WorldWideScience

Sample records for bandgap fiber bundle

  1. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    presents bandgaps. These bandgaps can be tuned by applying an electric field or by varying the temperature. Therefore, tunable all-in-fiber devices with controllable optical properties can be realized. This thesis focuses on the design, fabrication and development of com-pact LCPBG fiber devices. An on......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...

  2. Gaussian Filtering with Tapered Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2006-01-01

    We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm......We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm...

  3. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented in this ...

  4. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  5. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  6. Gas sensing using air-guiding photonic bandgap fibers

    DEFF Research Database (Denmark)

    Ritar, Tuomo; Tuominen, J.; Ludvigsen, Hanne

    2004-01-01

    We demonstrate the high sensitivity of gas sensing using a novel air-guiding photonic bandgap fiber. The bandgap fiber is spliced to a standard single-mode fiber at the input end for easy coupling and filled with gas through the other end placed in a vacuum chamber. The technique is applied...

  7. Modeling of realistic cladding structures for photonic bandgap fibers

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Nielsen, Martin Dybendal

    2004-01-01

    Cladding structures of photonic bandgap fibers often have airholes of noncircular shape, and, typically, close-to-hexagonal airholes with curved corners are observed. We study photonic bandgaps in such structures by aid of a two-parameter representation of the size and curvature. For the fundamen......Cladding structures of photonic bandgap fibers often have airholes of noncircular shape, and, typically, close-to-hexagonal airholes with curved corners are observed. We study photonic bandgaps in such structures by aid of a two-parameter representation of the size and curvature....... For the fundamental bandgap we find that the bandgap edges (the intersections with the air line) shift toward shorter wavelengths when the air-filling fraction f is increased. The bandgap also broadens, and the relative bandwidth increases exponentially with f2. Compared with recent experiments [Nature 424, 657 (2003...

  8. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  9. Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2007-01-01

    We demonstrate a liquid crystal photonic bandgap fiber based polarizer integrated in a double silicon v-groove assembly. The polarizer axis can be electrically controlled as well as switched on and off.......We demonstrate a liquid crystal photonic bandgap fiber based polarizer integrated in a double silicon v-groove assembly. The polarizer axis can be electrically controlled as well as switched on and off....

  10. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  11. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  12. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  13. Fiber bundles in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Moylan, P.

    1979-11-01

    The problem of describing a quantum-mechanical system with symmetry by a fiber bundle is considered. The quantization of a fiber bundle is introduced. Fiber bundles for the Kepler problem and the rotator are constructed. The fiber bundle concept provides a new model for a physical system: it provides a model for an elementary particle with extension having integral values of spin. 5 figures

  14. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  15. Ultrasensitive twin-core photonic bandgap fiber refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham; Bang, Ole

    2009-01-01

    We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift.......We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift....

  16. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  17. Polarization Maintaining Hybrid TIR/Bandgap All-Solid Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian J.; Roberts, John

    2008-01-01

    We report on fabricated all-solid fibers which guide by a combination of bandgap and TIR mechanisms. The fibers show high birefringence and possess a dispersion characteristic similar to the pure bandgap guiding form....

  18. Dispersion properties of photonic bandgap guiding fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    We investigate low-index core photonic crystal fibers. Dispersion properties very different from standard fibers are found. Both Zero dispersion are very large dispersion is shown possible at 1550 nm wavelength....

  19. Polarization Maintaining Hybrid TIR/Bandgap All-Solid Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian J.; Roberts, John

    2008-01-01

    We report on fabricated all-solid fibers which guide by a combination of bandgap and TIR mechanisms. The fibers show high birefringence and possess a dispersion characteristic similar to the pure bandgap guiding form.......We report on fabricated all-solid fibers which guide by a combination of bandgap and TIR mechanisms. The fibers show high birefringence and possess a dispersion characteristic similar to the pure bandgap guiding form....

  20. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applications...

  1. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  2. Biased liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2008-01-01

    We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure.......We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure....

  3. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...... of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle...... for forming still shorter solitons...

  4. Biased liquid crystal infiltrated photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara

    2009-01-01

    A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled...... element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments....... partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector...

  5. Photonic bandgap fibers: theory and experiments

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou

    2000-01-01

    to localize modes in the core region by the photonic band gap (PBG) effect. The photonic crystal fibers (PCFs) were first proposed for a high-index-core region, surrounded by a periodic dielectric structure consisting of a matrix of microscopic holes placed in a silica-glass-base material....

  6. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  7. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro......-optical effects of LCs. Thermally controlled spectral filters and broadband switching functionalities, electrically controlled switches, polarizers and polarization rotators and an all-optical modulator has been demonstrated. The waveguiding mechanism of anistotropic PBGs fibers has been analyzed and spectral...

  8. Color Space Axioms and Fiber Bundles

    Directory of Open Access Journals (Sweden)

    Edoardo Provenzi

    2017-08-01

    Full Text Available In 1974, H. L. Resnkikoff published an inspiring paper about the use of differential geometry to study, among others, the intrinsic shape of the space of perceived colors and the Riemannian metrics on it. The mathematical techniques that he used is shared with modern theories of theoretical physics, which are far from being a common background for scientists in color vision and processing. Due to this, Resnikoff’s paper remained unnoticed for decades. In this brief contribution, some insights about how to update Resnikoff’s ideas will be given and discussed in relationship with a modern theory of color spaces and to the mathematical concept of principal fiber bundle.

  9. Electrically controllable liquid crystal photonic bandgap fiber with dual-frequency control

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically tunable liquid crystal photonic bandgap fiber device based on a dual frequency liquid crystal with pre-tilted molecules that allows the bandgaps to be continuously tuned. The frequency dependent behavior of the liquid crystal enables active shifting of the bandgaps toward...

  10. Design of photonic bandgap fibers by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics...... distribution and the lossy silica material is reduced and the energy flow is increased 375% in the core. Simplified designs inspired from optimized geometry are presented, which will be easier to fabricate. The energy flow is increased up to almost 300% for these cases....

  11. Framework for shape analysis of white matter fiber bundles.

    Science.gov (United States)

    Glozman, Tanya; Bruckert, Lisa; Pestilli, Franco; Yecies, Derek W; Guibas, Leonidas J; Yeom, Kristen W

    2018-02-15

    Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  13. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles

    Science.gov (United States)

    Nadkarni, Seemantini K.; Bouma, Brett E.; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J.

    2009-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  14. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  15. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a core diameter of 25mm, and a bandgap tuning sensitivity of 27nm/°C at room temperature. The insertion loss is estimated to be less than 0.5dB....

  16. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Maurayama, Hiroki

    2010-01-01

    Ytterbium-doped photonic-bandgap fiber sources operationg at the long-wavelength edge of the ytterbium gain band are being investigated for high power amplification. Artificial shaping of the gain spectrum by the characteristic distributed filtering effect of the photonic bandgap enables spontane...

  17. Electrially tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  18. Low loss liquid crystal photonic bandgap fiber in the near-infrared region

    DEFF Research Database (Denmark)

    Scolari, Lara; Wei, Lei; Gauza, S.

    2010-01-01

    We infiltrate a photonic crystal fiber with a perdeuterated liquid crystal, which has a reduced infrared absorption. The lowest loss ever reported (about 1 dB) in the middle of the near-infrared bandgap is achieved.......We infiltrate a photonic crystal fiber with a perdeuterated liquid crystal, which has a reduced infrared absorption. The lowest loss ever reported (about 1 dB) in the middle of the near-infrared bandgap is achieved....

  19. Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  20. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    Computer simulations are used to study passive fiber modulation of propagation in a tightly packed bundle of frog skeletal muscle fibers (uniform fiber radius of 50 mu m). With T = 20 degrees C and a uniform nominal interstitial cleft width (d) over bar = 0.35 mu m, about 92% of the active fiber...

  1. Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro

    Science.gov (United States)

    Yan, Yuchao; Wang, Linglan; Ma, Huilian; Ying, Diqing; Jin, Zhonghe

    2015-07-01

    A novel hybrid polarization-maintaining (PM) air-core photonic bandgap fiber (PBF) ring resonator is demonstrated by using a conventional PM fiber coupler formed by splicing a section of air-core PBF into the resonator. The coupling loss between the PM air-core PBF and the conventional solid-core PM fiber is reduced down to ˜1.8 dB per junction. With the countermeasures proposed to reduce the backscattering induced noise, a bias stability of approximately 0.007 °/s was observed over a 1 hour timeframe, which is the best result reported to date, to the best of our knowledge, for RFOGs equipped with a hybrid air-core PBF ring resonator.

  2. Vision, healing brush, and fiber bundles

    Science.gov (United States)

    Georgiev, Todor

    2005-03-01

    The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.

  3. Enhancement of transmission efficiency in a photonic bandgap fiber introducing nonlinearity

    Science.gov (United States)

    Panda, Abhilash; Hota, Mihir; Tripathy, Sukanta Kumar

    2015-06-01

    This paper introduces the importance of nonlinearity in a Photonic Bandgap (PBG) Fiber using Finite Difference Time Domain (FDTD) simulation. It is shown that, the amplification of the weaker optical signal in a PBG fiber due to the constructive interference between two incoming signals can be controlled using nonlinearity.

  4. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 mu m and an effective mode area of 440 mu m(2). The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature...

  5. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  6. Low index-contrast photonic bandgap fiber for transmission of short pulsed light

    DEFF Research Database (Denmark)

    Riishede, Jesper; Lægsgaard, Jesper; Broeng, Jes

    2004-01-01

    The use of low-index-contrast photonic bandgap (PBG) fiber for transmission of short pulsed light is discussed. PBG fibers have positive waveguide dispersion at long wavelengths at which conventional index-guiding fibers have negative waveguide dispersion. PBG fibers with low-index contrast can...... be used to obtain fibers with zero dispersion and a large mode area below 800 nm$+3$/. The results show that the PBG fiber is less sensitive to nonlinear effects and allows transmission of considerably larger intensities....

  7. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    Science.gov (United States)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  8. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material

    Directory of Open Access Journals (Sweden)

    Shengwang Hao

    2017-05-01

    Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  9. Medical catheters thermally manipulated by fiber optic bundles

    Science.gov (United States)

    Chastagner, P.

    1992-10-06

    A maneuverable medical catheter comprising a flexible tube having a functional tip is described. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts. 10 figs.

  10. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material.

    Science.gov (United States)

    Hao, Shengwang; Yang, Hang; Liang, Xiangzhou

    2017-05-09

    This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε ₀ exhibit universal power law behavior near the catastrophic point, with a critical exponent of -1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  11. All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber.

    Science.gov (United States)

    Cheng, Tonglei; Tanaka, Shunta; Tuan, Tong Hoang; Suzuki, Takenobu; Ohishi, Yasutake

    2017-06-15

    All-optical dynamic photonic bandgap (PBG) control by an optical Kerr effect (OKE) is investigated in an all-solid double-clad tellurite photonic bandgap fiber (PBGF) which is fabricated based on TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN, high-index rod) glass, TeO2-ZnO-Na2O-La2O3 (TZNL, inner cladding) glass, and TeO2-ZnO-Li2O-K2O-Al2O3-P2O5 (TZLKAP, outer cladding) glass. To the best of our knowledge, this is the first demonstration of all-optical dynamic PBG control in optical fibers. This PBGF has a high nonlinear refractive index which can lead to a significant OKE and induce the generation of all-optical dynamic PBG control. The transmission spectrum is simulated with the pump peak power increasing from 0 to 300 kW, which shows an obvious PBG shift. Dynamic PBG control is demonstrated both numerically and experimentally at the pump peak power of 200 kW (ON or OFF) at the signal of 1570 nm.

  12. Compact Electrically tunable Waveplate Based on Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Keller, Stephan Urs

    2009-01-01

    A compact tunable waveplate based on negative dielectric liquid crystal photonic bandgap fibers is presented. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm.......A compact tunable waveplate based on negative dielectric liquid crystal photonic bandgap fibers is presented. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm....

  13. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    2012-01-01

    We present a numerical and experimental investigation of a low-loss porous-core honeycomb fiber for terahertz wave guiding. The introduction of a porous core with hole size of the same dimension as the holes in the surrounding honeycomb cladding results in a fiber that can be drawn with much higher...... precision and reproducibility than a corresponding air-core fiber. The high-precision hole structure provides very clear bandgap guidance and the location of the two measured bandgaps agree well with simulations based on finite-element modeling. Fiber loss measurements reveal the frequency......-dependent coupling loss and propagation loss, and we find that the fiber propagation loss is much lower than the bulk material loss within the first band gap between 0.75 and 1.05 THz....

  14. A 98 W 1178 nm Yb-doped solid-core photonic bandgap fiber oscillator

    International Nuclear Information System (INIS)

    Fan, Xinyan; Chen, Mingchen; Shirakawa, Akira; Ueda, Ken-ichi; Olausson, Christina B; Broeng, Jes

    2013-01-01

    A high-power ytterbium-doped solid-core photonic bandgap fiber laser directly oscillating at 1178 nm is reported. The sharp-cut bandpass distributed filtering effect of photonic bandgap fiber can suppress amplified spontaneous emission (ASE) in the conventional high-gain spectral region. The oscillator is composed of a high reflection fiber Bragg grating spliced with a 39 m gain fiber and a Fresnel fiber end surface. A model based on rate equations is investigated numerically. A record output power of 98 W is achieved with a slope efficiency of 54%. The laser linewidth is 0.5 nm. The spectrum at 98 W indicates that ASE and parasitic lasing are suppressed effectively. (letter)

  15. Hollow core photonic bandgap fiber with microfluid-infiltrated air holes for slow-light propagation

    Science.gov (United States)

    Ren, Liyong; Liang, Jian; Yun, Maojin

    2012-10-01

    Slow light plays an important role in the fields of all-optical signal processing and integration photonics. It has shown many potential applications, such as realizing optical delay lines or buffers, enhancing linear and nonlinear light-matter interactions, as well as increasing the sensitivity of the interferometers and transducers. In this paper, hollow-core photonic bandgap fibers made from high index glasses are designed by infiltrating microfluid into the air-holes to tailor the fiber dispersion for slow-light propagation under low pulse distortion. In such a fiber made from Si material, group index ng~8 is obtained with a bandwidth up to 30 nm, where the group index fluctuation is restricted in ±10 % of the ng, while ng~6 is obtained with a bandwidth over 100 nm when the chalcogenide material is selected instead. Such a ±10 % criterion determines a regarded flatland region accordingly, and in this region the group velocity dispersion can be negligible. It is found that for the same fiber length the slow-light time delay in the photonic bandgap fiber is much larger as compared with that in the single mode fiber. This kind of photonic bandgap fiber may have many potential applications in short-distance fiber communications and delay lines.

  16. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices.

    Science.gov (United States)

    Pacella, Heather E; Eash, Heidi J; Federspiel, William J

    2011-10-15

    Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the "constant" correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84.

  17. A 158 fs 5.3 nJ fiber-laser system at 1 mu m using photonic bandgap fibers for dispersion control and pulse compression

    DEFF Research Database (Denmark)

    Nielsen, C.K.; Jespersen, Kim Giessmann; Keiding, S.R.

    2006-01-01

    We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtained...

  18. On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45° as well as switched on and off with the response time...

  19. Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...

  20. Bundle Gel Fibers with a Tunable Microenvironment for in Vitro Neuron Cell Guiding.

    Science.gov (United States)

    Tachizawa, Sayaka; Takahashi, Haruko; Kim, Young-Jin; Odawara, Aoi; Pauty, Joris; Ikeuchi, Yoshiho; Suzuki, Ikuro; Kikuchi, Akihiko; Matsunaga, Yukiko T

    2017-12-13

    As scaffolds for neuron cell guiding in vitro, gel fibers with a bundle structure, comprising multiple microfibrils, were fabricated using a microfluidic device system by casting a phase-separating polymer blend solution comprising hydroxypropyl cellulose (HPC) and sodium alginate (Na-Alg). The topology and stiffness of the obtained bundle gel fibers depended on their microstructure derived by the polymer blend ratio of HPC and Na-Alg. High concentrations of Na-Alg led to the formation of small microfibrils in a one-bundle gel fiber and stiff characteristics. These bundle gel fibers permitted for the elongation of the neuron cells along their axon orientation with the long axis of fibers. In addition, human-induced pluripotent-stem-cell-derived dopaminergic neuron progenitor cells were differentiated into neuronal cells on the bundle gels. The bundle gel fibers demonstrated an enormous potential as cell culture scaffold materials with an optimal microenvironment for guiding neuron cells.

  1. Thermally tunable bandgaps in a hybrid As2S3/silica photonic crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Bang, Ole

    2015-01-01

    We report the fabrication and characterization of a hybrid silica photonic crystal fiber (PCF) with integrated chalcogenide glass layers and we show how the bandgaps of the fiber can be thermally tuned. The formation of the high-index chalcogenide films on the inner surface of the PCF holes...... revealed resonances as strong as similar to 35 dB both in the visible and infrared regime. Temperature measurements indicate that the transmission windows can be tuned with a sensitivity as high as similar to 3.5 nm/degrees C. The proposed fiber has potential for all-fiber filtering and temperature sensing....

  2. Numerical Investigation of Characteristic of Anisotropic Thermal Conductivity of Natural Fiber Bundle with Numbered Lumens

    Directory of Open Access Journals (Sweden)

    Guan-Yu Zheng

    2014-01-01

    Full Text Available Natural fiber bundle like hemp fiber bundle usually includes many small lumens embedded in solid region; thus, it can present lower thermal conduction than that of conventional fibers. In the paper, characteristic of anisotropic transverse thermal conductivity of unidirectional natural hemp fiber bundle was numerically studied to determine the dependence of overall thermal property of the fiber bundle on that of the solid region phase. In order to efficiently predict its thermal property, the fiber bundle was embedded into an imaginary matrix to form a unit composite cell consisting of the matrix and the fiber bundle. Equally, another unit composite cell including an equivalent solid fiber was established to present the homogenization of the fiber bundle. Next, finite element thermal analysis implemented by ABAQUS was conducted in the two established composite cells by applying proper thermal boundary conditions along the boundary of unit cell, and influences of the solid region phase and the equivalent solid fiber on the composites were investigated, respectively. Subsequently, an optional relationship of thermal conductivities of the natural fiber bundle and the solid region was obtained by curve fitting technique. Finally, numerical results from the obtained fitted curves were compared with the analytic Hasselman-Johnson’s results and others to verify the present numerical model.

  3. Ultrasensitive refractive index sensor based on twin-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    We have theoretically investigated twin-core all-solid photonic bandgap fibers (PBGFs) for evanescent wave sensing of refractive index within one single microfluidic analyte channel centered between the two cores. The sensor can achieve ultrahigh sensitivity by detecting the change in transmission....... We find novel features in the sensing characteristics: the sensitivity is higher at the short wavelength edge of a bandgap than at the long wavelength edge, the effective index of the odd supermode (nodd) is more sensitive to ambient refractive index change compared with that of the even supermode...

  4. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving SM LMA rod fibers by using a photonic...... bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...

  5. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...

  6. THz Photonic Band-Gap Prisms Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Busch, Stefan F.; Xu, Lipeng; Stecher, Matthias

    2012-01-01

    We suggest a novel form of polymeric based 3D photonic crystal prisms for THz frequencies which could be fabricated using a standard fiber drawing technique. The structures are modeled and designed using a finite element analyzing technique. Using this simulation software we theoretically study...

  7. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  8. Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Maksim Skorobogatiy

    2009-01-01

    Full Text Available We review application of microstructured and photonic bandgap fibers for designing resonant optical sensors of changes in the value of analyte refractive index. This research subject has recently invoked much attention due to development of novel fiber types, as well as due to development of techniques for the activation of fiber microstructure with functional materials. Particularly, we consider two sensors types. The first sensor type employs hollow core photonic bandgap fibers where core guided mode is confined in the analyte filled core through resonant effect in the surrounding periodic reflector. The second sensor type employs metalized microstructured or photonic bandgap waveguides and fibers, where core guided mode is phase matched with a plasmon propagating at the fiber/analyte interface. In resonant sensors one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte refractive index (10−6–10−4 RIU, as well as in the imaginary part of the analyte refractive index in the vicinity of absorption lines. In the following we detail various resonant sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for bio- and chemical sensing applications. Sensor designs considered in this review span spectral operation regions from the visible to terahertz.

  9. Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Celine Caillaud

    2014-08-01

    Full Text Available An original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs. These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized. The fibers are made of an As38Se62 matrix, with inclusions of Te20As30Se50 glass that shows a higher refractive index (n = 2.9. In those fibers, several transmission bands have been observed in mid infrared depending on the geometry. In addition, for the first time, propagation by photonic bandgap effect in an all-chalcogenide MOF has been observed at 3.39 µm, 9.3 µm, and 10.6 µm. The numerical simulations based on the optogeometric properties of the fibers agree well with the experimental characterizations.

  10. In-line flat-top comb filter based on a cascaded all-solid photonic bandgap fiber intermodal interferometer.

    Science.gov (United States)

    Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin

    2013-07-15

    In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.

  11. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Weirich, Johannes

    2008-01-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at X=1364nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed by in...... by increasing the temperature from 25°C to 100°C. The measurements are compared to a simulated spectrum obtained by means of a vectorial Beam Propagation Method model....

  12. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  13. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs......) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid...... crystal. We demonstrate a modulation frequency of 2kHz for a moderate pump power of 2-3mW and describe two pump pulse regimes in which there is an order of magnitude difference between the decay times....

  14. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    We have fabricated a porous-core honeycomb fiber in the cyclic olefin copolymer (COC) Topas® by drill-draw technology [1]. A cross-sectional image of the fabricated fiber is shown in the left Panel of Fig. 1. Simulation of the electromagnetic properties of the fiber shows two wide bandgaps within...... the frequency range 0.1 to 2 THz, and numerous sharp resonant features are visible in the core power ratio, indicative of resonant coupling between the reflected field from the outer interface of the fiber and the core mode. The fiber is experimentally characterized with a commercial fiber-coupled THz......-TDS system (Picometrix T-Ray 4000). The reference pulse before coupling into the fiber is shown in Fig. 1(a) and the time trace of the THz pulse after propagation through a 5-cm long segment of fiber is shown in Fig. 1(b) (blue curve). After adding some water on the outside of the fiber surface...

  15. Transmission and radiation of an accelerating mode in a photonic band-gap fiber

    Directory of Open Access Journals (Sweden)

    C.-K. Ng

    2010-12-01

    Full Text Available A hollow-core photonic band-gap (PBG lattice in a dielectric fiber has been proposed as a high-gradient low-cost particle accelerator operating in the optical regime where the accelerating mode confined to a defect in the PBG fiber can be excited by high-power lasers [X. Lin, Phys. Rev. ST Accel. Beams 4, 051301 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.051301]. Developing efficient methods of coupling laser power into these structures requires a thorough examination of the propagating mode and its near and far-field radiation. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to calculate the radiation of the propagating accelerator mode into free space at the end of the fiber. The far-field radiation will be calculated and the mechanism of coupling power from an experimental laser setup will be discussed.

  16. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2017-01-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....../sensors at functional mid-IR spectral range. The cross-sectional geometry of the MOF is formed by considering a Ch glass to form the overall background cross-section as well as the central fiber core. The core region is surrounded by periodically arranged (hexagonal pattern) smaller holes, which are assumed...

  17. Demodulation of DPSK signals up to 40 Gb/s using a highly birefringent photonic bandgap fiber

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2006-01-01

    Phase-to-intensity modulation conversion of differential phase-shift keying signals is successfully demonstrated at 10 and 40 Gb/s using a polarization Mach-Zehnder delay interferometer implemented with only 2.4 m of a highly birefringent air-guiding photonic bandgap (PBG) fiber. Such a PBG fiber...

  18. Measurement of fiber bundle volume in reprocessed dialyzers.

    Science.gov (United States)

    Narsipur, S S

    2004-02-01

    Fiber bundle volume (FBV) is an important determinant of dialyzer re-use efficiency. This measurement is performed after the dialyzer has been pressure cleaned and may underestimate the degree of clotted fibers a patient actually encounters while on dialysis. Real-time online measure of FBV has been validated using an ultrasound dilution method and the Transonic HD01 monitor (Ithaca, NY, USA). Thirty-one stable chronic hemodialysis patients were studied during the first hour and then during the last 30 minutes of a typical dialysis session. Ultrasound velocity curves using a saline bolus were recorded by flow dilution sensors placed directly on the blood tubing using methods described previously. Blood volume within the dialyzer compartment was determined using a mathematical extrapolation of the measured transit time for a bolus of saline to pass through the dialyzer. These data were compared to FBV obtained using a Seartronics DRS4 (Fresinius, Walnut Creek, CA, USA) reprocessing machine both before and after the same dialysis session. At onset of treatment mean FBV by ultrasound was 100.0 +/- 2.7 ml and was unchanged at the end of the session at 100.0 +/- 3.1 ml (p = 0.49). Before a dialysis session, mean FBV measured on the DRS4 reprocessing machine was 123.5 +/- 2.1 ml and was unchanged following cleaning after dialysis at 121.7 +/- 2.0 ml (p = 0.20). The correlation coefficient between methods was 0.78. FBV did not change during a dialysis session using an online real-time measure. The results of this study do not support concerns that hemodialysis patients may experience considerably less efficient dialysis than standard FBV determination would suggest due to undetected clotting.

  19. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  20. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    Science.gov (United States)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  1. Conductive Polymer Combined Silk Fiber Bundle for Bioelectrical Signal Recording

    Science.gov (United States)

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions. An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene) -poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  2. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    Directory of Open Access Journals (Sweden)

    Shingo Tsukada

    Full Text Available Electrode materials for recording biomedical signals, such as electrocardiography (ECG, electroencephalography (EEG and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread, which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate (PEDOT-PSS was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm. The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm. The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects.

  3. Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer.

    Science.gov (United States)

    Kim, Gilhwan; Cho, Taiyong; Hwang, Kyujin; Lee, Kwanil; Lee, Kyung S; Han, Young-Geun; Lee, Sang Bae

    2009-02-16

    We fabricated an elliptical hollow-core photonic bandgap fiber (EC-PBGF) by controlling lateral tension in the hollow core region during the fiber drawing process. The absolute value of group modal birefringence becomes relatively high near the bandgap boundaries. We also experimentally measured the strain and temperature sensitivities of the fabricated EC-PBGF-based Sagnac loop interferometer. The strain and temperature sensitivities were very much dependent upon the wavelength. Moreover this PBGF-based interferometer can be a good sensor of physical parameters such as strain and temperature.

  4. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    Science.gov (United States)

    Barh, A.; Varshney, R. K.; Pal, B. P.; Sanghera, J.; Shaw, L. B.

    2017-06-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters/sensors at functional mid-IR spectral range. The cross-sectional geometry of the MOF is formed by considering a Ch glass to form the overall background cross-section as well as the central fiber core. The core region is surrounded by periodically arranged (hexagonal pattern) smaller holes, which are assumed to be filled up with another Ch glass. Thermally compatible and fabrication suitable, two Ch glasses are chosen, one (higher RI) as background material and the other (of lower RI) to fill up the holes. Two sets of such pairs of thermally compatible Ch-glasses are considered as fiber structural materials with relative RI contrast of ∼12% and ∼24%. For both such low RI contrast hexagonal structures, PBG appears only for suitable finite values of longitudinal wave vector. The structures are suitable to realize band-gap at mid-IR wavelengths and specifically optimized for operation around the ∼2 μm region. Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors.

  5. Study of matrix crack-tilted fiber bundle interaction using caustics and finite element method.

    Science.gov (United States)

    Hao, Wenfeng; Zhu, Jianguo; Zhu, Qi; Yuan, Yanan

    2016-02-01

    In this work, the interaction between the matrix crack and a tilted fiber bundle was investigated via caustics and the finite element method (FEM). First, the caustic patterns at the crack tip with different distances from the tilted fiber were obtained and the stress intensity factors were extracted from the geometry of the caustic patterns. Subsequently, the shielding effect of the fiber bundle in front of the crack tip was analyzed. Furthermore, the interaction between the matrix crack and the broken fiber bundle was discussed. Finally, a finite element simulation was carried out using ABAQUS to verify the experimental results. The results demonstrate that the stress intensity factors extracted from caustic experiments are in excellent agreement with the data calculated by FEM.

  6. Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients.

    Science.gov (United States)

    Nazem-Zadeh, Mohammad-Reza; Davoodi-Bojd, Esmaeil; Soltanian-Zadeh, Hamid

    2011-01-01

    To develop an automatic atlas-based method for segmentation of fiber bundles using High Angular Resolution Diffusion Imaging (HARDI) data. Quantitative evaluation of diffusion characteristics inside specific fiber bundles provides new insights into disease developments, evolutions, therapy effects, and surgical interventions. Most of previous segmentation methods use similarity measures and strategies that do not lead to accurate segmentation results. They also suffer from subjectivity of initial seeds and regions of interest (ROI) defined by operator. We propose a novel method that uses Spherical Harmonic Coefficients (SHC) of HARDI diffusion signals to compute Orientation Distribution Function (ODF) and to extract Principal Diffusion Directions (PDDs). The proposed method selects most collinear PDD of neighbors of each voxel. Then, based on SHC and selected PDD, a similarity measure is proposed and used as a speed function in the level set framework that segments fiber bundles. To automate the process, an atlas-based method is used to select initial seeds for fiber bundles. To generate data for evaluation of the proposed method, an artificial pattern consisting of three crossing bundles intersected by a circular bundle is created. Also, two normal controls are imaged by two different HARDI protocols. Segmentation results for different fiber bundles in simulated data and normal control data are presented. Influence of threshold selection on the proposed segmentation method is evaluated using Dice coefficient. Also, effect of increasing the number of gradient directions on accuracy of extracted PDDs is evaluated. The proposed segmentation method has advantages over previous methods especially those that use similarity measures based on diffusion tensor imaging (DTI) data. These advantages are achieved by proper propagation of a hyper-surface in fiber crossing areas without making assumptions about diffusivity profile and selection of initial seeds or ROI. Copyright

  7. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    Science.gov (United States)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  8. Design of a Polymer-Based Hollow-Core Bandgap Fiber for Low-Loss Terahertz Transmission

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2016-01-01

    wavelength-scale circular air holes in a hexagonal pattern, embedded in a uniform Teflon matrix. The THz guidance in this fiber is achieved by exploiting the photonic bandgap (PBG) effect. In our low index contrast Teflon-air (1.44:1) hexagonal periodic lattice, the PBG appears only for a certain range...

  9. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle.

    Science.gov (United States)

    Andresen, Esben Ravn; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé

    2013-03-01

    We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

  10. Experimental investigation of backreflection at air-core photonic bandgap fiber terminations

    Science.gov (United States)

    Xu, Xiaobin; Yan, Ming; Wu, Chunxiao; Song, Ningfang; Zhang, Chunxi

    2017-07-01

    Backreflection from the termination of air-core photonic bandgap fibers (PBFs) is experimentally investigated based on a range-extended Mach-Zehnder and Michelson hybrid (M2) interferometer. For primary waves generated by the fundamental modes, the reflectivity is about -90 dB; for secondary waves caused by other modes, the reflectivity is less than -80 dB when compared to the intensity of the primary wave and -20 to -50 dB when compared to their own incident intensity. To suppress the reflection, 3-centimeter PBF at the end is filled with alcohol through the capillary effect, and this proposed method is shown to be much more convenient and effective than the conventional angle cleaving method.

  11. Darcy Permeability of Hollow Fiber Membrane Bundles Made from Membrana Polymethylpentene Fibers Used in Respiratory Assist Devices.

    Science.gov (United States)

    Madhani, Shalv P; D'Aloiso, Brandon D; Frankowski, Brian; Federspiel, William J

    2016-01-01

    Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular, and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A = 497ε - 103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to -3.5% of our prior correlation over the tested porosity range.

  12. Darcy permeability of hollow fiber membrane bundles made from Membrana® Polymethylpentene (PMP) fibers used in respiratory assist devices

    Science.gov (United States)

    Madhani, Shalv. P.; D’Aloiso, Brandon. D.; Frankowski, Brian.; Federspiel, William. J.

    2016-01-01

    Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake – Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana® polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A=497ε-103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to −3.5% of our prior correlation over the tested porosity range. PMID:26809086

  13. Nerve fiber bundle visual field defect resulting from a giant peripapillary cotton-wool spot.

    Science.gov (United States)

    Chaum, E; Drewry, R D; Ware, G T; Charles, S

    2001-12-01

    Cotton-wool spots are the clinical manifestation of focal infarcts of the retinal nerve fiber layer. They rarely cause significant visual field loss. A large idiopathic cotton-wool spot in a 34-year-old healthy woman caused a nerve fiber bundle visual field defect and an afferent pupillary defect that remained after the cotton-wool spot had disappeared and the retina and optic nerve appeared normal.

  14. Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging

    Science.gov (United States)

    Han, Jae-Ho; Lee, Junghoon; Kang, Jin U.

    2010-01-01

    A method of eliminating pixelization effect from en face optical coherence tomography (OCT) image when a fiber bundle is used as an OCT imaging probe is presented. We have demonstrated that applying a histogram equalization process before performing a weighted-averaged Gaussian smoothing filter to the original lower gray level intensity based image not only removes the structural artifact of the bundle but also enhances the image quality with minimum blurring of object’s image features. The measured contrast-to-noise ratio (CNR) for an image of the US Air Force test target was 14.7dB (4.9dB), after (before) image processing. In addition, by performing the spatial frequency analysis based on two-dimensional discrete Fourier transform (2-D DFT), we were able to observe that the periodic intensity peaks induced by the regularly arrayed structure of the fiber bundle can be efficiently suppressed by 41.0dB for the first nearby side lobe as well as to obtain the precise physical spacing information of the fiber grid. The proposed combined method can also be used as a straight forward image processing tool for any imaging system utilizing fiber bundle as a high-resolution imager. PMID:20389766

  15. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses

    Directory of Open Access Journals (Sweden)

    Ioannis Konidakis

    2014-08-01

    Full Text Available Silver iodide metaphosphate glasses of the xAgI + (1−xAgPO3 family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO3 metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the xAgI + (1−xAgPO3/PCFs is also considered.

  16. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses.

    Science.gov (United States)

    Konidakis, Ioannis; Pissadakis, Stavros

    2014-08-07

    Silver iodide metaphosphate glasses of the x AgI + (1- x )AgPO₃ family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF) by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG) guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO₃ metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the x AgI + (1- x )AgPO₃/PCFs is also considered.

  17. The effects of geometry and fiber bundle orientation on the finite element modeling of the anterior cruciate ligament.

    Science.gov (United States)

    Zhang, Xiaoyan; Wu, Changfu; Jiang, Guotai; Woo, Savio L-Y

    2008-01-01

    The anterior cruciate ligament (ACL) has irregular geometry and spirally oriented fiber bundle organization, which are closely related to its physiological function. In previous finite element (FE) models, however, these two features are neglected due to the difficulty of obtaining its complex geometry and spiral fiber bundle orientation. Based on a previously developed and validated FE model, this study performed parametric studies to evaluate the effects of geometry and fiber bundle orientation on the FE modeling of the ACL. To evaluate the effect of the geometry, two models were compared: 1) with realistic ACL geometry obtained by using digitizer; 2) with ACL geometry reconstructed by directly connecting the femur and tibia insertion sites as commonly used in previous studies. To evaluate the effect of fiber bundle orientation, another two models were compared: 1) with realistic fiber bundle orientation obtained by using digitizer (alpha=38 degrees ); 2) with unrealistic fiber bundle orientation (alpha=0 degrees ). The same kinematics obtained by a Robotic/Universal Force-moment Sensor (UFS) system was input into the models as boundary conditions. The resultant forces calculated by the models were compared to the experimental data. The model with unrealistic geometry had a 40% higher ACL resultant force compared to the experimental data, while the model with the realistic ACL geometry well predicted the ACL resultant force, with an error less than 10%. When evaluating the effect of fiber bundle orientation, the model with unrealistic fiber bundle orientation predicted similar ACL resultant forces and stress distribution as the model with realistic fiber bundle orientation. The results revealed that ACL geometry has a significant effect on the FE model while fiber orientation does not.

  18. Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tong; Chapman, Christopher H. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina [Department of Radiation Oncology, Washington University at St Louis, St Louis, Missouri (United States); Kim, Michelle; Spratt, Daniel E.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2016-11-01

    Purpose: Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)–induced damage to whole-brain WM bundles. Methods and Materials: An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Six DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. Results: Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. Conclusions: Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.

  19. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  20. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  1. Gauge theory and gravitation: an approach to a fiber bundle formalism

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1986-01-01

    The thesis is composed of two different parts. A formal complete and rigorous mathematical part-of topics of differential manilfolds, exterior calculus, riemannian geometry, principal fiber bundle (p.f.) with connections and linear connections and a second part of application of this mathematical formalism concerning physical theories, particularly the Maxwell eletromagnetism (EM), gauge theory of Yang-Mills (Y-M), the GRT, and the gravitation theory of Einstein-Cartan. (E.C.) [pt

  2. Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil

    Science.gov (United States)

    Zhang, X. L.; Jin, W.; Ying, D. Q.

    2010-11-01

    We evaluate the measurement errors induced by various deleterious effects in an optical passive ring-resonator gyro (OPRG) with a hollow-core photonic bandgap fiber (HC-PBF) sensing coil. The uncertainties in measuring rotation rate due to Kerr, Shupe, and Faraday effects are found to be reduced respectively by 2~3, 1, and 1~2 orders of magnitude as compared with an OPRG with a conventional single mode fiber (SMF) sensing coil of similar parameters. The errors due to shot and coherent backscatter noises are larger for the OPRG made of the current state-of-the-art HC-PBF than for the OPRG with a conventional SMF coil, but are expected to reduce in future with improved fiber manufacture technologies.

  3. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Gür Güngör, Sirel; Akman, Ahmet; Sarıgül Sezenöz, Almila; Tanrıaşıkı, Gülşah

    2016-01-01

    Objectives: The presence of retinal nerve fiber layer (RNFL) split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program). In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29%) and unilateral superior split was observed in 15 cases (4.16%). In 325 cases (90.52%) there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles. PMID:28050324

  4. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Sirel Gür Güngör

    2016-12-01

    Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  5. Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST

    Directory of Open Access Journals (Sweden)

    Feng Mingchi

    2014-08-01

    Full Text Available In the astronomical observation process of multi-object fiber spectroscopic telescope, the position measurement of fiber tips on the focal plane is difficult and critical, and is directly related to subsequent observation and ultimate data quality. The fibers should precisely align with the celestial target. Hence, the precise coordinates of the fiber tips are obligatory for tracking the celestial target. The accurate movement trajectories of the fiber tips on the focal surface of the telescope are the critical problem for the control of the fiber positioning mechanism. According to the special structure of the LAMOST telescope and the composition of the initial position error, this paper aims at developing a high precision and robust measurement method based on multiple iterations of bundle adjustment with a few control points. The measurement theory of the proposed methodology has been analyzed, and the measurement accuracy has been evaluated. The experimental results indicate that the new method is more accurate and more reliable than the polynomial fitting method. The maximum position error of the novel measurement algorithm of fiber tips with simulated and real data is 65.3 μm, and most of the position errors conform to the accuracy requirement (40 μm.

  6. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  7. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  8. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.

    Science.gov (United States)

    Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G

    2017-12-01

    Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.

  9. Turbine-blade tip clearance and tip timing measurements using an optical fiber bundle sensor

    Science.gov (United States)

    Garcia, Iker; Beloki, Josu; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon

    2013-04-01

    Traditional limitations of capacitive, inductive or discharging probe sensor for tip timing and tip clearance measurements are overcome by reflective intensity modulated optical fiber sensors. This paper presents the signals and results corresponding to a one stage turbine rig which rotor has 146 blades, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on turbine casing. It is composed of a central illuminating fiber that guides the light from a laser to the turbine blade, and two concentric rings of receiving fibers that collect the reflected light. Two photodetectors turn this reflected light signal from the receiving rings into voltage. The electrical signals are acquired and saved by a high-sample-rate oscilloscope. In tip clearance calculations the ratio of the signals provided by each ring of receiving fibers is evaluated and translated into distance. In the case of tip timing measurements, only one of the signals is considered to get the arrival time of the blade. The differences between the real and theoretical arrival times of the blades are used to obtain the deflections amplitude. The system provides the travelling wave spectrum, which presents the average vibration amplitude of the blades at a certain nodal diameter. The reliability of the results in the turbine rig testing facilities suggests the possibility of performing these measurements in real turbines under real working conditions.

  10. Solid-Core Photonic Bandgap Fibers for Cladding-Pumped Raman Amplification

    Science.gov (United States)

    2011-06-03

    that the cladding is uniformly-pumped at its maximum numerical aperture and that the photonic band gap ( PBG ) structure comprised of a triangular array...published 3 Jun 2011 (C) 2011 OSA 6 June 2011 / Vol. 19, No. 12 / OPTICS EXPRESS 11855 beyond the PBG structure. In this case, the high pump cladding...exhibit lower loss [16]. For high order bandgaps to exist in the cladding, the inclusions forming the PBG structure must support a large number of guided

  11. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  12. Evaluation of a respiratory assist catheter that uses an impeller within a hollow fiber membrane bundle.

    Science.gov (United States)

    Mihelc, Kevin M; Frankowski, Brian J; Lieber, Samuel C; Moore, Nathan D; Hattler, Brack G; Federspiel, William J

    2009-01-01

    Respiratory assist using an intravenous catheter may be a potential treatment for patients suffering from acute or acute-on-chronic lung failure. The objective of this study was to evaluate a novel respiratory catheter that uses an impeller within the fiber bundle to enhance gas exchange efficiency, thus requiring a smaller fiber bundle and insertional size (25 Fr) and permitting simple percutaneous insertion. Bench testing of gas exchange in deionized water was used to evaluate eight impeller designs. The three best performing impeller designs were evaluated in acute studies in four calves (122 + or - 10 kg). Gas exchange increased significantly with increasing impeller rotation rate. The degree of enhancement varied with impeller geometry. The maximum gas exchange efficiency (exchange per unit surface area) for the catheter with the best performing impeller was 529 + or - 20 ml CO(2)/min/m(2) and 513 + or - 21 ml CO(2)/min/m(2) for bench and animal studies, respectively, at a rotation rate of 20,000 rpm. Absolute CO(2) exchange was 37 and 36 ml CO(2)/min, respectively. Active mixing by rotating impellers produced 70% higher gas exchange efficiency than pulsating balloon catheters. The sensitivity of gas exchange to impeller design suggests that further improvements can be made by computational fluid dynamics-based optimization of the impeller.

  13. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  14. Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling

    DEFF Research Database (Denmark)

    Hansen, Theis Peter; Broeng, Jes; Jakobsen, Christian

    2004-01-01

    For development of hollow-core transmission fibers, the realizable fibers lengths, bandwidth, characterization, and compatibility with standard technology are important issues. We report record-length air-guiding fiber, spectral properties, splicing, and optical time domain reflectometer (OTDR) m...

  15. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses

    Science.gov (United States)

    Yilmaz, Ozgur; Miyagi, Mitsunobu; Matsuura, Yuji

    2006-09-01

    A hollow-fiber bundle was designed and used to deliver high-peak-power pulses from a Q-switched Nd:YAG laser. An 80 cm long bundle with a total diameter of 5.5 mm was composed of 37 glass capillaries with bore diameters of 0.7 mm. Beam-resizing optics with two lenses were used to couple the laser beam into the bundle. The measured coupling loss due to the limited aperture ratio of the bundle was 2.3 dB, and the transmission loss at wavelengths of 1064 and 532 nm was 0.3 dB. When an inert gas flowed through the bores of the capillaries, the maximum output pulse energy was 200 mJ, which was the limit of the laser used in the experiment. Hollow-fiber bundles withstand irradiation better than single hollow fibers and silica-glass optical fibers do. They are suitable for many dermatological applications because they can be used to irradiate a large area.

  16. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.

    Science.gov (United States)

    Kaesler, Andreas; Schlanstein, Peter C; Hesselmann, Felix; Büsen, Martin; Klaas, Michael; Roggenkamp, Dorothee; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2017-06-01

    Flow distribution is key in artificial lungs, as it directly influences gas exchange performance as well as clot forming and blood damaging potential. The current state of computational fluid dynamics (CFD) in artificial lungs can only give insight on a macroscopic level due to model simplification applied to the fiber bundle. Based on our recent work on wound fiber bundles, we applied particle image velocimetry (PIV) to the model of an artificial lung prototype intended for neonatal use to visualize flow distribution in a stacked fiber bundle configuration to (i) evaluate the feasibility of PIV for artificial lungs, (ii) validate CFD in the fiber bundle of artificial lungs, and (iii) give a suggestion how to incorporate microscopic aspects into mainly macroscopic CFD studies. To this end, we built a fully transparent model of an artificial lung prototype. To increase spatial resolution, we scaled up the model by a factor of 5.8 compared with the original size. Similitude theory was applied to ensure comparability of the flow distribution between the device of original size and the scaled-up model. We focused our flow investigation on an area (20 × 70 × 43 mm) in a corner of the model with a Stereo-PIV setup. PIV data was compared to CFD data of the original sized artificial lung. From experimental PIV data, we were able to show local flow acceleration and declaration in the fiber bundle and meandering flow around individual fibers, which is not possible using state-of-the-art macroscopic CFD simulations. Our findings are applicable to clinically used artificial lungs with a similar stacked fiber arrangement (e.g., Novalung iLa and Maquet QUADROX-I). With respect to some limitations, we found PIV to be a feasible experimental flow visualization technique to investigate blood-sided flow in the stacked fiber arrangement of artificial lungs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  18. Kinematics of semiclassical spin and spin fiber bundle associated with so(n) Lie-Poisson manifold

    International Nuclear Information System (INIS)

    Deriglazov, A A

    2013-01-01

    We describe geometric construction underlying the Lagrangian actions for non-Grassmann spinning particles proposed in our recent works. If we discard the spatial variables (the case of frozen spin), the problem reduces to formulation of a variational problem for Hamiltonian system on a manifold with so(n) Lie-Poisson bracket. To achieve this, we identify dynamical variables of the problem with coordinates of the base of a properly constructed fiber bundle. In turn, the fiber bundle is embedded as a surface into the phase space equipped with canonical Poisson bracket. This allows us to formulate the variational problem using the standard methods of Dirac theory for constrained systems.

  19. Size Scaling and Bursting Activity in Thermally Activated Breakdown of Fiber Bundles

    KAUST Repository

    Yoshioka, Naoki

    2008-10-03

    We study subcritical fracture driven by thermally activated damage accumulation in the framework of fiber bundle models. We show that in the presence of stress inhomogeneities, thermally activated cracking results in an anomalous size effect; i.e., the average lifetime tf decreases as a power law of the system size tf ∼L-z, where the exponent z depends on the external load σ and on the temperature T in the form z∼f(σ/T3/2). We propose a modified form of the Arrhenius law which provides a comprehensive description of thermally activated breakdown. Thermal fluctuations trigger bursts of breakings which have a power law size distribution. © 2008 The American Physical Society.

  20. Electrically tunable bandpass filter based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds.......An electrically tunable bandpass filter based on two photonic crystal fibers filled with different liquid crystals is demonstrated. Both the short-wavelength and long-wavelength edge are tuned individually or simultaneously with the response time in milliseconds....

  1. Electrically tunable long-period gratings in liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Scolari, Lara; Lægsgaard, Jesper

    2007-01-01

    We demonstrate an aLl-electrically tunable long period grating in a photonic crystal fiber infiltrated with a nematic liquid crystal. The spectral dips and the resonance wavelengths are tuned electrically and thermally, respectively.......We demonstrate an aLl-electrically tunable long period grating in a photonic crystal fiber infiltrated with a nematic liquid crystal. The spectral dips and the resonance wavelengths are tuned electrically and thermally, respectively....

  2. Principal fiber bundle description of number scaling for scalars and vectors: application to gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Donkor, Eric; Pirich, Andrew R.; Hayduk, Michael; Benioff, Paul

    2015-05-21

    The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex scaling factor, s. A vector space at a fiber level, s, has as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector values fields gives the same vector fields. The derivation shoes that complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.

  3. Highly efficient high power single-mode fiber amplifier utilizing the distributed mode filtering bandgap rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas T.; Jørgensen, Mette Marie

    2012-01-01

    We report on an ytterbium doped single mode distributed mode filtering rod fiber in an amplifier configuration delivering high average output power, up to 292 watts, using a mode-locked 30ps source at 1032nm with good power conversion efficiency. We study the modal stability of the output beam...... at high average output power levels and demonstrate a 44% power improvement before the threshold-like onset of mode instabilities by operating the rod fiber in a leaky waveguide regime. We investigate the guiding dynamics of the rod fiber and explain the improved performance by thermally induced...

  4. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma.

    Science.gov (United States)

    Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C

    2015-01-08

    To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  5. Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Tartarini, Giovanni; Pansera, Marco; Alkeskjold, Thomas Tanggaard

    2007-01-01

    The characteristics of triangular photonic crystal fibers (PCFs) with elliptical holes filled with a nematic liquid crystal (LC) are investigated theoretically. The analysis that is carried out using the finite-element method, including material dispersion effects, shows that LC anisotropy and hole...

  6. Low loss liquid crystal photonic bandgap fiber in the near-infrared region

    DEFF Research Database (Denmark)

    Scolari, Lara; Wei, Lei; Gauza, Sebastian

    2011-01-01

    We infiltrate a perdeuterated liquid crystal with a reduced infrared absorption in a photonic crystal fiber. The H atoms of this liquid crystal were substituted with D atoms in order to move the vibration bands which cause absorption loss to longer wavelengths and therefore reduce the absorption...

  7. Modeling loss and backscattering in a photonic-bandgap fiber using strong perturbation

    Science.gov (United States)

    Zamani Aghaie, Kiarash; Digonnet, Michel J. F.; Fan, Shanhui

    2013-02-01

    We use coupled-mode theory with strong perturbation to model the loss and backscattering coefficients of a commercial hollow-core fiber (NKT Photonics' HC-1550-02 fiber) induced by the frozen-in longitudinal perturbations of the fiber cross section. Strong perturbation is used, for the first time to the best of our knowledge, because the large difference between the refractive indices of the two fiber materials (silica and air) makes conventional weak-perturbation less accurate. We first study the loss and backscattering using the mathematical description of conventional surface-capillary waves (SCWs). This model implicitly assumes that the mechanical waves on the core wall of a PBF have the same power spectral density (PSD) as the waves that develop on an infinitely thick cylindrical tube with the same diameter as the PBF core. The loss and backscattering coefficients predicted with this thick-wall SCW roughness are 0.5 dB/km and 1.1×10-10 mm-1, respectively. These values are more than one order of magnitude smaller than the measured values (20-30 dB/km and ~1.5×10-9 mm-1, respectively). This result suggests that the thick-wall SCW PSD is not representative of the roughness of our fiber. We found that this discrepancy occurs at least in part because the effect of the finite thickness of the silica membranes (only ~120 nm) is neglected. We present a new expression for the PSD that takes into account this finite thickness and demonstrates that the finite thickness substantially increases the roughness. The predicted loss and backscattering coefficients predicted with this thin-film SCW PSD are 30 dB/km and 1.3×10-9 mm-1, which are both close to the measured values. We also show that the thin-film SCW PSD accurately predicts the roughness PSD measured by others in a solid-core photonic-crystal fiber.

  8. Temperature assisted band-gap engineering in all-solid chalcogenide holey fiber for mid-IR application

    Science.gov (United States)

    Barh, Ajanta; Varshney, R. K.; Pal, B. P.; Sanghera, J.; Shaw, L. B.

    2015-06-01

    Presence of photonic band-gap (PBG) in an all-solid microstructured optical fiber (MOF), made of two fabrication compatible chalcogenide (Ch) glasses is theoretically investigated for potential application in the functional mid-infrared (IR) wavelength range. Cross-section of the MOF is formed by assuming periodically arranged wavelength scale circular air holes in a hexagonal pattern embedded in a uniform matrix. One type of Ch-glass is considered as the background material whereas another type of Ch-glass is assumed to fill the air holes. The relative index contrast between these two Ch-glasses is ~ 24%, for which PBG appears only for a suitable range of non-zero longitudinal wave vector. We have studied the scalability of this PBG by varying the lattice parameter of MOF and optimized the cross-section to attain the PBG at ~ 2 μm wavelength. Then by utilizing the thermo-optic properties of the glasses, the effect of external temperature (T) on the PBG is studied, and finally we have proposed a T-tunable wavelength filter/sensor at mid-IR wavelength with tuning sensitivity as high as ~ 140 pm/°C.

  9. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer

    Science.gov (United States)

    Khoobehi, Bahram; Khoobehi, Aurash; Fournier, Paul

    2012-03-01

    We have developed a snapshot fiber bundle technique that circumvents the issue of saccades of the non-immobilized eye. In this technology, 458 individual fibers are assembled in a two-dimensional array where each fiber represents a portion of the image. These fibers are redistributed into two separate one-dimensional fiber rows interfaced into a two-slit spectrometer. The light from each fiber is decomposed into its spectral components by the spectrometer. Using this innovative technology, we have been able to detect the whole spectrum of hemoglobin using the single light exposure capabilities of a fundus camera. The hemoglobin signature of the retinal arteries, veins, and retina tissue can be recorded. The final result is a complete, 3-dimensional representation of the spectral and spatial information from a single exposure of the patient. By adjusting the field of view on the imaging portion of the fundus camera, the fiber optic cable may encompass a larger area. However, this causes a decrease in spatial resolution, so we increased the area of the fiber array by increasing the number of the fibers from 458 to 648, increased the size of each individual fiber from 10 μm to 20 &μm, and increased the number of slits to four.

  11. Design of single-polarization coupler based on dual-core photonic band-gap fiber implied in resonant fiber optic gyro

    Science.gov (United States)

    Xu, Zhenlong; Li, Xuyou; Zhang, Chunmei; Ling, Weiwei; Liu, Pan; Xia, Linlin; Yang, Hanrui

    2016-12-01

    A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 μm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.

  12. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

    Science.gov (United States)

    Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel

    2017-11-01

    The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

  13. Compact multiple laser beam scanning module for high-resolution pico-projector applications using a fiber bundle combiner

    Science.gov (United States)

    Ide, Masafumi; Fukaya, Shinpei; Yoda, Kaoru; Suzuki, Masaya

    2014-02-01

    We present a novel multiple laser beam scanning projection module using compact red-green-blue (RGB) fiber pigtailed laser modules for use in a high resolution pico-projector display system using a fiber bundle combiner in combination with a single MEMS mirror. This system can be used to create accurate multiple-projection images on a screen without overlaps or spaces among the projection images. The system uses very simple projection optics and has the potential to become a light engine unit for use in multiple projection systems, particularly those for light field displays. As such, light field display applications are also discussed.

  14. Change in the Pathologic Supraspinatus: A Three-Dimensional Model of Fiber Bundle Architecture within Anterior and Posterior Regions

    Directory of Open Access Journals (Sweden)

    Soo Y. Kim

    2015-01-01

    Full Text Available Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL and pennation angle (PA were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies.

  15. Robustness of power systems under a democratic-fiber-bundle-like model.

    Science.gov (United States)

    Yağan, Osman

    2015-06-01

    We consider a power system with N transmission lines whose initial loads (i.e., power flows) L(1),...,L(N) are independent and identically distributed with P(L)(x)=P[L≤x]. The capacity C(i) defines the maximum flow allowed on line i and is assumed to be given by C(i)=(1+α)L(i), with α>0. We study the robustness of this power system against random attacks (or failures) that target a p fraction of the lines, under a democratic fiber-bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows. (i) We show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size p(☆)=1-(E[L]/max(x)(P[L>x](αx+E[L|L>x])), where E[·] is the expectation operator; (ii) we derive conditions on the distribution P(L)(x) for which the first-order breakdown of the system occurs abruptly without any preceding diverging rate of failure; (iii) we provide a detailed analysis of the robustness of the system under three specific load distributions-uniform, Pareto, and Weibull-showing that with the minimum load L(min) and mean load E[L] fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; (iv) we provide numerical results that confirm our mean-field analysis; and (v) we show that p(☆) is maximized when the load distribution is a Dirac delta function centered at E[L], i.e., when all lines carry the same load. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.

  16. Single-shot T1 mapping of the corpus callosum: A rapid characterization of fiber bundle anatomy

    Directory of Open Access Journals (Sweden)

    Sabine eHofer

    2015-05-01

    Full Text Available Using diffusion-tensor MRI and fiber tractography the topographic organization of the corpus callosum (CC has been described to comprise 5 segments with fibers projecting into prefrontal (I, premotor and supplementary motor (II, primary motor (III, and primary sensory areas (IV, as well as into parietal, temporal, and occipital cortical areas (V. In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area from densely packed smaller axonal bundles (genu with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  17. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level.

    Science.gov (United States)

    Guan, Kang; Wu, Jianqing; Cheng, Laifei

    2016-12-13

    The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites' thermal conductivity is matrix cracking's density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.

  18. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    Directory of Open Access Journals (Sweden)

    Kang Guan

    2016-12-01

    Full Text Available The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.

  19. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    Science.gov (United States)

    Guan, Kang; Wu, Jianqing; Cheng, Laifei

    2016-01-01

    The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130

  20. Cognitive reserve moderates the relationship between neuropsychological performance and white matter fiber bundle length in healthy older adults.

    Science.gov (United States)

    Baker, Laurie M; Laidlaw, David H; Cabeen, Ryan; Akbudak, Erbil; Conturo, Thomas E; Correia, Stephen; Tate, David F; Heaps-Woodruff, Jodi M; Brier, Matthew R; Bolzenius, Jacob; Salminen, Lauren E; Lane, Elizabeth M; McMichael, Amanda R; Paul, Robert H

    2017-06-01

    Recent work using novel neuroimaging methods has revealed shorter white matter fiber bundle length (FBL) in older compared to younger adults. Shorter FBL also corresponds to poorer performance on cognitive measures sensitive to advanced age. However, it is unclear if individual factors such as cognitive reserve (CR) effectively moderate the relationship between FBL and cognitive performance. This study examined CR as a potential moderator of cognitive performance and brain integrity as defined by FBL. Sixty-three healthy adults underwent neuropsychological evaluation and 3T brain magnetic resonance imaging. Cognitive performance was measured using the Repeatable Battery of Assessment of Neuropsychological Status (RBANS). FBL was quantified from tractography tracings of white matter fiber bundles, derived from the diffusion tensor imaging. CR was determined by estimated premorbid IQ. Analyses revealed that lower scores on the RBANS were associated with shorter whole brain FBL (p = 0.04) and lower CR (p = 0.01) CR moderated the relationship between whole brain FBL and RBANS score (p performance (p = 0.03). These results demonstrate that lower cognitive performance on the RBANS is more common with low CR and short FBL. On the contrary, when individuals have high CR, the relationship between FBL and cognitive performance is attenuated. Overall, CR protects older adults against lower cognitive performance despite age-associated reductions in FBL.

  1. High Performance Spatial Filter Array Based on Single Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I project, by leveraging on Agiltron's experience in optical fiber components and our unique fabrication procedure of fiber array, we successfully designed...

  2. High Performance Spatial Filter Array Based on Signal Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loveraging on Agiltron's experience in optical fiber components, Agiltron proposed a coherent single-mode fiber (SMF) spatial filter array (SFA) with a gradient...

  3. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons

    Science.gov (United States)

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.

    2016-01-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  4. Cotton fiber properties: relative humidity and its effect on flat bundle strength, elongation, and fracture morphology

    Science.gov (United States)

    It is well known that cotton fibers readily exchange moisture content with their surrounding atmosphere. As moisture exchange progresses, several physical properties of the fiber are significantly affected. In this study, the effects of relative humidity (RH), a factor that affects the atmospheric m...

  5. Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber.

    Science.gov (United States)

    González-Baquedano, N; Torres-Gómez, I; Arzate, N; Ferrando, A; Ceballos-Herrera, D E

    2013-04-08

    A numerical investigation of low-order soliton evolution in a proposed seven-cell hollow-core photonic bandgap fiber is reported. In the numerical simulation, we analyze the pulse quality evolution in soliton pulse compression and soliton self-frequency shift in three fiber structures with different cross-section sizes. In the simulation, we consider unchirped soliton pulses (of 400 fs) at the wavelength of 1060 nm. Our numerical results show that the seven-cell hollow-core photonic crystal fiber, with a cross-section size reduction of 2%, promotes the pulse quality on the soliton pulse compression and soliton self-frequency shift. For an input soliton pulse of order 3 (which corresponds to an energy of 1.69 μJ), the pulse gets compressed with a factor of up to 5.5 and a quality factor of 0.73, in a distance of 12 cm. It also experiences a soliton-self frequency shift of up to 28 nm, in a propagation length of 6 m, with a pulse shape quality of ≈ 0.80.

  6. Correlation of Papillomacular Nerve Fiber Bundle Thickness with Central Visual Function in Open-Angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Wataru Kobayashi

    2015-01-01

    Full Text Available Purpose. To determine the correlation of reduced retinal thickness in the central papillomacular bundle (CPB to central visual function, including central retinal sensitivity and visual acuity, in glaucoma patients. Methods. This study enrolled 50 eyes of 50 patients with open-angle glaucoma who were carefully screened for comorbid conditions that can cause decreased central visual function, such as cataracts or macular diseases. We used a novel CPB analysis comprising a program for optical coherence tomography that measured RNFL thickness and GCC thickness in the CPB and divided lengthwise into three parts (upper, middle, and lower CPB. The relationship of these parameters, including conventional macular thickness, to visual field sensitivity in four central standard automated perimetry points (the central four thresholds and BCVA was analyzed. Results. The two parameters most highly correlated with central four thresholds were macular GCCT and macular RNFLT. The two parameters most highly correlated with BCVA were middle CPB (mid-CPB GCCT and mid-CPB RNFLT. A multiple regression analysis revealed that mid-CPB GCCT was an independent factor impacting central retinal thresholds and BCVA. Conclusions. Our results suggest that mid-CPB RNFLT and GCCT, parameters of a novel papillomacular bundle analysis, are candidate biomarkers of decreased central visual function in glaucomatous eyes.

  7. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode with a ...

  8. Mode-field adapter for tapered-fiber-bundle signal and pump combiners

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, J.; Písařík, M.

    2015-01-01

    Roč. 54, č. 4 (2015), s. 751-756 ISSN 1559-128X R&D Projects: GA ČR(CZ) GAP205/11/1840; GA MPO FR-TI4/734 Institutional support: RVO:67985882 Keywords : Fiber s * Dopant diffusion * Input and outputs Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.598, year: 2015

  9. Spatial calibration and image processing requirements of an image fiber bundle based snapshot hyperspectral imaging probe: from raw data to datacube

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-06-01

    Hyperspectral imaging was first used in remote sensing and since then, it has been used in many other applications such as cancer diagnosis, precision farming and assessment of the level of flaking in ancient murals. In order to make hyperspectral imaging available for a wide variety of applications, its imagers can be made to operate using different methods and developed into different configurations. This leads to each variant having a set of specifications suitable for certain applications. The many variants of hyperspectral imager produce a set of three-dimensional spatial-spatialspectral datacube, which is made up of hundreds of spectral images of one scene. A snapshot hyperspectral imaging probe has recently been developed by integrating a fiber bundle, which is made up of specially-arranged optical fibers, with a spectrograph-based hyperspectral imager. The snapshot method is able to produce a datacube using the information from each scan. The fiber bundle has 100 fiberlets which are arranged in a row in the one-dimensional proximal end, and are rearranged into a 10×10 hexagonal array in the two-dimensional distal end. The image captured by the two-dimensional end of the fiber bundle is reduced from two to one spatial dimension at the one-dimensional end. The raw data acquired from each scan has to be remapped into a datacube with the correct representation of the spectral and spatial features of the captured scene. This paper reports the spatial calibrations of both ends of the fiber bundle and image processing that have to be performed for such a remapping.

  10. Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    fixing structures during the device assembly. The total insertion loss of this all-in-fiber device is 2.7 dB. An electrically tunable polarization extinction ratio of 21.3 dB is achieved with 45$^{circ}$ rotatable transmission axis as well as switched on and off in the wavelength range of 1300–1600 nm....

  11. The Atiyah bundle and connections on a principal bundle

    Indian Academy of Sciences (India)

    be the fiber bundle constructed as in (1.1) for the universal principal G-bundle. In a work in progress, we hope to show that the universal G-connection can be realized as a fiber bundle over C(EG). Turning this around, we hope to get an alternative construction of the universal G-connection. Also, this approach may yield a ...

  12. The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn

    2008-01-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  13. Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research

    Science.gov (United States)

    Kang, H. G.; Hong, S. J.; Ko, G. B.; Yoon, H. S.; Song, I. C.; Rhee, J. T.; Lee, J. S.

    2015-12-01

    Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by -0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm3 were used instead of 2.47 × 2.74 × 20.0 mm3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B0 and B1 field homogeneity without PET, with `PET OFF', and with `PET ON' was also evaluated. In conclusion, B0 maps were not affected by the proposed PET insert whereas B1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation.

  14. Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research

    International Nuclear Information System (INIS)

    Kang, H.G.; Hong, S.J.; Ko, G.B.; Yoon, H.S.; Lee, J.S.; Song, I.C.; Rhee, J.T.

    2015-01-01

    Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by −0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm 3 were used instead of 2.47 × 2.74 × 20.0 mm 3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B 0 and B 1 field homogeneity without PET, with 'PET OFF', and with 'PET ON' was also evaluated. In conclusion, B 0 maps were not affected by the proposed PET insert whereas B 1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation

  15. Novel reconnection method of incoherent optical fiber bundle pre-calibrated for image transmission in industrial hazardous environments

    Science.gov (United States)

    Demuynck, Olivier; Menéndez, José Manuel

    2012-01-01

    Complying with security certifications in most harsh industrial areas is usually very expensive and sometimes hinders the industrialization of new technologies. Thus, we observe in the modern industry an increasing need for visual inspection and closed monitoring systems, either manual (direct and permanent observation of a supervisor) or automatic (usually through Computer Vision applications) to monitor hazardous environments. In such conditions, the use of incoherent optical fiber bundle (IOFB) for image transmission is probably the most appropriate solution. This option requires a prior calibration step to perform the reconstruction of the IOFB output image, where the reconstruction process is very efficient, according to the latest studies. It is of further interest to introduce and extend this technique in industrial applications, to make possible the portability of IOFB calibration. Indeed, a slight position shift of the system may corrupt the calibrated IOFB, consequently invalidating it for image transmission. We propose a new method to quickly and automatically solve this problem. Such an image acquisition and transmission system is very attractive for commercial introduction, since the IOFB can be pre-calibrated, and the calibration quickly recomputed any time it is needed without loss in image quality. The presented work has been submitted for patent.

  16. A genetic algorithm-based model for longitudinal changes detection in white matter fiber-bundles of patient with multiple sclerosis.

    Science.gov (United States)

    Stamile, Claudio; Kocevar, Gabriel; Cotton, François; Sappey-Marinier, Dominique

    2017-05-01

    Analysis of white matter (WM) tissue is essential to understand the mechanisms of neurodegenerative pathologies like multiple sclerosis (MS). Recently longitudinal studies started to show how the temporal component is important to investigate temporal diffuse effects of neurodegenerative pathologies. Diffusion tensor imaging (DTI) constitutes one of the most sensitive techniques for the detection and characterization of brain related pathological processes and allows also the reconstruction of WM fibers. The analysis of spatial and temporal pathological changes along the fibers are thus possible by merging quantitative maps with structural information provided by DTI. In this work, we present a new genetic algorithm (GA) based method to analyze longitudinal changes occurring along WM fiber-bundles. In the first part of this paper, we describe the data processing pipeline, including data registration and fiber tract post-processing. In the second part, we focus our attention to the description of our GA model. In the last part, we show the tests we performed on simulated and real MS longitudinal data. Our method reached a high level of precision, recall and F-Measure in the detection of longitudinal pathological alterations occurring along different WM fiber-bundles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Standard-model bundles

    CERN Document Server

    Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan

    2002-01-01

    We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.

  18. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye : Average course, variability, and influence of refraction, optic disc size and optic disc position

    NARCIS (Netherlands)

    Jansonius, Nomdo M.; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich

    2012-01-01

    Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the

  19. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  20. Quillen bundle and geometric prequantization of non-abelian ...

    Indian Academy of Sciences (India)

    prequantum line bundle whose curvature is proportional to this symplectic form. The prequantum ..... The fiber over Ua/G is the equivalence class of this fiber. Like this we can define the line bundle on A/G. 3.2 Quillen metric. Using the Hermitian structure on E (the vector bundle on the Riemann surface ) and therefore the ...

  1. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    Science.gov (United States)

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  2. Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory

    Science.gov (United States)

    Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...

  3. Improving Structural and Functional Agreement in Patients with Glaucoma by Using Customized Perimetric Locations and Images of the Retinal Nerve Fiber Bundles

    Science.gov (United States)

    Alluwimi, Muhammed Saad

    Glaucoma is the second leading cause of the blindness worldwide. It is a group of chronic, progressive, and potentially blinding optic neuropathies characterized by abnormalities of the optic nerve head and/or retinal nerve fiber layer (RNFL) associated with visual field abnormality. When diagnosing and managing patients with glaucoma, clinicians evaluate the agreement between structural and functional measures. However, it has been widely recognized that there is often a discordance between structural and functional (e.g., perimetry) measures in glaucoma, posing a challenge for clinicians to make their decisions. As explained in the literature, this discordance may relate to high normal between-subject variation, insufficient knowledge of the RNFL bundle organization, sparse spacing of the perimetric locations used to measure the functional performance of ganglion cells, high test-retest variation for the most commonly used stimulus for perimetry, and poor perimetric sampling of the macula. The aim of this thesis was to overcome this discordance by conducting three experiments: First, asymmetry analysis was used to reduce between-subject variation of the macular thickness and ganglion cell thickness measurements with OCT. This variation was decreased at particular regions of the macula. Outside the macula, the variation remained high leading to the second experiment in which customized closely-spaced perimetric locations were presented at wedge defects, guided by the OCT en face images of the RNFL bundles. A rapid suprathreshold perimetric strategy was used and perimetric defect was, in most cases, in correspondence with the structural defect. To threshold perimetric defects, an elongated blur-resistant stimulus was oriented within damaged RNFL bundles. It was found that contrast sensitivities were below the 95% normal limit in 37 of 44 locations. The latter experiment focused on wedge defects outside the macula, which led to the third experiment in which the goal

  4. Justification of Selecting Ultrasonic Testing Parameters for Bundle and Impact Damage Detection in Carbon-Fiber Constructions

    Directory of Open Access Journals (Sweden)

    M. V. Grigoriev

    2015-01-01

    Full Text Available Features of manufacturing process and use of carbon fibre-reinforced plastics (CFRP define specific types of only their defects. Furthermore, the CFRP structure material and its properties considerably differ from those of the metal materials. Therefore, a relevant task is to conduct research to justify the selection of the ultrasonic testing parameters of these materials.Optimal parameters and recommendations on quality control of such materials were grounded in the course of experimental studies on samples made from the UTR1000-12-400P carbon fabric, based on the T700GC-12K yarn and the T-31 epoxy binder, filled with artificial defects to imitate the bundles of different size and the impact damage.It is shown that with increasing frequency of the ultrasonic oscillation propagating in the samples there is an increase both in damping and in SNR for artificial defects. In other words, on the one hand, the lower is the oscillation frequency, the less is a damping effect, but, on the other one, the higher is the frequency, the higher is the sensitivity control. It was found that the optimum frequencies for the ultrasonic test of CFRP are those in the vicinity of 5 MHz.Furthermore, to detect the small-sized defects it is advised to use an ultrasonic beam focus, which can be achieved using phased arrays.The most optimal method of ultrasonic testing to search for impact damage is a mirrorshadow method, which is based on the measurement of the amplitude of the bottom echo signal. It is shown that the amplitude of the bottom echo signal in defect-free zone is, in average, 14 dB higher than in the area with shock damage.

  5. Coherent fiber bundle based integrated photoacoustic, ultrasound and fluorescence imaging (PAUSFI) for endoscopy and diagnostic bio-imaging applications

    International Nuclear Information System (INIS)

    James, Joseph; Murukeshan, V M; Sathiyamoorthy, K; Woh, Lye Sun

    2014-01-01

    Recent research in diagnostic imaging and sensing focuses on deriving complementary information from the diagnosed site. From that perspective it is imperative to devise new imaging platforms where multiple distinct modalities are used either simultaneously or sequentially. Increased efforts have been devoted towards establishing such multi-modal imaging systems, which house and operate more than two imaging modalities within a single instrumentation set-up. In this context, we propose a novel multi-modal imaging platform using non-ionizing radiation that has been successfully conceptualized, established and experimentally demonstrated. This proposed GRIN lensed fiber-optic microscope and linear array transducer based PAUSFI (photoacoustic, ultrasound and fluorescence imaging) system makes use of non-ionizing radiation sources to map optical and acoustic heterogeneities (complementary information) along the depth of the tissue at multi-scale resolution (microscopic to mesoscopic). The fiber-optic assembly enables the system to perform minimally invasive remote light delivery and high resolution fluorescence and photoacoustic imaging of inaccessible areas of intact tissues or intra body cavities. It is expected that the proposed multi-modal imaging system could open up niches in bio-imaging research in the near future. (paper)

  6. Holomorphic bundles over elliptic manifolds

    International Nuclear Information System (INIS)

    Morgan, J.W.

    2000-01-01

    In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves

  7. Functional aspects of His bundle physiology and pathophysiology: Clinical implications.

    Science.gov (United States)

    Scherlag, Benjamin J; Lazzara, Ralph

    In this review we present evidence from many experimental studies which challenge the concept of predestination of His bundle fibers. Using both intra- and extracellular His bundle pacing in the context of atrio-ventricular block and the development of bundle branch blocks these experimental studies provide the underlying mechanisms for the recent clinical findings showing the benefits of permanent His bundle pacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  9. Contraction of cross-linked actomyosin bundles

    Science.gov (United States)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  10. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    In this work, we study the existence of coupled bandgaps for corrugated plate structures and acoustic channels. The study is motivated by the observation that the performance of traditional bandgap structures, such as periodic plates, may be compromised due to the coupling to a surrounding acoustic...... medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  11. Strategic Aspects of Bundling

    International Nuclear Information System (INIS)

    Podesta, Marion

    2008-01-01

    The increase of bundle supply has become widespread in several sectors (for instance in telecommunications and energy fields). This paper review relates strategic aspects of bundling. The main purpose of this paper is to analyze profitability of bundling strategies according to the degree of competition and the characteristics of goods. Moreover, bundling can be used as price discrimination tool, screening device or entry barriers. In monopoly case bundling strategy is efficient to sort consumers in different categories in order to capture a maximum of surplus. However, when competition increases, the profitability on bundling strategies depends on correlation of consumers' reservations values. (author)

  12. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of...

  13. Photonic Bandgap (PBG) Shielding Technology

    Science.gov (United States)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  14. Fiber

    Science.gov (United States)

    ... for the treatment of diverticulosis , diabetes , and heart disease . ... fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, ... heart disease. Insoluble fiber is found in foods such as ...

  15. Fiber

    Science.gov (United States)

    ... not getting enough fiber. According to the 2010 Dietary Guidelines, teen girls (14 to 18 years) should get 25 grams of fiber per day and teen boys (14 to 18 years) should get 31 grams of fiber per day. The best sources are fresh fruits and vegetables, nuts and legumes, ...

  16. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  17. The optical fiber array bundle assemblies for the NASA lunar reconnaissance orbiter; evaluation lessons learned for flight implementation from the NASA electronic parts and packaging program

    Science.gov (United States)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomes, William J.; Day, Lance W.; MacMurphy, Shawn

    2017-11-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  18. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  19. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  20. The ABCDEF Implementation Bundle

    Directory of Open Access Journals (Sweden)

    Annachiara Marra

    2016-08-01

    Full Text Available Long-term morbidity, long-term cognitive impairment and hospitalization-associated disability are common occurrence in the survivors of critical illness, with significant consequences for patients and for the caregivers. The ABCDEF bundle represents an evidence-based guide for clinicians to approach the organizational changes needed for optimizing ICU patient recovery and outcomes. The ABCDEF bundle includes: Assess, Prevent, and Manage Pain, Both Spontaneous Awakening Trials (SAT and Spontaneous Breathing Trials (SBT, Choice of analgesia and sedation, Delirium: Assess, Prevent, and Manage, Early mobility and Exercise, and Family engagement. The purpose of this review is to describe the core features of the ABCDEF bundle.

  1. Bundle Branch Block

    Science.gov (United States)

    ... 2015. Bundle branch block Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  2. High-Power Fiber Lasers Using Photonic Band Gap Materials

    Science.gov (United States)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    at undesirably low levels, and scattering of light from dopants. In designing a given fiber laser for reduced ASE, care must be taken to maintain a correct fiber structure for eventual scaling to an array of many such lasers such that the interactions among all the members of the array would cause them to operate in phase lock. Hence, the problems associated with improving a single-fiber laser are not entirely separate from the bundling problem, and some designs for individual fiber lasers may be better than others if the fibers are to be incorporated into bundles. Extensive calculations, expected to take about a year, must be performed in order to determine design parameters before construction of prototype individual and fiber lasers can begin. The design effort can be expected to include calculations to optimize overlaps between the electromagnetic modes and the gain media and calculations of responses of PBG materials to electromagnetic fields. Design alternatives and physical responses that may be considered include simple PBG fibers with no intensity-dependent responses, PBG fibers with intensity- dependent band-gap shifting (see figure), and broad-band pumping made possible by use of candidate broad-band pumping media in place of the air or vacuum gaps used in prior PBG fibers.

  3. Isotopy Classification of Engel Structures on Circle Bundles

    OpenAIRE

    Klukas, Mirko; Sahamie, Bijan

    2012-01-01

    We call two Engel structures isotopic if they are homotopic through Engel structures by a homotopy that fixes the characteristic line field. In the present paper we define an isotopy invariant of Engel structures on oriented circle bundles over closed oriented three-manifolds and apply it to give an isotopy classification of Engel structures on circle bundles with characteristic line field tangent to the fibers.

  4. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye: average course, variability, and influence of refraction, optic disc size and optic disc position.

    Science.gov (United States)

    Jansonius, Nomdo M; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich

    2012-12-01

    Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the existing model, (ii) expand the model to the entire retina and (iii) determine the influence of refraction, optic disc size and optic disc position on the trajectories. A new set of fundus photographs was collected comprising 28 eyes of 28 subjects. From these 28 photographs, 625 trajectories were extracted. Trajectories in the temporal region of the retina were compared to the existing model. In this region, 347 of 399 trajectories (87%) were within the 95% central range of the existing model. The model was extended to the nasal region. With this extension, the model can now be applied to the entire retina that corresponds to the visual field as tested with standard automated perimetry (up to approximately 30° eccentricity). There was an asymmetry between the superior and inferior hemifields and a considerable location-specific inter-subject variability. In the nasal region, we found two "singularities", located roughly at the one and five o'clock positions for the right optic disc. Here, trajectories from relatively widespread areas of the retina converge. Associations between individual deviations from the model and refraction, optic disc size and optic disc position were studied with multiple linear regression. Refraction (P = 0.021) and possibly optic disc inclination (P = 0.09) influenced the trajectories in the superior-temporal region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Distributed optical fibre devices based on liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Broeng, Jes; Hermann, D.S.

    2004-01-01

    We describe a new class of hybrid photonic crystal fibers, which are liquid crystal infiltrated fibers. Using these fibers, we demonstrate 'distributed' tunable filter and switching functionalities operating by the photonic bandgap effect....

  6. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends...... on the Liquid Crystal parameters....

  7. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...

  8. Flow in rod bundles

    International Nuclear Information System (INIS)

    Hazi, G.; Mayer, G.

    2005-01-01

    For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)

  9. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  10. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  11. The Logic of Bundles

    Science.gov (United States)

    Harding, John; Yang, Taewon

    2015-12-01

    Since the work of Crown (J. Natur. Sci. Math. 15(1-2), 11-25 1975) in the 1970's, it has been known that the projections of a finite-dimensional vector bundle E form an orthomodular poset ( omp) {P}(E). This result lies in the intersection of a number of current topics, including the categorical quantum mechanics of Abramsky and Coecke (2004), and the approach via decompositions of Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996). Moreover, it provides a source of omps for the quantum logic program close to the Hilbert space setting, and admitting a version of tensor products, yet having important differences from the standard logics of Hilbert spaces. It is our purpose here to initiate a basic investigation of the quantum logic program in the vector bundle setting. This includes observations on the structure of the omps obtained as {P}(E) for a vector bundle E, methods to obtain states on these omps, and automorphisms of these omps. Key theorems of quantum logic in the Hilbert setting, such as Gleason's theorem and Wigner's theorem, provide natural and quite challenging problems in the vector bundle setting.

  12. Monolithically Integrated Fiber Optic Coupler

    Science.gov (United States)

    2013-01-14

    single fused fiber 52 and drawn into ferrule 54 in order to provide an output as a photonic crystal fiber (PCF) or photonic bandgap ( PBG ) fiber 56...the reduced diameter air-silica photonic crystal fiber 56 (PCF) or photonic band gap ( PBG ), which is connected by a continuous transition of the... PBG 56 with a negative index of refraction includes metamaterials of superlattices formed by metal nanoparticles. The binary superlattices are

  13. Partial tears of anterior cruciate ligament: Results of single bundle augmentation

    OpenAIRE

    Sabat, Dhananjaya; Kumar, Vinod

    2015-01-01

    Background: Partial tears of the anterior cruciate ligament (ACL) are common and usually present with symptomatic instability. The remnant fibers are usually removed and a traditional ACL reconstruction is done. But with increased understanding of ACL double bundle anatomy, the remnant tissue preservation along with a single bundle augmentation of the torn bundle is also suggested. The purpose of this study was to evaluate the results of selective anatomic augmentation of symptomatic partial ...

  14. Type IIB flux compactifications on twistor bundles

    Energy Technology Data Exchange (ETDEWEB)

    Imaanpur, Ali, E-mail: aimaanpu@modares.ac.ir

    2014-02-05

    We construct a U(1) bundle over N(1,1), usually considered as an SO(3) bundle on CP{sup 2}, and show that type IIB supergravity can be consistently compactified over it. With the five form flux turned on, there is a solution for which the metric becomes Einstein. We further turn on 3-form fluxes and show that there is a one parameter family of solutions. In particular, there is a limiting solution of large 3-form fluxes for which two U(1) fiber directions of the metric shrink to zero size. We also discuss compactifications over N(1,1) to AdS{sub 3}. All solutions turn out to be non-supersymmetric.

  15. Wide Bandgap Nanostructured Space Photovoltaics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable...

  16. Wide Bandgap Extrinsic Photoconductive Switches

    Science.gov (United States)

    Sullivan, James Stephen

    Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The

  17. Coupled-resonator-induced plasmonic bandgaps.

    Science.gov (United States)

    Wang, Yujia; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2017-10-15

    By drawing an analogy with the conventional photonic crystals, the plasmonic bandgaps have mainly employed the periodic metallic structures, named as plasmonic crystals. However, the sizes of the plasmonic crystals are much larger than the wavelengths, and the large sizes considerably decrease the density of the photonic integration circuits. Here, based on the coupled-resonator effect, the plasmonic bandgaps are experimentally realized in the subwavelength waveguide-resonator structure, which considerably decreases the structure size to subwavelength scales. An analytic model and the phase analysis are established to explain this phenomenon. Both the experiment and simulation show that the plasmonic bandgap structure has large fabrication tolerances (>20%). Instead of the periodic metallic structures in the bulky plasmonic crystals, the utilization of the subwavelength plasmonic waveguide-resonator structure not only significantly shrinks the bandgap structure to be about λ 2 /13, but also expands the physics of the plasmonic bandgaps. The subwavelength dimension, together with the waveguide configuration and robust realization, makes the bandgap structure easy to be highly integrated on chips.

  18. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  19. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1996-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  20. Semifinite Bundles and the Chevalley-Weil Formula

    Indian Academy of Sciences (India)

    34

    ) of finite bundles on X and he proved that it is a neutral Tannakian category over k together with a neutral fiber functor ωx : E ↦→ x. ∗. E induced by a rational point x ∈ X(k) [2]. By Tannaka duality, there exists an affine group scheme πN.

  1. Bundled payments in orthopedic surgery.

    Science.gov (United States)

    Bushnell, Brandon D

    2015-02-01

    As a result of reading this article, physicians should be able to: 1. Describe the concept of bundled payments and the potential applications of bundled payments in orthopedic surgery. 2. For specific situations, outline a clinical episode of care, determine the participants in a bundling situation, and define care protocols and pathways. 3. Recognize the importance of resource utilization management, quality outcome measurement, and combined economic-clinical value in determining the value of bundled payment arrangements. 4. Identify the implications of bundled payments for practicing orthopedists, as well as the legal issues and potential future directions of this increasingly popular alternative payment method. Bundled payments, the idea of paying a single price for a bundle of goods and services, is a financial concept familiar to most American consumers because examples appear in many industries. The idea of bundled payments has recently gained significant momentum as a financial model with the potential to decrease the significant current costs of health care. Orthopedic surgery as a field of medicine is uniquely positioned for success in an environment of bundled payments. This article reviews the history, logistics, and implications of the bundled payment model relative to orthopedic surgery. Copyright 2015, SLACK Incorporated.

  2. [Masquerading bundle branch block].

    Science.gov (United States)

    Kukla, Piotr; Baranchuk, Adrian; Jastrzębski, Marek; Bryniarski, Leszek

    2014-01-01

    We here describe a surface 12-lead electrocardiogram (ECG) of a 72-year-old female with a prior history of breast cancer and chemotherapy-induced cardiomyopathy. An echocardiogram revealed left ventricular dysfunction, ejection fraction of 23%, with mild enlarged left ventricle. The 12-lead ECG showed atrial fibrillation with a mean heart rate of about 100 bpm, QRS duration 160 ms, QT interval 400 ms, right bundle branch block (RBBB) and left anterior fascicular block (LAFB). The combination of RBBB features in the precordial leads and LAFB features in the limb leads is known as ''masquerading bundle branch block''. In most cases of RBBB and LAFB, the QRS axis deviation is located between - 80 to -120 degrees. Rarely, when predominant left ventricular forces are present, the QRS axis deviation is near about -90 degrees, turning the pattern into an atypical form. In a situation of RBBB associated with LAFB, the S wave can be absent or very small in lead I. Such a situation is the result of not only purely LAFB but also with left ventricular hypertrophy and/or focal block due to scar (extensive anterior myocardial infarction) or fibrosis (cardiomyopathy). Sometimes, this specific ECG pattern is mistaken for LBBB. RBBB with LAFB may imitate LBBB either in the limb leads (known as 'standard masquerading' - absence of S wave in lead I), or in the precordial leads (called 'precordial masquerading' - absence of S wave in leads V₅ and V₆). Our ECG showed both these types of masquerading bundle branch block - absence of S wave in lead I and in leads V₅ and V₆.

  3. Kernel bundle EPDiff

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...... information to be automatically incorporated in registrations and promises to improve the standard framework in several aspects. We present the mathematical foundations of LDDKBM and derive the KB-EPDiff evolution equations, which provide optimal warps in this new framework. To illustrate the resulting...

  4. Managing bundled payments.

    Science.gov (United States)

    Draper, Andrew

    2011-04-01

    Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.

  5. Handtool assists in bundling cables

    Science.gov (United States)

    Stringer, E. J.

    1980-01-01

    Simple tool makes it possible to bundle electrical cables in channel or "tray" without requiring cables be lifted out. Procedure for bundling is faster and less awkward than lifting method. Used with commercially-available plastic ribbons that tie cables together, tool guides ribbon along tray wall, through bracket at bottom of tray, and up opposite wall. One end of ribbon locks in other end, securing cable bundle.

  6. Infinitesimal bundles and projective relativity

    International Nuclear Information System (INIS)

    Evans, G.T.

    1973-01-01

    An intrinsic and global presentation of five-dimensional relativity theory is developed, in which special coordinate conditions are replaced by conditions of Lie invariance. The notion of an infinitesimal bundle is introduced, and the theory of connexions on principal bundles is extended to infinitesimal bundles. Global aspects of projective relativity are studied: it is shown that projective relativity can describe almost any space-time. In particular, it is not necessary to assume that the electromagnetic field have a global potential. (author)

  7. Muon bundles from the Universe

    Directory of Open Access Journals (Sweden)

    Kankiewicz P.

    2018-01-01

    Full Text Available Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  8. Muon bundles from the Universe

    Science.gov (United States)

    Kankiewicz, P.; Rybczyński, M.; Włodarczyk, Z.; Wilk, G.

    2018-02-01

    Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project). Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  9. MAVEN SWIA Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated MAVEN SWIA data, including ion velocity distributions, energy spectra, and density, temperature, and velocity moments from...

  10. The Atiyah bundle and connections on a principal bundle

    Indian Academy of Sciences (India)

    correspond to the connections on EG. The pull back of EG to C(EG) has a tautological connection. We investigate the curvature of this tautological connection. Keywords. Principal bundle; connection; Atiyah bundle. 1. Introduction. Fix a Lie group G. Its Lie algebra will be denoted by g. Let M be a connected C. ∞ manifold.

  11. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramoda...

  12. CANFLEX fuel bundle impact test

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs.

  13. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  14. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  15. Twisted vector bundles on pointed nodal curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  16. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  17. Modified 37-element bundle dryout

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, A., E-mail: ab.tahir@amec.com [AMEC NSS Ltd., Fuel and Fuel Channel Safety Analysis, Ontario (Canada); Parlatan, Y., E-mail: yuksel.parlatan@opg.com [Ontario Power Generation Inc., Nuclear Safety Projects, Ontario (Canada); Kwee, M., E-mail: marc.kwee@brucepower.com [Bruce Power., Nuclear Safety Analysis and Support, Ontario (Canada); Liauw, W., E-mail: wie.kiong.liauw@opg.com [Ontario Power Generation Inc., Nuclear Safety Projects, Ontario (Canada); Hadaller, G.; Fortman, R., E-mail: ghadaller@sternlab.com, E-mail: rfortman@sternlab.com [Stern Labs Inc., Hamilton, Ontario (Canada)

    2011-07-01

    The Heat Transport Systems (HTS) of the Canadian nuclear reactors are ageing. One of the effects of ageing is the non-uniform change in the dimension of the reactor pressure tubes through the mechanism of diametral creep. The mechanism has the global effect of increasing channel flows and decreasing the reactor header-to-header pressure drop. However, the increased flow is not distributed uniformly through the fuel bundle cross-section because the bundle tends to settle at the bottom of the pressure tube leaving a crescent shaped space on the top. This portion experiences the bulk of the increased flow, as it offers the path of least hydraulic resistance. As a result of this flow bypass, the coolant flows through some of the interior-subchannels of the fuel bundle are reduced. For a given flow, inlet temperature and exit pressure, flow bypass in the top of the channel reduces flow from the interior subchannels and consequently reduces the Critical Heat Flux (CHF). To recover some of the reduction in dryout power, OPG started a program in 2004 to examine possible modifications to the reference 37-element bundles that may result in an increase in dryout powers for the uncrept and crept pressure tube. Under accident conditions, where CHF is a concern, the ideal design is one where all fuel elements reach dryout at the same time. The ASSERT subchannel code was used to explore potential modifications to the 37-element bundle that may result in increased dryout powers in an uncrept and crept pressure tube. In addition analysis of post-dryout tests in 37-element bundle were examined to explore the potential of increasing the dryout power of the reference 37-element bundle by slightly modifying the bundle geometry. A small reduction of the centre element in the bundle was selected as an approach to enhance the dryout power of the bundle. CHF tests of the modified bundle were performed. The measurement confirmed that the modified bundle has higher dryout powers than the

  18. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    -return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below...

  19. Evaluating big deal journal bundles.

    Science.gov (United States)

    Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A

    2014-07-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.

  20. HF fiber stuffing in building 186 at CERN

    CERN Multimedia

    Tiziano Camporesi

    2003-01-01

    Each of the 36 HF wedges comprise ca 12000 quartz fibers which are the active element of the calorimeter. The fibers are produced by Polymicro (USA), cleaved and bundled at KFKI, Budapest, Hungary and inserted at CERN.

  1. MAVEN SWEA Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated electron energy/angle (3D) distributions, pitch angle distributions, and omni-directional energy spectra. Tables of sensitivity...

  2. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  3. Bundling ecosystem services in Denmark

    DEFF Research Database (Denmark)

    Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith

    2014-01-01

    We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...

  4. Line bundles and flat connections

    Indian Academy of Sciences (India)

    0344-5. Line bundles and flat connections. INDRANIL BISWAS1,∗ and GEORG SCHUMACHER2. 1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,. Mumbai 400 005, India. 2Fachbereich Mathematik und ...

  5. MAVEN LPW Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated, science quality data produced by the LPW instrument. The data include spacecraft potential, electric field waveforms and wave...

  6. MAVEN EUV Modelled Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains solar irradiance spectra in 1-nm bins from 0-190 nm. The spectra are generated based upon the Flare Irradiance Spectra Model - Mars (FISM-M)...

  7. MAVEN SEP Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  8. Atrio-His bundle tracts.

    Science.gov (United States)

    Brechenmacher, C

    1975-01-01

    The atrio-His bundle tracts are very rare; only two have been found in 687 hearts studied histologically. These tracts have a similar appearance to those of the atrioventricular bundle and form a complete bypass of the atrioventricular node. In their presence the electrocardiogram may show a short or normal PR interval. They may be responsible for some cases of very rapid ventricular response to supraventricular arrhythmias. Images PMID:1191446

  9. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  10. Wide bandgap matrix switcher, amplifier and oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  11. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  12. Selective mode excitation in hollow-core photonic crystal fiber

    Science.gov (United States)

    Galea, A. D.; Couny, F.; Coupland, S.; Roberts, P. J.; Sabert, H.; Knight, J. C.; Birks, T. A.; Russell, Philip St. J.

    2005-04-01

    Modes are selectively excited by launching light through the cladding from the side into a hollow-core photonic crystal fiber. Measuring the total output power at the end of the fiber as a function of the angle of incidence of the exciting laser beam provides a powerful diagnostic for characterizing the cladding bandgap. Furthermore, various types of modes on either side of the bandgap are excited individually, and their near-field images are obtained.

  13. Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications.

    Science.gov (United States)

    Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo; Kamiya, Toshio; Padture, Nitin P

    2018-02-16

    The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  15. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  16. Partial tears of anterior cruciate ligament: Results of single bundle augmentation

    Directory of Open Access Journals (Sweden)

    Dhananjaya Sabat

    2015-01-01

    Full Text Available Background: Partial tears of the anterior cruciate ligament (ACL are common and usually present with symptomatic instability. The remnant fibers are usually removed and a traditional ACL reconstruction is done. But with increased understanding of ACL double bundle anatomy, the remnant tissue preservation along with a single bundle augmentation of the torn bundle is also suggested. The purpose of this study was to evaluate the results of selective anatomic augmentation of symptomatic partial ACL tears. Our hypothesis is that this selective augmentation of partial ACL tears could restore knee stability and function. Materials and Methods: Consecutive cases of 314 ACL reconstructions, 40 patients had intact ACL fibers in the location corresponding to the anteromedial (AM or posterolateral (PL bundle and were diagnosed as partial ACL tears perioperatively. All patients underwent selective augmentation of the torn bundle, while keeping the remaining fibers intact using autogenous hamstring graft. A total of 38 patients (28 males, 10 females were available with a minimum of 3 years followup. 26 cases had AM bundle tears and 12 cases had PL bundle tears respectively. Patients were assessed with International Knee Documentation Committee (IKDC 2000 Knee Evaluation Form, Lysholm score; instrumented knee testing was performed with the arthrometer (KT 2000. Statistical analysis was performed to compare the preoperative and postoperative objective evaluation. Results: At 3 years followup, 31.6% patients were graded A, 65.8% were graded B and 2.6% was graded C at IKDC objective evaluation. Manual laxity tests, Lysholm′s score, mean side to side instrumental laxity and Tegner activity score improved significantly. 76% patients returned to preinjury level of sports activity after augmentation. Conclusion: The results of anatomic single bundle augmentation in partial ACL tears are encouraging with excellent improvement in functional scores, side to side

  17. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  18. A general theory for bandgap estimation in locally resonant metastructures

    Science.gov (United States)

    Sugino, C.; Xia, Y.; Leadenham, S.; Ruzzene, M.; Erturk, A.

    2017-10-01

    Locally resonant metamaterials are characterized by bandgaps at wavelengths that are much larger than the lattice size, enabling low-frequency vibration attenuation. Typically, bandgap analyses and predictions rely on the assumption of traveling waves in an infinite medium, and do not take advantage of modal representations typically used for the analysis of the dynamic behavior of finite structures. Recently, we developed a method for understanding the locally resonant bandgap in uniform finite metamaterial beams using modal analysis. Here we extend that framework to general locally resonant 1D and 2D metastructures (i.e. locally resonant metamaterial-based finite structures) with specified boundary conditions using a general operator formulation. Using this approach, along with the assumption of an infinite number of resonators tuned to the same frequency, the frequency range of the locally resonant bandgap is easily derived in closed form. Furthermore, the bandgap expression is shown to be the same regardless of the type of vibration problem under consideration, depending only on the added mass ratio and target frequency. For practical designs with a finite number of resonators, it is shown that the number of resonators required for the bandgap to appear increases with increased target frequency, i.e. more resonators are required for higher vibration modes. Additionally, it is observed that there is an optimal, finite number of resonators which gives a bandgap that is wider than the infinite-resonator bandgap, and that the optimal number of resonators increases with target frequency and added mass ratio. As the number of resonators becomes sufficiently large, the bandgap converges to the derived infinite-resonator bandgap. Furthermore, the derived bandgap edge frequencies are shown to agree with results from dispersion analysis using the plane wave expansion method. The model is validated experimentally for a locally resonant cantilever beam under base

  19. The significance of dissociation of conduction in the canine His bundle. Electrophysiological studies in vivo and in vitro.

    Science.gov (United States)

    Scherlag, B J; El-Sherif, N; Hope, R R; Lazzara, R

    1978-10-01

    lesion. Predestination of fiber tracts and alternative proposals to the pedestination theory are considered to explain QRS aberration due to exclusive His bundle lesions.

  20. Exploring Bundling Theory with Geometry

    Science.gov (United States)

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  1. Line bundles and flat connections

    Indian Academy of Sciences (India)

    The degree of a torsionfree coherent analytic sheaf F on X is defined as degree(F ) = ∫. X ch. 1(det F) ∧ ωδ−1 .... [9] Kobayashi S, Differential geometry of complex vector bundles, Publications of the Math. Society of Japan 15 (1987) (Iwanami Shoten Publishers and Princeton University Press). [10] Lackenby M, Some ...

  2. Line bundles and flat connections

    Indian Academy of Sciences (India)

    We prove that there are cocompact lattices Γ in S L ( 2 , C ) with the property that there are holomorphic line bundles L on S L ( 2 , C ) / Γ with c 1 ( L ) = 0 such that L does not admit any unitary flat connection. Author Affiliations. INDRANIL BISWAS1 GEORG SCHUMACHER2. School of Mathematics, Tata Institute of ...

  3. In-vivo investigation of the human cingulum bundle using the optimization of MR diffusion spectrum imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nezamzadeh, Marzieh, E-mail: marzieh.nezamzadeh@ucsf.ed [Center for Imaging of Neurodegenerative Diseases, CIND, Veterans Affairs Medical Center, San Francisco, CA (United States); Radiology, University of California San Francisco, San Francisco (United States); Wedeen, Van J.; Wang Ruopeng [Radiology, Massachusetts Harvard General Hospital, Boston (United States); Zhang Yu; Zhan Wang; Young, Karl; Meyerhoff, Dieter J.; Weiner, Michael W.; Schuff, Norbert [Center for Imaging of Neurodegenerative Diseases, CIND, Veterans Affairs Medical Center, San Francisco, CA (United States); Radiology, University of California San Francisco, San Francisco (United States)

    2010-07-15

    Diffusion spectrum imaging (DSI) is a generalization of diffusion tensor imaging to map fibrous structure of white matter and potentially very sensitive to alterations of the cingulum bundles in dementia. In this in-vivo 4T study, DSI parameters especially spatial resolution and diffusion encoding bandwidth were optimized on humans to segment the cingulum bundles for tract level measurements of diffusion. The careful tailoring of the DSI acquisitions in conjunction with fiber tracking provided an optimal DSI setting for a reliable quantification of the cingulum bundle tracts. The optimization of tracking the cingulum bundle was verified using fiber tract quantifications, including coefficients of variability of DSI measurements along the fibers between and within healthy subjects in back-to-back studies and variogram analysis of spatial correlations between diffusion orientation distribution functions (ODF) along the cingulum bundle tracts. The results demonstrate that the identification of the cingulum bundle in human brain is reproducible using an optimized DSI parameter for maximum b-value and high spatial resolution of the DSI acquisition with a feasible acquisition time of whole brain in clinical practice. This optimized DSI setting should be useful for detecting alterations along the cingulum bundle in Alzheimer disease and related neurodegenerative disorders.

  4. Strategic and welfare implications of bundling

    DEFF Research Database (Denmark)

    Martin, Stephen

    1999-01-01

    A standard oligopoly model of bundling shows that bundling by a firm with a monopoly over one product has a strategic effect because it changes the substitution relationships between the goods among which consumers choose. Bundling in appropriate proportions is privately profitable, reduces rivals...

  5. Principal G-bundles on nodal curves

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    If Y is reducible these notions depend on parameters a = (a1,...,aI ). The study of G-bundles on Y is done by extending the notion of (generalized) parabolic vector bundles [U1] to generalized parabolic principal G-bundles (called GPGs in short) on the curve C and using the correspondence between them and principal ...

  6. Electrically Tunable Bandgaps in Bilayer MoS₂.

    Science.gov (United States)

    Chu, Tao; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib; Chen, Zhihong

    2015-12-09

    Artificial semiconductors with manufactured band structures have opened up many new applications in the field of optoelectronics. The emerging two-dimensional (2D) semiconductor materials, transition metal dichalcogenides (TMDs), cover a large range of bandgaps and have shown potential in high performance device applications. Interestingly, the ultrathin body and anisotropic material properties of the layered TMDs allow a wide range modification of their band structures by electric field, which is obviously desirable for many nanoelectronic and nanophotonic applications. Here, we demonstrate a continuous bandgap tuning in bilayer MoS2 using a dual-gated field-effect transistor (FET) and photoluminescence (PL) spectroscopy. Density functional theory (DFT) is employed to calculate the field dependent band structures, attributing the widely tunable bandgap to an interlayer direct bandgap transition. This unique electric field controlled spontaneous bandgap modulation approaching the limit of semiconductor-to-metal transition can open up a new field of not yet existing applications.

  7. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  8. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    International Nuclear Information System (INIS)

    Kaplan, D.; Swaminathan, V.; Recine, G.

    2014-01-01

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV

  9. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V. [U.S. Army RDECOM-ARDEC, Fuze Precision Armaments and Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Recine, G. [Department of Applied Physics, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Physics and Engineering Physics, Fordham University, Bronx, New York 10458 (United States)

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.

  10. Higher order jet prolongations type gauge natural bundles over vector bundles

    Directory of Open Access Journals (Sweden)

    Jan Kurek

    2004-05-01

    Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.

  11. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar......-to-Hydrogen efficiency lower than 0.5%. In addition, BiVO4 was synthesized on the back-side of a Si back-illuminated photocathode to produce a preliminary monolithic solar water splitting device.The Faradaic efficiency of different types of catalysts for the electrochemical production of hydrogen or oxygen was evaluated...

  12. Photonic Bandgap Structures as Meta-Materials

    Science.gov (United States)

    Yablonovitch, Eli

    2000-03-01

    Engineering design is sometimes inspired by Nature. The natural world is filled with crystals, periodic structures which interact with Schrodinger Waves. Drawing on this analogy, we are designing artificial crystal structures which are intended for Electromagnetic Waves instead. This has now unleashed the collective scientific imagination, engendering a profusion of synthetic electromagnetic crystal structures. In correspondence to semiconductor crystals these usually have an electromagnetic bandgap, a band of frequencies in which electromagnetic waves are forbidden. We will present here a portfolio of various 2 and 3 dimensional crystal structures which have been conceived, and indicate the applications, such as opto-electronic light emitters, radio antennas, and color pigments, for which they are intended.

  13. Fluid structure interaction in tube bundles

    International Nuclear Information System (INIS)

    Brochard, D.; Jedrzejewski, F.; Gibert, R.J.

    1995-01-01

    A lot of industrial components contain tube bundles immersed in a fluid. The mechanical analysis of such systems requires the study of the fluid structure interaction in the tube bundle. Simplified methods, based on homogenization methods, have been developed to analyse such phenomenon and have been validated through experimental results. Generally, these methods consider only the fluid motion in a plan normal to the bundle axis. This paper will analyse, in a first part, the fluid structure interaction in a tube bundle through a 2D finite element model representing the bundle cross section. The influence of various parameters like the bundle size, and the bundle confinement will be studied. These results will be then compared with results from homogenization methods. Finally, the influence of the 3D fluid motion will be investigated, in using simplified methods. (authors). 11 refs., 12 figs., 2 tabs

  14. Model Hamiltonian for predicting the bandgap of conjugated systems

    Science.gov (United States)

    Leitao Botelho, Andre; Shin, Yongwoo; Lin, Xi

    2012-02-01

    We calculate the bandgaps for conjugated systems using the adapted Su-Schrieffer-Heeger Hamiltonian and find good agreement with 130 independent experimental points. The 2D version of the model correctly demonstrates the decrease in bandgap from the addition of vinylene bridges to both poly(p-phenylene) and polythiophene indicating that planarization is not a significant effect. Expanding the model to 3D shows that interchain interactions systematically reduces the bandgap. In fused rings sharing dissimilar bonds, such as in isothianaphthene, the bond length dimerization along the carbon backbone decreases leading to a decrease in the bandgap. In contrast, when fusing two of the same rings along equivalent bonds, for example thienoacene, the bandgap change is less than 10% at best when normalized by the number of carbon atoms in the conjugation path. From porphyrin and pyrrole-benzothiadiazole we learn that tautomerization significantly affects the bandgap, as the ɛ value for NH had to be used for both NH and N, indicating that H is being shared by both. In modeling donor-acceptor co-polymers we accurately calculate the reduction in the bandgaps when compared to their parent homopolymers.

  15. Cotton properties: relative humidity and its effect on flat bundle strength elongation and fracture morphology

    Science.gov (United States)

    The effects of the relative humidity (RH) of testing conditions on stelometer cotton flat bundle strength and elongation measurements, and on the morphology of fiber fractures will be discussed in this talk. We observed a trend for stelometer strength and elongations measurements. Testing in conditi...

  16. Preliminary examination of the effects of relative humidity on the fracture morphology of cotton flat bundles

    Science.gov (United States)

    The effects of the relative humidity (RH) of testing conditions on stelometer cotton flat bundle strength and elongation measurements, and on the morphology of fiber fractures are presented herein. A trend is observed for stelometer strength and elongations measurements; testing in conditions with h...

  17. Anatomic characteristics and radiographic references of the anterolateral and posteromedial bundles of the posterior cruciate ligament.

    Science.gov (United States)

    Osti, Michael; Tschann, Peter; Künzel, Karl Heinz; Benedetto, Karl Peter

    2012-07-01

    Anatomic graft tunnel placement is reported to be essential in double-bundle posterior cruciate ligament (PCL) reconstruction. A measurement system that correlates anatomy and radiographs is lacking so far. To define the femoral and tibial attachments of the anterolateral (AL) and posteromedial (PM) bundles and to correlate them with digital and radiographic images to establish a radiographic anatomy based on anatomic landmarks and evaluate whether radiographs can serve as an accurate method for intraoperative and postoperative assessments of tunnel placement. Descriptive laboratory study. Fifteen human cadaveric knee specimens were used. After preparation, the insertion areas of the 2 fiber bundles were marked with colorants, and high-definition digital images were obtained. With radiopaque tubes placed in the center of each bundle's footprint, anteroposterior and lateral radiographs were created. A measurement grid system was superimposed to determine the position of the AL and PM bundles' femoral and tibial insertion areas on both digital images and radiographs. The measurement zones were numbered 1 to 16, starting in the anterosuperior corner and ending in the posteroinferior corner. On radiographs and digital images, the femoral centers of the AL and PM bundles were found in zones 2 and 7, respectively. The tibial centers of the AL and PM bundles were found at 47.88% and 50.93%, respectively, of the total mediolateral diameter, 83.09% and 92.29%, respectively, of the total anteroposterior diameter, and 3.53 mm and 8.57 mm, respectively, inferior from the tibial plateau on radiographs. This study provides a geometric characterization of the AL and PM bundles of the PCL and establishes a reliable and feasible correlation system between anatomy and radiography based on anatomic landmarks. Accurate definition of the insertion sites of the PCL is essential for anatomic double-bundle reconstruction. The results of our study may be used as a reference for

  18. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  19. Metallic photonic band-gap materials

    International Nuclear Information System (INIS)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-01-01

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the s- and p-polarized waves. The p-polarized waves exhibit behavior similar to the dielectric PBG's. But, the s-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG's, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures

  20. Bandgap calculations and trends of organometal halide perovskites

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2014-01-01

    of Cs, CH3NH3, and HC(NH2)2 as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities...

  1. Differences in the microstructural properties of the anteromedial and posterolateral bundles of the anterior cruciate ligament.

    Science.gov (United States)

    Skelley, Nathan W; Castile, Ryan M; York, Timothy E; Gruev, Viktor; Lake, Spencer P; Brophy, Robert H

    2015-04-01

    Tissue properties of the anteromedial (AM) and posterolateral (PL) bundles of the anterior cruciate ligament (ACL) have not been previously characterized with real-time dynamic testing. The current study used a novel polarized light technique to measure the material and microstructural properties of the ACL. The AM and PL bundles of the ACL have similar material and microstructural properties. Controlled laboratory study. The AM and PL bundles were isolated from 16 human cadaveric ACLs (11 male, 5 female; average age, 41 years [range, 24-53 years]). Three samples from each bundle were loaded in uniaxial tension, and a custom-built polarized light imaging camera was used to quantify collagen fiber alignment in real time. A bilinear curve fit was applied to the stress-strain data of a quasistatic ramp-to-failure to quantify the moduli in the toe and linear regions. Fiber alignment was quantified at zero strain, the transition point of the bilinear fit, and in the linear portion of the stress-strain curve by computing the degree of linear polarization (DoLP) and angle of polarization (AoP), which are measures of the strength and direction of collagen alignment, respectively. Data were compared using t tests. The AM bundle exhibited significantly larger toe-region (AM 7.2 MPa vs. PL 4.2 MPa; P ligament microstructure can be used to assess graft options for ACL reconstruction and optimize surgical reconstruction techniques. © 2015 The Author(s).

  2. Job Management and Task Bundling

    Science.gov (United States)

    Berkowitz, Evan; Jansen, Gustav R.; McElvain, Kenneth; Walker-Loud, André

    2018-03-01

    High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users' current workflows or executables.

  3. Bundling and mergers in energy markets

    International Nuclear Information System (INIS)

    Granier, Laurent; Podesta, Marion

    2010-01-01

    Does bundling trigger mergers in energy industries? We observe mergers between firms belonging to various energy markets, for instance between gas and electricity providers. These mergers enable firms to bundle. We consider two horizontally differentiated markets. In this framework, we show that bundling strategies in energy markets create incentives to form multi-market firms in order to supply bi-energy packages. Moreover, we find that this type of merger is detrimental to social welfare. (author)

  4. Local resonance bandgaps in periodic media: theory and experiment.

    Science.gov (United States)

    Raghavan, L; Phani, A Srikantha

    2013-09-01

    Periodic composites such as acoustic metamaterials use local resonance phenomenon in designing low frequency sub-Bragg bandgaps. These bandgaps emerge from a resonant scattering interaction between a propagating wave and periodically arranged resonators. This paper develops a receptance coupling technique to combine the dynamics of the resonator with the unit cell dynamics of the background medium to analyze flexural wave transmission in a periodic structure, involving a single degree of freedom coupling between the medium and the resonator. Receptance techniques allow for a straightforward extension to higher dimensional systems with multiple degrees of freedom coupling and for easier experimental measurements. Closed-form expressions for the location and width of sub-Bragg bandgaps are obtained. Rigid body modes of the unit cell of the background medium are shown to set the bounding frequencies for local resonance bandgaps. Results from the receptance analysis compare well with Bloch wave analysis and experiments performed on a finite structural beam with periodic masses and resonators. Stronger coupling and inertia of the resonator increase the local resonance bandgap width. Two-fold periodicity widens the Bragg bandgap, narrowed by local resonators, thus expanding the design space and highlighting the advantages of hierarchical periodicity.

  5. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  6. Cingulum bundle white matter lesions influence antidepressant response in late-life depression: a pilot study.

    Science.gov (United States)

    Taylor, Warren D; Kudra, Kamil; Zhao, Zheen; Steffens, David C; MacFall, James R

    2014-06-01

    Late-life depression is associated with white matter hyperintense lesions (WMLs) occurring in specific fiber tracts. In this study, we sought to determine if greater WML severity in the cingulum bundle or uncinate fasciculus was associated with poor short-term antidepressant response. Eleven depressed elders completed a baseline cranial 3T MRI and received antidepressant treatment following a medication algorithm. MRIs were analyzed to measure the fraction of each fiber tract׳s volume occupied by WMLs. Statistical analyses examined the effect of dichotomized fiber tract WML severity on three- and six-month depression severity after controlling for age and baseline depression severity. Greater WML severity in the left hemispheric cingulum bundle adjacent to the hippocampus was associated with greater post-treatment depression severity at three- (F1,7=6.42, p=0.0390) and six-month assessments (F1,5=9.62, p=0.0268). Other fiber tract WML measures were not significantly associated with outcomes. The study had a small sample size and analyses were limited to only a priori fiber tracts. This pilot study supports the hypothesis that focal damage to the cingulum bundle may contribute to poor short-term antidepressant response. These findings warrant further investigation with a larger, more definitive study. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Birefringent all-solid hybrid microstructured fiber.

    Science.gov (United States)

    Goto, Ryuichiro; Jackson, Stuart D; Fleming, Simon; Kuhlmey, Boris T; Eggleton, Benjamin J; Himeno, Kuniharu

    2008-11-10

    We report the characterization of a birefringent all-solid hybrid microstructured fiber, in which the core-modes are guided by both the photonic bandgap (PBG) effect and total internal reflection (TIR). Due to the twofold symmetry, modal birefringence of 1.5 x 10(-4) and group birefringence of 2.1 x 10(-4) were measured at 1.31 microm, which is in the middle of the second bandgap. The band structure was calculated to be different from conventional 2-D PBG fibers due to the 1-D arrangement of high-index regions. The bend loss has a strong directional dependence due to the coexistence of the two guiding mechanisms. The fiber has two important properties pertinent to PBG fibers; spectral filtering, and chromatic dispersion specific to PBG fibers. The number of high-index regions, which trap pump power (by index guiding) when the fiber is used in cladding-pumped fiber lasers, is greatly reduced so that this fiber should enable efficient cladding pumping. This structure is suitable for linearly-polarized, cladding-pumped fiber lasers utilizing the properties of PBG fibers.

  8. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.

  9. Vector bundles over configuration spaces of nonidentical particles: Topological potentials and internal degrees of freedom

    International Nuclear Information System (INIS)

    Doebner, H.; Mann, H.

    1997-01-01

    We consider configuration spaces of nonidentical pointlike particles. The physically motivated assumption that any two particles cannot be located at the same point in space endash time leads to nontrivial topological structure of the configuration space. For a quantum mechanical description of such a system, we classify complex vector bundles over the configuration space and obtain potentials of topological origin, similar to those that occur in the fiber bundle approach to Dirac close-quote s magnetic monopole or in Yang endash Mills theory. copyright 1997 American Institute of Physics

  10. Wide Bandgap Semiconductor Opportunities in Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marlino, Laura D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Kristina O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-01-01

    The report objective is to explore the Wide Bandgap (WBG) Power Electronics (PE) market, applications, and potential energy savings in order to identify key areas where further resources and investments of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE) would have the most impact on U.S. competiveness. After considering the current market, several potential near-term application areas were identified as having significant market and energy savings potential with respect to clean energy applications: (1) data centers (uninterruptible power supplies and server power supplies); (2) renewable energy generation (photovoltaic-solar and wind); (3) motor drives (industrial, commercial and residential); (4) rail traction; and, (5) hybrid and electric vehicles (traction and charging). After the initial explorative analyses, it became clear that, SiC, not GaN, would be the principal WBG power device material for the chosen markets in the near future. Therefore, while GaN is discussed when appropriate, this report focuses on SiC devices, other WBG applications (e.g., solid-state transformers, combined heat and power, medical, and wireless power), the GaN market, and GaN specific applications (e.g., LiDAR, 5G) will be explored at a later date. In addition to the market, supply and value chain analyses addressed in Section 1 of this report, a SWOT (Strength, Weakness, Opportunity, Threat) analysis and potential energy savings analysis was conducted for each application area to identify the major potential WBG application area(s) with a U.S. competitiveness opportunity in the future.

  11. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Justin [Stanford Univ., CA (United States); Chen, Changxin [Stanford Univ., CA (United States); Gong, Ming [Stanford Univ., CA (United States); Kenney, Michael [Stanford Univ., CA (United States)

    2017-01-04

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edges throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for

  12. Wall pressure fluctuations in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1990-01-01

    Microphones and hot wires were applied for the measurement of wall pressure fluctuations and velocity fluctuations in rod bundles with several aspect ratios. By means of auto and cross spectral density functions their interdependence was investigated. Results show that the pressure fluctuations in rod bundles are mainly associated with the phenomenon of quasi-periodic flow pulsations between subchannels. (author)

  13. Anatomic Double-bundle ACL Reconstruction

    NARCIS (Netherlands)

    Schreiber, Verena M.; van Eck, Carola F.; Fu, Freddie H.

    2010-01-01

    Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely

  14. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used to ...... to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing. (C) 2001 Published by Elsevier Science B.V....

  15. Higgs bundles and four manifolds

    International Nuclear Information System (INIS)

    Park, Jae-Suk.

    2002-01-01

    It is known that the Seiberg-Witten invariants, derived from supersymmetric Yang-Mill theories in four dimensions, do not distinguish smooth structure of certain non-simply-connected four manifolds. We propose generalizations of Donaldson-Witten and Vafa-Witten theories on a Kaehler manifold based on Higgs bundles. We showed, in particular, that the partition function of our generalized Vafa-Witten theory can be written as the sum of contributions our generalized Donaldson-Witten invariants and generalized Seiberg-Witten invariants. The resulting generalized Seiberg-Witten invariants might have, conjecturally, information on smooth structure beyond the original Seiberg-Witten invariants for non-simply-connected case

  16. SIZE EFFECTS IN THE TENSILE STRENGTH OF UNIDIRECTIONAL FIBER COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    M. SIVASAMBU; ET AL

    1999-08-01

    Monte Carlo simulation and theoretical modeling are used to study the statistical failure modes in unidirectional composites consisting of elastic fibers in an elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and 3D composites, respectively. Failure is idealized using the chain-of-bundles model in terms of {delta}-bundles of length {delta}, which is the length-scale of fiber load transfer. Within each {delta}-bundle, fiber load redistribution is determined by local load-sharing models that approximate the in-plane fiber load redistribution from planar break clusters as predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D, respectively. Fiber elements have random strengths following either the Weibull or the power-law distribution with shape and scale parameters {rho} and {sigma}{sub {delta}}, respectively. Simulations of {delta}-bundle failure, reveal two regimes. When fiber strength variability is low (roughly {rho} > 2) the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high (roughly 0 < {rho} < 1) cluster formation is suppressed by a dispersed fiber failure mode. For these two cases, closed-form approximations to the strength distribution of a {delta}-bundle are developed under the local load-sharing model and an equal load-sharing model of Daniels, respectively. The results compare favorably with simulations on {delta}-bundles with up to 1500 fibers. The location of the transition in terms of {rho} is affected by the upper tail properties of the fiber strength distributions as well as the number of fibers.

  17. Phosphorene nanoribbons: Passivation effect on bandgap and effective mass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li-Chun, E-mail: xulichun@tyut.edu.cn; Song, Xian-Jiang; Yang, Zhi; Cao, Ling; Liu, Rui-Ping; Li, Xiu-Yan

    2015-01-01

    Highlights: • Hydrogenation and fluorination can passivate the metallic edge states of zPNRs. • The bandgap of each type of zPNRs decreases as the ribbon's width increases duo to the quantum confinement effect. • Two local configurations of passivated atoms can coexist in nanoribbons and affect the bandgap of narrow nanoribbons. • New passivation configuration can effectively reduce the effective mass of electrons. - Abstract: The edge passivation effect of phosphorene nanoribbons is systematically investigated using density functional theory. Hydrogen and fluorine atoms passivate the metallic edge states of nanoribbons and can open a bandgap up to 2.25 eV. The two configurations of passivated atoms can exist at two edges and affect the bandgap of narrow nanoribbons. The bandgap of each type of zPNRs decreases as the ribbon's width increases, which can be attributed to the quantum confinement effect. The new configuration, named C{sub b}, can effectively reduce the effective mass of electrons, which benefits the future design of phosphorene-based electronic devices.

  18. Lagrangian formulation for a gauge theory of strong and electromagnetic interactions defined on a Cartan bundle

    International Nuclear Information System (INIS)

    Drechsler, W.

    1977-01-01

    A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory

  19. Improving BWR fuel critical power without increasing bundle pressure drop

    International Nuclear Information System (INIS)

    Matzner, B.; Shiraishi, L.M.; Danielson, D.W.; Congdon, S.P.

    2004-01-01

    It has been almost axiomatic that BWR fuel bundle critical power performance could not be improved without an accompanying increase in bundle pressure drop. It appeared that in order to increase the bundle dryout resistance it was necessary to perturb the bundle coolant flow paths in some fashion. This resulted in an unacceptable bundle pressure drop increase. However, by adding part length rods to decrease bundle pressure drop and by inserting an extra spacer with rearranged spacer pitch and flow trippers on the channel wall at the top of the bundle to increase critical power it was possible to achieve the goal of increased bundle critical power without pressure drop increase. (author)

  20. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  1. Bandgap engineering of coal-derived graphene quantum dots.

    Science.gov (United States)

    Ye, Ruquan; Peng, Zhiwei; Metzger, Andrew; Lin, Jian; Mann, Jason A; Huang, Kewei; Xiang, Changsheng; Fan, Xiujun; Samuel, Errol L G; Alemany, Lawrence B; Martí, Angel A; Tour, James M

    2015-04-01

    Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.9 eV) to orange-red (2.05 eV), depending on size, functionalities and defects. These findings provide a deeper insight into the nature of coal-derived GQDs and demonstrate a scalable method for production of GQDs with the desired bandgaps.

  2. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  3. Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption

    DEFF Research Database (Denmark)

    Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis

    2010-01-01

    Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac...... fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory...... predicts that a tunable bandgap may be engineered by periodic modulations of the graphene lattice, but experimental evidence for this is so far lacking. Here, we demonstrate the existence of a bandgap opening in graphene, induced by the patterned adsorption of atomic hydrogen onto the Moiré superlattice...

  4. Why (almost) all bundles are chiral

    Science.gov (United States)

    Kost-Smith, Zachary V.; Blackwell, Robert A.; Glaser, Matthew A.

    2014-03-01

    We examine the self assembly of bundles of achiral hard rods with distributed, short-range attractive interactions. We show that in the majority of cases the equilibrium state of the bundle is chiral, with a double twist structure. We use biased Monte Carlo techniques and cell theory to compute the free energy as a function of an appropriately defined twist order parameter, and show that the formation of spontaneously chiral bundles is driven by maximization of orientational entropy. The finite curvature of the bundle boundary permits orientational escape, in which the circumferential angular range of motion of the rods is maximized for some finite average tilt. We map out the phase diagram of bundles in terms of the density, the ratio of rod length to bundle radius, L / R , and rod aspect ratio, L / D , and find transitions between untwisted, weakly twisted, and strongly twisted states. This work helps explain the common observation of twisted macroscopic bundles, and may provide insight into observations of twist in self-assembled membranes of colloidal rods.[2] This work funded by NSF MRSEC Grant DMR-0820579.

  5. Preliminary report: NIF laser bundle review

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    As requested in the guidance memo 1 , this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1x4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high x 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2x2, 4x2, and 4x4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline

  6. Polarization Maintaining Coherent Fiber Bundle Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA flight missions are considering passive wavefront and amplitude control in astronomical applications such as the search for exo-planets. NASA's Discovery...

  7. Frequency selective bistable switching in metamaterial based photonic bandgap medium

    Science.gov (United States)

    Jose, Jolly

    2014-10-01

    We present frequency selective bistable response at the defect mode of the zero-nbar bandgap of a photonic bandgap (PBG) material made of negative and positive index media. The nonlinear (Kerr) layer acts as the defect layer in the periodic PBG material. Incorporating metamaterial based electromagnetically induced transparency (EIT) like resonance in the positive layer leads to unprecedented line narrowing of the defect mode which in turn facilitates narrow frequency selective bistable operation, wherein all the bistable characteristics can be effectively engineered. Thresholding the output intensity selects the narrow band of frequencies that exhibit bistability.

  8. Experimental Methods for Implementing Graphene Contacts to Finite Bandgap Semiconductors

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob

    Present Ph.D. thesis describes my work on implanting graphene as electrical contact to finite bandgap semiconductors. Different transistor architectures, types of graphene and finite bandgap semiconductors have been employed. The device planned from the beginning of my Ph.D. fellowship...... contacts to semiconductor nanowires, more specifically, epitaxially grown InAs nanowires. First, we tried a top down method where CVD graphene was deposited on substrate supported InAs nanowires followed by selective graphene ashing to define graphene electrodes. While electrical contact between...

  9. Photonic Bandgaps in Mie Scattering by Concentrically Stratified Spheres

    Science.gov (United States)

    Smith, David D.; Fuller, Kirk A.; Curreri, Peter A.

    2002-01-01

    The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands are present for periodic concentric spheres, though not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, whereas modification of the interference structure is evident in extinction spectra in accordance with the optical theorem

  10. Fibre bundles. Monopoles and internal symmetries

    International Nuclear Information System (INIS)

    Horvathy, P.A.; Rawnsley, J.H.

    1985-01-01

    Asymptotic monopole configurations are described in fibre-bundle terms. Bundle reduction -the geometric procedure for spontaneous symmetry breaking- is studied in detail: the monopole-bundle is reducible to a given subgroup K of the gauge group if and only if the Higgs charge satisfies a suitable constraint. The Yang-Mills connection reduces if and only if the non-Abelian charge vector belongs to the Lie algebra of K. The problem of ''global color'' can also be formulated in these terms. Our theory allows us to determine which subgroups K are internal symmetries of a given field configuration

  11. On muon bundles from the Universe

    Science.gov (United States)

    Kankiewicz, P.; Rybczyński, M.; Włdarczyk, Z.; Wilk, G.

    2018-01-01

    Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project). We found significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles. The distribution on celestial sphere and the estimated directionality suggests their possible extragalactic source. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  12. Geometry of Quantum Principal Bundles. Pt. 1

    International Nuclear Information System (INIS)

    Durdevic, M.

    1996-01-01

    A theory of principal bundles possessing quantum structure groups and classical base manifolds is presented. Structural analysis of such quantum principal bundles is performed. A differential calculus is constructed, combining differential forms on the base manifold with an appropriate differential calculus on the structure quantum group. Relations between the calculus on the group and the calculus on the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The formalism of connections is developed. In particular, operators of horizontal projection, covariant derivative and curvature are constructed and analyzed. Generalizations of the first Structure Equation and of the Bianchi identity are found. Illustrative examples are presented. (orig.)

  13. Bundles of C*-categories and duality

    OpenAIRE

    Vasselli, Ezio

    2005-01-01

    We introduce the notions of multiplier C*-category and continuous bundle of C*-categories, as the categorical analogues of the corresponding C*-algebraic notions. Every symmetric tensor C*-category with conjugates is a continuous bundle of C*-categories, with base space the spectrum of the C*-algebra associated with the identity object. We classify tensor C*-categories with fibre the dual of a compact Lie group in terms of suitable principal bundles. This also provides a classification for ce...

  14. Broadcast scheduling with data bundles

    Science.gov (United States)

    Chen, Fangfei; Pizzocaro, Diego; Johnson, Matthew P.; Bar-Noy, Amotz; Preece, Alun; La Porta, Thomas

    2011-06-01

    Broadcast scheduling has been extensively studied in wireless environments, where a base station broadcasts data to multiple users. Due to the sole wireless channel's limited bandwidth, only a subset of the needs may be satisfiable, and so maximizing total (weighted) throughput is a popular objective. In many realistic applications, however, data are dependent or correlated in the sense that the joint utility of a set of items is not simply the sum of their individual utilities. On the one hand, substitute data may provide overlapping information, so one piece of data item may have lower value if a second data item has already been delivered; on the other hand, complementary data are more valuable than the sum of their parts, if, for example, one data item is only useful in the presence of a second data item. In this paper, we define a data bundle to be a set of data items with possibly nonadditive joint utility, and we study a resulting broadcast scheduling optimization problem whose objective is to maximize the utility provided by the data delivered.

  15. Nuclear fuel bundle disassembly and assembly tool

    International Nuclear Information System (INIS)

    Yates, J.; Long, J.W.

    1975-01-01

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  16. MAVEN Insitu Key Parameters Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The insitu.calibrated level 2 science.data bundle contains selected fully calibrated (L2) data from the Particles and Fields package and NGIMS, together with...

  17. Einstein metrics on tangent bundles of spheres

    Energy Technology Data Exchange (ETDEWEB)

    Dancer, Andrew S [Jesus College, Oxford University, Oxford OX1 3DW (United Kingdom); Strachan, Ian A B [Department of Mathematics, University of Hull, Hull HU6 7RX (United Kingdom)

    2002-09-21

    We give an elementary treatment of the existence of complete Kaehler-Einstein metrics with nonpositive Einstein constant and underlying manifold diffeomorphic to the tangent bundle of the (n+1)-sphere.

  18. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets

  19. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved

  20. Frobenius splitting of projective toric bundles

    Indian Academy of Sciences (India)

    He Xin

    2018-03-19

    Mar 19, 2018 ... Firstly it is easy to see that the image of s under the restriction map (2.5) falls in the χ-isotypical component of (Uσ , E), i.e. for all t ∈ T .... σ falls in the χ-isotypical component of (E,Uσ ). D. As mentioned in Remark 2.3, for a vector v .... The determinant of a toric bundle. LetE be a toric bundle on a toric variety X ...

  1. Principal bundles on the projective line

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    E-mail: vikram@math.tifr.res.in; subramnn@math.tifr.res.in. MS received 21 January 2002; revised 19 April 2002. Abstract. We classify principal G-bundles on the projective line over an arbitrary field k of characteristic = 2 or 3, where G is a reductive group. If such a bundle is trivial at a k-rational point, then the structure group ...

  2. Torsional Behavior of Axonal Microtubule Bundles

    Science.gov (United States)

    Lazarus, Carole; Soheilypour, Mohammad; Mofrad, Mohammad R.K.

    2015-01-01

    Axonal microtubule (MT) bundles crosslinked by microtubule-associated protein (MAP) tau are responsible for vital biological functions such as maintaining mechanical integrity and shape of the axon as well as facilitating axonal transport. Breaking and twisting of MTs have been previously observed in damaged undulated axons. Such breaking and twisting of MTs is suggested to cause axonal swellings that lead to axonal degeneration, which is known as “diffuse axonal injury”. In particular, overstretching and torsion of axons can potentially damage the axonal cytoskeleton. Following our previous studies on mechanical response of axonal MT bundles under uniaxial tension and compression, this work seeks to characterize the mechanical behavior of MT bundles under pure torsion as well as a combination of torsional and tensile loads using a coarse-grained computational model. In the case of pure torsion, a competition between MAP tau tensile and MT bending energies is observed. After three turns, a transition occurs in the mechanical behavior of the bundle that is characterized by its diameter shrinkage. Furthermore, crosslink spacing is shown to considerably influence the mechanical response, with larger MAP tau spacing resulting in a higher rate of turns. Therefore, MAP tau crosslinking of MT filaments protects the bundle from excessive deformation. Simultaneous application of torsion and tension on MT bundles is shown to accelerate bundle failure, compared to pure tension experiments. MAP tau proteins fail in clusters of 10–100 elements located at the discontinuities or the ends of MT filaments. This failure occurs in a stepwise fashion, implying gradual accumulation of elastic tensile energy in crosslinks followed by rupture. Failure of large groups of interconnecting MAP tau proteins leads to detachment of MT filaments from the bundle near discontinuities. This study highlights the importance of torsional loading in axonal damage after traumatic brain injury

  3. Frobenius splitting of projective toric bundles

    Indian Academy of Sciences (India)

    11

    Similarly, for each integer m ≥ 1 and n ≤ r, where r is the rank of E, the symmetric product SmE and wedge product ∧nE are also toric bundles. The associated Klyachko data of these toric bundles are the families of filtrations on the vector spaces SmE and ∧nE described as follows. (SmE)α(i) = { ∏. 1≤j≤m ej | ej ∈ E, 1 ...

  4. The Wide Band-Gap Semiconductors: A Brief Survey | Ottaviani ...

    African Journals Online (AJOL)

    The wide band-gap semiconductors are promising materials in the fields of power electronics, high-energy radiation detection and optoelectronics. They have attracted much attention thanks to their physical properties, allowing them to get better performances than silicon for some specific uses (high temperature, high ...

  5. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  6. Tailoring the bandgap and magnetic properties by bismuth ...

    Indian Academy of Sciences (India)

    2017-11-30

    Nov 30, 2017 ... the structural distortions through Cr–O polyhedral, which are evident from Raman scattering studies. The observed structural and magnetic ... Raman spectroscopy; magnetic properties; optical bandgap. 1. Introduction. Orthochromites, RCrO3 ... and their complex magnetic interactions. These compounds.

  7. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    Abstract. We report the use of low dielectric constant materials to form two- dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The se- lected geometries are square and triangular and the materials chosen ...

  8. Automating Energy Bandgap Measurements in Semiconductors Using LabVIEW

    Science.gov (United States)

    Garg, Amit; Sharma, Reena; Dhingra, Vishal

    2010-01-01

    In this paper, we report the development of an automated system for energy bandgap and resistivity measurement of a semiconductor sample using Four-Probe method for use in the undergraduate laboratory of Physics and Electronics students. The automated data acquisition and analysis system has been developed using National Instruments USB-6008 DAQ…

  9. CMOS bandgap references and temperature sensors and their applications

    NARCIS (Netherlands)

    Wang, G.

    2005-01-01

    Two main parts have been presented in this thesis: device characterization and circuit. In integrated bandgap references and temperature sensors, the IC(VBE, characteristics of bipolar transistors are used to generate the basic signals with high accuracy. To investigate the possibilities to

  10. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  11. Photon recycling in the graded bandgap solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, N.H. [Cairo Univ., Dept. of Mathematics and Engineering Physics, Giza (Egypt); Haleem, A.M. Abdel [Cairo Univ., Dept. of Mathematics and Engineering Physics, EIFayoum (Egypt); Habib, S.E.D. [Cairo Univ., Electronics and Communication Dept., Giza (Egypt)

    2006-07-01

    We derived a general integral expression for the carrier radiative recombination rate in solar cells. The photon Boltzmann equation is solved taking into account the photon recycling effect inside the cell and assuming arbitrary spatial variation of the absorption coefficient. This expression can thus be used for graded bandgap solar cells. (Author)

  12. Optimization of Beam Properties with Respect to Maximum Band-Gap

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole

    2004-01-01

    We study numerically the frequency band-gap phenomenon for bending waves in an infinite periodic beam. The outcome of the analysis is then subjected to an optimization problem in order to maximize these band-gaps. The band-gap maximization may be performed with respect to material parameters and ...

  13. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  14. Optical-fiber pyrometer positioning accuracy analysis

    Science.gov (United States)

    Tapetado, A.; García, E.; Díaz-Álvarez, J.; Miguélez, M. H.; Vazquez, C.

    2016-05-01

    The influence of the distance between the fiber end and the machined surface on temperature measurements in a two-color fiber-optic pyrometer is analyzed. The propose fiber-optic pyrometer is capable of measuring highly localized temperatures, while avoiding the use of lenses or fiber bundles, by using a standard graded index glass fiber OM1 with 62.5/125 core and cladding diameters. The fiber is placed very close to the target and below the tool insert. The output optical power at both wavelength bands is theoretically and experimentally analyzed for a temperature of 650°C at different fiber positions in a range of 2mm. The results show that there is no influence of the fiber position on the measured optical power and therefore, on the measured temperature.

  15. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.

    Science.gov (United States)

    Shephard, Jonathan; Jones, J; Hand, D; Bouwmans, G; Knight, J; Russell, P; Mangan, B

    2004-02-23

    We report on the development of hollow-core photonic bandgap fibers for the delivery of high energy pulses for precision micromachining applications. Short pulses of (65ns pulse width) and energies of the order of 0.37mJ have been delivered in a single spatial mode through hollow-core photonic bandgap fibers at 1064nm using a high repetition rate (15kHz) Nd:YAG laser. The ultimate laser-induced damage threshold and practical limitations of current hollow-core fibers for the delivery of short optical pulses are discussed.

  16. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  17. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne.

    Science.gov (United States)

    Islam, Md S; Fang, David D; Thyssen, Gregory N; Delhom, Chris D; Liu, Yongliang; Kim, Hee Jin

    2016-02-01

    Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bundle fiber strength (BFS) is not always correlated with yarn strength since it is affected by multiple fiber properties involved in fiber-to-fiber interactions within a bundle in addition to the individual fiber strength. Molecular mechanisms responsible for regulating individual fiber strength remain unknown. Gossypium hirsutum near isogenic lines (NILs), MD52ne and MD90ne showing variations in BFS provide an opportunity for dissecting the regulatory mechanisms involved in individual fiber strength. Comprehensive fiber property analyses of the NILs revealed that the superior bundle strength of MD52ne fibers resulted from high individual fiber strength with minor contributions from greater fiber length. Comparative transcriptome analyses of the NILs showed that the superior bundle strength of MD52ne fibers was potentially related to two signaling pathways: one is ethylene and the interconnected phytohormonal pathways that are involved in cotton fiber elongation, and the other is receptor-like kinases (RLKs) signaling pathways that are involved in maintaining cell wall integrity. Multiple RLKs were differentially expressed in MD52ne fibers and localized in genomic regions encompassing the strength quantitative trait loci (QTLs). Several candidate genes involved in crystalline cellulose assembly were also up-regulated in MD52ne fibers while the secondary cell wall was produced. Comparative phenotypic and transcriptomic analyses revealed differential expressions of the genes involved in crystalline cellulose assembly, ethylene and RLK signaling pathways between the MD52ne and MD90ne developing fibers. Ethylene and its phytohormonal network might promote the elongation of MD52ne fibers

  18. Buckling behavior of individual and bundled microtubules.

    Science.gov (United States)

    Soheilypour, Mohammad; Peyro, Mohaddeseh; Peter, Stephen J; Mofrad, Mohammad R K

    2015-04-07

    As the major structural constituent of the cytoskeleton, microtubules (MTs) serve a variety of biological functions that range from facilitating organelle transport to maintaining the mechanical integrity of the cell. Neuronal MTs exhibit a distinct configuration, hexagonally packed bundles of MT filaments, interconnected by MT-associated protein (MAP) tau. Building on our previous work on mechanical response of axonal MT bundles under uniaxial tension, this study is focused on exploring the compression scenarios. Intracellular MTs carry a large fraction of the compressive loads sensed by the cell and therefore, like any other column-like structure, are prone to substantial bending and buckling. Various biological activities, e.g., actomyosin contractility and many pathological conditions are driven or followed by bending, looping, and buckling of MT filaments. The coarse-grained model previously developed in our lab has been used to study the mechanical behavior of individual and bundled in vivo MT filaments under uniaxial compression. Both configurations show tip-localized, decaying, and short-wavelength buckling. This behavior highlights the role of the surrounding cytoplasm and MAP tau on MT buckling behavior, which allows MT filaments to bear much larger compressive forces. It is observed that MAP tau interconnections improve this effect by a factor of two. The enhanced ability of MT bundles to damp buckling waves relative to individual MT filaments, may be interpreted as a self-defense mechanism because it helps axonal MTs to endure harsher environments while maintaining their function. The results indicate that MT filaments in a bundle do not buckle simultaneously implying that the applied stress is not equally shared among the MT filaments, that is a consequence of the nonuniform distribution of MAP tau proteins along the bundle length. Furthermore, from a pathological perspective, it is observed that axonal MT bundles are more vulnerable to failure in

  19. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  20. Stability of Picard bundle over moduli space of stable vector bundles ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    E-mail: indranil@math.tifr.res.in; tomas@math.tifr.res.in. MS received 14 September 2000. Abstract. Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable. Keywords ...

  1. Stability of Picard bundle over moduli space of stable vector bundles ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Stability of Picard bundle over moduli space of stable vector bundles of rank two over a curve. INDRANIL BISWAS and TOM ´AS L G ´OMEZ. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,. Mumbai 400 005, India. E-mail: indranil@math.tifr.res.in; tomas@math.tifr.res.in. MS received 14 ...

  2. The bandgap controlling by geometrical symmetry design in hybrid phononic crystal

    Science.gov (United States)

    Zhang, Z.; Han, X. K.; Ji, G. M.

    2018-02-01

    The effects of symmetries on the bandgap in a newly designed hybrid phononic crystal plate composed of rubber slab and epoxy resin stub are studied for better controlling of bandgaps. The point group symmetry is changed by changing the orientation of the stub. The translation group symmetry is changed by changing the side length and the height of adjacent stubs. Results show that the point group symmetry and translation group symmetry can be important factors for controlling of the bandgaps of phononic crystal. Wider bandgap is obtained by suitable orientation of the stub. Lower bandgap appears when the differences between the adjacent stubs become bigger in supercell.

  3. Kinetics of stress fibers

    International Nuclear Information System (INIS)

    Stachowiak, Matthew R; O'Shaughnessy, Ben

    2008-01-01

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  4. Kinetics of stress fibers

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Matthew R; O' Shaughnessy, Ben [Department of Chemical Engineering, Columbia University, New York, NY 10027 (United States)], E-mail: bo8@columbia.edu

    2008-02-15

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  5. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering

    Science.gov (United States)

    Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei

    2018-04-01

    InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.

  6. Deformations of the generalised Picard bundle

    International Nuclear Information System (INIS)

    Biswas, I.; Brambila-Paz, L.; Newstead, P.E.

    2004-08-01

    Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n 0 , d 0 are integers such that n 0 ≥ 1 and nd 0 + n 0 d > nn 0 (2g - 2). Let E be a semistable vector bundle over X of rank n 0 and degree d 0 . The generalised Picard bundle W ξ (E) is by definition the vector bundle over M ξ defined by the direct image p M ξ *(U ξ x p X * E) where U ξ is a universal vector bundle over X x M ξ . We obtain an inversion formula allowing us to recover E from W ξ (E) and show that the space of infinitesimal deformations of W ξ (E) is isomorphic to H 1 (X, End(E)). This construction gives a locally complete family of vector bundles over M ξ parametrised by the moduli space M(n 0 ,d 0 ) of stable bundles of rank n 0 and degree d 0 over X. If (n 0 ,d 0 ) = 1 and W ξ (E) is stable for all E is an element of M(n 0 ,d 0 ), the construction determines an isomorphism from M(n 0 ,d 0 ) to a connected component M 0 of a moduli space of stable sheaves over M ξ . This applies in particular when n 0 = 1, in which case M 0 is isomorphic to the Jacobian J of X as a polarised variety. The paper as a whole is a generalisation of results of Kempf and Mukai on Picard bundles over J, and is also related to a paper of Tyurin on the geometry of moduli of vector bundles. (author)

  7. NIF laser bundle review. Final report

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    We performed additional bundle review effort subsequent to the completion of the preliminary report and are revising our original recommendations. We now recommend that the NIF baseline laser bundle size be changed to the 4x2 bundle configuration. There are several 4x2 bundle configurations that could be constructed at a cost similar to that of the baseline 4x12 (from $11M more to about $11M less than the baseline; unescalated, no contingency) and provide significant system improvements. We recommend that the building cost estimates (particularly for the in-line building options) be verified by an architect/engineer (A/E) firm knowledgeable about building design. If our cost estimates of the in-line building are accurate and therefore result in a change from the baseline U-shaped building layout, the acceptability of the in-line configuration must be reviewed from an operations viewpoint. We recommend that installation, operation, and maintenance of all laser components be reviewed to better determine the necessity of aisles, which add to the building cost significantly. The need for beam expansion must also be determined since it affects the type of bundle packing that can be used and increases the minimum laser bay width. The U-turn laser architecture (if proven viable) offers a reduction in building costs since this laser design is shorter than the baseline switched design and requires a shorter laser bay

  8. Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.

    Science.gov (United States)

    Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde

    2018-05-01

    Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Quantum electrodynamics near a photonic band-gap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  10. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  11. Fibre bundle framework for quantum fault tolerance

    Science.gov (United States)

    Zhang, Lucy Liuxuan; Gottesman, Daniel

    2014-03-01

    We introduce a differential geometric framework for describing families of quantum error-correcting codes and for understanding quantum fault tolerance. In particular, we use fibre bundles and a natural projectively flat connection thereon to study the transformation of codewords under unitary fault-tolerant evolutions. We'll explain how the fault-tolerant logical operations are given by the monodromy group for the bundles with projectively flat connection, which is always discrete. We will discuss the construction of the said bundles for two examples of fault-tolerant families of operations, the string operators in the toric code and the qudit transversal gates. This framework unifies topological fault tolerance and fault tolerance based on transversal gates, and is expected to apply for all unitary quantum fault-tolerant protocols.

  12. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  13. Ultrasonic bandgaps in 3D-printed periodic ceramic microlattices

    Czech Academy of Sciences Publication Activity Database

    Kruisová, Alena; Ševčík, Martin; Seiner, Hanuš; Sedlák, Petr; Román-Manso, B.; Miranzo, P.; Belmonte, M.; Landa, Michal

    January (2018), s. 91-100 ISSN 0041-624X R&D Projects: GA ČR GA17-01618S Institutional support: RVO:61388998 Keywords : phononic crystals * ceramics * additive manufacturing * bandgaps * wave propagation * finite elements method Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 2.327, year: 2016 http://dx. doi . org /10.1016/j.ultras.2017.07.017

  14. Direct bandgap silicon: tensile-strained silicon nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Hapala, Prokop; Valenta, J.; Jelínek, Pavel; Cibulka, Ondřej; Ondič, Lukáš; Pelant, Ivan

    2014-01-01

    Roč. 1, č. 2 (2014), "1300042-1"-"1300042-9" ISSN 2196-7350 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235; GA ČR GAP204/10/0952 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * badstructure * light emission * direct bandgap * surface capping Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Bandgap control with local and interconnected LC piezoelectric shunts

    Science.gov (United States)

    Flores Parra, Edgar A.; Bergamini, Andrea; Lossouarn, Boris; Van Damme, Bart; Cenedese, Mattia; Ermanni, Paolo

    2017-09-01

    This paper reports on the control of longitudinal wave propagation, in the kHz frequency range, using local and interconnected LC (inductance-capacitance) shunts distributed periodically along a rod. The LC shunts are connected to piezoelectric inserts and tuned to engender narrow or broad-band pass-bands in the forbidden band frequency range. The Bragg-scattering bandgaps are the result of the periodic mechanical mismatch between PMMA (polymethyl-methacrylate) of the rod and PZT (lead-zirconate-titanate). The narrow pass-bands correspond to the local configuration, where an equivalence between the mechanical impedance of the PMMA and PZT occurs around the shunt resonance frequency. Conversely, the interconnected shunts give a way to an electrical medium through which energy can propagate parallel to its mechanical counterpart, leading to broad pass-bands. This paper presents analytical models for calculating the dispersion and displacements of the 1D medium with interconnected LC shunts. An analytical formulation is also introduced to expediently identify the location of bandgaps and pass-bands in the medium comprised of local LC shunts. Moreover, analytical investigations are carried out to elucidate different physical phenomena giving rise to these pass-bands. The findings are experimentally validated using a finite periodic rod. The ability to tune the dispersion properties of the medium to control the width or depth of the bandgap, by utilizing local or interconnected shunts, offers a new and powerful application for piezoelectric shunts.

  16. Recent Advances in Wide-Bandgap Photovoltaic Polymers.

    Science.gov (United States)

    Cai, Yunhao; Huo, Lijun; Sun, Yanming

    2017-06-01

    The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure and optical bandgap relationship of π-conjugated systems.

    Directory of Open Access Journals (Sweden)

    André Leitão Botelho

    Full Text Available In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  18. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  19. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin.

    Directory of Open Access Journals (Sweden)

    Timo Maier

    Full Text Available Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.

  20. Fascial bundles of the infraspinatus fascia: anatomy, function, and clinical considerations.

    Science.gov (United States)

    Moccia, David; Nackashi, Andrew A; Schilling, Rebecca; Ward, Peter J

    2016-01-01

    The infraspinatus fascia is a tough sheet of connective tissue that covers the infraspinatus fossa of the scapula and the muscle within. Muscle fibers originate from the fossa and fascia and then travel laterally to insert on the greater tubercle of the humerus. Frequently the infraspinatus fascia is quickly removed to appreciate the underlying muscle, but the fascia is an interesting and complex structure in its own right. Despite having a characteristic set of fascial bundles, no contemporary anatomy texts or atlases describe the fascia in detail. The infraspinatus fascia was dissected in detail in 11 shoulders, to characterize the fascial bundles and connections that contribute to it. Thereafter, 70 shoulders were dissected to tabulate the variability of the fascial bundles and connections. Six characteristic features of the infraspinatus fascia were noted: a medial band, an inferior-lateral band, and superior-lateral band of fascia, insertion of the posterior deltoid into the infraspinatus fascia, a transverse connection from the posterior deltoid muscle to the infraspinatus fascia, and a retinacular sheet deep to the deltoid and superficial to the infraspinatus and teres minor muscles. Although other structures of the shoulder are more frequently injured, the infraspinatus fascia is involved in compartment syndromes and the fascial bundles of this structure are certain to impact the biomechanical function of the muscles of the posterior shoulder. © 2015 Anatomical Society.

  1. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage...... threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius...... spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract...

  2. Dietary Fiber

    Science.gov (United States)

    ... label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and vegetables Dietary fiber adds bulk to ...

  3. A note on the tangent bundle of G/P

    Indian Academy of Sciences (India)

    . 39–50. [3] Donaldson S K, Infinite determinants, stable bundles, and curvature, Duke Math. J. 54. (1987) 231–247. [4] Kobayashi S, Differential geometry of complex vector bundles (NJ: Princeton University. Press, Princeton; Tokyo: Iwanami ...

  4. Vibrations in bundles with cross flows

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.; Sagner, V.

    1979-01-01

    The studies just presented provide much information on the aero and hydroelastic phenomena encountered in the bundles with cross flows, particularly on the lock-in phenomena and the aeroelastic instability for which a tabulation of the typical constant has been made [fr

  5. Meromorphic connections on vector bundles over curves

    Indian Academy of Sciences (India)

    Descartes,. 67084 Strasbourg Cedex, France. *Correspond author. E-mail: indranil@math.tifr.res.in; heu@math.unistra.fr. MS received 17 July 2013; revised 20 October 2013. Abstract. We give a criterion for filtered vector bundles over curves to admit a ...

  6. Abelian conformal field theory and determinant bundles

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Ueno, K.

    2007-01-01

    are up to a scale the same as the curvature of the connections constructed in [14, 16]. We study the sewing construction for nodal curves and its explicit relation to the constructed connections. Finally we construct preferred holomorphic sections of these line bundles and analyze their behaviour near...

  7. Optimization of a bundle divertor for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations

  8. Jacobi bundles and the BFV-complex

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Tortorella, A. G.; Vitagliano, L.

    2017-01-01

    Roč. 121, November (2017), s. 347-377 ISSN 0393-0440 Institutional support: RVO:67985840 Keywords : Jacobi manifold * Jacobi bundle * coisotropic submanifolds Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.819, year: 2016 http://www.sciencedirect.com/science/article/pii/S0393044017301948

  9. Irradiation behavior of Phenix fuel pin bundles

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Blanchard, P.; Huillery, R.

    1979-01-01

    A complete Phenix assembly was coated and cut into sections after irradiation. The examination of these sections reveals the effects of mechanical interaction in the bundle (ovalizing and inter-cladding contact). From the analysis of the sections through which the sodium passed, the irrigation of the fuel rods as a whole is homogeneous [fr

  10. Graph Bundling by Kernel Density Estimation

    NARCIS (Netherlands)

    Hurter, C.; Ersoy, O.; Telea, A.

    We present a fast and simple method to compute bundled layouts of general graphs. For this, we first transform a given graph drawing into a density map using kernel density estimation. Next, we apply an image sharpening technique which progressively merges local height maxima by moving the convolved

  11. A multicore compound glass optical fiber for neutron imaging

    Science.gov (United States)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason

    2017-04-01

    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  12. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  13. Interplanetary Overlay Network Bundle Protocol Implementation

    Science.gov (United States)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  14. Wide bandgap engineering of (AlGa)2O3 films

    International Nuclear Information System (INIS)

    Zhang, Fabi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Arita, Makoto

    2014-01-01

    Bandgap tunable (AlGa) 2 O 3 films were deposited on sapphire substrates by pulsed laser deposition (PLD). The deposited films are of high transmittance as measured by spectrophotometer. The Al content in films is almost the same as that in targets. The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra using X-ray photoelectron spectroscopy is proved to be valid for determining the bandgap of (AlGa) 2 O 3 films as it is in good agreement with the bandgap values from transmittance spectra. The measured bandgap of (AlGa) 2 O 3 films increases continuously with the Al content covering the whole Al content range from about 5 to 7 eV, indicating PLD is a promising growth technology for growing bandgap tunable (AlGa) 2 O 3 films.

  15. Turkish and Native English Academic Writers' Use of Lexical Bundles

    Science.gov (United States)

    Öztürk, Yusuf; Köse, Gül Durmusoglu

    2016-01-01

    Lexical bundles such as "on the other hand" and "as a result of" are extremely common and important in academic discourse. The appropriate use of lexical bundles typical of a specific academic discipline is important for writers and the absence of such bundles may not sound fluent and native-like. Recent studies (e.g. Adel…

  16. Compactifications of reductive groups as moduli stacks of bundles

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    Let G be a reductive group. We introduce the moduli problem of "bundle chains" parametrizing framed principal G-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of G...

  17. Quillen bundle and geometric prequantization of non-abelian ...

    Indian Academy of Sciences (India)

    In this paper we prequantize the moduli space of non-abelian vortices. We explicitly calculate the symplectic form arising from 2 metric and we construct a prequantum line bundle whose curvature is proportional to this symplectic form. The prequantum line bundle turns out to be Quillen's determinant line bundle with a ...

  18. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  19. Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections.

    Science.gov (United States)

    Guevara, M; Seguel, D; Roman, C; Duclap, D; Lebois, A; Le Bihan; Mangin, J-F; Poupon, C; Guevara, P

    2015-08-01

    Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of the pathogenesis associated to it. In this work we developed a method for the automatic creation of a SWM bundle multi-subject atlas. The atlas generation method is based on a cortical parcellation for the extraction of fibers connecting two different gyri. Then, an intra-subject fiber clustering is applied, in order to divide each bundle into sub-bundles with similar shape. After that, a two-step inter-subject fiber clustering is used in order to find the correspondence between the sub-bundles across the subjects, fuse similar clusters and discard the outliers. The method was applied to 40 subjects of a high quality HARDI database, focused on the left hemisphere fronto-parietal and insula brain regions. We obtained an atlas composed of 44 bundles connecting 22 pair of ROIs. Then the atlas was used to automatically segment 39 new subjects from the database.

  20. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  1. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  2. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  3. Bundling of harvesting residues and whole-trees and the treatment of bundles; Hakkuutaehteiden ja kokopuiden niputus ja nippujen kaesittely

    Energy Technology Data Exchange (ETDEWEB)

    Kaipainen, H.; Seppaenen, V.; Rinne, S.

    1996-12-31

    The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable

  4. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  5. A superhard sp3 microporous carbon with direct bandgap

    Science.gov (United States)

    Pan, Yilong; Xie, Chenlong; Xiong, Mei; Ma, Mengdong; Liu, Lingyu; Li, Zihe; Zhang, Shuangshuang; Gao, Guoying; Zhao, Zhisheng; Tian, Yongjun; Xu, Bo; He, Julong

    2017-12-01

    Carbon allotropes with distinct sp, sp2, and sp3 hybridization possess various different properties. Here, a novel all-sp3 hybridized tetragonal carbon, namely the P carbon, was predicted by the evolutionary particle swarm structural search. It demonstrated a low density among all-sp3 carbons, due to the corresponding distinctive microporous structure. P carbon is thermodynamically stable than the known C60 and could be formed through the single-walled carbon nanotubes (SWCNTs) compression. P carbon is a direct bandgap semiconductor displaying a strong and superhard nature. The unique combination of electrical and mechanical properties constitutes P carbon a potential superhard material for semiconductor industrial fields.

  6. Regioregular narrow-bandgap-conjugated polymers for plastic electronics

    Science.gov (United States)

    Ying, Lei; Huang, Fei; Bazan, Guillermo C.

    2017-03-01

    Progress in the molecular design and processing protocols of semiconducting polymers has opened significant opportunities for the fabrication of low-cost plastic electronic devices. Recent studies indicate that field-effect transistors and organic solar cells fabricated using narrow-bandgap regioregular polymers with translational symmetries in the direction of the backbone vector often outperform those containing analogous regiorandom polymers. This review addresses the cutting edge of regioregularity chemistry, in particular how to control the spatial distribution in the molecular structures and how this order translates to more ordered bulk morphologies. The effect of regioregularity on charge transport and photovoltaic properties is also outlined.

  7. Triviality and Split of Vector Bundles on Rationally Connected Varieties

    OpenAIRE

    Pan, Xuanyu

    2013-01-01

    In this paper, we give a simple proof of a triviality criterion due to I.Biswas and J.Pedro and P.Dos Santos. We also prove a vector bundle on a homogenous space is trivial if and only if the restrictions of the vector bundle to Schubert lines are trivial. Using this result and Chern classes of vector bundles, we give a general criterion of a uniform vector bundle on a homogenous space to be splitting. As an application, we prove a uniform vector bundle on classical Grassmannians and quadrics...

  8. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  9. Out of pile testing of the PHWR fuel bundles

    International Nuclear Information System (INIS)

    Mahender Dev; Raghunathan, S.; Agarwal, G.K.; Patel, R.J.; Agarwal, R.G.

    2002-01-01

    In PHWRs fuel bundle resides in the form of a string in the coolant channels. These fuel bundles are required to be replaced periodically with the help of fuelling machine and spent fuel is discharged to the spent-fuel bay through fuel transfer system. During complete refuelling operation, and during residence in channel fuel bundle experiences various kinds of loads like drag force, impact force, force applied by Fuelling Machine ram and force applied by various actuators in fuel transfer system. These fuel bundles are manufactured indigenously and require out of pile testing for qualification of design as well as manufacturing process. In 220 MWe PHWRs, 19-element split spacer fuel bundle is used whereas in 500 MWe PHWRs 37-element fuel bundle will be used. A comprehensive programme was conducted to generate, basic data like estimation of loads coming on fuel bundles, experimental data generation about friction factor and pressure drop and carrying out of pile testing of 19-element fuel bundles in Integral Thermal Facility at Hall-7. The 37-element fuel bundles were tested in fuel locator test facility at simulated reactor conditions for pressure drop test, endurance test and cross flow test. The 37-element bundles have also been tested for flow-induced vibration during residence in the reactor. The paper describes the experimental techniques and setups, for simulating the reactor condition and determining the effect of those conditions on the fuel bundles. (author)

  10. CUBu: Universal Real-Time Bundling for Large Graphs.

    Science.gov (United States)

    van der Zwan, Matthew; Codreanu, Valeriu; Telea, Alexandru

    2016-12-01

    Visualizing very large graphs by edge bundling is a promising method, yet subject to several challenges: speed, clutter, level-of-detail, and parameter control. We present CUBu, a framework that addresses the above problems in an integrated way. Fully GPU-based, CUBu bundles graphs of up to a million edges at interactive framerates, being over 50 times faster than comparable state-of-the-art methods, and has a simple and intuitive control of bundling parameters. CUBu extends and unifies existing bundling techniques, offering ways to control bundle shapes, separate bundles by edge direction, and shade bundles to create a level-of-detail visualization that shows both the graph core structure and its details. We demonstrate CUBu on several large graphs extracted from real-life application domains.

  11. On stability of Kummer surfaces' tangent bundle

    International Nuclear Information System (INIS)

    Bozhkov, Y.D.

    1988-10-01

    In this paper we propose an explicit approximation of the Kaehler-Einstein-Calabi-Yau metric on the Kummer surfaces, which are manifolds of type K3. It is constructed by gluing 16 pieces of the Eguchi-Hanson metric and 16 pieces of the Euclidean metric. Two estimates on its curvature are proved. Then we prove an estimate on the first eigenvalue of a covariant differential operator of second order. This enables us to apply Taubes' iteration procedure to obtain that there exists an anti-self-dual connection on the considered Kummer surface. In fact, it is a Hermitian-Einstein connection from which we conclude that Kummer surfaces' co-tangent bundle is stable and therefore their tangent bundle is stable too. (author). 40 refs

  12. Reactor application of an improved bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Ruck, G.W.; Lee, A.Y.; Smeltzer, G.; Prevenslik, T.

    1978-11-01

    A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW

  13. Tube bundle vibrations in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Sagner, M.

    1978-01-01

    This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity

  14. Rod bundle burnout data and correlation comparisons

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1985-01-01

    Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-ofcoolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermalhydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation

  15. Uncovering ecosystem service bundles through social preferences.

    Directory of Open Access Journals (Sweden)

    Berta Martín-López

    Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.

  16. Uncovering ecosystem service bundles through social preferences.

    Science.gov (United States)

    Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos

    2012-01-01

    Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.

  17. Uncovering Ecosystem Service Bundles through Social Preferences

    Science.gov (United States)

    Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos

    2012-01-01

    Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006

  18. Twisted vector bundles on pointed nodal curves

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    other hand, as shown in [6], the notion of Gieseker vector bundles leads to the construction of the stack of stable maps into ..... residue field R/m = k. Let be a cyclic group of order e prime to the characteristic of k and let γ ∈ be a generator. Assume that acts on R such that the induced action on k is trivial. Let M be a trivial ...

  19. Principal bundles on the projective line

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    LetX be a complete nonsingular curve over the algebraic closurek ofk andGa reductive group over k. Let E → X be a principal G-bundle on X. E is said to be semistable if, for every reduction of structure group EP ⊂ E to a maximal parabolic subgroup P of G, we have degree EP (p) ≤ 0, where p is the Lie algebra of P and EP ...

  20. Meromorphic connections on vector bundles over curves

    Indian Academy of Sciences (India)

    satisfying the Leibniz rule which says that D(f ·s) = s ⊗df +f ·D(s) for any holomorphic function f ∈ OX(U) and any holomorphic section s of E|U , where U is any open subset of X. According to Weil's criterion, E admits a holomorphic connection if and only if E is a direct sum of indecomposable vector bundles of degree zero [1, ...

  1. Spanning forests and the vector bundle Laplacian

    OpenAIRE

    Kenyon, Richard

    2011-01-01

    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. ¶ This theory gives a natural generalization of the spanning tre...

  2. The research on temperature sensing properties of photonic crystal fiber based on Liquid crystal filling

    Directory of Open Access Journals (Sweden)

    Zan Xiangzhen

    2016-01-01

    Full Text Available Based on the photonic bandgap-photonic crystal fibers( PBG-PCF fiber core fills the namitic liquid crystal. By readjusting the temperature to change the refractive index, constitute new liquid fiber-optic temperature sensor. In this paper, we use finite element COMSOL software to simulate and analyze photonic crystal optical fiber sensitive properties. The research show that after the PBG – PCF filling the liquid crystal, its mode field distribution, effective refractive index, waveguide dispersion etc changing with temperature is so big. Therefore, the properties that the refractive index of PCF mode CF changing with temperature sensitive medium, provides the theoretical basis for designing optic fiber temperature sensors.

  3. Tunable Bandgap and Optical Properties of Black Phosphorene Nanotubes

    Directory of Open Access Journals (Sweden)

    Chunmei Li

    2018-02-01

    Full Text Available Black phosphorus (BP, a new two-dimensional material, has been the focus of scientists’ attention. BP nanotubes have potential in the field of optoelectronics due to their low-dimensional effects. In this work, the bending strain energy, electronic structure, and optical properties of BP nanotubes were investigated by using the first-principles method based on density functional theory. The results show that these properties are closely related to the rolling direction and radius of the BP nanotube. All the calculated BP nanotube properties show direct bandgaps, and the BP nanotubes with the same rolling direction express a monotone increasing trend in the value of bandgap with a decrease in radius, which is a stacking effect of the compression strain on the inner atoms and the tension strain on the outer atoms. The bending strain energy of the zigzag phosphorene nanotubes (zPNTs is higher than that of armchair phosphorene nanotubes (aPNT with the same radius of curvature due to the anisotropy of the BP’s structure. The imaginary part of the dielectric function, the absorption range, reflectivity, and the imaginary part of the refractive index of aPNTs have a wider range than those of zPNTs, with higher values overall. As a result, tunable BP nanotubes are suitable for optoelectronic devices, such as lasers and diodes, which function in the infrared and ultra-violet regions, and for solar cells and photocatalysis.

  4. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

    Science.gov (United States)

    Ning, Cun-Zheng; Dou, Letian; Yang, Peidong

    2017-12-01

    Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.

  5. Wide bandgap collector III-V double heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Flitcroft, R.M.

    2000-10-01

    This thesis is devoted to the study and development of Heterojunction Bipolar Transistors (HBTs) designed for high voltage operation. The work concentrates on the use of wide bandgap III-V semiconductor materials as the collector material and their associated properties influencing breakdown, such as impact ionisation coefficients. The work deals with issues related to incorporating a wide bandgap collector into double heterojunction structures such as conduction band discontinuities at the base-collector junction and results are presented which detail, a number of methods designed to eliminate the effects of such discontinuities. In particular the use of AlGaAs as the base material has been successful in eliminating the conduction band spike at this interface. A method of electrically injecting electrons into the collector has been employed to investigate impact ionisation in GaAs, GaInP and AlInP which has used the intrinsic gain of the devices to extract impact ionisation coefficients over a range of electric fields beyond the scope of conventional optical injection techniques. This data has enabled the study of ''dead space'' effects in HBT collectors and have been used to develop an analytical model of impact ionisation which has been incorporated into an existing Ebers-Moll HBT simulator. This simulator has been shown to accurately reproduce current-voltage characteristics in both the devices used in this work and for external clients. (author)

  6. Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1997-12-01

    The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)

  7. Natural fibers

    Science.gov (United States)

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  8. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2006-08-01

    Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile

  9. Simultaneous Production of High-Performance Flexible Textile Electrodes and Fiber Electrodes for Wearable Energy Storage.

    Science.gov (United States)

    Dong, Liubing; Xu, Chengjun; Li, Yang; Wu, Changle; Jiang, Baozheng; Yang, Qian; Zhou, Enlou; Kang, Feiyu; Yang, Quan-Hong

    2016-02-24

    High-performance flexible textile electrodes and fiber electrodes are produced simultaneously by a newly proposed effective strategy. Activated carbon fiber cloth (ACFC)/carbon nanotubes (CNTs) and ACFC/MnO2/CNTs composites are designed as high-performance flexible textile electrodes. Theses textiles can also be easily dismantled into individual fiber bundles used as high-performance flexible fiber electrodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    Science.gov (United States)

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  11. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  12. Investigation of complete bandgaps in a piezoelectric slab covered with periodically structured coatings.

    Science.gov (United States)

    Zou, Kui; Ma, Tian-Xue; Wang, Yue-Sheng

    2016-02-01

    The propagation of elastic waves in a piezoelectric slab covered with periodically structured coatings or the so-called stubbed phononic crystal slab is investigated. Four different models are selected and the effects of distribution forms and geometrical parameters of the structured coatings on complete bandgaps are discussed. The phononic crystal slab with symmetric coatings can generate wider complete bandgaps while that with asymmetric coatings is favorable for the generation of multi-bandgaps. The complete bandgaps, which are induced by locally resonant effects, change significantly as the geometry of the coatings changes. Moreover, the piezoelectric effects benefit the opening of the complete bandgaps. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Efficient CsF interlayer for high and low bandgap polymer solar cell

    Science.gov (United States)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  14. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width

    OpenAIRE

    Kawai, M.; Wray, J.S.; Zhao, Y.

    1993-01-01

    Chemically skinned rabbit psoas muscle fibers/bundles were osmotically compressed with a macromolecule dextran T-500 (0-16%, g/100 ml) at 20 degrees C, 200 mM ionic strength, and pH 7.0. The lattice spacing of psoas bundles was measured by equatorial x-ray diffraction studies during relaxation and after rigor induction, and the results were compared with the fiber width measurements by optical microscopy. The purpose of the present study is to determine whether fiber width is a reliable measu...

  15. Influence of Bundle Diameter and Attachment Point on Kinematic Behavior in Double Bundle Anterior Cruciate Ligament Reconstruction Using Computational Model

    Directory of Open Access Journals (Sweden)

    Oh Soo Kwon

    2014-01-01

    Full Text Available A protocol to choose the graft diameter attachment point of each bundle has not yet been determined since they are usually dependent on a surgeon’s preference. Therefore, the influence of bundle diameters and attachment points on the kinematics of the knee joint needs to be quantitatively analyzed. A three-dimensional knee model was reconstructed with computed tomography images of a 26-year-old man. Based on the model, models of double bundle anterior cruciate ligament (ACL reconstruction were developed. The anterior tibial translations for the anterior drawer test and the internal tibial rotation for the pivot shift test were investigated according to variation of bundle diameters and attachment points. For the model in this study, the knee kinematics after the double bundle ACL reconstruction were dependent on the attachment point and not much influenced by the bundle diameter although larger sized anterior-medial bundles provided increased stability in the knee joint. Therefore, in the clinical setting, the bundle attachment point needs to be considered prior to the bundle diameter, and the current selection method of graft diameters for both bundles appears justified.

  16. Direct visualization of fiber information by coherence.

    Science.gov (United States)

    Hlawitschka, Mario; Garth, Christoph; Tricoche, Xavier; Kindlmann, Gordon; Scheuermann, Gerik; Joy, Kenneth I; Hamann, Bernd

    2010-03-01

    The structure of fiber tracts in DT-MRI data presents a challenging problem for visualization and analysis. We derive visualization of such traces from a local coherence measure and achieve much improved visual segmentation. We introduce a coherence measure defined for fiber tracts. This quantitative assessment is based on infinitesimal deviations of neighboring tracts and allows identification and segmentation of coherent fiber regions. We use a hardware-accelerated implementation to achieve interactive visualization on slices and provide several approaches to visualize coherence information. Furthermore, we enhance existing techniques by combining them with coherence. We demonstrate our method on both a canine heart, where the myocardial structure is visualized, and a human brain, where we achieve detailed visualization of major and minor fiber bundles in a quality similar to and exceeding fiber clustering approaches. Our approach allows detailed and fast visualization of important anatomical structures in DT-MRI data sets.

  17. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  18. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...... with the transformed space technique in order to make the algorithm flexible in terms of non-uniform spatial sampling. Findings - Through the studies of the wave propagation characteristics on PBG structures in stratified medium, it has been found that the proposed method retains excellent accuracy in the occasions...

  19. High frequency modulation circuits based on photoconductive wide bandgap switches

    Science.gov (United States)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  20. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties.......Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...

  1. Copper-organic/octamolybdates: structures, bandgap sizes, and photocatalytic activities.

    Science.gov (United States)

    Luo, Lan; Lin, Haisheng; Li, Le; Smirnova, Tatyana I; Maggard, Paul A

    2014-04-07

    The structures, optical bandgap sizes, and photocatalytic activities are described for three copper-octamolybdate hybrid solids prepared using hydrothermal methods, [Cu(pda)]4[β-Mo8O26] (I; pda = pyridazine), [Cu(en)2]2[γ-Mo8O26] (II; en = ethylenediamine), and [Cu(o-phen)2]2[α-Mo8O26] (III; o-phen = o-phenanthroline). The structure of I consists of a [Cu(pda)]4(4+) tetramer that bridges to neighboring [β-Mo8O26](4-) octamolybdate clusters to form two-dimensional layers that stack along the a axis. The previously reported structures of II and III are constructed from [Cu2(en)4Mo8O26] and [Cu2(o-phen)4Mo8O26] clusters. The optical bandgap sizes were measured by UV-vis diffuse reflectance techniques to be ∼1.8 eV for I, ∼3.1 eV for II, and ∼3.0 eV for III. Electronic structure calculations show that the smaller bandgap size of I originates primarily from an electronic transition between the valence and conduction band edges comprised of filled 3d(10) orbitals on Cu(I) and empty 4d(0) orbitals on Mo(VI). Both II and III contain Cu(II) and exhibit larger bandgap sizes. Accordingly, aqueous suspensions of I exhibit visible-light photocatalytic activity for the production of oxygen at a rate of ∼90 μmol O2 g(-1) h(-1) (10 mg samples; radiant power density of ∼1 W/cm(2)) and a turnover frequency per calculated surface [Mo8O26](4-) cluster of ∼36 h(-1). Under combined ultraviolet and visible-light irradiation, I also exhibits photocatalytic activity for hydrogen production in 20% aqueous methanol of ∼316 μmol H2 g(-1) h(-1). By contrast, II decomposed during the photocatalysis measurements. The molecular [Cu2(o-phen)4(α-Mo8O26)] clusters of III dissolve into the aqueous methanol solution under ultraviolet irradiation and exhibit homogeneous photocatalytic rates for hydrogen production of up to ∼8670 μmol H2·g(-1) h(-1) and a turnover frequency of 17 h(-1). The clusters of III can be precipitated out by evaporation and redispersed into solution with

  2. Analytical prediction of turbulent friction factor for a rod bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Park, Joo Hwan

    2011-01-01

    An analytical calculation has been performed to predict the turbulent friction factor in a rod bundle. For each subchannel constituting a rod bundle, the geometry parameters are analytically derived by integrating the law of the wall over each subchannel with the consideration of a local shear stress distribution. The correlation equations for a local shear stress distribution are supplied from a numerical simulation for each subchannel. The explicit effect of a subchannel shape on the geometry parameter and the friction factor is reported. The friction factor of a corner subchannel converges to a constant value, while the friction factor of a central subchannel steadily increases with a rod distance ratio. The analysis for a rod bundle shows that the friction factor of a rod bundle is largely affected by the characteristics of each subchannel constituting a rod bundle. The present analytic calculations well predict the experimental results from the literature with rod bundles in circular, hexagonal, and square channels.

  3. Trivalent Cation Induced Bundle Formation of Filamentous fd Phages.

    Science.gov (United States)

    Korkmaz Zirpel, Nuriye; Park, Eun Jin

    2015-09-01

    Bacteriophages are filamentous polyelectrolyte viral rods infecting only bacteria. In this study, we investigate the bundle formation of fd phages with trivalent cations having different ionic radii (Al(3+) , La(3+) and Y(3+) ) at various phage and counterion concentrations, and at varying bundling times. Aggregated phage bundles were detected at relatively low trivalent counterion concentrations (1 mM). Although 10 mM and 100 mM Y(3+) and La(3+) treatments formed larger and more intertwined phage bundles, Al(3+) and Fe(3+) treatments lead to the formation of networking filaments. Energy dispersive X-ray spectroscopy (EDX) analyses confirmed the presence of C, N and O peaks on densely packed phage bundles. Immunofluorescence labelling and ELISA analyses with anti-p8 antibodies showed the presence of phage filaments after bundling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Tannakian approach to dimensional reduction of principal bundles

    Science.gov (United States)

    Álvarez-Cónsul, Luis; Biswas, Indranil; García-Prada, Oscar

    2017-08-01

    Let P be a parabolic subgroup of a connected simply connected complex semisimple Lie group G. Given a compact Kähler manifold X, the dimensional reduction of G-equivariant holomorphic vector bundles over X × G / P was carried out in Álvarez-Cónsul and García-Prada (2003). This raises the question of dimensional reduction of holomorphic principal bundles over X × G / P. The method of Álvarez-Cónsul and García-Prada (2003) is special to vector bundles; it does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of G-equivariant principal bundles over X × G / P, and to establish a Hitchin-Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that X is a complex projective manifold.

  5. Global properties of systems quantized via bundles

    International Nuclear Information System (INIS)

    Doebner, H.D.; Werth, J.E.

    1978-03-01

    Take a smooth manifold M and a Lie algebra action (g-ation) theta on M as the geometrical arena of a physical system moving on M with momenta given by theta. It is proposed to quantize the system with a Mackey-like method via the associated vector bundle xisub(rho) of a principal bundle xi=(P,π,M,H) with model dependent structure group H and with g-action phi on P lifted from theta on M. This (quantization) bundle xisub(rho) gives the Hilbert space equal to L 2 (xisub(rho),ω) of the system as the linear space of sections in xisub(rho) being square integrable with respect to a volume form ω on M; the usual position operators are obtained; phi leads to a vector field representation D(phisub(rho),theta) of g in an hence Hilbert space to momentum operators. So Hilbert space carries the quantum kinematics. In this quantuzation the physically important connection between geometrical properties of the system, e.g. quasi-completeness of theta and G-maximality of phisub(rho), and global properties of its quantized kinematics, e.g. skew-adjointness of the momenta and integrability of D(phisub(rho), theta) can easily be studied. The relation to Nelson's construction of a skew-adjoint non-integrable Lie algebra representation and to Palais' local G-action is discussed. Finally the results are applied to actions induced by coverings as examples of non-maximal phisub(rho) on Esub(rho) lifted from maximal theta on M which lead to direct consequences for the corresponding quantum kinematics

  6. Historical dynamics in ecosystem service bundles.

    Science.gov (United States)

    Renard, Delphine; Rhemtulla, Jeanine M; Bennett, Elena M

    2015-10-27

    Managing multiple ecosystem services (ES), including addressing trade-offs between services and preventing ecological surprises, is among the most pressing areas for sustainability research. These challenges require ES research to go beyond the currently common approach of snapshot studies limited to one or two services at a single point in time. We used a spatiotemporal approach to examine changes in nine ES and their relationships from 1971 to 2006 across 131 municipalities in a mixed-use landscape in Quebec, Canada. We show how an approach that incorporates time and space can improve our understanding of ES dynamics. We found an increase in the provision of most services through time; however, provision of ES was not uniformly enhanced at all locations. Instead, each municipality specialized in providing a bundle (set of positively correlated ES) dominated by just a few services. The trajectory of bundle formation was related to changes in agricultural policy and global trends; local biophysical and socioeconomic characteristics explained the bundles' increasing spatial clustering. Relationships between services varied through time, with some provisioning and cultural services shifting from a trade-off or no relationship in 1971 to an apparent synergistic relationship by 2006. By implementing a spatiotemporal perspective on multiple services, we provide clear evidence of the dynamic nature of ES interactions and contribute to identifying processes and drivers behind these changing relationships. Our study raises questions about using snapshots of ES provision at a single point in time to build our understanding of ES relationships in complex and dynamic social-ecological systems.

  7. Hydrodynamic behavior of a bare rod bundle

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Todreas, N.E.

    1977-06-01

    The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers

  8. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1980-01-01

    The invention relates to a nuclear power reactor fuel bundle of the type wherein several rods are mounted in parallel array between two tie plates which secure the fuel rods in place and are maintained in assembled position by means of a number of tie rods secured to both of the end plates. Improved apparatus is provided for attaching the tie rods to the upper tie plate by the use of locking lugs fixed to rotatable sleeves which engage the upper tie plate. (auth)

  9. Thermal hydraulic stability experiments in rod bundle

    International Nuclear Information System (INIS)

    Enomoto, T.; Muto, S.; Ishizuka, T.; Tanabe, A.; Mitsutake, T.; Sakurai, M.

    1985-01-01

    Thermal hydraulic stability tests have been performed on electrically heated bundles to simulate Boiling Water Reactor (BWR) fuels in a parallel channel test-loop. The test facility used is for the study of the steady state and transient characteristics of various thermal hydraulic conditions encountered in BWR operation, such as flow- high power operation, abnormal transient conditions and post boiling transition, including thermal hydraulic stability. Moreover, steady state and transient void behavior can be measured using an additional test section for this facility

  10. Vector bundles on complex projective spaces

    CERN Document Server

    Okonek, Christian; Spindler, Heinz

    1980-01-01

    This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems.

  11. Bundling Products and Services Through Modularization Strategies

    DEFF Research Database (Denmark)

    Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi

    2012-01-01

    Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....

  12. Real parabolic vector bundles over a real curve

    Indian Academy of Sciences (India)

    by Seshadri [4] and their moduli studied in [2]. Here we consider real vector bundles over a real curve and define parabolic structures on real vector bundles. By a real curve, we mean a pair (X,σX ), where X is a compact Riemann surface and. σX is an anti-holomorphic involution on X. A real vector bundle over a real curve ...

  13. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  14. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Demet Pepele

    2014-01-01

    Aim: The goal in anterior cruciate ligament reconstruction (ACLR) is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our ...

  15. Analytic convergence of harmonic metrics for parabolic Higgs bundles

    Science.gov (United States)

    Kim, Semin; Wilkin, Graeme

    2018-04-01

    In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.

  16. Discontinuous conduction in mouse bundle branches is caused by bundle-branch architecture

    NARCIS (Netherlands)

    van Veen, Toon A. B.; van Rijen, Harold V. M.; van Kempen, Marjan J. A.; Miquerol, Lucile; Opthof, Tobias; Gros, Daniel; Vos, Marc A.; Jongsma, Habo J.; de Bakker, Jacques M. T.

    2005-01-01

    Background - Recordings of the electrical activity of mouse bundle branches ( BBs) suggest reduced conduction velocity ( CV) in the midseptal compared with the proximal part of the BB. The present study was performed to elucidate the mechanism responsible for this slowing of conduction. Methods and

  17. Multimode-Optical-Fiber Imaging Probe

    Science.gov (United States)

    Jackson, Deborah

    2000-01-01

    Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside orifices of the body. This limits their use to the larger natural bodily orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (fibers and analytically demonstrates that the concept is sound. The proof of concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront which was predistorted with the characteristics of the fiber. The described approach also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually unaccessible).

  18. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    Science.gov (United States)

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  20. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  1. Restriction Theorem for Principal bundles in Arbitrary Characteristic

    DEFF Research Database (Denmark)

    Gurjar, Sudarshan

    2015-01-01

    The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...

  2. The differential geometry of higher order jets and tangent bundles

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.

    1985-01-01

    This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)

  3. Bundled tungsten oxide nanowires under thermal processing

    International Nuclear Information System (INIS)

    Sun Shibin; Zhao Yimin; Xia Yongde; Zhu Yanqiu; Zou Zengda; Min Guanghui

    2008-01-01

    Ultra-thin W 18 O 49 nanowires were initially obtained by a simple solvothermal method using tungsten chloride and cyclohexanol as precursors. Thermal processing of the resulting bundled nanowires has been carried out in air in a tube furnace. The morphology and phase transformation behavior of the as-synthesized nanowires as a function of annealing temperature have been characterized by x-ray diffraction and electron microscopy. The nanostructured bundles underwent a series of morphological evolution with increased annealing temperature, becoming straighter, larger in diameter, and smaller in aspect ratio, eventually becoming irregular particles with size up to 5 μm. At 500 deg. C, the monoclinic W 18 O 49 was completely transformed to monoclinic WO 3 phase, which remains stable at high processing temperature. After thermal processing at 400 deg. C and 450 deg. C, the specific surface areas of the resulting nanowires dropped to 110 m 2 g -1 and 66 m 2 g -1 respectively, compared with that of 151 m 2 g -1 for the as-prepared sample. This study may shed light on the understanding of the geometrical and structural evolution occurring in nanowires whose working environment may involve severe temperature variations

  4. Development boiling to sprinkled tube bundle

    Science.gov (United States)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  5. Development boiling to sprinkled tube bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2016-01-01

    Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  6. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  7. Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2005-08-08

    Modal characteristics of hollow-core photonic-crystal fibers with elliptical veins are studied by use of a recently proposed numerical method. The dynamic behavior of bandgap guided modes, as the wavelength and aspect ratio are varied, is shown to include zero-crossings of the birefringence, polarization dependent radiation losses, and deformation of the fundamental mode.

  8. Single-shot polarimetry imaging of multicore fiber.

    Science.gov (United States)

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  9. Visualization of Fiber Structure in the Left and Right Ventricle of a Human Heart

    International Nuclear Information System (INIS)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-01-01

    The human heart is composed of a helical network of muscle fibers. Anisotropic least squares filtering followed by fiber tracking techniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration was visualized by using thin tubes to increase 3-dimensional visual perception of the complex structure. All visualizations were performed using the high-quality ray-tracing software POV-Ray. The fibers are shown within the left and right ventricles. Both ventricles exhibit similar fiber architecture and some bundles of fibers are shown linking right and left ventricles on the posterior region of the heart

  10. Infiltration liquid crystal in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Bang, Ole

    2009-01-01

    Here, we firstly demonstrate the photonic bandgap effect with PMMA mPOF by filling the air holes with liquid crystal, and subsequently change the light guidance mechanism from index guiding to bandgap guiding. The triangular structure PMMA mPOF used in the experiment is fabricated. A 60 cm length m......POF is butt-coupled to a conventional single mode fiber (SMF) with the broadband light from a supercontinuum source. It is clear to see the colour of the guided modes is red, since some wavelengths are attenuated by the material loss of PMMA in visible region. A positive dielectric anisotropy liquid crystal E......7 is then infiltrated into about 6 cm of the length of mPOF by using capillary forces with the duration of 45 minutes. The transmission spectrum is measured by an optical spectrum analyzer with 1 nm resolution, and normalized to that of the unfilled fiber as shown by the solid line. The difference...

  11. Fiber-reinforced syntactic foams

    Science.gov (United States)

    Huang, Yi-Jen

    to produce ultralight sandwich core materials was explored in which towpreg (fiber bundles impregnated with resin) were configured to produce 3D pyramidal truss structures. The composite truss structures were subsequently filled with foam to improve resistance to buckling. Mechanical properties of the foam-filled truss structures were measured and contrasted with analytical predictions based on simple truss theory. Results indicated that combination of foams and carbon fiber truss structures had synergistic effects that enhanced the capacity to carry compressive and shear loads.

  12. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    Science.gov (United States)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  13. Evaluation of Single-Bundle versus Double-Bundle PCL Reconstructions with More Than 10-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Masataka Deie

    2015-01-01

    Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.

  14. Real-time wavelet-based inline banknote-in-bundle counting for cut-and-bundle machines

    Science.gov (United States)

    Petker, Denis; Lohweg, Volker; Gillich, Eugen; Türke, Thomas; Willeke, Harald; Lochmüller, Jens; Schaede, Johannes

    2011-03-01

    Automatic banknote sheet cut-and-bundle machines are widely used within the scope of banknote production. Beside the cutting-and-bundling, which is a mature technology, image-processing-based quality inspection for this type of machine is attractive. We present in this work a new real-time Touchless Counting and perspective cutting blade quality insurance system, based on a Color-CCD-Camera and a dual-core Computer, for cut-and-bundle applications in banknote production. The system, which applies Wavelet-based multi-scale filtering is able to count banknotes inside a 100-bundle within 200-300 ms depending on the window size.

  15. A simple method to prepare miniature quartz fiber boats with superhydrophobicity

    Science.gov (United States)

    Jiang, Z. X.; Cheng, X. Q.; Li, J.; Qiu, W. J.; Guan, S. A.; Dong, W.; Ma, Z. Y.; Huang, Y. D.

    2012-01-01

    According to the reformed Cassie-Baxter equation, a superhydrophobic quartz fiber bundle boat was fabricated from mimicking the lotus leaf venation using chemical surface modifications and roughness introductions. Water contact angles as high as 165.8° were achieved for quartz fiber cloths. The loading capacities of the miniature boats made from the superhydrophobic quartz fiber bundles were measured. The highest loading weight, 10.19 g, was obtained by the boats with 2.0 mm spacing distance between fiber bundles. The striking loading capacities were believed to stem from the air film surrounding the superhydrophobic surfaces of the boats. The results of this study presented new applications of artificial hydrophobic surfaces in areas of aquatic devices.

  16. Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2013-01-01

    Computational screening is becoming increasingly useful in the search for new materials. We are interested in the design of new semiconductors to be used for light harvesting in a photoelectrochemical cell. In the present paper, we study the double perovskite structures obtained by combining 46...... stable cubic perovskites which was found to have a finite bandgap in a previous screening-study. The four-metal double perovskite space is too large to be investigated completely. For this reason we propose a method for combining different metals to obtain a desired bandgap. We derive some bandgap design...

  17. Complete photonic bandgaps in the visible range from spherical layer structures in dichromate gelatin emulsions

    Science.gov (United States)

    Hung, Jenny; Kok, Mang Hin; Tam, Wing Yim

    2009-01-01

    We have fabricated spherical layer structures that exhibit complete photonic bandgaps in the visible range in dichromate gelatin emulsions by holographic interference. The complete bandgap was not a result of the high dielectric contrast but was due to the fact that the spherical layer structure was isotropic with equal spacing in all accessible directions. Angular dependence spectral measurements of the spherical layer structures were in good agreement with the expected results from an ideal structure of dielectric concentric spherical shells with equal spacing. Our fabrication technique and results could pave the way for new applications using complete bandgap photonic crystals.

  18. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  19. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  20. Hair bundles are specialized for ATP delivery via creatine kinase.

    NARCIS (Netherlands)

    Shin, J.B.; Streijger, F.; Beynon, A.J.; Peters, T.; Gadzala, L.; McMillen, D.; Bystrom, C.; Zee, C.E.E.M. van der; Wallimann, T.; Gillespie, P.G.

    2007-01-01

    When stimulated strongly, a hair cell's mechanically sensitive hair bundle may consume ATP too rapidly for replenishment by diffusion. To provide a broad view of the bundle's protein complement, including those proteins participating in energy metabolism, we used shotgun mass spectrometry methods to

  1. Tokyo Guidelines 2018: management bundles for acute cholangitis and cholecystitis

    NARCIS (Netherlands)

    Mayumi, Toshihiko; Okamoto, Kohji; Takada, Tadahiro; Strasberg, Steven M.; Solomkin, Joseph S.; Schlossberg, David; Pitt, Henry A.; Yoshida, Masahiro; Gomi, Harumi; Miura, Fumihiko; Garden, O. James; Kiriyama, Seiki; Yokoe, Masamichi; Endo, Itaru; Asbun, Horacio J.; Iwashita, Yukio; Hibi, Taizo; Umezawa, Akiko; Suzuki, Kenji; Itoi, Takao; Hata, Jiro; Han, Ho-Seong; Hwang, Tsann-Long; Dervenis, Christos; Asai, Koji; Mori, Yasuhisa; Huang, Wayne Shih-Wei; Belli, Giulio; Mukai, Shuntaro; Jagannath, Palepu; Cherqui, Daniel; Kozaka, Kazuto; Baron, Todd H.; de Santibañes, Eduardo; Higuchi, Ryota; Wada, Keita; Gouma, Dirk J.; Deziel, Daniel J.; Liau, Kui-Hin; Wakabayashi, Go; Padbury, Robert; Jonas, Eduard; Supe, Avinash Nivritti; Singh, Harjit; Gabata, Toshifumi; Chan, Angus C. W.; Lau, Wan Yee; Fan, Sheung Tat; Chen, Miin-Fu; Ker, Chen-Guo; Yoon, Yoo-Seok; Choi, In-Seok; Kim, Myung-Hwan; Yoon, Dong-Sup; Kitano, Seigo; Inomata, Masafumi; Hirata, Koichi; Inui, Kazuo; Sumiyama, Yoshinobu; Yamamoto, Masakazu

    2018-01-01

    Management bundles that define items or procedures strongly recommended in clinical practice have been used in many guidelines in recent years. Application of these bundles facilitates the adaptation of guidelines and helps improve the prognosis of target diseases. In Tokyo Guidelines 2013 (TG13),

  2. Infinite Grassmannian and moduli space of G-bundles

    International Nuclear Information System (INIS)

    Kumar, S.; Ramanathan, A.

    1993-03-01

    Let C be a smooth irreducible projective curve and G a simply connected simple affine algebraic group of C. We study in this paper the relationship between the space of vacua defined in Conformal Field Theory and the space of sections of a line bundle on the moduli space of G-bundles over C. (author). 33 refs

  3. An integral Riemann-Roch theorem for surface bundles

    DEFF Research Database (Denmark)

    Madsen, Ib Henning

    2010-01-01

    This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles.......This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles....

  4. Sensory transduction: the 'swarm intelligence' of auditory hair bundles.

    Science.gov (United States)

    Albert, Jörg

    2011-08-23

    In vertebrate hair cells, the hair bundle is responsible for the conversion of mechanical vibrations into electrical signals. In a combined experimental and computational tour de force, a group of researchers now presents a quantitative model that explains how the bundle's specific microarchitecture gives rise to its exquisite mechanosensory properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Stability of Picard Bundle Over Moduli Space of Stable Vector ...

    Indian Academy of Sciences (India)

    Abstract. Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.

  6. Phase Space Reduction of Star Products on Cotangent Bundles.

    NARCIS (Netherlands)

    Kowalzig, N.; Neumaier, N.; Pflaum, M.

    2005-01-01

    In this paper we construct star products on Marsden-Weinstein reduced spaces in case both the original phase space and the reduced phase space are (symplectomorphic to) cotangent bundles. Under the assumption that the original cotangent bundle $T^*Q$ carries a symplectic structure of form

  7. Implementing the care bundle approach in the ICU

    African Journals Online (AJOL)

    2007-11-19

    Nov 19, 2007 ... Intensive care standards can only be maintained by quality control of ICU facilities, activities ... The care bundle approach provides a practical tool to implement evidence-based practice in critical care. Care bundles ... algorithm provides a useful bedside tool in the practical implementation of the guideline.

  8. Moduli space of Parabolic vector bundles over hyperelliptic curves

    Indian Academy of Sciences (India)

    27

    MODULI SPACE OF PARABOLIC VECTOR BUNDLES OVER. HYPERELLIPTIC CURVES. SURATNO BASU AND SARBESWAR PAL. Abstract. Let X be a smooth projective hyperelliptic curve of arbitrary genus g. In this short article we will classify the rank 2 stable vector bundles with parabolic structure along a reduced ...

  9. Rigidity of minimal submanifolds with flat normal bundle

    Indian Academy of Sciences (India)

    normal bundle. We prove that if the second fundamental form of M satisfies some decay conditions, then M is an affine plane or a catenoid in some Euclidean subspace. Keywords. Catenoid; minimal submanifolds; flat normal bundle. 1. Introduction. Let Mn be an n-dimensional complete minimal immersed submanifold in R.

  10. Interprofessional Perspectives on ABCDE Bundle Implementation: A Focus Group Study.

    Science.gov (United States)

    Boehm, Leanne M; Vasilevskis, Eduard E; Mion, Lorraine C

    The ABCDE bundle is a multifaceted, interprofessional intervention that is associated with reduced ventilator and delirium days as well as increased likelihood of mobility in intensive care. The aim of this study is to describe organizational domains that contribute to variation in ABCDE bundle implementation as reported by intensive care unit providers and to examine the capability of a conceptual framework for identifying variation in ABCDE bundle implementation. We conducted 2 separate focus groups that included nurses, respiratory therapists, occupational and physical therapists (N = 16) from the surgical and medical intensive care units at 1 academic medical center. All participants had experience performing ABCDE bundle activities. Variation in how the ABCDE bundle was interpreted and executed within and across disciplines was noted. Organizational facets, the physical environment, labor quantity and quality, task burden, provider attitudes, and patient characteristics were noted to influence ABCDE bundle execution. The difficulty coordinating and implementing early mobility was emphasized. The number of disciplines required to perform an activity and individual component complexity was reported to influence ABCDE bundle implementation. Nurses repeatedly described challenges with coordinating care across disciplines. Small tests of change, adequate staffing, interprofessional training and protocol development efforts, and role modeling may be effective methods for successful ABCDE bundle implementation.

  11. Weak point property and sections of Picard bundles on a ...

    Indian Academy of Sciences (India)

    Contemp. Math., 465 (2008) (Providence, RI: Amer. Math. Soc.) pp. 45–50. [7] Ein L and Lazarsfeld R, Stability and restrictions of Picard bundles with an application to the normal bundles of elliptic curves, in: Complex projective geometry (ed) Ellingsrud,. Peskine et al LMS 179 (1992) (Cambridge University Press). [8] Fulton ...

  12. Balanced metrics for vector bundles and polarised manifolds

    DEFF Research Database (Denmark)

    Garcia Fernandez, Mario; Ross, Julius

    2012-01-01

    We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter α, where X is smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of α, we prove that the limit of a convergent sequence of balanced metrics...

  13. Anisotropy abrasive wear behavior of bagasse fiber reinforced ...

    African Journals Online (AJOL)

    Three different types of abrasives wear behaviour have been observed in the composite in three orientations and follow the following trends: WNO < WAPO < WPO, where WNO, WAPO and WPO are the wear in normal, anti-parallel and parallel directions of fibres orientation, respectively. The fiber bundles present in the ...

  14. Implementing a pressure ulcer prevention bundle into practice.

    Science.gov (United States)

    Downie, Fiona; Perrin, Anne-Marie; Kiernan, Martin

    The implementation of a care bundle approach to delivering fundamental care in practice is now a recognised and effective way of translating research into practice, offering consistent care with resulting positive outcomes for the patient. A care bundle consists ofa relatively small number of interventions for every patient to whom the bundle is applied. However, there must be evidence behind each individual intervention to indicate, if delivered, how it will reduce the risk to the patient. This paper reports on a strategy for developing and implementing a pressure ulcer (PU) combined prevention care bundle/ care plan into practice. The effectiveness of the care bundle can be measured when it is in use in the practice setting with an audit tool.

  15. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon

    1991-07-01

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  16. CFD modeling of secondary flows in fuel rod bundles

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi

    2004-01-01

    An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)

  17. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko

    2013-01-01

    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  18. Bundles over Quantum RealWeighted Projective Spaces

    Directory of Open Access Journals (Sweden)

    Tomasz Brzeziński

    2012-09-01

    Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.

  19. Cyclic hardening in bundled actin networks.

    Science.gov (United States)

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  20. Advanced tube-bundle rocket thrust chamber

    Science.gov (United States)

    Kazaroff, John M.; Pavli, Albert J.

    1990-01-01

    An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, and performance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anticipated because of the enhanced structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust chamber cost and weight reduction.

  1. Critical Power Performance of Tight Lattice Bundle

    Science.gov (United States)

    Yamamoto, Yasushi; Hiraiwa, Kouji; Morooka, Shinichi; Abe, Nobuaki

    An innovative fuel cycle system concept named BARS (BWR with an Advanced Recycle System) has been proposed as a future fuel cycle option aiming at enhanced utilization of uranium resources and reduction of radioactive wastes. In BARS, the spent fuel from conventional light water reactors (LWRs) is recycled as a mixed oxide (MOX) fuel for a BWR core with the fast neutron spectrum by means of oxide dry-processing and vibro-packing fuel fabrication. The fast neutron spectrum is obtained by means of triangular tight fuel lattice. Further study on BARS, especially on tight lattice MOX fuel, has been initiated as a joint study by Toshiba and Gifu University. The objective of this paper is to show the latest progress of the study on BARS, especially concerning the thermal-hydraulics measurements for tight lattice bundle.

  2. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    Science.gov (United States)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  3. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    International Nuclear Information System (INIS)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-01-01

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.

  4. A model for the direct-to-indirect band-gap transition in monolayer ...

    Indian Academy of Sciences (India)

    2015-05-28

    , within ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3% can drive it into an indirect band-gap semiconductor with the valence band maximum (VBM) shifting from point to point. An analysis ...

  5. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  6. Research on micro-sized acoustic bandgap structures.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, James Grant; McCormick, Frederick Bossert; Su, Mehmet F.; El-Kady, Ihab Fathy; Olsson, Roy H., III; Tuck, Melanie R.

    2010-01-01

    Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.

  7. Angle-dependent bandgap engineering in gated graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Sotolongo-Costa, O. [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Gaggero-Sager, L. M. [CIICAp, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Naumis, G. G. [Instituto Física, Depto. de Física-Química, Universidad Nacional Autónoma de México (UNAM). Apdo. Postal 20-364, 01000, México D.F., México (Mexico); Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac., México (Mexico)

    2016-03-15

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  8. Simulation of push-pull inverter using wide bandgap devices

    Science.gov (United States)

    Al-badri, Mustafa; Matin, Mohammed A.

    2016-09-01

    This paper discusses the use of wide bandgap devices (SiC-MOSFET) in the design of a push-pull inverter which provides inexpensive low power dc-ac inverters. The parameters used were 1200V SiC MOSFET(C2M0040120D) made by power company ROHM. This modeling was created using parameters that were provided from a device datasheet. The spice model is provided by this company to study the effect of adding this component on push-pull inverter ordinary circuit and compared results between SiC MOSFET and silicon MOSFET (IRFP260M). The results focused on Vout and Vmos stability as well as on output power and MOSFET power loss because it is a very crucial aspect on DC-AC inverter design. These results are done using the National Instrument simulation program (Multisim 14). It was found that power loss is better in the 12 and 15 vdc inverter. The Vout in the SIC MOSFET circuit shows more stability in the high current low resistance load in comparison to the Silicon MOSFET circuit and this will improve the overall performance of the circuit.

  9. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  10. Restriction of Preferences to the Set of Consumption Bundles, In a Model with Production and Consumption Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1999-01-01

    In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert

  11. Single-Bundle Versus Double-Bundle Reconstruction for Anterior Cruciate Ligament Rupture: A Meta-Analysis-Does Anatomy Matter?

    NARCIS (Netherlands)

    Eck, Carola F. Van; Kopf, Sebastian; Irrgang, James J.; Blankevoort, Leendert; Bhandari, Mohit; Fu, Freddie H.; Poolman, Rudolf W.

    2012-01-01

    Purpose: To determine whether double-bundle anterior cruciate ligament reconstruction leads to better restoration of anterior and rotational laxity and range of motion than single-bundle reconstruction. Methods: A search was performed in the Medline, Embase, CINAHL, and Cochrane databases. All

  12. Patterned functional carbon fibers from polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  13. Photonic bandgap structures for guiding of long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Leosson, K.; Nikolajsen, T.; Boltasseva, Alexandra

    2003-01-01

    We present the first observations of long-range plasmon polariton guiding in photonic bandgap structures. The transmission of waveguide structures is characterized at telecommunication wavelengths and a propagation loss below 4 dB/mm is determined.......We present the first observations of long-range plasmon polariton guiding in photonic bandgap structures. The transmission of waveguide structures is characterized at telecommunication wavelengths and a propagation loss below 4 dB/mm is determined....

  14. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics

    KAUST Repository

    Beiley, Zach M.

    2013-10-07

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ultrawide bandgap pentamode metamaterials with an asymmetric double-cone outside profile

    Science.gov (United States)

    Chu, Yangyang; Li, Yucheng; Cai, Chengxin; Liu, Guangshuan; Wang, Zhaohong; Xu, Zhuo

    2018-03-01

    The band-gap characteristic is an important feature of acoustic metamaterials, which has important theoretical and practical significance in acoustic devices. Pentamode metamaterials (PMs) with phonon band-gap characteristics based on an asymmetric double-cone outside profile are presented and studied in this paper. The phonon band structures of these PMs are calculated by using the finite element method. In addition to the single-mode band-gaps, the complete 3D band-gaps are also obtained by changing the outside profile of the double-cone. Moreover, by adjusting the outside profile and the diameter of the double-cone to reduce the symmetry of the structure, the complete 3D band-gap can be widened. Further parametric analysis is presented to investigate the effect of geometrical parameters on the phonon band-gap property, the numerical simulations show that the maximum relative bandwidth is expanded by 15.14 times through reducing the symmetry of the structure. This study provides a possible way for PMs to control elastic wave propagation in the field of depressing vibration and noise, acoustic filtering and acoustic cloaking.

  16. Reaction-diffusion model of hair-bundle morphogenesis.

    Science.gov (United States)

    Jacobo, Adrian; Hudspeth, A J

    2014-10-28

    The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle's morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction-diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle's shape. The interaction of two proteins forms a hexagonal Turing pattern--a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants--that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle.

  17. Two-categorical bundles and their classifying spaces

    DEFF Research Database (Denmark)

    Baas, Nils A.; Bökstedt, M.; Kro, T.A.

    2012-01-01

    -category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop a lot of powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. A calculation based......For a 2-category 2C we associate a notion of a principal 2C-bundle. In case of the 2-category of 2-vector spaces in the sense of M.M. Kapranov and V.A. Voevodsky this gives the the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2...... on the main theorem shows that the principal 2-bundles associated to the 2-category of 2-vector spaces in the sense of J.C. Baez and A.S. Crans split, up to concordance, as two copies of ordinary vector bundles. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out...

  18. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    International Nuclear Information System (INIS)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.; Dehaene-Lambertz, G.; Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.

    2008-01-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  19. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L. [CEA, Serv Hosp Frederic Joliot, UNAF, F-91406 Orsay (France); Dehaene-Lambertz, G. [INSERM, U562, Orsay (France); Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L. [IFR49, Paris (France)

    2008-07-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  20. Radiation resistance of wide-bandgap semiconductor power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hazdra, Pavel; Popelka, Stanislav [Department of Microelectronics, Czech Technical University in Prague (Czech Republic)

    2017-04-15

    Radiation resistance of state-of-the-art commercial wide-bandgap power transistors, 1700 V 4H-SiC power MOSFETs and 200 V GaN HEMTs, to the total ionization dose was investigated. Transistors were irradiated with 4.5 MeV electrons with doses up to 2000 kGy. Electrical characteristics and introduced defects were characterized by current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements. Results show that already low doses of 4.5 MeV electrons (>1 kGy) cause a significant decrease in threshold voltage of SiC MOSFETs due to embedding of the positive charge into the gate oxide. On the other hand, other parameters like the ON-state resistance are nearly unchanged up to the dose of 20 kGy. At 200 kGy, the threshold voltage returns back close to its original value, however, the ON-state resistance increases and transconductance is lowered. This effect is caused by radiation defects introduced into the low-doped drift region which decrease electron concentration and mobility. GaN HEMTs exhibit significantly higher radiation resistance. They keep within the datasheet specification up to doses of 2000 kGy. Absence of dielectric layer beneath the gate and high concentration of carriers in the two dimensional electron gas channel are the reasons of higher radiation resistance of GaN HEMTs. Their degradation then occurs at much higher doses due to electron mobility degradation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Radiation resistance of wide-bandgap semiconductor power transistors

    International Nuclear Information System (INIS)

    Hazdra, Pavel; Popelka, Stanislav

    2017-01-01

    Radiation resistance of state-of-the-art commercial wide-bandgap power transistors, 1700 V 4H-SiC power MOSFETs and 200 V GaN HEMTs, to the total ionization dose was investigated. Transistors were irradiated with 4.5 MeV electrons with doses up to 2000 kGy. Electrical characteristics and introduced defects were characterized by current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements. Results show that already low doses of 4.5 MeV electrons (>1 kGy) cause a significant decrease in threshold voltage of SiC MOSFETs due to embedding of the positive charge into the gate oxide. On the other hand, other parameters like the ON-state resistance are nearly unchanged up to the dose of 20 kGy. At 200 kGy, the threshold voltage returns back close to its original value, however, the ON-state resistance increases and transconductance is lowered. This effect is caused by radiation defects introduced into the low-doped drift region which decrease electron concentration and mobility. GaN HEMTs exhibit significantly higher radiation resistance. They keep within the datasheet specification up to doses of 2000 kGy. Absence of dielectric layer beneath the gate and high concentration of carriers in the two dimensional electron gas channel are the reasons of higher radiation resistance of GaN HEMTs. Their degradation then occurs at much higher doses due to electron mobility degradation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  3. Moduli of Parabolic Higgs Bundles and Atiyah Algebroids

    DEFF Research Database (Denmark)

    Logares, Marina; Martens, Johan

    2010-01-01

    In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundles....... By considering the case of full flags, we get a Grothendieck–Springer resolution for all other flag types, in particular for the moduli spaces of twisted Higgs bundles, as studied by Markman and Bottacin and used in the recent work of Laumon–Ngô. We discuss the Hitchin system, and demonstrate that all...

  4. Stall, Spiculate, or Run Away: The Fate of Fibers Growing towards Fluctuating Membranes

    Science.gov (United States)

    Daniels, D. R.; Marenduzzo, D.; Turner, M. S.

    2006-09-01

    We study the dynamics of a growing semiflexible fiber approaching a membrane at an angle. At late times we find three regimes: fiber stalling, when growth stops, runaway, in which the fiber bends away from the membrane, and another regime in which spicules form. We discuss which regions of the resulting “phase diagram” are explored by (i) single and bundled actin fibers in living cells, (ii) sickle hemoglobin fibers, and (iii) microtubules inside vesicles. We complement our analysis with 3D stochastic simulations.

  5. Fabrication of highly conductive carbon nanotube fibers for electrical application

    International Nuclear Information System (INIS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-01-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)

  6. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  7. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  8. Twisted vector bundles on pointed nodal curves

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    is an element different from the identity and u is a geometric point of U fixed by γ, then the automorphism of the fiber ηu induced by γ is not trivial. 3. An essential action of a finite group on (η,U) is called tame, if the action of on. (U → S, i) is tame. DEFINITION 2.3. Let S be a k-scheme. Let C → S be an n-pointed nodal curve ...

  9. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.

    1977-01-01

    A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)

  10. Bundled automobile insurance coverage and accidents.

    Science.gov (United States)

    Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang

    2013-01-01

    This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding...

  12. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Ott, Jelanie; Matuszeski, Adam

    2011-01-01

    Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total

  13. Stability of the plasma in a bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Callen, J.D.

    1979-02-01

    Due to the pressure and magnetic field gradients and curvature of the magnetic field lines in a bundle divertor of a tokamak device, the plasma may be unstable to local interchange modes. Turbulent transport could be quite large and lead to a thick scrape-off layer which is as large as the radius of curvature of the diverted flux bundle. Such turbulence would be beneficial for lowering the energy and particle fluxes on the collector in a bundle divertor. The effect of a bundle divertor on the β limit resulting from the ballooning modes of instability in the central plasma is also estimated. The critical β is reduced by less than one percent

  14. Devices for investigation and intervention on steam generators tubes bundles

    International Nuclear Information System (INIS)

    Launay, J.P.; Sort, M.

    1986-01-01

    After a brief recall on the French regulation concerning pressure vessels, the authors describe the experience and the devices used by Framatome for closing, repairing, sleeving and shot peening for steam generators tubes bundles [fr

  15. Introductory lectures on fibre bundles and topology for physicists

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-05-01

    These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced

  16. Design and synthesis of DNA four-helix bundles

    International Nuclear Information System (INIS)

    Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H

    2011-01-01

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  17. Absorber rod bundle actuator in a pressurized water nuclear reactor

    International Nuclear Information System (INIS)

    Martin, J.; Peletan, R.

    1984-01-01

    The invention concerns an absorber rod bundle actuator in a pressurized water reactor with spectral shift control. The device comprises two coaxial control bars. The inner bar is integral with the absorber rod bundle; it has an enlarged zone which acts as a proton under pressure difference across an annular seal which can be radially expanded, the pressure difference allowing to the absorber rod bundles actuating on the piston. When a pressure difference is applied, the seal expands radially by a sufficient amount to make sealing contact with the zone of larger diameter in the outer bar. The invention applies more particularly to reactors with spectral shift control using bundles of fertile rods [fr

  18. CANFLEX fuel bundle cross-flow endurance test (test report)

    International Nuclear Information System (INIS)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs

  19. On induced hermitian metrics for holomorphic vector bundles

    International Nuclear Information System (INIS)

    Hoang Le Minh.

    1989-09-01

    An explicit computation of induced hermitian metrics on holomorphic vector bundles is given. As an example the Fubini-Study metrics for complex projective spaces and Grassmannians are considered. (author). 5 refs

  20. On the classification of complex vector bundles of stable rank

    Indian Academy of Sciences (India)

    , the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie ...