Internet service provider (ISP bandwidth allocation and pricing problems for a duopoly bandwidth market with two competitive ISPs. According to the contracts between Internet subscribers and ISPs, Internet subscribers can enjoy their services up to their contracted bandwidth limits. However, in reality, many subscribers may experience the facts that their on-line requests are denied or their connection speeds are far below their contracted speed limits. One of the reasons is that ISPs accept too many subscribers as their subscribers. To avoid this problem, ISPs can set limits for their subscribers to enhance their service qualities. This paper develops constrained nonlinear programming to deal with this problem for two competitive ISPs. The condition for reaching the equilibrium between the two competitive firms is derived. The market equilibrium price and bandwidth resource allocations are derived as closed form solutions.

  2. Available Bandwidth Estimation Strategy Based on the Network Allocation Vector

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    2012-12-01

    Full Text Available Available bandwidth is of great importance to network Quality of Service assurance, network load balancing, streaming media rate control, routing, and congestion control, etc.. In this paper, the available bandwidth estimation strategy based on the Network Allocation Vector for Wireless Sensor Networks is proposed. According to the size of the average contention window, network nodes predict the probability of collision in process of frame transmission, and then estimate the number of retransmission. Through the collection of Hello packets periodically sent by neighbors, nodes obtain their Network Allocation Vector, and then estimate the available bandwidth. The simulation results show that the strategy is simple and effective, can accurately estimate the collision of data frames as well as the available bandwidth of Wireless Sensor Networks.

  3. Low and Expensive Bandwidth Remains Key Bottleneck for ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... + Department of Computer Science, Imo State University + South Eastern College of Computer ... The National Communications Commission (NCC) which is the Apex body that .... Low bandwidth slows down data transfer.

  4. An Improved Dynamic Bandwidth Allocation Algorithm for Ethernet PON

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper proposes an improved Dynamic Bandwidth Allocation (DBA) algorithm for EPON, which combines static and traditional dynamic allocation schemes. Simulation result shows that the proposed algorithm may effectively improve the performance of packet delay.

  5. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  6. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  7. Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna

    Science.gov (United States)

    Chaabane, Abdelhalim; Djahli, Farid; Attia, Hussein; Denidni, Tayeb. A.

    2017-09-01

    In this paper, an electromagnetic band gap cavity antenna with improved radiation and impedance bandwidths is presented. The proposed antenna is constructed by placing a triple-layer heterogeneous printed-unprinted partially reflective surface (PRS) above a primary aperture-coupled patch antenna. The PRS unit-cell provides a positive gradient reflection phase behavior over the desired frequency range. A prototype antenna is fabricated and measured that highlighted its ability to achieve 3-dB gain bandwidth of about 35.9 %, from 7.93 GHz to 11.4 GHz, with a peak gain of 14.25 dBi at 8.5 GHz. In addition, the impedance bandwidth is 40.32 %, from 7.9 GHz to 11.89 GHz. Thus, the designed antenna outperforms many other competitors for improving the radiation bandwidth of planar antennas with the same presented concept.

  8. MULTILAYER MICROSTRIP ANTENNA QUALITY FACTOR OPTIMIZATION FOR BANDWIDTH ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    M.C. SRIVASTAVA

    2012-12-01

    Full Text Available The impedance bandwidth, one of the important characteristics of microstrip patch antennas, can be significantly improved by using a multilayer dielectric configuration. In this paper the focus is on bandwidth enhancement technique of a multilayer patch antenna for X-band applications. In order to enhance the bandwidth, antenna losses are contained by controlling those quality factors which can have a significant impact on the bandwidth for a given permittivity and thickness of the substrate. This has been achieved by conformal transformation of the multidielectric microstrip antenna. For the ease of analysis Wheelers transformation is used to map the complex permittivity of a multilayer substrate to a single layer. Method of Moments and Finite Difference Time Domain approaches are used for the computation of results.

  9. Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2007-01-01

    Full Text Available The popularity of multimedia streaming services via wireless networks presents major challenges in the management of network bandwidth. One challenge is to quickly and precisely estimate the available bandwidth for the decision of streaming rates of layered and scalable multimedia services. Previous studies based on wired networks are too burdensome to be applied to multimedia applications in wireless networks. In this paper, a new method, IdleGap, is suggested to estimate the available bandwidth of a wireless LAN based on the information from a low layer in the protocol stack. We use a network simulation tool, NS-2, to evaluate our new method with various ranges of cross-traffic and observation times. Our simulation results show that IdleGap accurately estimates the available bandwidth for all ranges of cross-traffic (100 Kbps ∼ 1 Mbps with a very short observation time of 10 seconds.

  10. Highly efficient frequency conversion with bandwidth compression of quantum light

    CERN Document Server

    Allgaier, Markus; Sansoni, Linda; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2016-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, since elements based on parametric down-conversion sources, quantum dots, color centres or atoms are fundamentally different in their frequencies and bandwidths. While pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here, we demonstrate an engineered sum-frequency-conversion process in Lithium Niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 75.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  11. Fast Optical Beamforming Architectures for Satellite-Based Applications

    Directory of Open Access Journals (Sweden)

    B. Vidal

    2012-01-01

    Full Text Available Photonic technology offers an alternative implementation for the control of phased array antennas providing large time bandwidth products and low weight, flexible feeding networks. Measurements of an optical beamforming network for phased array antennas with fast beam steering operation for space scenarios are presented. Experimental results demonstrate fast beam steering between 4 and 8 GHz without beam squint.

  12. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  13. Laser frequency bandwidth narrowing by photorefractive two-beam coupling.

    Science.gov (United States)

    Chomsky, D; Sternklar, S; Zigler, A; Jackel, S

    1992-04-01

    We present a theoretical analysis and experimental demonstration of a new method for spectral narrowing of laser radiation. The bandwidth narrowing is experienced by a laser beam subjected to a photorefractive two-beam coupling process. Contrary to the conventional method of frequency filtering by a Fabry-Perot étalon, this technique has no intrinsic finesse limitation on its resolution. A factor of 2 in frequency bandwidth narrowing is achieved with an argon-ion laser.

  14. Lightweight monitoring of label switched paths for bandwidth management

    OpenAIRE

    Vilà Talleda, Pere; Marzo i Lázaro, Josep Lluís; Calle Ortega, Eusebi; Carrillo, Liliana

    2004-01-01

    The purpose of resource management is the efficient and effective use of network resources, for instance bandwidth. In this article, a connection oriented network scenario is considered, where a certain amount of bandwidth is reserved for each label switch path (LSP), which is a logical path, in a MPLS or GMPLS environment. Assuming there is also some kind of admission control (explicit or implicit), these environments typically provide quality of service (QoS) guarantees. It could happen tha...

  15. A meta-substrate to enhance the bandwidth of metamaterials

    OpenAIRE

    Hongsheng Chen; Zuojia Wang; Runren Zhang; Huaping Wang; Shisheng Lin; Faxin Yu; Moser, Herbert O.

    2014-01-01

    We propose the concept of a meta-substrate to broaden the bandwidth of left-handed metamaterials. The meta-substrate, which behaves like an inhomogeneous magnetic substrate, is composed of another kind of magnetic metamaterials like metallic closed rings. When conventional metamaterial rings are printed on this kind of meta-substrate in a proper way, the interaction of the metamaterials units can be greatly enhanced, yielding an increased bandwidth of negative permeability. An equivalent circ...

  16. Bandwidth-Efficient Cooperative Relaying Schemes with Multiantenna Relay

    Directory of Open Access Journals (Sweden)

    Tho Le-Ngoc

    2008-05-01

    Full Text Available We propose coded cooperative relaying schemes in which all successfully decoded signals from multiple sources are forwarded simultaneously by a multiantenna relay to a common multiantenna destination to increase bandwidth efficiency. These schemes facilitate various retransmission strategies at relay and single-user and multiuser iterative decoding techniques at destination, suitable for trade-offs between performance, latency, and complexity. Simulation results show that the proposed schemes significantly outperform direct transmission under the same transmit power and bandwidth efficiency.

  17. Challenges in Polybinary Modulation for Bandwidth Limited Optical Links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Tafur Monroy, Idelfonso; Madsen, Peter

    2016-01-01

    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards...... of the current research status of the key building blocks in polybinary systems. The results clearly show how polybinary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency....

  18. Simulation and Optimization of Contactless Power Transfer System for Rotary Ultrasonic Machining

    Directory of Open Access Journals (Sweden)

    Wang Xinwei

    2016-01-01

    Full Text Available In today’s rotary ultrasonic machining (RUM, the power transfer system is based on a contactless power system (rotary transformer rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine. This paper focused on simulation of the rotary transformer and enhancing the efficiency of the rotary transformer by optimizing three main factors that influence its efficiency, including the gap between the two ferrite cores, the ratio of length and width of the ferrite core and the thickness of ferrite. The finite element model of rotary transformer was built on Maxwell platform. Simulation and optimization work was based on the finite element model. The optimization results compared with the initial simulation result showed an approximate 18% enhancement in terms of efficiency, from 77.69% to 95.2%.

  19. On the Bandwidth of High-Impedance Frequency Selective Surfaces

    CERN Document Server

    Costa, Filippo; Monorchio, Agostino; 10.1109/LAWP.2009.2038346

    2010-01-01

    In this letter, the bandwidth of high-impedance surfaces (HISs) is discussed by an equivalent circuit approach. Even if these surfaces have been employed for almost 10 years, it is sometimes unclear how to choose the shape of the frequency selective surface (FSS) on the top of the grounded slab in order to achieve the largest possible bandwidth. Here, we will show that the conventional approach describing the HIS as a parallel connection between the inductance given by the grounded dielectric substrate and the capacitance of the FSS may induce inaccurate results in the determination of the operating bandwidth of the structure. Indeed, in order to derive a more complete model and to provide a more accurate estimate of the operating bandwidth, it is also necessary to introduce the series inductance of the FSS.We will present the explicit expression for defining the bandwidth of a HIS, and we will show that the reduction of the FSS inductance results in the best choice for achieving wide operating bandwidth in c...

  20. Improvement of CBQ for bandwidth reclamation of RPR

    Science.gov (United States)

    Huang, Benxiong; Wang, Xiaoling; Xu, Ming; Shi, Lili

    2004-04-01

    The Resilient Packet Ring (RPR) IEEE 802.17 standard is under development as a new high-speed backbone technology for metropolitan area networks (MAN) [1]. Bandwidth reclamation has been concerned in RPR specifications from draft 0.1 to draft 2.4. According to specifications, allocated bandwidth can be reused, or reclaimed, by a lower priority service class whenever the reclamation does not effect the service guarantees of any equal or higher priority classes on the local station or on any other station on the ring [2]. The class-based queuing (CBQ) algorithm is proposed to implement link-sharing [3]. A hierarchical link-sharing structure can be used to specify guidelines for the distribution of 'excess" bandwidth [4] and it can rate-limit all classes to their allocated bandwidth. There is some sameness between the link-sharing of CBQ and bandwidth reclamation of RPR. The CBQ is a mature technology while RPR is a new technology. Given CBQ improvement and full use so as to make its thought suitable for bandwidth reclamation of RPR is the focus of our work. In this paper, we present the solution that can solve the reclamation problem, which proves to be effective by simulation.

  1. A Novel Vapor Injection Structure on the Blade for Rotary Compressor

    OpenAIRE

    Wang, Baolong; Liu, Xingru; Shi, Wenxing

    2016-01-01

    Rotary compressors have been extensively used in room air conditioners and household refrigerators for their advantages, including high efficiency, strong adaptability, and low cost. However, when air source heat pumps with rotary compressors are applied in cold regions, a series of problems appear. The gas injection has been proved an effective technology to enhance both the heating capacity and COP of scroll, screw, and rotary compressors. In the one-cylinder rotary compressor with gas in...

  2. Operator in-the-loop control of rotary cranes

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.G.; Robinett, R.D.; Driessen, B.J.; Dohrmann, C.R.

    1996-03-01

    An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the Payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 4OdB.

  3. FEM simulation of infeed rotary swaging with structured tools

    Directory of Open Access Journals (Sweden)

    Herrmann Marius

    2015-01-01

    Full Text Available Rotary swaging is an incremental cold forming process for rods and tubes. Infeed rotary swaging with structure in the reduction zone of the tools is investigated using a two dimensional finite element simulation. A few geometrical parameters are varied, for cosine and skew stairway shapes. The effective tool angle is kept constant. The influence is evaluated by the radial and axial process forces. Furthermore, the material flow is visualized by the neutral plane. The simulation results are quantitatively compared to each other to analyse the reaction force FA, which acts against the feeding force. Also, the results serve to find suitable geometries to be transferred to rotary swaging tools for practical application. It is shown that the shapes have a significant effect on the forces and the location of the neutral plane. Finally a first swaging tool is modified with an exemplary geometry for experimental investigations.

  4. Behavioral changes in preschoolers treated with/without rotary instruments.

    Science.gov (United States)

    Maru, Viral Pravin; Kumar, Amit; Badiyani, Bhumika Kamal; Sharma, Anant Raghav; Sharma, Jitendra; Dobariya, Chintan Vinodbhai

    2014-05-01

    Behavioral dentistry is an interdisciplinary science which needs to be learned, practiced, and reinforced in order to provide quality dental care in children. To assess the anxiety experienced during dental treatment in preschool children with/without rotary instruments using behavioral scale. Sixty pediatric patients of preschool age with bilateral occlusal carious lesions extending into dentin were selected for the study. Carious lesions were removed using conventional rotary instruments on one side and Papacarie - chemomechanical caries removal of approach on contra lateral side. Both cavities were restored with glass ionomer cement (Fuji IX). Anxiety scores were determined using 'Modified Child Dental Anxiety Scale' (Wong et al, 1998) during the various clinical stages of the treatment course. Children experienced relaxed behavior when subjected to Papacarie method of caries removal compared to conventional method using rotary instruments. This study helped us to provide behavioral measures and introduce children to dentistry in a nonthreatening setting.

  5. Simulation Study on Fuzzy Control of Rotary Steering Drilling Trajectory

    Directory of Open Access Journals (Sweden)

    Xue Qi-Long

    2012-07-01

    Full Text Available The purpose of this study is to establish a control method to make borehole trajectory smoother. Considering that the complexity of rotary steerable drilling trajectory control and uncertainty of underground work, analysis of the deficiencies for the traditional trajectory control and the rotary steerable drilling trajectory deviation vector control theory, introduced the concept of "trend Angle", combined with the deviation vector as joint control variables, using fuzzy control algorithm that established of rotary steerable drilling trajectory fuzzy control model. Designed the fuzzy controller using Matlab/Simulink toolbox and dynamic simulation analysis for the fuzzy control systems, simulation results show that the designed fuzzy controller can effectively track the well path design, has a strong adaptability and control results is better than traditional PID control method.

  6. Rotary plug device for use in LMFBR type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Kazuhiko; Imayoshi, Sho.

    1988-02-23

    Purpose: To prevent adhesion of sodium in the rotational gap of a rotational plug. Constitution: One of the walls of a cylindrical gap formed between the outer circumference of a small rotary plug and a large rotary plug that constitute a double rotary plug is cooled to lower than the sodium coagulation temperature, while a stater of a linear motor in a cylindrical shape and wound with linear coils around the iron core is attached to the inside of the other of the walls. Then, one of the walls of the gap to which sodium adheres is cooled to less than sodium coagulation temperature, so that sodium is or tends to be deposited to the wall. Then, eddy currents are resulted to sodium by the current supplied to the stater of the linear motor attached to the other of the walls, to produce thrusting force. Sodium on the wall surface is scraped off by this. (Yoshihara, H.).

  7. Soybean drying characteristics in microwave rotary dryer with forced convection

    Institute of Scientific and Technical Information of China (English)

    Ruifang WANG; Zhanyong LI; Yanhua LI; Jingsheng YE

    2009-01-01

    A new hybrid drying technique by combining microwave and forced convection drying within a rotary drum, i.e., microwave rotary drying, was developed with the purpose to improve the uniformity of microwave drying. In a laboratory microwave rotary dryer, rewetted soybean was utilized as experimental material to study the effects of drum rotating speed, ventilation flow rate, and specific microwave power on the drying kinetics and cracking ratio of soybean. It was found that, with rotation, the cracking ratio can be lowered but without distinct improvement in the drying rate. Increasing ventilation flow rate and specific microwave power can improve the drying rate, but the cracking ratio also increases as a negative result. The cracking ratio lower than 10% can be attained for ventilation flow rate lower than 2.0 m3·h-1 or specific microwave energy lower than 0.4 kW·kg-1 in the present experiments.

  8. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product.

    Science.gov (United States)

    Zaoui, Wissem Sfar; Chen, Hui-Wen; Bowers, John E; Kang, Yimin; Morse, Mike; Paniccia, Mario J; Pauchard, Alexandre; Campbell, Joe C

    2009-07-20

    In this work we report a separate-absorption-charge-multiplication Ge/Si avalanche photodiode with an enhanced gain-bandwidth-product of 845 GHz at a wavelength of 1310 nm. The corresponding gain value is 65 and the electrical bandwidth is 13 GHz at an optical input power of -30 dBm. The unconventional high gain-bandwidth-product is investigated using device physical simulation and optical pulse response measurement. The analysis of the electric field distribution, electron and hole concentration and drift velocities in the device shows that the enhanced gain-bandwidth-product at high bias voltages is due to a decrease of the transit time and avalanche build-up time limitation at high fields.

  9. Non-contact magnetically coupled rectilinear-rotary oscillations to exploit low-frequency broadband energy harvesting with frequency up-conversion

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2016-09-01

    Ambient vibrations have a rectilinear and broadband nature and are particularly rich in the low-frequency regions. This letter reports an electromagnetic energy harvester to transform low-frequency broadband rectilinear vibrations into electricity with frequency up-conversion. The harvester consists of a rectilinear oscillator and a rotary oscillator coupled through magnetic force induced by four arc permanent magnets centrosymmetrically distributed on each oscillator. The rotary oscillator also includes two repulsive magnets and six stationary coils with steel screws inside to obtain and maintain four equilibrium positions with shallowed potential wells. The magnetic interaction between the rectilinear oscillator and the rotary oscillator is formulated using a magnetic dipole model. The restoring torque induced by the steel screws on the rotor is experimentally measured. Magnetically coupled governing equations are derived and their numerical solutions are used to characterize the dynamic response of the harvester under chirp excitations. Experimental results demonstrate its excellent harvesting capability of scavenging low-frequency wideband vibrational energy under slow-frequency-drifted excitations, simple harmonic excitations, and mixed-frequency excitations. Under harmonic excitations, the rectilinear oscillator vibrates non-harmonically but approximately periodically, while the rotary counterpart oscillates in a more complex pattern varying with the excitation frequency, which leads to the frequency up-conversion (up to 10 times increase) and broadened bandwidth (25% increase from its resonant frequency). Experiments show an output voltage of 5 V (RMS)/40 V (Peak to Peak) and an output power of 55 mW (RMS)/950 mW (Peak) at an optimal load of 465 Ω under harmonic excitation of 4 Hz at 0.7 g.

  10. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Walk-behind rotary power mower controls... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  11. Evaluation of different rotary devices on bone repair in rabbits

    OpenAIRE

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro,Daniel Araki; Matsumoto,Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I - pneumatic low-speed r...

  12. Development of Laser Propelled ``Semi-Perpetual'' Rotary Machine

    Science.gov (United States)

    Gualini, M. M.; Khan, S. A.; Zulfiqar, K.

    2006-05-01

    This paper covers the initial work oriented to develop a semi-perpetual rotary machine propelled by laser ablation propulsion. The laser is equipped with a pulse repetition frequency tuned to the rotational frequency of the flying wheel. Purpose of this work is to establish the potentiality of a self-sustained closed system capable of generating kinetic rotary energy which can be exploited for traction of vehicles and production of electrical energy at very low cost. The work presented is in process of being patented.

  13. Study of a Novel Rotary Cyclone Gas-Solid Separator

    Institute of Scientific and Technical Information of China (English)

    Zhiguang Ling; Xingyong Deng

    2003-01-01

    Based on the analytical study of the characteristics of fine particle motion in swirling flow, a new design idea on flow organization and construction aimed at increasing the positive radial flow in the separation chamber of the rotary cyclone separator (PRV type) was proposed. Experimental verification including the test of variation of separation efficiency and pressure loss with the first and secondary flow ratio show that this new type separator has higher and more stable separation efficiency in broad flow ratio range while the pressure loss is far below the conventional rotary cyclone separator and even comparable with that of simple cyclone separator

  14. Responder fast steering mirror

    Science.gov (United States)

    Bullard, Andrew; Shawki, Islam

    2013-10-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  15. Effective bandwidth guaranteed routing schemes for MPLS traffic engineering

    Science.gov (United States)

    Wang, Bin; Jain, Nidhi

    2001-07-01

    In this work, we present online algorithms for dynamic routing bandwidth guaranteed label switched paths (LSPs) where LSP set-up requests (in terms of a pair of ingress and egress routers as well as its bandwidth requirement) arrive one by one and there is no a priori knowledge regarding future LSP set-up requests. In addition, we consider rerouting of LSPs in this work. Rerouting of LSPs has not been well studied in previous work on LSP routing. The need of LSP rerouting arises in a number of ways: occurrence of faults (link and/or node failures), re-optimization of existing LSPs' routes to accommodate traffic fluctuation, requests with higher priorities, and so on. We formulate the bandwidth guaranteed LSP routing with rerouting capability as a multi-commodity flow problem. The solution to this problem is used as the benchmark for comparing other computationally less costly algorithms studied in this paper. Furthermore, to more efficiently utilize the network resources, we propose online routing algorithms which route bandwidth demands over multiple paths at the ingress router to satisfy the customer requests while providing better service survivability. Traffic splitting and distribution over the multiple paths are carefully handled using table-based hashing schemes while the order of packets within a flow is preserved. Preliminary simulations are conducted to show the performance of different design choices and the effectiveness of the rerouting and multi-path routing algorithms in terms of LSP set-up request rejection probability and bandwidth blocking probability.

  16. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  17. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    Science.gov (United States)

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  18. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed posit

  19. RICOR development of the next generation highly reliable rotary cryocooler

    Science.gov (United States)

    Regev, Itai; Nachman, Ilan; Livni, Dorit; Riabzev, Sergey; Filis, Avishai; Segal, Victor

    2016-05-01

    Early rotary cryocoolers were designed for the lifetime of a few thousands operating hours. Ricor K506 model's life expectancy was only 5,000 hours, then the next generation K508 model was designed to achieve 10,000 operating hours in basic conditions, while the modern K508N was designed for 20,000 operating hours. Nowadays, the new challenges in the field of rotary cryocoolers require development of a new generation cooler that could compete with the linear cryocooler reliability, achieving the lifetime goal of 30,000 operating hours, and even more. Such new advanced cryocooler can be used for upgrade existing systems, or to serve the new generation of high-temperature detectors that are currently under development, enabling the cryocooler to work more efficiently in the field. The improvement of the rotary cryocooler reliability is based on a deep analysis and understating of the root failure causes, finding solutions to reduce bearings wear, using modern materials and lubricants. All of those were taken into consideration during the development of the new generation rotary coolers. As a part of reliability challenges, new digital controller was also developed, which allows new options, such as discrete control of the operating frequency, and can extend the cooler operating hours due to new controlling technique. In addition, the digital controller will be able to collect data during cryocooler operation, aiming end of life prediction.

  20. Improved performance of linear coal cutting compared with rotary cutting

    Energy Technology Data Exchange (ETDEWEB)

    Roepke, W.W.; Hanson, B.D.; Olson, R.C.; Wingquist, C.F.; Myren, T.A.

    1995-09-01

    The linear cutting system, developed by the US Bureau of Mines uses geometric principles developed by Cardan to produce a nearly constant cut depth. The new system has been extensively tested in a synthetic material under laboratory conditions to verify mechanical capability and to identify operational characteristics. Comparison between 15-rpm linear cutting and 50-rpm rotary cutting systems show significant improvement in respirable dust entrainment, product size distribution, and energy usage. Respirable dust is reduced by as much as 90%. Recovered product showed a 67% reduction in {minus}0.32-cm ({minus}1/8-in) material and a 200% increase in +5.08 cm (+ 2 in) materials. Average power was reduced by 66% for the linear cutting. Because the bit cutting paths differ between linear and rotary cutting, it was necessary to compare the two at the same cut depths and bit types. These comparisons show that low revolution per minute rotary cutting entrains about the same amount of respirable dust as the linear cutting system, but the average shaft torque may be 55 to 130% greater for the rotary system.

  1. Mass transfer in rolling rotary kilns : a novel approach

    NARCIS (Netherlands)

    Heydenrych, M.D.; Greeff, P.; Heesink, A. Bert M.; Versteeg, G.F.

    2002-01-01

    A novel approach to modeling mass transfer in rotary kilns or rotating cylinders is explored. The movement of gas in the interparticle voids in the bed of the kiln is considered, where particles move concentrically with the geometry of the kiln and gas is entrained by these particles. The approach c

  2. Lignite chemical conversion in an indirect heat rotary kiln gasifier

    Directory of Open Access Journals (Sweden)

    Hatzilyberis Kostas S.

    2006-01-01

    Full Text Available The results on the gasification of Greek lignite using two indirect heat (allothermal pilot rotary kiln gasifiers are reported in the present work. The development of this new reactor-gasifier concept intended for solid fuels chemical conversion exploits data and experience gained from the following two pilot plants. The first unit A (about 100 kg/h raw lignite demonstrated the production of a medium heating value gas (12-13 MJ/Nm3 with quite high DAF (dry ash free coal conversions, in an indirect heat rotary gasifier under mild temperature and pressure conditions. The second unit B is a small pilot size unit (about 10 kg/h raw lignite comprises an electrically heated rotary kiln, is an operation flexible and exhibits effective phase mixing and enhanced heat transfer characteristics. Greek lignite pyrolysis and gasification data were produced from experiments performed with pilot plant B and the results are compared with those of a theoretical model. The model assumes a scheme of three consecutive-partly parallel processes (i. e. drying, pyrolysis, and gasification and predicts DAF lignite conversion and gas composition in relatively good agreement with the pertinent experimental data typical of the rotary kiln gasifier performance. Pilot plant B is currently being employed in lime-enhanced gasification studies aiming at the production of hydrogen enriched synthesis gas. Presented herein are two typical gas compositions obtain from lignite gasification runs in the presence or not of lime. .

  3. Micro rotary machine and methods for using same

    Science.gov (United States)

    Stalford, Harold L [Norman, OK

    2012-04-17

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  4. Control of spatial correlations between Rydberg excitations using rotary echo

    CERN Document Server

    Thaicharoen, N; Raithel, G

    2016-01-01

    We manipulate correlations between Rydberg excitations in cold atom samples using a rotary-echo technique. The correlations are due to interactions between the Rydberg atoms. In the rotary-echo excitation sequence, the phase of the excitation pulse is flipped at a selected time during the pulse. We measure the resultant change in the spatial pair correlation function of the excitations via direct position-sensitive atom imaging. For zero detuning of the lasers from the interaction-free Rydberg-excitation resonance, the pair-correlation value at the most likely nearest-neighbor Rydberg-atom distance is substantially enhanced when the phase is flipped at the middle of the excitation pulse. In this case, the rotary echo eliminates most uncorrelated (un-paired) atoms, leaving an abundance of correlated atom pairs at the end of the sequence. In off-resonant cases, a complementary behavior is observed. We further characterize the effect of the rotary-echo excitation sequence on the excitation-number statistics of t...

  5. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...

  6. Rotary ATPases: models, machine elements and technical specifications.

    Science.gov (United States)

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  7. CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF ROTARY ULTRASONIC MOTORS

    Directory of Open Access Journals (Sweden)

    Oana CHIVU

    2013-05-01

    Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of rotary ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes

  8. Light-Driven Rotary Molecular Motors on Gold Nanoparticles

    NARCIS (Netherlands)

    Pollard, Michael M.; ter Wiel, Matthijs K. J.; van Delden, Richard A.; Vicario, Javier; Koumura, Nagatoshi; van den Brom, Coenraad R.; Meetsma, Auke; Feringa, Ben L.

    2008-01-01

    We report the synthesis of unidirectional light-driven rotary molecular motors based oil chiral overcrowded alkenes and their immobilisation on the surface of gold nanoparticles through two anchors. Using a combination of (1)H and (13)C NMR, UV/Vis and CD spectroscopy, we show that these motors pres

  9. Chemically Optimizing Operational Efficiency of Molecular Rotary Motors

    NARCIS (Netherlands)

    Conyard, Jamie; Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.

    2014-01-01

    Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but le

  10. ZrO2-Containing Refractories for Cement Rotary Kilns

    Institute of Scientific and Technical Information of China (English)

    YE Guotian; XU Yanqing

    2002-01-01

    ZrO2-containing refractories have been increasingly used for cement rotary kilns. This paper discusses how the properties and performance of ZrO2-containing. Refractories are inwroved in terms of chemical attack resistance, thermal shock resistance, thermal conductivity and mechanical stress.

  11. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed

  12. Design and control of a Nitinol wire actuated rotary servo

    Science.gov (United States)

    Song, G.

    2007-10-01

    This paper presents the design and control of a rotary servo actuated by a shape memory alloy (SMA) wire. A new rotary servo device using Nitinol type of SMA wire is designed and fabricated in this study. This new rotary actuator utilizes a Nitinol wire wound on a threaded non-conductive rotor. One end of the Nitinol wire is fixed to the rotor and the other end is fixed to the supporting base plate. The rotor is connected to a pre-tensioned torsional spring such that two-way rotation can be achieved. Upon heating of the Nitinol wire using electric current, the wire contracts, causing the rotor to rotate, since the other end of the SMA wire is rigidly connected to the base plate. This rotor design is compact and offers a space-saving solution for the use of SMA wire actuators. To actively control the servo, a sliding-mode based robust control approach is used. The sliding-mode based robust control consists of three components: a standard proportional plus derivative (PD) control term, a feedforward term used as a bias current, and a robust term to increase system stability and concurrently control accuracy. Experimental results confirm the functionality of the Nitinol wire actuated rotary servo and show this device can be precisely controlled using the sliding-mode based robust control approach.

  13. Numerical Analysis on Rotary Forging Mechanism of a Flange

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical simulation on the rotary forging process of a flange is conducted by three-dimensional rigid-plastic finite element method. The states of stress and strain rate in the workpiece are analyzed and the forging mechanism of the flange is revealed. Moreover, the influence of the die configuration on the material flow is also analyzed.

  14. Cascaded passive silicon microrings for large bandwidth slow light device

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuntao; Hu Yingtao; Xiao Xi; Li Zhiyong; Yu Yude; Yu Jinzhong, E-mail: ytli@semi.ac.cn [State Key Laboratory of integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 (China)

    2011-02-01

    Slow light devices have important applications in the areas of data buffering, signal processing, and phased array antenna. Cascaded microring resonators structure can obtain large delay and also enhance the bandwidth, which was considered as a potential approach for future on-chip optical buffer. In this paper, we demonstrated a large bandwidth slow light device using cascaded Silicon-on-insulator (SOI) based microring resonators. With carefully designed the gap between the bus and the ring waveguides and the distances between the adjacent rings, a 57 ps group delay was observed and 83 Gbps maximum allowable bit rate is suggested according the measured 3 dB spectral bandwidth in the 8-stage cascaded microrings.

  15. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  16. Bandwidth Extension of Speech Signals: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    N.Prasad

    2016-02-01

    Full Text Available Telephone systems commonly transmit narrowband (NB speech with an audio bandwidth limited to the traditional telephone band of 300-3400 Hz. To improve the quality and intelligibility of speech degraded by narrow bandwidth, researchers have tried to standardize the telephonic networks by introducing wideband (50-7000 Hz speech codecs. Wideband (WB speech transmission requires the transmission network and terminal devices at both ends to be upgraded to the wideband that turns out to be time-consuming. In this situation, novel Bandwidth extension (BWE techniques have been developed to overcome the limitations of NB speech. This paper discusses the basic principles, realization, and applications of BWE. Challenges and limitations of BWE are also addressed.

  17. Performance Investigation of Virtual Private Networks with Different Bandwidth Allocations

    Directory of Open Access Journals (Sweden)

    Ramaswamy Muthiah

    2010-01-01

    Full Text Available A Virtual Private Network (VPN provides private network connections over a publicly accessible shared network. The effective allocation of bandwidth for VPNs assumes significance in the present scenario due to varied traffic. Each VPN endpoint specifies bounds on the total amount of traffic that it is likely to send or receive at any time. The network provider tailors the VPN so that there is sufficient bandwidth for any traffic matrix that is consistent with these bounds. The approach incorporates the use of Ad-hoc On demand Distance Vector (AODV protocol, with a view to accomplish an enhancement in the performance of the mobile networks. The NS2 based simulation results are evaluated in terms of its metrics for different bandwidth allocations, besides analyzing its performance in the event of exigencies such as link failures. The results highlight the suitability of the proposed strategy in the context of real time applications.

  18. PRIORITY BASED BANDWIDTH ALLOCATION IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Mary Cherian

    2014-12-01

    Full Text Available Most of the sensor network applications need real time communication and the need for deadline aware real time communication is becoming eminent in these applications. These applications have different dead line requirements also. The real time applications of wireless sensor networks are bandwidth sensitive and need higher share of bandwidth for higher priority data to meet the dead line requirements. In this paper we focus on the MAC layer modifications to meet the real time requirements of different priority data. Bandwidth partitioning among different priority transmissions is implemented through MAC layer modifications. The MAC layer implements a queuing model that supports lower transfer rate for lower priority packets and higher transfer rate for real time packets with higher priority, minimizing the end to end delay. The performance of the algorithm is evaluated with varying node distribution.

  19. Analysis of bandwidth measurement methodologies over WLAN systems

    CERN Document Server

    Portoles-Comeras, Marc; Mangues-Bafalluy, Josep; Domingo-Pascual, Jordi

    2009-01-01

    WLAN devices have become a fundamental component of nowadays network deployments. However, even though traditional networking applications run mostly unchanged over wireless links, the actual interaction between these applications and the dynamics of wireless transmissions is not yet fully understood. An important example of such applications are bandwidth estimation tools. This area has become a mature research topic with well-developed results. Unfortunately recent studies have shown that the application of these results to WLAN links is not straightforward. The main reasons for this is that the assumptions taken to develop bandwidth measurements tools do not hold any longer in the presence of wireless links (e.g. non-FIFO scheduling). This paper builds from these observations and its main goal is to analyze the interaction between probe packets and WLAN transmissions in bandwidth estimation processes. The paper proposes an analytical model that better accounts for the particularities of WLAN links. The mod...

  20. Adaptive broadcasting mechanism for bandwidth allocation in mobile services.

    Science.gov (United States)

    Horng, Gwo-Jiun; Wang, Chi-Hsuan; Chou, Chih-Lun

    2014-01-01

    This paper proposes a tree-based adaptive broadcasting (TAB) algorithm for data dissemination to improve data access efficiency. The proposed TAB algorithm first constructs a broadcast tree to determine the broadcast frequency of each data and splits the broadcast tree into some broadcast wood to generate the broadcast program. In addition, this paper develops an analytical model to derive the mean access latency of the generated broadcast program. In light of the derived results, both the index channel's bandwidth and the data channel's bandwidth can be optimally allocated to maximize bandwidth utilization. This paper presents experiments to help evaluate the effectiveness of the proposed strategy. From the experimental results, it can be seen that the proposed mechanism is feasible in practice.

  1. Simple High-Bandwidth Sideband Locking with Heterodyne Readout

    CERN Document Server

    Reinhardt, Christoph; Sankey, Jack C

    2016-01-01

    We present a robust sideband laser locking technique that is ideally suited for applications requiring low probe power and heterodyne readout. By feeding back to a high-bandwidth voltage controlled oscillator, we lock a first-order phase-modulation sideband to a table-top high-finesse Fabry-Perot cavity, achieving a feedback bandwidth of 3.5 MHz with a single integrator, limited fundamentally by the signal delay. The directly measured transfer function of the closed feedback loop agrees with a model assuming ideal system components, and from this we suggest a modified design that should realistically achieve a bandwidth exceeding 6 MHz with a near-causally limited feedback gain of $4\\times 10^7$ at 1 kHz. The off-resonance optical carrier is used for alignment-free heterodyne readout, alleviating the need for a second laser or additional optical modulators.

  2. A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs

    Science.gov (United States)

    Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng

    2011-12-01

    With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.

  3. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    Science.gov (United States)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  4. Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2009-01-01

    A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....

  5. Fast readout of carbon nanotube mechanical resonators

    Science.gov (United States)

    Meerwaldt, Harold; Singh, Vibhor; Schneider, Ben; Schouten, Raymond; van der Zant, Herre; Steele, Gary

    2013-03-01

    We perform fast readout measurements of carbon nanotube mechanical resonators. Using an electronic mixing scheme, we can detect the amplitude of the mechanical motion with an intermediate frequency (IF) of 46 MHz and a timeconstant of 1 us, up to 5 orders of magnitude faster than before. Previous measurements suffered from a low bandwidth due to the combination of the high resistance of the carbon nanotube and a large stray capacitance. We have increased the bandwidth significantly by using a high-impedance, close-proximity HEMT amplifier. The increased bandwidth should allow us to observe the nanotube's thermal motion and its transient response, approaching the regime of real-time detection of the carbon nanotube's mechanical motion.

  6. Programmable bandwidth management in software-defined EPON architecture

    Science.gov (United States)

    Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming

    2016-07-01

    This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.

  7. Modeling of Bandwidth Aggregation over Heterogeneous Wireless Access Networks

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana; Dittmann, Lars

    2012-01-01

    Motivated by the multihomming capability of the mobile devices and the fact that the heterogeneous wireless access networks overlap in coverage, mobile operators are looking for solutions that will benefit by simultaneous use of the available multiple access interfaces. Multipath or multilink...... transfer deals with the problem on how to effectively aggregate the bandwidth by simultaneous usage of heterogeneous networks that a host is attached to in order to improve the throughput. This paper deals with a simulation based analysis of bandwidth aggregation techniques and their impact on higher layer...

  8. A meta-substrate to enhance the bandwidth of metamaterials.

    Science.gov (United States)

    Chen, Hongsheng; Wang, Zuojia; Zhang, Runren; Wang, Huaping; Lin, Shisheng; Yu, Faxin; Moser, Herbert O

    2014-06-12

    We propose the concept of a meta-substrate to broaden the bandwidth of left-handed metamaterials. The meta-substrate, which behaves like an inhomogeneous magnetic substrate, is composed of another kind of magnetic metamaterials like metallic closed rings. When conventional metamaterial rings are printed on this kind of meta-substrate in a proper way, the interaction of the metamaterials units can be greatly enhanced, yielding an increased bandwidth of negative permeability. An equivalent circuit analytical model is used to quantitatively characterize this phenomenon. Both numerical and experimental demonstrations are carried out, showing good agreement with theoretical predictions.

  9. Bimodal-sized quantum dots for broad spectral bandwidth emitter.

    Science.gov (United States)

    Zhou, Yinli; Zhang, Jian; Ning, Yongqiang; Zeng, Yugang; Zhang, Jianwei; Zhang, Xing; Qin, Li; Wang, Lijun

    2015-12-14

    In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.

  10. Extending the Bandwidth of Electric Ring Resonator Metamaterial Absorber

    Institute of Scientific and Technical Information of China (English)

    LUO Hao; WANG Tao; GONG Rong-Zhou; NIE Yan; WANG Xian

    2011-01-01

    An efficient method is proposed to extend the bandwidth of a metamaterial absorber with multi-resonance structure. The basic unit cell of a metamaterial absorber consists of the electric ring resonator, dielectric substrate (FR-4)and split-wire. By assembling five sandwiched structures with different geometric dimensions into a unit cell, we obtain the superposition of five different absorption peaks.Finally the bandwidth of metamaterial absorption is extended and the full width at half maximum is up to 1.3 GHz. The simulated and experimental results are consistent.

  11. VISA IB Ultra-High Bandwidth, High Gain SASE FEL

    CERN Document Server

    Andonian, Gerard; Murokh, Alex; Pellegrini, Claudio; Reiche, Sven; Rosenzweig, J B; Travish, Gil

    2004-01-01

    The results of a high energy-spread SASE FEL experiment, the intermediary experiment linking the VISA I and VISA II projects, are presented. A highly chirped beam (~1.7%) was transported without correction of longitudinal aberrations in the ATF dogleg, and injected into the VISA undulator. The output FEL radiation displayed an uncharacteristicly large bandwidth (~11%) with extremely stable lasing and measured energy of about 2 microJoules. Start-to-end simulations reproduce key features of the measured results and provide an insight into the mechanisms giving rise to such a high bandwidth. These analyses are described as they relate to important considerations for the VISA II experiment.

  12. Theory of polaron bandwidth narrowing in organic molecular crystals

    Science.gov (United States)

    Hannewald, K.; Stojanović, V. M.; Schellekens, J. M.; Bobbert, P. A.; Kresse, G.; Hafner, J.

    2004-02-01

    We present a theoretical description of polaron bandwidth narrowing in organic molecular crystals. Based on a solution of a Holstein-Peierls model for tightly bound electrons interacting with phonons, an explicit expression for the temperature dependence of the electronic bandwidths is found. This formula generalizes the result of Holstein polaron theory by treating local and nonlocal electron-phonon coupling on equal footing. The usefulness of the method is demonstrated by model studies for oligo-acene crystals from which microscopic insight into the relevance of the different coupling mechanisms is obtained.

  13. Designing and implementing Multibeam Smart Antennas for high bandwidth UAV communications using FPGAs

    Science.gov (United States)

    Porcello, J. C.

    Requirements for high bandwidth UAV communications are often necessary in order to move large amounts of mission information to/from Users in real-time. The focus of this paper is antenna beamforming for point-to-point, high bandwidth UAV communications in order to optimize transmit and receive power and support high data throughput communications. Specifically, this paper looks at the design and implementation of Multibeam Smart Antennas to implement antenna beamforming in an aerospace communications environment. The Smart Antenna is contrasted against Fast Fourier Transform (FFT) based beamforming in order to quantify the increase in both computational load and FPGA resources required for multibeam adaptive signal processing in the Smart Antenna. The paper begins with an overall discussion of Smart Antenna design and general beamforming issues in high bandwidth communications. Important design considerations such as processing complexity in a constrained Size, Weight and Power (SWaP) environment are discussed. The focus of the paper is with respect to design and implementation of digital beamforming wideband communications waveforms using FPGAs. A Multibeam Time Delay element is introduced based on Lagrange Interpolation. Design data for Multibeam Smart Antennas in FPGAs is provided in the paper as well as reference circuits for implementation. Finally, an example Multibeam Smart Antenna design is provided based on a Xilinx Virtex-7 FPGA. The Multibeam Smart Antenna example design illustrates the concepts discussed in the paper and provides design insight into Multibeam Smart Antenna implementation from the point of view of implementation complexity, required hardware, and overall system performance gain.

  14. A miniaturized Rogowski current transducer with wide bandwidth and fast response

    Science.gov (United States)

    Bian, Hao; Shan, Chao; Liu, Keyin; Chen, Feng; Yang, Qing; Yong, Jiale; Hou, Xun

    2016-11-01

    The miniaturization of the 3D Rogowski current transducer down to the micro-scale is essential for device integration and expansion of its application scope, particularly for ‘lab-on-a-chip’ systems. However, fabrication of 3D miniaturized Rogowski coils remains challenging as most relative methods still rely on the 2D micromachining process. In this paper, a miniaturized Rogowski coil current transducer was fabricated using an improved femtosecond laser wet etching technology and a metal microsolidification process, in which a metal alloy with a relatively high melting point was used and a robust but simple packaging structure based on a conical electrode was developed. The results show that the miniaturized Rogowski coil current transducer reveals a response time of less than 1 ns, high sensitivity and good detection capability for high-frequency electrical signals. The miniaturized Rogowski coil can easily be integrated into functional microsystems and will be widely applicable for high-frequency electric signal detection and circuit protection.

  15. 47 CFR 74.535 - Emission and bandwidth.

    Science.gov (United States)

    2010-10-01

    ... bandwidth: As specified by the following equation but in no event less than 50 decibels: A = 35 + 0.8(G − 50) + 10 Log10 B. (Attenuation greater than 80 decibels is not required.) Where: A = Attenuation (in decibels) below the mean output power level. G = Percent removed from the carrier frequency. B =...

  16. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  17. Bandwidth trading under misaligned objectives: decentralized measurement-based control

    NARCIS (Netherlands)

    Mandjes, M.R.H.; Ramakrishnan, M.

    2006-01-01

    This paper studies the interplay between a profit-maximizing network and a number of users competing for the finite bandwidth on each link. In our setting, the objectives of the network and the users are ‘misaligned’, in that the prices that optimize the network’s profit do not maximize the aggregat

  18. Optimization of bandwidth in 60^o photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Xing, P. F.; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2005-01-01

    A systematic scheme utilizing 2D and 3D finite-difference time-domain calculations to design 60^o photonic crystal waveguide bends is presented. The method results in an improved transmission bandwidth from 70 to 160 nm in 2D simulations, and from 50 to 100 nm in 3D simulations. The design...

  19. Bandwidth utilization maximization of scientific RF communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D. [Sandia National Lab., Albuquerque, NM (United States); Ryan, W. [New Mexico State Univ., Las Cruces, NM (United States); Ross, M.

    1997-01-01

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, was developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.

  20. A Preliminary Evaluation of Bandwidth Allocation Model Dynamic Switching

    Directory of Open Access Journals (Sweden)

    Rafael F. Reale

    2014-06-01

    Full Text Available Bandwidth Allocation Models (BAMs are used in order to define Bandwidth Constraints (BCs in a per-class basis for MPLS/DS-TE networks and effectively define how network resources like bandwidth are obtained and shared by applications. The BAMs proposed (MAM – Maximum Allocation Model, RDM – Russian Dolls Model, G-RDM – Generic RDM and AllocTC-Sharing attempt to optimize the use of bandwidth resources on a per-link basis with different allocation and resource sharing characteristics. As such, the adoption of distinct BAMs and/or changes in network resource demands (network traffic profile may result in different network traffic allocation and operational behavior for distinct BAMs. This paper evaluates the resulting network characteristics (li nk utilization, preemption and flows blocking of using BAMs dynamically with different traffic scenarios. In brief, it is investigated the dynamics of BAM switching with distinct traffic scenarios. The paper presents initially the investigated BAMs in relation to their behavior and resource allocation characteristics. Then, distinct BAMs are compared using different traffic scenarios in order to investigate the impact of a dynamic change of the BAM configured in the network. Finally, the paper shows that the adoption of a dynamic BAM allocation strategy may result in benefits for network operation in terms of link utilization, preemption and flows blocking.

  1. The effect of bandwidth in scale-free network traffic

    CERN Document Server

    Hu, M B; Wang, W X; Wu, Q S; Wu, Y H; Hu, Mao-Bin; Jiang, Rui; Wang, Wen-Xu; Wu, Qing-Song; Wu, Yong-Hong

    2006-01-01

    We model information traffic on scale-free networks by introducing the bandwidth as the delivering ability of links. We focus on the effects of bandwidth on the packet delivering ability of the traffic system to better understand traffic dynamic in real network systems. Such ability can be measured by a phase transition from free flow to congestion. Two cases of node capacity C are considered, i.e., C=constant and C is proportional to the node's degree. We figured out the decrease of the handling ability of the system together with the movement of the optimal local routing coefficient $\\alpha_c$, induced by the restriction of bandwidth. Interestingly, for low bandwidth, the same optimal value of $\\alpha_c$ emerges for both cases of node capacity. We investigate the number of packets of each node in the free flow state and provide analytical explanations for the optimal value of $\\alpha_c$. Average packets traveling time is also studied. Our study may be useful for evaluating the overall efficiency of networke...

  2. Characterizing the effective bandwidth of tri-stable energy harvesters

    Science.gov (United States)

    Panyam, Meghashyam; Daqaq, Mohammed F.

    2017-01-01

    Recently, it has been shown that nonlinear vibratory energy harvesters possessing a tri-stable potential function are capable of harvesting energy efficiently over a wider range of frequencies in comparison to harvesters with a double-well potential function. However, the effect of the design parameters of the harvester on the dynamic response and the effective bandwidth of such devices remains uninvestigated. To fill this void, this paper establishes an analytical approach to characterize the effective frequency bandwidth of harvesters that possess a hexic potential energy function. To achieve this goal, the method of multiple scales is utilized to construct analytical solutions describing the amplitude and stability of the intra- and inter-well dynamics of the harvester. Using these solutions, critical bifurcations in the parameter's space are identified and used to define an effective frequency bandwidth of the harvester. The influence of the electric parameters, namely, the time constant ratio (ratio between the period of the mechanical system and the time constant of the harvesting circuit) and the electromechanical coupling, on the effective frequency bandwidth is analyzed. Experimental studies performed on the harvester are presented to validate some of the theoretical findings.

  3. Gain-switched all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, M.; Nyga, S.;

    2013-01-01

    Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted...

  4. Iterative Available Bandwidth Estimation for Mobile Transport Networks

    DEFF Research Database (Denmark)

    Ubeda Castellanos, Carlos; López Villa, Dimas; Teyeb, Oumer Mohammed;

    2007-01-01

    Available bandwidth estimation has lately been proposed to be used for end-to-end resource management in existing and emerging mobile communication systems, whose transport networks could end up being the bottleneck rather than the air interface. Algorithms for admission control, handover and ada...

  5. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be sui

  6. BMCloud: Minimizing Repair Bandwidth and Maintenance Cost in Cloud Storage

    Directory of Open Access Journals (Sweden)

    Chao Yin

    2013-01-01

    Full Text Available To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two limitations to address. The first one is consistency since the Encoding Matrix (EM is different among clouds. The other one is repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practical perspectives. We developed BMCloud, a new low repair bandwidth, low maintenance cost cloud storage system, which aims to reduce repair bandwidth and maintenance cost. The system employs both functional repair and exact repair while it inherits advantages from the both. We propose the JUDGE_STYLE algorithm, which can judge whether the system should adopt exact repair or functional repair. We implemented a networked storage system prototype and demonstrated our findings. Compared with existing solutions, BMCloud can be used in engineering to save repair bandwidth and degrade maintenance significantly.

  7. A Practical Approach For Excess Bandwidth Distribution for EPONs

    KAUST Repository

    Elrasad, Amr

    2014-03-09

    This paper introduces a novel approach called Delayed Excess Scheduling (DES), which practically reuse the excess bandwidth in EPONs system. DES is suitable for the industrial deployment as it requires no timing constraint and achieves better performance compared to the previously reported schemes.

  8. Assessing Sufficiency and Quality of Bandwidth for Public Libraries

    Directory of Open Access Journals (Sweden)

    John Carlo Bertot

    2007-03-01

    Full Text Available Based on data collected as part of the 2006 Public Libraries and the Internet study, the authors assess the degree to which public libraries provide sufficient and quality bandwidth to support the library’s networked services and resources. The topic is complex due to the arbitrary assignment of a number of kilobytes per second (kbps used to define bandwidth. Such arbitrary definitions to describe bandwidth sufficiency and quality are not useful. Public libraries are indeed connected to the Internet and do provide public-access services and resources. It is, however, time to move beyond connectivity type and speed questions and consider issues of bandwidth sufficiency, quality, and the range of networked services that should be available to the public from public libraries. A secondary, but important issue is the extent to which libraries, particularly in rural areas, have access to broadband telecommunications services.

  9. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr Elsayed M.

    2016-05-15

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption. Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks. In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme. Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints. Regarding excess bandwidth allocation, we develop an effective DBA scheme called Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved

  10. ±25ppm repeatable measurement of trapezoidal pulses with 5MHz bandwidth

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Cerqueira Bastos, Miguel; Martino, Michele

    2015-01-01

    High-quality measurements of pulses are nowadays widely used in fields such as radars, pulsed lasers, electromagnetic pulse generators, and particle accelerators. Whilst literature is mainly focused on fast systems for nanosecond regime with relaxed metrological requirements, in this paper, the high-performance measurement of slower pulses in microsecond regime is faced. In particular, the experimental proof demonstration for a 15 MS/s,_25 ppm repeatable acquisition system to characterize the flat-top of 3 ms rise-time trapezoidal pulses is given. The system exploits a 5MHz bandwidth circuit for analogue signal processing based on the concept of flat-top removal. The requirements, as well as the conceptual and physical designs are illustrated. Simulation results aimed at assessing the circuit performance are also presented. Finally, an experimental case study on the characterization of a pulsed power supply for the klystrons modulators of the Compact Linear Collider (CLIC) under study at CERN is reported. In ...

  11. High Bandwidth Pickup Design for Bunch Arrival-time Monitors for Free-Electron Laser

    CERN Document Server

    Angelovski, Aleksandar; Hansli, Matthias; Penirschke, Andreas; Schnepp, Sascha M; Bousonville, Michael; Schlarb, Holger; Bock, Marie Kristin; Weiland, Thomas; Jakoby, Rolf

    2012-01-01

    In this paper, we present the design and realization of high bandwidth pickup electrodes with a cutoff frequency above 40 GHz. The proposed cone-shaped pickups are part of a bunch arrival-time monitor (BAM) designed for high (> 500 pC) and low (20 pC) bunch charge operation mode providing for a time resolution of less than 10 fs for both operation modes. The proposed design has a fast voltage response, low ringing, and a resonance-free spectrum. For assessing the influence of manufacturing tolerances on the performance of the pickups, an extensive tolerance study has been performed via numerical simulations. A non-hermetic model of the pickups was built for measurement and validation purposes. The measurement and simulation results are in good agreement and demonstrate the capability of the proposed pickup system to meet the given specifications.

  12. High bandwidth pickup design for bunch arrival-time monitors for free-electron laser

    Directory of Open Access Journals (Sweden)

    Aleksandar Angelovski

    2012-11-01

    Full Text Available In this paper, we present the design and realization of high bandwidth pickup electrodes with a cutoff frequency above 40 GHz. The proposed cone-shaped pickups are part of a bunch arrival-time monitor designed for high (>500  pC and low (20 pC bunch charge operation mode providing for a time resolution of less than 10 fs for both operation modes. The proposed design has a fast voltage response, low ringing, and a resonance-free spectrum. For assessing the influence of manufacturing tolerances on the performance of the pickups, an extensive tolerance study has been performed via numerical simulations. A nonhermetic model of the pickups was built for measurement and validation purposes. The measurement and simulation results are in good agreement and demonstrate the capability of the proposed pickup system to meet the given specifications.

  13. Fast Fourier transform telescope

    Science.gov (United States)

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog⁡2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  14. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  15. Improved OFDM bandwidth estimation scheme%改进的OFDM带宽盲估计方法

    Institute of Scientific and Technical Information of China (English)

    刘明骞; 李兵兵; 王婧舒

    2011-01-01

    The traditional orthogonal frequency division multiplexing (OFDM) bandwidth estimation scheme uses fast Fourier transform (FFT) to estimate the spectrum, while the spectrum is not very precise and the quantity of calculation is larger. Thus, a bandwidth estimation scheme based the Welch method was proposed. First the scheme estimated the power spectrum of OFDM with the Welch method. Second the spectrum was decomposed and reconstructed by wavelet transform in order to become smooth. Then the moving covariance values of the smooth spectrum were calculated and the positions of the two maximum of covariance values were extracted in order to find the beginning and the end of the spectrum. Finally the statistical average of computed bandwidth was calculated used as the final bandwidth. Simulation results show that correct estimated rate of the improved scheme is 99.1 % when signal nojse ratio is 0 dB. The scheme has higher precision and smaller computation compared with the traditional scheme.%针对正交频分复用信号通过快速傅里叶变换变换得到的频谱不够精确且计算量较大的问题,提出一种基于Welch法的带宽盲估计方法.首先用Welch法求得功率谱,再进行小波分解、重构,得到平滑的功率谱;然后提取出最大移动协方差的2个值所在的位置进而估计带宽;最后多次循环求统计平均,得到信号的精确带宽.实验仿真结果表明:在多径且低信噪比为0 dB的条件下,该方法的正确估计率达99.1%,比传统方法的带宽估计精度更高,计算复杂度更低.

  16. In vitro investigation of the cleaning efficacy, shaping ability, preparation time and file deformation of continuous rotary, reciprocating rotary and manual instrumentations in primary molars.

    Science.gov (United States)

    Ramazani, Nahid; Mohammadi, Abbas; Amirabadi, Foroogh; Ramazani, Mohsen; Ehsani, Farzane

    2016-01-01

    Background. Efficient canal preparation is the key to successful root canal treatment. This study aimed to assess the cleaning and shaping ability, preparation time and file deformation of rotary, reciprocating and manual instrumentation in canal preparation of primary molars. Methods. The mesiobuccal canals of 64 extracted primary mandibular second molars were injected with India ink. The samples were randomly divided into one control and three experimental groups. Experimental groups were instrumented with K-file, Mtwo in continuous rotation and Reciproc in reciprocating motion, respectively. The control group received no treatment. The files were discarded after four applications. Shaping ability was evaluated using CBCT. After clearing, ink removal was scored. Preparation time and file fracture or deformation was also recorded. Data were analyzed with SPSS 19 using chi-squared, Fisher's exact test, Kruskal-Wallis and post hoc tests at a significance level of 0.05. Results. Considering cleanliness, at coronal third Reciproc was better than K-file (P file (P = 0.001). In the middle third, only Reciproc exhibited better cleaning efficacy than K-file (P = 0.005). In the apical third, no difference was detected between the groups (P = 0.794). Regarding shaping ability, no differences were found between Reciproc and Mtwo (P = 1.00). Meanwhile, both displayed better shaping efficacy than K-file (P file failure occurred. Conclusion. Fast and sufficient cleaning and shaping could be achieved with Mtwo and especially with Reciproc.

  17. Ku Band Rotary Joint Design for SNG Vehicles

    Directory of Open Access Journals (Sweden)

    H. Torpi

    2015-12-01

    Full Text Available A wideband I-type rectangular waveguide rotary joint (RJ is designed, simulated and built. It has an excellent performance over the whole Ku Band (10.7-14.5 GHz where the return loss is less than -23 dB at its highest and the insertion loss is below 0.4 dB. The rotary joint is specifically designed for satellite news gathering (SNG vehicles providing elevation and azimuthal movement to the antenna and matching polarization when it is needed at the feed. It can also be used in other high power microwave applications,where rotation ability of the antenna is a must during the transmission such as radars.

  18. Incidence of instrument separation using LightSpeed rotary instruments.

    Science.gov (United States)

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  19. A NEW DESIGN of SIX- PHASE ROTARY CONVERTER ELECTRIC MACHINE

    Directory of Open Access Journals (Sweden)

    K. G. Mohammed

    2012-12-01

    Full Text Available The aim of this research is to design a new ac rotary converter machine to convert the ac single phase voltage to six-phase voltages by using multi stages energy conversion machine. The rotary converter is composed from two main stages and is combined into one frame. These two stages are formed from three main electromagnetic components. The first component represents the input stage that enables the energy from single phase to enter and transformed by the second and third components electro-magnetically to produce six-phase voltages which at the output stage. The programs are created using MATLAB in order to calculate the required dimensions of the converter machine and its parameters for magnetic and electrical circuits.

  20. Dry coal fly ash cleaning using rotary triboelectrostatic separator

    Institute of Scientific and Technical Information of China (English)

    TAO Daniel; FAN Mao-ming; JIANG Xin-kai

    2009-01-01

    More than 80 million metric tons of fly ash is produced annually in the U.S. As coal combustion by-product. Coal fly ash can be converted to value-added products if unburned carbon is reduced to less than 2.5%. However, most of fly ash is currently landfilled as waste due to lack of efficient purification technologies to separate unburned carbon from fly ash. A rotary triboelectrostatic separator has been developed and patented recently at the University of Kentucky with unique features. Several fly ash samples have been used to understand the effects of major process parameters on the separation performance. The results show that compared to existing triboelectrostatic separators, the rotary triboelectrostatic separator has significant advantages in particle charging efficiency, solids throughput, separation efficiency, applicable particle size range.

  1. Design and analysis of a rotary motion controller

    Directory of Open Access Journals (Sweden)

    Julio Cesar Caye

    2015-12-01

    Full Text Available This paper presents the design of a rotary motion controller based on the peritrochoid geometry of the rotary (Wankle engine. It uses an orifice limited flow of incompressible fluid between the chambers of the Wankle-type geometry to control the rotation of the rotor. The paper develops the theory of operation and then implements the design as a Matlab model to simulate the motion control under various conditions. It is found that the time to reach stabilised motion is determined by the orifice size and fluid density. When stabilised motion is achieved, the motion dependence on material and geometry factors is determined by the orifice flow equation. The angular velocity is also found to have a square root dependence on the applied torque when in the stabilised regime.

  2. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  3. Development and testing of a rotary solar engine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kanaly, D. B.

    1983-01-01

    A rotary solar engine has been constructed and tested. By sealing Freon (having the environmentally safe composition rather than the conventionally used harmful composition) in its bellows instead of air, sufficiently consistent operation can be achieved to serve the purely mechanical rotary light-load or no-load markets. Although its power efficiency is not sufficient to make it competitive as a prime power generator, even for power outputs as low as a few ounce inches per minute, it simplicity and reliability make it an attractive self-powered source of mechanical control power for critical slow speed actuators. Its simplicity and low cost make it particularly attractive for the small (less than 10 in/sup 3/) display markets. Other markets may now be identified, now that its strength/limitations are known.

  4. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    Science.gov (United States)

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  5. A system-level bandwidth design method for wormhole network-on-chip

    Science.gov (United States)

    Wang, Jian; Li, Yubai; Liao, Changjun

    2016-11-01

    To improve the Network-on-Chip (NoC) performance, we propose a system-level bandwidth design method customising the bandwidths of the NoC links. In details, we first built a mathematical model to catch the relationship between the NoC commutation latency and the NoC link bandwidth, and then develop a bandwidth allocation algorithm to automatically optimise the bandwidth for each NoC link. The experimental results show that our bandwidth-customising method improves the NoC performance compared to the traditional uniform bandwidth allocation method. Besides, it can also make our NoC to achieve the same communication performance level as the uniform bandwidth NoC but using fewer bandwidth resources, which is beneficial to save the NoC area and power.

  6. Mathematical modeling of a rotary hearth coke calciner

    Directory of Open Access Journals (Sweden)

    Hilde C. Meisingset

    1995-10-01

    Full Text Available A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.

  7. Experimental results for a novel rotary active magnetic regenerator

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Bahl, Christian

    2012-01-01

    in a solid refrigerant rather than the temperature change that occurs when a gas is compressed/expanded. This paper presents the general considerations for the design and construction of a high frequency rotary AMR device. Experimental results are presented at various cooling powers for a range of operating...... conditions near room temperature. The device exhibited a no-load temperature span of over 25 K and can absorb a 100 W cooling load at a 20.5 K temperature span....

  8. Modeling of Pulverized Coal Combustion in Cement Rotary Kiln

    OpenAIRE

    2006-01-01

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rot...

  9. Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction

    Science.gov (United States)

    Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan

    2015-01-01

    Abstract Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction. The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus. We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar. The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials. We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise. A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75–5.52, P trismus in the piezosurgery groups. The number of included randomized controlled trials and the sample size of each trial were relatively small, double blinding was not possible, and cost analysis was unavailable due to a lack of data. Our meta-analysis indicates that although

  10. Development of a rotary instrumentation system, phase 2

    Science.gov (United States)

    Adler, A.; Skidmore, W.

    1982-12-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  11. A Short Study of Large Rotary Forged Cylinders

    Science.gov (United States)

    1979-06-01

    Bottom) 7 Microstructure at mid-wall of reheat treated rotary 25 forged cylinders - Martensite- Bainite 8 Martensitic microstructure of (a) normalized...also was unsatisfactory (Table 2). The microstructure at the mid-wall of both the top and bottom showed evidence of ferrite and bainite (Figs. 1 and...austenitized, and of bainite , showing that the material transformed to austenite had been in- adequately quenched, since martensite is the desired product

  12. Plastic forming behavior of axisymmetric bimetal products with rotary swaging

    Institute of Scientific and Technical Information of China (English)

    Song Tao; Zhao Shengdun; Yan Guanhai; Liu Hongbao

    2013-01-01

    In this paper,an elasto-viscoplastic three-dimension (3D) finite element model is developed to simulate the processing of bimetal tube with rotary swaging.Through simulation,the effects of high-frequency pulse stroking on the distribution and histories of stress,stain and loading are clarified.The stress in inner tube is compressive and higher than the minimum bonding force.Meanwhile,the stiffness of inner tube impacts outer tube extension in length.

  13. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    OpenAIRE

    2014-01-01

    Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materia...

  14. Behavioral changes in preschoolers treated with/without rotary instruments

    Science.gov (United States)

    Maru, Viral Pravin; Kumar, Amit; Badiyani, Bhumika Kamal; Sharma, Anant Raghav; Sharma, Jitendra; Dobariya, Chintan Vinodbhai

    2014-01-01

    Background: Behavioral dentistry is an interdisciplinary science which needs to be learned, practiced, and reinforced in order to provide quality dental care in children. Aim: To assess the anxiety experienced during dental treatment in preschool children with/without rotary instruments using behavioral scale. Study and Design: Sixty pediatric patients of preschool age with bilateral occlusal carious lesions extending into dentin were selected for the study. Carious lesions were removed using conventional rotary instruments on one side and Papacarie – chemomechanical caries removal of approach on contra lateral side. Both cavities were restored with glass ionomer cement (Fuji IX). Anxiety scores were determined using ‘Modified Child Dental Anxiety Scale’ (Wong et al, 1998) during the various clinical stages of the treatment course. Results: Children experienced relaxed behavior when subjected to Papacarie method of caries removal compared to conventional method using rotary instruments. Conclusion: This study helped us to provide behavioral measures and introduce children to dentistry in a nonthreatening setting. PMID:25254189

  15. Rotation of artificial rotor axles in rotary molecular motors.

    Science.gov (United States)

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  16. Multi-Fuel Rotary Engine for General Aviation Aircraft

    Science.gov (United States)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  17. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    Science.gov (United States)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  18. Fatigue behavior of lubricated Ni-Ti endodontic rotary instruments

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-04-01

    Full Text Available The use of Ni-Ti alloys in the practice of endodontic comes from their important properties such as shape memory and superelasticity phenomena, good corrosion resistance and high compatibility with biological tissues. In the last twenty years a great variety of nickel-titanium rotary instruments, with various sections and taper, have been developed and marketed. Although they have many advantages and despite their increasing popularity, a major concern with the use of Ni-Ti rotary instruments is the possibility of unexpected failure in use due to several reasons: novice operator handling, presence manufacturing defects, fatigue etc. Recently, the use of an aqueous gel during experimental tests showed a longer duration of the instruments. The aim of the present work is to contribute to the study of the fracture behavior of these endodontic rotary instruments particularly assessing whether the use of the aqueous lubricant gel can extend their operative life stating its reasons. A finite element model (FEM has been developed to support the experimental results. The results were rather contradictory, also because the Perspex (Poly-methyl methacrylate, PMMA cannot simulate completely the dentin mechanical behavior; however the results highlight some interesting points which are discussed in the paper.

  19. Fluorescence of primary dentine after chemomechanical and conventional rotary excavation.

    Science.gov (United States)

    Corrêa, F N P; Rocha, R O; Soares, F Z M; Rodrigues-Filho, L E; Rodrigues, C R M

    2008-09-01

    This was to compare fluorescence values of dentine remaining after caries removal using chemomechanical systems and conventional rotary methods. In vitro study. 30 extracted primary teeth with proximal carious cavities were divided into three groups according to caries removal method: Carisolv, Papacarie and conventional low speed rotary burs. Carious (initial) and remaining (final) dentine evaluations were assessed by visual-tactile examination and DIAGNOdent. Transversal microhardness (TMH) of remaining dentine was evaluated. Fluorescence and TMH values were submitted to two-way ANOVA and the post hoc Tukey test (alpha = 0.05) and Pearson's linear correlation. Two-way ANOVA revealed that fluorescence values were similar between conventional rotary excavation, Carisolv and Papacarie groups (p = 0.0542). No statistically significant differences (p = 0.1147) were found to TMH values. No correlation was found between fluorescence and TMH values (r = -0.0273). All caries excavation methods resulted in similar remaining dentine fluorescence values. No correlation was found between fluorescence values and TMH of remaining dentine.

  20. Robustness of the rotary catalysis mechanism of F1-ATPase.

    Science.gov (United States)

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V; Noji, Hiroyuki

    2014-07-11

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought.

  1. Undergraduates’ opinion after 5-year experience with rotary endodontic instruments

    Directory of Open Access Journals (Sweden)

    Flávia Sens Fagundes Tomazinho

    2011-01-01

    Full Text Available Introduction: Dentistry evolution in the past few years has revolutionized daily practice in some specialties. One of these revolutions has occurred in Endodontics due to the advancement of rotary techniques for root canal preparation and its subsequent incorporation into the teaching of Dentistry undergraduates. Objective: The aim of this study was to report a 5-year experience on the undergraduate laboratorial and clinical use of rotary endodontic preparation at a private university. Material and methods: Data survey was performed by using a questionnaire composed of nine objective questions; the questionnaire was answered by the undergraduates. Results: The results showed a positive acceptance regarding the undergraduate teaching of the rotary technique (94.7%. The following advantages were highlighted: faster root canal preparation (91.6% and reduction of patient’s stress (80.9%. Conclusion: It can be concluded that the experience with the two undergraduate groups was excellent due to the high acceptance level of the new technique by the students.

  2. Virtual Prototyping and Development of Rotary Field Ferrite Phase Shifter

    Directory of Open Access Journals (Sweden)

    Meenakshi Aggarwal

    2016-03-01

    Full Text Available Review of the virtual prototyping and physical development of the rotary field ferrite phase shifter is presented. A description of the basic principle of operation of the rotary field ferrite phase shifter has been given along with the key aspects about the design and virtual prototyping of various parts of the phase shifter viz ferrite rod, yoke, polarisers and matching section using HFSS and 3-D Maxwell softwares. Calibrated simulation performance of the phase shifters is presented and it shows good agreement with physical measurement results. Three prototypes and one hundred production capable phase shifter modules were fabricated, functionally tested and RF characterised. This is an indigenous development of the physical prototypes of rotary field class of ferrite phase shifters of C-band. This class of ferrite phase shifters finds application in phased array radars, such as battery level radar and weapon locating radar, because of its high phase accuracy and high power handling capability.Defence Science Journal, Vol. 66, No. 2, March 2016, pp. 156-161, DOI: http://dx.doi.org/10.14429/dsj.66.9309

  3. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    Science.gov (United States)

    Uri, Bin-Nun

    2011-06-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  4. Design analysis of rotary turret of poucher machine

    Directory of Open Access Journals (Sweden)

    Jigar G. Patel

    2016-09-01

    Full Text Available This paper present design analysis of rotary turret plate of 5 kg capacity for food product packaging machine. The turret plate has been designed considering two different criteria, first one is inertia force approach with only self-weight of turret plate and second is with mass of pouches. A 3-dimenssional CAD model of rotary turret assembly has been prepared in using solid modelling packages CRE-O. The finite element analysis (FEA of turret plate has been carried out using analysis software ANSYS 15.0. Consideration of inertia force is one of the criteria to analyze the performance and behaviour of component in working condition. The rotational velocity is applied at the central axis of turret and friction less support is applied on inner surface, where shaft is being attached. Also, pressure is applied on the same surface to incorporate the shrink fit condition of the assembly of turret plate with shaft. The boundary conditions as fixed support have been considered at the different sixteen faces, where bolts have been attached. The obtained simulation results for induced stress, deformation and strain depict that the modified design of rotary turret plate is well within the allowable stress limits of considered material. And, further optimization can be performed for topological and strength based more efficient design of turret plate.

  5. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  6. Design of an Improved Type Rotary Inductive Coupling Structure for Rotatable Contactless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Lee Jia-You

    2015-01-01

    Full Text Available This paper is aimed at analyzing the rotary inductive coupling structure of contactless rotary transformer. The main feature of the proposed rotatable contactless power transfer system is which winding is coaxial-interlayered for improving the magnetic coupling capability. There is no ferrite core used in the secondary-side of the rotary inductive coupling structure, this helps to ease the exerted force that is stress by the secondary-side on spindle. In order to verify the feasibility of the proposed contactless power transfer system for rotary applications, an inductive powered rotary machinery and the control system have been integrated. The experimental results show that the maximum power transfer efficiency of the proposed rotary inductive coupling structure is about 94.8%. The maximum output power received in the load end is 1030 W with transmission efficiency of 88%.

  7. Long-pulse-width narrow-bandwidth solid state laser

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  8. Bandwidth-sharing in LHCONE, an analysis of the problem

    Science.gov (United States)

    Wildish, T.

    2015-12-01

    The LHC experiments have traditionally regarded the network as an unreliable resource, one which was expected to be a major source of errors and inefficiency at the time their original computing models were derived. Now, however, the network is seen as much more capable and reliable. Data are routinely transferred with high efficiency and low latency to wherever computing or storage resources are available to use or manage them. Although there was sufficient network bandwidth for the experiments’ needs during Run-1, they cannot rely on ever-increasing bandwidth as a solution to their data-transfer needs in the future. Sooner or later they need to consider the network as a finite resource that they interact with to manage their traffic, in much the same way as they manage their use of disk and CPU resources. There are several possible ways for the experiments to integrate management of the network in their software stacks, such as the use of virtual circuits with hard bandwidth guarantees or soft real-time flow-control, with somewhat less firm guarantees. Abstractly, these can all be considered as the users (the experiments, or groups of users within the experiment) expressing a request for a given bandwidth between two points for a given duration of time. The network fabric then grants some allocation to each user, dependent on the sum of all requests and the sum of available resources, and attempts to ensure the requirements are met (either deterministically or statistically). An unresolved question at this time is how to convert the users’ requests into an allocation. Simply put, how do we decide what fraction of a network's bandwidth to allocate to each user when the sum of requests exceeds the available bandwidth? The usual problems of any resourcescheduling system arise here, namely how to ensure the resource is used efficiently and fairly, while still satisfying the needs of the users. Simply fixing quotas on network paths for each user is likely to lead

  9. The Bandwidths of a Matrix. A Survey of Algorithms

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-12-01

    Full Text Available The bandwidth, average bandwidth, envelope, profile and antibandwidth of the matrices have been the subjects of study for at least 45 years. These problems have generated considerable interest over the years because of them practical relevance in areas like: solving the system of equations, finite element methods, circuit design, hypertext layout, chemical kinetics, numerical geophysics etc. In this paper a brief description of these problems are made in terms of their definitions, followed by a comparative study of them, using both approaches: matrix geometry and graph theory. Time evolution of the corresponding algorithms as well as a short description of them are made. The work also contains concrete real applications for which a large part of presented algorithms were developed.

  10. Conical Emission Patterns by Femtosecond Pulses with Different Spectral Bandwidths

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; ZENG Zhi-Nan; GE Xiao-Chun; CHEN Xiao-Wei; LI Ru-Xin; XU Zhi-Zhan

    2008-01-01

    @@ Different conical emission (CE) patterns are obtained experimentally at various incident powers and beam sizes of pump laser pulses with pulse durations of 7fs, 44fs and lOOfs.The results show that it is the incident power but not the incident power density that determines a certain CE pattern.In addition, the critical powers for similar CE patterns are nearly the same for the laser pulses with the same spectral bandwidth.Furthermore, as far as a certain CE pattern is concerned, the wider the spectral bandwidth of pump laser pulse is, the higher the critical power is.This will hopefully provide new insights for the generation of CE pattern in optical medium.

  11. Variable bandwidth and one-step local M-estimator

    Institute of Scientific and Technical Information of China (English)

    范剑青; 蒋建成

    2000-01-01

    A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of least-squares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M- estimators and makes them possible to cope well with spatially inho-mogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the one-step local M-estimators reduce significantly the computation cost of the fully iterative M-estim

  12. Exploiting material softening in hard PZTs for resonant bandwidth enhancement

    Science.gov (United States)

    Leadenham, S.; Moura, A.; Erturk, A.

    2016-04-01

    Intentionally designed nonlinearities have been employed by several research groups to enhance the frequency bandwidth of vibration energy harvesters. Another type of nonlinear resonance behavior emerges from the piezoelectric constitutive behavior for high excitation levels and is manifested in the form of softening stiffness. This material nonlinearity does not result in the jump phenomenon in soft piezoelectric ceramics, e.g. PZT-5A and PZT-5H, due to their large internal dissipation. This paper explores the potential for wideband energy harvesting using a hard (relatively high quality factor) PZT-8 bimorph by exploiting its material softening. A wide range of base excitation experiments conducted for a set of resistive electrical loads confirms the frequency bandwidth enhancement.

  13. GHz bandwidth noise eater hybrid optical amplifier: design guidelines.

    Science.gov (United States)

    Danion, Gwennaël; Bondu, François; Loas, Goulc'hen; Alouini, Mehdi

    2014-07-15

    This Letter describes the design of an optical amplifier system optimized to reduce the relative intensity noise (RIN) of the input signal, and discloses its performance in terms of intensity noise reduction and bandwidth, without phase noise degradation. This polarization-maintaining amplifier is composed of an erbium-doped fiber amplifier (EDFA) cascaded with a semiconductor optical amplifier (SOA). The EDFA is sized to feed the SOA with a constant power corresponding to the optimal saturation level for noise reduction, through coherent population oscillations. When properly optimized, such an amplifier provides, simultaneously, 17 dB optical gain, 5.4 dB noise factor, and 20 dB reduction of the input-RIN across a 3 GHz bandwidth, without any electronics feedback loop.

  14. Bandwidth-enhanced photopolymer waveguide hologram-based optical backplane

    Science.gov (United States)

    Bi, Hai; Tian, Chuhua; Chen, Ray T.; Han, Xuliang

    2005-01-01

    As multiprocessing comes into the mainstream, the board-to-board interconnects become even more critical. In a shared-memory multiprocessing system, the shared bus topology is the preferred interconnect scheme because its broadcast nature can be effectively utilized to reduce communication latency, lessen networking complexity, and support cache coherence. In the electrical domain, however, a major performance bottleneck is anticipated due to the restricted bus bandwidth. In this paper, an innovative architecture, optical centralized shared bus, is proposed for use in the multiprocessing systems. This architecture utilizes the terascale bandwidth capacity of substrate-guided optical interconnects, while at the same time, retaining the essential merits of the shared bus topology. Thus, a smooth migration with substantial multiprocessing performance improvement is expected. A conceptual emulation of the shared-memory multiprocessing scheme is demonstrated on a generic PCI subsystem with an optical centralized shared bus. The objective of this effort is to prove the technical feasibility from the architecture standpoint.

  15. Transportation dynamic on coupled networks with limited bandwidth

    CERN Document Server

    Li, Ming; Wang, Bing-Hong

    2016-01-01

    The communication networks in real world often couple with each other to save costs, which results in any network does not have a stand-alone function and efficiency. To investigate this, in this paper we propose a transportation model on two coupled networks with bandwidth sharing. We find that the free-flow state and the congestion state can coexist in the two coupled networks, and the free-flow path and congestion path can coexist in each network. Considering three bandwidth-sharing mechanisms, random, assortative and disassortative couplings, we also find that the transportation capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only affects the performance of the system in the congestion state, such as the traveling time. In addition, with assortative coupling, the traffic capacity of the system will decrease significantly. However, the disassortative coupling has little influence on the transportation capacity of the system, which provides a good strategy t...

  16. Compact silicon multimode waveguide spectrometer with enhanced bandwidth

    Science.gov (United States)

    Piels, Molly; Zibar, Darko

    2017-01-01

    Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number squared, resulting in an extension of the usable range. PMID:28290537

  17. Ultrawide Bandwidth 180°-Hybrid-Coupler in Planar Technology

    Directory of Open Access Journals (Sweden)

    Steffen Scherr

    2014-01-01

    Full Text Available A new concept of an ultrawide bandwidth 180°-hybrid-coupler is presented. The ultrawideband design approach is based on the excitation of a coplanar waveguide (CPW mode and a coupled slot line (CSL mode in the same double slotted planar waveguide. The coupler is suitable for realization in planar printed circuit board technology. For verification of the new concept a prototype was designed for the frequency range from 3 GHz to 11 GHz, built, and measured. The measurement results presented in this paper show a good agreement between simulation and measurement and demonstrate the very broadband performance of the new device. The demonstrated coupler with a size of 40 mm × 55 mm exhibits a fractional bandwidth of 114% centered at 7 GHz with a maximum amplitude imbalance of 0.8 dB and a maximum phase imbalance of 5°.

  18. Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

    OpenAIRE

    Michelinakis, Foivos; Kreitz, Gunnar; Petrocco, Riccardo; Zhang, Boxun; Widmer, Joerg

    2015-01-01

    Consumption of multimedia content is moving from a residential environment to mobile phones. Optimizing Quality of Experience—smooth, quick, and high quality playback—is more difficult in this setting, due to the highly dynamic nature of wireless links. A key requirement for achieving this goal is estimating the available bandwidth of mobile devices. Ideally, this should be done quickly and with low overhead. One challenge is that the majority of connections on mobiles are short-l...

  19. A Constant Percentage Bandwidth Transform for Acoustic Signal Processing

    Science.gov (United States)

    1980-01-01

    defined a:- ’ho riti of the center frequency of a response peak to the -1 decibel bandwidth of that peak.) Though it has been extended in accuracy...F (w) on frequency. The solution of this problem necessitates the formalization of some simple ideas. First, define F (w) to be the -3 decibel ...the speech waveform, particularly during vowels and pauses. Interested primarily in taking advantage of this redundancy to facilitate time multiplexing

  20. Osteotomy in direct sinus lift. A comparative study of the rotary technique and ultrasound

    National Research Council Canada - National Science Library

    Peñarrocha-Diago, María; Peñarrocha-Diago, Miguel; Sanchez-Recio, Cristina; Peñarrocha-Oltra, David; Romero-Millán, Javier

    2012-01-01

    The present study investigates sinus membrane rupture in direct maxillary sinus lift with the rotary technique and with ultrasound, examining the survival of implants placed after sinus augmentation...

  1. Quantum gates with optimal bandwidth in noisy environments

    Science.gov (United States)

    Low, Guang Hao; Theodore, Yoder; Chuang, Isaac

    The traditional approach of open-loop quantum error correction suppresses certain systematic imperfections ɛ in quantum control to higher orders ɛ  (L) by a well-designed sequence of L imperfect quantum gates. However, this philosophy of maximal flatness leads to an ɛ-bandwidth that scales poorly with length and a residual that is easily overwhelmed by unaccounted sources of noise. We advance the paradigm of equiripple compensated gates that directly optimize for bandwidth given the limitations imposed by noise of magnitude δ, leading to dramatically improved performance. Where ɛ represent amplitude errors, we provide a formalism that generalizes both approaches and is effective at finding such gates. With it, we provide in closed-form the phase angles for an optimal family of population inversion gates with an ɛ -bandwidth of  (logδ-1/L) - a quadratic improvement over optimal maximally flat variants. We also construct optimal NOT gates and discuss extensions to other gates and error models.

  2. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  3. DC SQUID RF magnetometer with 200 MHz bandwidth

    Science.gov (United States)

    Talanov, Vladimir; Lettsome, Nesco; Orozco, Antonio; Cawthorne, Alfred; Borzenets, Valery

    2012-02-01

    Because of periodic flux-to-voltage transfer function, Superconducting QUantum Interference Device (SQUID) magnetometers operate in a closed-loop regime [1], which linearizes the response, and increases the dynamic range and sensitivity. However, a transmission line delay between the SQUID and electronics fundamentally limits the closed-loop bandwidth at 20 MHz [1], although the intrinsic bandwidth of SQUIDs is in gigahertz range. We designed a DC SQUID based RF magnetometer capable of wideband sensing coherent magnetic fields up to 200 MHz. To overcome the closed-loop bandwidth limitation, we utilized a low-frequency flux-modulated closed-loop to simultaneously lock the quasi-static magnetic flux and provide AC bias for the RF flux. The SQUID RF voltage is processed by RF electronics based on a double lock-in technique. This yields a signal proportional to the amplitude and phase of the RF magnetic flux, with more than four decades of a linear response. For YBaCuO SQUID on bi-crystal SrTiO substrate at 77 K we achieved a flux noise density of 4 μφ0/Hz at 190 MHz, which is similar to that measured at kHz frequencies with conventional flux-locked loop. [1] D. Drung, et al., Supercond. Sci. Technol. 19, S235 (2006).

  4. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  5. High-bandwidth remote flat panel display interconnect system

    Science.gov (United States)

    Peterson, Darrel G.

    1999-08-01

    High performance electronic displays (CRT, AMLCD, TFEL, plasma, etc.) require wide bandwidth electrical drive signals to produce the desired display images. When the image generation and/or image processing circuitry is located within the same line replaceable unit (LRU) as the display media, the transmission of the display drive signals to the display media presents no unusual design problems. However, many aircraft cockpits are severely constrained for available space behind the instrument panel. This often forces the system designer to specify that only the display media and its immediate support circuitry are to be mounted in the instrument panel. A wide bandwidth interconnect system is then required to transfer image data from the display generation circuitry to the display unit. Image data transfer rates of nearly 1.5 Gbits/second may be required when displaying full motion video at a 60 Hz field rate. In addition to wide bandwidth, this interconnect system must exhibit several additional key characteristics: (1) Lossless transmission of image data; (2) High reliability and high integrity; (3) Ease of installation and field maintenance; (4) High immunity to HIRF and electrical noise; (5) Low EMI emissions; (6) Long term supportability; and (7) Low acquisition and maintenance cost. Rockwell Collins has developed an avionics grade remote display interconnect system based on the American National Standards Institute Fibre Channel standard which meets these requirements. Readily available low cost commercial off the shelf (COTS) components are utilized, and qualification tests have confirmed system performance.

  6. Bandwidth Enhancement Technique of the Meandered Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Chien-Jen Wang

    2015-01-01

    Full Text Available A small dual-band monopole antenna with coplanar waveguide (CPW feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4% at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3% at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.

  7. Allocating Bandwidth in Datacenter Networks:A Survey

    Institute of Scientific and Technical Information of China (English)

    陈丽; 李葆春; 李波

    2014-01-01

    Datacenters have played an increasingly essential role as the underlying infrastructure in cloud computing. As implied by the essence of cloud computing, resources in these datacenters are shared by multiple competing entities, which can be either tenants that rent virtual machines (VMs) in a public cloud such as Amazon EC2, or applications that embrace data parallel frameworks like MapReduce in a private cloud maintained by Google. It has been generally observed that with traditional transport-layer protocols allocating link bandwidth in datacenters, network traffic from competing applications interferes with each other, resulting in a severe lack of predictability and fairness of application performance. Such a critical issue has drawn a substantial amount of recent research attention on bandwidth allocation in datacenter networks, with a number of new mechanisms proposed to efficiently and fairly share a datacenter network among competing entities. In this article, we present an extensive survey of existing bandwidth allocation mechanisms in the literature, covering the scenarios of both public and private clouds. We thoroughly investigate their underlying design principles, evaluate the trade-off involved in their design choices and summarize them in a unified design space, with the hope of conveying some meaningful insights for better designs in the future.

  8. Improved Radiation and Bandwidth of Triangular and Star Patch Antenna

    Directory of Open Access Journals (Sweden)

    M. Ramkumar Prabhu

    2012-06-01

    Full Text Available This study presents a hexagonal shape Defected Ground Structure (DGS implemented on two element triangular patch microstrip antenna array. The radiation performance of the antenna is characterized by varying the geometry and dimension of the DGS and also by locating the DGS at specific position which were simulated. Simulation and measurement results have verified that the antenna with DGS had improved the antenna without DGS. Measurement results of the hexagonal DGS have axial ratio bandwidth enhancement of 10 MHz, return loss improvement of 35%, mutual coupling reduction of 3 dB and gain enhancement of 1 dB. A new wideband and small size star shaped patch antenna fed capacitively by a small diamond shape patch is proposed. To enhance the impedance bandwidth, posts are incorporated under the patch antenna. HFSS high frequency simulator is employed to analyze the proposed antenna and simulated results on the return loss, the E- and H-plane radiation patterns and Gain of the proposed antenna are presented at various frequencies. The antenna is able to achieve in the range of 4-8.8 GHz an impedance bandwidth of 81% for return loss of less than-10 dB.

  9. Adaptive bandwidth measurements of importance functions for speech intelligibility prediction.

    Science.gov (United States)

    Whitmal, Nathaniel A; DeRoy, Kristina

    2011-12-01

    The Articulation Index (AI) and Speech Intelligibility Index (SII) predict intelligibility scores from measurements of speech and hearing parameters. One component in the prediction is the "importance function," a weighting function that characterizes contributions of particular spectral regions of speech to speech intelligibility. Previous work with SII predictions for hearing-impaired subjects suggests that prediction accuracy might improve if importance functions for individual subjects were available. Unfortunately, previous importance function measurements have required extensive intelligibility testing with groups of subjects, using speech processed by various fixed-bandwidth low-pass and high-pass filters. A more efficient approach appropriate to individual subjects is desired. The purpose of this study was to evaluate the feasibility of measuring importance functions for individual subjects with adaptive-bandwidth filters. In two experiments, ten subjects with normal-hearing listened to vowel-consonant-vowel (VCV) nonsense words processed by low-pass and high-pass filters whose bandwidths were varied adaptively to produce specified performance levels in accordance with the transformed up-down rules of Levitt [(1971). J. Acoust. Soc. Am. 49, 467-477]. Local linear psychometric functions were fit to resulting data and used to generate an importance function for VCV words. Results indicate that the adaptive method is reliable and efficient, and produces importance function data consistent with that of the corresponding AI/SII importance function.

  10. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-01-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment. PMID:27734921

  11. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  12. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  13. Integration of a zero dead-volume PDMS rotary switch valve in a miniaturised (bio)electroanalytical system.

    Science.gov (United States)

    Godino, Neus; del Campo, Francisco Javier; Muñoz, Francesc Xavier; Hansen, Mikkel Fougt; Kutter, Jörg P; Snakenborg, Detlef

    2010-07-21

    This work features the design, fabrication and characterisation of a miniaturised electroanalytical lab on a chip that allows the performance of a complete bioassay, from the capture of magnetic particles through their functionalisation and sample incubation to the detection of electroactive reaction products. The system is built using mainly polymeric materials such as PMMA and PDMS and fast prototyping techniques such as milling and moulding. The system also includes a set of microelectrodes, photo-lithographed on a silicon chip. The novelty lies in the design of the rotary microvalve, which contains a microreactor so that various reaction and incubation steps can be carried out in isolation from the detection event with zero dead volume. This avoids contamination and fouling of the electrodes by proteins or other organic matter, and extends the useful lifetime of the detector. The system operation is demonstrated by a model example, consisting in the functionalisation of streptavidin-coated magnetic particles with biotinylated beta-galactosidase over periods ranging from 5 to 15 min, at which point the particles saturate. Although the system is intended for the development of enzyme-based electrochemical bioassays, the concept of its rotary microreactor can be applied more broadly.

  14. Two Bandwidth Packing Algorithms for the Centralized Wireless Network and Their Average-case Analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly,about 8%~ 10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.

  15. Advantages of copper backhauling for G.fast nodes

    NARCIS (Netherlands)

    Phillipson, F.; Brink, R.F.M. van den

    2015-01-01

    A next step in bringing high bandwidth over an existing copper infrastructure is Fibre to the Curb, using G.Fast, which prevents a huge investment compared to a full fibre roll out. To save additional costs in this roll out, the existing copper can be reused as backhaul for the new active point of G

  16. Advantages of copper backhauling for G.fast nodes

    NARCIS (Netherlands)

    Phillipson, F.; Brink, R.F.M. van den

    2015-01-01

    Abstract—A next step in bringing high bandwidth over an existing copper infrastructure is Fibre to the Curb, using G.Fast, which prevents a huge investment compared to a full fibre roll out. To save additional costs in this roll out, the existing copper can be reused as backhaul for the new active p

  17. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José;

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  18. Effect of modulation frequency bandwidth on measurement accuracy and precision for digital diffuse optical spectroscopy (dDOS)

    Science.gov (United States)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-03-01

    Near-infrared (NIR) frequency-domain Diffuse Optical Spectroscopy (DOS) is an emerging technology with a growing number of potential clinical applications. In an effort to reduce DOS system complexity and improve portability, we recently demonstrated a direct digital sampling method that utilizes digital signal generation and detection as a replacement for more traditional analog methods. In our technique, a fast analog-to-digital converter (ADC) samples the detected time-domain radio frequency (RF) waveforms at each modulation frequency in a broad-bandwidth sweep (50- 300MHz). While we have shown this method provides comparable results to other DOS technologies, the process is data intensive as digital samples must be stored and processed for each modulation frequency and wavelength. We explore here the effect of reducing the modulation frequency bandwidth on the accuracy and precision of extracted optical properties. To accomplish this, the performance of the digital DOS (dDOS) system was compared to a gold standard network analyzer based DOS system. With a starting frequency of 50MHz, the input signal of the dDOS system was swept to 100, 150, 250, or 300MHz in 4MHz increments and results were compared to full 50-300MHz networkanalyzer DOS measurements. The average errors in extracted μa and μs' with dDOS were lowest for the full 50-300MHz sweep (less than 3%) and were within 3.8% for frequency bandwidths as narrow as 50-150MHz. The errors increased to as much as 9.0% when a bandwidth of 50-100MHz was tested. These results demonstrate the possibility for reduced data collection with dDOS without critical compensation of optical property extraction.

  19. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.

    Science.gov (United States)

    Schüle, Chan Yong; Thamsen, Bente; Blümel, Bastian; Lommel, Michael; Karakaya, Tamer; Paschereit, Christian Oliver; Affeld, Klaus; Kertzscher, Ulrich

    2016-04-18

    Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance. Therefore, experimental data for the near-wall flows in an axial rotary blood pump were collected and directly compared to computational fluid dynamic results. For this, the flow fields based on unsteady Reynolds-averaged Navier-Stokes simulations-computational fluid dynamics (URANS-CFD) of an axial rotary blood pump were calculated and compared with experimental flow data at one typical state of operation in an enlarged model of the pump. The focus was set on the assessment of wall shear stresses (WSS) at the housing wall and rotor gap region by means of the wall-particle image velocimetry technique, and the visualization of near-wall flow structures on the inner pump surfaces by a paint erosion method. Additionally, maximum WSS and tip leakage volume flows were measured for 13 different states of operation. Good agreement between CFD and experimental data was found, which includes the location, magnitude, and direction of the maximum and minimum WSS and the presence of recirculation zones on the pump stators. The maximum WSS increased linearly with pressure head. They occurred at the upstream third of the impeller blades and exceeded the critical values with respect to hemolysis. Regions of very high shear stresses and recirculation zones could be identified and were in good agreement with simulations. URANS-CFD, which is often used for pump performance and blood damage prediction, seems to be, therefore, a valid tool for the assessment of flow fields in axial rotary blood pumps. The magnitude of maximum WSS could be confirmed and were in the order of several hundred Pascal.

  20. Estimation of drying parameters in rotary dryers using differential evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, F S; Jr, V Steffen; Barrozo, M A S; Arruda, E B, E-mail: vsteffen@mecanica.ufu.br, E-mail: masbarrozo@ufu.br

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  1. FLOW CHARACTERISTICS FORMATION OF POWER STEERING WITH ROTARY DISTRIBUTOR

    OpenAIRE

    Mikhailov, V; E. Strock

    2012-01-01

    In order to obtain an adequate mathematical model of vehicle hydro-mechanical steering which is  equipped with a steering mechanism combined with power steering and a rotary distributor  it is initially   necessary to get current consumption values in the units of hydraulic scheme which are determined by dynamic changes of flow passages of pressure and drain circuits according to turning angle of the distributor. Such characteristics are usually determined experimentally.The paper  proposes  ...

  2. A rotary electromagnetic microgenerator for energy harvesting from human motions

    Directory of Open Access Journals (Sweden)

    Mehdi Niroomand

    2016-08-01

    Full Text Available In this paper, a rotary electromagnetic microgenerator is analyzed, designed and built. This microgenerator can convert human motions to electrical energy. The small size and use of a pendulum mechanism without gear are two main characteristics of the designed microgenerator. The generator can detect small vibrations and produce electrical energy. The performance of this microgenerator is evaluated by being installed peak-to-peak during normal walking. Also, the maximum harvested electrical energy during normal walking is around 416.6 μW. This power is sufficient for many applications.

  3. System and method for cooling a superconducting rotary machine

    Science.gov (United States)

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  4. SIMULATION OF OLIVE PITS PYROLYSIS IN A ROTARY KILN PLANT

    Directory of Open Access Journals (Sweden)

    Giacobbe Braccio

    2011-01-01

    Full Text Available This work deals with the simulation of an olive pits fed rotary kiln pyrolysis plant installed in Southern Italy. The pyrolysis process was simulated by commercial software CHEMCAD. The main component of the plant, the pyrolyzer, was modelled by a Plug Flow Reactor in accordance to the kinetic laws. Products distribution and the temperature profile was calculated along reactor's axis. Simulation results have been found to fit well the experimental data of pyrolysis. Moreover, sensitivity analyses were executed to investigate the effect of biomass moisture on the pyrolysis process.

  5. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    Science.gov (United States)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  6. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...... the physical behavior of the real system. This paper highlights the importance of the electromechanical coupling factor, which is responsible for the electrical to mechanical energy conversion. The emphasis is put on the difference between the effective coupling factor and the modal coupling factor. The effect...

  7. Shear Stress Transmission Model for the Flagellar Rotary Motor

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2008-09-01

    Full Text Available Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the charasteristic torque-velocity relationship of the flagellar rotation.

  8. Rotary Percussive Auto-Gopher for Deep Drilling and Sampling

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a

  9. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  10. Environmental impact assessment of combustible wastes utilization in rotary cement kilns

    OpenAIRE

    2013-01-01

    This study focuses on the environmental impact assessment of the coal combustion and its substitution by alternative fuels from combustible wastes during Portland cement clinker sinterization in rotary cement kiln. Environmental impact assessment was carried out based on the fuels chemical composition and operating parameters of a rotary cement kiln in accordance with EURITS and IMPACT 2002+ methods.

  11. Effective incineration technology with a new-type rotary waste incinerator

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-qiang; ZHU Jian-zhong; CAI Ming-zhao; XIE Xin-yuan

    2003-01-01

    The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl, NOx and SO2 during the incineration of sampled municipal organic solid waste are studied with the incinerator. Results showed that the new model of rotary incinerator can effectively control and reduce the pollutant formations by post combustion.

  12. 1×N rotary vertical micromirror for optical switching applications

    Science.gov (United States)

    Tu, Ching-Chen; Fanchiang, Kuohao; Liu, Cheng-Hsien

    2005-01-01

    We report a 1xN rotary optical switching mirror actuated by an electrostatic comb-driver for the optical networking. A variety of MEMS optical switching mirrors have been recently proposed. Some of these devices utilize surface micromachined films as reflection micromirrors and result in optical degradation. Some of these devices fabricated by bulk micromachining highly rely on delicate assembly for the micromirrors to the top of the actuators. In this paper, we focus on developing a rotary optical switching micromirror with no need of delicate assembly. The rotary actuator and the switching micromirror are both fabricated by deep RIE in our design. We use the Spin-On-Glass (SOG), which is used as the intermediated layer in the low temperature boning, to fabricate a rotary MEMS optical switching mirror with self-assembly. We successfully assemble the micromirror on top of the rotor stage of the rotary actuator. Experimental results show that our rotary vertical micromirror rotates about 1.5° under 150 volts. The first vibration mode of this rotary switching MEMS mirror is a rotary mode and appears around 3.4 kHz, which is measured via a Polytec laser doppler vibrometer.

  13. Optimization of bandwidth of communication channels of corporate networks

    Directory of Open Access Journals (Sweden)

    G. I. Bondarenko

    2014-09-01

    Full Text Available Introduction. This article contains overview of the organization of communication between applications on the corporate network. It is stated that the main digital channel (channel B - 64 kbit/s and the primary digital channel (channel E1 the digital stream - 2048 kbit/s are used as the main channels in corporate networks. Problem areas of the functioning of the corporate network are identified. There are the rent of communication channels, which is growing rapidly with increasing the quality and speed of data transmission, and optimal use of bandwidth of communication channels. Setting of task. Optimal use of transmission channels bandwidth and minimizing the rent cost of channels is possible in two ways - the use of compression techniques of voice and video information and the application of variable structure of channels by using various-speed transmission channels. Differential pulse code modulation, adaptive differential pulse code modulation are the modern methods of speech signals processing. Organization of various-speed channels is performed in the structure of the BCC (for speech signals or PCR (for video. Suggestions for optimizing the structure of the channel signals. Proposed method of various-speed channels formation by using the channel intervals appropriate BCC (octets in the structure of signals E1 as envelopes containing various-speed channels. Channels can be selected for synchronization procedure CRC to simplify recognition of channels in the structure of E1. In this case, the minimal speed in the channel is 4 kbit/s. Conclusions. The proposed structure of envelopes is based on octet channel intervals of standard group signal of the primary group plesiochronous hierarchy E1 when transferring various-speed digital signals maximum allows to use the bandwidth at a fixed structure of channel interval, it makes possible to agree on the structure of the various-speed signals with the existing in communication networks.

  14. Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders

    Institute of Scientific and Technical Information of China (English)

    Xie Zhi-Yin; Feng Jun-Xiao

    2013-01-01

    Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes.The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process,including heat conductivity,heat capacity,and shear modulus.Moreover,a new Péclet number is derived to determine the dominant mechanism of the heating rate within the particle bed,which is directly related to thermal and mechanical properties.The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity,or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely,it shows a fast-mixing bed when particle convection governs the heating rate.The simulation results show good agreement with the theoretical predictions.

  15. Tunable polarization plasma channel undulator for narrow bandwidth photon emission

    Science.gov (United States)

    Rykovanov, S. G.; Wang, J. W.; Kharin, V. Yu.; Lei, B.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2016-09-01

    The theory of a plasma undulator excited by a short intense laser pulse in a parabolic plasma channel is presented. The undulator fields are generated either by the laser pulse incident off-axis and/or under the angle with respect to the channel axis. Linear plasma theory is used to derive the wakefield structure. It is shown that the electrons injected into the plasma wakefields experience betatron motion and undulator oscillations. Optimal electron beam injection conditions are derived for minimizing the amplitude of the betatron motion, producing narrow-bandwidth undulator radiation. Polarization control is readily achieved by varying the laser pulse injection conditions.

  16. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  17. Frequency Bandwidth of Half-Wave Impedance Repeater

    Directory of Open Access Journals (Sweden)

    Marek Dvorsky

    2012-01-01

    Full Text Available This article brings in the second part general information about half-wave impedance repeater. The third part describes the basic functional principles of the half-wave impedance repeater using Smith chart. The main attention is focused in part four on the derivation of repeater frequency bandwidth depending on characteristics and load impedance of unknown feeder line. Derived dependences are based on the elementary features of the feeder lines with specific length. The described functionality is proved in part 4.3 by measurement of transformed impedance using vector several unbalanced feeder lines and network analyzer VNWA3+.

  18. Space bandwidth-efficient realizations of linear systems.

    Science.gov (United States)

    Kutay, M A; Erden, M F; Ozaktas, H M; Arkan, O; Güleryüz, O; Candan, C A

    1998-07-15

    One can obtain either exact realizations or useful approximations of linear systems or matrix-vector products that arise in many different applications by implementing them in the form of multistage or multichannel fractional Fourier-domain filters, resulting in space-bandwidth-efficient systems with acceptable decreases in accuracy. Varying the number and the configuration of filters enables one to trade off between accuracy and efficiency in a flexible manner. The proposed scheme constitutes a systematic way of exploiting the regularity or structure of a given linear system or matrix, even when that structure is not readily apparent.

  19. Bandwidth allocation for video under quality of service constraints

    CERN Document Server

    Anjum, Bushra

    2014-01-01

    We present queueing-based algorithms to calculate the bandwidth required for a video stream so that the three main Quality of Service constraints, i.e., end-to-end delay, jitter and packet loss, are ensured. Conversational and streaming video-based applications are becoming a major part of the everyday Internet usage. The quality of these applications (QoS), as experienced by the user, depends on three main metrics of the underlying network, namely, end-to-end delay, jitter and packet loss. These metrics are, in turn, directly related to the capacity of the links that the video traffic trave

  20. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  1. Multi-Objective Optimization of Mechanical Running Conditions of Large Scale Statically Indeterminate Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    Hu Xiaoping; Xiao Yougang; Wang Guangbin

    2006-01-01

    Combined with the second rotary kiln of Alumina Factory in Great Wall Aluminum Company, the mechanics characteristics of statically indeterminate large-scale rotary kiln with variable cross-sections is analyzed. In order to adjusting the runing axis of rotary kiln, taking the force equilibrium of the rollers and the minimum of relative axis deflection as the optimization goal, the multi-objective optimization model of mechanical running conditions of kiln rotary is set up. The mechanical running conditions of the second rotary kiln after multi-objective optimization adjustment are compared with those before adjustment and after routine adjustment. It shows that multi-objective optimization adjustment can make axis as direct as possible and can distribute kiln loads equally.

  2. Implementasi Manajemen Bandwidth Dengan Disiplin Antrian Hierarchical Token Bucket (HTB Pada Sistem Operasi Linux

    Directory of Open Access Journals (Sweden)

    Muhammad Nugraha

    2016-09-01

    Full Text Available Important Problem on Internet networking is exhausted resource and bandwidth by some user while other user did not get service properly. To overcome that problem we need to implement traffic control and bandwidth management system in router. In this research author want to implement Hierarchical Token Bucket algorithm as queue discipline (qdisc to get bandwidth management accurately in order the user can get bandwidth properly. The result of this research is form the management bandwidth cheaply and efficiently by using Hierarchical Token Bucket qdisc on Linux operating system were able to manage the user as we want.

  3. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit.

    Science.gov (United States)

    Marshall, Andrew R J; Ker, Pin Jern; Krysa, Andrey; David, John P R; Tan, Chee Hing

    2011-11-07

    High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs.

  4. Bandwidth Improvement of UWB Microstrip Antenna Using Finite Ground Plane

    Directory of Open Access Journals (Sweden)

    Priyanka Mishra

    2015-06-01

    Full Text Available Microstrip antennas play a vital role in communication system. It is required in high performance wireless applications. But due to its resonant nature microstrip antennas have some considerable drawbacks like narrowband performance. Extensive study has been carried out on microstrip patch antennas in the recent past, but it still have large scope for improvement in the near future. To overcome narrow bandwidth problem, number of methods and techniques have been suggested and investigated, keeping in mind that the basic advantages of microstrip antenna should not be altered such as low profile, light weight, low cost and simple printed circuit structure. The area of investigation includes modification in geometrical shape of the antenna, use of resonators, use of dipole, and many other parameters. This paper presents a comparison between conventional microstrip antenna and microstip antenna with finite ground plane at ultra wideband. HFSS simulation tool is used here for antenna simulation. For feeding purpose microstrip feed line is used (50Ω. Optimized result provides impedance bandwidth of 7.2GHz with VSWR<2, operating frequency range is from 6.5GHz to 13.7GHz. Proposed antenna is useful for many ultra wideband applications.

  5. The Wideband Slope of Interference Channels: The Infinite Bandwidth Case

    CERN Document Server

    Shen, Minqi

    2010-01-01

    It is well known that minimum received energy per bit in the interference channel is $-1.59dB$ as if there were no interference. Thus, the best way to mitigate interference is to operate the interference channel in the low power regime, that is in the limit of infinite bandwidth. However, when the bandwidth is large, but finite, minimum received energy per bit alone does not characterize performance. Verdu introduced the wideband slope $\\mathcal{S}_{0}$ to characterize the performance in this regime. We show that a wideband slope of ${\\mathcal{S}_{0}}/{\\mathcal{S}_{0,{no interference}}}=1/2$ is achievable. This result is similar to recent results on degrees of freedom in the high SNR regime, and we use a type of interference alignment using delays to obtain the result. We also show that in many cases the wideband slope is upper bounded by ${\\mathcal{S}_{0}}/{\\mathcal{S}_{0,{no interference}}}\\leq 1/2}$ for large number of users $K$.

  6. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    Science.gov (United States)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  7. An Exponential Time 2-Approximation Algorithm for Bandwidth

    CERN Document Server

    Fürer, Martin; Kasiviswanathan, Shiva Prasad

    2009-01-01

    The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the bandwidth problem that takes worst-case O(1.9797^n) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have an O(3^n) and O(2^n) worst-case time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to achieve this improved time bound.

  8. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  9. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun, E-mail: yjfeng@nju.edu.cn; Zhu, Bo; Zhao, Junming; Jiang, Tian [Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China)

    2015-06-15

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  10. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Science.gov (United States)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2015-06-01

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens' surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  11. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    David Malah

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately 3⋅10−4. In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in 92.5% of the test utterances.

  12. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    Sagi Ariel

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately . In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in of the test utterances.

  13. Variable bandwidth and one-step local M-estimator

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of least-squares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the one-step local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.

  14. BECSI: Bandwidth Efficient Certificate Status Information Distribution Mechanism for VANETs

    Directory of Open Access Journals (Sweden)

    Carlos Gañán

    2013-01-01

    Full Text Available Certificate revocation is a challenging task, especiallyin mobile network environments such as vehicular ad Hoc networks (VANETs.According to the IEEE 1609.2 security standard for VANETs, public keyinfrastructure (PKI will provide this functionality by means of certificate revocation lists (CRLs.When a certificate authority (CAneeds to revoke a certificate, itglobally distributes CRLs.Transmitting these lists pose a problem as they require high update frequencies and a lot of bandwidth. In this article, we propose BECSI, aBandwidth Efficient Certificate Status Informationmechanism to efficiently distributecertificate status information (CSI in VANETs.By means of Merkle hash trees (MHT, BECSI allowsto retrieve authenticated CSI not onlyfrom the infrastructure but also from vehicles actingas mobile repositories.Since these MHTs are significantly smaller than the CRLs, BECSIreduces the load on the CSI repositories and improves the response time for the vehicles.Additionally, BECSI improves the freshness of the CSIby combining the use of delta-CRLs with MHTs.Thus, vehicles that have cached the most current CRLcan download delta-CRLs to have a complete list of revoked certificates.Once a vehicle has the whole list of revoked certificates, it can act as mobile repository.

  15. An exponential time 2-approximation algorithm for bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Kasiviswanathan, Shiva [Los Alamos National Laboratory; Furer, Martin [PENNSYLVANIA STATE U; Gaspers, Serge [U OF MONTPELLIER, FRANCE

    2009-01-01

    The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case {Omicron}(1.9797{sup n}) = {Omicron}(3{sup 0.6217n}) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have an {Omicron}*(3{sup n}) and {Omicron}*(2{sup n}) worst-case time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to achieve this improved time bound.

  16. Modulator-Based, High Bandwidth Optical Links for HEP Experiments

    CERN Document Server

    Underwood, D G; Fernando, W S; Stanek, R W

    2012-01-01

    As a concern with the reliability, bandwidth and mass of future optical links in LHC experiments, we are investigating CW lasers and light modulators as an alternative to VCSELs. These links will be particularly useful if they utilize light modulators which are very small, low power, high bandwidth, and are very radiation hard. We have constructed a test system with 3 such links, each operating at 10 Gb/s. We present the quality of these links (jitter, rise and fall time, BER) and eye mask margins (10GbE) for 3 different types of modulators: LiNbO3-based, InP-based, and Si-based. We present the results of radiation hardness measurements with up to ~1012 protons/cm2 and ~65 krad total ionizing dose (TID), confirming no single event effects (SEE) at 10 Gb/s with either of the 3 types of modulators. These optical links will be an integral part of intelligent tracking systems at various scales from coupled sensors through intra-module and off detector communication. We have used a Si-based photonic transceiver to...

  17. Bandwidth Optimization in Centralized WLANs for Different Traffic Types

    Directory of Open Access Journals (Sweden)

    Haines RJ

    2007-01-01

    Full Text Available Allocating bandwidth between different forms of coexisting traffic (such as web-browsing, streaming, and telephony within a wireless LAN is a challenging and interesting problem. Centralized coordination functions in wireless LANs offer several advantages over distributed approaches, having the benefit of a system overview at the controller, but obtaining a stable configuration of bandwidth allocation for the system is nontrivial. We present, review, and compare different mechanisms to achieve this end, and a number of different means of obtaining the configurations themselves. We describe an analytical model of the system under consideration and present two mathematical approaches to derive solutions for any system configuration and deployment, along with an adaptive feedback-based solution. We also describe a comprehensive simulation-based model for the problem, and a prototype that allows comparison of these approaches. Our investigations demonstrate that a self-adaptive dynamic approach far outperforms any static scheme, and that using a mathematical model to produce the configurations themselves confers several advantages.

  18. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  19. Predicting the build/drop tendency of rotary drilling assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jogl, P.N.; Burgess, T.M.; Bowling, J.P.

    1988-06-01

    Today, the majority of rotary bottomhole assemblies (BHA's) for directional control are designed through practical experience and trial and error. This approach can produce satisfactory results when a great deal of local experience can be drawn on. It can prove costly, however, during drilling in a new area because of the increased number of trips and correction runs. This paper demonstrates how a BHA model can be used to predict the directional inclination tendencies of rotary assemblies, thus limiting the uncertainty associated with the traditional BHA design techniques. The technique is demonstrated on data from 17 bit runs from three wells on the same platform in the Gulf of Mexico. Predicted tendencies from BHA descriptions alone proved to be accurate (to an error of +-0.1/sup 0//100 ft-0.03/sup 0//10 ml) in more than half the cases. The uncertainty of other predictions appeared to depend on the hole gauge. The distance taken for a BHA to reach a stable build/drop rate after the start of a bit run depends on the length of the BHA. This factor must be taken into account in the prediction of BHA performance.

  20. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    Science.gov (United States)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  1. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.

    2011-05-01

    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  2. A new rotary ultrasonic motor using longitudinal vibration transducers

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhou

    2015-05-01

    Full Text Available To simplify the design process and improve the motor performance, a rotary ultrasonic motor with rotationally symmetrical structure has been designed, fabricated, and characterized. The stator consists of four connected sandwich-type transducers and eight driving feet. The rotor, a disk, and a disk-shaft are pressed on the two sides of the stator by a nut–spring system. To drive the rotor, two orthogonal longitudinal vibration modes of the stator should be excited. The operating principle of the rotary motor was analyzed by a mathematical model. By using finite element analysis, the feasibility of the operating principle was validated, and the optimal structure dimensions of stator were determined in order to improve the driving teeth motion. The overall dimensions of the prototype stator are 30 mm (width × 30 mm (width × 50 mm (length. Driven by alternating current signals with the driving frequency of 50.93 kHz and voltage 300 VP-P, the motor gave a maximal no-load speed of 157.9 r/min and a maximal output torque of 11.76 mN m.

  3. Miniature electrically tunable rotary dual-focus lenses

    Science.gov (United States)

    Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya

    2016-03-01

    The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.

  4. 'n Beoordeling van die Rotarier-bewe^in.u

    Directory of Open Access Journals (Sweden)

    Deon Kempff

    1963-03-01

    Full Text Available Heeds vir ’n paar maande hel Harris met enkele van sy jong vriendegepraat oor die moontlikheid 0111 'n soort kluh of vereniging te stig ommekaar beter te leer ken en mekaar te help. Non ii vier van 1 mile, Harris,Schiele (kole-handelaar, Loehr I myn-ingenieur en Shorey (snyer,saam in ’ 11 kantoor in hierdie stad. Die saak word bespreek en daarword besluit 0111 ’11 klul> te stig. Daarna word meer samekomste gehou,telkens in ’ 11 ander kantoor sodat daar afwisseling of rotasie van vergaderplekis. So ontstaan die naam Rotary. As embleem word spoedig gekies"n wawiel-met-speke. wat later ( 19231 gewysig is na die bekerulc (masjien-/■«i-motief. Die ledetal word gestadig meer en selfs in 1934 is die Rotariërklubvan Chicago die grootsle enkele kluh (meer as 000 lede, juis0 0 k onulat in hierdie stad nie meerdere klnbs gestig word soos watelders gebeur nie.

  5. ROTARY DAY AT THE UNITED NATIONS OFFICE IN GENEVA

    CERN Multimedia

    Staff Association

    2017-01-01

    We have been informed about the Rotary day at the United Nations office in Geneva. Join us on November 10th & 11th, 2017 at the United Nations office Avenue de la Paix 8-14 1211 Geneva, Switzerland   PEACE: MAKING A DIFFERENCE! Conflict and violence displace millions of people each year. Half of those killed in conflict are children, and 90 percent are civilians. We, Rotarians, refuse conflict as a way of life. But how can we contribute to Peace? And what about you? Are you keen on meeting exceptional individuals and exchanging ideas to move forward? Would you like to network and collaborate with Rotarians, Government Representatives, International Civil Servants, Representatives of Nongovernmental Organizations and Liberal Professions, Businessmen/women, and Students to make a difference in Peace? In November 2017, come to Geneva, get involved, and formulate recommendations to the international community. Together, we’ll celebrate Rotary&a...

  6. Electric Field Driven Torque in Biological Rotary Motors

    CERN Document Server

    Miller,, John H; Maric, Sladjana; Infante, Hans L; Claycomb, James R

    2013-01-01

    Ion driven rotary motors, such as Fo-ATP synthase (Fo) and the bacterial flagellar motor, act much like a battery-powered electric motor. They convert energy from ions as they move from high to low potential across a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields, emanating from channels in one or more stators, act on asymmetric charge distributions due to protonated and deprotonated sites in the rotor and drive it to rotate. The model predicts an ideal scaling law between torque and ion motive force, which can be hindered by mitochondrial mutations. The rotor of Fo drives the gamma-subunit to rotate within the ATP-producing complex (F1), working against an opposing torque that rises and falls periodically with angular position. Drawing an analogy with Brownian motion of a particle in a tilted washboard potential, we compute the highly nonlinear ATP production rate vs. proton motive force (pmf), showing a minimum pmf needed to drive ATP production with important me...

  7. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  8. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the salt slags produced. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates for over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tons of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  9. A Low Phase Noise Oscillator: Rotary Traveling Wave Oscillator

    OpenAIRE

    Chen,Yulin

    2012-01-01

    Increasing demand for bandwidth in the digital communications, wired or wireless, requires integrated circuits operating at ever higher frequencies. Design and fabrication of low cost transmitter/receiver circuits remains increasingly challenging. With scaling, advances in complementary metal-oxide-semiconductor (CMOS) technologies have proven a serious competitor to the traditional SiGe, GaAs and bipolar technologies which have proven to be high power and expensive with a relatively low yiel...

  10. Development of a Low-Cost Rotary Steerable Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Roney Nazarian

    2012-01-31

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully

  11. Adaptable Bandwidth for Harmonic Step-Frequency Radar

    Directory of Open Access Journals (Sweden)

    Anthony F. Martone

    2015-01-01

    Full Text Available A spectrum sensing technique is described which is used to enhance the performance of harmonic step-frequency radar in the presence of harmful radio frequency (RF interference (RFI. This technique passively monitors the RF spectrum for subbands of high signal-to-interference-plus-noise ratio (SINR within a constrained bandwidth of interest. An optimal subband is selected for the harmonic radar that maximizes SINR and minimizes the range resolution cell size, two conflicting objectives. The approach is tested using an experimental setup that injects high power RFI into a harmonic step-frequency radar, which significantly degrades radar performance. It is shown that the proposed spectrum sensing technique significantly improves the SINR and the peak-to-average sidelobe power level of the harmonic radar at the sacrifice of range resolution.

  12. Ultrawide Bandwidth Receiver Based on a Multivariate Generalized Gaussian Distribution

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2015-04-01

    Multivariate generalized Gaussian density (MGGD) is used to approximate the multiple access interference (MAI) and additive white Gaussian noise in pulse-based ultrawide bandwidth (UWB) system. The MGGD probability density function (pdf) is shown to be a better approximation of a UWB system as compared to multivariate Gaussian, multivariate Laplacian and multivariate Gaussian-Laplacian mixture (GLM). The similarity between the simulated and the approximated pdf is measured with the help of modified Kullback-Leibler distance (KLD). It is also shown that MGGD has the smallest KLD as compared to Gaussian, Laplacian and GLM densities. A receiver based on the principles of minimum bit error rate is designed for the MGGD pdf. As the requirement is stringent, the adaptive implementation of the receiver is also carried out in this paper. Training sequence of the desired user is the only requirement when implementing the detector adaptively. © 2002-2012 IEEE.

  13. Bandwidth Reservation Using Velocity and Handoff Statistics for Cellular Networks

    Institute of Scientific and Technical Information of China (English)

    Chuan-Lin Zhang; Kam Yiu Lam; Wei-Jia Jia

    2006-01-01

    The percentages of blocking and forced termination rates as parameters representing quality of services (QoS)requirements are presented. The relation between the connection statistics of mobile users in a cell and the handoff number and new call number in next duration in each cell is explored. Based on the relation, statistic reservation tactics are raised.The amount of bandwidth for new calls and handoffs of each cell in next period is determined by using the strategy. Using this method can guarantee the communication system suits mobile connection request dynamic. The QoS parameters:forced termination rate and blocking rate can be maintained steadily though they may change with the offered load. Some numerical experiments demonstrate this is a practical method with affordable overhead.

  14. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... Synchronization Data Aggregation Algorithm (BESDA) using spanning tree mechanism (SPT). It uses static sink and mobile nodes in the network. BESDA considers the synchronization of a local clock of node with global clock of the network. In the initial stage algorithm established the hierarchical structure...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...

  15. Memory bandwidth-scalable motion estimation for mobile video coding

    Science.gov (United States)

    Hsieh, Jui-Hung; Tai, Wei-Cheng; Chang, Tian-Sheuan

    2011-12-01

    The heavy memory access of motion estimation (ME) execution consumes significant power and could limit ME execution when the available memory bandwidth (BW) is reduced because of access congestion or changes in the dynamics of the power environment of modern mobile devices. In order to adapt to the changing BW while maintaining the rate-distortion (R-D) performance, this article proposes a novel data BW-scalable algorithm for ME with mobile multimedia chips. The available BW is modeled in a R-D sense and allocated to fit the dynamic contents. The simulation result shows 70% BW savings while keeping equivalent R-D performance compared with H.264 reference software for low-motion CIF-sized video. For high-motion sequences, the result shows our algorithm can better use the available BW to save an average bit rate of up to 13% with up to 0.1-dB PSNR increase for similar BW usage.

  16. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  17. Acousto-optical interaction bandwidth of more than 2 GHz

    Science.gov (United States)

    Petrov, Vladimir V.

    1996-12-01

    The way of extension of acousto-optical interaction frequency bandwidth to more than one octave is suggested. The main principle used for this aim is to design the electro-acoustical multi-element transducer with variable, along its length, parameters. In such a case to each frequency point inside chosen band exists the region of the transducer's length where, from one hand, the condition for good excitation of sound waves is fulfilled and from the other hand the Bragg condition is also fulfilled because of closed coincidence of real and necessary frequency dependencies of Bragg angle and of the angle of sound wave front inclination. This window moves from one end of the transducer to the other when frequency changes from minimum to maximum one inside the band. The closer real angle frequency dependence follows to necessary one than larger the length of transducer can be done and than more higher the diffraction efficiency can be reached.

  18. UNIFORM—PRICE AUCTION FOR BANDWIDTH ALLOCATION IN THE INTERNET

    Institute of Scientific and Technical Information of China (English)

    WeiJiaolong; ZhangChi

    2002-01-01

    It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources.Previous works focus on vickrey auction which is incentive compatible in classic auction theory.In the beginning of this letter,the faults of the most representative auction-based mechanisms are discussed.And then a new method called Uniform-Price Auction(UPA),which has the simplest auctiopn rule is proposed and its incentive compatibility in the network environment is also proved.Finally,the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market.and a market mechanism for network resource allocation which is predictable,riskless,and simple for eng-users is completed.

  19. Auction-based bandwidth allocation in the Internet

    Science.gov (United States)

    Wei, Jiaolong; Zhang, Chi

    2002-07-01

    It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this paper, the faults of the most representative auction-based mechanisms are discussed. And then a new method called uniform-price auction (UPA), which has the simplest auction rule is proposed and it's incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.

  20. UNIFORM-PRICE AUCTION FOR BANDWIDTH ALLOCATION IN THE INTERNET

    Institute of Scientific and Technical Information of China (English)

    Wei Jiaolong; Zhang Chi

    2002-01-01

    It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this letter, the faults of the most representative auction-based mechanisms are discussed. And then a new method called Uniform-Price Auction (UPA), which has the simplest auction rule is proposed and its incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.

  1. An improved harmony search algorithm with dynamically varying bandwidth

    Science.gov (United States)

    Kalivarapu, J.; Jain, S.; Bag, S.

    2016-07-01

    The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.

  2. Efficiently parallelized modeling of tightly focused, large bandwidth laser pulses

    CERN Document Server

    Dumont, Joey; Lefebvre, Catherine; Gagnon, Denis; MacLean, Steve

    2016-01-01

    The Stratton-Chu integral representation of electromagnetic fields is used to study the spatio-temporal properties of large bandwidth laser pulses focused by high numerical aperture mirrors. We review the formal aspects of the derivation of diffraction integrals from the Stratton-Chu representation and discuss the use of the Hadamard finite part in the derivation of the physical optics approximation. By analyzing the formulation we show that, for the specific case of a parabolic mirror, the integrands involved in the description of the reflected field near the focal spot do not possess the strong oscillations characteristic of diffraction integrals. Consequently, the integrals can be evaluated with simple and efficient quadrature methods rather than with specialized, more costly approaches. We report on the development of an efficiently parallelized algorithm that evaluates the Stratton-Chu diffraction integrals for incident fields of arbitrary temporal and spatial dependence. We use our method to show that t...

  3. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    Science.gov (United States)

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  4. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    Directory of Open Access Journals (Sweden)

    Mushfiqul Alam

    2015-02-01

    Full Text Available MEMS (micro-electro-mechanical system-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU, which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor’s behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer’s data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing.

  5. Narrow-Bandwidth Diode-Laser-Based Ultraviolet Light Source

    Institute of Scientific and Technical Information of China (English)

    PENG Yu; FANG Zhan-Jun; ZANG Er-Jun

    2011-01-01

    A compact, tunable and narrow-bandwidth laser source for ultraviolet radiation is presented. A grating stabilized diode laser at 1064 nm is frequency-stabilized to below 10 kHz by using a ultra low expansion (ULE) cavity. Injecting light of the diode laser into a tapered amplifier yields a power of 290mW. In a first frequency-doubling stage, about 47 mW of green light at 532nm is generated by using a periodical// poled KTP crystal. Subsequent second-harwonic generation employing a BBO crystal leads to about 30μW of ultraviolet light at 266nm.%A compact,tunable and narrow-bandwidth laser source for ultraviolet radiation is presented.A grating stabilized diode laser at 1064nm is frequency-stabilized to below 10kHz by using a ultra low expansion (ULE) cavity.Injecting light of the diode laser into a tapered amplifier yields a power of 290 mW.In a first frequency-doubling stage,about 47mW of green light at 532nm is generated by using a periodically poled KTP crystal.Subsequent second-harmonic generation employing a BBO crystal leads to about 30 μ W of ultraviolet light at 266nm.Hg is,so far,the heaviest nonradioactive atom that has been laser-cooled and trapped.Systematic evaluation of various sources of uncertainty for the Hg-based optical lattice clock is obtained and an accuracy of better than 10-1s is attainable,which is an order of magnitude of improvement over Sr or Yb based clocks because of the reduced susceptibility to the blackbody radiation field,which sets a major limitation on the accuracy of atomic clocks.[1] The 1S0-3p0 transition at 265.6 nm will be exploited as a clock transition.

  6. Characteristics of Rotary Electromagnet with Large Tooth-pitch Angle

    Directory of Open Access Journals (Sweden)

    Ruan Jian

    2012-10-01

    Full Text Available Since the conventional electro-mechanical converter of 2D valve had problems of step lose due to its small tooth-pitch angle, a novel rotary electromagnet with large tooth-pitch angle and coreless rotor structure was proposed. Combined with the approaches of magnetic circuit analysis, finite element simulation and experimental study, the static and dynamic characteristics of electromagnet including torque-angle characteristics, frequency response and step response were studied. The experimental results are in a close agreement with the simulated results. The electromagnet has sinusoidal torque-angle characteristics and good dynamic response. The maximum static torque is approximately 0.083N.M, and its frequency width is about 125Hz/-3dB, 130Hz/-90°, respectively, and the rise time is about 5.5 ms. It is appropriate to be used as the electro-mechanical converter of 2D proportional valve.

  7. FLOW CHARACTERISTICS FORMATION OF POWER STEERING WITH ROTARY DISTRIBUTOR

    Directory of Open Access Journals (Sweden)

    V. Mikhailov

    2012-01-01

    Full Text Available In order to obtain an adequate mathematical model of vehicle hydro-mechanical steering which is  equipped with a steering mechanism combined with power steering and a rotary distributor  it is initially   necessary to get current consumption values in the units of hydraulic scheme which are determined by dynamic changes of flow passages of pressure and drain circuits according to turning angle of the distributor. Such characteristics are usually determined experimentally.The paper  proposes  a sequence which is recommended for determination of consumption characteristics which is formed with due account of multi-directional kinematic perturbations, mechanical clearance, possible emergence of hydraulic backlash and desired throttling law. The factors account makes it possible to obtain an acceptable mathematical analogue of a hydro-mechanical steering for execution of robust investigations. 

  8. 4X6" Rotary Bayonet LN2 Test Fill

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, J.B.; /Fermilab

    1988-08-02

    This engineering note describes a test fill of the 4-inch x 6-inch rotary bayonet test fixture with LN{sub 2}. This test verifies the operation of valves on the fixture, and checks for proper construction/insulation. Further cold testing is imminent (with rotation and moment loading of the bayonet) after proper construction is verified and the test fixture is accepted. While this test fixture is a pressure vessel (4-inch), it does not require special safety treatment because it is under 6-inch in diameter. Flow capacity calculations were done to insure that the relief valve chosen would be capable of handling fire/loss of vacuum conditions. The D-Zero Safety Committee Chairman was notified of this testing.

  9. Real-Time Prognostics of a Rotary Valve Actuator

    Science.gov (United States)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  10. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build

  11. Pallet Optimization of the Heavy Rotary Table Load Carrying System

    Science.gov (United States)

    Atapin, V. G.; Bataev, A. A.

    2016-04-01

    The pallet optimization of the heavy rotary table load-carrying system, which is a part of the multi-purpose machine, is considered in terms of the deterministic and probabilistic models. As a result of optimum design in case of the deterministic model the mass of the pallet is reduced by 35.5 % in comparison with a serial model. The evaluation of the influence of optimization problem limitations on design variables confirms the importance of rigidity criterion in relation to other criteria. Calculation for probabilistic model allows reducing the mass of the construction by 27 % in comparison with the deterministic model. Considering a work piece rigidity on the basis of a conventional work piece of the minimum rigidity (without stiffening ribs etc.) leads to reducing of the pallet mass by 22.3 % in comparison with the deterministic model.

  12. CFD Application in Implantable Rotary Blood Pump Design and Validation

    Institute of Scientific and Technical Information of China (English)

    YI Qian

    2004-01-01

    Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.

  13. Classification of Implantable Rotary Blood Pump States With Class Noise.

    Science.gov (United States)

    Ooi, Hui-Lee; Seera, Manjeevan; Ng, Siew-Cheok; Lim, Chee Peng; Loo, Chu Kiong; Lovell, Nigel H; Redmond, Stephen J; Lim, Einly

    2016-05-01

    A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.

  14. CFD Application in Implantable Rotary Blood Pump Design and Validation

    Institute of Scientific and Technical Information of China (English)

    YIQian

    2004-01-01

    Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a.shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.

  15. Low torque hydrodynamic lip geometry for rotary seals

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  16. Performance analysis of a rotary active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.

    2013-01-01

    -equivalent cooling power (ExQ), and the overall second law efficiency, η2nd. Losses mapping indicated that friction and thermal leakage to the ambient are the most important contributors to the reduction of the system performance. Based on modeling results, improvements on the flow distributor design and reduction......Performance results for a novel rotary active magnetic regenerator (AMR) and detailed numerical model of it are presented. The experimental device consists of 24 regenerators packed with gadolinium (Gd) spheres rotating inside a four-pole permanent magnet with magnetic field of 1.24T. A parametric...... study of the temperature span, cooling power, coefficient of performance (COP) and efficiency of the system was carried out over a range of different hot reservoir temperatures, volumetric flow rates and cooling powers. Detailed modeling of the AMR using a 1D model was performed and compared...

  17. Maintenance cost study of rotary wing aircraft, phase 2

    Science.gov (United States)

    1979-01-01

    The Navy's maintenance and materials management data base was used in a study to determine the feasibility of predicting unscheduled maintenance costs for the dynamic systems of military rotary wing aircraft. The major operational and design variables were identified and the direct maintenance man hours per flight hour were obtained by step-wise multiple regression analysis. Five nonmilitary helicopter users were contacted to supply data on which variables were important factors in civil applications. These uses included offshore oil exploration and support, police and fire department rescue and enforcement, logging and heavy equipment movement, and U.S. Army military operations. The equations developed were highly effective in predicting unscheduled direct maintenance man hours per flying hours for military aircraft, but less effective for commercial or public service helicopters, probably because of the longer mission durations and the much higher utilization of civil users.

  18. Rotary forcespun styrofoam fibers as a soilless growing medium

    Science.gov (United States)

    Fauzi, Ahmad; Edikresnha, Dhewa; Munir, Muhammad Miftahul; Khairurrijal

    2016-04-01

    To make styrofoam fibers from used styrofoam, rotary forcespinning technique was used because it offers high production rate and affordable production cost. The used styrofoam was dissolved in acetone to obtain styrofoam solution as a precursor of syrofoam fibers. Since the technique utilizes centrifugal force, the precursor was thrown out and its phase changed to be solid following acetone solvent evaporation. Long, clean and light styrofoam fibers were then produced. To determine if the styrofoam fibers is a good soilless growing medium, physico-chemical properties including pH and electrical conductivity, bulk density, water retention and wettability were measured. Rockwool, which is the most popular soilless growing medium and easily obtained from local farm suppliers, was selected as a benchmark to evaluate the styrofoam fibers.

  19. Fibrous Scaffold Produced By Rotary Jet Spinning Technique

    Directory of Open Access Journals (Sweden)

    Talita A. Vida

    2016-08-01

    Full Text Available Poly(L-lactic acid (PLLA/ poly(ɛ-caprolactone (PCL mesh was produced by Rotary Jet Spinning (RJS process. RJS is a simple method which fabricates three-dimensional fibers by exploiting a high-speed rotating nozzle o form a polymer jet which undergoes stretching before solidification without the need of high voltage. Blend meshes were characterized by scanning electron microscopy (SEM, thermo gravimetric analysis (TGA, differential scanning calorimeter (DSC and infrared spectroscopy Fourier transform (FTIR. SEM imagens provides information about the morphological structure, which confirmed the production of fibers using RJS. Data obtained by thermal analyzes indicated the immiscible property of PLLA/PCL blend and also the total solvent evaporation. As a preliminary in vitro assay it was investigated using Vero cells, was not found any sign suggesting cell toxicity, indicating biocompatibility. Thus, this report suggests the use of PCL/PLLA mesh as fiber scaffold substrate for tissue engineering

  20. Solid state lighting devices and methods with rotary cooling structures

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2017-03-21

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.

  1. Design and experiment performances of an inchworm type rotary actuator.

    Science.gov (United States)

    Li, Jianping; Zhao, Hongwei; Shao, Mingkun; Zhou, Xiaoqin; Huang, Hu; Fan, Zunqiang

    2014-08-01

    A piezo-driven rotary actuator by means of inchworm principle is proposed in this paper. Six piezo-stacks and flexure hinges are used to realize large rotation ranges with high accuracy both in the forward and backward motions. Four right-angle flexure hinges and two right-circular flexure hinges are applied in the stator. The motion principle and theoretical analysis of the designed actuator are discussed. In order to investigate the working characteristics, a prototype actuator was manufactured and a series of experiment tests were carried out. The test results indicate that the maximum rotation velocity is 71,300 μrad/s; the maximum output torque is 19.6 N mm. The experiment results confirm that the designed actuator can obtain large rotation motion ranges with relatively high output torques and different rotation speeds on the condition of different driving voltages and frequencies.

  2. ACCURATE MEASUREMENT OF ROTA-RY MACHINE AXIS CENTER TRACE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Four methods aiming at measuring rotary machine axis center trace are discussed in detail.The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information.In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced.The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured.All of those information can be used to diagnose the fault origin.The analysis result is proved to be correct by the experiment.

  3. Impact drive rotary precision actuator with piezoelectric bimorphs

    Institute of Scientific and Technical Information of China (English)

    Hongzhuang ZHANG; Ping ZENG; Shunming HUA; Guangming CHENG; Zhigang YANG

    2008-01-01

    An impact drive rotary precision actuator with end-loaded piezoelectric cantilever bimorphs is proposed. According to finite element analysis and experiments of the dynamic characteristics of end-loaded piezoelectric cantilever bimorphs, a specific fixed-frequency and adjustable-amplitude is confirmed to control the actua-tor. The results show that an actuator excited by fixed-frequency and the adjustable-amplitude ramp voltage waveform works with a large travel range (180°), high resolution (1 μrad), speed (0.2 rad/min) and heavy-load ability (0.02 Nm). With advantages of high-precision positioning ability, simple structure and only one percent the cost of traditional impact drive mechanisms, the actuator is expected to be widely used in precision industries.

  4. Development of Rotary Axis For Wire Electrical Discharge Machining (WEDM

    Directory of Open Access Journals (Sweden)

    M. Parthiban, C. Manigandan, G. Muthu Venkadesh, M. Ranjith Kumar

    2013-08-01

    Full Text Available This paper gives an overview of setting up a rotary axis to the existing WEDM machine to investigate the machining parameters in WEDG of harder materials. There are a number of hybrid machining processes (HMPs seeking the combined advantage of EDM and other machining techniques. One such combination is wire electrical discharge grinding (WEDG, which is commonly used for micro-machining of fine and hard rods. WEDG employs a single wire guide to confine the wire tension within the discharge area between the rod and the front edge of the wire and also to minimize the wire vibration. Other advantages of WEDG include the ability to machine hard- to- machine materials with large aspect ratio.

  5. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO2 emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...... materials during alternative fuel combustion have been investigated both experimentally and with thermodynamical equilibrium calculations. Known effects of temperature and gas atmosphere on the decomposition of sulfates in the raw materials were confirmed. In addition, new knowledge was obtained regarding...

  6. A 15 GSa/s, 1.5 GHz Bandwidth Waveform Digitizing ASIC

    CERN Document Server

    Oberla, E; Grabas, H; Frisch, H; Nishimura, K; Varner, G

    2013-01-01

    The PSEC4 custom integrated circuit was designed for the recording of fast waveforms for use in large-area time-of-flight detector systems. The ASIC has been fabricated using the IBM-8RF 0.13 micron CMOS process. On each of 6 analog channels, PSEC4 employs a switched capacitor array (SCA) 256 samples deep, a ramp-compare ADC with 10.5 bits of DC dynamic range, and a serial data readout with the capability of region-of-interest windowing to reduce dead time. The sampling rate can be adjusted between 4 and 15 Gigasamples/second [GSa/s] on all channels and is servo-controlled on-chip with a low-jitter delay-locked loop (DLL). The input signals are passively coupled on-chip with a -3 dB analog bandwidth of 1.5 GHz. The power consumption in quiescent sampling mode is less than 50 mW/chip; at a sustained trigger and readout rate of 50 kHz the chip draws 100 mW. After fixed-pattern pedestal subtraction, the uncorrected integral non-linearity is 0.15% over an 750 mV dynamic range. With a linearity correction, a full ...

  7. A 15 GSa/s, 1.5 GHz bandwidth waveform digitizing ASIC

    Science.gov (United States)

    Oberla, Eric; Genat, Jean-Francois; Grabas, Hervé; Frisch, Henry; Nishimura, Kurtis; Varner, Gary

    2014-01-01

    The PSEC4 custom integrated circuit was designed for the recording of fast waveforms for use in large-area time-of-flight detector systems. The ASIC has been fabricated using the IBM-8RF 0.13 μm CMOS process. On each of the six analog channels, PSEC4 employs a switched capacitor array (SCA) of 256 samples deep, a ramp-compare ADC with 10.5 bits of DC dynamic range, and a serial data readout with the capability of region-of-interest windowing to reduce dead time. The sampling rate can be adjusted between 4 and 15 Gigasamples/second (GSa/s) on all channels and is servo-controlled on-chip with a low-jitter delay-locked loop (DLL). The input signals are passively coupled on-chip with a -3 dB analog bandwidth of 1.5 GHz. The power consumption in quiescent sampling mode is less than 50 mW/chip; at a sustained trigger and a readout rate of 50 kHz the chip draws 100 mW. After fixed-pattern pedestal subtraction, the uncorrected integral non-linearity is 0.15% over a 750 mV dynamic range. With a linearity correction, a full 1 V signal voltage range is available. The sampling timebase has a fixed-pattern non-linearity with an RMS of 13%, which can be corrected for precision waveform feature extraction and timing.

  8. Analysis and active compensation of microphonics in continuous wave narrow-bandwidth superconducting cavities

    Science.gov (United States)

    Neumann, A.; Anders, W.; Kugeler, O.; Knobloch, J.

    2010-08-01

    Many proposals for next generation light sources based on single pass free electron lasers or energy recovery linac facilities require a continuous wave (cw) driven superconducting linac. The effective beam loading in such machines is very small and in principle the cavities can be operated at a bandwidth of a few Hz and with less than a few kW of rf power. However, a power reserve is required to ensure field stability. A major error source is the mechanical microphonics detuning of the niobium cavities. To understand the influence of cavity detuning on longitudinal beam stability, a measurement program has been started at the horizontal cavity test facility HoBiCaT at HZB to study TESLA-type cavities. The microphonics detuning spectral content, peak detuning values, and the driving terms for these mechanical oscillations have been analyzed. In combination with the characterization of cw-adapted fast tuning systems based on the piezoelectric effect this information has been used to design a detuning compensation algorithm. It has been shown that a compensation factor between 2-7 is achievable, reducing the typical detuning of 2-3 Hz rms to below 0.5 Hz rms. These results were included in rf-control simulations of the cavities, and it was demonstrated that a phase stability below 0.02° can be achieved.

  9. A 15 GSa/s, 1.5 GHz bandwidth waveform digitizing ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Oberla, Eric, E-mail: ejo@uchicago.edu [Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Genat, Jean-Francois; Grabas, Hervé; Frisch, Henry [Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Nishimura, Kurtis; Varner, Gary [University of Hawai' i at Manoa, Watanabe Hall, 2505 Correa Road, Honolulu, HI (United States)

    2014-01-21

    The PSEC4 custom integrated circuit was designed for the recording of fast waveforms for use in large-area time-of-flight detector systems. The ASIC has been fabricated using the IBM-8RF 0.13μm CMOS process. On each of the six analog channels, PSEC4 employs a switched capacitor array (SCA) of 256 samples deep, a ramp-compare ADC with 10.5 bits of DC dynamic range, and a serial data readout with the capability of region-of-interest windowing to reduce dead time. The sampling rate can be adjusted between 4 and 15 Gigasamples/second (GSa/s) on all channels and is servo-controlled on-chip with a low-jitter delay-locked loop (DLL). The input signals are passively coupled on-chip with a −3 dB analog bandwidth of 1.5 GHz. The power consumption in quiescent sampling mode is less than 50 mW/chip; at a sustained trigger and a readout rate of 50 kHz the chip draws 100 mW. After fixed-pattern pedestal subtraction, the uncorrected integral non-linearity is 0.15% over a 750 mV dynamic range. With a linearity correction, a full 1 V signal voltage range is available. The sampling timebase has a fixed-pattern non-linearity with an RMS of 13%, which can be corrected for precision waveform feature extraction and timing.

  10. A new wideband HF technique for MHz-bandwidth spread-spectrum radio communications

    Science.gov (United States)

    Perry, B. D.

    1983-09-01

    The one-way results are seen as demonstrating that equalized MHz-bandwidth skywave HF channels can be achieved using long-range one-hop F-layer propagation paths. It has thus become possible to use direct-sequence pseudo-noise or coherent fast-frequency-hop signaling at HF with processing gains of several orders of magnitude for teletype data rates. Possibilities are seen for using the spread spectrum in covert and/or jam-resistant communications. What is more, the equalized wideband HF channel is not subject to the fading caused by multiple propagation modes; as a consequence, it is substantially more reliable than the traditional narrow-band HF channel. Conversely, reliability comparable to traditional HF can be attained at greatly reduced signal margins. Since the time stability of the wideband HF channel is of the order of 10 s, very little channel-transmission time is needed for initializing and maintaining the equalizer. It is noted that probe signals similar to the channel-measuring waveform described here or spread-spectrum training sequences at the beginning of each message are adequate. Results from the 1982 two-way experimentation show that N(omega) is not reciprocal between terminals 2000 km apart.

  11. Multicast routing with bandwidth and delay constraints based on genetic algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed Younes

    2011-07-01

    Full Text Available Many multimedia communication applications require a source to send multimedia information to multiple destinations through a communication network. To support these applications, it is necessary to determine a multicast tree of minimal cost to connect the source node to the destination nodes subject to delay constraints on multimedia communication. This problem is known as multimedia multicast routing and has been proved to be NP-complete. The paper proposes a genetic algorithm for solving multimedia multicast routing, which find the low-cost multicasting tree with bandwidth and delay constraints. In the proposed algorithm, the k shortest paths from the source node to the destination nodes are used for genotype representation. The simulation results show that the proposed algorithm is able to find a better solution, fast convergence speed and high reliability. It can meet the real-time requirement in multimedia communication networks. The scalability and the performance of the algorithm with increasing number of network nodes are also quite encouraged.

  12. A variable bandwidth assignment scheme for the Land Mobile Satellite experiment

    Science.gov (United States)

    Yan, T.-Y.; Li, V. O. K.

    The Mobile Satellite Experiment is a proposed experimental satellite-based communications network which provides data and voice communications to mobile terminals dispersed in geographically dispersed areas. In this paper, an analytical model is developed to calculate the performance of a Variable Bandwidth Assignment (VBA) Scheme. Under this scheme, the satellite channel bandwidth is dynamically reassigned so that a message may be transmitted in the shortest possible time. To transmit a long message, message channels will be reconfigured to have more bandwidth such that the transmission time is reduced, while to transmit a short message, the channel bandwidth will be shrunk such that the released bandwidth can be used to serve other messages. The model is illustrated with numerical examples. It is shown that a VBA scheme can achieve considerable improvement in transmission delays over a Fixed Bandwidth Assignment Scheme.

  13. Measuring End-To-End Bandwidth with Iperf Using Web100

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Les

    2003-04-30

    End-to-end bandwidth estimation tools like Iperf though fairly accurate are intrusive. In this paper, we describe how with an instrumented TCP stack (Web100), we can estimate the end-to-end bandwidth accurately, while consuming significantly less network bandwidth and time. We modified Iperf to use Web100 to detect the end of slow-start and estimate the end-to-end bandwidth by measuring the amount of data sent for a short period (1 second) after the slow-start, when the TCP throughput is relatively stable. We obtained bandwidth estimates differing by less than 10% when compared to running Iperf for 20 seconds, and savings in bandwidth estimation time of up to 94% and savings in network traffic of up to 92%.

  14. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    Science.gov (United States)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  15. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-range optical telecommunications (LROT) impose challenging requirements on detector array sensitivity at 1064nm and arrays timing bandwidth. Large photonic...

  16. A Novel Dynamic Bandwidth Assignment Algorithm for Multi-Services EPONs

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue; ZHANG Yang; HUANG Xiang; DENG Yu; SUN Shu-he

    2005-01-01

    In this paper we propose a novel Dynamic Bandwidth Assignment (DBA) algorithm for Ethernet-based Passive Optical Networks (EPON) which offers multiple kinds of services. To satisfy crucial Quality of Service (QoS) requirement for Time Division Multiplexing (TDM) service and achieve fair and high bandwidth utilization simultaneously, the algorithm integrates periodic, for TDM service, and polling granting for Ethernet service. Detailed simulation shows that the algorithm guarantees carrier-grade QoS for TDM service, high bandwidth utilization and good fairness of bandwidth assignment among Optical Network Units (ONU).

  17. Bandwidth-Aware Scheduling of Workflow Application on Multiple Grid Sites

    Directory of Open Access Journals (Sweden)

    Harshadkumar B. Prajapati

    2014-01-01

    Full Text Available Bandwidth-aware workflow scheduling is required to improve the performance of a workflow application in a multisite Grid environment, as the data movement cost between two low-bandwidth sites can adversely affect the makespan of the application. Pegasus WMS, an open-source and freely available WMS, cannot fully utilize its workflow mapping capability due to unavailability of integration of any bandwidth monitoring infrastructure in it. This paper develops the integration of Network Weather Service (NWS in Pegasus WMS to enable the bandwidth-aware mapping of scientific workflows. Our work demonstrates the applicability of the integration of NWS by making existing Heft site-selector of Pegasus WMS bandwidth aware. Furthermore, this paper proposes and implements a new workflow scheduling algorithm—Level based Highest Input and Processing Weight First. The results of the performed experiments indicate that the bandwidth-aware workflow scheduling algorithms perform better than bandwidth-unaware algorithms: Random and Heft of Pegasus WMS. Moreover, our proposed workflow scheduling algorithm performs better than the bandwidth-aware Heft algorithms. Thus, the proposed bandwidth-aware workflow scheduling enhances capability of Pegasus WMS and can increase performance of workflow applications.

  18. The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation

    Directory of Open Access Journals (Sweden)

    Ikhthison Mekongga

    2014-02-01

    Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network.  ANN  is  chosen  to  predict  the  consumption  of  the  bandwidth  because  ANN  has  good  approachability  to  non-linearity.  The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks  with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation

  19. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    Science.gov (United States)

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min

    2015-12-01

    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  20. Evaluation of near-infrared tunable diode lasers for detection of transient emissions from a rotary kiln.

    Energy Technology Data Exchange (ETDEWEB)

    Shaddix, Christopher R.; Ottesen, David K.; Allendorf, Sarah W.; Miller, C. Andy (U.S. Environmental Protection Agency, Research Triangle Park, NC); Lemieux, Paul M. (U.S. Environmental Protection Agency, Research Triangle Park, NC)

    2003-12-01

    Near-infrared tunable diode lasers (TDLs) were evaluated for their suitability as fast-response combustion performance indicators during tests at the U.S. Environmental Protection Agency's pilot-scale Rotary Kiln Incinerator Simulator (RKIS) facility. Transient emissions (i.e., 'puffs') of various magnitudes and duration were generated by injecting a mixture of toluene and methylene chloride into the rotary kiln, through use of a computer-controlled liquid gun or by ram-loading containers of the waste surrogate adsorbed onto corncob. Two wavelength-modulated TDLs that span carbon monoxide (CO) and methane absorption lines at 1.57 and 1.65 pm, respectively, provided information on these species as well as total laser transmittance (an indicator of soot loading). Fiber-optic cables transmitted the laser light from the remotely situated TDLs to two line-of-sight measurement locations. In addition, the TDLs were used with a multi-pass optical cell to perform more sensitive extractive measurements. Over the optical pathlength available in this facility, in situ measurements of methane down to a concentration of {approx} 100 ppm were demonstrated during non-sooty conditions. CO could not be reliably quantified in situ, even at concentrations as high as 0.7%, due to the combination of weak absorption line strength and interfering water and carbon-dioxide hot-bands. The soot produced during the toluene/methylene chloride puffs typically attenuated over 90% of the TDL laser beam, preventing effective in situ TDL measurements during the puffs. In contrast, the extractive TDL measurements demonstrated good accuracy and sensitivity for both methane and CO under all reactor conditions. Furthermore, the in situ laser transmittance profiles during the puffs provided new insights into the composition of the puffs as a function of puff magnitude and residence time.

  1. Rotary klubi premeeris Politsei- ja Piirivalveameti töötajaid

    Index Scriptorium Estoniae

    2012-01-01

    Tallinna Rotary klubi noorte politseinike ning parima koerajuhi ja teenistuskoera preemia võitnutest: Raili Pärn, Marit Abram, Valur Pajumäe koeraga Golttvizen Hof Dixon, Hendri Lilbok ja Martin Torim

  2. Ameerika Rotary klubi toetab Maarja küla miljoni krooniga / Kristel Rõss

    Index Scriptorium Estoniae

    Rõss, Kristel, 1967-

    2003-01-01

    Taevaskotta Haavassaarde rajatav Maarja küla oli nädalavahetusel eriliselt rahvarohke, sest puuetega noorte kodu ligi miljoni krooniga toetada lubanud Rotary klubi liikmed Atlantast istutasid Eestimaa mulda tammepuid

  3. Unforgettable Cooperation and Friendship——Retrospection of Exchanges and Cooperation with Rotary US

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Composed of professionals from all walks of life, Rotary International is the largest non-governmental volunteer service organization with the longest tradition in the world. Through providing various social services and humanitarian assistance, it encourages high ethical standards in

  4. Oil Shale Core Hole and Rotary Hole Locations in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes and rotary holes in the state of Colorado and is available as an ESRI shapefile, Google...

  5. Two-Step Water Splitting with Concentrated Solar Heat Using Rotary-Type Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, H.; Fuse, A.; Miura, T.; Ishihara, H.; Tamara, Y.

    2006-07-01

    The rotary-type solar furnace has been developed and fabricated for solar hydrogen production by a two-step water splitting reaction using the special reactive ceramic. The rotary-type solar furnace is the dual cell solar reactor, which has two different type reaction rooms, one is for discharging oxygen and another is for water splitting reaction. The detailed specification and the efficiency of the rotary-type solar furnace were examined. Successive evolutions of oxygen and hydrogen were observed in the discharging oxygen and water splitting reaction cells, respectively. Two-step water splitting process using newly developed rotary type solar furnace was achieved. The optimum reaction temperatures of the oxygen releasing reaction and hydrogen generation reaction with Ni,Mn-ferrite were 1173 K and 1473 K, respectively. (Author)

  6. Design and simulation of a novel impact piezoelectric linear-rotary motor

    Science.gov (United States)

    Han, Liling; Zhao, Yahui; Pan, Chengliang; Yu, Liandong

    2016-01-01

    This paper presents a novel impact piezoelectric linear-rotary motor which is driven by a single piezoceramic tube with two parts of electrodes. From the inner and outer electrodes, longitudinal displacement of the tube is generated and used to actuate the shaft with linear motion ability. From the grooved helical interdigitated electrodes, torsional displacement is generated and used to actuate the shaft with rotary motion ability. Working principle and structural design of the motor are introduced and quasi-static longitudinal and torsional displacements of the tube are estimated. With established kinematics model of the motor, the working behaviors of the motor are investigated numerically with MATLAB/Simulink software. The stepping characteristics of the linear and rotary motions are analyzed, compared, and discussed. With optimized material selection, structural design, and driving parameters, the proposed linear-rotary motor will provide remarkable performances as a miniaturized multi-degree driving device for complex positioning and manipulation applications.

  7. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Alliance Spacesystems, LLC produced a rotary percussive drill designed for space use under a NASA-funded Mars Instrument Development Program (MIDP) project ? the...

  8. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    Science.gov (United States)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  9. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    Science.gov (United States)

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-03

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.

  10. Ameerika Rotary klubi toetab Maarja küla miljoni krooniga / Kristel Rõss

    Index Scriptorium Estoniae

    Rõss, Kristel, 1967-

    2003-01-01

    Taevaskotta Haavassaarde rajatav Maarja küla oli nädalavahetusel eriliselt rahvarohke, sest puuetega noorte kodu ligi miljoni krooniga toetada lubanud Rotary klubi liikmed Atlantast istutasid Eestimaa mulda tammepuid

  11. Rotary klubi premeeris Politsei- ja Piirivalveameti töötajaid

    Index Scriptorium Estoniae

    2012-01-01

    Tallinna Rotary klubi noorte politseinike ning parima koerajuhi ja teenistuskoera preemia võitnutest: Raili Pärn, Marit Abram, Valur Pajumäe koeraga Golttvizen Hof Dixon, Hendri Lilbok ja Martin Torim

  12. Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jing; JIANG ji-hai; LI Shang-yi

    2010-01-01

    In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.

  13. Simulation and Analysis of Microstructure Evolution of IN718 in Rotary Forgings by FEM

    Institute of Scientific and Technical Information of China (English)

    YU Zhong-qi; MA Qiu; LIN Zhong-qin

    2008-01-01

    A numerical analysis was performed to study the influence of process parameters on the microstructure evolution of IN718 alloy in rotary forging using the finite element method (FEM).For this purpose,a constitutive equation considering the effects of strain hardening and dynamic softening of IN718 alloy was built.The constitutive equation and microstructure models were implemented into the finite element code to investigate the microstructure evolution during rotary forging subject to large deformations.The simulations were carried out in the ratio of initial height to diameter range 0.2-0.8,the angle of the rocker 3°-7° and the relative feed per revolution range 0.01-0.1 r-1.The research results revealed the deformation mechanism and the correlation of process parameters with the grain size evolution of IN718 alloy during rotary forging.These provide evidence for the selection of rotary forging parameters.

  14. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg;

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top.......Results can be up-scaled to industrial conditions in cement rotary kilns and show that even relatively large fuel particles will predominantly be covered by raw material after less than 30s in the rotary kiln. This affects the heating and combustion mechanisms for the fuel particles....

  15. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  16. Novel Highly Efficient Compact Rotary-Hammering Planetary Sampler Actuated by a Single Piezoelectric Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We had two objectives in this task: 1. Develop effective single low-mass, low-power piezoelectric drive that can actuate rotary-hammer samplers through walls. 2....

  17. MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C

    Science.gov (United States)

    Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.

    2012-01-01

    We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681

  18. The SST Fully-Synchronous Multi-GHz Analog Waveform Recorder with Nyquist-Rate Bandwidth and Flexible Trigger Capabilities

    CERN Document Server

    Kleinfelder, Stuart A; Prakash, Tarun

    2015-01-01

    The design and performance of a fully-synchronous multi-GHz analog transient waveform recorder I.C. ("SST") with fast and flexible trigger capabilities is presented. The SST's objective is to provide multi-GHz sample rates with intrinsically-stable timing, Nyquist-rate sampling and high trigger bandwidth, wide dynamic range and simple operation. Containing 4 channels of 256 samples per channel, the SST is fabricated in an inexpensive 0.25 micrometer CMOS process and uses a high-performance package that is 8 mm on a side. It has a 1.9V input range on a 2.5V supply, exceeds 12 bits of dynamic range, and uses ~128 mW while operating at 2 G-samples/s and full trigger rates. With a standard 50 Ohm input source, the SST exceeds ~1.5 GHz -3 dB bandwidth. The SST's internal sample clocks are generated synchronously via a shift register driven by an external LVDS oscillator running at half the sample rate (e.g., a 1 GHz oscillator yields 2 G-samples/s). Because of its purely-digital synchronous nature, the SST has ps-...

  19. The Application of Unmanned Rotary-Wing Aircraft in Tactical Logistics in Support of Joint Operations

    Science.gov (United States)

    2013-12-13

    Meteorological Conditions ISR Intelligence, Surveillance, and Reconnaissance NVGs Night Vision Goggles UCAR Unmanned Combat Armed Rotorcraft U.S. United...Army The U.S. Army first became interested in unmanned rotary-wing aircraft in 2004 and established the Unmanned Combat Armed Rotorcraft ( UCAR ...program.14 Both Northrop Grumman and Kaman were the lead contractors for the unmanned rotary prototype. The UCAR was designed to be an autonomous strike

  20. Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers

    Science.gov (United States)

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0098 Flapping and Rotary Wing Lift at Low Reynolds Number Anya Jones MARYLAND UNIV COLLEGE PARK Final Report 02/26/2016... Lift Production on Flapping and Rotary Wings at Low Reynolds Numbers (YIP) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0251 5c. PROGRAM...The objective of this research was to identify the mechanisms of lift production on models of an entomological flapping wing stroke by evaluating