WorldWideScience

Sample records for bandpass butterworth filter

  1. The design of a 4’th order Bandpass Butterworth filter with one operational amplifier

    DEFF Research Database (Denmark)

    Gaunholt, Hans

    2008-01-01

    A numerical design method is presented for the design of all pole band pass active-RC filters applying just one operational amplifier. The operational amplifier model used is the integrator model: ωt/s where ωt is the unity gain fre-quency. The design method is used for the design of a fourth order...... band pass filter with Butterworth poles applying just one operational amplifier coupled as a unity gain amplifier. The unity gain amplifiers have the advantage of providing low power consumption, yielding a large dynamic range, sometimes simplifying the amplifier design and being usable over a larger...... frequency range than conventional constant gain amplifiers. The Schoeffler sensitivity index is used as a basis for a practical realization of the circuit....

  2. Butterworth passive filter in the fractional-order

    KAUST Repository

    Sołtan, Ahmed

    2011-12-01

    In this paper, the generalized analysis of the first Butterworth filter based on two passive elements is introduced in the fractional-order sense. The fractional-order condition of the Butterworth circuit is presented for the first time where it will lead us back to the known condition of the integer-order circuit when the two fractional-orders equal one. Therefore, the conventional behavior of the integer-order circuit is a narrow subset of the fractional-order ones. The circuit is studied under same and different order cases, and verified through their numerical simulations. Stability analysis is also introduced showing the poles location in the fractional-order versus integer order cases. © 2011 IEEE.

  3. Filter design of eight order butterworth infinite impulse response for earthquake sign

    Science.gov (United States)

    Perdana, Yusuf Hadi; Marsono, Agus

    2017-07-01

    Filtering is an important procedure in modern seismology analysis to obtain the best quality result in advanced process. There are many programs of signal processing consisting of signal filtering features, for example Seismic Analysis Code (SAC). Unfortunately, the basic mathematical equations in signal processing are not explained in detail. This research has purposes to design a Butterworth filter and to examine the influence of increasing order on the arrival time, polarity, and first motion amplitude of seismic wave. Filter design was done by computing eight order lowpass analog transfer functions and transforming them into lowpass, highpass, and bandpass digital using bilinear transformation so we have recursive and causal filters. The designed filter was then validated by the result of SAC. Based on the research we have found that the method and algorithm of designed filter are consistent with SAC. Increasing filter order can clarify the phases of seismic wave positions. On the other hand, it can influence the phase delay and impulse attenuation of seismic waves. The implication of this effects are error on computation of earthquake parameter and source mechanism. Filter instability due to increasing order will quickly occur if the cutoff frequency range is short or the sampling frequency is high. An appropriate passband frequency at low filter order can optimally generate earthquake filtered waves.

  4. High Performance Miniature Bandpass Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for developing low impedance, miniature bandpass RF frequency filter via MEMS technique, in applications of SMAP, Aquarius follow-on,...

  5. Experimental and clinical studies of frequency domain Butterworth filter and Wiener filter on process of radionuclide imaging

    International Nuclear Information System (INIS)

    Kato, Chietsugu

    1994-01-01

    A frequency domain filtering method provides accurate frequency response. In order to provide optimal radionuclide image quality, Butterworth or Wiener filters were applied in the frequency domain. A method is developed to determine automatically their optimal parameters from the power spectra of the object images. Phantom studies showed that proper parameters were derived by this method. Thirty-one cases of multigated cardiac blood-pool images and phantom images modeled on the cardiac images were filtered by 3 x 3 points temporal smoothing, frequency domain Butterworth and Wiener filters. From these images, ejection fractions were calculated and evaluated the correlation between the actual ejection fractions in the phantom study or the values derived from the contrast left ventriculography. The better correlation coefficients were derived with the frequency domain Butterworth filter than with the temporal smoothing. And more desirable correlation coefficients were derived with the frequency domain Wiener filter than with the frequency domain Butterworth filter, especially in the low count studies. Butterworth or Wiener filtering in the frequency domain reduces noise and improves the capacity for quantitative analysis in the radionuclide images. (author)

  6. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though......Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  7. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  8. Narrow bandpass cryogenic filter for microwave measurements.

    Science.gov (United States)

    Ivanov, B I; Klimenko, D N; Sultanov, A N; Il'ichev, E; Meyer, H-G

    2013-05-01

    An ultra-wide stopband hairpin bandpass filter with integrated nonuniform transmission lines was designed and fabricated for highly sensitive measurements at cryogenic temperatures down to millikelvin and a frequency range of 10 Hz-10 GHz. The scattering matrices of the filter were characterized at T = 4.2 K. The filter provides a stopband from 10 Hz to 2.2 GHz and from 2.3 GHz to 10 GHz with more than 50 dB and 40 dB of amplitude suppression, respectively. The center frequency of the passband is f0 = 2.25 GHz with a bandwidth Δf = 80 MHz. The maximum insertion loss in the passband is 4 dB. The filter has a 50 Ω input and output impedance, SubMiniature version A connector termination, and significantly reduced form factor. The wide stopband frequency range and narrow passband in conjunction with small dimensions make the filter suitable to use it as a part of a high sensitive readout for superconducting quantum circuits, such as superconducting quantum bits and cryogenic parametric amplifiers.

  9. Microwave bandpass filters using re-entrant resonators.

    OpenAIRE

    Musonda, E; Hunter, IC

    2015-01-01

    Design techniques for microwave bandpass filters using re-entrant resonators are presented. The key feature is that each re-entrant resonator in the filter generates a passband resonance and a finite frequency transmission zero, above the passband. Thus an Nth degree filter can have N finite frequency transmission zeros with a simple physical realization. A physically symmetrical 5 pole re-entrant bandpass filter prototype with 5 transmission zeros above the passband was designed and fabricat...

  10. Multilayer bandpass filter with extended lower and upper stop bands.

    Science.gov (United States)

    Belyaev, B A; Tyurnev, V V

    2015-09-15

    We propose a novel design for a multilayer bandpass filter in which every resonant dielectric layer is separated from adjacent dielectric layers or from the ambient by a nonresonant grating of strip conductors on the layer interface. Here, every grating acts as a mirror with specified transparency. Relative to the conventional multilayer bandpass filter with multilayer dielectric mirrors, the proposed filter has multiply extended stop bands below and above the passband. Additionally, we provide formulas for computing the filter's frequency response. A comparison between the computed frequency responses for the proposed and conventional filters with the same passband is presented.

  11. Design of Dual Bandpass and Bandreject LC Ladder Filters

    Directory of Open Access Journals (Sweden)

    J. Hospodka

    2006-09-01

    Full Text Available This paper deals with the design of two-passband bandpass and two-stopband bandreject LC ladder filters. The design method is based on the special dual frequency transformation that transforms normalized lowpass to either bandpass with two passbands or to bandreject with two stopbands that are specified by four cutoff frequencies. The paper shows analytical solution relating these four cutoff frequencies to parameters of dual frequency transformation. It enables a direct computation of dual band LC filter elements from a normalized lowpass filter by means of simple relations. These relations have been implemented in the mathematical program Maple (TM as new user functions. They are supposed to be used as an enhancement of Syntfil package which is intended for analog filter design in program Maple. Specific application is shown on an example of the two-passband bandpass LC filter design.

  12. Narrow-Band Bandpass Filter for Wireless Communication System

    Science.gov (United States)

    Kishor, Jugul; Kanaujia, Binod K.; Dwari, Santanu; Ashwani, Kumar

    2017-07-01

    This paper presents the design of a compact narrow-band bandpass filter using the cylindrical dielectric resonator (CDR) coupled with a microstrip line. The TE11δ mode of the dielectric resonator is used to obtain the narrow passband performance while, spurious mode suppression can be improved by etching the slot on the ground plane of the filter due to mode separation with the desired mode. Presented narrow bandpass filter performances are: center frequency 6.15 GHz, fractional bandwidth 0.7 %, and insertion loss (IL) 0.16 dB. To validate the above concept a second order narrow-band bandpass filter is designed, fabricated and measured. There is good agreement between simulated and measured results.

  13. Waveguide Bandpass Filters for Millimeter-Wave Radiometers

    DEFF Research Database (Denmark)

    Furtula, V.; Zirath, H.; Salewski, Mirko

    2013-01-01

    A fundamental requirement for most mm-wave heterodyne receivers is the rejection of the input image signal which is located close to the local oscillator frequency. For this purpose we use a bandpass filter, which for heterodyne receivers is also called an image rejection filter. In this paper we...

  14. Microwave Bandpass Filter Based on Mie-Resonance Extraordinary Transmission.

    Science.gov (United States)

    Pan, Xiaolong; Wang, Haiyan; Zhang, Dezhao; Xun, Shuang; Ouyang, Mengzhu; Fan, Wentao; Guo, Yunsheng; Wu, Ye; Huang, Shanguo; Bi, Ke; Lei, Ming

    2016-01-01

    Microwave bandpass filter structure has been designed and fabricated by filling the periodically metallic apertures with dielectric particles. The microwave cannot transmit through the metallic subwavelength apertures. By filling the metallic apertures with dielectric particles, a transmission passband with insertion loss 2 dB appears at the frequency of 10-12 GHz. Both simulated and experimental results show that the passband is induced by the Mie resonance of the dielectric particles. In addition, the passband frequency can be tuned by the size and the permittivity of the dielectric particles. This approach is suitable to fabricate the microwave bandpass filters.

  15. Microwave Bandpass Filter Based on Mie-Resonance Extraordinary Transmission.

    Directory of Open Access Journals (Sweden)

    Xiaolong Pan

    Full Text Available Microwave bandpass filter structure has been designed and fabricated by filling the periodically metallic apertures with dielectric particles. The microwave cannot transmit through the metallic subwavelength apertures. By filling the metallic apertures with dielectric particles, a transmission passband with insertion loss 2 dB appears at the frequency of 10-12 GHz. Both simulated and experimental results show that the passband is induced by the Mie resonance of the dielectric particles. In addition, the passband frequency can be tuned by the size and the permittivity of the dielectric particles. This approach is suitable to fabricate the microwave bandpass filters.

  16. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    Science.gov (United States)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  17. Miniature Microwave Bandpass Filter Based on EBG Structures

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Meincke, Peter

    2006-01-01

    as compared to stepped-impedance hairpin (SIH) resonators with similar response. The new bandpass filter has a reduced footprint and can be fabricated in standard thick-film manufacturing technology. Measured and simulated results exhibit good agreement. The measured results show improvement in the filter......A new design of a planar microwave filter, based on rejection band properties of an electrically small electromagnetic bandgap (EBG) structure, is proposed. The proposed EBG structure demonstrates effective impedance manipulation, exhibits a simple analysis, and is about three times smaller...... characteristics in comparison to existing SIH filter design....

  18. Tunable photonic radiofrequency filter with complementary bandpass and bandstop responses.

    Science.gov (United States)

    Li, Peixuan; Pan, Wei; Zou, Xihua; Yan, Lianshan; Pan, Yan

    2017-08-15

    A photonic radiofrequency (RF) filter with two complementary bandpass and bandstop responses that is capable of simultaneously providing a single transmission channel at one port and a notch rejection channel at the other port is proposed. An integrated polarization division-multiplexing Mach-Zehnder modulator and the in-fiber stimulated Brillouin scattering effect are used to control the amplitudes and phases of the RF modulation sidebands along two orthogonal states of polarization to generate two complementary bandpass and bandstop responses at two output ports, respectively. Experiments are then performed. Two complementary responses are simultaneously generated in a high-frequency resolution of ∼20  MHz, with a rejection over 35 or 51 dB being achieved for the passband or stopband. A tunable central frequency to the bandpass and bandstop responses is also demonstrated within the range from 3 to 15 GHz.

  19. Microstrip Tunable Bandpass Filter with the Colinear Resonators

    Directory of Open Access Journals (Sweden)

    Z. P. Wang

    2013-01-01

    Full Text Available This paper presents the lumped element circuit and transmission line equivalent circuit for a varactor-tuned bandpass filter. The filter consists of transmission lines, fixed capacitors, and a varactor diode. The colinear resonant sections, in this filter, are not configured in parallel, as they are in a conventional combline filter. For this reason the overall area of the filter is reduced. The passband of the filter can be tuned from 0.69 GHz to 1.20 GHz by varying the capacitance of the varactor diode. The insertion loss of this filter changes from 1.2 dB to 2.1 dB across this bandwidth.

  20. Design of High Performance Microstrip Dual-Band Bandpass Filter

    Directory of Open Access Journals (Sweden)

    N. Khajavi

    2015-04-01

    Full Text Available This paper presents a new design of dual-band bandpass filters using coupled stepped-impedance resonators for wireless systems. This architecture uses multiple couple stubs to tune the passband frequencies and the filter characteristics are improved using defected ground structure (DGS technique. Measurement results show insertion losses of 0.93 dB and 1.13 dB for the central frequencies of 2.35 GHz and 3.61 GHz, respectively. This filter is designed, fabricated and measured and the results of the simulation and measurement are in good agreement.

  1. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  2. High-Q Bandpass Comb Filter for Mains Interference Extraction

    Directory of Open Access Journals (Sweden)

    Neycheva T.

    2009-12-01

    Full Text Available This paper presents a simple digital high-Q bandpass comb filter for power-line (PL or other periodical interference extraction. The filter concept relies on a correlated signal average resulting in alternating constructive and destructive spectrum interference i.e. the so-called comb frequency response. The presented filter is evaluated by Matlab simulations with real ECG signal contaminated with low amplitude PL interference. The made simulations show that this filter accurately extract the PL interference. It has high-Q notches only at PL odd harmonics and is appropriate for extraction of any kind of odd harmonic interference including rectangular shape. The filter is suitable for real-time operation with popular low-cost microcontrollers.

  3. All-fiber noninterferometric narrow-transmission-bandpass filter.

    Science.gov (United States)

    Sáez-Rodríguez, D; Cruz, J L; Díez, A; Andrés, M V

    2012-10-15

    In-fiber mode engineering based on the combination of Bragg and long-period gratings (LPGs) permits the implementation of noninterferometric transmission filters with narrow passbands using standard single-mode fiber. The design of the bandpass filter is based on the coupling between propagating and counterpropagating cladding modes in two fiber Bragg gratings. A LPG located between the Bragg gratings transfers power from the input fundamental mode to a specific cladding mode and recouples the filtered signal to the output fundamental mode. The filter produces a series of narrow passbands of about 30 pm linewidth with a maximum transmittance above 60%, 20 dB isolation, and passband separation of about 1 nm, each corresponding to the contribution of a different cladding mode.

  4. 3D Display Using Conjugated Multiband Bandpass Filters

    Science.gov (United States)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  5. Narrow bandpass tunable terahertz filter based on photonic crystal cavity.

    Science.gov (United States)

    He, Jinglong; Liu, Pingan; He, Yalan; Hong, Zhi

    2012-02-20

    We have fabricated a very narrow bandpass tunable terahertz (THz) filter based on a one-dimensional photonic crystal cavity. Since the filter consists of silicon wafers and air spacers, it has a very high quality factor of about 1500. The full width at half maximum (FWHM) of the passband is only about 200 MHz, and the peak transmission is higher than -4 dB. Besides, the central frequency can be tuned rapidly over the entire bandgap with the length of cavity adjusted by a motorized linear stage. Further analytical calculations indicate that a high-Q tunable filter with both high peak transmission and wide tunable range is possible if thinner silicon layers are used. © 2012 Optical Society of America

  6. CMOS RF switched capacitor bandpass filter tuned by ring VCO

    OpenAIRE

    El Oualkadi, Ahmed; Paillot, Jean-Marie; Guegnaud, Hervé; Allam, Rachid

    2005-01-01

    International audience; A new RF switched capacitor bandpass filter and its command circuit made up of a ring voltage controlled oscillator with 'XOR' gates are proposed. Implemented in a standard 0.35 m CMOS technology, this circuit is intended to be used in a subset of professional mobile phone applications [380-520 MHz]. Experiments carried out on a prototype show a tunable center frequency range of 260MHz [240-500 MHz], with a quality factor that can be as high as 300.

  7. Frequency Selective Surface Bandpass Filters Applied To Thermophotovoltaic Generators

    Science.gov (United States)

    Horne, W. E.; Morgan, Mark D.; Horne, W. Paul; Sundaram, Vasan S.

    2004-11-01

    EDTEK, Inc. is developing three TPV applications, a portable diesel fueled generator for military and remote users, a hybrid solar-gas fueled power system intended for light industry and commercial 24-hour use, and a radioisotope fueled generator for deep-space spacecraft. The application of FSS bandpass filters for spectral control in these three different TPV applications has been analyzed. It has been determined that the design of the filter cannot be evaluated solely on the parameters of the filter itself. The interactions between the filter and the emitter and the TPV cells must be taken into account. In addition to the technical analysis of the converter, the overall system losses must be included in the analysis and the design requirements such as fuel efficiency, weight, generator size, cost and other factors must be included in the analysis. The analysis shows that the FSS filters are useful for producing the three systems with good efficiencies; however, different designs are required for the filters for each application.

  8. Intelligibility of bandpass filtered speech: The effect of filter types.

    Science.gov (United States)

    Amir, Noam; Kishon-Rabin, Liat

    2017-12-01

    Many studies have examined the contribution of different spectral bands to speech intelligibility, measuring recognition scores of filtered speech stimuli. For a given filter bandwidth, the influence of filter properties on such experiments has been studied mainly with respect to transition band slopes. The objective of the present study was to determine whether nominal transition band slope is a sufficient characterization of filter properties. Several types of filters, both finite impulse response and infinite impulse response types were examined in three experiments to determine if details of the transition band behavior, as well as group delay properties, had any influence on recognition scores. The results of a total of 72 participants showed that for 1/3 octave passbands, differences between filters having the same nominal transition band slopes, but of different types, were large and statistically significant. Linearity of phase response, however, did not influence the results. Further experiments using passband widths of 1/2 and 2/3 octaves revealed that only for the latter the difference in recognition scores between filter types ceased to be significant. These results have important implications for studies which involve filtered speech as well as models that employ different types of filters to emulate peripheral auditory processing.

  9. Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation.

    Science.gov (United States)

    Yu, Yuan; Xu, Enming; Dong, Jianji; Zhou, Lina; Li, Xiang; Zhang, Xinliang

    2010-11-22

    We propose and demonstrate a novel switchable microwave photonic filter based on phase modulation. Both a microwave high Q bandpass filter and a microwave notch filter with flat passband are achieved respectively. And the switchability between them by tuning the two tunable optical bandpass filters is demonstrated. We also present a theoretical model and analytical expression for the proposed scheme. A frequency response of a high Q bandpass filter with a Q factor of 327 and a rejection ratio of exceeding 42 dB, and a frequency response of a notch filter with flat passband with a rejection ratio exceeding 34 dB are experimentally obtained. The operation frequency of microwave photonic filter is around 20 GHz.

  10. A numerical design approach for single amplifier, Active-RC Butterworth filter of order 5

    DEFF Research Database (Denmark)

    Gaunholt, Hans

    2007-01-01

    filter applying just one operational amplifier coupled as a unity gain amplifier. It is shown that the influence from the real operational amplifier may be reduced by trimming just one resistor in the circuit. The unity gain amplifiers have the advantage of providing low power consumption, yielding...

  11. Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide.

    Science.gov (United States)

    Zhou, Xuetong; Yin, Xiang; Zhang, Tian; Chen, Lin; Li, Xun

    2015-05-04

    We propose and demonstrate an ultrabroad terahertz (THz) bandpass filter (BPF) by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption and transmission bands, into a unit cell. With proper structural design of each HMM waveguide to control the absorption and transmission bands, we numerically demonstrate the designed BPF is capable of operating with a broad passband in the THz domain. A typical TM-polarized HMM BPF has a peak transmission of 37% at 3.3 THz with the passband bandwidth of 2.2 THz ranging from 2.97 to 5.17 THz. The co-designed three-dimensional HMM BPF also shows the capability of operating with independence to the polarization of incident light because of the structural symmetry and has sharp bandedge transitions of 22.6 and 17.6 dB/THz to the stop bands, respectively. The presented results here hold great promise for developing practical THz BPF with various applications in THz field.

  12. High Selectivity Wideband Bandpass Filter Using Stub Loaded Resonator

    Science.gov (United States)

    Ma, Xing-Bing; Jiang, Ting

    2017-07-01

    This article presents a high selectivity wideband bandpass filter (BPF) adopting stub loaded resonator. Hereinto, aim passband is determined by BPF without stub embedded, which is only composed of four half-wavelength open-loop resonators. Based on typical tapped-line coupling, two same stubs are located at physical middle points of two resonators connected with I/O feed lines, respectively. Due to embedded point at middle of loaded resonator, the stub with two open-end branches has no influence on original half-wavelength resonant frequency, and aim passband keeps unchanged. Because of different even-mode resonant frequencies between loaded and unloaded resonators, no new passband is constructed. With the help of embedded stubs, original transmission zero (TZ) near low-edge of aim passband is shifted towards passband, and a new TZ is introduced near high-edge. High selectivity and good passband characteristics are obtained optimizing sizes of stubs, I/O tapped position and top open-end length of loaded resonator.

  13. Compact Hairpin Bandpass Filter with Wide Stopband and High Attenuation Using Multilayer Broadside-coupled Stripline

    Directory of Open Access Journals (Sweden)

    Xiaowei GU

    2014-11-01

    Full Text Available This paper presents a compact bandpass filter with stopband and high attenuation by using multilayer folded broadside-coupled quarter-wavelength stripline resonators in a low- temperature co-fired ceramic (LTCC substrate. The proposed bandpass filter centered at 1.1 GHz with a fractional bandwith of 4.5 % shows the first spurious frequency at 3.8 times the center frequency. In comparison to the conventional half-wavelength hairpin bandpass filter with the same passband performance, the proposed bandpass filter shows not only a 50 % size reduction but also a wider stopband from 1.3 GHz -3.8 GHz with a high rejection level up to 60 dB.

  14. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Hawkins, Gary J.

    2015-01-01

    The ability of narrow bandpass filters to discriminatewavelengths between closely-separated gas absorption lines is crucial inmany areas of infrared spectroscopy. As improvements to the sensitivity ofinfrared detectors enables operation in uncontrolled high-temperature environments, this imposes ...

  15. Electrically tunable bandpass filter based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds.......An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds....

  16. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  17. Miniaturized Wideband Bandpass Filter with Wide Stopband using Metamaterial-based Resonator and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    S. Chaimool

    2012-06-01

    Full Text Available This paper presents a miniaturized wideband bandpass filter with wide stopband performance. It is shown that the coupled metamaterial-based resonators (MBRs incorporating with the defected ground structure (DGS can significantly increase the coupling value to achieve wideband bandpass filter. This technique has been extended to realize wideband bandpass filter having fractional bandwidth of 63 % and low insertion loss in the passband. To further suppress the spurious harmonics and upper stopband, the combining of the zero-degree feed structure and embedded slot-loaded resonators in both input and output ports is introduced. The proposed filter has not only compact size but also good out-of-band response. The experimental results are demonstrated and discussed.

  18. Dual and tri-band bandpass filters based on novel Π-shaped resonator

    Science.gov (United States)

    Xiao, Jian-Kang; Zhu, Wen-Jun; Zhao, Wei

    2014-05-01

    A novel Π-shaped resonator is proposed, and compact dual-band and tri-band bandpass filters that meet IEEE 802.11 application requirements by using the new resonator are designed. The dual-band bandpass filter centres at 2.45 and 5.6 GHz with a simulated passband insertion loss of no more than 0.8 dB, and the tri-band bandpass filter which is got by two-path coupling achieves simulated passband insertion loss of no more than 1.1 dB. The new designs are demonstrated by experiment. The new filters have advantages of simple and compact structures, low passband insertion losses, good frequency selectivity and miniature circuit sizes. All these have prospect to be applied in future wireless communication systems.

  19. A Miniaturize Bandpass Filter with Harmonic Suppression Using Meandered Quarter-Wavelength Resonators

    Directory of Open Access Journals (Sweden)

    Yun-Long Lu

    2014-01-01

    Full Text Available A miniaturized bandpass filter with harmonics suppression is presented. The proposed filter consists of two quarter-wavelength microstrip resonators, which are meandered for circuit size reduction. An interdigital capacitor, loading at zero-voltage point, is employed to provide the desired coupling between the resonators at operating frequency, whereas the coupling coefficient at the third harmonic is realized to be zero. Besides, the second and fourth harmonics are suppressed since λ/4 resonators are adopted. Benefiting from these properties, a miniaturized bandpass filter with the second, third, and fourth harmonics suppression was designed and implemented. The final measured and simulated results show good consistence with the theoretical counterparts.

  20. A Differential 4-Path Highly Linear Widely Tunable On-Chip Band-Pass Filter

    NARCIS (Netherlands)

    Ghaffari, A.; Klumperink, Eric A.M.; Nauta, Bram

    2010-01-01

    Abstract A passive switched capacitor RF band-pass filter with clock controlled center frequency is realized in 65nm CMOS. An off-chip transformer which acts as a balun, improves filter-Q and realizes impedance matching. The differential architecture reduces clock-leakage and suppresses selectivity

  1. Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification

    NARCIS (Netherlands)

    Ghaffari, A.; Klumperink, Eric A.M.; Soer, M.C.M.; Nauta, Bram

    2011-01-01

    Abstract—A differential single-port switched-RC N-path filter with band-pass characteristic is proposed. The switching frequency defines the center frequency, while the RC-time and duty cycle of the clock define the bandwidth. This allows for high-Q highly tunable filters which can for instance be

  2. Design and Analysis of Compact UWB Bandpass Filter with Wide Passband Using Defected Ground Structure

    OpenAIRE

    Yashika Saini; Mithilesh Kumar

    2014-01-01

    A compact ultra-wideband (UWB) bandpass filter (BPF) with wide passband using defected ground structure (DGS) is proposed. The proposed UWB filter is constructed by cascading a high pass filter (HPF) and a lowpass filter (LPF). HPF with short-circuited stubs is used to realize the lower stopband and a LPF is used to attenuate the upper stopband. In order to make the filter size compact, DGS technology is incorporated in the filter design, with this technique the size of filter becomes extreme...

  3. Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator

    Science.gov (United States)

    Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun

    2010-02-01

    Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.

  4. High Selectivity Dual-Band Bandpass Filter with Tunable Lower Passband

    Directory of Open Access Journals (Sweden)

    Wei-Qiang Pan

    2015-01-01

    Full Text Available This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.

  5. New high-Q discrete-time LC bandpass filter design with center frequency broadband tuning

    OpenAIRE

    El Oualkadi, Ahmed; Paillot, Jean-Marie; Allam, Rachid

    2006-01-01

    International audience; Discrete-time switched-capacitor filters have been in wide-spread used for a few years, for the realization of stable, accurate and high quality filters. This paper describes the design of a new 8-path pseudo switched capacitor LC bandpass filter and its command circuit made up by a ring voltage controlled oscillator (VCO) with 'XOR' gates. The proposed architecture presents the possibility of tuning over a frequency broadband allowing to sweep different channels with ...

  6. Thin carbon film serves as UV bandpass filter

    Science.gov (United States)

    1966-01-01

    Thin carbon film deposited on a 70 percent transparent screen provides a filter for narrow-band detectors in the extreme ultraviolet. The filter also suppresses scattered light and light of unwanted orders in vacuum spectrographs.

  7. A compact ultra wideband bandpass filter using arrow coupled lines with defected ground structure

    Directory of Open Access Journals (Sweden)

    Deena A. Salem

    2014-05-01

    Full Text Available A new ultra wideband bandpass filter (UWB-BPF using arrow coupled lines and U-slot defected ground structures (U-DGS is proposed. The input and output feeding lines are connected to the coupled lines placed on the conductor side of the substrate while the U-slot DGS was etched from the ground side below. The effect of U-DGS slot dimensions on the operating bandpass of the filter was studied. The filter was simulated using both IE3D and HFSS simulators. The simulation results are in good agreement with the realized filter. The filter operating passband extended over the UWB frequency 3.0–9.5 GHz while the group delay variation in the passband is in the range of 0.5°.

  8. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  9. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times...

  10. A robust SEM auto-focus algorithm using multiple band-pass filters

    International Nuclear Information System (INIS)

    Harada, Minoru; Obara, Kenji; Nakamae, Koji

    2017-01-01

    An auto-focus algorithm using multiple band-pass filters for a scanning electron microscope (SEM) is proposed. To acquire sharp images of various kinds of defects by SEM defect observation in semiconductor manufacturing, the auto-focus process must be robust. A method for designing a band-pass filter for calculating the ‘focus measure’ (a key parameter of the auto-focus process) is proposed. To achieve an optimal specific frequency response for various images, multiple band-pass filters are introduced. As for the proposed method, two series of focus measures are calculated by using multiple band-pass filters independently, and it is selected according to reliability of the series of focus measures. The signal-to-noise ratio of an image for acceptable auto-focus precision is determined by simulation using pseudo images. In an experiment using the proposed method with real images, the success rate of auto focus is improved from 79.4% to 95.6%. (paper)

  11. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short...

  12. W-band waveguide bandpass filter with E-plane cut

    DEFF Research Database (Denmark)

    Furtula, Vedran; Salewski, Mirko

    2014-01-01

    In this paper, we present a design and measurements of a five-section bandpass filter with a passband from 96 to 106 GHz. The insertion loss is less than 1.4 dB in the passband, and the rejection is better than 40 dB in the range from 115 to 142 GHz. We use transmission line coupling theory based...

  13. Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    Science.gov (United States)

    Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.

  14. Hybrid Microstrip/Slotline Ultra-Wideband Bandpass Filter with a Controllable Notch Band

    Directory of Open Access Journals (Sweden)

    Xuehui Guan

    2017-01-01

    Full Text Available An ultra-wideband (UWB bandpass filter (BPF with a controllable notch band is presented by using hybrid microstrip/slotline structure. Firstly, a slotline resonator with symmetrically loaded stubs is fed by two microstrip lines to produce a UWB bandpass filtering response. Secondly, a microstrip triangular loop resonator is externally loaded over the slotline, and a notch band is introduced in the UWB passband. The notch band is determined by the perimeter of the loop resonator. Thirdly, two patches are added as the perturbation element to the corners of the microstrip resonator to excite a pair of degenerate modes. Bandwidth of the notch band can be tuned by properly selecting the patch size. Circuit model for the microstrip resonator loaded slotline is given and studied. Finally, the filter is designed, simulated, and measured. Measured results have agreed well with the simulated ones, demonstrating that a UWB filter with a controllable notch band has been realized.

  15. Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy

    Science.gov (United States)

    Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel

    2011-01-01

    The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.

  16. Spurious suppression of a microstrip bandpass filter using three types of rectangular PBG loops.

    Science.gov (United States)

    Weng, Min-Hung; Yuan, Ru-Yung; Huang, Tsung-Hui; Chen, Han-Jan; Chen, Wu-Nan; Houng, Mau-Phon

    2005-03-01

    A novel microstrip bandpass filter with three types of rectangular, photonic bandgap (PBG) loops on a middle layer was designed and demonstrated using a full-wave electromagnetic (EM) simulator, with the predicted results verified by experiment. This investigation presents the configurations of conventional parallel-coupled 2 GHz filters with and without a PBG. The middle-layer of PBG loops adds an extra stopband-rejection mode to filter stopband; and it provides attenuation in excess of 25 dB at the second, third, and fourth harmonics, thus demonstrating that superior stopband characteristics at high frequency can be obtained using the proposed PBG loops in microwave filters.

  17. A Multifunction Filter for Realizing Gain Variable Low-Pass and Band-Pass Responses

    Directory of Open Access Journals (Sweden)

    Halil ALPASLAN

    2010-02-01

    Full Text Available The second generation current conveyors (CCIIs as active circuit devices are widely used for designing current-mode (CM filters. In this paper, a single input multi output filter employing only plus-type CCIIs (CCII+s and grounded capacitors, and for providing variable gain low-pass and band-pass responses, is suggested. The proposed filter is free from critical passive component matching conditions. Therefore, it is suitable for integrated circuit (IC technology. Further, developed filter configuration can be easily realized with commercially available active devices such as AD844s. The circuit performance is demonstrated by means of SPICE simulation and experimental test results.

  18. Dense grid of narrow bandpass filters for the JST/T250 telescope: summary of results

    Science.gov (United States)

    Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio

    2018-01-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon has setup two telescopes, the JST/T250 and the JAST/T80. The JAST/T80 telescope integrates T80Cam, a large format, single CCD camera while the JST/T250 will mount the JPCam instrument, a 1.2Gpix camera equipped with a 14-CCD mosaic using the new large format e2v 9.2k×9.2k 10-μm pixel detectors. Both T80Cam and JPCam integrate a large number of filters in dimensions of 106.8×106.8 mm2 and 101.7×95.5 mm2, respectively. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters, which were recently completed. The filter set consists of bandpass filters in the range between 348.5 and 910 nm and a longpass filter at 915 nm. Most of the filters have full-width at half-maximum (FWHM) of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. In spite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass has a defined overlap with its neighbors. A high image quality required a low transmitted wavefront error (<λ/4 locally and <λ/2 on the whole aperture), which was achieved even by combining two or three substrates. We report on the spectral and interferometric results measured on the whole set of filters.

  19. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression.

    Science.gov (United States)

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-12-03

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient.

  20. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression

    Directory of Open Access Journals (Sweden)

    Ramona Cosmina Hadarig

    2013-12-01

    Full Text Available The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient.

  1. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique.

    Science.gov (United States)

    Chan, Erwin H W

    2012-10-08

    A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated.

  2. The Dual Carrier ABSK System Based on a FIR Bandpass Filter

    Science.gov (United States)

    Chen, Zhimin; Wu, Lenan; Wang, Jiwu

    2014-01-01

    The special impacting filter (SIF) with IIR structure has been used to demodulate ABSK signals. The key points of SIF, including the resonance circuit's high Q value and the “slope-phase discrimination” character of the filter sideband, are demonstrated in the paper. The FIR narrow-band bandpass filtering system, which can also provide the impact-filtering effect, is proposed. A dual carrier system of ABSK signals is designed with the proposed FIR filter as its receiver. The simulation results show that the FIR filter can work well. Moreover, compared to the traditional SIF, the proposed FIR filter can not only achieve higher spectral efficiency, but also give better demodulation performance. PMID:24658625

  3. Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.

    Science.gov (United States)

    Zhuang, Yuyang; Chen, Heming; Ji, Ke

    2017-05-10

    We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.

  4. High-frequency microstrip dual-band bandpass filter fabricated using FR-4 glass epoxy material

    Science.gov (United States)

    Challal, Mouloud; Mermoul, Ali; Hocine, Kenza

    2017-12-01

    In this paper, design, fabrication and measurement of a novel microstrip dual-band bandpass filter (BPF) structure with a compact size using FR-4 glass epoxy material is presented. The filter structure is composed of folded non-uniform meander resonators. The proposed filter with a total size of 0.24λg  ×  0.16λg is designed to exhibit two passbands centred at 2.68 GHz and 5.64 GHz with fractional bandwidths of 25.38% and 10.4%, respectively. The simulation and experimental measurement results are basically in good agreement which validate the proposed approach.

  5. CASCADED SQUARE LOOP BANDPASS FILTER WITH TRANSMISSION ZEROS FOR LONG TERM EVOLUTION (LTE

    Directory of Open Access Journals (Sweden)

    Iis Andini

    2018-02-01

    Full Text Available In this paper, we present a bandpass filter that passed frequency of 1.7 GHz – 1.8 GHz. It is applied for an uplink frequency in 4G 1800MHz. This filter is created by using substrate PCB TMM-10i and has a compact size of 42 mm x 42 mm. The compact size is also important besides selectivity. The selectivity is achieved by implementing cascade square loop resonator method which generated transmission zeros. Actually, transmission zeros are obtained from the coupled resonator. The bandpass filter is designed by adding an external resonator on each square of the resonator loop and a patch to the inside of the square loop resonator. The parameter performances are simulated by HFSS. The parameter performances for return loss value is 14.24 dB at frequency 1.75 GHz and insertion loss value is 0.65 dB at frequency 1.75 GHz. By using VNA Anritsu MS 2026A, prototype bandpass filter is measured. The measurement results for return loss value is 6.8 dB and insertion loss value is 2.2 dB.

  6. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    Science.gov (United States)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  7. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2014-01-01

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter......-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification....

  8. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  9. Performance Evaluation of an Optoelectronic Oscillator Based on a Band-Pass Microwave Photonic Filter Architecture

    OpenAIRE

    A. G. Correa-Mena; I. E. Zaldivar-Huerta; M. W. Lee; A. Garcia-Juarez; L. A. Garcia-Delgado

    2017-01-01

    The experimental performance evaluation of an optoelectronic oscillator based on a band-pass microwave photonic filter architecture is carried out. The novelty of this proposal resides in the fact that the architecture used allows enhancing the free spectral range of the optoelectronic oscillator. Considering the optical spectral characteristics of the multimode laser diode used as an optical source, the length and the chromatic dispersion parameter of the optical fiber which acts as a feedba...

  10. High Selectivity Dual-Band Bandpass Filter with Tunable Lower Passband

    OpenAIRE

    Pan, Wei-Qiang; Zhao, Xiao-Lan; Zhang, Yao; Xu, Jin-Xu

    2015-01-01

    This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For d...

  11. Reduced size dual band pass filters for RFID applications with excellent bandpass/bandstop characteristics

    Science.gov (United States)

    Abdalla, M. A.; Choudhary, D. Kumar; Chaudhary, R. Kumar

    2018-02-01

    This paper presents the design of two reduced size dual-band metamaterial bandpass filters and its simulation followed by measurements of proposed filters. These filters are supporting different frequency bands and primarily could be utilize in radio frequency identification (RFID) application. The filter includes three cells in which two are symmetrical and both inductively coupled with the third cell which is present in between them. In the proposed designs, three different metamaterial composite right/left handed (CRLH) cell resonators have been analysed for compactness. The CRLH cell consists of an interdigital capacitor, a stub/meander line/spiral inductor and a via to connect the top of the structure and ground plane. Finally, the proposed dual band bandpass filters (using meander line and spiral inductor) are showing size reduction by 65% and 50% (with 25% operating frequency reduction), respectively, in comparison with reference filter using stub inductor. More than 30 dB attenuation has been achieved between the two passbands.

  12. Ultra-narrow bandpass filters for long range optical telecommunications at 1064nm and 1550nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-narrow bandpass filters with high off-band rejection are needed to maximize signal to noise for free space communications. Omega Optical is developing NIR...

  13. A planar and tunable bandpass filter on a ferrite substrate with integrated windings

    KAUST Repository

    Arabi, Eyad A.

    2015-05-01

    Tunable Filters that are based on ferrite materials are often biased by external magnets or coils which are large and bulky. In this work a completely planar, CPW-based bandpass filter is presented with integrated windings. Due to these windings the size of the filter is only 26mm × 34mm × 0.38mm which is orders of magnitude smaller than the traditional designs with external windings. The filter is realized by electroplating of Copper over seed layers of Titanium and Gold over a YIG substrate. The fabricated filter achieves a tunability of 3.4% without any external magnets or coils. A good insertion loss of 2.3 dBs and rejection greater than 50 dBs have been obtained. To the best of the authors knowledge, this design is the first ferrite-based design that is completely planar and self-biased.

  14. Improvement of Stopband Performance in Parallel-Coupled Bandpass Filters Using Quasi-Lumped Elements

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Meincke, Peter

    2008-01-01

    bandpass filter has a compact footprint, and exhibits good stopband rejection with no repeated passband at twice the center frequency in comparison with the traditional coupled-line filter. By introducing the quasi-lumped element resonator, two transmission zeros at upper and lower stopbands are created......, with adjustable locations of transmission zeros for desired performance. The device is fabricated in standard thick-film manufacturing technology. Based on parallel-coupled line theory, the impedance inverter model for this device is developed. The passband filter centered at 5.5 GHz with a 3 dB relative......This paper is aimed at improving the rejection level as well as overcoming the bandwidth limitations for classical coupled-line filters. A planar microwave coupled-line filter employing a quasi-lumped element resonator considerably improving the stopband characteristics is presented. The proposed...

  15. Highly Selective Dual-Mode Microstrip Bandpass Filters Using Triangular Patch Resonators

    Directory of Open Access Journals (Sweden)

    K.G. Avinash

    2017-03-01

    Full Text Available In this paper, highly selective dual-mode microstrip bandpass filters are proposed using horizontal and vertical slots formed on the surface of a triangular patch. Slots are responsible for splitting and coupling of dual degenerate modes and also facilitate in controlling their resonant frequencies by varying the dimensions of the slots. Horizontal and vertical slots reroute the direction of the flow of current on the surface of the patch, which results in switching of transmission zeros. Two 2-pole and one 4-pole dual-mode filters are designed, simulated and fabricated. Two pole filters have transmission zeros on side of the passband and four pole filter have transmission zeros on both sides of the passband. The designed filters exhibit a fractional bandwidth of less than 7 % and there is a good agreement between simulated and measured results.

  16. A Compact Coplanar Waveguide (CPW)-Fed Zeroth-Order Resonant Filter for Bandpass Applications

    Science.gov (United States)

    Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar

    2017-07-01

    A new CPW-fed bandpass filter based on zeroth order resonant (ZOR) technique is presented in this paper. Proposed filter structure is designed on a CPW single layer where via is not required, hence reduces fabrication complexity. The property of metamaterial of ZOR has been utilized to reduce the filter size. The proposed structure is symmetrically CPW-fed and contains tuning-fork stub, which connects patch to CPW ground plane. The metamaterial properties are characterized by plotting dispersion diagram of proposed structure. The experimental result of proposed filter design shows an insertion loss of 0.51 dB, return loss of 22.5 dB with fractional bandwidth 61.5 % at centre frequency 2.60 GHz. The size of the filter is 0.45 λg×0.36 λg (λg is the guided wavelength at centre frequency).

  17. A Miniaturized Dual-Mode Bandpass Filter Using Slot Spurline Technique

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2013-01-01

    Full Text Available A miniaturized dual-mode bandpass filter (BPF with elliptic function response using slot spurline is designed in this paper. The slot spurline can not only splits the degenerate modes but also determine the type of filter characteristic (Chebyshev or elliptic. To miniaturize the resonator, four sagittate stubs are proposed. For demonstration purpose, a BPF operating at 5.75 GHz for WLAN application was designed, fabricated, and measured. The measured results are in good agreement with the full-wave simulation results.

  18. A Novel Microwave Tunable Band-Pass Filter Integrated Power Divider Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Yupeng Liu

    2015-01-01

    Full Text Available This paper proposes a novel microwave continuous adjustable band-pass filter integrated power divider based on nematic liquid crystals (LCs. The proposed power divider uses liquid crystal (LC as the dielectric material. It can realize phase shift by changing the dielectric anisotropy, when biasing the high anisotropy nematic liquid crystal. It is mainly used in microwave frequencies. It has a large number of advantages compared to conventional filter integrated power divider, such as low loss, multifunction integration, continuous adjustable, miniaturization, low processing costs, low operating voltage, high phase shift, and convenient manufacture. Therefore, it has shown great potential for application.

  19. System design for a million channel digital spectrum analyzer /MCSA/. [of bandpass filtering in SETI receivers

    Science.gov (United States)

    Peterson, A.; Narasimha, M.; Narayan, S.

    1980-01-01

    The system design of a wideband (8 MHz) million-channel digital spectrum analyzer for use with a SETI receiver is presented. The analyzer makes use of a digital bandpass filter bank for transforming the wideband input signal into a specified number (120) of uniform narrowband output channels by the use of a Fourier transform digital processor combined with a prototype digital weighting network (finite impulse response filter). The output is then processed separately by 120 microprocessor-based discrete Fourier transform computers, each producing 8190 output channels of approximately 8 Hz bandwidth by the use of an 8190-point prime factor algorithm.

  20. Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Ortega, Beatriz; Min, Rui; Sáez-Rodri­guez, David

    2017-01-01

    In this contribution we report on the fabrication of novel bandpass transmission filters based on PS-FBGs in microstructured polymer fibers at telecom wavelengths. The phase mask technique is employed to fabricate several superimposed gratings with slight different periods in order to form Moir......é structures with a single or various π phase shifts along the device. Simulations and experimental results are included in order to demonstrate very narrowband transmission filters. Experimental characterization under strain and temperature variations is provided in a non-annealed fiber and time stability...... of the fabricated devices has been also measured under different pre-strain conditions....

  1. A Compact Quint-Band Bandpass Filter Based on Stub-Loaded Resonators

    Directory of Open Access Journals (Sweden)

    M. Farhat

    2017-06-01

    Full Text Available This paper presents a planar quant-band bandpass filter with a high out-of-band rejection. The filter is based on inter-coupled stub-loaded resonators, where pairs of resonators are electromagnetically coupled to each other and the feed lines. This results in excitation of passbands, where the first and the third passbands are generated by λ/4 stub-loaded resonators. The second and the fifth passbands are excited by λ/2 stub-loaded resonators. And the fourth passband is generated by λ/2 resonators. The proposed technique provides sufficient degree of freedom to control the center frequency and bandwidth of the five passbands. In addition, the seven transmission zeros created around the passbands results in a quant-band filter with high selectivity, sharp 3dB cut-off frequency, high isolation, and low passband insertion-loss. Design methodology and simulation results of the filter are provided.

  2. Investigation of frequency-selective properties of microwave wideband bandpass filters

    Science.gov (United States)

    Khodenkov, S. A.; Boev, N. M.

    2017-11-01

    A new approach allowing to improve frequency-selective properties for a fixed order of N filter is suggested. In all the studies, conducted with the help of numerical electrodynamic analysis of 3D models of microstrip filters based on a multimode resonator, the same substrate with dielectric constant ε=2.8 and thickness h=2 mm (material - FLAN) was used in calculations. The central bandpass frequency of microwave structures f 0≈1.4 GHz was registered and as well as relative bandwidth Δf/f o≈80%. The strip conductor of central multimode resonator in six studied filters of the sixth and eighth orders has the shape of an irregular meander being electromagnetically connected with four single-mode resonators, a pair of which is located to the left of it, and the other pair is to the right. It is shown that in single-mode quarter-wave resonators building-up the number of portions of identical parallel strip conductors, connected to a screen at one end and connected with each other by a strip conductor jumper, can increase the power of suppression at low-frequency stop band by more than 15 dB, as well as near high-frequency slope of passband by more than 10 dB. Therefore, the level of maximums of return losses in the passband of wideband bandpass filter ranges within a few dB.

  3. W-band waveguide bandpass filter with E-plane cut.

    Science.gov (United States)

    Furtula, Vedran; Salewski, Mirko

    2014-07-01

    In this paper, we present a design and measurements of a five-section bandpass filter with a passband from 96 to 106 GHz. The insertion loss is less than 1.4 dB in the passband, and the rejection is better than 40 dB in the range from 115 to 142 GHz. We use transmission line coupling theory based on Tchebyscheff's synthesis in order to provide an initial guess for the geometrical parameters of the filter such as cavity lengths and coupling widths. The filter is manufactured from brass in two halves in the E-plane cut topology. The S-parameters of the filter are measured and compared with the simulations. The measured passband insertion loss is approximately 0.4 dB worse than in the simulation, and the measured passband width is approximately 3.4% narrower. The measured filter attenuation roll-off corresponds well to the simulation. We also compare our S-parameter measurements of the E-plane filter with corresponding measurements of a very similar H-plane filter. The transmission and reflection characteristics of the E-plane filter are better than those of the H-plane filter.

  4. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d. Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  5. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    Science.gov (United States)

    Mezaal, Yaqeen S; Eyyuboglu, Halil T

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  6. Design of 50 G nonpolarizing dense wavelength division multiplexer angle-tuning bandpass filter.

    Science.gov (United States)

    Chen, Xianming; Ma, Junxian; Yang, Yatao

    2010-10-01

    Transmission characteristic differences of a narrow bandpass filter between p- and s-polarized light, especially the central wavelength separation, will corrupt the performance of the filter when the incidence is oblique. In this paper, by adding high-index materials asymmetrically to both sides of a low-index spacer, which tunes the equivalent index of the spacer, the central wavelengths of the two polarizations coincide perfectly when in 20° incidence; with different reflected layers on the two sides of the spacers and replacing some reflected layers with equivalent layers, the 0.5 dB normalized passband width is kept at 0.2 nm, which meets the requirement of the 50 G dense wavelength division multiplexer filter.

  7. Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Lorenzen, Dennis Lund

    2014-01-01

    We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources......, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central...... frequency (f) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present...

  8. Technology optimization techniques for multicomponent optical band-pass filter manufacturing

    Science.gov (United States)

    Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.

    2016-04-01

    Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.

  9. Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source.

    Science.gov (United States)

    Xue, Xiaoxiao; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2011-09-12

    We demonstrate a novel microwave photonic filter based on a non-coherent broadband optical source and the variable optical carrier time shift (VOCTS) method. Optical slicing which is essential conventionally is not employed in our scheme. Nevertheless, equivalent "electrical slicing" is performed by VOCTS, generating a passband free from the carrier-suppression effect. The baseband response is eliminated by using carrier-suppression or phase modulation. Single bandpass is also achieved due to the continuous-time sinusoidal impulse response. Detailed theoretical analyses are presented and agree with the experiments quite well.

  10. A compact HTS bandpass microstrip filter with novel coupling structure for on-chip integration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting, E-mail: ting.zhang@csiro.au [CSIRO ICT Centre, Epping, NSW 1710 (Australia); Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China); Du, Jia [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia); Guo, Yingjie Jay [CSIRO ICT Centre, Epping, NSW 1710 (Australia); Sun, Xiaowei [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China)

    2013-12-15

    Highlights: •A novel coupling scheme is used to introduce two transmission zeros using only three resonators. •The filter has a low insertion loss at 40 K, and a wide stopband with good rejection. •The filter has compactness and high-selectivity. •The filter is a suitable candidate for on-chip integration of HTS receiver front-ends. -- Abstract: A compact low-complexity high-selectivity high-temperature superconducting (HTS) microstrip bandpass filter is presented in this paper, which consists of only three half-wavelength resonators. A novel coupling scheme is used to provide a pair of transmission zeros outside the passband, so that the selectivity of the filter is improved. The filter is fabricated on an MgO substrate with YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) coating. Measurement result shows an in-band insertion loss at 0.5 dB, a sharp slope, and a stopband rejection better than 20 dB. The compactness and high-selectivity features make the filter suitable for on-chip integration of HTS receiver front-ends.

  11. Electrically Tunable Open-Stub Bandpass Filters Based on Nematic Liquid Crystals

    Science.gov (United States)

    Economou, E. C.; Lovejoy, J.; Harward, I.; Nobles, J. E.; Kula, P.; Herman, J.; Glushchenko, A.; Celinski, Z.

    2017-12-01

    Electrically tunable bandpass filters based on liquid crystals are designed, built, and characterized using a vector network analyzer. The filters are composed of half-wavelength open stubs and quarter-wavelength connecting lines in an inverted microstrip geometry. The filters are modeled using computational electromagnetics software utilizing the finite integration technique. Photolithography and thin-film deposition processes are employed, and standard liquid-crystal cell-assembly techniques are used to make the final filter structures. The three-stub filters with passband central frequencies of 30, 50, and 85 GHz are filled with the nematic liquid crystal, LC1917, and tested. 10% tuning of the central frequency is achieved with a 14-volt peak-to-peak ac bias across the 38 -μ m liquid-crystal layer (electric field of 0.19 V / μ m ). At 50 GHz, the insertion loss is -3.76 dB , while the return loss ranges from -9 to -25 dB , indicating a good impedance match for a proof-of-concept device. The passband widths of the 30-, 50-, and 85-GHz filters are 5, 9, and 14 GHz, respectively, resulting in a Q factor of 6. The filter devices presented in this study, although intended for microwave signal-processing applications, furnish an effective methodology for characterizing the dielectric properties of liquid-crystal materials (and fluids or solids in general) up to the terahertz frequency range.

  12. Investigation of Compact Balun-Bandpass Filter Using Folded Open-Loop Ring Resonators and Microstrip Lines

    Directory of Open Access Journals (Sweden)

    Chia-Mao Chen

    2014-01-01

    Full Text Available A balun-bandpass filter was proposed by using two folded open-loop ring resonators (OLRRs to couple three microstrip lines. By tuning the size of the OLRR, the operating frequency of the balun-bandpass filter could be tuned to the needed value. By tuning the size of open stub at the end of microstrip lines, the balanced impedance of the balun-bandpass filter could also be tuned. The fabricated balun-bandpass filter had a wide bandwidth and a low insertion loss at center frequency of the passband. The balun-bandpass filter presented an excellent in-band balanced performance with common-mode rejection ratio more than 20 dB in the passbands. An advanced design methodology had been adopted based on EM simulation for making these designed parameters of OLRRs and microstrip lines. Good correlation was seen between simulation and measurement, and the result was that first run pass had been achieved in the majority of our designs.

  13. Design and specification of optical bandpass filters for Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    Science.gov (United States)

    Leviton, Douglas B.; Tsvetanov, Zlatan; Woodruff, Robert A.; Mooney, Thomas A.

    1998-08-01

    Advanced optical bandpass filters for the Hubble Space Telescope (HST) advanced camera for surveys (ACS) have been developed on a filer-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey which are optimized for astronomical photometry using today's charge-coupled- devices. In order for ACS to be truly advanced, these filters must push the state-of-the-at in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.

  14. A study on band-pass filtering for calculating foot displacements from accelerometer and gyroscope sensors.

    Science.gov (United States)

    Charry, Edgar; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-01-01

    As a promising alternative to laboratory-constrained video capture systems in studies of human movement, inertial sensors (accelerometers and gyroscopes) are recently gaining popularity. Secondary quantities such as velocity, displacement and joint angles can be calculated through integration of acceleration and angular velocities. It is broadly accepted that this procedure is significantly influenced by accumulative errors due to integration, arising from sensor noise, non-linearities, asymmetries, sensitivity variations and bias drifts. In this paper, we assess the effectiveness of applying band-pass filtering to raw inertial sensor data under the assumption that sensor drift errors occur in the low frequency spectrum. The normalized correlation coefficient rho of the Fast Fourier Transform (FFT) spectra corresponding to vertical toe acceleration from inertial sensors and from a video capture system as a function of digital band-pass filter parameters is compared. The Root Mean Square Error (RMSE) of the vertical toe displacement for 30 second walking windows is calculated for 2 healthy subjects over a range of 4 walking speeds. The lowest RMSE and highest cross correlation achieved for the slowest walking speed of 2.5Km/h was 3.06cm and 0.871 respectively, and 2.96cm and 0.952 for the fastest speed of 5.5Km/h.

  15. Design of an S band narrow-band bandpass BAW filter

    Science.gov (United States)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  16. Compact dual-band bandpass filter based on signal-interference techniques

    Science.gov (United States)

    Ma, Xingbing; Jiang, Ting

    2017-08-01

    To realize good isolation between two signal passbands, a dual-band bandpass filter (BPF) in this article was presented using signal-interference techniques, in which five open loop resonators are adopted. The proposed filter topology is made up of two signal transmission paths in parallel, under signal-interference principles, overlap section of two original passbands, decided respectively by two different transmission paths, is selectively removed from the combined passband, as a result, two aim passbands are realized. In addition, good isolation between two aim passbands is established due to two new transmission zeros, produced by adopted signal-interference techniques. At last, good agreement can be observed between simulation and measurement.

  17. A Compact Quad-Band Bandpass Filter Based on Defected Microstrip Structure

    Science.gov (United States)

    Chen, Lei; Li, Xiao Yan; Wei, Feng

    2017-07-01

    A compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.

  18. Design of a SIW Bandpass Filter Using Defected Ground Structure with CSRRs

    Directory of Open Access Journals (Sweden)

    Weiping Li

    2017-01-01

    Full Text Available In this paper, a substrate integrated waveguide (SIW bandpass filter using defected ground structure (DGS with complementary split ring resonators (CSRRs is proposed. By using the unique resonant properties of CSRRs and DGSs, two passbands with a transmission zero in the middle have been achieved. The resonant modes of the two passbands are different and the bandwidth of the second passband is much wider than that of the first one. In order to increase out-of-band rejection, a pair of dumbbell DGSs has been added on each side of the CSRRs. The structure is analyzed using equivalent circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The measurement results are in good agreement with the simulated ones.

  19. Harmonic suppressed coupled stepped-impedance resonator based dual-band tunable bandpass filter

    Directory of Open Access Journals (Sweden)

    Amarjit Kumar

    2017-10-01

    Full Text Available In this paper, a tunable dual-band bandpass filter (BPF based on a varactor-loaded coupled stepped-impedance resonator is presented. Transmission matrices techniques are employed to explain the working concept of proposed tunable BPF. For validating the proposed concept, a hardware prototype is fabricated and characterized. As per the measured results, when the center frequency of the lower band is tuning from 2.15 to 2.40 GHz, the upper band is fixed at 4.5 GHz; and when the center frequency of the upper band is tuning from 4.5 to 4.75 GHz, the lower passband almost remains constant at 2.25 GHz. Proposed tunable filter is capable of working at higher passband frequencies. Spurious harmonic suppression up to 15 GHz is demonstrated. Center frequency of dual-passband is tunable using only two dc control voltages.

  20. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.

    Science.gov (United States)

    Khodaee, M; Banakermani, M; Baghban, H

    2015-10-10

    Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34  THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.

  1. Wide Bandpass and Narrow Bandstop Microstrip Filters based on Hilbert fractal geometry: design and simulation results.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available This paper presents new Wide Bandpass Filter (WBPF and Narrow Bandstop Filter (NBSF incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems.

  2. A Compact Tri-Band Bandpass Filter with High Out-of-Band Rejection

    Directory of Open Access Journals (Sweden)

    M. Abdul-Niby

    2017-08-01

    Full Text Available This paper presents a planar tri-band bandpass filter with high out-of-band rejection over a wide band. The filter is based on two pairs of λ/4 resonators embedded inside an open loop ring resonator without any size increase, where each pair of resonators are electromagnetically coupled to each other and the feedlines. This results in the excitations of passbands, where the first passband is generated by the open loop resonators. The second and the third passbands are excited by λ/4 resonators. The proposed technique provides sufficient degrees of freedom to control the center frequency and bandwidth of the three passbands independently. In addition, the six transmission zeros created around the passbands results in a tri-band filter with high selectivity, sharp 3 dB cut-off frequency, high isolation, low passband insertion-loss and high out-of-band harmonic rejection across an ultra-broadband frequency range up to 17 GHz. The proposed technique has the ability to switch from triple to dual band by removing one pair of the inner resonators. Design methodology and simulation results of the filter are provided.

  3. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  4. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-04-01

    Wireless systems with emerging applications are leaning towards small size, light-weight and low cost. Another trend for these wireless devices is that new applications and functionalities are being added without increasing the size of the device. To accomplish this, individual components must be miniaturized and the system should be designed to maximize the integration of the individual components. The high level of 3D integration feasible in system on package design (SoP) concept can fulfill the latter requirement. Bandpass filters are important components on all wireless systems to reject the unwanted signals and reduce interference. Being mostly implemented with passive and distributed components, bandpass filters take considerable space in a wireless system. Moreover, with emerging bands and multiple applications encompassed in a single device, many bandpass filters are required. The miniaturization related to bandpass filters can be approached by three main ways: (1) at the component level through the miniaturization of individual bandpass filters, (2) at the system level through the use of tunable filters to reduce the overall number of filters, and (3) at the system level through the high level of integration in a 3D SoP platform. In this work we have focused on all three aspects of miniaturization of band pass filters mentioned above. In the first part of this work, a low frequency (1.5 GHz global positioning system (GPS) band) filter implemented through 3D lumped components in two leading SoP technologies, namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without increasing the size. Moreover, for the case of LCP, the filter is realized in an ultra-thin stack up comprising four metallization layers with an overall thickness of only 100 _m. Due to its ultra

  5. Omnidirectional narrow bandpass filter based on metal-dielectric thin films.

    Science.gov (United States)

    Zhang, Jin-long; Shen, Wei-dong; Gu, Peifu; Zhang, Yue-guang; Jiang, Hai-tao; Liu, Xu

    2008-11-20

    We show that a metal-dielectric Fabry-Perot (FP) structure can exhibit an omnidirectional transmission for p-polarized light, which means a passband is independent of the incidence angle of light. The omnidirectional passband occurs when the sum of the reflection phase shift at the metal-spacer interface and the propagation shift in the spacer region is almost 2pi for every incidence angle. We numerically and experimentally demonstrate such an omnidirectional narrow bandpass filter in an air/Ag/ZnS/Ag/glass structure. Moreover, we introduce an antireflection coating on both sides of the metal-dielectric FP structure. The transmittance will increase obviously, while the omnidirectional property remains the same.

  6. Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2014-01-01

    Full Text Available A miniaturized bandpass filter (BPF using defected ground structure (DGS resonator with the characteristic of harmonic rejection is developed in this paper. The second and third harmonics of the proposed BPF are rejected by the characteristic of stepped-impedance DGS resonator. Moreover, open stubs are established so that two adjustable transmission zeros can independently be created to extend the stopband and improve the rejection level. Finally, a second-order BPF, centered at 1.62 GHz with a stopband extended up to 5.6 GHz and a rejection level better than 20 dB, is designed and implemented for GPS application. A good agreement between simulation and measurement verifies the validity of this design methodology.

  7. Performance Evaluation of an Optoelectronic Oscillator Based on a Band-Pass Microwave Photonic Filter Architecture

    Directory of Open Access Journals (Sweden)

    A. G. Correa-Mena

    2017-09-01

    Full Text Available The experimental performance evaluation of an optoelectronic oscillator based on a band-pass microwave photonic filter architecture is carried out. The novelty of this proposal resides in the fact that the architecture used allows enhancing the free spectral range of the optoelectronic oscillator. Considering the optical spectral characteristics of the multimode laser diode used as an optical source, the length and the chromatic dispersion parameter of the optical fiber which acts as a feedback loop, it is possible to determine the appearance of a series of spectrally pure microwave signals widely spaced. In particular, the experimental results show a phase noise as low as -92.69 dBc/Hz at 10 kHz offset frequency from the 2.26 GHz carrier for an optical delay line of 25.24 km and a Q factor of 2.04×109.

  8. Learning Multiple Band-Pass Filters for Sleep Stage Estimation: Towards Care Support for Aged Persons

    Science.gov (United States)

    Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo

    This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.

  9. Design of a Dual-Band Bandpass Filter Using an Open-Loop Resonator

    Directory of Open Access Journals (Sweden)

    Hyun-Seo Im

    2017-10-01

    Full Text Available In this paper, we present a novel design for a dual-band bandpass filter (BPF based on the conventional second-order, open-loop BPF. By adding series resonant circuits to the open ends of the resonator, we can create two resonant modes from the even and odd modes. One pair of the even and odd modes constitutes the upper passband, while the other pair constitutes the lower passband. By adding another series resonant circuit to the open-loop resonator, we can control the bandwidth of either the upper passband or the lower passband. We can replace the series resonant circuits with simple microstrip line resonators. A dual-band BPF working at both Wi-Fi bands (2.4 GHz and 5.8 GHz bands is designed based on the proposed method and is tested. The measured and simulated results show excellent agreement.

  10. Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses.

    Science.gov (United States)

    Xue, Xiaoxiao; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2012-11-19

    We propose a novel structure of complex-tap microwave photonic filter (MPF) employing an incoherent broadband optical source (BOS) and a programmable optical spectrum processor. By tailoring the optical spectral amplitude and phase, arbitrary complex continuous-time impulse responses of the MPF can be constructed. Frequency responses with a single flat-top, highly chirped, or arbitrary-shape passband are demonstrated, respectively. The passband center can also be tuned in a wide range only limited by the opto-electrical devices. To the best of our knowledge, it is the first demonstration of an incoherent-BOS-based MPF which is single-bandpass, widely tunable, and highly reconfigurable with complex taps.

  11. Tunable Balanced Bandpass Filter with High Common-mode Suppression Based on SLSRs

    Science.gov (United States)

    Wei, Feng; Wang, Xin Yi; Liao, Dun Wei; Shi, Xiao Wei

    2017-10-01

    A tunable balanced bandpass filter (BPF) with a good common-mode (CM) suppression based on slotline resonators is proposed in this letter. Two novel stub-loaded slotline resonators (SLSRs) terminated with varactors are designed to obtain tunable differential-mode (DM) responses. It is found that a high and wideband CM suppression can be achieved by employing balanced stepped-impedance microstrip-slotline transition structures. Moreover, the DM passbands are independent from the CM ones, which can significantly simplify the design procedure. To validate the design theory, a compact tunable balanced BPF with an operating frequency band ranging from 3.09 GHz to 3.6 GHz is designed and fabricated. The measured results are found to agree well with the simulated ones.

  12. Design of Dual-Band Bandpass Filter Using Dual-Mode Defected Stub Loaded Resonator

    Directory of Open Access Journals (Sweden)

    Dechang Huang

    2014-01-01

    Full Text Available A novel approach for designing a dual-band bandpass filter (BPF using defected stub loaded resonator (DSLR is presented in this paper. The proposed DSLR consists of two fundamental resonant modes and some resonant characteristics have been investigated by EM software of Ansoft HFSS. Then, based on two coupled DSLRs, a dual-band response BPF that operates at 2.4 GHz and 3.5 GHz is designed and implemented for WLAN and WIMAX application. The first passband is constructed by two lower frequencies of the coupled DSLRs and the second passband is produced by two higher ones; the coupling scheme of them is also given. Finally, the dual-band BPF is fabricated and measured; a good agreement between simulation and measurement is obtained, which verifies the validity of the design methodology.

  13. A Compact UWB Band-Pass Filter Using Embedded Circular Slot Structures for Improved Upper Stop-band Performance

    DEFF Research Database (Denmark)

    Shen, Ming; Ren, Jian; Mikkelsen, Jan Hvolgaard

    2016-01-01

    This paper presents an ultra-wideband band-pass filter designed using a slot-line ring resonator and two pairs of embedded circular slot structures. The slot-line ring resonator is used to form the desired UWB passband, and the upper stop-band response is suppressed by embedding the circular slot...

  14. Fabrication of Compact Microstrip Line-Based Balun-Bandpass Filter with High Common-Mode Suppression

    Directory of Open Access Journals (Sweden)

    Chia-Mao Chen

    2014-01-01

    Full Text Available A new type of balun-bandpass filter was proposed based on the traditional coupled-line theory and folded open-loop ring resonators (OLRRs configuration. For that, a new device with both filter-type and balun-type characteristics was investigated and fabricated. Both magnetic and electric coupling structures were implemented to provide high performance balun-bandpass responses. The fabricated balun-bandpass filters had a wide bandwidth more than 200 MHz and a low insertion loss less than 2.51 dB at a center frequency of 2.6 GHz. The differences between the two outputs were below 0.4 dB in magnitude and within 180 ± 7° in phase. Also, the balun-bandpass filter presented an excellent common-mode rejection ratio over 25 dB in the passband. An advanced design methodology had been adopted based on EM simulation for making these designed parameters of OLRRs, microstrip lines, and open stubs. The measured frequency responses agreed well with simulated ones.

  15. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  16. A dense grid of narrow bandpass steep edge filters for the JST/T250 telescope: summary of results

    Science.gov (United States)

    Brauneck, U.; Sprengard, R.; Bourquin, S.; Marín-Franch, A.

    2017-09-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) has setup a new wide field telescope, the JST/T250: a 2.55 m telescope with a plate scale of 22.67"/mm and a 3° diameter field of view. To conduct a photometric sky survey, a large format mosaic camera made of 14 individual CCDs is used in combination with filter trays containing 14 filters each of theses 101.7 x 96.5 mm in size. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters which were recently completed. The filter set consists of bandpass filters in the range between 348,5 nm and 910 nm and a longpass filter at 915 nm. Most of the filters have FWHM of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. Inspite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass having a defined overlap with its neighbors. In addition, the blocking of the filters is better than OD5 in the range 250-1050 nm. A high image quality required a low transmitted wavefront error (filters. λλ

  17. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining.

    Science.gov (United States)

    Lin, Yanzhang; Yao, Haizi; Ju, Xuewei; Chen, Ying; Zhong, Shuncong; Wang, Xiangfeng

    2017-10-16

    We report on the fabrication and transmission properties of free-standing single-layer and double-layer THz bandpass filters. These filters are fabricated on aluminum foils using femtosecond laser micro-machining. The aluminum foils are periodically patterned with cross apertures with a total area of 1.75×1.75 cm 2 , also known as frequency-selective surfaces. Their terahertz transmission properties were simulated using the FDTD method and measured using a time-domain terahertz spectroscopy system. The simulation results agree with the measurements results very well. The performance of single-layer bandpass filters is as good as the commercial equivalents on the market. The double-layer filters show extraordinary transmission peaks with changing spacing between the two layers. We show the contour map of the electric field distribution across the apertures, and ascribe the new transmission peaks to the interference and coupling of surface plasmon polaritons between the two layers.

  18. Improving the Pass-Band Return Loss in Liquid Crystal Dual-Mode Bandpass Filters by Microstrip Patch Reshaping

    OpenAIRE

    Torrecilla, Javier; Urruchi, Virginia; S?nchez-Pena, Jos? Manuel; Bennis, Noureddine; Garc?a, Alejandro; Segovia, Daniel

    2014-01-01

    In this paper, the design and experimental characterization of a tunable microstrip bandpass filter based on liquid crystal technology are presented. A reshaped microstrip dual-mode filter structure has been used in order to improve the device performance. Specifically, the aim is to increase the pass-band return loss of the filter by narrowing the filter bandwidth. Simulations confirm the improvement of using this new structure, achieving a pass-band return loss increase of 1.5 dB at least. ...

  19. Application of Cu{sub 2}O-doped phosphate glasses for bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Elhaes, H. [Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo (Egypt); Attallah, M., E-mail: m_atallah94@yahoo.com [Basic Science Department, Higher Technological Institute, 10th of Ramadan City (Egypt); Elbashar, Y.; El-Okr, M. [Physics Department, Faculty of Science, Al Azhar University, Cairo (Egypt); Ibrahim, M. [Spectroscopy Department, National Research Centre, 12311 Dokki, Cairo (Egypt)

    2014-09-15

    Phosphate glasses doped with copper ions having general composition 42P{sub 2}O{sub 5}–39ZnO–(18−x) Na{sub 2}O–1CaO–xCu{sub 2}O [x=2, 4, 6, 8, 10 mol%] were prepared using a conventional melt-quench technique. Physical and chemical properties of the glasses were investigated using X-ray diffraction technique and UV–visible optical absorption. The density was measured by Archimedes' method, and molar volume (V{sub M}) was calculated. It is found that density and molar volume show opposite trend by increasing Cu{sub 2}O content. Absorbance and transmittance at the normal incidence are measured by a spectrophotometer in the spectral range of 190–1100 nm. Analyses of the obtained results were considered in the frame of current theories. Absorption data were used for absorption coefficient, the optical band gap (E{sub opt}), the cutoff in UV and IR bands to the bandpass filter, which confirmed the optical properties of this type of filter. E{sub opt} values for different glass samples are found to decrease with increasing Cu{sub 2}O content.

  20. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  1. Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines

    Science.gov (United States)

    Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng

    2017-07-01

    A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.

  2. Temperature dependence of an optical narrow-bandpass filter at 1.5  μm.

    Science.gov (United States)

    Yang, Xiaoyan; Li, Hao; You, Lixing; Zhang, Weijun; Zhang, Lu; Wang, Zhen; Xie, Xiaoming

    2015-01-01

    For superconducting nanowire single-photon detectors, we designed and fabricated an on-chip narrow-bandpass filter at the central wavelength of 1.5 μm to reduce the influence of blackbody radiation from the fiber. The bandpass filter was prepared on a thermally oxidized Si substrate, and it provided a peak transmittance of 88% at the central passband wavelength and 30 dB suppression at the stop bands. We investigate the temperature dependence of the filter from room temperature to 2.9 K. The central wavelength of the passband blue-shifted from 1545±2  nm (295 K) to 1526±2  nm (2.9 K). This effect is explained by the different indices of refraction of Si at different temperatures.

  3. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime

    Science.gov (United States)

    Du, Bujie; Jiang, Xingya; Das, Anindita; Zhou, Qinhan; Yu, Mengxiao; Jin, Rongchao; Zheng, Jie

    2017-11-01

    The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.

  4. Polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating

    Science.gov (United States)

    Hohne, Andrew J.; Moon, Benjamin; Baumbauer, Carol L.; Gray, Tristan; Dilts, James; Shaw, Joseph A.; Dickensheets, David L.; Nakagawa, Wataru

    2017-08-01

    We present the design, fabrication, and characterization of a polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating for use in polarimetric imaging. Gold nanowires were deposited via physical vapor deposition (PVD) onto a silicon surface relief grating that was patterned using electron beam lithography (EBL) and fabricated using standard silicon processing techniques. Optical characterization with a broad-spectrum tungsten halogen light source and a grating spectrometer showed normalized peak TM transmission of 53% with a full-width at half-maximum (FWHM) of 122 nm, which was consistent with rigorous coupled-wave analysis (RCWA) simulations. Simulation results suggested that device operation relied on suppression of the TM transmission caused by surface plasmon polariton (SPP) excitation at the gold-silicon interface and an increase in TM transmission caused by a Fabry-Perot (FP) resonance in the cavity between the gratings. TE rejection occurred at the initial air/gold interface. We also present simulation results of an improved design based on a two-dielectric grating where two different SPP resonances allowed us to improve the shape of the passband by suppressing the side lobes. This newer design resulted in improved side-band performance and increased peak TM transmission.

  5. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.

    2017-01-30

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  6. A Method against Interrupted-Sampling Repeater Jamming Based on Energy Function Detection and Band-Pass Filtering

    Directory of Open Access Journals (Sweden)

    Hui Yuan

    2017-01-01

    Full Text Available Interrupted-sampling repeater jamming (ISRJ is a new kind of coherent jamming to the large time-bandwidth linear frequency modulation (LFM signal. Many jamming modes, such as lifelike multiple false targets and dense false targets, can be made through setting up different parameters. According to the “storage-repeater-storage-repeater” characteristics of the ISRJ and the differences in the time-frequency-energy domain between the ISRJ signal and the target echo signal, one new method based on the energy function detection and band-pass filtering is proposed to suppress the ISRJ. The methods mainly consist of two parts: extracting the signal segments without ISRJ and constructing band-pass filtering function with low sidelobe. The simulation results show that the method is effective in the ISRJ with different parameters.

  7. HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp; Sugiyama, S.

    2014-09-15

    Highlights: • We have developed a HTS five-pole dual-band bandpass filter using stub-loaded hair-pin resonators. • The proposed dual-band BPF can independently control of the center frequency. • Flexibly adjustment of the bandwidth can be achieved by the H-shaped waveguide. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: A HTS dual-band bandpass filter is developed to obtain sharp-cut off characteristics for mobile communication systems. The filter is composed of five stub-loaded hair-pin resonators with H-shaped waveguides between them. The main advantage of the proposed filter is to allow independent control of the center frequency of the first and second bands. The bandwidths can be flexibly adjusted using the H-shaped waveguide. An electromagnetic simulator was used to design and analyze the filter, which have a 3.5-GHz center frequency and a 70-MHz (2%) bandwidth for the first band and a 5.0-GHz center frequency and a 100-MHz (2%) bandwidth for the second band. The filter was fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on an Al{sub 2}O{sub 3} substrate. Ground plane was fabricated using Au thin film. The measured frequency responses of the filter tally well with the simulated ones.

  8. An asymmetric MOSFET-C band-pass filter with on-chip charge pump auto-tuning

    International Nuclear Information System (INIS)

    Chen Fangxiong; Ma Heping; Jia Hailong; Shi Yin; Lin Min; Dai, Forster

    2009-01-01

    An asymmetric MOSFET-C band-pass filter (BPF) with on chip charge pump auto-tuning is presented. It is implemented in UMC (United Manufacturing Corporation) 0.18 μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump outputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point (IIP3) is 16.621 dBm, with 50 Ω as the source impedance. The input referred noise is about 47.455 μV rms . The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm 2 and it can be utilized in GPS (global positioning system) and Bluetooth systems. (semiconductor integrated circuits)

  9. Improving the Pass-Band Return Loss in Liquid Crystal Dual-Mode Bandpass Filters by Microstrip Patch Reshaping

    Directory of Open Access Journals (Sweden)

    Javier Torrecilla

    2014-06-01

    Full Text Available In this paper, the design and experimental characterization of a tunable microstrip bandpass filter based on liquid crystal technology are presented. A reshaped microstrip dual-mode filter structure has been used in order to improve the device performance. Specifically, the aim is to increase the pass-band return loss of the filter by narrowing the filter bandwidth. Simulations confirm the improvement of using this new structure, achieving a pass-band return loss increase of 1.5 dB at least. Because of the anisotropic properties of LC molecules, a filter central frequency shift from 4.688 GHz to 5.045 GHz, which means a relative tuning range of 7.3%, is measured when an external AC voltage from 0 Vrms to 15 Vrms is applied to the device.

  10. Modelling and validation of a simple and compact wide upper stop band ultra-wideband bandpass filter

    Directory of Open Access Journals (Sweden)

    Somdotta Roy Choudhury

    2014-09-01

    Full Text Available A compact ultra-wideband (UWB bandpass filter (BPF is proposed based on end coupled microstrip transmission line, defected ground structure and defected microstrip structure. The experimental filter shows a fractional bandwidth of 110% at a centre frequency, with two observable transmission zeros (attenuation poles at 2.1 and 11.7 GHz. Measured results exhibit an UWB passband from 3.02 to 10.6 GHz with mid-band insertion loss of 1.8 dB and group delay variation <0.45 ns. The BPF achieves a wide stopband with < −18 dB attenuation up to 20 GHz.

  11. A substrate integrated folded waveguide (SIFW) H-plane band-pass filter with double H-plane septa based on LTCC.

    Science.gov (United States)

    Wang, Zhengwei; Bu, Shirong; Luo, Zhengxiang

    2012-03-01

    In this paper, a novel substrate integrated folded waveguide (SIFW) H-plane band-pass filter based on low-temperature co-fired ceramic technology (LTCC) is proposed which employs double H-plane septa of a short-ended evanescent waveguide as an impedance inverter. The filter has advantages of convenient integration, compact, low cost, mass-producibility, and ease of fabrication, and it also has frequency responses similar to those of traditional E-plane double-iris waveguide band-pass filters. To validate the new proposed topology, a three-pole narrowband band-pass filter is designed and fabricated using half-wavelength resonators. A comparison between measured results and simulated results shows good agreement.

  12. 3D lumped components and miniaturized bandpass filter in an ultra-thin M-LCP for SOP applications

    KAUST Repository

    Arabi, Eyad A.

    2013-01-01

    In this work, a library of 3D lumped components completely embedded in the thinnest, multilayer LCP (M-LCP) stack- up with four metallization layers and 100 μm of total thickness, is reported for the first time. A vertically and horizontally interdigitated capacitor, realized in this stack-up, provides higher self resonant frequency as compared to a similarly sized conventional parallel plate capacitor. Based on the above mentioned library, a miniaturized bandpass filter is presented for the GPS application. It utilizes mutually coupled inductors and is the smallest reported in the literature with a size of (0.035×0.028×0.00089)λg. Finally, the same filter realized in a competing ceramic technology (LTCC) is compared in performance with the ultra-thin M-LCP design. The M-LCP module presented in this work is inherently exible and offers great potential for wearable and conformal applications.

  13. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters

    Science.gov (United States)

    Hennig, Georg; Brittenham, Gary M.; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms/nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  14. Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source.

    Science.gov (United States)

    Wang, Hui; Zheng, Jian Yu; Li, Wei; Wang, Li Xian; Li, Ming; Xie, Liang; Zhu, Ning Hua

    2013-11-15

    We propose a new scheme of microwave photonic filter (MPF) based on the polarization processing of a broadband optical source (BOS), which features single-bandpass response and a wide span of operation bandwidth. The BOS is orthogonally polarized by a polarization division multiplexing emulator (PDME) with a tunable time delay between the two polarization states and incident at ± 45° to one principle axis of a polarization modulator (PolM). The PDME cascades a PolM, and a polarizer realizes a microwave modulation making the phase of the carrier able to be tuned while ± 1st sidebands remain unchanged, which after propagating in a dispersive medium results in a tunable single-bandpass response in the RF domain. We experimentally verify the MPF. By adjusting the time delay and the optical spectrum bandwidth, the passband center frequency is continuously tuned from DC to 20 GHz and the 3 dB passband bandwidth changes while the optical spectrum bandwidth ranges from 1 to 4 nm.

  15. Fully integrated high quality factor GmC bandpass filter stage with highly linear operational transconductance amplifier

    Science.gov (United States)

    Briem, Jochen; Mader, Marco; Reiter, Daniel; Amirpour, Raul; Grözing, Markus; Berroth, Manfred

    2017-09-01

    This paper presents an electrical, fully integrated, high quality (Q) factor GmC bandpass filter (BPF) stage for a wireless 27 MHz direct conversion receiver for a bendable sensor system-in-foil (Briem et al., 2016). The core of the BPF with a Q factor of more than 200 is an operational transconductance amplifier (OTA) with a high linearity at an input range of up to 300 mVpp, diff. The OTA's signal-to-noise-and-distortion-ratio (SNDR) of more than 80 dB in the mentioned range is achieved by stabilizing its transconductance Gm with a respective feedback loop and a source degeneration resistors RDG. The filter stage can be tuned and is tolerant to global and local process variations due to offset and common-mode feedback (CMFB) control circuits. The results are determined by periodic steady state (PSS) simulations at more than 200 global and local process variation parameter and temperature points and corner simulations. It is expected, that the parasitic elements of the layout have no significant influence on the filter behaviour. The current consumption of the whole filter stage is less than 600 µA.

  16. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    Science.gov (United States)

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  17. Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

    Directory of Open Access Journals (Sweden)

    Z. Chuluunbaatar

    2014-01-01

    Full Text Available This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  18. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    Science.gov (United States)

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  19. Novel Designed CSRRs and Its Application in Tunable Tri-Band Bandpass Filter Based on Fractal Geometry

    Directory of Open Access Journals (Sweden)

    He-Xiu Xu

    2011-04-01

    Full Text Available In this paper, we propose and research a novel miniaturized composite right/left handed transmission line (CRLH TL cell based on revised complementary split ring resonators (CSRRs for the first time. Novel CRLH TL cell is demonstrated with lower transmission and reflection zeros from electrical and electromagnetic (EM simulation results. Negative refractive index of CRLH effect is successfully demonstrated by the revised NRW retrieval method. Then based on this, a tri-band bandpass filter (BPF is synthesized and fabricated by using the proposed CRLH TL cell (providing the primary GSM band and Koch fractal-shaped microstrip line (ML (generating the upper GPS and ISM bands. Our recent work has also found that open-circuit stub embedded in Koch-shaped ML can be optimized to adjust the ratio of the upper two bands, thus afford us additional flexibility in BPF design. Consistent result obtained from simulation and measurement is presented which have verified the design concept.

  20. Second Ripple Current Suppression by Two Bandpass Filters and Current Sharing Method for Energy Storage Converters in DC Microgrid

    DEFF Research Database (Denmark)

    Yang, Ling; Chen, Yandong; Luo, An

    2017-01-01

    With the increasing of AC loads injected into DC microgird (MG) through the inverters, the second ripple current (SRC) in the front-end energy storage converter (ESC) and circulating current among the ESCs in DC MG become more and more serious. In this paper, the SRC suppression method...... by introducing two band-pass filters (BPFs) into the output voltage and inductance current feedback of the ESC is proposed. Compared with the traditional dual-loop control method, the proposed method effectively reduces the SRC and improves the dynamic performance in case of a lower cut-off frequency...... in the outer voltage loop. Simultaneously, an adaptive droop control method by introducing the fine tuning virtual resistances is adopted to reduce the output voltage deviation of parallel ESCs and improve the output current sharing among the ESCs. Considering the allowed range of the deviation between...

  1. Co-design method for dual-band low-noise amplifier and band-pass filter

    Science.gov (United States)

    Ma, Runbo; Zhang, Wenmei; Han, Guorui; Li, Li; Chen, Xinwei; Han, Liping

    2012-04-01

    A co-design method for the dual-band low-noise amplifier (LNA) and band-pass filter (BPF) is presented in this study. The dual-band BPF and LNA are designed separately by the traditional method first. In order to reduce the circuit, the dual-band matching networks (MNs) of the LNA and BPF are combined into the dual-band matching-filter. The validity is verified by a sample of 1.57/2.4 GHz LNA-filter after the co-design. The measured S21, NF and BW3 dB are 18.6 dB, 1.98 dB and 0.22 GHz at 1.57 GHz, and 15.2 dB, 1.95 dB and 0.3 GHz at 2.31 GHz, respectively. The results indicate that the co-design and cascade versions have same performance, but the co-design version cuts down the number of the passive components by nearly half.

  2. Systematical analysis for the mixed couplings of two adjacent modified split ring resonators and the application to compact microstrip bandpass filters

    Directory of Open Access Journals (Sweden)

    Yongjun Huang

    2014-10-01

    Full Text Available In this paper we synthesize a new kind of modified split ring resonator (SRR and characterize its mixed couplings between two adjacent such SRRs with all the possible arrangements on one side of a conventional dielectric substrate. Based on the analysis of the mixed couplings, the compact microstrip bandpass filters composed of the proposed modified SRRs are systematically analyzed. We found that two designs out of all the cases have quite well bandpass filter characteristics, e.g., low insert loss within the wide passband, sharp reductions and transmission zeros out of the passband, and harmonic suppression characteristics for a wide frequency range. Both experimental demonstrations and numerical simulations are performed to verify the designed filters and the results agree well with each other. Such kind of filter design can be flexibly integrated in the miniaturized radio frequency/microwave circuits.

  3. RF MEMS Based Tunable Bandpass Filter For X-Band Applications

    Science.gov (United States)

    Chaubey, Mahesh Kumar; Bhadauria, Avanish

    2018-03-01

    In this paper, we present the design and simulation of RF MEMS based Tunable combline band pass filters for X-band applications at different substrate thicknesses and studied the effect of thickness on tuning. The proposed filters are designed on high resistive silicon substrate of 500µm and 300 thicknesses. The tunability is achieved by using MEMS based varacter replaced with fix capacitor in conventional combline filter. First, the microstrip combline filter is designed at the centre frequency of 9.5 GHz and then tuning is achieved by varying the capacitance in the designed combline filters. The electromagnetic simulation has been carried out using HFSS v15 software based on finite element method (FEM). The tuning of the filter on silicon substrate of 500 μm is achieved by changing the capacitance value from 0.2035 pF to 0.4035 pF in the model in HFSS, which resulted the tuning in the frequency range of 7.85 to 10.35GHz. Insertion loss of design filter is in the range of 1dB within the tuning range. In case of substrate thickness 300 μm the tuning of the filter is achieved by changing the capacitance value from 0.293 pF to 0.403 pF in the model in HFSS, which resulted the tuning in the frequency range of 8.80 to 9.90 GHz. Insertion loss of design filter is in the range of ∼1.2dB within the tuning range.

  4. Dual-Mode Dual-Band Microstrip Bandpass Filter Based on Fourth Iteration T-Square Fractal and Shorting Pin

    Directory of Open Access Journals (Sweden)

    E. S. Ahmed

    2012-06-01

    Full Text Available A new class of dual mode microstrip fractal resonator is proposed and developed for miniaturization of the dual band bandpass filter. The perimeter of the proposed resonator is increased by employing fourth iteration T-square fractal shape. Consequently the lower resonant frequency of the filter is decreased without increasing the usable space. The self similarity of the usable structure enables it to produce the two degenerate modes which are coupled using the proper perturbation technique. The shorting pin is placed at the null in the surface current distribution at the center of the resonator. This shorting pin is coactively coupled to the resonant circuit of the resonator, effectively coupled to the lower degenerate mode and reduces the lower edge band resonant frequency. By adjusting the resonator dimensions and the size of the shorting pin, the resonant frequency and the out-of-band rejection around the transmission bands can be controlled to meet the design requirements. The simulated response of the designed filter has two transmission bands, the first band is from 2.34-3.65 GHz with resonant frequencies at 2.47GHz and 3.55GHz, the second band is from 4.37-5.324GHz with resonant frequencies at 4.5GHz and 5.13GHz. In the pass bands, the group delay is less than 0.65 ns. The proposed filter can be applied to WLAN (2.4 GHz and 5.2 GHz and WiMAX (3.5 GHz and Bluetooth and ZigBee (4.9 GHz.

  5. A reconfigurable complex band-pass filter with improved passive compensation

    International Nuclear Information System (INIS)

    Fan Chaojie; Mo Tingting; Chen Dongpo; Zhou Jianjun

    2012-01-01

    This paper presents a 5th-order Chebyshev-I active RC complex filter for multi-mode multi-band global navigation satellite systems (GNSS) RF receivers. An improved passive compensation technique is used to cancel the excess phase lag of the integrators, thus ensuring the in-band flatness of the frequency response over various ambient conditions. The filter has a programmable gain from 0 to 42 dB with a 6 dB step, a tunable center frequency at either 6.4 MHz or 16 MHz, and a bandwidth from 2 to 20 MHz with less than 3% frequency uncertainty. Implemented in a 0.18 μm CMOS process, the whole filter consumes 7.8 mA from a 1.8 V supply voltage and occupies a die area of 0.4 mm 2 . (semiconductor integrated circuits)

  6. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    International Nuclear Information System (INIS)

    Yan, Hai; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed

  7. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  8. A 3-D miniaturized high selectivity bandpass filter in LTCC technology

    KAUST Repository

    Arabi, Eyad A.

    2014-01-01

    Transmission zeros are used to improve the roll-off factors of filters but as a consequence, the out-of-band rejection decreases. In this work, an LTCC filter design is presented which employs a series inductor (implemented as a via hole) to improve the out-of-band rejection by introducing a third transmission zero. The filter, designed for GPS band (1.57 GHz), has one of the smallest reported foot prints ((0.063×0.048×0.005)λg) and demonstrates the highest roll off factor (16.7 dB/100 MHz) for this band. With only four LTCC layers, the design is cost effective and thus highly suitable for miniaturized, ultra-thin system-on-package applications. © 2001-2012 IEEE.

  9. Widely Tunable 4th Order Switched Gm -C Band-Pass Filter Based on N-Path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Klumperink, Eric A.M.; Nauta, Bram

    2012-01-01

    Abstract—A widely tunable 4th order BPF based on the subtraction of two 2nd order 4-path passive-mixer filters with slightly different center frequencies is proposed. The center frequency of each 4-path filter is slightly shifted relative to its clock frequency (one upward and the other one

  10. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    Science.gov (United States)

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  11. A Study on Millimetre-Wave Tunable Bandpass Filter Based on Polymer Cap Deflection

    Directory of Open Access Journals (Sweden)

    Paul-Alain Rolland

    2012-01-01

    Full Text Available This paper presents a new tuning mechanism for millimetre-wave BPF based on deflection of the BCB membrane of BCB packaging cap. A 3-pole parallel-coupled microstrip filter operating at 60 GHz is first implemented on 30 µm-thick BCB polymer substrate and then BCB-capped through our new anti-adhesion layer assisted wafer-level transfer technique. Gold electrodes are fabricated on top of the BCB cap for DC actuation. The implemented BCB capped BPF showed the tuning range of 1.49 GHz from 63.36 GHz to 64.85 GHz with the associated insertion losses of −9.7 dB and −9.4 dB and the return losses better than −11 dB over the tuning range.

  12. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    Science.gov (United States)

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  13. Design and fabrication of UV band-pass filters based on SiO{sub 2}/Si{sub 3}N{sub 4} dielectric distributed bragg reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiangping; Gao, Wang; Liu, Bin, E-mail: bliu@nju.edu.cn; Cao, Xianlei; Tao, Tao; Xie, Zili; Zhao, Hong; Chen, Dunjun; Ping, Han; Zhang, Rong

    2016-02-28

    Graphical abstract: - Highlights: • Tandem dielectric distributed Bragg reflectors were fabricated as UV band-pass filters. • Varied center wavelengths and passband widths of filters were achieved successfully. • Transition layer between sub-layers can be proved by XPS analysis clearly. • The optical performance degradation was discussed by FDTD simulation in detail. - Abstract: We have designed one kind of optical filters based on double stacks of 13.5-pairs SiO{sub 2}/Si{sub 3}N{sub 4} dielectric distributed Bragg reflector (DDBR) structures, to realize the passband with different central wavelengths in ultraviolet (UV) range. These SiO{sub 2}/Si{sub 3}N{sub 4} multi-layers have been successfully fabricated on (0001) sapphire substrates by plasma-enhanced chemical vapor deposition (PECVD). The reflectance spectra measured by the UV–visible spectrometer manifest that a series of band-pass filters with fixed passband width of ∼30 nm and central passband varied from 310 nm to 370 nm have been obtained successfully. Besides, the other series of filters with passband width varied from 30 nm to 45 nm can be achieved. With good control of PECVD deposition parameters, all samples exhibit smooth surface with root mean square roughness less than 4.5 nm. Moreover, cross-section scanning electron microscope (SEM) images show these DDBR structures have good periodicity in accordance with the design, indicating that these band-pass filter structures are suitable for wavelength-window-selection UV photodetectors.

  14. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  15. A Novel Triple-Mode Bandpass Filter Based on a Dual-Mode Defected Ground Structure Resonator and a Microstrip Resonator

    Directory of Open Access Journals (Sweden)

    Xuehui Guan

    2013-01-01

    Full Text Available A novel triple-mode bandpass filter (BPF using a dual-mode defected ground structure (DGS resonator and a microstrip resonator is proposed in this paper. The dual-mode characteristic is achieved by loading a defected T-shaped stub to a uniform impedance DGS resonator. A uniform impedance microstrip resonator is designed on the top layer of the DGS resonator and a compact bandpass filter with three resonant modes in the passband can be achieved. A coupling scheme for the structure is given and the coupling matrix is synthesized. Based on the structure, a triple-mode BPF with central frequency of 2.57 GHz and equal ripple bandwidth of 15% is designed for the Wireless Local Area Network. Three transmission zeros are achieved at 1.48 GHz, 2.17 GHz, and 4.18 GHz, respectively, which improve the stopband characteristics of the filter. The proposed filter is fabricated and measured. Good agreements between measured results and simulated results verify the proposed structure well.

  16. A Dual-Band Band-Pass Filter with Overlap Step-Impedance and Capacitively Loaded Hairpin Resonators for Wireless LAN Systems

    Directory of Open Access Journals (Sweden)

    P. Chomtong

    2011-01-01

    Full Text Available This paper presents a dual-band band-pass filter using modified cross-coupled step-impedance and capacitively loaded hairpin resonators for WLAN systems. The proposed filter has been designed to operate at a fundamental frequency of 2.4 GHz and the first harmonics frequency of 5.2 GHz. The techniques of step impedance and load capacitor are combined in the design of the proposed filter. In particular, the techniques of modified cross-coupling and overlap resonators are applied to improve the response of insertion losses 21 at the first harmonic frequency of 5.2 GHz. The simulated and experimental results of insertion losses and return losses are better than 3 dB and 20 dB, respectively, at the operating frequencies.

  17. Design and Simulation of a Novel UWB Bandpass Filter with Compact Size, Wide Upper Stopband and Four Mode-Resonances in Passband

    Directory of Open Access Journals (Sweden)

    Mahsa Gholipoor

    2015-08-01

    Full Text Available In this paper, a novel microstrip-line Ultra Wide Band (UWB band-pass filter using two symmetric Multi – Mode Resonators (MMR loaded with step impedance stub, is designed, analyzed and simulated. The proposed MMR, comprised of triple – mode step impedance resontor, to reduce dimension of filter is folded, and one step impedance stub is located on center of two MMRs. With adding the step impedance stub and appropriate adjusting of it's parameters, one can stablish another mode resonace in the desirable passband, i.e, 3.1 GHz – 10.6 GHz. So, optained good performance of filter, such as: coupling increased well, passbanad became flat as much as possible and stopband became very vast. Finally, using of defected ground structure, increased the coupling between MMRs and feeding lines. The proposed filter to compare with conventional UWB filters has a compact size (is about 16mm×6.7mm, wide upper stopband(up to 20GHz, good performance in passband and high selectivity.

  18. Fully Distributed Tunable Bandpass Filter Based on Ba0.5Sr0.5TiO3 Thin-Film Slow-Wave Structure

    Directory of Open Access Journals (Sweden)

    Sébastien L. Delprat

    2011-01-01

    Full Text Available This paper presents simulation and measurement results of fully distributed tunable coplanar bandpass filters (BPFs with center frequencies around 6 GHz that make use of ferroelectric Barium Strontium Titanate (BaxSr1−xTiO3 or BST-x thin film as tunable material. The two experimental bandpass filters tested are based on a novel frequency-agile structure composed of cascaded half wavelength slow-wave resonators (2 poles and three coupled interdigital capacitors (IDCs optimized for bias voltage application. Devices with gap dimensions of 10 and 3 μm are designed and fabricated with a two-step process on polycrystalline Ba0.5Sr0.5TiO3 thin films deposited on alumina substrate. A frequency tunability of 9% is obtained for the 10 μm gap structure at ±30 V with 7 dB insertion loss (the BST dielectric tunability being 26% with 0.04 loss tangent for this gap size. When the structure gap is reduced to 3 μm the center frequency shifts with a constant 9 dB insertion loss from 6.95 GHz at 0 V to 9.05 GHz at ±30 V, thus yielding a filter tunability of 30% (the BST dielectric tunability being 60% with 0.04 loss tangent for this gap size, a performance comparable to some extent to localized or lumped element BPFs operating at microwave frequency (>2 GHz.

  19. Design and Simulation of a Novel UWB Bandpass Filter with Sharp Roll-Off, Compact Size and Wide Upper Stopband based on a Multiple-Mode Resonator

    Directory of Open Access Journals (Sweden)

    Seyyed Jamal Borhani

    2014-01-01

    Full Text Available In this paper, a novel microstrip-line ultra-wideband (UWB bandpass filter (BPF based on multiple-mode resonator (MMR is designed, analyzed and simulated. The structure of the proposed MMR constructed by a modified triple-mode stepped-impedance resonator (MSIR loaded with a folded step-impedance stub (FSIS. This stub-loaded resonator could generate two more resonate modes and two transmission zeros (TZs simultaneously. Proposed MMR’s dimensions properly tuned so that first five resonate modes of the proposed MMR roughly allocated in the desirable bandpass, i.e. 3.1-10.6GHz, as well as two TZs at the edge of the passband, leading to sharp roll-off. Finally, with using aperture-backed interdigital-coupled lines for feeding, an UWB BPF with compact size, high selectivity, good performance in-band, and wide stopbands is obtained. Simulation results are in excellent agreement with UWB BPF ideal case.

  20. Influence of image filtering on fully automatic measurement of left ventricular ejection fraction; Influence du filtrage des images sur la mesure automatique de la fraction d'ejection ventriculaire gauche

    Energy Technology Data Exchange (ETDEWEB)

    Merabet, Y.; Bouyoucef, S.E. [Institut National d' Enseignement Superieur des Sciences Medicales (INESSM), Constantine (Algeria); Bontemps, L.; Felecan, R.; Itti, R. [Hopital Louis-Pradel, 69 - Lyon (France). Centre de Medecine Nucleaire, Hopital Cardiovasculaire et Pneumologique; Kenzai, C. [Universite de Constantine (Algeria)

    1999-08-01

    Pre-filtering of gated blood pool studies, before fully automatic measurement of left ventricular ejection fraction, should be able to improve the results in terms of success and accuracy, compared to unfiltered series of pictures. We have evaluated 12 filters referring to four different principles (Metz, Wiener, Butterworth and band-pass) and correlated the results with those obtained without filtering, as well as with a reference achieved by an experienced observer, using a manual technique of regions of interest drawing. Most filters (10 out of 12) provided 100 % success and correlations with coefficients higher than 0.9, and finally we propose to use in clinical practice the Butterworth filter, with 0.2 cycles per pixel cut-off frequency and 10. order, mainly due to its independence of the characteristics of the imaging system (no involvement of the modulation transfer function) rather than to its excellent results, although not significantly different from others. (author)

  1. GPR signal enhancement using band-pass and K–L filtering: a case study for the evaluation of grout in a shielded tunnel

    International Nuclear Information System (INIS)

    Xie, Xiongyao; Zeng, Chenchao; Wang, Zhigao

    2013-01-01

    The rapidness, non-destructiveness and high precision of ground penetrating radar (GPR) technology has enabled it to be widely and increasingly used in tunnel detection. However, data acquisition was usually restricted by physical and many other limitations. In order to improve the signal-to-noise ratio, band-pass and Karhunen–Loève (K–L) filtering are recommended. An evaluation of Yingbin No. 3 Road Tunnel is presented to illustrate the effectiveness of GPR in the inspection of the thickness of the grouting layer behind the segment and the function of the two methods mentioned above. The advantages and limitations of these two processing methods are discussed in this paper and suggestions are provided. (paper)

  2. Savitzky-Golay coupled with digital bandpass filtering as a pre-processing technique in the quantitative analysis of glucose from near infrared spectra.

    Science.gov (United States)

    Patchava, Krishna Chaitanya; Alrezj, Osamah; Benaissa, Mohammed; Behairy, Hatim

    2016-08-01

    This paper proposes a novel pre-processing method based on combining bandpass with Savitzky-Golay filtering to further improve the prediction performance of the linear calibration models Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) in near infrared spectroscopy. The proposed method is compared to the highly efficient RReliefF pre-processing technique for further evaluation. The developed calibration models have been validated to predict the glucose concentration from near infrared spectra of a mixture of glucose and human serum albumin in a phosphate buffer solution. The results show that the proposed technique improves the prediction performance of both the PCR and PLSR models and achieve better results than the RReliefF technique.

  3. A High-Power Low-Loss Continuously Tunable Bandpass Filter With Transversely Biased Ferrite-Loaded Coaxial Resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    This paper presents a technology for high-power lowlosscontinuously tunable RF filters demonstrated by the exampleof a two-pole coupled-resonator filter. The resonators are shortenedcoaxial cavities loaded with ferrite inserts, where an externallyapplied transverse dc magnetic bias controls...

  4. Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    Tunable filters that are based on ferrite materials often require large and bulky electromagnets. In this work, we present a tunable filter in the Ku-band, which is realized in multilayer ferrite LTCC substrate with embedded bias windings, thus negating the need of a large electromagnet. Also, because of the embedded windings, the bias fields are not lost at the air-substrate interface and therefore the field and current requirements are reduced by an order of magnitude as compared to the previously reported filters. A simulation strategy that uses full permeability tensor with arbitrarily directed magnetic fields has been used to model the filter on a partially magnetized ferrite substrate. Special attention has also been paid to approximate the non-uniform magneto-static fields produced by the embedded windings. The complete design is implemented in 10 layers of ferrite LTCC, making it the first magnetically tunable filter with embedded windings and extremely small size [(5 × 5 × 1.1)mm3]. The filter demonstrates a measured tunability of 4% and an insertion loss of 2.3 dB. With the small form factor, embedded windings, and low bias requirements, the design is highly suitable for compact and tunable SoP applications.

  5. Penguat Audio Kelas D dengan Umpan Balik Tipe Butterworth

    Directory of Open Access Journals (Sweden)

    Gunawan Dewantoro

    2016-03-01

    Full Text Available A class D amplifier would, in ideal sense, amplify signals without any noises and distortions which yield 100% efficiency and 0% Total Harmonic Distortion (THD. However, class D amplifiers have some drawbacks that lead to nonlinearity and increasing THD. Therefore, a feedback mechanism was employed to enhance THD performance of amplifier. Some feedback techniques have been using first order filter in the feedback path to retrieve audio signals. This research proposed a second order filter with Butterworth approach. A power amplifier was realized using full-bridge amplifier with MOSFETs to provide greater power. This class D amplifier was designed to meet following specifications: maximum output power up to 32.6 W with an 8 Ω load, sensitivity of 90 mV/W, frequency response ranging from 20 Hz – 20 kHz with tolerance ± 1 dB, THD as low as 1.1 %, SNR up to 90.16 dB, and efficiency of 82.1 %.

  6. Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter.

    Science.gov (United States)

    Gao, Xin; Che, Wenquan; Feng, Wenjie

    2018-02-06

    In this paper, one kind of novel non-periodic spoof surface plasmon polaritons (SSPPs) with H-shaped cells is proposed. As we all know, the cutoff frequency exists inherently for the conventional comb-shaped SSPPs, which is a kind of periodic groove shape structures and fed by a conventional coplanar waveguide (CPW). In this work, instead of increasing the depth of all the grooves, two H-shaped cells are introduced to effectively reduce the cutoff frequency of the conventional comb-shaped SSPPs (about 12 GHz) for compact design. More importantly, the guide waves can be gradually transformed to SSPP waves with high efficiency, and better impedance matching from 50 Ω to the novel SSPP strip is achieved. Based on the proposed non-periodic SSPPs with H-shaped cells, a wideband bandpass filter (the 3-dB fractional bandwidths 68%) is realized by integrating the spiral-shaped defected ground structure (DGS) etched on CPW. Specifically, the filter shows high passband selectivity (Δf 3 dB /Δf 20 dB  = 0.91) and wide upper stopband with -20 dB rejection. A prototype is fabricated for demonstration. Good agreements can be observed between the measured and simulated results, indicating potential applications in the integrated plasmonic devices and circuits at microwave and even THz frequencies.

  7. Broadband tunable bandpass filters using phase shifted vertical side wall grating in a submicrometer silicon-on-insulator waveguide.

    Science.gov (United States)

    Prabhathan, P; Murukeshan, V M; Jing, Zhang; Ramana, Pamidighantam V

    2009-10-10

    We propose the silicon-on-insulator (SOI) based, phase shifted vertical side wall grating as a resonant transmission filter suitable for dense wavelength division multiplexing (DWDM) communication channels with 100 GHz channel spacing. The gratings are designed and numerically simulated to obtain a minimum loss in the resonant cavity by adjusting the grating parameters so that a high transmittivity can be achieved for the resonant transmission. The resonant grating, which is designed to operate in the DWDM International Telecommunication Union (ITU) grid C band of optical communication, has a high free spectral range of 51.7 nm and a narrow band resonant transmission. The wavelength selectivity of the filter is improved through a coupled cavity configuration by applying two phase shifts to the gratings. The observed channel band width and channel isolation of the resonant transmission filter are good and in agreement with the ITU specifications.

  8. Relative contributions of passband and filter skirts to the intelligibility of bandpass speech: Some effects of context and amplitude.

    Science.gov (United States)

    Bashford, James A; Warren, Richard M; Lenz, Peter W

    2000-10-01

    Warren et al. (1995) reported over 90% intelligibility for everyday sentences reduced to a 1/3-octave band (center frequency 1,500 Hz, slopes 100 dB/octave, slow-rms peak levels 75 dB). To investigate the basis of this high intelligibility, Warren and Bashford (1999) partitioned the sentences. Surprisingly, the rectangular 1/3-octave passband had only 24% intelligibility, whereas the filter skirts separated by a 1/3-octave notch had an intelligibility of 83%, despite their severe spectral tilts. Experiment 1 of the present study substituted monosyllabic words for sentences. Wholeband intelligibility was 26%, the passband 4%, and the filter skirts 16%. Experiment 2 measured intelligibility for 1/3-octave sentences having peak levels ranging from 85 down to 35 dB. Whole band intelligibility ranged from 90% to 68%, and the filter skirt pairs had from two to four times the passband's intelligibility (which did not vary significantly with level). Hence, steep (100 dB/octave) filter skirts make the dominant contribution to intelligibility of nominally 1/3-octave speech across a wide range of presentation levels.

  9. Time Series of SO2 Flux from Popocatépetl Volcano by an Ultra-Violet Camera with a Set of Different Band-Pass Filters

    Science.gov (United States)

    Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Rivera, C. I.; Inguaggiato, S.

    2017-12-01

    The measurement of SO2flux from active volcanoes are of great importance, for monitoring and hazard of volcanic activity, environmental impact and flux emissions related to changes of magmatic activity. Sulfur dioxide total flux from Popocatépetl volcano was determinad using a ultra-violet camera (or SO2 camera) with different band-pass filter. The flux is obteined from the product of the gas concentration over integrated the plume cross-section (slant column in molec/cm2 or ppm*m) and wind velocity data. Model of plume altitude and wind speed measurement are used to calculate a wind velocity, but a new method of sequential images is widely used in several years for this calculation. Volcanic plume measurements, for a total of about 60 days from from January to March 2017, were collected and utilized to generate the SO2 time series. The importance of monitoring and the time series of volcanic gas emissions is described and proven by many scientific studies. A time series of the Popocatépetl volcano will allow us to detect the volcanic gas as well as anomalies in volcanic processes and help to estimate the average SO2 flux of the volcano. We present a detailed description of the posterior correction of the dilution effect, which occurs due to a simplification of the radiative transfer equation. The correction scheme is especial applicable for long term monitoring from a permanent observation site. Images of volcanic SO2 plumes from the active Popocatépetl volcano in Mexico are presented, showing persistent passive degassing. The measurment are taken from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 m.a.s.l.), which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks. It is located north of the crater at 11 km distance. The data to calculate SO2 flux (t/d or kg/s) were recorded with the QSI UV camera and processed using Python scripts.

  10. Bandpass x-ray diodes and x-ray multiplier tubes

    International Nuclear Information System (INIS)

    Wang, C.L.

    1982-01-01

    We present a simple method of obtaining bandpass x-ray detectors. The lower and upper bounds of the bandpass are determined by the absorption edges of the photocathode and of the filter, respectively. Examples are given for windowless and vacuum bandpass x-ray diodes. Extension of the method to electron multiplier tubes is also presented

  11. Design and Simulation of Microstrip Hairpin Bandpass Filter with Open Stub and Defected Ground Structure (DGS) at X-Band Frequency

    Science.gov (United States)

    Hariyadi, T.; Mulyasari, S.; Mukhidin

    2018-02-01

    In this paper we have designed and simulated a Band Pass Filter (BPF) at X-band frequency. This filter is designed for X-band weather radar application with 9500 MHz center frequency and bandwidth -3 dB is 120 MHz. The filter design was performed using a hairpin microstrip combined with an open stub and defected ground structure (DGS). The substrate used is Rogers RT5880 with a dielectric constant of 2.2 and a thickness of 1.575 mm. Based on the simulation results, it is found that the filter works on frequency 9,44 - 9,56 GHz with insertion loss value at pass band is -1,57 dB.

  12. A Q-Enhanced 3.6 GHz, Tunable, Sixth-Order Bandpass Filter Using 0.18 μm CMOS

    Directory of Open Access Journals (Sweden)

    Anh Dinh

    2007-01-01

      MHz. The filter achieves an 18 dB voltage gain while consuming 130 mW of power at 1.8 V DC supply. The chip occupies an area of 900×900μm2 including all the required bonding pads. The design provides a simple architecture to simplify tuning scheme for both frequency and bandwidth for practical use. The tunable ability of the design could be exploited in further study to be used as a channel-select filter in the gigahertz range.

  13. Measurements of SO2 Degassing from Popocatépetl Volcano by an Ultraviolet Camera and a Set of Different Bandpass Filters.

    Science.gov (United States)

    Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Rivera, C. I.; Inguaggiato, S.

    2016-12-01

    The importance of monitoring and the time series of volcanic gas emissions is described and proven by many scientific studies. A time series of the Popocatépetl volcano will allow us to detect the volcanic gas as well as anomalies in volcanic processes and help to estimate the total emission flux of SO2 to improve our understanding of the atmospheric composition and balance. Monitoring of the activity of the Popocatépetl volcano is even more important because of the population in the closest proximity around the volcano and due its location of only 50 km south east of Mexico City and its airport. The images captured with the camera require a correction for different optical and environmental effects. In the contribution we present an SO2 camera system based on a Quantum Scientific Imaging (QSI) UV camara with automatic filterwheel, and describe how the main instrumental properties of the optical system can be characterized. Dark current, vignetting and filter characterization represent the instrumental part of a proper image correction, which is fairly constant and independent of the ambient conditions. However, other effects like "flattening" and the simplification of the radiative transfer dependence on environmental conditions need to be corrected as well to reduce the errors in the results. Images of volcanic SO2 plumes from the active Popocatépetl volcano in Mexico are presented, showing persistent passive degassing. The measurment are taken from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 m.a.s.l.), which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks. It is located north of the crater at 11 km distance. The data to calculate SO2 slant column densities (molec/cm2 or ppm*m) were recorded with the QSI UV camera and processed using Python scripts.

  14. Filter Design and Performance Evaluation for Fingerprint Image Segmentation.

    Directory of Open Access Journals (Sweden)

    Duy Hoang Thai

    Full Text Available Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: 'true' foreground can be labeled as background and features like minutiae can be lost, or conversely 'true' background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.

  15. Filter Design and Performance Evaluation for Fingerprint Image Segmentation.

    Science.gov (United States)

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: 'true' foreground can be labeled as background and features like minutiae can be lost, or conversely 'true' background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.

  16. Low-Noise Band-Pass Amplifier

    Science.gov (United States)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  17. Charge domain filter operating up to 20 MHz clock frequency

    NARCIS (Netherlands)

    Gal, R.A.J.; Wallinga, Hans

    1983-01-01

    An analog sampled data low pass third order Butterworth filter has been realised in a buried channel CCD technology. This Charge Domain Filter, composed of transversal and recursive CCD filter sections, has been tested at clock frequencies up to 20 MHz.

  18. Mathematic filters and digital processing in nuclear medicine

    International Nuclear Information System (INIS)

    Dimentein, R.

    1992-01-01

    The mathematic filters used in nuclear medicine were evaluated. Tomographic processing of a Jaszczak phantom, using separately Hanning, Butterworth and Wiener filters were presented. For each type of filter were made simulation, where the cut frequency and extenuation grade values were changed. (C.G.C.)

  19. Clinical assessment of the effect of digital filtering on the detection of ventricular late potentials

    Directory of Open Access Journals (Sweden)

    P.R. Benchimol-Barbosa

    2002-11-01

    Full Text Available Ventricular late potentials are low-amplitude signals originating from damaged myocardium and detected on the body surface by ECG filtering and averaging. Digital filters present in commercial equipment may interfere with the ability of arrhythmia stratification. We compared 40-Hz BiSpec (BI and classical 40- to 250-Hz band-pass Butterworth bidirectional (BD filters in terms of impact on time domain variables and diagnostic properties. In a transverse retrospective age-adjusted case-control study, 221 subjects with sinus rhythm without bundle branch block were divided into three groups after signal-averaged ECG acquisition: GI (N = 40, clinically normal controls, GII (N = 158, subjects with coronary heart disease without sustained monomorphic ventricular tachycardia (SMVT, and GIII (N = 23, subjects with heart disease and documented SMVT. Conventional variables analyzed from vector magnitude data after averaging to 0.3 µV final noise were obtained by application of each filter to the averaged signal, and evaluated in pairs by numerical comparison and by diagnostic agreement assessment, using conventional and optimized thresholds of normality. Significant differences were found between BI and BD variables in all groups, with diagnostic results showing significant disagreement between both filters [kappa value of 0.61 (P<0.05 for GII and 0.31 for GIII (P = NS]. Sensitivity for SMVT was lower with BI than with BD (65.2 vs 91.3%, respectively, P<0.05. Filters provided significantly different numerical and diagnostic results and the BI filter showed only limited clinical application to risk stratification of ventricular arrhythmia.

  20. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  1. Noise Reduction of Measurement Data using Linear Digital Filters

    Directory of Open Access Journals (Sweden)

    Hitzmann B.

    2007-12-01

    Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.

  2. Pragmatic circuits signals and filters

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  3. Optimizing bandpasses to separate planetary bodies

    Science.gov (United States)

    Teal, Dillon J.; Yarber, Aara'L.; Kopparapu, Ravi; Arney, Giada; Roberge, Aki

    2018-01-01

    Future telescopes will be able to directly image exoplants, opening up a new era in comparative planteology. However, background point sources, including stars, brown dwarfs, and distant unresolved galaxies may be confused with planetary sources. Observing time is previous, and methods are needed to efficiently and effectively distinguish between exoplanets and background objects. We present an optimized strategy using multi-color point source photometry to distinguish planets from the background objects with the greatest potential for spectral confusion. By determining which photometric bandpasses most effectively separate planets from background sources, this strategy would enable optimization of future telescope designs. Such an approach is key to quickly characterizing a planet while minimizing observation time. To find this optimized strategy, we used comparative spectroscopy alongside linear regression and Markov Chain Monte-Carlo (MCMC) retrieval to identify the optimal bandpasses for the LUVOIR (Large UV-Optical-Infrared Telescope) mission study coronagraph. We consider bandpasses that maximize the color-color separation of background objects from planets; we also investigate the effectiveness of color photometry to distinguish between different classes of planets using Solar System and observed spectra. This optimization strategy would also be useful to other direct imaging missions, such as HabEx, and could in principle be applied to transit spectroscopy missions, such as JWST, ARIEL, and OST.

  4. A class of orthogonal nonrecursive binomial filters.

    Science.gov (United States)

    Haddad, R. A.

    1971-01-01

    The time- and frequency-domain properties of the orthogonal binomial sequences are presented. It is shown that these sequences, or digital filters based on them, can be generated using adders and delay elements only. The frequency-domain behavior of these nonrecursive binomial filters suggests a number of applications as low-pass Gaussian filters or as inexpensive bandpass filters.

  5. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    International Nuclear Information System (INIS)

    Thiede, Christian; Schmidt, Anke B.; Donath, Markus

    2015-01-01

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters

  6. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  7. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  8. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  9. Reliability of Three-Dimensional Linear Kinematics and Kinetics of Swimming Derived from Digitized Video at 25 and 50 Hz with 10 and 5 Frame Extensions to the 4th Order Butterworth Smoothing Window

    Science.gov (United States)

    Sanders, Ross H.; Gonjo, Tomohiro; McCabe, Carla B.

    2015-01-01

    The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4th order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key points An inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches. The ability to link the force profiles to swimming actions and technique is enhanced by having

  10. Reliability of Three-Dimensional Linear Kinematics and Kinetics of Swimming Derived from Digitized Video at 25 and 50 Hz with 10 and 5 Frame Extensions to the 4(th) Order Butterworth Smoothing Window.

    Science.gov (United States)

    Sanders, Ross H; Gonjo, Tomohiro; McCabe, Carla B

    2015-06-01

    The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4(th) order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key pointsAn inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches.The ability to link the force profiles to swimming actions and technique is enhanced by having

  11. Design and application of finite impulse response digital filters.

    Science.gov (United States)

    Miller, T R; Sampathkumaran, K S

    1982-01-01

    The finite impulse response (FIR) digital filter is a spatial domain filter with a frequency domain representation. The theory of the FIR filter is presented and techniques are described for designing FIR filters with known frequency response characteristics. Rational design principles are emphasized based on characterization of the imaging system using the modulation transfer function and physical properties of the imaged objects. Bandpass, Wiener, and low-pass filters were designed and applied to 201Tl myocardial images. The bandpass filter eliminates low-frequency image components that represent background activity and high-frequency components due to noise. The Wiener, or minimum mean square error filter 'sharpens' the image while also reducing noise. The Wiener filter illustrates the power of the FIR technique to design filters with any desired frequency response. The low-pass filter, while of relative limited use, is presented to compare it with a popular elementary 'smoothing' filter.

  12. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    OpenAIRE

    Yesil, A.; Kacar, F.

    2013-01-01

    This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pa...

  13. Design of Active N-path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Nauta, Bram

    2013-01-01

    A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat‿ passband shape and

  14. Study of nonlinear phenomena in a multi-bit bandpass sigma delta modulator

    Energy Technology Data Exchange (ETDEWEB)

    Iu, H.H.C. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley (Australia)]. E-mail: herbert@ee.uwa.edu.au

    2006-11-15

    Bandpass sigma delta modulators (SDMs) have applications in areas such as digital radio demodulation. It is well known that bandpass SDMs with single bit quantizers can exhibit nonlinear and complex state space dynamics like elliptical fractal patterns. These fractal patterns are usually confined in trapezoidal regions. In this paper, we consider bandpass SDMs with multi-bit quantizers. Their nonlinear dynamics is studied.

  15. Stability of sinusoidal responses of marginally stable bandpass sigma delta modulators

    OpenAIRE

    Ho, Charlotte Yuk-Fan; Ling, Bingo Wing-Kuen; Reiss, Joshua

    2006-01-01

    In this paper, we analyze the stability of the sinusoidal responses of second order interpolative marginally stable bandpass sigma delta modulators (SDMs) with the sum of the numerator and denominator polynomials equal to one and explore new results on the more general second order interpolative marginally stable bandpass SDMs. These results can be further extended to the high order interpolative marginally stable bandpass SDMs.

  16. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  17. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  18. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Science.gov (United States)

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  19. Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials

    Directory of Open Access Journals (Sweden)

    N. Stojanovic

    2016-09-01

    Full Text Available A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth are shown to be a special cases of proposed approximation method.

  20. Modeling and Measurements of Novel Monolithic Filters

    Directory of Open Access Journals (Sweden)

    Adalbert Beyer

    2008-11-01

    Full Text Available This paper presents novel multilayer tuneable high Q-filters based on hairpin resonators including ferroelectric materials. This configuration allows the miniaturization of these filters to a size that makes them suitable for chip and package integration and narrow-band applications. The main focus was miniaturizing filters with coupled loops using multilayer dielectric substrates. A further goal was to increase the quality factor of these distributed filters by embedding high dielectric materials in a multilayer high- and low-k (dielectric constant substrate that is supported by LTCC technology. An improved W-shape bandpass filter was proposed with a wide stopband and approximately 5% bandwidth.

  1. Reliability of Three-Dimensional Linear Kinematics and Kinetics of Swimming Derived from Digitized Video at 25 and 50 Hz with 10 and 5 Frame Extensions to the 4th Order Butterworth Smoothing Window

    Directory of Open Access Journals (Sweden)

    Ross H. Sanders, Tomohiro Gonjo, Carla B. McCabe

    2015-06-01

    Full Text Available The purpose of this study was to explore the reliability of estimating three-dimensional (3D linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4th order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p < 0.01 and better for backstroke than front crawl (p < 0.01. However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01.

  2. Switched-RC radio frequency N-patch filters

    NARCIS (Netherlands)

    Ghaffari, A.

    2013-01-01

    In this thesis N-path switched-RC circuits are explored, aiming for RF prefiltering for wireless transceivers. Around the switching frequency, these circuits can be modeled as a resonator and inductor-less high-Q band-pass or band-stop filtering is possible. The filter concept fits well to SDR as

  3. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...

  4. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    WEI SU

    2017-08-16

    Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...

  5. Image quality, space-qualified UV interference filters

    Science.gov (United States)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  6. Frequency Domain Image Filtering Using CUDA

    Directory of Open Access Journals (Sweden)

    Muhammad Awais Rajput

    2014-10-01

    Full Text Available In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA?s CUDA (Compute Unified Device Architecture. In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA?s parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butterworth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output image quality on both the processing architectures

  7. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  8. Study of stability of a bandpass sigma delta modulator with sinusoidal input

    Energy Technology Data Exchange (ETDEWEB)

    Iu, Herbert H.C. [School of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Highway, Crawley (Australia)]. E-mail: herbert@ee.uwa.edu.au

    2007-07-15

    Bandpass sigma delta modulators (SDMs) have applications in areas such as digital radio demodulation. Stability issues of bandpass SDMs have been widely studied. Usually, zero or step inputs are considered. In this paper, we study the stability and non-linear phenomena of a bandpass SDM with sinusoidal input. In particular, the effects of the amplitude and frequency of the sinusoidal input signal will be investigated.

  9. All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Directory of Open Access Journals (Sweden)

    N. Stojanovic

    2014-09-01

    Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.

  10. Continuously tunable microwave photonic filter with multiwavelength optical source

    Science.gov (United States)

    Li, Huijuan; Tong, Zhengrong; Zhang, Weihua; Xu, Dong

    2018-01-01

    A continuously tunable microwave photonic filter (MPF) with a multiwavelength optical source is proposed and demonstrated. The proposed MPF is based on a broadband optical source (BOS) and a waveshaper, which serves as a programmable slicing optical filter. By programming the waveshaper, a 50-channel stable and flat optical source is realized experimentally. The amplitude and phase of the optical carriers and phase modulation sidebands are then controlled via a Fourier-domain optical processor (FD-OP); phase modulation is changed to single sideband modulation. This filter could also be switched from bandpass to notch filter by controlling FD-OP. As simulation results, the center frequency of the bandpass filter is tuned continuously from 0 to 37.244 GHz in the entire free spectral range (FSR) and this notch filter based on 50 taps has the ability of realizing a narrow-notch, flat-passband, and large FSR response.

  11. Compact Unequal Power Divider with Filtering Response

    Directory of Open Access Journals (Sweden)

    Wei-Qiang Pan

    2015-01-01

    Full Text Available We present a novel unequal power divider with bandpass responses. The proposed power divider consists of five resonators and a resistor. The power division ratio is controlled by altering the coupling strength among the resonators. The output ports have the characteristic impedance of 50 Ω and impedance transformers in classical Wilkinson power dividers are not required in this design. Use of resonators enables the filtering function of the power divider. Two transmission zeros are generated near the passband edges, resulting in quasielliptic bandpass responses. For validation, a 2 : 1 filtering power divider is implemented. The fabricated circuit size is 0.22 λg × 0.08 λg, featuring compact size for unequal filtering power dividers, which is suitable for the feeding networks of antenna arrays.

  12. Dense grid sibling frames with linear phase filters

    Science.gov (United States)

    Abdelnour, Farras

    2013-09-01

    We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.

  13. Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, C.; /Fermilab

    2000-01-01

    It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown.

  14. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide

    International Nuclear Information System (INIS)

    Yun Binfeng; Hu Guohua; Cui Yiping

    2010-01-01

    A compact and nanometric surface plasmon polariton (SPP) band-pass filter based on a rectangular ring resonator composed of metal-insulator-metal waveguides is proposed. Using the finite difference time domain method, the effects of the structure parameters on the transmission characteristics of this SPP band-pass filter are analysed in detail. The results show that the proposed SPP filter has narrow transmission peaks and the corresponding resonance wavelengths can be linearly tuned by altering the resonator's cavity length. Moreover, the transmission ratios of the pass bands can be tuned by changing the coupling gaps between the input/output MIM waveguides and the resonator. Also the metal loss and dispersion effects on the filter responses are included. The simple band-pass SPP filter is very promising for high-density SPP waveguide integrations.

  15. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    Science.gov (United States)

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  16. CMOS Bit-Stream Band-Pass Beamforming

    Science.gov (United States)

    2016-03-31

    the anti-alias filter requirements, simplifying the RF front-end design . Second, 73 Distribution A: Approved for public release; distribution...IEEE Journal of Solid-State Circuits, Dec., 1996. 8. P. W. Wong, and R. M. Gray, “ FIR filters with sigma- delta modulation encoding,” IEEE Transactions on Acoustics, Speech and Signal Processing, Jun., 1990. 76 ...spatial filtering of interferers in receivers. However, high power consumption, large area, and routing complexity are bottlenecks to implementing an

  17. Dip filters; Filtros de echado recursivos

    Energy Technology Data Exchange (ETDEWEB)

    Cabrales Vargas, A.; Chavez Perez, S. [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-09-01

    In exploration seismology, dip filters are used to enhance subsoil images by attenuating coherent noise and other signals. They can be applied in frequency-wavenumber (f-k), frequency-distance (f-x), time-wavenumber (t-k) or time distance (t-k) domains. Fourier domain assumes constant dips. Recursive dip filters are applied in t-x domain, as they do not have this limitation. However, we have to determine their optimal parameters by trial and error. Recursive dip filters are based on single order Butterworth filters, by adding the wavenumber. Their amplitude spectrum is a surface. We perform a bilinear transform to digitize the filter and pass from the f-k to the t-k domain. We obtain the t-x domain filter by inverse transforming through wavenumber and by using a three-coefficient approximation (leading to a tridiagonal matrix). For the sake of illustration in geophysical engineering, we apply these filters to a shallow field record, to attenuate the air wave and random noise, and to a marine seismic section to enhance a fault zone. Both examples show that these filters are useful and practical to enhance seismic data. Their use is easier and more economical than median filters, utilized nowadays in commercial software for the oil industry. [Spanish] En sismologia de exploracion, los filtros de echado se utilizan para enfatizar imagenes del subsuelo, atenuado ruido coherente y otras senales. Pueden aplicarse en los dominios de frecuencia y numero de onda (f-k), frecuencia y distancia (f-x), tiempo y numero de onda (t-k) o tiempo y distancia (t-x). En el dominio de Fourier suponemos echados constantes. Los filtros de echado recursivos se aplican en el dominio t-x, careciendo de esta limitante. Sin embargo, tenemos que recurrir al ensayo y error para determinar sus parametros optimos. Los filtros de hecho recursivos se basan en filtros de Butterworth de orden uno, anadiendo el numero de onda. Su espectro de amplitud es una superficie. Utilizamos la trasformada

  18. Design, Fabrication, and Analysis of High-Performance UV Band-pass filters

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s strategic mission concept, ATLAST (Advanced Technology Large-Aperture Space Telescope), is a telescope merging ultraviolet (UV) astrophysics and visible...

  19. Fiber laser refractometer based on tunable bandpass filter tailored FBG reflection

    Science.gov (United States)

    Zhao, Junfa; Wang, Juan; Zhang, Cheng; Xu, Wei; Sun, Xiaodong; Bai, Hua; Chen, Liying

    2018-02-01

    A fiber laser refractometer based on single-mode-no-core-single-mode (SNS) structure cascaded with a FBG is proposed and experimentally demonstrated. The output wavelength of the fiber laser keeps constant because the oscillating wavelength is only determined by the central wavelength of the FBG which is insensitive to the surrounding refractive index (SRI). However, the output power is sensitive to the SRI because the intracavity loss of the fiber laser varies with the SRI. A cost-effective power detection refractometer with reflective operation can be realized through measuring the variation of the fiber laser's output power. The refractometer has a sensitivity of 195.52 dB/RIU and 365.52 dB/RIU in the RI range of 1.3330-1.3687 and 1.3687-1.4135, respectively. Moreover, the refractometer can also be used for temperature measurement through discriminating the output wavelength of the fiber laser.

  20. Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings.

    Science.gov (United States)

    Zhou, Shu Fan; Reekie, Laurence; Chan, Hau Ping; Luk, Kwai Man; Chow, Yuk Tak

    2013-02-01

    Transmission filters for the terahertz domain having a shaped bandpass have been modeled and demonstrated. The filter designs were based on the desired filter type and bandwidth, and implemented by cascading quarter wave phase shifted fiber Bragg gratings written in Topas polymer subwavelength fiber. As an example, a 5-pole Chebyshev filter with <3 GHz bandwidth was designed and fabricated. Experimental and simulated results are in good agreement.

  1. Analysis of the signal transfer and folding in N-Path filters with a series inductance

    NARCIS (Netherlands)

    Duipmans, Lammert; Struiksma, R.E.; Klumperink, Eric A.M.; Nauta, Bram; van Vliet, Frank Edward

    2014-01-01

    N-path filters exploiting switched-series-R-C networks can realize high-Q blocking-tolerant band-pass filters. Moreover, their center frequency is flexibly programmable by a digital clock. Unfortunately, the time variant nature of these circuits also results in unwanted signal folding. This paper

  2. Analysis of the signal transfer and folding in N-path filters with a series inductance

    NARCIS (Netherlands)

    Duipmans, L.; Struiksma, R.E.; Klumperink, E.A.M.; Nauta, B.; Vliet, F.E. van

    2015-01-01

    N-path filters exploiting switched-series-R-C networks can realize high-Q blocking-tolerant band-pass filters. Moreover, their center frequency is flexibly programmable by a digital clock. Unfortunately, the time variant nature of these circuits also results in unwanted signal folding. This paper

  3. Auditory stream segregation using amplitude modulated bandpass noise

    Directory of Open Access Journals (Sweden)

    Yingjiu eNie

    2015-08-01

    Full Text Available The purpose of this study was to investigate the roles of spectral overlap and amplitude modulation (AM rate for stream segregation for noise signals, as well as to test the build-up effect based on these two cues. Segregation ability was evaluated using an objective paradigm with listeners’ attention focused on stream segregation. Stimulus sequences consisted of two interleaved sets of bandpass noise bursts (A and B bursts. The A and B bursts differed in spectrum, AM-rate, or both. The amount of the difference between the two sets of noise bursts was varied. Long and short sequences were studied to investigate the build-up effect for segregation based on spectral and AM-rate differences. Results showed the following: 1. Stream segregation ability increased with greater spectral separation. 2. Larger AM-rate separations were associated with stronger segregation abilities. 3. Spectral separation was found to elicit the build-up effect for the range of spectral differences assessed in the current study. 4. AM-rate separation interacted with spectral separation suggesting an additive effect of spectral separation and AM-rate separation on segregation build-up. The findings suggest that, when normal-hearing listeners direct their attention toward segregation, they are able to segregate auditory streams based on reduced spectral contrast cues that vary by the amount of spectral overlap. Further, regardless of the spectral separation they were able to use AM-rate difference as a secondary/weaker cue. Based on the spectral differences, listeners can segregate auditory streams better as the listening duration is prolonged—i.e. sparse spectral cues elicit build-up segregation; however, AM-rate differences only appear to elicit build-up when in combination with spectral difference cues.

  4. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    Directory of Open Access Journals (Sweden)

    A. Yesil

    2013-12-01

    Full Text Available This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA, a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pass, high-pass, band-stop and all-pass. The proposed filter circuit offers the following attractive feature: no requirement of invert-ing type input signal which is require no addition circuit, critical component matching conditions are not required in the design, the circuit parameters ω0 and Q can be set orthogonally or independently through adjusting the bias currents of the VDTAs, the proposed circuit employs two active and minimum numbers of passive components. Fur-thermore, this filter was investigated from the point of view of limited frequency range, stability conditions, effects of parasitic elements and effects of non-ideal and sensitivity. Thus, taking these effects and conditions into considera¬tion, working conditions and boundaries of this filter are determined. We also performed Monte Carlo, THD and noise analyses. Simulation results are given to confirm theoretical analyses.

  5. Auditory stream segregation using bandpass noises: evidence from event-related potentials

    Directory of Open Access Journals (Sweden)

    Yingjiu eNie

    2014-09-01

    Full Text Available The current study measured neural responses to investigate auditory stream segregation of noise stimuli with or without clear spectral contrast. Sequences of alternating A and B noise bursts were presented to elicit stream segregation in normal-hearing listeners. The successive B bursts in each sequence maintained an equal amount of temporal separation with manipulations introduced on the last stimulus. The last B burst was either delayed for 50% of the sequences or not delayed for the other 50%. The A bursts were jittered in between every two adjacent B bursts. To study the effects of spectral separation on streaming, the A and B bursts were further manipulated by using either bandpass-filtered noises widely spaced in center frequency or broadband noises. Event-related potentials (ERPs to the last B bursts were analyzed to compare the neural responses to the delay vs. no-delay trials in both passive and attentive listening conditions. In the passive listening condition, a trend for a possible late mismatch negativity (MMN or late discriminative negativity (LDN response was observed only when the A and B bursts were spectrally separate, suggesting that spectral separation in the A and B burst sequences could be conducive to stream segregation at the pre-attentive level. In the attentive condition, a P300 response was consistently elicited regardless of whether there was spectral separation between the A and B bursts, indicating the facilitative role of voluntary attention in stream segregation. The results suggest that reliable ERP measures can be used as indirect indicators for auditory stream segregation in conditions of weak spectral contrast. These findings have important implications for cochlear implant (CI studies – as spectral information available through a CI device or simulation is substantially degraded, it may require more attention to achieve stream segregation.

  6. Effects of Digital Filtering in Data Processing of Seismic Acceleration Records

    Directory of Open Access Journals (Sweden)

    Mollova Guergana

    2007-01-01

    Full Text Available The paper presents an application of digital filtering in data processing of acceleration records from earthquakes. Butterworth, Chebyshev, and Bessel filters with different orders are considered to eliminate the frequency noise. A dataset under investigation includes accelerograms from three stations, located in Turkey (Dinar, Izmit, Kusadasi, all working with an analogue type of seismograph SMA-1. Records from near-source stations to the earthquakes (i.e., with a distance to the epicenter less than 20 km with different moment magnitudes , 6.4, and 7.4 have been examined. We have evaluated the influence of the type of digital filter on time series (acceleration, velocity, displacement, on some strong motion parameters (PGA, PGV, PGD, etc., and on the FAS (Fourier amplitude spectrum of acceleration. Several -damped displacement response spectra applying examined filtering techniques with different filter orders have been shown. SeismoSignal software tool has been used during the examples.

  7. Investigation on Microstrip Filters with CSRR Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2016-09-01

    Full Text Available This paper consists the design studies of complementary split ring resonator (CSRR defected ground structure (DGS microstrip filter with low insertion loss in the passband and high rejection in stopband with a comparison of various CSRR-DGS structure has been proposed. Various parameters of microstrip filters have been studied with CSRR-DGS such as roll off rate, bandwidth, effective inductance and capacitance. On the basis of these studies, microstrip low-pass, bandpass and dual-band bandstop filters have been designed and realized with enhanced properties of filters.

  8. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  9. Experimental Demonstration of Adaptive Infrared Multispectral Imaging Using Plasmonic Filter Array (Postprint)

    Science.gov (United States)

    2016-10-10

    tested on a target at extremely high temperature as a challenging scenario for the detection scheme. Infrared (IR) spectral imagers1–3 have been widely...hypothetical bandpass filter which best approximates a desired spectral filter shape. This synthetic spectral responsivity then serves as a means for...reconstruction using an array of SP spectral filters to measure the radiant power from an unknown source in a scene in the long wave IR (LWIR) region. The LWIR

  10. Design and Efficiency Analysis of one Class of Uniform Linear Phase FIR Filter Banks

    Directory of Open Access Journals (Sweden)

    R. D. Pantić

    2013-11-01

    Full Text Available One class of uniform linear phase filter banks with different numbers of band-pass channels will be considered in this study, concentrating on 5, 9 and 17-band filter banks and their mutual comparison concerning delay and implementation complexity. Designed banks are based on the FIR filters and frequency response masking technique and are also compared to the banks with direct realization considering complementarity and delay.

  11. Tunable band (pass and stop) filters based on plasmonic structures using Kerr-type nonlinear rectangular nanocavity

    Science.gov (United States)

    Arianfard, Hamed; Khajeheian, Bahareh; Ghayour, Rahim

    2017-12-01

    We have proposed and numerically investigated two plasmonic structures for bandpass and band-stop filters. The bandpass filter is composed of two metal-insulator-metal (MIM) waveguides coupled to each other by a nonlinear rectangular nanocavity. The band-stop filter consists of an MIM waveguide side coupled to a Kerr-type nonlinear rectangular nanocavity. The optical filtering effect is verified by two-dimensional (2-D) finite-difference time-domain (FDTD) simulations. It is demonstrated that based on optical nonlinearity we can easily make the proposed filters tunable by properly adjusting the intensity of incident light without changing the dimensions of the structures. The simulation results revealed that within the transmission spectrum, the selected central wavelength and the bandwidth of the filter can be tuned by the input signal intensity. The proposed structures are suitable to be used as highly dense integrated optical circuits, where limitations on the dimensions of the filter structure are vital.

  12. Filter frequency response of time dependent signal using Laplace transform

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-16

    We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/tc)2 e-t/t$_c$, where tc = const. We consider lowpass, highpass and bandpass filters.

  13. Current Mode Biquad Filter with Minimum Component Count

    Directory of Open Access Journals (Sweden)

    Bhartendu Chaturvedi

    2011-01-01

    Full Text Available The paper presents a new current mode biquadratic filter with one input and three outputs using differential voltage current conveyor (DVCC and four passive components. The proposed circuit can simultaneously realize low-pass, band-pass, and high-pass filter functions without changing the circuit topology and passive elements. The circuit exhibits a good frequency performance and low-sensitivity figures. PSPICE simulation using 0.5 μm CMOS parameters are given to validate the proposed circuit. The circuit provides a simple yet novel solution to the current-mode filtering after appropriate incorporation of current sensing elements in form of current buffers.

  14. Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator

    Science.gov (United States)

    Ramírez-Meléndez, G.; Bello-Jiménez, M.; Pottiez, O.; Escalante-Zarate, L.; López-Estopier, R.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.

    2017-09-01

    Active Q-switching of an all-fiber ring laser utilizing a novel in-fiber acousto-optic tunable bandpass filter (AOTBF) is reported. The transmission characteristics of the AOTBF are controlled by amplitude modulation of the acoustic wave; the device exhibits a 3-dB power insertion loss, 0.91-nm optical bandwidth, and 28-dB nonresonant light suppression. Cavity loss modulation is achieved by full acousto-optic mode re-coupling cycle induced by traveling flexural acoustic waves. When the acoustical signal is switched on, cavity losses are reduced, and then, laser emission is generated. In addition, by varying the acoustic wave frequency, a wide wavelength tuning range of 30.7 nm is achieved from 1542 to 1572.7 nm. The best Q-switched pulses were obtained at 1.1-kHz repetition rate, with a pump power of 242 mW, at the optical wavelength of 1569.4 nm. A maximum pulse energy of 8.3 μJ at an average output power of 9.3 mW was achieved, corresponding to optical pulses of 7.8-W peak power and 1-μs temporal width.

  15. Filter Induced Bias in Ly{\\alpha} Emitter Surveys: A Comparison Between Standard and Tunable Filters. Gran Telescopio Canarias Preliminary Results

    OpenAIRE

    de Diego, J. A.; De Leo, M. A.; Cepa, J.; Bongiovanni, A.; Verdugo, T.; Sánchez-Portal, M.; González-Serrano, J. I.

    2013-01-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≃ 6.5 thro...

  16. Fractional Resonance-Based RLβCα Filters

    Directory of Open Access Journals (Sweden)

    Todd J. Freeborn

    2013-01-01

    Full Text Available We propose the use of a fractional order capacitor and fractional order inductor with orders 0≤α,  β≤1, respectively, in a fractional RLβCα series circuit to realize fractional-step lowpass, highpass, bandpass, and bandreject filters. MATLAB simulations of lowpass and highpass responses having orders of (α+β=1.1, 1.5, and 1.9 and bandpass and bandreject responses having orders of 1.5 and 1.9 are given as examples. PSPICE simulations of 1.1, 1.5, and 1.9 order lowpass and 1.0 and 1.4 order bandreject filters using approximated fractional order capacitors and fractional order inductors verify the implementations.

  17. Characteristics of Smoothing Filters to Achieve the Guideline Recommended Positron Emission Tomography Image without Harmonization

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui

    2018-01-01

    Full Text Available Objective(s: The aim of this study is to examine the effect of different smoothing filters on the image quality and SUVmax to achieve the guideline recommended positron emission tomography (PET image without harmonization. Methods: We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA the International Electrotechnical Commission (IEC body phantom was filled with 18F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. PET images obtained with the Biograph mCT PET scanner were reconstructed using the ordered subsets-expectation maximization (OSEM algorithm with time-of-flight (TOF models (iteration, 2; subset, 21; smoothing filters including the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters with various full width at half maximum (FWHM values (1-15 mm were applied. The image quality was physically assessed according to the percent contrast (QH,10, background variability (N10, standardized uptake value (SUV, and recovery coefficient (RC. The results were compared with the guideline recommended range proposed by the Japanese Society of Nuclear Medicine and the Japanese Society of Nuclear Medicine Technology. The PET digital phantom was developed from the digital reference object (DRO of the NEMA IEC body phantom smoothed using a Gaussian filter with a 10-mm FWHM and defined as the reference image. The difference in the SUV between the PET image and the reference image was evaluated according to the root mean squared error (RMSE. Results: The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that satisfied the image quality of the FDG-PET/CT standardization guideline criteria were 8-12 mm, 9-11 mm, 9-13 mm, 10-13 mm, 9-11 mm, and 12- 15 mm, respectively. The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that provided the smallest RMSE between the PET images and the 3D digital phantom

  18. Characteristics of Smoothing Filters to Achieve the Guideline Recommended Positron Emission Tomography Image without Harmonization.

    Science.gov (United States)

    Tsutsui, Yuji; Awamoto, Shinichi; Himuro, Kazuhiko; Umezu, Yoshiyuki; Baba, Shingo; Sasaki, Masayuki

    2018-01-01

    The aim of this study is to examine the effect of different smoothing filters on the image quality and SUV max to achieve the guideline recommended positron emission tomography (PET) image without harmonization. We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA) the International Electrotechnical Commission (IEC) body phantom was filled with 18 F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. PET images obtained with the Biograph mCT PET scanner were reconstructed using the ordered subsets-expectation maximization (OSEM) algorithm with time-of-flight (TOF) models (iteration, 2; subset, 21); smoothing filters including the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters with various full width at half maximum (FWHM) values (1-15 mm) were applied. The image quality was physically assessed according to the percent contrast (Q H,10 ), background variability (N 10 ), standardized uptake value (SUV), and recovery coefficient (RC). The results were compared with the guideline recommended range proposed by the Japanese Society of Nuclear Medicine and the Japanese Society of Nuclear Medicine Technology. The PET digital phantom was developed from the digital reference object (DRO) of the NEMA IEC body phantom smoothed using a Gaussian filter with a 10-mm FWHM and defined as the reference image. The difference in the SUV between the PET image and the reference image was evaluated according to the root mean squared error (RMSE). The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that satisfied the image quality of the FDG-PET/CT standardization guideline criteria were 8-12 mm, 9-11 mm, 9-13 mm, 10-13 mm, 9-11 mm, and 12-15 mm, respectively. The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that provided the smallest RMSE between the PET images and the 3D digital phantom were 7 mm, 8 mm, 8 mm, 8 mm, 7

  19. Current-Mode Universal Filters Employing Single FDCCII

    Directory of Open Access Journals (Sweden)

    F. Kacar

    2012-12-01

    Full Text Available In this study, to realize current-mode multifunction filters, three new circuit configurations are presented. The circuits include fully differential current conveyor (FDCCII and four passive components. First proposed circuit is a universal filter with single-input and three-outputs, which can simultaneously realize current mode low-pass, band-pass and high-pass filter responses employing all grounded passive components. The last two proposed are universal filters with three-inputs single-output, which can realize current mode low-pass, band-pass, high-pass, band-stop and all-pass filter responses employing single FDCCII. Furthermore, each of the proposed circuits still enjoys realization using a minimum number of active and passive components. First and last of the proposed circuits have no requirement with the component choice conditions to realize specific filtering functions. No parameter matching condition is required. Active and passive sensitivities of filters are investigated and calculated 5 percentage hangings. Simulation results are found in close agreement with the theoretical results.

  20. Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters

    Science.gov (United States)

    Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.

  1. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    Science.gov (United States)

    Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  2. Filter banks and the "Intensity Analysis" of EMG

    OpenAIRE

    Borg, Frank

    2010-01-01

    Vinzenz von Tscharner (2000) has presented an interesting mathematical method for analyzing EMG-data called "intensity analysis" (EMG = electromyography). Basically the method is a sort of bandpassing of the signal. The central idea of the method is to describe the "power" (or "intensity") of a non-stationary EMG signal as a function both of time and of frequency. The connection with wavelet theory is that the filter is constructed by rescaling a given mother wavelet using a special array of ...

  3. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  4. Complementary filter implementation in the dynamic language Lua

    Science.gov (United States)

    Sadowski, Damian; Sawicki, Aleksander; Lukšys, Donatas; Slanina, Zdenek

    2017-08-01

    The article presents the complementary filter implementation, that is used for the estimation of the pitch angle, in Lua script language. Inertial sensors as accelerometer and gyroscope were used in the study. Methods of angles estimation using acceleration and angular velocity sensors were presented in the theoretical part of the article. The operating principle of complementary filter has been presented. The prototype of Butterworth's analogue filter and its digital equivalent have been designed. Practical implementation of the issue was performed with the use of PC and DISCOVERY evaluation board equipped with STM32F01 processor, L3GD20 gyroscope and LS303DLHC accelerometer. Measurement data was transmitted by UART serial interface, then processed with the use of Lua software and luaRS232 programming library. Practical implementation was divided into two stages. In the first part, measurement data has been recorded and then processed with help of a complementary filter. In the second step, coroutines mechanism was used to filter data in real time.

  5. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  6. Smooth bandpass empirical mode decomposition with rolling ball sifting for extracting carotid bruits and heart sounds.

    Science.gov (United States)

    Huang, Adam; Min-Yin Liu; Chung-Wei Lee; Hon-Man Liu

    2017-07-01

    Carotid bruits are systolic sounds associated with turbulent blood flow through atherosclerotic stenosis in the neck. They are audible intermittent high-frequency sounds mixed with low-frequency heart sounds that wax and wane periodically. It is a nontrivial problem to extract both bruits and heart sounds with high fidelity for further computer-aided analysis. In this paper we propose a smooth bandpass empirical mode decomposition (EMD) method to tackle the problem in the time domain. First, bandpass EMD is achieved by using a rolling ball algorithm to sift the local extrema of chosen time-scales. Second, the local zero is smoothed by interpolation with a monotone piecewise cubic spline. Preliminary results indicate that the new method is able to extract both carotid bruits and heart sounds as visually smooth oscillating components.

  7. High-Input Impedance Voltage-Mode Multifunction Filter with Four Grounded Components and Only Two Plus-Type DDCCs

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2010-01-01

    Full Text Available This paper introduces a novel voltage-mode multifunction biquadratic filter with single input and four outputs using two plus-type differential difference current conveyors (DDCCs and four grounded passive components. The filter can realize inverting highpass, inverting bandpass, noninverting lowpass, and noninverting bandpass filter responses, simultaneously. It still maintains the following advantages: (i using grounded capacitors attractive for integration and absorbing shunt parasitic capacitance, (ii using grounded resistors at all X terminals of DDCCs suitable for the variations of filter parameters and absorbing series parasitic resistances at all X terminals of DDCCs, (iii high-input impedance good for cascadability, (iv no need to change the filter topology, (v no need to component-matching conditions, (vi low active and passive sensitivity performances, and (vii simpler configuration due to the use of plus-type DDCCs only. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.

  8. Analysis of a radio frequency class D amplifier architecture with bandpass sigma-delta modulation

    OpenAIRE

    Johnson, Thomas Edward

    2006-01-01

    This thesis analyzes an amplifier architecture that combines a RF class D amplifier with a bandpass sigma-delta modulator, broadening the utility of class D amplification to include signals with envelope variation. An integrated design methodology is presented that incorporates the coding efficiency and average pulse transition frequency of the encoded pulse train into classical RF class D amplifier design equations. The equations are used to predict the power efficiency of a complementary vo...

  9. Broadband and High-Resolution Static Fourier Transform Spectrometer with Bandpass Sampling.

    Science.gov (United States)

    Özcan, Meriç; Sardari, Behzad

    2018-01-01

    In this study, experimental demonstration of a static Fourier transform spectrometer (static-FTS), based on division of the spectrum into multiple narrowband signals, is presented. The bandpass sampling technique used in this novel spectrometer solves the Nyquist sampling rate limitations and enables recording of wideband spectrum in high resolution. The proposed spectrometer not only has the potential of operating in a wide spectral range, but also has a resolution potential better than 2 cm -1 .

  10. On the optimal sampling of bandpass measurement signals through data acquisition systems

    International Nuclear Information System (INIS)

    Angrisani, L; Vadursi, M

    2008-01-01

    Data acquisition systems (DAS) play a fundamental role in a lot of modern measurement solutions. One of the parameters characterizing a DAS is its maximum sample rate, which imposes constraints on the signals that can be alias-free digitized. Bandpass sampling theory singles out separated ranges of admissible sample rates, which can be significantly lower than carrier frequency. But, how to choose the most convenient sample rate according to the purpose at hand? The paper proposes a method for the automatic selection of the optimal sample rate in measurement applications involving bandpass signals; the effects of sample clock instability and limited resolution are also taken into account. The method allows the user to choose the location of spectral replicas of the sampled signal in terms of normalized frequency, and the minimum guard band between replicas, thus introducing a feature that no DAS currently available on the market seems to offer. A number of experimental tests on bandpass digitally modulated signals are carried out to assess the concurrence of the obtained central frequency with the expected one

  11. Design of Nonrecursive Digital Filters Using the Ultraspherical Window Function

    Directory of Open Access Journals (Sweden)

    Andreas Antoniou

    2005-07-01

    Full Text Available An efficient method for the design of nonrecursive digital filters using the ultraspherical window function is proposed. Economies in computation are achieved in two ways. First, through an efficient formulation of the window coefficients, the amount of computation required is reduced to a small fraction of that required by standard methods. Second, the filter length and the independent window parameters that would be required to achieve prescribed specifications in lowpass, highpass, bandpass, and bandstop filters as well as in digital differentiators and Hilbert transformers are efficiently determined through empirical formulas. Experimental results demonstrate that in many cases the ultraspherical window yields a lower-order filter relative to designs obtained using windows like the Kaiser, Dolph-Chebyshev, and Saramäki windows. Alternatively, for a fixed filter length, the ultraspherical window yields reduced passband ripple and increased stopband attenuation relative to those produced when using the alternative windows.

  12. Current-Processing Current-Controlled Universal Biquad Filter

    Directory of Open Access Journals (Sweden)

    S. V. Singh

    2012-04-01

    Full Text Available This paper presents a current-processing current-controlled universal biquad filter. The proposed filter employs only two current controlled current conveyor transconductance amplifiers (CCCCTAs and two grounded capacitors. The proposed configuration can be used either as a single input three outputs (SITO or as three inputs single output (TISO filter. The circuit realizes all five different standard filter functions i.e. low-pass (LP, band-pass (BP, high-pass (HP, band-reject (BR and all-pass (AP. The circuit enjoys electronic control of quality factor through the single bias current without disturbing pole frequency. Effects of non-idealities are also discussed. The circuit exhibits low active and passive sensitivity figures. The validity of proposed filter is verified through computer simulations using PSPICE.

  13. Supplementary High-Input Impedance Voltage-Mode Universal Biquadratic Filter Using DVCCs

    Directory of Open Access Journals (Sweden)

    Jitendra Mohan

    2012-01-01

    Full Text Available To further extend the existing knowledge on voltage-mode universal biquadratic filter, in this paper, a new biquadratic filter circuit with single input and multiple outputs is proposed, employing three differential voltage current conveyors (DVCCs, three resistors, and two grounded capacitors. The proposed circuit realizes all the standard filter functions, that is, high-pass, band-pass, low-pass, notch, and all-pass filters simultaneously. The circuit enjoys the feature of high-input impedance, orthogonal control of resonance angular frequency (o, and quality factor (Q via grounded resistor and the use of grounded capacitors which is ideal for IC implementation.

  14. Optical micro-multi-racetrack resonator filter based on SOI waveguides

    Science.gov (United States)

    Malka, Dror; Cohen, Moshik; Turkiewicz, Jarek; Zalevsky, Zeev

    2015-08-01

    In this paper, we present a new design of optical Finite Impulse Response (FIR) filter based on combination of multi-racetrack resonators realized with Silicon waveguides. Numerical investigations were carried out on the spectral response of the proposed filters design, in order to obtain FIR band-pass filter around the photonic carrier wavelength of 1.55 μm. The proposed FIR filter was fabricated using electron beam lithography (EBL). The device was preliminary experimentally examined by a combination of scanning electron microscopy (SEM) and atomic force microscopy (AFM).

  15. Single-Input Six-Output Voltage-Mode Filter Using Universal Voltage Conveyors

    Science.gov (United States)

    Minarcik, Martin; Vrba, Kamil

    In this letter a new structure of multifunctional frequency filter using a universal voltage conveyor (UVC) is presented. The multifunctional circuit can realize a low-pass, high-pass and band-pass filter. All types of frequency filter can be realized as inverting or non-inverting. Advantages of the proposed structure are the independent control of the quality factor at the cut-off frequency and the low output impedance of output terminals. The computer simulations and measuring of particular frequency filters are depicted.

  16. Optical filters for UV to near IR space applications

    Science.gov (United States)

    Begou, T.; Krol, H.; Hecquet, Christophe; Bondet, C.; Lumeau, J.; Grèzes-Besset, C.; Lequime, M.

    2017-11-01

    We present hereafter the results on the fabrication of complex optical filters within the Institut Fresnel in close collaboration with CILAS. Bandpass optical filters dedicated to astronomy and space applications, with central wavelengths ranging from ultraviolet to near infrared, were deposited on both sides of glass substrates with performances in very good congruence with theoretical designs. For these applications, the required functions are particularly complex as they must present a very narrow bandwidth as well as a high level of rejection over a broad spectral range. In addition to those severe optical performances, insensitivity to environmental conditions is necessary. For this purpose, robust solutions with particularly stable performances have to be proposed.

  17. Digital Filter ASIC for NASA Deep Space Radio Science

    Science.gov (United States)

    Kowalski, James E.

    1995-01-01

    This paper is about the implementation of an 80 MHz, 16-bit, multi-stage digital filter to decimate by 1600, providing a 50 kHz output with bandpass ripple of less than +/-0.1 dB. The chip uses two decimation by five units and six decimations by two executed by a single decimation by two units. The six decimations by two consist of six halfband filters, five having 30-taps and one having 51-taps. Use of a 16x16 register file for the digital delay lines enables implementation in the Vitesse 350K gate array.

  18. Wien filter

    NARCIS (Netherlands)

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis

  19. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  20. FILTER TREATMENT

    Science.gov (United States)

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  1. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase.

    Science.gov (United States)

    Zhu, Xiaoqi; Chen, Feiya; Peng, Huanfa; Chen, Zhangyuan

    2017-04-17

    We propose and demonstrate a novel optical frequency comb (OFC) based microwave photonic filter which is able to realize arbitrary filtering shape with linear phase response. The shape of filter response is software programmable using finite impulse response (FIR) filter design method. By shaping the OFC spectrum using a programmable waveshaper, we can realize designed amplitude of FIR taps. Positive and negative sign of FIR taps are achieved by balanced photo-detection. The double sideband (DSB) modulation and symmetric distribution of filter taps are used to maintain the linear phase condition. In the experiment, we realize a fully programmable filter in the range from DC to 13.88 GHz. Four basic types of filters (lowpass, highpass, bandpass and bandstop) with different bandwidths, cut-off frequencies and central frequencies are generated. Also a triple-passband filter is realized in our experiment. To the best of our knowledge, it is the first demonstration of a programmable multiple passband MPF with linear phase response. The experiment shows good agreement with the theoretical result.

  2. Filter unit

    International Nuclear Information System (INIS)

    Shiba, Kazuo; Nagao, Koji; Akiyama, Toshio; Tanaka, Fumikazu; Osumi, Akira; Hirao, Yasuhiro.

    1997-01-01

    The filter unit is used by attaching to a dustproof mask, and used in a radiation controlled area such as in a nuclear power plant. The filter unit comprises sheet-like front and back filtering members disposed vertically in parallel, a spacer for keeping the filtering members to a predetermined distance and front and back covering members for covering the two filtering members respectively. An electrostatic filter prepared by applying resin-fabrication to a base sheet comprising 100% by weight of organic fibers as fiber components, for example, wool felt, synthetic fiber non-woven fabric, wool and synthetic fiber blend non-woven fabric and then electrifying the resin is used for the filtering members. Then, residue of ashes can be eliminated substantially or completely after burning them. (I.N.)

  3. Design of Microwave Multibandpass Filters with Quasilumped Resonators

    Directory of Open Access Journals (Sweden)

    Dejan Miljanović

    2015-01-01

    Full Text Available Design of RF and microwave filters has always been the challenging engineering field. Modern filter design techniques involve the use of the three-dimensional electromagnetic (3D EM solvers for predicting filter behavior, yielding the most accurate filter characteristics. However, the 3D EM simulations are time consuming. In this paper, we propose electric-circuit models, instead of 3D EM models, suitable for design of RF and microwave filters with quasilumped coupled resonators. Using the diakoptic approach, the 3D filter structure is decomposed into domains that are modeled by electric networks. The coupling between these domains is modeled by capacitors and coupled inductors. Furthermore, we relate the circuit-element values to the physical dimensions of the 3D filter structure. We propose the filter design procedure that is based on the circuit models and fast circuit-level simulations, yielding the element values from which the physical dimensions can be obtained. The obtained dimensions should be slightly refined for achieving the desired filter characteristics. The mathematical problems encountered in the procedure are solved by numerical and symbolic computations. The procedure is exemplified by designing a triple-bandpass filter and validated by measurements on the fabricated filter. The simulation and experimental results are in good agreement.

  4. Comparison between analog and digital filters

    Directory of Open Access Journals (Sweden)

    Zoltan Erdei

    2010-12-01

    Full Text Available Digital signal processing(DSP is one of the most powerful technologies and will model science and engineering in the 21st century. Revolutionary changes have already been made in different areas of research such as communications, medical imaging, radar and sonar technology, high fidelity audio signal reproducing etc. Each of these fields developed a different signal processing technology with its own algorithms, mathematics and technology, Digital filters are used in two general directions: to separate mixed signals and to restore signals that were compromised in different modes. The objective of this paper is to compare some basic digital filters versus analog filters such as low-pass, high-pass, band-pass filters. Scientists and engineers comprehend that, in comparison with analog filters, digital filters can process the same signal in real-time with broader flexibility. This understanding is considered important to instill incentive for engineers to become interested in the field of DSP. The analysis of the results will be made using dedicated libraries in MATLAB and Simulink software, such as the Signal Processing Toolbox.

  5. Analysis and Design of I/Q Charge-Sharing Band-Pass-Filter for Superheterodyne Receivers

    NARCIS (Netherlands)

    Madadi, I.; Tohidian, M.; Staszewski, R.B.

    2015-01-01

    A complex quadrature charge-sharing (CS) technique is proposed to implement a discrete-time band-pass filter (BPF) with a programmable bandwidth of 20–100 MHz. The BPF is part of a cellular superheterodyne receiver and completely determines the receiver frequency selectivity. It operates at the full

  6. Wien filter

    OpenAIRE

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis such that electric and magnetic forces induced by the respective fields and exerted on an electrically charged particle moving substantially along the fileter axis at a certain velocity

  7. Synthesis of Cascadable DDCC-Based Universal Filter Using NAM

    Directory of Open Access Journals (Sweden)

    Huu-Duy Tran

    2015-08-01

    Full Text Available A novel systematic approach for synthesizing DDCC-based voltage-mode biquadratic universal filters is proposed. The DDCCs are described by infinity-variables’ models of nullor-mirror elements which can be used in the nodal admittance matrix expansion process. Applying the proposed method, the obtained 12 equivalent filters offer the following features: multi-input and two outputs, realization of all five standard filter functions, namely lowpass, bandpass, highpass, notch and allpass, high-input impedance, employing only grounded capacitors and resistors, orthogonal controllability between pole frequency and quality factor, and cascadable, low active and passive sensitivities. The workability of some synthesized filters is verified by HSPICE simulations to demonstrate the feasibility of the proposed method.

  8. Acoustic wave filter based on periodically poled lithium niobate.

    Science.gov (United States)

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  9. A New Microstrip Filter Using CRLH Structure and Defected Ground Structure in Antenna Application

    Directory of Open Access Journals (Sweden)

    Xin Cao

    2014-01-01

    Full Text Available A new microstrip bandpass filter using composite right/left-handed (CRLH mushroom structure with interdigital capacitors and defected ground structure (DGS is proposed. The proposed filter uses CRLH mushroom structure working at its first negative resonance mode to create the passband and DGS to increase rejection outside the passband. Simulation and measurement results are in good agreement, and low in-band insertion loss and great out-band rejection have been achieved. It is demonstrated that the combination of CRLH mushroom structure with interdigital capacitors and DGS has succeeded in achieving excellent performance. This new filter can be applied in transmitting and receiving antennas.

  10. Novel Notched UWB Filter Using Stepped Impedance Stub Loaded Microstrip Resonator and Spurlines

    Directory of Open Access Journals (Sweden)

    Ramkumar Uikey

    2015-01-01

    Full Text Available This paper presents a novel ultrawideband (UWB bandpass filter using stepped impedance stub loaded microstrip resonator (SISLMR. The proposed resonator is so formed to allow its four resonant frequencies in the UWB passband, which extends from 3.1 GHz to 10.6 GHz. Moreover, two spurline sections are employed to create a sharp notched-band filter for suppressing the signals of 5 GHz WLAN devices. Experimental results of the fabricated filters are in good agreement with the HFSS simulations and validate the design.

  11. Technological development of multispectral filter assemblies for micro bolometer

    Science.gov (United States)

    Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre

    2017-11-01

    Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).

  12. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  13. A low power Gm-C filter with on-chip automatic tuning for a WLAN transceiver

    International Nuclear Information System (INIS)

    Liu Silin; Ma Heping; Shi Yin

    2010-01-01

    A sixth-order Butterworth Gm-C low-pass filter (LPF) with a continuous tuning architecture has been implemented for a wireless LAN (WLAN) transceiver in 0.35 μm CMOS technology. An interior node scaling technique has been applied directly to the LPF to improve the dynamic range and the structure of the LPF has been optimized to reduce both the die size and the current consumption. Measurement results show that the filter has 77.5 dB dynamic range, 16.3 ns group delay variation, better than 3% cutoff frequency accuracy, and 0 dBm passband IIP3. The whole LPF with the tuning circuit dissipates only 1.42 mA (5 MHz cutoff frequency) or 2.81 mA (10 MHz cutoff frequency) from 2.85 V supply voltage, and only occupies 0.175 mm 2 die size. (semiconductor integrated circuits)

  14. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    Science.gov (United States)

    Comani, S.; Mantini, D.; Alleva, G.; Di Luzio, S.; Romani, G. L.

    2005-12-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz.

  15. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L

    2005-01-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  16. A new simple method for analysing of thermal noise in switched-capacitor filters

    Science.gov (United States)

    Rashtian, Mohammad; Afshin Hemmatyar, Ali Mohammad; Hashemipour, Omid

    2012-12-01

    Thermal noise is one of the most important challenges in analogue integrated circuits design. This problem is more crucial in switched-capacitor (SC) filters due to the aliasing effect of wide-band thermal noise. In this article, a new simple method is proposed for estimating the power spectrum density of output thermal noise in SC filters, which have acceptable accuracy and short running time. In the proposed method, first using HSPICE simulator, accurate value of accumulated sampled noise on sampler capacitors in each clock state is achieved. Next, using difference equations of the SC filter, frequency response of the SC filter is shaped by time domain analysis. Based on the proposed method, a SC low-pass filter and a second-order SC band-pass filter are analysed. The results are validated by comparing to the previously measured data.

  17. Hysteretic self-oscillating bandpass current mode control for Class D audio amplifiers driving capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    A hysteretic self-oscillating bandpass current mode control (BPCM) scheme for Class D audio amplifiers driving capacitive transducers are presented. The scheme provides excellent stability margins and low distortion over a wide range of operating conditions. Small-signal behavior of the amplifier...... is analysis through transfer function based linear control methodology. Measurements are performed on a single-ended ± 300 V half-bridge amplifier driving a capacitive load of 100 nF. Total Harmonic Distortion plus noise (THD+N) below 0.1 % are reported. Transducers representing a capacitive load and obeying...... the rules of electrostatics have been known as very interesting alternatives to the traditional inefficient electrodynamic transducers. When driving capacitive transducers from a Class D audio amplifier the high impedance nature of the load represents a key challenge. The BPCM control scheme ensures a flat...

  18. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad

    2018-02-03

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.

  19. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad

    2017-06-21

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  20. Effects of Digital Filtering in Data Processing of Seismic Acceleration Records

    Directory of Open Access Journals (Sweden)

    Guergana Mollova

    2007-01-01

    Full Text Available The paper presents an application of digital filtering in data processing of acceleration records from earthquakes. Butterworth, Chebyshev, and Bessel filters with different orders are considered to eliminate the frequency noise. A dataset under investigation includes accelerograms from three stations, located in Turkey (Dinar, Izmit, Kusadasi, all working with an analogue type of seismograph SMA-1. Records from near-source stations to the earthquakes (i.e., with a distance to the epicenter less than 20 km with different moment magnitudes Mw = 3.8, 6.4, and 7.4 have been examined. We have evaluated the influence of the type of digital filter on time series (acceleration, velocity, displacement, on some strong motion parameters (PGA, PGV, PGD, etc., and on the FAS (Fourier amplitude spectrum of acceleration. Several 5%-damped displacement response spectra applying examined filtering techniques with different filter orders have been shown. SeismoSignal software tool has been used during the examples.

  1. Thickness monitoring of optical filters for DWDM applications.

    Science.gov (United States)

    Postava, Kamil; Pistora, Jaromır; Kojima, Masashi; Kikuchi, Kazuo; Endo, Kazuhiro; Yamaguchi, Tomuo

    2003-03-24

    A method for thickness monitoring and turning-point prediction during deposition of narrow band pass optical filters (NBPF) for dense-wavelength-division-multiplexing (DWDM) applications is proposed. The method is based on a recurrent approach, with relative transmittance .tting, and includes partial coherence and monochromator bandpass e.ects. We show that the partial coherence e.ects in thin .lm structures are signi.cant and can not be neglected. The proposed method is applicable for precise thickness monitoring and deposition control of any complex multilayer coating.

  2. Silicon photonic crystal filter with ultrawide passband characteristics.

    Science.gov (United States)

    Baldycheva, Anna; Tolmachev, Vladimir A; Perova, Tatiana S; Zharova, Yulia A; Astrova, Ekaterina V; Berwick, Kevin

    2011-05-15

    We report on what is believed to be the first example of an ultrawide, bandpass filter, based on a high-contrast multicomponent one-dimensional Si photonic crystal (PC). The effect of the disappearance of a limited number of flat stopbands and their replacement with extended passbands is demonstrated over a wide IR range. The passbands obtained exhibit a high transmission of 92% to 96% and a substantial bandwidth of 1800 nm, which is spectrally flat within the passband. The multicomponent PC model suggested can be applied to the design of any micro- or nanostructured semiconductor or dielectric material for application across a wide spectral range. © 2011 Optical Society of America

  3. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  4. Wider Passband Third-Order Active-R Filter with Multifeedback Signal for Different Center Frequencies (f0)

    OpenAIRE

    Adnan Abdullah Qasem; G. N. Shinde

    2013-01-01

    Wider Passband Third-order Active-R Filter with Multifeedback Signal for different Center Frequencies f0 configuration is proposed. This paper discusses a new configuration to realize third-order low pass, band pass and high pass. The presented circuit uses Multifeedback signal, OP-AMP and passive components. This filter is useful for high frequency operation, monolithic IC implementation and is easy to design .This circuit gives three filter functions low-pass, high-pass and band-pass. This ...

  5. Variable single-passband narrowband optical filter based on forward stimulated interpolarization scattering in photonic crystal fiber.

    Science.gov (United States)

    Qin, Yi; Sun, Junqiang; Du, Mingdi; Liao, Jianfei

    2012-09-01

    A variable transmission spectrum single-passband narrowband optical filter is proposed and experimentally demonstrated. It is based on forward stimulated interpolarization scattering (SIPS) in a photonic crystal fiber by applying a differential quadrature phase-shift keying modulation to the pump wave to broaden and shape the SIPS gain spectrum. By choosing the bit rate of the modulation data pattern, a flat-top steep-cutoff optical bandpass filter with a 3 dB bandwidth of 70 MHz and a 10 dB bandwidth of 90 MHz is realized. In addition, a variable narrowband optical notch filter is also realized by attenuation of the pump wave.

  6. Optimization of the filter parameters in (99m)Tc myocardial perfusion SPECT studies: the formulation of flowchart.

    Science.gov (United States)

    Shibutani, Takayuki; Onoguchi, Masahisa; Yamada, Tomoki; Kamida, Hiroki; Kunishita, Kohei; Hayashi, Yuuki; Nakajima, Tadashi; Kinuya, Seigo

    2016-06-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is typically subject to a variation in image quality due to the use of different acquisition protocols, image reconstruction parameters and image display settings by each institution. One of the principal image reconstruction parameters is the Butterworth filter cut-off frequency, a parameter strongly affecting the quality of myocardial images. The objective of this study was to formulate a flowchart for the determination of the optimal parameters of the Butterworth filter for filtered back projection (FBP), ordered subset expectation maximization (OSEM) and collimator-detector response compensation OSEM (CDR-OSEM) methods using the evaluation system of the myocardial image based on technical grounds phantom. SPECT studies were acquired for seven simulated defects where the average counts of the normal myocardial components of 45° left anterior oblique projections were approximately 10-120 counts/pixel. These SPECT images were then reconstructed by FBP, OSEM and CDR-OSEM methods. Visual and quantitative assessment of short axis images were performed for the defect and normal parts. Finally, we formulated a flowchart indicating the optimal image processing procedure for SPECT images. Correlation between normal myocardial counts and the optimal cut-off frequency could be represented as a regression expression, which had high or medium coefficient of determination. We formulated the flowchart in order to optimize the image reconstruction parameters based on a comprehensive assessment, which enabled us to perform objectively processing. Furthermore, the usefulness of image reconstruction using the flowchart was demonstrated by a clinical case.

  7. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    De Diego, J. A.; De Leo, M. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Distrito Federal (Mexico); Cepa, J.; Bongiovanni, A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Verdugo, T. [Centro de Investigaciones de Astronomía (CIDA), Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Sánchez-Portal, M. [Herschel Science Centre (HSC), European Space Agency Centre (ESAC)/INSA, Villanueva de la Cañada, Madrid (Spain); González-Serrano, J. I., E-mail: jdo@astro.unam.mx [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005 Santander (Spain)

    2013-10-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.

  8. A study of full width at half maximum (FWHM) according to the filter's cut off level in SPECT camera

    International Nuclear Information System (INIS)

    Park, Soung Ock; Kwon, Soo Il

    2003-01-01

    Filtering is necessary to reduce statistical noise and to increase image quality in SPECT images. Noises controlled by low-pass filter designed to suppress high spatial frequency in SPECT image. Most SPECT filter function control the degree of high frequency suppression by choosing a cut off frequency. The location of cut off frequency determines the affect image noise and spatial resolution. If select the low cut off frequency, its provide good noise suppression but insufficient image quantity and high cut off frequencies increase the image resolution but insufficient noise suppression. The purpose of this study was to determines the optimum cut off level with comparison of FWHM according to cut off level in each filters-Band-limited, Sheep-logan, Sheep-logan Hanning, Generalized Hamming, Low pass cosine, Parazen and Butterworth filter in SPECT camera. We recorded image along the X, Y, Z-axis with 99m TcO 4 point source and measured FWHM by use profile curve. We find averaged length is 9.16 mm ∼ 18.14 mm of FWHM in X, Y, and Z-axis, and Band-limited and Generalized Hamming filters measures 9.16 mm at 0.7 cycle/pixel cut off frequency

  9. An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation

    Science.gov (United States)

    Jihai, Duan; Chuang, Lan; Weilin, Xu; Baolin, Wei

    2015-05-01

    A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconductance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 VPP sinusoidal input at 100 Hz, a total harmonic distortion (THD) of -56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  10. Envelope analysis with a genetic algorithm-based adaptive filter bank for bearing fault detection.

    Science.gov (United States)

    Kang, Myeongsu; Kim, Jaeyoung; Choi, Byeong-Keun; Kim, Jong-Myon

    2015-07-01

    This paper proposes a fault detection methodology for bearings using envelope analysis with a genetic algorithm (GA)-based adaptive filter bank. Although a bandpass filter cooperates with envelope analysis for early identification of bearing defects, no general consensus has been reached as to which passband is optimal. This study explores the impact of various passbands specified by the GA in terms of a residual frequency components-to-defect frequency components ratio, which evaluates the degree of defectiveness in bearings and finally outputs an optimal passband for reliable bearing fault detection.

  11. Tunable chirped microwave photonic filter employing a dispersive Mach-Zehnder structure.

    Science.gov (United States)

    Xue, Xiaoxiao; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2011-09-01

    A Mach-Zehnder structure with modulation in one arm and dispersive time delay in the other is proposed to implement highly flexible single-bandpass chirped microwave photonic filters based on broadband optical sources. Both the amplitude response and the time delay slope can be fully reconfigured via control of the optical spectra and dispersion. The passband can also be widely tuned without changing the shape. A chirped filter with a bandwidth of ∼4 GHz, a delay slope of ∼-0.6 ns/GHz, and a tunability up to 40 GHz is demonstrated experimentally.

  12. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    Science.gov (United States)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  13. The effect of compression on tuning estimates in a simple nonlinear auditory filter model

    DEFF Research Database (Denmark)

    Marschall, Marton; MacDonald, Ewen; Dau, Torsten

    2013-01-01

    Behavioral experiments using auditory masking have been used to characterize frequency selectivity, one of the basic properties of the auditory system. However, due to the nonlinear response of the basilar membrane, the interpretation of these experiments may not be straightforward. Specifically...... consists of a compressor between two bandpass filters. The BPNL forms the basis of the dual-resonance nonlinear (DRNL) filter that has been used in a number of modeling studies. The location of the nonlinear element and its effect on estimated tuning in the two measurement paradigms was investigated......, then compression alone may explain a large part of the behaviorally observed differences in tuning between simultaneous and forward-masking conditions....

  14. Eyeglass Filters

    Science.gov (United States)

    1987-01-01

    Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. Filtering helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.

  15. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  16. Segmented correlation measurements on superconducting bandpass delta-sigma modulator with and without input tone

    International Nuclear Information System (INIS)

    Bulzacchelli, John F; Lee, Hae-Seung; Hong, Merit Y; Misewich, James A; Ketchen, Mark B

    2003-01-01

    Segmented correlation is a useful technique for testing a superconducting analogue-to-digital converter, as it allows the output spectrum to be estimated with fine frequency resolution even when data record lengths are limited by small on-chip acquisition memories. Previously, we presented segmented correlation measurements on a superconducting bandpass delta-sigma modulator sampling at 40.2 GHz under idle channel (no input) conditions. This paper compares the modulator output spectra measured by segmented correlation with and without an input tone. Important practical considerations of calculating segmented correlations are discussed in detail. Resolution enhancement by segmented correlation does reduce the spectral width of the input tone in the desired manner, but the signal power due to the input increases the variance of the spectral estimate near the input frequency, hindering accurate calculation of the in-band noise. This increased variance, which is predicted by theory, must be considered carefully in the application of segmented correlation. Methods for obtaining more accurate estimates of the quantization noise spectrum which are closer to those measured with no input are described

  17. Optimal bandpass sampling strategies for enhancing the performance of a phase noise meter

    Science.gov (United States)

    Angrisani, Leopoldo; Schiano Lo Moriello, Rosario; D'Arco, Mauro; Greenhall, Charles

    2008-10-01

    Measurement of phase noise affecting oscillators or clocks is a fundamental practice whenever the need of a reliable time base is of primary concern. In spite of the number of methods or techniques either available in the literature or implemented as personalities in general-purpose equipment, very accurate measurement results can be gained only through expensive, dedicated instruments. To offer a cost-effective alternative, the authors have already realized a DSP-based phase noise meter, capable of assuring good performance and real-time operation. The meter, however, suffers from a reduced frequency range (about 250 kHz), and needs an external time base for input signal digitization. To overcome these drawbacks, the authors propose the use of bandpass sampling strategies to enlarge the frequency range, and of an internal time base to make standalone operation much more feasible. After some remarks on the previous version of the meter, key features of the adopted time base and proposed sampling strategies are described in detail. Results of experimental tests, carried out on sinusoidal signals provided both by function and arbitrary waveform generators, are presented and discussed; evidence of the meter's reliability and efficacy is finally given.

  18. Bandpass sampling based digital coherent receiver with free-running local oscillator laser for phase-modulated radio-over-fiber links.

    Science.gov (United States)

    Cao, Minghua; Li, Jianqiang; Dai, Yitang; Yin, Feifei; Xu, Kun

    2014-11-03

    A bandpass sampling based digital coherent receiver is presented for phase modulated radio-over-fiber links with coherent detection. In the scheme, the bandpass sampling technique is introduced in RoF systems to overcome the high sampling rate requirement and front-end hardware dependency of conventional digtal coherent receivers. In particular, the selection rule of bandpass sampling rate was defined by taking into account the frequency offset induced by free-running optical local oscillator. Analytical assessment and simulations are used to determine the ultimate performance in terms of tolerances to ADC bit resolution and laser linewidth. Thereafter, a 40Mbps QPSK modulated data signal at 2.4GHz RF carrier frequency is experimentally demonstrated over the proposed 50.6-km radio-over-fiber link employing bandpass sampling.

  19. Compact wideband plasmonic filter with flat-top transmission response based on corrugated metal-insulator-metal ring resonator.

    Science.gov (United States)

    Yang, Liu; Zhou, Yong Jin; Zhang, Chao; Xiao, Qian Xun

    2017-10-27

    We demonstrate a novel route to control the filtering of spoof localized surface plasmons (LSPs) on the corrugated metal-insulator-metal (MIM) ring resonator. The spoof LSPs resonance modes can be effectively tuned to achieve broad passband (covering the quadrupole mode and the hexapole mode) by selecting proper lengths in the input and output coupling area. The mutual coupling between the input and output lines produces the flat-top transmission response and sharp out-of-band rejection. Compared with the wideband bandpass filters based on spoof plasmonic waveguides, the proposed filter is ultra-compact and only 0.35λ*0.35λ. In order to further improve the property of the bandpass plasmonic filter, all the out-of-band frequencies (the dipole mode and the octopole mode) have been rejected by introducing a shunt stepped-impedance resonator and double C-shaped rings on the back of the substrate of the filter. Simulated results are confirmed via experiment, showing good rejection and wideband filtering performance with low insertion loss, flat-top transmission response and sharp out-of-band suppression. The proposed filter can find more applications in the highly integrated plasmonic circuits and systems in both terahertz and microwave regimes.

  20. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  1. Acousto-optic tunable filter multispectral imaging system

    Science.gov (United States)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  2. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  3. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    Science.gov (United States)

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-05

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion.

  4. Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairment

    Directory of Open Access Journals (Sweden)

    Usha eGoswami

    2016-05-01

    Full Text Available Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz versus faster (~33 Hz temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1 or speech and language impairments (SLIs, Experiment 2 to groups of typically-developing (TD children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (< 4 Hz or band-pass filtered (22 – 40 Hz. Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral speech and language impairments (SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI sample were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognising both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed.

  5. Metallic nano-structures for polarization-independent multi-spectral filters

    Directory of Open Access Journals (Sweden)

    Brady David

    2011-01-01

    Full Text Available Abstract Cross-shaped-hole arrays (CSHAs are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.

  6. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    Science.gov (United States)

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  7. Lamb wave interactions through dispersion 2D filters

    Science.gov (United States)

    Martinez, L.; Wilkie-Chancellier, N.; Caplain, E.; Sarens, B.; Glorieux, C.

    2012-03-01

    Acoustic surface waves are widely used to sense and map the properties of the propagation media. In order to characterise local space-time waves, methods such as Gabor analysis are powerful. Nevertheless, knowing which wave is observed, extracting its full bandwidth contribution from the others and to map it in the signal domain is also of great interest. In the Fourier domain, the acoustic energy of a wave is concentrated along the wave-number frequency (k-ω) dispersion curve, a way to extract one wave from others is to filter the signals by mean of k-ω band-pass area that keeps only the selected surface wave. The objective of the present paper is to propose 2D Finite Impulse Response (FIR) filters based on an arbitrary area shape designed to extract selected waves. FIR filtering is based on convolving the impulse response of the filter with the signals. Impulse responses derived from using k-ω elliptical areas (E-FIR) are presented. The E-FIR filters are successfully tested on three experimental space-time signals corresponding to the propagation of Lamb waves measured by standard transducers on a cylindrical shell, by laser Doppler on a plate and generated by a circular pulse and observed by shearography on a rectangular plate.

  8. The Science Advantage of a Redder Filter for WFIRST

    Science.gov (United States)

    Bauer, James; Stauffer, John; Milam, Stefanie N.; Holler, Bryan J.

    2018-01-01

    WFIRST will be capable of providing Hubble-quality imaging performance over several thousand square degrees of the sky. The wide-area, high spatial resolution survey data from WFIRST will be unsurpassed for probably many decades into the future. With the current baseline design, the WFIRST filter complement will extend from the bluest wavelength allowed by the optical design to a reddest filter (F184W) that has a red cutoff at 2.0 microns. Extension of the imaging capabilities even slightly beyond the 2.0 micron wavelength cut-off would provide significant advantages over the presently proposed science for objects both near and far. The inclusion of a Ks (2.0-2.3 micron) filter would result in a wider range and more comprehensive set of Solar System investigations. It would also extend the range of higher-redshift population studies. In this poster, we outline some of the science advantages for adding a K filter, similar in bandpass to the 2MASS Ks filter, in order to extend the wavelength range for WFIRST as far to the red as the thermal performance of the spacecraft allows.

  9. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    Science.gov (United States)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  10. Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

    Directory of Open Access Journals (Sweden)

    Supachai Klungtong

    2017-01-01

    Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

  11. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    Science.gov (United States)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  12. DIGIT. A digital filter design programme and its application to mains frequency interference rejection and other smoothing problems

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1975-05-01

    Thermocouple measurements in heat transfer experiments on AC powered heat transfer rigs are often subject to an unacceptable level of grid frequency induced interference. A very narrow bandstop digital filter is proposed which effectively eliminates such nominal 50 Hz interference as well as its odd harmonics. The operation of digital filters, and the similarities with their analogue counterparts are explained in this report - partly written as a guide to designing digital filters. Listings and operating instructions of a FORTRAN IV computer programme (DIGIT) for designing: low pass, bandpass, bandstop and high pass digital filters are presented. The same FORTRAN programme also enables the designer to assess the effect of reductions in computer word-length on a filter's frequency response and its output noise. These calculations are required in order to specify the minimum word-length necessary for a satisfactory engineering realization on a mini or micro computer. (U.K.)

  13. Novel Resistorless First-Order Current-Mode Universal Filter Employing a Grounded Capacitor

    Directory of Open Access Journals (Sweden)

    R. Arslanalp

    2011-09-01

    Full Text Available In this paper, a new bipolar junction transistor (BJT based configuration for providing first-order resistorless current-mode (CM all-pass, low-pass and high-pass filter responses from the same configuration is suggested. The proposed circuit called as a first-order universal filter possesses some important advantages such as consisting of a few BJTs and a grounded capacitor, consuming very low power and having electronic tunability property of its pole frequency. Additionally, types of filter response can be obtained only by changing the values of current sources. The suggested circuit does not suffer from disadvantages of use of the resistors in IC process. The presented first-order universal filter topology does not need any passive element matching constraints. Moreover, as an application example, a second-order band-pass filter is obtained by cascading two proposed filter structures which are operating as low-pass filter and high-pass one. Simulations by means of PSpice program are accomplished to demonstrate the performance and effectiveness of the developed first-order universal filter.

  14. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  15. A Generic Current Mode Design for Multifunction Grounded Capacitor Filters Employing Log-Domain Technique

    Directory of Open Access Journals (Sweden)

    N. A. Shah

    2011-01-01

    Full Text Available A generic design (GD for realizing an nth order log-domain multifunction filter (MFF, which can yield four possible stable filter configurations, each offering simultaneously lowpass (LP, highpass (HP, and bandpass (BP frequency responses, is presented. The features of these filters are very simple, consisting of merely a few exponential transconductor cells and capacitors; all grounded elements, capable of absorbing the shunt parasitic capacitances, responses are electronically tuneable, and suitable for monolithic integration. Furthermore, being designed using log-domain technique, it offers all its advantages. As an example, 5th-order MFFs are designed in each case and their performances are evaluated through simulation. Lastly, a comparative study of the MFFs is also carried, which helps in selecting better high-order MFF for a given application.

  16. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm.

    Science.gov (United States)

    Wang, Tianyang; Chu, Fulei; Han, Qinkai

    2017-03-01

    Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Filters or Holt Winters Technique to Improve the SPF Forecasts for USA Inflation Rate?

    Directory of Open Access Journals (Sweden)

    Mihaela Bratu (Simionescu

    2013-02-01

    Full Text Available In this study, transformations of SPF inflation forecasts were made in order to get moreaccurate predictions. The filters application and Holt Winters technique were chosen as possiblestrategies of improving the predictions accuracy. The quarterly inflation rate forecasts (1975 Q1-2012Q3 of USAmade by SPF were transformed using an exponential smoothing technique-HoltWinters-and these new predictions are better than the initial ones for all forecasting horizons of 4quarters. Some filters were applied to SPF forecasts (Hodrick-Prescott,Band-Pass and Christiano-Fitzegerald filters, but Holt Winters method was superior.Full sample asymmetric (Christiano-Fitzegerald and Band-Pass filtersmoothed values are more accurate than the SPF expectations onlyfor some forecast horizons.

  18. MISO Current-mode Biquad Filter with Independent Control of Pole Frequency and Quality Factor

    Directory of Open Access Journals (Sweden)

    W. Jaikla

    2012-09-01

    Full Text Available This article presents a three-inputs single-output biquadratic filter performing completely standard functions: low-pass, high-pass, band-pass, band-reject and all-pass functions, based on current controlled current conveyor transconductance amplifier (CCCCTA. The quality factor and pole frequency can be electronically/independently tuned via the input bias current. The proposed circuit uses 2 CCCCTAs and 2 grounded capacitors without external any resistors which is very suitable to further develop into an integrated circuit. The filter does not require double input current signal. Each function response can be selected by suitably selecting input signals with digital method. Moreover, the circuit possesses high output impedance which would be an ideal choice for current-mode cascading. The PSPICE simulation results are included to verify the workability of the proposed filter. The given results agree well with the theoretical anticipation.

  19. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  20. Anti-aliasing filters for deriving high-accuracy DEMs from TLS data: A case study from Freeport, Texas

    Science.gov (United States)

    Xiong, L.; Wang, G.; Wessel, P.

    2017-12-01

    Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3cm×3cm) to handprint (e.g., 10cm×10cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain portable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem and implement an anti-aliasing procedure of regridding dense TLS data. The TLS data collected in the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as anti-aliasing filters. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.

  1. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    OpenAIRE

    İlarslan, M.; Demirel, S.; Torpi, H.; Keskin, A. K.; Çağlar, M. F.

    2014-01-01

    Herein, a new methodology using a 3D Electromagnetic (EM) simulator-based Support Vector Regression Machine (SVRM) models of base elements is presented for band-pass filter (BPF) design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA) to optimize an ultra-wideband (UWB) microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genet...

  2. Tap water filters.

    Science.gov (United States)

    2003-02-01

    Moen PureTouch filters remove impurities from tap water without removing fluoride. These carbon block filters consist of finely powdered activated carbon that is combined with a plastic binder material and heated to form a hollow cylinder. The blocks are further wrapped with material to improve performance and reduce clogging. The filters are available with different filtering capabilities (Table 1). The filters mount in the faucet spout or under the sink.

  3. Rancang Bangun Band Pass Filter Frekuensi 1.27 GHz untuk Teknologi Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    RIFAN FITRIANTO

    2017-07-01

    Full Text Available ABSTRAKSynthetic Apertur Radar (SAR adalah teknologi radar yang digunakan untuk pengambilan gambar suatu objek dalam bentuk 2 atau 3 dimensi (penginderaan jarak jauh. Sistem tersebut  bekerja pada rentang frekuensi 1.265 sampai dengan 1.275 GHZ dengan frekuensi tengahnya 1.27 GHz. Agar sistem SAR ini dapat bekerja dengan optimal, dibutuhkan suatu perangkat filter yang dapat meloloskan frekuensi yang diinginkan. Sebelumnya sudah ada penelitian yang membuat perangkat ini di band frekuensi yang sama namun menggunakan bahan duroid 5880 dan resonator berbentuk kotak. Bandpass filter Pada penelitian ini dirancang dengan menggunakan metode Hairpin line dan bahan epoxy FR4. Hasil pengukuran menunjukkan nilai Return Loss masih cukup besar yaitu -9.33 dB dan nilai Insertion Loss minimal sebesar -13.51 dB.Kata kunci: Syntethic Aperture Radar, Band Pass Filter, Hairpin-lineABSTRACTSynthetic Aperture Radar (SAR is a radar technology that used for taking an object in the form of 2 or 3 dimensions (remote sensing. It works in the frequency range 1.265 to 1.275 GHZ with a middle frequency of 1.27 GHz. SAR system can work optimally if it support a filter device that can pass the desired frequency. Previously there has been research that makes this device in the same frequency band but using 5885 duroid material and square resonator. Bandpass filter In this study designed using Hairpin line method and FR4 epoxy material. The measurement results of Return Loss values are still quite large  arround -9.33 dB and Insertion Loss minimum at -13.51 dB.Keywords: Syntethic Aperture Radar, Band Pass Filter, Hairpin line

  4. Multilayer mirrors as power filters in insertion device beamlines

    International Nuclear Information System (INIS)

    Kortright, J.B.; DiGennaro, R.S.

    1988-08-01

    The power-filtering capabilities of multilayer band-pass x-ray mirrors relative to total reflection low-pass mirrors is presented. Results are based on calculations assuming proposed wiggler sources on the upcoming generation of low energy (1.5 GeV) and high energy (7.0 GeV) synchrotron radiation sources. Results show that multilayers out-perform total reflection mirrors in terms of reduction in reflected power by roughly an order of magnitude, with relatively small increases in total absorbed power and power density over total reflection mirrors, and with comparable reflected flux values. Various aspects of this potential application of multilayer x-ray optics are discussed. 13 refs., 3 figs., 1 tab

  5. On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors.

    Science.gov (United States)

    Frey, Laurent; Masarotto, Lilian; D'Aillon, Patrick Gros; Pellé, Catherine; Armand, Marilyn; Marty, Michel; Jamin-Mornet, Clémence; Lhostis, Sandrine; Le Briz, Olivier

    2014-07-10

    Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal-dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

  6. A New Universal Second-Order Filter using Configurable Analog Building Blocks (CABs for Filed-Programmable Analogue Arrays

    Directory of Open Access Journals (Sweden)

    M. T. Abuelma'atti

    2011-06-01

    Full Text Available In this paper, the design of a universal second-order filter using configurable analog blocks (CABs for field programmable analog arrays is presented. The configurable blocks are capable of performing integration, differentiation, amplification, log, anti-log, add and negate functions. To maintain high frequency operation, the programmability and configurability of the blocks are achieved by digitally modifying the block's biasing conditions. Using at most four CABs, this article shows that it is possible to design a versatile second-order filter realizing all the standard five filter functions; lowpass, highpass, bandpass, notch and allpass. SPICE simulation results using practical bipolar junction transistor (BJT parameters confirm the feasibility of using the CABs in designing second-order filters.

  7. Influence of monitor passband width on the layer thickness determination during deposition of a dense-wavelength-division-multiplexing filter.

    Science.gov (United States)

    Lee, Cheng-Chung; Kuo, Chien-Cheng; Chen, Sheng-Hui

    2006-03-01

    The monitor passband width of an optical monitor is an important parameter for the fabrication of a dense-wavelength-division-multiplexing (DWDM) filter. The peak insertion loss and transmittance of one-cavity narrow-bandpass filters (NBPFs) were analyzed by using different passband widths. The simulation monitoring curves of the last layer of the first, second, third, and fourth cavities of a five-cavity DWDM filter with different monitor passband widths were investigated. The last layer of each cavity is very sensitive to the monitor passband width, showing that the monitor passband width of an optical monitor should be less than half the designed passband width. This analysis demonstrates the successful fabrication of a five-cavity DWDM filter.

  8. Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments.

    Science.gov (United States)

    Goswami, Usha; Cumming, Ruth; Chait, Maria; Huss, Martina; Mead, Natasha; Wilson, Angela M; Barnes, Lisa; Fosker, Tim

    2016-01-01

    Here we use two filtered speech tasks to investigate children's processing of slow (nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed.

  9. Study of quadrature FIR filters for extraction of low-frequency instantaneous information in biophysical signals

    Science.gov (United States)

    Arce-Guevara, Valdemar E.; Alba-Cadena, Alfonso; Mendez, Martín O.

    Quadrature bandpass filters take a real-valued signal and output an analytic signal from which the instantaneous amplitude and phase can be computed. For this reason, they represent a useful tool to extract time-varying, narrow-band information from electrophysiological signals such as electroencephalogram (EEG) or electrocardiogram. One of the defining characteristics of quadrature filters is its null response to negative frequencies. However, when the frequency band of interest is close to 0 Hz, a careless filter design could let through negative frequencies, producing distortions in the amplitude and phase of the output. In this work, three types of quadrature filters (Ideal, Gabor and Sinusoidal) have been evaluated using both artificial and real EEG signals. For the artificial signals, the performance of each filter was measured in terms of the distortion in amplitude and phase, and sensitivity to noise and bandwidth selection. For the real EEG signals, a qualitative evaluation of the dynamics of the synchronization between two EEG channels was performed. The results suggest that, while all filters under study behave similarly under noise, they differ in terms of their sensitivity to bandwidth choice. In this study, the Sinusoidal filter showed clear advantages for the estimation of low-frequency EEG synchronization.

  10. On the Relation between Composite Right-/Left-Handed Transmission Lines and Chebyshev Filters

    Directory of Open Access Journals (Sweden)

    Changjun Liu

    2009-01-01

    Full Text Available Composite right-/left-handed (CRLH transmission lines have gained great interest in the microwave community. In practical applications, such CRLH sections realized by series and shunt resonators have a finite length. Starting from the observation that a high-order Chebyshev filter also exhibits a periodic central section of very similar structure, the relations between finite length CRHL transmission lines and Chebyshev filters are discussed in this paper. It is shown that a finite length CRLH transmission line in the balanced case is equivalent to the central part of a low-ripple high-order Chebyshev band-pass filter, and a dual-CRLH transmission line in the balanced case is equivalent to a low-ripple high-order Chebyshev band-stop filter. The nonperiodic end sections of a Chebyshev filter can be regarded as matching sections, thus leading to an even better amplitude and phase response. It is also shown that, equally to a CRHL transmission line, a Chebyshev filter exhibits negative phase velocity in part of its passband. As a consequence, an improved behavior of finite length CRLH transmission lines may be achieved adding matching sections based on filter theory; this is demonstrated by a simulation example.

  11. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  12. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    Science.gov (United States)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  13. HEPA filter monitoring program

    Science.gov (United States)

    Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.

    1986-07-01

    The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.

  14. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved........ The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...

  15. UV holographic filters

    Science.gov (United States)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  16. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  17. Chua's circuit and its characterization as a filter

    International Nuclear Information System (INIS)

    Campos-Cantón, I; Segura-Cisneros, O A; Balderas-Navarro, R E; Campos-Cantón, E

    2014-01-01

    This article deals with Chua's circuit characterization from the point of view of a filter based on the concept of piecewise linear functions. Furthermore, experiments are developed for teaching electronic systems that can be used for novel filtering concepts. The frequency range in which they are tested is from 20 Hz to 20 kHz, due to the audio spectrum comprised in this frequency range. The node associated with the capacitor and Chua's diode is used as input, and the node for another capacitor and the coil is used as output, thereby establishing one input–output relationship for each system case given by the piecewise linear functions. The experimental result shows that Chua's circuit behaves as a bandpass filter-amplifier, with a maximum frequency around 3 kHz and bandwidth between 1.5 kHz and 5.5 kHz. The results presented in this paper can motivate engineering students to pursue applications of novel electrical circuits based on topics that are of potential interest in their future research studies. (paper)

  18. Chua's circuit and its characterization as a filter

    Science.gov (United States)

    Campos-Cantón, I.; Segura-Cisneros, O. A.; Balderas-Navarro, R. E.; Campos-Cantón, E.

    2014-11-01

    This article deals with Chua's circuit characterization from the point of view of a filter based on the concept of piecewise linear functions. Furthermore, experiments are developed for teaching electronic systems that can be used for novel filtering concepts. The frequency range in which they are tested is from 20 Hz to 20 kHz, due to the audio spectrum comprised in this frequency range. The node associated with the capacitor and Chua's diode is used as input, and the node for another capacitor and the coil is used as output, thereby establishing one input-output relationship for each system case given by the piecewise linear functions. The experimental result shows that Chua's circuit behaves as a bandpass filter-amplifier, with a maximum frequency around 3 kHz and bandwidth between 1.5 kHz and 5.5 kHz. The results presented in this paper can motivate engineering students to pursue applications of novel electrical circuits based on topics that are of potential interest in their future research studies.

  19. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are......OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...

  20. Oriented Fiber Filter Media

    OpenAIRE

    R. Bharadwaj; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  1. HEPA filter encapsulation

    Science.gov (United States)

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  2. Filter service system

    Science.gov (United States)

    Sellers, Cheryl L [Peoria, IL; Nordyke, Daniel S [Arlington Heights, IL; Crandell, Richard A [Morton, IL; Tomlins, Gregory [Peoria, IL; Fei, Dong [Peoria, IL; Panov, Alexander [Dunlap, IL; Lane, William H [Chillicothe, IL; Habeger, Craig F [Chillicothe, IL

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  3. Intelligibility of bandpass speech: Effects of truncation or removal of transition bands

    Science.gov (United States)

    Warren, Richard M.; Bashford, James A.; Lenz, Peter W.

    2011-01-01

    An intelligibility of over 90% was reported for keywords in “everyday” 1/3-octave sentences centered on 1500 Hz and having steep transition band slopes of 100 dB/octave [Warren et al., Percept. Psychophys. 57, 175–182 (1995)]. A subsequent study by Warren and Bashford [J. Acoust. Soc. Am. 106, L47–L52 (1999)] found that it was not the 1/3-octave passband, but the transition bands that were chiefly responsible for this high intelligibility: When the passband and transition bands were segregated using filter slopes of 1000 dB/octave, the isolated passband had an intelligibility score of only 24%, while the pair of transition bands had a score of over 80%. In the present study, experiment 1 examined the distribution of information along the transition bands' slopes by truncation at graded downpoints: Truncation at downpoints of 40 dB or more produced no significant change in intelligibility. Experiment 2 closed the gap separating the transition bands so that their slopes intersected at 1500 Hz. This triangular band had a negligible passband (as defined conventionally by 3-dB downpoints) and an intelligibility score of 60%; truncation at downpoints of 50 dB or more produced no significant change in intelligibility. Experiment 3 determined the intelligibilities of rectangular bands (1000-dB/octave slopes) centered on 1500 Hz. Their bandwidths ranged from 3 to 12 semitones in 1-semitone steps, resulting in intelligibility scores increasing monotonically from 14% to 94%. Calculations based upon experiments 2 and 3 showed that the triangular band truncated at 30-dB downpoints had half the intelligibility of a rectangular band having the same frequency range. PMID:11008826

  4. Plasma Treatment to Remove Carbon from Indium UV Filters

    Science.gov (United States)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  5. Precise adaptive photonic rf filters realized with adaptive Bragg gratings

    Science.gov (United States)

    Wickham, Michael G.; Upton, Eric L.

    2000-09-01

    The demand for higher data capacity and reduced levels of interference in the communications arena are driving dtat links toward high carrier frequencies and wider modulation bandwidths. Circuitry for performing intermediate frequency processing over these more demanding ranges is needed to provide complex signal processing. We have demonstrated photonics technologies utilizing Bragg Grating Signal Processing (BGSP), which can be used to perform a variety of RF filter functions. The desirable benefits of multiple-tap adaptive finite impulse response (FIR) filters, infinite impulse response (IIR) filters, and equalizers are well known; however, they are usually the province of digital signal processing and demand preprocessor sample rates that require high system power consumption. BGSPs provide these functions with discrete optical taps and digital controls while only requiring bandwidths easily provided by conventional RF circuitry. This is because the actual signal processing of the large information bandwidths is performed in the optical regime, while control functions are performed at RF frequencies compatible with integrated circuit technologies. To realize the performance benefits of photonic processing, the Bragg grating reflectors must be stabilized against environmental without unduly taxing the RF control circuitry. We have implemented a orthogonally coded tap modulation technique which stabilizes the transfer function of the signal processor and enables significant adaptive IF signal processing to be obtained with very low size, weight, and power. Our demonstration of a photonic proof-of-concept architecture is a reconfigurable, multiple-tap FIR filter that is dynamically controlled to implement low-pass, high-pass, band-pass, band-stop, and tunable filters operating over bandwidths of 3 Ghz.

  6. Exhaust gas filter

    International Nuclear Information System (INIS)

    Wada, Tadamasa; Hiraki, Akimitsu.

    1993-01-01

    A filter material formed by joining glass clothes to both surfaces of a glass fiber non-woven fabric is used. The filter material is disposed at the inside of a square filter material support frame made of stainless steel. The filter material is attached in a zig-zag manner in the flowing direction of the exhaust gases so as to increase the filtration area. Separators, for example, made of stainless steel are inserted between the filter materials. The separator is corrugated so as to sandwich and support the filter materials from both sides by the ridged crests. The longitudinal bottom of the separator formed by corrugating it defines a flow channel of the exhaustion gases. The longitudinal bottom is also used as a channel for back blowing air. With such a constitution, combustion gases of radioactive miscellaneous solid wastes can be completely filtered. In addition, a back wash can be conducted under high temperature. (I.N.)

  7. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  8. Comparison of filters: Inkjet printed on PEN substrate versus a laser-etched on LCP substrate

    KAUST Repository

    Arabi, Eyad A.

    2014-10-01

    In this paper, microstrip-based bandpass filters on polyethylene naphthalate (PEN) and liquid crystal polymers (LCP) are presented to investigate the performance of filters on ultra-thin substrates. PEN (with a thickness of 120 μm) has been characterized and used for a filter for the first time. In addition to being low cost and transparent, it demonstrates comparable RF performance to LCP. The conductor losses are compared by fabricating filters with inkjet printed lines as well as laser etched copper clad LCP sheets. With 5 layers of inkjet printing, and a curing temperature below 200°C, a final silver thickness of 2 μm and conductivity of 9.6 × 106 S/m are achieved. The designs are investigated at two frequencies, 24 GHz as well as 5 GHz to assess their performance at high and low frequencies respectively. The 24 GHz inkjet printed filter shows an insertion loss of 2 dB, while the 5 GHz design gives an insertion loss of 8 dB. We find that thin substrates have a strong effect on the insertion loss of filters especially as the frequency is reduced. The same design, realized on LCP (thickness of 100 μm) through laser etching, demonstrates a very similar performance, thus verifying this finding. © 2014 European Microwave Association.

  9. Passive ranging using a filter-based non-imaging method based on oxygen absorption.

    Science.gov (United States)

    Yu, Hao; Liu, Bingqi; Yan, Zongqun; Zhang, Yu

    2017-10-01

    To solve the problem of poor real-time measurement caused by a hyperspectral imaging system and to simplify the design in passive ranging technology based on oxygen absorption spectrum, a filter-based non-imaging ranging method is proposed. In this method, three bandpass filters are used to obtain the source radiation intensities that are located in the oxygen absorption band near 762 nm and the band's left and right non-absorption shoulders, and a photomultiplier tube is used as the non-imaging sensor of the passive ranging system. Range is estimated by comparing the calculated values of band-average transmission due to oxygen absorption, τ O 2 , against the predicted curve of τ O 2 versus range. The method is tested under short-range conditions. Accuracy of 6.5% is achieved with the designed experimental ranging system at the range of 400 m.

  10. High-Input and Low-Output Impedance Voltage-Mode Universal DDCC and FDCCII Filter

    Science.gov (United States)

    Chen, Hua-Pin; Yang, Wan-Shing

    Despite the extensive literature on current conveyor-based universal (namely, low-pass, band-pass, high-pass, notch, and all-pass) biquads with three inputs and one output, no filter circuits have been reported to date which simultaneously achieve the following seven important features: (i) employment of only two current conveyors, (ii) employment of only grounded capacitors, (iii) employment of only grounded resistors, (iv) high-input and low-output impedance, (v) no need to employ inverting type input signals, (vi) no need to impose component choice conditions to realize specific filtering functions, and (vii) low active and passive sensitivity performances. This letter describes a new voltage-mode biquad circuit that satisfies all the above features simultaneously, and without trade-offs.

  11. Atomic Faraday filter with equivalent noise bandwidth less than 1 GHz.

    Science.gov (United States)

    Zentile, Mark A; Whiting, Daniel J; Keaveney, James; Adams, Charles S; Hughes, Ifan G

    2015-05-01

    We demonstrate an atomic bandpass optical filter with an equivalent noise bandwidth less than 1 GHz using the D1 line in a cesium vapor. We use the ElecSus computer program to find optimal experimental parameters and find that, for important quantities, the cesium D1 line clearly outperforms other alkali metals on either D-lines. The filter simultaneously achieves a peak transmission of 77%, a passband of 310 MHz, and an equivalent noise bandwidth of 0.96 GHz, for a magnetic field of 45.3 G and a temperature of 68.0°C. Experimentally, the prediction from the model is verified. The experiment and theoretical predictions show excellent agreement.

  12. Design of a Broadband Parallel-Coupled Microstrip Filters without Spurious Resonances

    Directory of Open Access Journals (Sweden)

    Maher M. Abd-Elrazzak

    2007-01-01

    Full Text Available A design of parallel-coupled microstrip bandpass filters without spurious resonance is presented. Two different techniques are used to eliminate this response at twice the passband frequency (2fo. The first one is based on usage of suspended substrate, while the second is carried out by shorting the parallel-coupled lines to the ground plane through two shorting walls. The numerical results show that a broadband filter can be obtained by the suppression of the spurious response. The finite difference time domain (FDTD with the perfect matched layer (PML is used in the present analysis. The obtained results are compared with the available published data and good agreements are found.

  13. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    M. İlarslan

    2014-09-01

    Full Text Available Herein, a new methodology using a 3D Electromagnetic (EM simulator-based Support Vector Regression Machine (SVRM models of base elements is presented for band-pass filter (BPF design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA to optimize an ultra-wideband (UWB microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genetic Algorithm (GA and Particle Swarm Optimization (PSO. As an example of the proposed design methodology, an UWB BPF that operates between the frequencies of 3.1 GHz and 10.6 GHz is designed, fabricated and measured. The simulation and measurement results indicate in conclusion the superior performance of this optimization methodology in terms of improved filter response characteristics like return loss, insertion loss, harmonic suppression and group delay.

  14. Customized broadband Sloan-filters for the JST/T250 and JAST/T80 telescopes: measurement summary

    Science.gov (United States)

    Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio

    2018-01-01

    The Centro de Estudios de Fisica del Cosmos de Aragon will conduct a photometric sky survey with two new telescopes recently set up on the Javalambre mountain in Spain: the JST/T250 is a 2.55-m telescope with a plate scale of 22.67 arc⁢sec/mm and a 3-deg-diameter field of view (FoV) and the auxiliary telescope JAST/T80 with a 82-cm primary mirror and an FoV of 2 deg diameter. A multiple CCD (9k-by-9k array size, 10-μm pixel size) mosaic camera is used in combination with filter trays or filter wheels, each containing a multitude of filters in dimensions of 101.7×96.5 mm or 106.8×106.8 mm. For this project, Schott manufactured 56 specially designed narrow band steep-edged bandpass interference filters and five broadband Sloan-filters which were completed only recently. We report here on the results of the broadband Sloan-filters with transmission bands of 324 to 400 nm (Sloan-u), 400 to 550 nm (Sloan-g), 550 to 700 nm (Sloan-r), 695 to 850 nm (Sloan-i), and 830 to 1200 nm (Sloan-z). The filters are composed of Schott filterglasses and clearglass substrates coated with interference filters and represent an improvement of broadband Sloan filters commonly used in astronomy. In spite of the absorptive elements, the filters show maximum possible transmissions achieved by magnetron sputtered filter coatings. In addition, the blocking of the filters is better than OD5 (transmission <10 to -5) in the range 250 to 1050 nm which was achieved by combining up to three substrates. A high image quality required a low transmitted wavefront error (<λ/8 locally, respectively <λ/2 globally). We report on the spectral and interferometric results measured on the filters.

  15. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  16. The diffuse ensemble filter

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-07-01

    Full Text Available A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF, is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF and the Diffuse Ensemble Transform Kalman Filter (DETKF, are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious

  17. Substrate integrated waveguide filter showing improved stopband performance and fractional bandwidth using different input/output topologies

    Science.gov (United States)

    Kumari, Puja; Mudiganti, Jagadish Chandra

    2017-11-01

    In this work bandpass filter based on SIW technology with an adequate fractional bandwidth as well as refinement in the stopband performance is presented. Its application lies with the receiver filter working in the Ka band used mainly in the ground terminal for satellite communication. Additionally analysis of divergent input/output arrangement is also demonstrated. Three SIW filter having a varying passband from 19.2GHz -21.2GHz depending on the input/output are synthesized on a planar substrate having height of 0.508mm RT/duroid 6002 using periodically arranged metal via holes through a regulated PCB process. Simulated outputs has a in-band insertion loss 0.9dB and the improved stopband attenuation within the frequency range of 29.5GHz – 31GHz is around 45 dB. It is observed that the experimented results coincide completely with the results simulated in HFSS/CST.

  18. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded.......Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...

  19. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  20. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  1. Variational Bayesian Filtering

    Czech Academy of Sciences Publication Activity Database

    Šmídl, Václav; Quinn, A.

    2008-01-01

    Roč. 56, č. 10 (2008), s. 5020-5030 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian filtering * particle filtering * Variational Bayes Subject RIV: BC - Control Systems Theory Impact factor: 2.335, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/smidl-variational bayesian filtering.pdf

  2. Enabling HST UV Exploration of the Low Surface Brightness Universe: A Pilot Study with the WFC3 X Filter Set

    Science.gov (United States)

    Thilker, David

    2017-08-01

    We request 17 orbits to conduct a pilot study to examine the effectiveness of the WFC3/UVIS F300X filter for studying fundamental problems in star formation in the low density regime. In principle, the broader bandpass and higher throughput of F300X can halve the required observing time relative to F275W, the filter of choice for studying young stellar populations in nearby galaxies. Together with F475W and F600LP, this X filter set may be as effective as standard UVIS broadband filters for characterizing the physical properties of such populations. We will observe 5 low surface brightness targets with a range of properties to test potential issues with F300X: the red tail to 4000A and a red leak beyond, ghosts, and the wider bandpass. Masses and ages of massive stars, young star clusters, and clumps derived from photometry from the X filter set will be compared with corresponding measurements from standard filters. Beyond testing, our program will provide the first sample spanning a range of LSB galaxy properties for which HST UV imaging will be obtained, and a glimpse into the ensemble properties of the quanta of star formation in these strange environments. The increased observing efficiency would make more tractable programs which require several tens to hundreds of orbits to aggregate sufficient numbers of massive stars, young star clusters, and clumps to build statistical samples. We are hopeful that our pilot observations will broadly enable high-resolution UV imaging exploration of the low density frontier of star formation while HST is still in good health.

  3. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  4. Independent task Fourier filters

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    Since the early 1960s, a major part of optical computing systems has been Fourier pattern recognition, which takes advantage of high speed filter changes to enable powerful nonlinear discrimination in `real time.' Because filter has a task quite independent of the tasks of the other filters, they can be applied and evaluated in parallel or, in a simple approach I describe, in sequence very rapidly. Thus I use the name ITFF (independent task Fourier filter). These filters can also break very complex discrimination tasks into easily handled parts, so the wonderful space invariance properties of Fourier filtering need not be sacrificed to achieve high discrimination and good generalizability even for ultracomplex discrimination problems. The training procedure proceeds sequentially, as the task for a given filter is defined a posteriori by declaring it to be the discrimination of particular members of set A from all members of set B with sufficient margin. That is, we set the threshold to achieve the desired margin and note the A members discriminated by that threshold. Discriminating those A members from all members of B becomes the task of that filter. Those A members are then removed from the set A, so no other filter will be asked to perform that already accomplished task.

  5. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed......Filtering every global constraint of a CPS to are consistency at every search step can be costly and solvers often compromise on either the level of consistency or the frequency at which are consistency is enforced. In this paper we propose two randomized filtering schemes for dense instances...

  6. Difference between irregular chaotic patterns of second-order double-loop ΣΔ modulators and second-order interpolative bandpass ΣΔ modulators

    OpenAIRE

    Ho, Charlotte Yuk-Fan; Ling, Bingo Wing-Kuen; Reiss, Joshua D.

    2007-01-01

    In this paper, we find that, by computing the difference between two consecutive state vectors of second-order double-loop sigma-delta modulators (SDMs) and plotting one component of the subtracted vectors against the other component, irregular chaotic patterns will become two vertical lines. By multiplying a matrix on the subtracted vectors, it can be further transformed to two fixed points. However, second-order interpolative bandpass SDMs still exhibit chaotic behaviors after applying the ...

  7. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  8. Difference between irregular chaotic patterns of second-order double-loop {sigma}{delta} modulators and second-order interpolative bandpass {sigma}{delta} modulators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Charlotte Yuk-Fan [Department of Electronic Engineering, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)]. E-mail: charlotte.ho@elec.qmul.ac.uk; Ling, Bingo Wing-Kuen [Department of Electronic Engineering, Division of Engineering, King' s College London, Strand, London WC2R 2LS (United Kingdom)]. E-mail: wing-kuen.ling@kcl.ac.uk; Reiss, Joshua D. [Department of Electronic Engineering, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)]. E-mail: josh.reiss@elec.qmul.ac.uk

    2007-08-15

    In this paper, we find that, by computing the difference between two consecutive state vectors of second-order double-loop sigma-delta modulators (SDMs) and plotting one component of the subtracted vectors against the other component, irregular chaotic patterns will become two vertical lines. By multiplying a matrix on the subtracted vectors, it can be further transformed to two fixed points. However, second-order interpolative bandpass SDMs still exhibit chaotic behaviors after applying the same transformations. Moreover, it is found that the Lyapunov exponent of state vectors of second-order double-loop SDMs is higher than that of second-order interpolative bandpass SDMs, whereas the Lyapunov exponent of transformed vectors becomes negative infinity for second-order double-loop SDMs and increases for second-order interpolative bandpass SDMs. Hence, by examining the occurrence of chaotic behaviors of the transformed vectors of these two SDMs, these two SDMs can be distinguished from their state vectors and their transformed vectors without solving the state equations and knowing the information of input signals.

  9. One watt gallium arsenide class-E power amplifier with a thin-film bulk acoustic resonator filter embedded in the output network

    Directory of Open Access Journals (Sweden)

    Kyle Holzer

    2015-05-01

    Full Text Available Integration of a class-E power amplifier (PA and a thin-film bulk acoustic wave resonator (FBAR filter is shown to provide high power added efficiency in addition to superior out-of-band spectrum suppression. A discrete gallium arsenide pseudomorphic high-electron-mobility transistor is implemented to operate as a class-E amplifier from 2496 to 2690 MHz. The ACPF7041 compact bandpass FBAR filter is incorporated to replace the resonant LC tank in a traditional class-E PA. To reduce drain voltage stress, the supply choke is replaced by a finite inductance. The fabricated PA provides up to 1 W of output power with a peak power added efficiency (PAE of 58%. The improved out-of-band spectrum filtering is compared to a traditional class-E with discrete LC resonant filtering. Such PAs can be combined with linearisation techniques to reduce out-of-band emissions.

  10. Customized broadband sloan-filters for the JST/T250 and JAST/T80 telescopes: summary of results

    Science.gov (United States)

    Brauneck, U.; Sprengard, R.; Bourquin, S.; Marín-Franch, A.

    2017-09-01

    The Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) will conduct a photometric sky survey with 2 new telescopes recently setup on the Javalambre mountain in Spain: the JST/T250 is a 2.55m telescope with a plate scale of 22.67"/mm and a 3° diameter field of view (FoV) and the auxiliary telescope JAST/T80 with a 82cm primary mirror and a FoV of 2 deg diameter. A multiple CCD (9k-by-9k array size, 10μm pixel size) mosaic camera is used in combination with filter trays or filter wheels, each containing a multitude of filters in dimensions of 101.7x96.5mm or 106.8x106.8mm. For this project, SCHOTT manufactured 56 specially designed narrow band steep edged bandpass interference filters and 5 broadband sloan-filters which were completed only recently. We report here on the results of the broadband sloanfilters with transmission bands of 324-400nm (sloan-u), 400-550nm (sloan-g), 550-700nm (sloan-r), 695-850nm (sloan-i) and 830-1200nm (sloan-z). The filters are composed of SCHOTT filterglasses and clearglass substrates coated with interference filters and represent an improvement of broadband sloan filters commonly used in astronomy. Inspite of the absorptive elements, the filters show maximum possible transmissions achieved by magnetron sputtered filter coatings. In addition the blocking of the filters is better than OD5 in the range 250-1050nm. A high image quality required a low transmitted wavefront error (<λ/8 locally, respectively <λ/2 globally) which was achieved by combining up to 2 substrates. We report on the spectral and interferometric results measured on the filters.

  11. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  12. Interdigital filter design

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2009-10-01

    Full Text Available A new synthesis procedure for interdigital filters with shorted-pin feeds is developed by relating the coupling factors and external Qs to the physical structure of the filter. This new procedure is easily understood and applied, extremely flexible...

  13. A high temperature superconductor notch filter for the Sardinia Radio Telescope

    Science.gov (United States)

    Bolli, Pietro; Cresci, Luca; Huang, Frederick; Mariotti, Sergio; Panella, Dario

    2018-03-01

    A High Temperature Superconductor filter operating in the C-band between 4200 and 5600 MHz has been developed for one of the radio astronomical receivers of the Sardinia Radio Telescope. The motivation was to attenuate an interference from a weather radar at 5640 MHz, whose power level exceeds the linear region of the first active stages of the receiver. A very sharp transition after the nominal maximum passband frequency is reached by combining a 6th order band-pass filter with a 6th order stop-band. This solution is competitive with an alternative layout based on a cascaded triplet filter. Three units of the filter have been measured with two different calibration approaches to investigate pros and cons of each, and data repeatability. The final performance figures of the filters are: ohmic losses of the order of 0.15-0.25 dB, matching better than -15 dB, and -30 dB attenuation at 5640 MHz. Finally, a more accurate model of the connection between external connector and microstrip shows a better agreement between simulations and experimental data.

  14. Monte-Carlo modelling to determine optimum filter choices for sub-microsecond optical pyrometry

    Science.gov (United States)

    Ota, Thomas A.; Chapman, David J.; Eakins, Daniel E.

    2017-04-01

    When designing a spectral-band pyrometer for use at high time resolutions (sub-μs), there is ambiguity regarding the optimum characteristics for a spectral filter(s). In particular, while prior work has discussed uncertainties in spectral-band pyrometry, there has been little discussion of the effects of noise which is an important consideration in time-resolved, high speed experiments. Using a Monte-Carlo process to simulate the effects of noise, a model of collection from a black body has been developed to give insights into the optimum choices for centre wavelength and passband width. The model was validated and then used to explore the effects of centre wavelength and passband width on measurement uncertainty. This reveals a transition centre wavelength below which uncertainties in calculated temperature are high. To further investigate system performance, simultaneous variation of the centre wavelength and bandpass width of a filter is investigated. Using data reduction, the effects of temperature and noise levels are illustrated and an empirical approximation is determined. The results presented show that filter choice can significantly affect instrument performance and, while best practice requires detailed modelling to achieve optimal performance, the expression presented can be used to aid filter selection.

  15. China exported birefringent filter

    Science.gov (United States)

    Li, Ting; Mao, Weijun; Lu, Haitian; Zhu, Yong

    2001-09-01

    Since 1960s, Nanjing Astronomical Instrument Research center of CAS have been developing the birefringent filters for China solar observatories, the most famous one in the world is the 0.15Å(0.12Å)/5324Å(4861Å) filter for the 35cm Solar Magnetic Field Telescope of the Huairou Solar Station of Beijing Observatory. The big success in the field of Lyot filter has been proved by the international solar physics circle, since 1988, Japanese and Korean astronomers have been paying a lot of orders for making Lyot filters from China, up to now we have exported 11 sets of such sophisticated optical instruments, they have been used for routine solar observations in the observatories and planetaria in the two countries. We also begin to repair old Lyot filters made by Germany and France from foreign countries, as India and Germany.

  16. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  17. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  18. Optimization of spectral filtering parameters of acousto-optic pure rotational Raman lidar for atmospheric temperature profiling

    Science.gov (United States)

    Zhu, Jianhua; Wan, Lei; Nie, Guosheng; Guo, Xiaowei

    2003-12-01

    In this paper, as far as we know, it is the first time that a novel acousto-optic pure rotational Raman lidar based on acousto-optic tunable filter (AOTF) is put forward for the application of atmospheric temperature measurements. AOTF is employed in the novel lidar system as narrow band-pass filter and high-speed single-channel wavelength scanner. This new acousto-optic filtering technique can solve the problems of conventional pure rotational Raman lidar, e.g., low temperature detection sensitivity, untunability of filtering parameters, and signal interference between different detection channels. This paper will focus on the PRRS physical model calculation and simulation optimization of system parameters such as the central wavelengths and the bandwidths of filtering operation, and the required sensitivity. The theoretical calculations and optimization of AOTF spectral filtering parameters are conducted to achieve high temperature dependence and sensitivity, high signal intensities, high temperature of filtered spectral passbands, and adequate blocking of elastic Mie and Rayleigh scattering signals. The simulation results can provide suitable proposal and theroetical evaluation before the integration of a practical Raman lidar system.

  19. A Comb Filter Design Method Using Linear Phase FIR Filter

    Science.gov (United States)

    Sugiura, Yosuke; Kawamura, Arata; Iiguni, Youji

    This paper proposes a comb filter design method which utilizes two linear phase FIR filters for flexibly adjusting the comb filter's frequency response. The first FIR filter is used to individually adjust the notch gains, which denote the local minimum gains of the comb filter's frequency response. The second FIR filter is used to design the elimination bandwidths for individual notch gains. We also derive an efficient comb filter by incorporating these two FIR filters with an all-pass filter which is used in a conventional comb filter to accurately align the nulls with the undesired harmonic frequencies. Several design examples of the derived comb filter show the effectiveness of the proposed comb filter design method.

  20. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  1. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  2. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  3. Dust filter testing

    International Nuclear Information System (INIS)

    Dupoux, J.

    1975-01-01

    The composition of dust filters used in cleanup systems for radioactive gaseous effluents is described as well as the technical controls, especially efficiency measured by a soda fluorescein aerosol [fr

  4. Vena cava filter

    International Nuclear Information System (INIS)

    Helmberger, T.

    2007-01-01

    Fulminant pulmonary embolism is one of the major causes of death in the Western World. In most cases, deep leg and pelvic venous thrombosis are the cause. If an anticoagulant/thrombotic therapy is no longer possible or ineffective, a vena cava filter implant may be indicated if an embolism is threatening. Implantation of the filter is a simple and safe intervention. Nevertheless, it is necessary to take into consideration that the data base for determining the indications for this treatment are very limited. Currently, a reduction in the risk of thromboembolism with the use of filters of about 30%, of recurrences of almost 5% and fatal pulmonary embolism of 1% has been reported, with a risk of up to 20% of filter induced vena cava thrombosis. (orig.) [de

  5. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  6. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  7. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  8. Switching power supply filter

    Science.gov (United States)

    Kumar, Prithvi R. (Inventor); Abare, Wayne (Inventor)

    1989-01-01

    A filter for a switching power supply. The filter includes a common mode inductor with coil configurations allowing differential mode current from a dc source to pass through but attenuating common mode noise from the power supply so that the noise does not reach the dc source. The invention also includes the use of feed through capacitors at the switching power supply input terminals to provide further high-frequency noise attenuation.

  9. Spatial filter issues

    International Nuclear Information System (INIS)

    Murray, J.E.; Estabrook, K.G.; Milam, D.; Sell, W.D.; Van Wonterghem, R.M.; Feil, M.D.; Rubenchick, A.M.

    1996-01-01

    Experiments and calculations indicate that the threshold pressure in spatial filters for distortion of a transmitted pulse scales approximately as I O.2 and (F number-sign) 2 over the intensity range from 10 14 to 2xlO 15 W/CM 2 . We also demonstrated an interferometric diagnostic that will be used to measure the scaling relationships governing pinhole closure in spatial filters

  10. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  11. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    Used ventilation filters are a major source of sensory pollutants in air handling systems. The objective of the present study was to evaluate the net effect that different combinations of filters had on perceived air quality after 5 months of continuous filtration of outdoor suburban air. A panel...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  12. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    Science.gov (United States)

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  13. Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2013-06-01

    Full Text Available This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory.

  14. A three-mode microstrip resonator and a miniature ultra-wideband filter based on it

    Science.gov (United States)

    Belyaev, B. A.; Khodenkov, S. A.; Leksikov, An. A.; Shabanov, V. F.

    2017-06-01

    An original microstrip resonator design with a strip conductor split by a slot at one of its ends is investigated. It is demonstrated that at the optimal slot sizes, when the eigenfrequency of the second oscillation mode hits the center between the first and third oscillation modes, the resonator can work as a thirdorder bandpass filter. The structure formed from only two such resonators electromagnetically coupled by split conductor sections is a miniature six-order wideband filter with high selectivity. The test prototype of the filter with a central passband frequency of 1.2 GHz and a passband width of 0.75 GHz fabricated on a substrate (45 × 11 × 1) mm3 in size with a permittivity of 80 is characterized by minimum loss in a passband of 0.5 dB. The parametric synthesis of the filter structure was performed using electrodynamic analysis of the 3D model. The measured characteristics of the test prototype agree well with the calculated data.

  15. Quasi-Optical Filter Development and Characterization for Far-IR Astronomical Applications

    Science.gov (United States)

    Stewart, Kenneth

    Mid-infrared through microwave filters, beamsplitters, and polarizers are a crucial supporting technology for NASA’s space astronomy, astrophysics, and earth science programs. Building upon our successful production of mid-infrared, far-infrared, millimeter, and microwave bandpass and lowpass filters, we propose to investigate aspects of their optical performance that are still not well understood and have yet to be addressed by other researchers. Specifically, we wish to understand and mitigate unexplained high-frequency leaks found to degrade or invalidate spectroscopic data from flight instruments such as Herschel/PACS, SHARC II, GISMO, and ACT, but not predicted by numerical simulations. A complete understanding will improve accuracy and sensitivity, and will enable the mass and volume of cryogenic baffling to be appropriately matched to the physically achievable quasioptical filter response, thereby reducing the cost of future far-infrared missions. The development and experimental validation of this modeling capability will enable optimization of system performance as well as reduce risks to the schedule and end science products for all future space and suborbital missions that use quasioptical filters. The outcome of this work will be critical in achieving the exacting background-limited bolometric detector performance specifications of future far-infrared and submillimeter space instruments. This program will allow us to apply our unique in-house numerical simulation software and develop enhanced layer alignment, filter fabrication, and testing techniques for the first time to address these issues: (1) enhance filter performance, (2) simplify the optical architecture of future instruments by improving our understanding of high-frequency leaks, and (3) produce filters which minimize or eliminate these important effects. With our state-ofthe-art modeling, fabrication, and testing facilities and expertise, established in previous projects, we are uniquely

  16. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  17. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  18. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    “Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  19. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  20. Automated electronic filter design

    CERN Document Server

    Banerjee, Amal

    2017-01-01

    This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

  1. A Current-mode Electronically Controllable Multifunction Biquadratic Filter Using CCCIIs

    Directory of Open Access Journals (Sweden)

    MONTREE SIRIPRUCHYANUN

    2013-03-01

    Full Text Available This article presents a current-mode multifunction biquadratic filter performing completely standard functions low-pass, high-pass, band-pass, band-reject and all-pass functions. The circuit principle is based on second-generation current-controlled current conveyor (CCCII with three input terminals and one output terminal. The features of the circuit are that, the pole frequency can be electronically tuned via the input bias currents. The circuit topology is very simple, consisting of merely 2 CCCIIs and 2 grounded capacitors. Without any external resistor and using only grounded elements, the proposed circuit is very comfortable to further develop into an integrated circuit architecture. The PSpice simulation results are shown. The given results agree well with the theoretical anticipation. The total power consumption is approximately 1.87mW at ±1.5V power supply voltages.

  2. New electronically tunable current-mode universal biquad filter using translinear current conveyors

    Science.gov (United States)

    Kumngern, Montree; Jongchanachavawat, Wirote; Dejhan, Kobchai

    2010-05-01

    In this study, a new electronically tunable current-mode universal filter with two inputs and two outputs employing one translinear current conveyor, one translinear current conveyor with controlled current gain and two grounded capacitors is presented. The proposed circuit offers the following attractive features: realisation of low-pass, band-pass, high-pass, band-stop and all-pass current responses from the same configuration; employment of the minimum active and passive components; no requirement of component matching conditions; independent current-control of the parameters natural frequency (ωo) and quality factor (Q); low active and passive sensitivities; and high impedance output. The characteristics of the proposed circuit are simulated using PSPICE to confirm the theory.

  3. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  4. Alarm filtering and presentation

    International Nuclear Information System (INIS)

    Bray, M.A.

    1989-01-01

    This paper discusses alarm filtering and presentation in the control room of nuclear and other process control plants. Alarm generation and presentation is widely recognized as a general process control problem. Alarm systems often fail to provide meaningful alarms to operators. Alarm generation and presentation is an area in which computer aiding is feasible and provides clear benefits. Therefore, researchers have developed several computerized alarm filtering and presentation approaches. This paper discusses problems associated with alarm generation and presentation. Approaches to improving the alarm situation and installation issues of alarm system improvements are discussed. The impact of artificial intelligence (AI) technology on alarm system improvements is assessed. (orig.)

  5. SU-F-J-28: Development of a New Imaging Filter to Remove the Shadows From the Carbon Fiber Grid Table Top

    Energy Technology Data Exchange (ETDEWEB)

    Maehana, W [Kanagawa Cancer Center, Yokohama, Kanagawa (Japan); Yokohama National University, Yokohama, kanagawa (Japan); Nagao, T [Yokohama National University, Yokohama, kanagawa (Japan)

    2016-06-15

    Purpose: For the image guided radiation therapy (IGRT), the shadows caused by the construction of the treatment couch top adversely affect the visual evaluation. Therefore, we developed the new imaging filter in order to remove the shadows. The performance of the new filter was evaluated using the clinical images. Methods: The new filter was composed of the band-pass filter (BPF) weighted by the k factor and the low-pass filter (LPF). In the frequency region, the stop bandwidth were 8.3×10{sup 3} mm{sup −1} on u direction and 11.1×10{sup 3} mm{sup −1} on v direction for the BPF, and the pass bandwidth were 8.3×10{sup 3} mm{sup −1} on u direction and 11.1×10{sup 3} mm{sup −1} on v direction for the LPF. After adding the filter, the shadows from the carbon fiber grid table top (CFGTT, Varian) on the kV-image was removed. To check the filter effect, we compared the clinical images, which are thorax and thoracoabdominal region, with to without the filter. The subjective evaluation tests was performed by adapting a three-point scale (agree, neither agree nor disagree, disagree) about the 15 persons in the department of radiation oncology. Results: We succeeded in removing all shadows of CFGTT using the new filter. This filter is very useful shown by the results of the subjective evaluation having the 23/30 persons agreed to the filtered clinical images. Conclusion: We concluded that the proposed method was useful tool for the IGRT and the new filter leads to improvement of the accuracy of radiation therapy.

  6. CDBA-Based Universal Biquad Filter and Quadrature Oscillator

    Directory of Open Access Journals (Sweden)

    Worapong Tangsrirat

    2008-01-01

    Full Text Available The voltage-mode universal biquadratic filter and sinusoidal quadrature oscillator based on the use of current differencing buffered amplifiers (CDBAs as active components have been proposed in this paper. All the proposed configurations employ only two CDBAs and six passive components. The first proposed CDBA-based biquad configuration can realize all the standard types of the biquadratic functions, that is, lowpass, bandpass, highpass, bandstop, and allpass, from the same topology, and can also provide orthogonal tuning of the natural angular frequency (ωo and the bandwidth (BW through separate virtually grounded passive components. By slight modification of the first proposed configuration, the new CDBA-based sinusoidal quadrature oscillator is easily obtained. The oscillation condition and the oscillation frequency are independently adjustable by different virtually grounded resistors. The sensitivity analysis of all proposed circuit configurations is shown to be low. PSPICE simulations and experimental results based upon commercially available AD844-type CFAs are included, which confirm the workability of the proposed circuits.

  7. Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters

    Directory of Open Access Journals (Sweden)

    Gonzalez Juan G

    2002-01-01

    Full Text Available Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove several fundamental properties of this estimator and show its optimality in practical impulsive models such as the -stable and generalized- . We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting scheme is utilized. We derive the "normal" equations for the optimal myriad filter, and introduce a suboptimal methodology for filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with several examples.

  8. Comparison of different types of commercial filtered backprojection and ordered-subset expectation maximization SPECT reconstruction software.

    Science.gov (United States)

    Seret, Alain; Forthomme, Julien

    2009-09-01

    The aim of this study was to compare the performance of filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM) reconstruction algorithms available in several types of commercial SPECT software. Numeric simulations of SPECT acquisitions of 2 phantoms were used: the National Electrical Manufacturers Association line phantom used for the assessment of SPECT resolution and a phantom with uniform, hot-rod, and cold-rod compartments. For FBP, no filtering and filtering of the projections with either a Butterworth filter (order 3 or 6) or a Hanning filter at various cutoff frequencies were considered. For OSEM, the number of subsets was 1, 4, 8, or 16, and the number of iterations was chosen to obtain a product number of iterations times the number of subsets equal to 16, 32, 48, or 64. The line phantom enabled us to obtain the reconstructed central, radial, and tangential full width at half maximum. The uniform compartment of the second phantom delivered the reconstructed mean pixel counts and SDs from which the coefficients of variation were calculated. Hot contrast and cold contrast were obtained from its rod compartments. For FBP, the full width at half maximum, mean pixel count, coefficient of variation, and contrast were almost software independent. The only exceptions were a smaller (by 0.5 mm) full width at half maximum for one of the software types, higher mean pixel counts for 2 of the software types, and better contrast for 2 of the software types under some filtering conditions. For OSEM, the full width at half maximum differed by 0.1-2.5 mm with the different types of software but was almost independent of the number of subsets or iterations. There was a marked dependence of the mean pixel count on the type of software used, and there was a moderate dependence of the coefficient of variation. Contrast was almost software independent. The mean pixel count varied greatly with the number of iterations for 2 of the software types, and

  9. The ATLAS event filter

    CERN Document Server

    Beck, H P; Boissat, C; Davis, R; Duval, P Y; Etienne, F; Fede, E; Francis, D; Green, P; Hemmer, F; Jones, R; MacKinnon, J; Mapelli, Livio P; Meessen, C; Mommsen, R K; Mornacchi, Giuseppe; Nacasch, R; Negri, A; Pinfold, James L; Polesello, G; Qian, Z; Rafflin, C; Scannicchio, D A; Stanescu, C; Touchard, F; Vercesi, V

    1999-01-01

    An overview of the studies for the ATLAS Event Filter is given. The architecture and the high level design of the DAQ-1 prototype is presented. The current status if the prototypes is briefly given. Finally, future plans and milestones are given. (11 refs).

  10. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  11. Filter and Passband Problems

    Science.gov (United States)

    Young, A. T.

    1984-01-01

    Problems associated with achieving precision in photometric measurements of stars are examined. The thermal stabilization of glass and interference filters and the determination of correct analytic representations of bandwidth effects in data reduction are particularly discussed. Spectral sampling requirements are also addressed.

  12. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  13. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2014-01-01

    Full Text Available This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs, two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  14. Versatile tunable current-mode universal biquadratic filter using MO-DVCCs and MOSFET-based electronic resistors.

    Science.gov (United States)

    Chen, Hua-Pin

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  15. Digital Simulation of a Hybrid Active Filter - An Active Filter in Series with a Shunt Passive Filter

    OpenAIRE

    Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V

    1998-01-01

    Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.

  16. Transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz

    Science.gov (United States)

    Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.

    2013-12-01

    We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.

  17. Numerical study of canister filters with alternatives filter cap configurations

    Science.gov (United States)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  18. Digital Filters for Low Frequency Equalization

    DEFF Research Database (Denmark)

    Tyril, Marni; Abildgaard, J.; Rubak, Per

    2001-01-01

    Digital filters with high resolution in the low-frequency range are studied. Specifically, for a given computational power, traditional IIR filters are compared with warped FIR filters, warped IIR filters, and modified warped FIR filters termed warped individual z FIR filters (WizFIR). The results...... indicate that IIR filters are the most effective in a number of situations....

  19. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...... amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude...

  20. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  1. Multiple sound source localization using gammatone auditory filtering and direct sound componence detection

    Science.gov (United States)

    Chen, Huaiyu; Cao, Li

    2017-06-01

    In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.

  2. Effect of input signal and filter parameters on patterning effect in a semiconductor optical amplifier

    Science.gov (United States)

    Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta

    2013-11-01

    A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.

  3. The Rao-Blackwellized Particle Filter: A Filter Bank Implementation

    Directory of Open Access Journals (Sweden)

    Karlsson Rickard

    2010-01-01

    Full Text Available For computational efficiency, it is important to utilize model structure in particle filtering. One of the most important cases occurs when there exists a linear Gaussian substructure, which can be efficiently handled by Kalman filters. This is the standard formulation of the Rao-Blackwellized particle filter (RBPF. This contribution suggests an alternative formulation of this well-known result that facilitates reuse of standard filtering components and which is also suitable for object-oriented programming. Our RBPF formulation can be seen as a Kalman filter bank with stochastic branching and pruning.

  4. On fractional filtering versus conventional filtering in economics

    Science.gov (United States)

    Nigmatullin, Raoul R.; Omay, Tolga; Baleanu, Dumitru

    2010-04-01

    In this study, we compare the Hodrick-Prescott Filter technique with the Fractional filtering technique that has recently started to be used in various applied sciences like physics, engineering, and biology. We apply these filtering techniques to quarterly GDP data from Turkey for the period 1988:1-2003:2. The filtered series are analyzed using Minimum Square Error (MSE) and real life evidence. In the second part of the study, we use simulated data to analyze the statistical properties of the aforementioned filtering techniques.

  5. Multilevel particle filter

    KAUST Repository

    Law, Kody

    2016-01-06

    This talk will pertain to the filtering of partially observed diffusions, with discrete-time observations. It is assumed that only biased approximations of the diffusion can be obtained, for choice of an accuracy parameter indexed by l. A multilevel estimator is proposed, consisting of a telescopic sum of increment estimators associated to the successive levels. The work associated to O( 2) mean-square error between the multilevel estimator and average with respect to the filtering distribution is shown to scale optimally, for example as O( 2) for optimal rates of convergence of the underlying diffusion approximation. The method is illustrated on some toy examples as well as estimation of interest rate based on real S&P 500 stock price data.

  6. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate...

  7. Matched-Filter Thermography

    Directory of Open Access Journals (Sweden)

    Nima Tabatabaei

    2018-04-01

    Full Text Available Conventional infrared thermography techniques, including pulsed and lock-in thermography, have shown great potential for non-destructive evaluation of broad spectrum of materials, spanning from metals to polymers to biological tissues. However, performance of these techniques is often limited due to the diffuse nature of thermal wave fields, resulting in an inherent compromise between inspection depth and depth resolution. Recently, matched-filter thermography has been introduced as a means for overcoming this classic limitation to enable depth-resolved subsurface thermal imaging and improving axial/depth resolution. This paper reviews the basic principles and experimental results of matched-filter thermography: first, mathematical and signal processing concepts related to matched-fileting and pulse compression are discussed. Next, theoretical modeling of thermal-wave responses to matched-filter thermography using two categories of pulse compression techniques (linear frequency modulation and binary phase coding are reviewed. Key experimental results from literature demonstrating the maintenance of axial resolution while inspecting deep into opaque and turbid media are also presented and discussed. Finally, the concept of thermal coherence tomography for deconvolution of thermal responses of axially superposed sources and creation of depth-selective images in a diffusion-wave field is reviewed.

  8. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  9. Sharpening minimum-phase filters

    Science.gov (United States)

    Jovanovic Dolecek, G.; Fernandez-Vazquez, A.

    2013-02-01

    The minimum-phase requirement restricts that filter has all its zeros on or inside the unit circle. As a result the filter does not have a linear phase. It is well known that the sharpening technique can be used to simultaneous improvements of both the pass-band and stop-band of a linear-phase FIR filters and cannot be used for other types of filters. In this paper we demonstrate that the sharpening technique can also be applied to minimum-phase filters, after small modification. The method is illustrated with one practical examples of design.

  10. A Short Note on t-filters, I-filters and Extended Filters on Residuated Lattices

    Czech Academy of Sciences Publication Activity Database

    Víta, Martin

    2015-01-01

    Roč. 271, 15 July (2015), s. 168-171 ISSN 0165-0114 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985807 Keywords : t-filters * I-filters * extended filters * residuated lattices Subject RIV: BA - General Mathematics Impact factor: 2.098, year: 2015

  11. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    Science.gov (United States)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  12. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Chen, Rengxiang; Liu, Ziran

    2016-01-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  13. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters.

    Science.gov (United States)

    Vorobjev, Ivan A; Buchholz, Kathrin; Prabhat, Prashant; Ketman, Kenneth; Egan, Elizabeth S; Marti, Matthias; Duraisingh, Manoj T; Barteneva, Natasha S

    2012-09-05

    Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene

  14. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    Directory of Open Access Journals (Sweden)

    Vorobjev Ivan A

    2012-09-01

    Full Text Available Abstract Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP labelling is complicated by autofluorescence (AF of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP, AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis

  15. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2017-03-01

    Full Text Available A new electronically tunable mixed-mode biquadratic filter with three current controlled current conveyor transconductance amplifiers (CCCCTAs and two grounded capacitors is proposed. With current input, the filter can realise lowpass (LP, bandpass (BP, highpass (HP, bandstop (BS and allpass (AP responses in current mode and LP, BP and HP responses in transimpedance mode. With voltage input, the filter can realise LP, BP, HP, BS and AP responses in voltage and transadmittance modes. Other attractive features of the mixed-mode biquadratic filter are (1 the use of two grounded capacitors, which is ideal for integrated circuit implementation; (2 orthogonal control of the quality factor (Q and resonance angular frequency (ωo for easy electronic tenability; (3 low input impedance and high output impedance for current signals; (4 high input impedance for voltage signal; (5 avoidance of need for component-matching conditions; (6 resistorless and electronically tunable structure; (7 low active and passive sensitivities; and (8 independent control of the voltage transfer gains without affecting the parameters ωo and Q.

  16. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Hakon

    2016-06-14

    This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  17. Advances in Collaborative Filtering

    Science.gov (United States)

    Koren, Yehuda; Bell, Robert

    The collaborative filtering (CF) approach to recommenders has recently enjoyed much interest and progress. The fact that it played a central role within the recently completed Netflix competition has contributed to its popularity. This chapter surveys the recent progress in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with recent innovations. We also describe several extensions that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.

  18. Application of N-isopropyl-p-[123I] iodoamphetamine quantification of regional cerebral blood flow using iterative reconstruction methods. Selection of the optimal reconstruction method and optimization of the cutoff frequency of the preprocessing filter

    International Nuclear Information System (INIS)

    Asazu, Akira; Hayashi, Masuo; Arai, Mami; Kumai, Yoshiaki; Akagi, Hiroyuki; Okayama, Katsuyoshi; Narumi, Yoshifumi

    2013-01-01

    In cerebral blood flow tests using N-Isopropyl-p-[ 123 I] Iodoamphetamine 123 I-IMP, quantitative results of greater accuracy than possible using the autoradiography (ARG) method can be obtained with attenuation and scatter correction and image reconstruction by filtered back projection (FBP). However, the cutoff frequency of the preprocessing Butterworth filter affects the quantitative value; hence, we sought an optimal cutoff frequency, derived from the correlation between the FBP method and Xenon-enhanced computed tomography (XeCT)/cerebral blood flow (CBF). In this study, we reconstructed images using ordered subsets expectation maximization (OSEM), a method of successive approximation which has recently come into wide use, and also three-dimensional (3D)-OSEM, a method by which the resolution can be corrected with the addition of collimator broad correction, to examine the effects on the regional cerebral blood flow (rCBF) quantitative value of changing the cutoff frequency, and to determine whether successive approximation is applicable to cerebral blood flow quantification. Our results showed that quantification of greater accuracy was obtained with reconstruction employing the 3D-OSEM method and using a cutoff frequency set near 0.75-0.85 cycles/cm, which is higher than the frequency used in image reconstruction by the ordinary FBP method. (author)

  19. Filter and Filter Bank Design for Image Texture Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Trygve

    1997-12-31

    The relevance of this thesis to energy and environment lies in its application to remote sensing such as for instance sea floor mapping and seismic pattern recognition. The focus is on the design of two-dimensional filters for feature extraction, segmentation, and classification of digital images with textural content. The features are extracted by filtering with a linear filter and estimating the local energy in the filter response. The thesis gives a review covering broadly most previous approaches to texture feature extraction and continues with proposals of some new techniques. 143 refs., 59 figs., 7 tabs.

  20. Leukodepletion blood filters: filter design and mechanisms of leukocyte removal.

    Science.gov (United States)

    Dzik, S

    1993-04-01

    Modern leukocyte removal filters have been developed after years of refinement in design. Current filters are composite filters in which synthetic microfiber material is prepared as a nonwoven web. The filter material may be surface modified to alter surface tension or charge to improve performance. The housing design promotes effective contact of blood with the filter material and decreases shear forces. The exact mechanisms by which these filters remove leukocytes from blood components are uncertain, but likely represent a combination of both physical and biological processes whose contributions to leukocyte removal are interdependent. Small-pore microfiber webs result in barrier phenomena that permit retention of individual cells and increase the total adsorptive area of the filter. Modifications in surface charge can increase or decrease cell attraction to the fibers. Optimum interfacial surface tensions between blood cells, plasma, and filter fibers not only permit effective blood flow through small fiber pores, but also facilitate cell contact with the material. Barrier retention is a common mechanism for all modern leukocyte-removal filters and applies to all leukocyte subtypes. Because barrier retention does not depend on cell viability, it is operative for cells of any age and will retain any nondeformable cell, including whole nuclei from lymphocytes or monocytes. Barrier retention is supplemented by retention by adhesion. RBCs, lymphocytes, monocytes, granulocytes, and platelets differ in their relative adhesiveness to filter fibers. Different adhesive mechanisms are used in filters designed for RBCs compared with filters designed for platelets. Although lymphocytes, monocytes, and granulocytes can adhere directly to filter fibers, the biological mechanisms underlying cell adhesion may differ for these cell types. These differences may depend on expression of cell adhesion molecules. In the case of filtration of fresh RBCs, platelet-leukocyte interaction

  1. Tandem HEPA filter tests.

    Science.gov (United States)

    Schuster, B G; Osetek, D J

    1978-02-01

    Current methods for evaluating the performance and reliability of high-efficiency air cleaning systems use forward light-scattering photometers and DOP aerosol. This method is limited to measuring protection factors of 10(4) or 10(5) and has poor sensitivity to particles less than .3 micron. More accurate determination of system performance could be made by measuring two filter stages with a single test. Because of the large protection factors of a two-stage system, it is necessary to use high challenge aerosol concentrations and long downstream sampling times. Concentrations were measured using an intra-cavity laser light-scattering aerosol spectrometer which is capable of detection of single particles ranging in size from 0.07 to 3.00 micron diameter. The results of several tests with challenge aerosols of both NaCl and DOP yielded protection factors ranging from 1.4 x 10(7) to 3.0 x 10(9) for two HEPA filters in series.

  2. Nanoparticle optical notch filters

    Science.gov (United States)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  3. Reconfigurable Mixed Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    Neelofer Afzal

    2014-01-01

    Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.

  4. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  5. Digital filtering in nuclear medicine

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, S.

    1982-01-01

    Digital filtering is a powerful mathematical technique in computer analysis of nuclear medicine studies. The basic concepts of object-domain and frequency-domain filtering are presented in simple, largely nonmathemaical terms. Computational methods are described using both the Fourier transform and convolution techniques. The frequency response is described and used to represent the behavior of several classes of filters. These concepts are illustrated with examples drawn from a variety of important applications in nuclear medicine

  6. Advanced simulation of digital filters

    OpenAIRE

    Doyle, Gerald S.

    1980-01-01

    Approved for public release; distribution is unlimited An Advanced Simulation of Digital Filters has been implemented on the IBM/67 computer utilizing Tektronix hardware and software. The program package is appropriate for persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the ...

  7. Multi-filter spectrophotometry simulations

    Science.gov (United States)

    Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.

  8. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms.

    Science.gov (United States)

    Mukunda, Chinmayee L; Narayanan, Rishikesh

    2017-04-15

    We develop a new biophysically rooted, physiologically constrained conductance-based synaptic model to mechanistically account for short-term facilitation and depression, respectively through residual calcium and transmitter depletion kinetics. We address the specific question of how presynaptic components (including voltage-gated ion channels, pumps, buffers and release-handling mechanisms) and interactions among them define synaptic filtering and short-term plasticity profiles. Employing global sensitivity analyses (GSAs), we show that near-identical synaptic filters and short-term plasticity profiles could emerge from disparate presynaptic parametric combinations with weak pairwise correlations. Using virtual knockout models, a technique to address the question of channel-specific contributions within the GSA framework, we unveil the differential and variable impact of each ion channel on synaptic physiology. Our conclusions strengthen the argument that parametric and interactional complexity in biological systems should not be viewed from the limited curse-of-dimensionality standpoint, but from the evolutionarily advantageous perspective of providing functional robustness through degeneracy. Information processing in neurons is known to emerge as a gestalt of pre- and post-synaptic filtering. However, the impact of presynaptic mechanisms on synaptic filters has not been quantitatively assessed. Here, we developed a biophysically rooted, conductance-based model synapse that was endowed with six different voltage-gated ion channels, calcium pumps, calcium buffer and neurotransmitter-replenishment mechanisms in the presynaptic terminal. We tuned our model to match the short-term plasticity profile and band-pass structure of Schaffer collateral synapses, and performed sensitivity analyses to demonstrate that presynaptic voltage-gated ion channels regulated synaptic filters through changes in excitability and associated calcium influx. These sensitivity analyses

  9. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  10. The intractable cigarette 'filter problem'.

    Science.gov (United States)

    Harris, Bradford

    2011-05-01

    When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the 'filter problem'. These extensive filter research and development efforts suggest a phase of genuine optimism among cigarette designers that cigarette filters could be engineered to mitigate the health hazards of smoking. This paper explores the early history of cigarette filter research and development in order to elucidate why and when seemingly sincere filter engineering efforts devolved into manipulations in cigarette design to sustain cigarette marketing and mitigate consumers' concerns about the health consequences of smoking. Relevant word and phrase searches were conducted in the Legacy Tobacco Documents Library online database, Google Patents, and media and medical databases including ProQuest, JSTOR, Medline and PubMed. 13 tobacco industry documents were identified that track prominent developments involved in what the industry referred to as the 'filter problem'. These reveal a period of intense focus on the 'filter problem' that persisted from the mid-1950s to the mid-1960s, featuring collaborations between cigarette producers and large American chemical and textile companies to develop effective filters. In addition, the documents reveal how cigarette filter researchers' growing scientific knowledge of smoke chemistry led to increasing recognition that filters were unlikely to offer significant health protection. One of the primary concerns of cigarette producers was to design cigarette filters that could be economically incorporated into the massive scale of cigarette production. The synthetic plastic cellulose acetate

  11. Bridging the ensemble Kalman filter and particle filters

    Energy Technology Data Exchange (ETDEWEB)

    Stordal, Andreas Stoerksen; Karlsen, Hans A.; Naevdal, Geir; Skaug, Hans J.; Valles, Brice

    2009-12-15

    The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter is a more robust method that has shown promising results with a small sample size but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with Gaussian kernels we get the advantage of both a Kalman correction and a weighting step. The resulting Gaussian mixture filter has the advantage of both a local Kalman type correction and the weighting/re sampling step of a particle filter. The Gaussian mixture approximation relies on a tunable bandwidth parameter which often has to be kept quite large in order to avoid weight collapse in high dimensions. As a result, the Kalman correction is too large to capture highly non-Gaussian posterior distributions. In this paper we have extended the Gaussian mixture filter (Hoteit et al., 2008b) and also made the connection to particle filters more transparent. In particular we introduce a tuning parameter for the importance weights. In the last part of the paper we have performed a simulation experiment with the Lorenz40 model where our method has been compared to the EnKF and a full implementation of a particle filter. The results clearly indicate that the new method has advantages compared to the standard EnKF. (Author)

  12. AER image filtering

    Science.gov (United States)

    Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).

  13. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim

    2010-09-19

    Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  14. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    LCL filters are widely used in Pulse Width Modulation (PWM) inverters. However, it also introduces a pair of unstable resonant poles that may challenge the controller stability. The passive damping is a convenient possibility to tackle the resonance problem at the cost of system overall efficiency....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated......, which has revealed that negative variations of the resonant frequency can seriously affect the system stability. In order to make the controller more robust against grid impedance variations, the notch filter frequency is thus designed smaller than the LCL filter resonant frequency, which is done...

  15. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  16. MODEL-ORIENTED METHOD OF DESIGN IMPLEMENTATION WHEN CREATING DIGITAL FILTERS

    Directory of Open Access Journals (Sweden)

    V. Levinskyi

    2016-12-01

    Full Text Available This article discusses the example of model-oriented method of design and development of digital low-pass filters (LPF for automatic control systems (ACS. Typically, high frequency noise and disturbance attenuation is carried out by analogue LPF. However, technical implementation of analogue filters higher than the second order arouse certain difficulties related with the need of precise passive components ratings selection (resistors, capacitors. If the noise and disturbances spectral composition is known, it is possible to build digital LPF with the Nyquist frequency greater than the maximum frequency in the noise spectrum. Such possibility has appeared because of cheap, energy-efficient, high-speed 32-bit microcontrollers market entry. They have analogue signals sampling rate of 30 kHz and above. The traditional approach using the “manual” method of filter parameters calculation, obtaining their recurrence expressions and further program implementation requires high qualification and a lot of time consumption from the developer. An alternative to this approach is the model-oriented method of design (MOMD in MatLab environment when in the one environment the design of digital LPF, verificaton of its performance as a part of the ACS, generation and compilation of program codes for selected microcontroller family take place. MOMD can also be used in the designs of bandpass and bandstop filters for adaptive control systems or systems of technical diagnostics. If during the commissioning or the operation of ACS there is a need in digital LPF parameters change then this operation can be performed within half an hour. MOMD technology allows to significantly reduce the time for developing a specific product without loss of quality in its design ‘cause of extensive possibilities of MatLab development environment.

  17. Optimal IIR filter design using Gravitational Search Algorithm with Wavelet Mutation

    Directory of Open Access Journals (Sweden)

    S.K. Saha

    2015-01-01

    Full Text Available This paper presents a global heuristic search optimization technique, which is a hybridized version of the Gravitational Search Algorithm (GSA and Wavelet Mutation (WM strategy. Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM was adopted for the design of an 8th-order infinite impulse response (IIR filter. GSA is based on the interaction of masses situated in a small isolated world guided by the approximation of Newtonian’s laws of gravity and motion. Each mass is represented by four parameters, namely, position, active, passive and inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploitation in multidimensional search spaces, the WM strategy is applied to randomly selected particles that enhance the capability of GSA for finding better near optimal solutions. An extensive simulation study of low-pass (LP, high-pass (HP, band-pass (BP and band-stop (BS IIR filters unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and stop band ripples, smaller transition width and higher stop band attenuation with assured stability.

  18. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

    Science.gov (United States)

    Azevedo, Anthony W; Wilson, Rachel I

    2017-10-11

    To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. On using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applications

    KAUST Repository

    Ouakad, Hassen M.

    2014-01-01

    Numerical and experimental investigations of the dynamics of micromachined shallow arches (initially curved microbeams) and the possibility of using their dynamic snap-through motion for filtering purposes are presented. The considered MEMS arches are actuated by a DC electrostatic load along with an AC harmonic load. Their dynamics is examined numerically using a Galerkin-based reduced-order model when excited near both their first and third natural frequencies. Several simulation results are presented demonstrating interesting jumps and dynamic snap-through behavior of the MEMS arches and their attractive features for uses as band-pass filters, such as their sharp roll-off from pass-bands to stop-bands and their flat response. Experimental work is conducted to test arches realized of curved polysilicon microbeams when excited by DC and AC loads. Experimental data of the micromachined curved beams are shown for the softening and hardening behavior near the first and third natural frequencies, respectively, as well as dynamic snap-through motion. © 2013 Elsevier Ltd.

  20. Implicit LES using adaptive filtering

    Science.gov (United States)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  1. Level 3 filters at CDF

    International Nuclear Information System (INIS)

    Carroll, J.T.

    1985-01-01

    The Level 3 stage in CDF online filtering is currently under development. This system should support a flexible division between online and offline software filters within the constraints of the full data acquisition system. Multimicroprocessor (MMP) structures like the ACP system used by CDF could be improved with multi-rank architectures to meet SSC requirements

  2. Chopped filter for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Koyama, J.

    1980-12-01

    Some of the theoretical and practical factors affecting the energy resolution of a spectrometry system are considered, specially those related to t he signal-to-noise ratio, and a time-variant filter with the transfer function of the theoretical optimum filter, during its active time, is proposed. A prototype has been tested and experimental results are presented. (Author) [pt

  3. Mobile filters in nuclear engineering

    International Nuclear Information System (INIS)

    Meuter, R.

    1979-01-01

    The need for filters with high efficiencies which may be used at any place originated in nuclear power plants. Filters of this type, called Filtermobil, have been developed by Sulzer. They have been used successfully in nuclear plants for several years. (orig.) [de

  4. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  5. Diabatic initialization using recursive filters

    Science.gov (United States)

    Lynch, Peter; Huang, Xiang-Yu

    1994-10-01

    Several initialization schemes based on recursive filters are formulated and tested with a numerical weather prediction model, HIRLAM. These have an advantage over schemes which use non-recursive filters in that they derive the initialized values from a diabatic trajectory passing through the original analysis. The changes to the analysed fields are comparable in size to typical observational errors. A non-recursive implementation of the recursive filters makes the new initialization schemes as easy to use as the original non-recursive filter schemes. It also allows use of higher-order filters without added cost. An initialization method using a 6th order filter is compared to a scheme based on an non-recursive optimal filter, and is found to produce similar results for less than half the computational cost. If the sole aim is noise suppression, a filter whose output validates later than the initial time may be used. The advantage of this is that computation time is further reduced and phase error completely eliminated.

  6. Derivative free filtering using Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Hansen, Søren; Ravn, Ole

    2010-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of different filtering algorithms. The toolbox is called Kalmtool 4 and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as for DD1 fi...

  7. Filters in Fuzzy Class Theory

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš

    2008-01-01

    Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008

  8. Approximately Liner Phase IIR Digital Filter Banks

    Directory of Open Access Journals (Sweden)

    J. D. Ćertić

    2013-11-01

    Full Text Available In this paper, uniform and nonuniform digital filter banks based on approximately linear phase IIR filters and frequency response masking technique (FRM are presented. Both filter banks are realized as a connection of an interpolated half-band approximately linear phase IIR filter as a first stage of the FRM design and an appropriate number of masking filters. The masking filters are half-band IIR filters with an approximately linear phase. The resulting IIR filter banks are compared with linear-phase FIR filter banks exhibiting similar magnitude responses. The effects of coefficient quantization are analyzed.

  9. On-line filtering

    International Nuclear Information System (INIS)

    Verkerk, C.

    1978-01-01

    Present day electronic detectors used in high energy physics make it possible to obtain high event rates and it is likely that future experiments will face even higher data rates than at present. The complexity of the apparatus increases very rapidly with time and also the criteria for selecting desired events become more and more complex. So complex in fact that the fast trigger system cannot be designed to fully cope with it. The interesting events become thus contaminated with multitudes of uninteresting ones. To distinguish the 'good' events from the often overwhelming background of other events one has to resort to computing techniques. Normally this selection is made in the first part of the analysis of the events, analysis normally performed on a powerful scientific computer. This implies however that many uninteresting or background events have to be recorded during the experiment for subsequent analysis. A number of undesired consequences result; and these constitute a sufficient reason for trying to perform the selection at an earlier stage, in fact ideally before the events are recorded on magnetic tape. This early selection is called 'on-line filtering' and it is the topic of the present lectures. (Auth.)

  10. Three-Pole Tunable Filters with High Rejection using Mixed Quarter-Lambda and Asymmetric Half-Lambda Resonators

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhao

    2014-09-01

    Full Text Available A novel three-pole tunable bandpass filter using varactor-loaded quarter-wavelength combline and asym-metric half-wavelength resonators is proposed in this paper. A nearly constant 3-dB absolute bandwidth is 150 ± 13 MHz (10.7%~6.9% fractional bandwidth within the tuning range of 1.4-2.0 GHz (42.8%. The filter is designed on a Rogers substrate with relative permittivity 2.2 and h=1 mm with its insertion loss varying from 3.6 dB to 2.8 dB and return loss better than 10 dB over the entire tuning range. The creation of two transmission zeros near the passband edges is analyzed by the even-odd-method. By using dissimilar resonators, the proposed tunable filter could obtain > 33 dB rejection levels at the second harmonics. The measured results show good agreement with the simulated ones.

  11. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  12. Gas cleaning with Granular Filters

    OpenAIRE

    Natvig, Ingunn Roald

    2007-01-01

    The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filte...

  13. Advanced simulation of digital filters

    Science.gov (United States)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  14. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  15. Face Recognition using Gabor Filters

    Directory of Open Access Journals (Sweden)

    Sajjad MOHSIN

    2011-01-01

    Full Text Available An Elastic Bunch Graph Map (EBGM algorithm is being proposed in this research paper that successfully implements face recognition using Gabor filters. The proposed system applies 40 different Gabor filters on an image. As aresult of which 40 images with different angles and orientation are received. Next, maximum intensity points in each filtered image are calculated and mark them as Fiducial points. The system reduces these points in accordance to distance between them. The next step is calculating the distances between the reduced points using distance formula. At last, the distances are compared with database. If match occurs, it means that the image is recognized.

  16. Remotely operated top loading filter housing

    International Nuclear Information System (INIS)

    Ross, M.J.; Carter, J.A.

    1989-01-01

    A high-efficiency particulate air (HEPA) filter system was developed for the Fuel Processing Facility at the Idaho Chemical Processing Plant. The system utilizes commercially available HEPA filters and allows in-cell filters to be maintained using operator-controlled remote handling equipment. The remote handling tasks include transport of filters before and after replacement, removal and replacement of the filter from the housing, and filter containment

  17. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    Science.gov (United States)

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  18. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  19. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  20. Buffers and vegetative filter strips

    Science.gov (United States)

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  1. Dimensional reduction in nonlinear filtering

    Science.gov (United States)

    Park, J. H.; Sowers, R. B.; Sri Namachchivaya, N.

    2010-02-01

    The theory of nonlinear filtering forms the framework of many data assimilation problems. When the rates of change of different variables differ by orders of magnitude, efficient data assimilation can be accomplished by constructing nonlinear filtering equations for the coarse-grained signal. We consider the conditional law of a signal given the observations in a multi-scale context. In particular, we study how scaling interacts with filtering via stochastic averaging. This is an extension of our previous work (Park et al 2008 Stoch. Dyn. 8 543-60) where the observation process depended only on the fast variable, so the filter became independent of the observation in the limit. Here, we investigate a more realistic setting in which the observation depends on both the slow and the fast variables. Paper dedicated to Professor Manfred Denker on the occasion of his 65th birthday.

  2. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  3. Current Conveyor Based Multifunction Filter

    OpenAIRE

    Manish Kumar; M.C. Srivastava; Umesh Kumar

    2010-01-01

    The paper presents a current conveyor based multifunction filter. The proposed circuit can be realized as low pass, high pass, band pass and elliptical notch filter. The circuit employs two balanced output current conveyors, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The parameter resonance frequency (\\omega_0) and bandw...

  4. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  5. Filter Fabrics for Airport Drainage.

    Science.gov (United States)

    1979-09-01

    pneumatically filling a woven polypropylene stocking with sand and vibrating it into a prebored hole, while another method uses a polyester nonwoven fabric...Selected Nonwoven Filter Fabrics," Letter Report, June 1977, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss. 18. BalL, J. E...woven and nonwoven plastic filter fabric. It has been developed based on limited field performance observations and the laboratory test evaluation of

  6. Technical Note: Improved total atmospheric water vapour amount determination from near-infrared filter measurements with sun photometers

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2007-09-01

    Full Text Available In this work we explore the effect of the contribution of the solar spectrum to the recorded signal in wavelengths outside the typical 940-nm filter's bandwidth. We employ gaussian-shaped filters as well as actual filter transmission curves, mainly AERONET data, to study the implications imposed by the non-zero out-of-band contribution to the coefficients used to derive precipitable water from the measured water vapour band transmittance. Published parameterized transmittance functions are applied to the data to determine the filter coefficients. We also introduce an improved, three-parameter, fitting function that can describe the theoretical data accurately, with significantly less residual effects than with the existing functions. The moderate-resolution SMARTS radiative transfer code is used to predict the incident spectrum outside the filter bandpass for different atmospheres, solar geometries and aerosol optical depths. The high-resolution LBLRTM radiative transfer code is used to calculate the water vapour transmittance in the 940-nm band. The absolute level of the out-of-band transmittance has been chosen to range from 10−6 to 10−4, and typical response curves of commercially available silicon photodiodes are included into the calculations.

    It is shown that if the out-of-band transmittance effect is neglected, as is generally the case, then the derived columnar water vapour is mainly underestimated by a few percents. The actual error depends on the specific out-of-band transmittance, optical air mass of observation and water vapour amount. Further investigations will use experimental data from field campaigns to validate these findings.

  7. A quantum extended Kalman filter

    International Nuclear Information System (INIS)

    Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R

    2017-01-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)

  8. Experience with three percutaneous vena cava filters

    International Nuclear Information System (INIS)

    McCowan, T.C.; Ferris, E.J.; Harshfield, D.L.; Hassell, D.R.; Baker, M.L.

    1987-01-01

    Twenty-one Kimray-Greenfield, 33 bird's nest, and 19 Amplatz vena cava filters were placed percutaneously. The Kimray-Greenfield filter was the most difficult to insert. The major problem was the insertion site, which required venipuncture with a 24-F catheter. Minor hemorrhage was frequent, and femoral vein thrombosis occurred in four patients. No migration, caval thrombosis, or pulmonary emboli were seen after Kimray-Greenfield filter placement. The bird's nest filter was relatively easy to insert, although in two cases the filter prongs could not be adequately seated in the wall of the inferior vena cava. Three patients with bird's nest filters had thrombosis below the filter, and three filters migrated to the heart. One migrated filter could not be removed. One patient had multiple small pulmonary emboli at autopsy. No other pulmonary emboli after filter placement were noted. The Amplatz filter was the easiest of the three filters to insert. Only one patient with an Amplatz filter had thrombosis of the vena cava below the filter. No filter migrations were documented, and no recurrent pulmonary emboli were found on clinical or radiologic follow-up. The Amplatz vena cava filter is easier to place than percutaneous Kimray-Greenfield or bird's nest filters, has a low complication rate, and has proven to be clinically effective in preventing pulmonary emboli

  9. Sensory pollution from bag-type fiberglass ventilation filters: Conventional filter compared with filters containing various amounts of activated carbon

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Fadeyi, M.O.; Clausen, Geo

    2009-01-01

    was judged to be significantly better than the air downstream of the 6-month-old F7 filter, and was comparable to that from an unused F7 filter. Additionally, the combination filters removed more ozone from the air than the F7 filter, with their respective fractional removal efficiencies roughly scaling......As ventilation filters accumulate particles removed from the airstream, they become emitters of sensory pollutants that degrade indoor air quality. Previously we demonstrated that an F7 bag-type filter that incorporates activated carbon (a "combination filter") reduces this adverse effect compared...... to an equivalent filter without carbon. The aim of the present study was to examine how the amount of activated carbon (AC) used in combination filters affects their ability to remove both sensory offending pollutants and ozone. A panel evaluated the air downstream of four different filters after each had...

  10. Filter-adsorber aging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  11. 21 CFR 211.72 - Filters.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible to manufacture such products without the use of these filters. If use of a fiber-releasing filter is...

  12. Water washable stainless steel HEPA filter

    Science.gov (United States)

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  13. Unscented Kalman filtering for articulated human tracking

    DEFF Research Database (Denmark)

    Boesen Lindbo Larsen, Anders; Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    -of-the-art trackers utilize particle filters, our unimodal likelihood model allows us to use an unscented Kalman filter. This robust and efficient filter allows us to improve the quality of the tracker while using substantially fewer likelihood evaluations. The system is compared to one based on a particle filter...

  14. Progress towards the use of disposable filters

    International Nuclear Information System (INIS)

    Macphail, I.

    1979-08-01

    Thermally degradable materials have been evaluated for service in HEPA filter units used to filter gases from active plants. The motivation was to reduce the bulk storage problems of contaminated filters by thermal decomposition to gaseous products and a solid residue substantially comprised of the filtered particulates. It is shown that while there are no commercially available alternatives to the glass fibre used in the filter medium, it would be feasible to manufacture the filter case and spacers from materials which could be incinerated. Operating temperatures, costs and the type of residues for disposal are discussed for filter case materials. (U.K.)

  15. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    International Nuclear Information System (INIS)

    Pribadi, S.; Puspito, N. T.; Yudistira, T.; Afnimar,; Ibrahim, G.; Laksono, B. I.; Adnan, Z.

    2014-01-01

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunami earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 50 second which depend on its magnitude. Those events are located far from the trench

  16. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pribadi, S., E-mail: sugengpribadimsc@gmail.com [Tsunami Warning Information Division, Indonesian Meteorological Climatological and Geophysical Agency (BMKG), Jalan Angkasa I No. 2, Jakarta13920 and Graduate Student of Earth Sciences, Faculty of Earth Sciences and Technology, Bandung Institute of T (Indonesia); Puspito, N. T.; Yudistira, T.; Afnimar,; Ibrahim, G. [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Laksono, B. I. [Database Maintenance Division, Indonesian Meteorological Climatological and Geophysical Agency (BMKG), Jalan Angkasa I No.2, Jakarta 13920 (Indonesia); Adnan, Z. [Database Maintenance Division, Indonesian Meteorological Climatological and Geophysical Agency (BMKG), Jalan Angkasa I No. 2, Jakarta 13920 and Graduate Student of Earth Sciences, Faculty of Earth Sciences and Technology, Bandung Institute of Technol (Indonesia)

    2014-09-25

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunami earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 < Mw < 7.9) and located near the trench. The others are 4 tsunamigenic earthquakes and 3 inland earthquakes with short rupture duration start from To > 50 second which depend on its magnitude. Those events are located far from the trench.

  17. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  18. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  19. Compact, Pneumatically Actuated Filter Shuttle

    Science.gov (United States)

    Leighy, Bradley D.

    2003-01-01

    A compact, pneumatically actuated filter shuttle has been invented to enable alternating imaging of a wind-tunnel model in two different spectral bands characteristic of the pressure and temperature responses of a pressure and temperature-sensitive paint. This filter shuttle could also be used in other settings in which there are requirements for alternating imaging in two spectral bands. Pneumatic actuation was chosen because of a need to exert control remotely (that is, from outside the wind tunnel) and because the power leads that would be needed for electrical actuation would pose an unacceptable hazard in the wind tunnel. The entire shuttle mechanism and its housing can be built relatively inexpensively [camera used for viewing the wind-tunnel model. The mechanism includes a pneumatic actuator connected to a linkage. The linkage converts the actuator stroke to a scissor-like motion that places one filter in front of the camera and the other filter out of the way. Optoelectronic sensors detect tabs on the sliding panels for verification of the proper positioning of the filters.

  20. A biological oil adsorption filter.

    Science.gov (United States)

    Pasila, Antti

    2004-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore.