Colloquium: Topological band theory
Bansil, A.; Lin, Hsin; Das, Tanmoy
2016-04-01
The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.
Band theory of metals the elements
Altmann, Simon L
1970-01-01
Band Theory of Metals: The Elements focuses on the band theory of solids. The book first discusses revision of quantum mechanics. Topics include Heisenberg's uncertainty principle, normalization, stationary states, wave and group velocities, mean values, and variational method. The text takes a look at the free-electron theory of metals, including heat capacities, density of states, Fermi energy, core and metal electrons, and eigenfunctions in three dimensions. The book also reviews the effects of crystal fields in one dimension. The eigenfunctions of the translations; symmetry operations of t
Band Structure in Yang-Mills Theories
Bachas, Constantin
2016-01-01
We show how Yang-Mills theory on $S^3\\times R$ can exhibit a spectrum with continuous bands if coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero mode whose role is to convert a circle in configuration space into a helix. The zero mode is, respectively, the holonomy of the 3-form field or the axion momentum. In these models different theta sectors coexist but are not mixed by local operators. Our analysis sheds light on, and extends Seiberg's proposal for modifying the topological sums in quantum field theories. It refutes a recent claim that $B+L$ violation at LHC is unsuppressed.
Gutzwiller theory of band magnetism in LaOFeAs.
Schickling, Tobias; Gebhard, Florian; Bünemann, Jörg; Boeri, Lilia; Andersen, Ole K; Weber, Werner
2012-01-20
We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasiparticle bands of LaOFeAs. The Fe3d-As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parametrized by the Hubbard interaction U and an average Hund's-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U,J) parameter space. The magnetically ordered phase is a stripe spin-density wave of quasiparticles.
Gutzwiller theory of band magnetism in LaOFeAs
Energy Technology Data Exchange (ETDEWEB)
Schickling, Tobias; Gebhard, Florian [Fachbereich Physik, Philipps Universitaet, D-35037 Marburg (Germany); Buenemann, Joerg [Institut fuer Physik, BTU Cottbus, D-03013 Cottbus (Germany); Boeri, Lilia; Andersen, Ole K. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Weber, Werner [Fakultaet Physik, TU Dortmund, D-44221 Dortmund (Germany)
2012-07-01
For the iron pnictide LaOFeAs we investigate multi-band Hubbard models which are assumed to capture the relevant physics. In our calculations, we employ the Gutzwiller variational theory which is a genuine many particle approach. We will present results both on the paramagnetic and antiferromagnetic phases of our model systems. These results show that a five band-model is not adequate to capture the relevant physics in LaOFeAs. However, our results for the eight band-model which includes the arsenic 4p bands reproduce the experimental data, especially the small magnetic moment, for a broad parameter regime.
Theory of Double Ladder Lumped Circuits With Degenerate Band Edge
Sloan, Jeff; Capolino, Filippo
2016-01-01
Conventional periodic LC ladder circuits exhibit a regular band edge between a pass and a stop band. Here for the first time we develop the theory of simple yet unconventional double ladder circuits exhibiting a special degeneracy condition referred to as degenerate band edge (DBE). This special DBE condition is associated with four independent eigenstates of the double ladder that coalesce into a single one when the operative frequency coincides with the DBE one. In particular, we show that double ladder resonators may exhibit giant loaded quality factor near the DBE and stable resonance frequency against load variations. These two properties in the proposed circuit are superior to the analogous properties in single ladder circuits. Our proposed analysis leads to analytic expressions for all circuit quantities thus providing insight into the very complex behavior near points of degeneracy in periodic circuits; and provides a design procedure for the use of such double ladder in practical applications. Intere...
Microscopic theory of photonic band gaps in optical lattices
Samoylova, M; Bachelard, R; Courteille, Ph W
2013-01-01
We propose a microscopic model to describe the scattering of light by atoms in optical lattices. The model is shown to efficiently capture Bragg scattering, spontaneous emission and photonic band gaps. A connection to the transfer matrix formalism is established in the limit of a one-dimensional optical lattice, and we find the two theories to yield results in good agreement. The advantage of the microscopic model is, however, that it suits better for studies of finite-size and disorder effects.
Exact two-component relativistic energy band theory and application
Energy Technology Data Exchange (ETDEWEB)
Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)
2016-01-28
An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.
Dynamical mean-field theory for flat-band ferromagnetism
Nguyen, Hong-Son; Tran, Minh-Tien
2016-09-01
The magnetically ordered phase in the Hubbard model on the infinite-dimensional hyper-perovskite lattice is investigated within dynamical mean-field theory. It turns out for the infinite-dimensional hyper-perovskite lattice the self-consistent equations of dynamical mean-field theory are exactly solved, and this makes the Hubbard model exactly solvable. We find electron spins are aligned in the ferromagnetic or ferrimagnetic configuration at zero temperature and half filling of the edge-centered sites of the hyper-perovskite lattice. A ferromagnetic-ferrimagnetic phase transition driven by the energy level splitting is found and it occurs through a phase separation. The origin of ferromagnetism and ferrimagnetism arises from the band flatness and the virtual hybridization between macroscopically degenerate flat bands and dispersive ones. Based on the exact solution in the infinite-dimensional limit, a modified exact diagonalization as the impurity solver for dynamical mean-field theory on finite-dimensional perovskite lattices is also proposed and examined.
Comprehensive picture of VO2 from band theory
Zhu, Zhiyong
2012-08-28
The structural, electronic, and magnetic features of the metal-insulator transition from the tetragonal rutile (R) to the monoclinic (M1) phase of VO2 are well reproduced by band theory using the modified Becke-Johnson exchange potential. Based on this description, we identify a tendency for monoclinic charge ordering in the R phase due to electronic correlations as the origin of the phase transition. Whereas, the structural changes are crucial for the gap opening in the M1 phase, spin degeneracy in both phases is stabilized by correlation-induced delocalization of the V3d electrons.
Theory of vortices in hybridized ballistic/diffusive-band superconductors
Tanaka, K.; Eschrig, M.; Agterberg, D. F.
2007-06-01
We study the electronic structure in the vicinity of a vortex in a two-band superconductor in which the quasiparticle motion is ballistic in one band and diffusive in the other. This study is based on a model appropriate for such a case, that we have introduced recently [Tanaka , Phys. Rev. B 73, 220501(R) (2006)]. We argue that in the two-band superconductor MgB2 , such a case is realized. Motivated by the experimental findings on MgB2 , we assume that superconductivity in the diffusive band is “weak,” i.e., mostly induced. We examine intriguing features of the order parameter, the current density, and the vortex core spectrum in the “strong” ballistic band under the influence of hybridization with the “weak” diffusive band. Although the order parameter in the diffusive band is induced, the characteristic length scales in the two bands differ due to Coulomb interactions. The current density in the vortex core is dominated by the contribution from the ballistic band, while outside the core the contribution from the diffusive band can be substantial, or even dominating. The current density in the diffusive band has strong temperature dependence, exhibiting the Kramer-Pesch effect when hybridization is strong. A particularly interesting feature of our model is the possibility of additional bound states near the gap edge in the ballistic band, that are prominent in the vortex center spectra. This contrasts with the single band case, where there is no gap-edge bound state in the vortex center. We find the above-mentioned unique features for parameter values relevant for MgB2 .
Orthogonal M-band compactly supported interpolating wavelet theory
Institute of Scientific and Technical Information of China (English)
张建康; 保铮
1999-01-01
Recently, 2-band interpolating wavelet transform has attracted much attention. It has the following several features: (ⅰ)The wavelet series transform coefficients of a signal in the multiresolution subspace are exactly consistent with its discrete wavelet transform coefficints; (ⅱ)good approximation performance; (ⅲ)efficiency in computation.However orthogonal 2-band compactly supported interpolating wavelet transform is only the first order. In order to overcome this shortcoming, the orthogonal M-band compactly supported interpolating wavelet basis is established. First, the unitary interpolating scaling filters of the length L=MK are characterized. Second, a scheme is given to design highorder unitary interpolating scaling filters. Third, a parameterization of the unitary interpolating scaling filters of the length L=4M is made. Fourth, the orthogonal 2-order and 3-order three-band compactly supported interpolating scaling functions are constructed. Finally, the properties of the orthogonal M-band c
Aesthetic Band, Reception Theory and Sociology of Reading
Directory of Open Access Journals (Sweden)
Marcin Rychlewski
2010-01-01
Full Text Available The aesthetic band – in contrast to the bandwidth, i.e. the distribution channel – is a socially and historically conditioned cluster of aesthetic expectations presented by readers-buyers, represented by their majority, which in the egalitarian, post-modern, and free market society, determines the shape of the publishing market and the circuits it consists of. The author believes that the aesthetic band should be analyzed in the context of both individual and collective expectations of the reading audience in relation to the book content and its subject-matter, as well as in relation to the literary and non-literary production. In the last part of the paper, the author puts forward a proposition that the aesthetic band might be considered as a tool of ideology.
The utility of band theory in strongly correlated electron systems
Zwicknagl, Gertrud
2016-12-01
This article attempts to review how band structure calculations can help to better understand the intriguing behavior of materials with strongly correlated electrons. Prominent examples are heavy-fermion systems whose highly anomalous low-temperature properties result from quantum correlations not captured by standard methods of electronic structure calculations. It is shown how the band approach can be modified to incorporate the typical many-body effects which characterize the low-energy excitations. Examples underlining the predictive power of this ansatz are discussed.
Theory of Thermodynamic Variables of Rubber Band Heat Engine
Muharayu, Nurhidayah; Widayani; Khairurrijal
2016-08-01
Rubber band heat engine is a heat engine that is easily applied in the experiment. However, to get the data from the experimental results are required a formulation that is able to accommodate the data, so that it will be obtained an accurate value. We show and analyze the variables thermodynamic formulation of rubber band heat engine to accommodate the experimental data, so that the equation of state, heat, work and efficiency are not only studied theoretically but also experimentally. The engine's efficiency is calculated for an idealized but reasonable model. The engine's work cycle is compared with a Carnot cycle, and it is shown to be equivalent to the Carnot cycle as an extremely ideal limiting case. We measured the force law parameters for a working model, and we obtained the efficiency of this model.
Simulation of high energy photoelectron diffraction using many-beam dynamical Kikuchi-band theory
Winkelmann, Aimo; Schröter, Bernd; Richter, Wolfgang
2004-06-01
We use the many-beam dynamical theory of electron diffraction for the calculation of x-ray photoelectron diffraction (XPD) patterns of the substrate emission. The reciprocity principle is used to apply a Bloch wave model for the diffraction of an incoming plane wave by a three-dimensional crystal. In this way, many-beam dynamical simulations of XPD in the context of Kikuchi-band theory can be carried out. This extends the results of the two-beam theory used so far and leads to quantitative descriptions of XPD patterns in the picture of photoelectrons reflected by lattice planes. The effects of forward scattering directions, substrate polarity, circular structures due to onedimensional diffraction, and emitter specific extinction of Kikuchi lines can be reproduced by Kikuchi-band theory. The results are compared with single scattering cluster calculations. In this way, the equivalence of the cluster approach and the Kikuchi-band picture can be demonstrated completely in both directions
Multi-band Eilenberger Theory of Superconductivity: Systematic Low-Energy Projection
Nagai, Yuki; Nakamura, Hiroki
2016-07-01
We propose the general multi-band quasiclassical Eilenberger theory of superconductivity to describe quasiparticle excitations in inhomogeneous systems. With the use of low-energy projection matrix, the M-band quasiclassical Eilenberger equations are systematically obtained from N-band Gor'kov equations. Here M is the internal degrees of freedom in the bands crossing the Fermi energy and N is the degree of freedom in a model. Our framework naturally includes inter-band off-diagonal elements of Green's functions, which have usually been neglected in previous multi-band quasiclassical frameworks. The resultant multi-band Eilenberger and Andreev equations are similar to the single-band ones, except for multi-band effects. The multi-band effects can exhibit the non-locality and the anisotropy in the mapped systems. Our framework can be applied to an arbitrary Hamiltonian (e.g., a tight-binding Hamiltonian derived by the first-principle calculation). As examples, we use our framework in various kinds of systems, such as noncentrosymmetric superconductor CePt3Si, three-orbital model for Sr2RuO4, heavy fermion CeCoIn5/YbCoIn5 superlattice, a topological superconductor with the strong spin-orbit coupling CuxBi2Se3, and a surface system on a topological insulator.
A Generalized Sampling Theory without Band-Limiting Constraints
Unser, M.; Zerubia, J.
1998-01-01
We consider the problem of the reconstruction of a continuous-time function f(x) ∈ H from the samples of the responses of m linear shift-invariant systems sampled at 1 ⁄ m the reconstruction rate. We extend Papoulis' generalized sampling theory in two important respects. First, our class of admissible input signals (typ. H = $ L _{ 2 } $ ) is considerably larger than the subspace of bandlimited functions. Second, we use a more general specification of the reconstruction subspace V(φ), so that...
k.p theory of freestanding narrow band gap semiconductor nanowires
Luo, Ning; Liao, Gaohua; Xu, H. Q.
2016-12-01
We report on a theoretical study of the electronic structures of freestanding nanowires made from narrow band gap semiconductors GaSb, InSb and InAs. The nanowires are described by the eight-band k.p Hamiltonians and the band structures are computed by means of the finite element method in a mixture basis consisting of linear triangular elements inside the nanowires and constrained Hermite triangular elements near the boundaries. The nanowires with two crystallographic orientations, namely the [001] and [111] orientations, and with different cross-sectional shapes are considered. For each orientation, the nanowires of the three narrow band gap semiconductors are found to show qualitatively similar characteristics in the band structures. However, the nanowires oriented along the two different crystallographic directions are found to show different characteristics in the valence bands. In particular, it is found that all the conduction bands show simple, good parabolic dispersions in both the [001]- and [111]-oriented nanowires, while the top valence bands show double-maximum structures in the [001]-oriented nanowires, but single-maximum structures in the [111]-oriented nanowires. The wave functions and spinor distributions of the band states in these nanowires are also calculated. It is found that significant mixtures of electron and hole states appear in the bands of these narrow band gap semiconductor nanowires. The wave functions exhibit very different distribution patterns in the nanowires oriented along the [001] direction and the nanowires oriented along the [111] direction. It is also shown that single-band effective mass theory could not reproduce all the band state wave functions presented in this work.
Understanding Band Gaps of Solids in Generalized Kohn-Sham Theory
Perdew, John P; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei
2016-01-01
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. But the gap in the band-structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density functional theory. Here we give a simple proof of a new theorem: In generalized KS theory (GKS), the band gap equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from meta-generalized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential, It also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules provides a numerical illustration.
Hyperspectral band selection based on consistency-measure of neighborhood rough set theory
Liu, Yao; Xie, Hong; Tan, Kezhu; Chen, Yuehua; Xu, Zhen; Wang, Liguo
2016-05-01
Band selection is a well-known approach for reducing dimensionality in hyperspectral imaging. In this paper, a band selection method based on consistency-measure of neighborhood rough set theory (CMNRS) was proposed to select informative bands from hyperspectral images. A decision-making information system was established by the reflection spectrum of soybeans’ hyperspectral data between 400 nm and 1000 nm wavelengths. The neighborhood consistency-measure, which reflects not only the size of the decision positive region, but also the sample distribution in the boundary region, was used as the evaluation function of band significance. The optimal band subset was selected by a forward greedy search algorithm. A post-pruning strategy was employed to overcome the over-fitting problem and find the minimum subset. To assess the effectiveness of the proposed band selection technique, two classification models (extreme learning machine (ELM) and random forests (RF)) were built. The experimental results showed that the proposed algorithm can effectively select key bands and obtain satisfactory classification accuracy.
Effective theory and emergent SU(2 ) symmetry in the flat bands of attractive Hubbard models
Tovmasyan, Murad; Peotta, Sebastiano; Törmä, Päivi; Huber, Sebastian D.
2016-12-01
In a partially filled flat Bloch band electrons do not have a well defined Fermi surface and hence the low-energy theory is not a Fermi liquid. Nevertheless, under the influence of an attractive interaction, a superconductor well described by the Bardeen-Cooper-Schrieffer (BCS) wave function can arise. Here we study the low-energy effective Hamiltonian of a generic Hubbard model with a flat band. We obtain an effective Hamiltonian for the flat band physics by eliminating higher-lying bands via the perturbative Schrieffer-Wolff transformation. At first order in the interaction energy we recover the usual procedure of projecting the interaction term onto the flat band Wannier functions. We show that the BCS wave function is the exact ground state of the projected interaction Hamiltonian, if a simple uniform pairing condition on the single-particle states is satisfied, and that the compressibility is diverging as a consequence of an emergent SU(2 ) symmetry. This symmetry is broken by second-order interband transitions resulting in a finite compressibility, which we illustrate for a one-dimensional ladder with two perfectly flat bands. These results motivate a further approximation leading to an effective ferromagnetic Heisenberg model. The gauge-invariant result for the superfluid weight of a flat band can be obtained from the ferromagnetic Heisenberg model only if the maximally localized Wannier functions in the Marzari-Vanderbilt sense are used. Finally, we prove an important inequality D ≥W2 between the Drude weight D and the winding number W , which guarantees ballistic transport for topologically nontrivial flat bands in one dimension.
The 30-band k ṡ p theory of valley splitting in silicon thin layers
Čukarić, Nemanja A.; Partoens, Bart; Tadić, Milan Ž.; Arsoski, Vladimir V.; Peeters, F. M.
2016-05-01
The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k ṡ p theory. The system composed of a few nm thick \\text{Si} layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K 0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.
Chen, Junfeng; Hu, Zhaoyang; Wang, Shengming; Huang, Xiutao; Liu, Minghai
2016-01-01
We present the design, fabrication and characterization of an ultrathin triple-band metamaterial absorber (MMA) in the microwave frequencies. The unit cell of the MMA consists of three different sizes of electric split ring resonators (eSRRs) and continuous metal film separated by only 1 mm dielectric substrate. The single-band MMA of this structure is firstly investigated. Then, by tuning the scale factor of the unit cells, the proposed triple-band MMA achieves absorption peaks at 9.85 GHz, 13.05 GHz and 14.93 GHz, respectively. Electric field distributions at three resonant frequencies are investigated to qualitatively analyze the loss mechanism. The further simulated and experimental results indicate that the proposed MMA is also polarization- and incident angle-independent. Finally, the interference theory is introduced to quantitatively analyze the MMA, which provides good insight into the physics behind the absorbing structure. To calculate the absorption rates accurately, we employ a simulation strategy make the near-field coupling between two metallic layers get back (compensation method). The measured absorption spectra show an excellent agreement with the theoretical calculation and simulation results. Therefore, the explanation to the physical mechanism of the triple-band MMA is presented and verified.
Coupled-mode theory for photonic band-gap inhibition of spatial instabilities.
Gomila, Damià; Oppo, Gian-Luca
2005-07-01
We study the inhibition of pattern formation in nonlinear optical systems using intracavity photonic crystals. We consider mean-field models for singly and doubly degenerate optical parametric oscillators. Analytical expressions for the new (higher) modulational thresholds and the size of the "band gap" as a function of the system and photonic crystal parameters are obtained via a coupled-mode theory. Then, by means of a nonlinear analysis, we derive amplitude equations for the unstable modes and find the stationary solutions above threshold. The form of the unstable mode is different in the lower and upper parts of the band gap. In each part there is bistability between two spatially shifted patterns. In large systems stable wall defects between the two solutions are formed and we provide analytical expressions for their shape. The analytical results are favorably compared with results obtained from the full system equations. Inhibition of pattern formation can be used to spatially control signal generation in the transverse plane.
Schickling, Tobias; Bünemann, Jörg; Gebhard, Florian; Boeri, Lilia
2016-05-01
We use the Gutzwiller density-functional theory to calculate ground-state properties and band structures of iron in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction U =9 eV and Hund's-rule coupling J =0.54 eV , we reproduce the lattice parameter, magnetic moment, and bulk modulus of bcc iron. For these parameters, bcc is the ground-state lattice structure at ambient pressure up to a pressure of pc=41 GPa where a transition to the nonmagnetic hcp structure is predicted, in qualitative agreement with experiment (pcexp=10 ,...,15 GPa ) . The calculated band structure for bcc iron is in good agreement with ARPES measurements. The agreement improves when we perturbatively include the spin-orbit coupling.
Hinz, Denis F
2014-01-01
This article is a translation of Michael Sadowsky's original paper "Theorie der elastisch biegsamen undehnbaren B\\"ander mit Anwendungen auf das M\\"obiussche Band" in 3. internationaler Kongress f\\"ur technische Mechanik, Stockholm, 1930. The translation is augmented by an Appendix containing an interpretation of the last section of Sadowsky's original paper including figures generated from recent numerical simulations.
Extended Hückel theory for carbon nanotubes: band structure and transport properties.
Zienert, Andreas; Schuster, Jörg; Gessner, Thomas
2013-05-02
Extended Hückel theory (EHT) is a well established method for the description of the electronic structure of molecules and solids. In this article, we present a set of extended Hückel parameters for carbon nanotubes (CNTs), obtained by fitting the ab initio band structure of the (6,0) CNT. The new parameters are highly transferable to different types of CNTs. To demonstrate the versatility of the approach, we perform self-consistent EHT-based electron transport calculations for finite length CNTs with metal electrodes.
Nolting, W.; Geipel, G.; Ertl, K.
1991-12-01
A theory of Auger-electron spectroscopy (AES) and appearance-potential spectroscopy (APS) is presented for interacting electrons in a nondegenerate energy band, described within the framework of the Hubbard model. Both types of spectroscopy are based on the same two-particle spectral density. A diagrammatic vertex-correction method (Matsubara formalism) is used to express this function in terms of the one-particle spectral density. The latter is approximately determined for arbitrary temperature T, arbitrary coupling strength U/W (U, the intra-atomic Coulomb matrix element; W, the width of the ``free'' Bloch band), and arbitrary band occupations n (0QDOS) in relation to the Bloch density of states (BDOS), where, however, spontaneous magnetic order is excluded, irrespective of the band filling n. The AE (AP) spectra consist of only one structure a few eV wide (``bandlike'') which is strongly n dependent, but only slightly T dependent, being rather well approximated by a simple self-convolution of the occupied (unoccupied) QDOS. For strongly correlated electrons the Bloch band splits into two quasiparticle subbands. This leads for n1. For sufficiently strong correlations U/W additional satellites appear that refer to situations where the two excited quasiparticles (quasiholes) propagate as tightly bound pairs through the lattice without being scattered by other charge carriers. As soon as the satellite splits off from the bandlike part of the spectrum, it takes almost the full spectral weight, conveying the impression of an ``atomiclike'' AE (AP) line shape. The satellite has almost exactly the structure of the free BDOS. If the particle density n as well as the hole density 2-n exceed certain critical values determined by U/W and the BDOS ρ0(E), spontaneous ferromagnetism becomes possible in the strongly correlated electron band. The magnetic phase transition gives rise to a distinctive T dependence for the QDOS and hence also for the AE and AP line shapes
Alix-Williams, Darius; Falk, Michael L.
2015-03-01
We examine the general framework of the effective temperature formalism of the shear transformation zone (STZ) theory of plasticity via molecular dynamics simulation of two distinct amorphous systems - Silicon and Cu-Zr. In both systems strain localization is observed during simple shear loading. The shear bands differ in the rate of broadening and the sharpness of the interface between the flowing and jammed material. We examine both systems for scaling expected to arise between effective temperature and shear rate. For each system a local dimensionless effective temperature that quantifies structural disorder is extracted by assuming a linear relation to the local potential energy per atom. Research possible through support from National Science Foundation Grant No. 0801471.
Ochi, Masayuki; Arita, Ryotaro; Tsuneyuki, Shinji
2017-01-01
Obtaining accurate band structures of correlated solids has been one of the most important and challenging problems in first-principles electronic structure calculation. There have been promising recent active developments of wave function theory for condensed matter, but its application to band-structure calculation remains computationally expensive. In this Letter, we report the first application of the biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and systematically improvable many-body wave function theory, to solid-state calculations with d electrons: wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps between the bands with different characters than several other conventional methods. This study paves the way for reliable first-principles calculations of the properties of strongly correlated materials.
DEFF Research Database (Denmark)
Svane, Axel; Christensen, Niels Egede; Gorczyca, I.
2010-01-01
on the basis of the local approximation to density functional theory, although generally overestimated by 0.2–0.3 eV in comparison with experimental gap values. Details of the electronic energies and the effective masses including their pressure dependence are compared with available experimental information....... The band gap of InGaN2 is considerably smaller than what would be expected by linear interpolation implying a significant band gap bowing in InGaN alloys....
Physical Theory of Narrow-Band Sounds Associated with Intracranial Aneurysms
Mast, T. Douglas
Intracranial aneurysms in humans are sometimes associated with narrow-band sound. The sounds of interest have frequencies on the order of 500 Hz. Bandwidths observed correspond to quality factors on the order of 30. The present thesis offers a physical theory of the mechanism of excitation of these sounds. It is shown that an aneurysm can be modeled as a lumped-element resonator in which the kinetic energy is associated with the motion of blood in the neck of the aneurysm and the potential energy is stored in the flexible walls of the aneurysm sac. However, the quality factors of aneurysms as lumped-element resonators are seen to be much smaller than the observed quality factors of aneurysm sounds, so that aneurysm sounds cannot be explained as a simple resonance phenomenon associated with external forcing. It is shown that the best explanation for aneurysm sounds is a self-excited oscillation of the system comprised of the aneurysm and the unstable mean flow; this oscillation is explained quantitatively here for the first time. In the theory developed in this thesis, limit cycles of the aneurysm-flow system are found using describing -function analysis. Results of the theory agree quantitatively with experiments performed on flow-excited Helmholtz resonators and agree qualitatively with the observed characteristics of aneurysm sounds. The bandwidths of observed aneurysm sounds for a time-varying mean flow are predicted and compared with bandwidths of sounds due to periodic vortex shedding in the absence of any resonator. It is shown that the presence of a resonator causes a locking-in of the flow disturbances to the sounding frequency of the resonator, resulting in a narrow observed bandwidth, even for a time -varying mean flow. Bandwidth considerations make it possible to distinguish sounds associated with self-excited oscillations of aneurysms from sounds due to purely fluid-mechanical mechanisms. The theory presented here can be taken as a starting point for
Random Matrix Theory and Its Application to Decay out of Superdeformed Band
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>The study of superdeformed (SD) bands is one of the most active fields of nuclear structure studies at high spin. The SD bands have been observed in many mass regions around A=20, 40, 80, 130, 150, 165,
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Band gap engineering in silicene: A theoretical study of density functional tight-binding theory
Zaminpayma, Esmaeil; Nayebi, Payman
2016-10-01
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.
Institute of Scientific and Technical Information of China (English)
WANG Wen-Ge
2001-01-01
The Wigner band random matrix model is studied by making use of a generalization of Brillouin-Wigner perturbation theory. Energy eigenfunctions are shown to be divided into perturbative and nonperturbative parts. A relation between the average shape of eigenstates and that of the so-called local spectral density of states (LDOS) is derived by making use of some properties of energy eigenfunctions drawn from numerical results. Several perturbation strengths predicted by the perturbation theory are found to play important roles in the variation of the shape of the LDOS with perturbation strength.
Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)
2002-01-01
We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.
The 30-band k ⋅ p theory of valley splitting in silicon thin layers.
Čukarić, Nemanja A; Partoens, Bart; Tadić, Milan Ž; Arsoski, Vladimir V; Peeters, F M
2016-05-18
The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k ⋅ p theory. The system composed of a few nm thick [Formula: see text] layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K 0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure
Mueller, B. Y.; Haag, M.; Fähnle, M.
2016-09-01
Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.
Theory of thermal conductivity in a multi-band superconductor : Application to pnictides
Mishra, Vivek; Vorontsov, A. B.; Hirschfeld, P. J.; Vekhter, I.
2010-03-01
We calculate low temperature thermal conductivity within a two band model for newly discovered ferro-pnictide superconductors. We consider three different cases, sign changing s-wave state, highly anisotropic s-wave state and a state with order parameter nodes on one band. To include the effect of disorder, we have performed fully self-consistent T-matrix approximation including both intraband and interband impurity scatterings. We also study the behavior of the low temperature thermal conductivity under applied magnetic field using a recently developed variant of the Brandt-Pesch-Tewordt approximation, and compare our results with latest experimental data.
Theory of plasmonic quantum-dot-based intermediate band solar cells.
Foroutan, Sina; Baghban, Hamed
2016-05-01
High scattering cross section of plasmonic nanoparticles in intermediate band solar cells (IBSCs) based on quantum dots (QDs) can obviate the low photon absorption in QD layers. In this report, we present a modeling procedure to extract the optical and electrical characteristics of a GaAs-based plasmonic intermediate band solar cell (PIBSC). It is shown that metal nanoparticles (MNPs) that are responsible for scattering of incident photons in the absorber layer can lead to photocurrent enhancement, provided that an optimum size and density is calculated. Proper design of QD layers that control the intermediate energy band location, as well as the loss-scattering trade-off of MNPs, can result in an efficiency increase of ∼4.2% in the PIBSC compared to a similar IBSC, and an increase of ∼5.9% compared to a reference GaAs PIN cell. A comprehensive discussion on the effect of intermediate band region width and current-voltage characteristics of the designed cell is presented.
Directory of Open Access Journals (Sweden)
G. A. Ummarino
2010-01-01
Full Text Available The s-wave three-band Eliashberg theory can simultaneously reproduce the experimental critical temperatures and the gap values of the superconducting materials LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2 and SmFeAsO0.8F0.2 as exponent of the more important families of iron pnictides. In this model the dominant role is played by interband interactions and the order parameter undergoes a sign reversal between hole and electron bands (±-wave symmetry. The values of all the gaps (with the exact experimental critical temperature can be obtained by using high values of the electron-boson coupling constants and small typical boson energies (in agreement with experiments.
Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory
Energy Technology Data Exchange (ETDEWEB)
Luna-Acosta, G A [Instituto de Fisica, BUAP Apartado Postal J-48, 72570 Puebla (Mexico); Schanze, H; Kuhl, U; Stoeckmann, H-J [Fachbereich Physik der Philipps-Universitaet Marburg, Renthof 5, D-35032 (Germany)], E-mail: gluna@sirio.ifuap.buap.mx
2008-04-15
We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one-dimensional (1D) obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e.g. interstitial and substitutional) and show that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulae, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penney model.
Impurity effects on the band structure of one-dimensional photonic crystals: Experiment and theory
Luna-Acosta, G A; Kuhl, U; Stoeckmann, H -J
2007-01-01
We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one dimensional obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes, and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e. g. interstitial, substitutional) and shows that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulas, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penn...
Dirac cones, Floquet side bands, and theory of time-resolved angle-resolved photoemission
Farrell, Aaron; Arsenault, A.; Pereg-Barnea, T.
2016-10-01
Pump-probe techniques with high temporal resolution allow one to drive a system of interest out of equilibrium and at the same time probe its properties. Recent advances in these techniques open the door to studying new, nonequilibrium phenomena such as Floquet topological insulators and superconductors. These advances also necessitate the development of theoretical tools for understanding the experimental findings and predicting new ones. In the present paper, we provide a theoretical foundation to understand the nonequilibrium behavior of a Dirac system. We present detailed numerical calculations and simple analytic results for the time evolution of a Dirac system irradiated by light. These results are framed by appealing to the recently revitalized notion of side bands [A. Farrell and T. Pereg-Barnea, Phys. Rev. Lett. 115, 106403 (2015), 10.1103/PhysRevLett.115.106403; Phys. Rev. B 93, 045121 (2016), 10.1103/PhysRevB.93.045121], extended to the case of nonperiodic drive where the fast oscillations are modified by an envelope function. We apply this formalism to the case of photocurrent generated by a second probe pulse. We find that, under the application of circularly polarized light, a Dirac point only ever splits into two copies of side bands. Meanwhile, the application of linearly polarized light leaves the Dirac point intact while producing side bands. In both cases the population of the side bands are time dependent through their nonlinear dependence on the envelope of the pump pulse. Our immediate interest in this work is in connection to time- and angle-resolved photoemission experiments, where we find excellent qualitative agreement between our results and those in the literature [Wang et al., Science 342, 453 (2013), 10.1126/science.1239834]. However, our results are general and may prove useful beyond this particular application and should be relevant to other pump-probe experiments.
Band theory in the context of the Hamilton-Jacobi formulation
Bouda, A
2006-01-01
In the one-dimensional periodic potential case, we formulate the condition of Bloch periodicity for the reduced action by using the relation between the wave function and the reduced action established in the context of the equivalence postulate of quantum mechanics. Then, without appealing to the wave function properties, we reproduce the well-known dispersion relations which predict the band structure for the energy spectrum in the Kr\\"onig-Penney model.
Is the universe really made of tiny rubber bands? a kid's exploration of string theory
Lane, Shaun-Michael
2014-01-01
This book explores the fascinating world of string theory and quantum physics from a kid’s perspective. Originally published as an interactive text, it soon became an international best seller on Apple’s iBooks store and has been number one in the category of string theory on iTunes for the past two years. It is now available for the first time in print form. Fully illustrated and annotated. This is the black and white version.
Using Wannier functions to improve solid band gap predictions in density functional theory
Ma, Jie; Wang, Lin-Wang
2016-04-01
Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure.
Band parameters of phosphorene
DEFF Research Database (Denmark)
Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...
Long, Run; English, Niall J
2011-08-14
In this study, we have used cation-passivated codoping of Nb with Ga/In and also of W with Zn/Cd to modulate the band structure of anatase-TiO(2) to extend absorption to longer visible-light wavelengths. We adopted generalized Kohn-Sham theory with the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for exchange and correlation. It has been found that (W, Cd)-doped TiO(2) should be a strong candidate for visible-light photocatalyst materials owing to the largest extent of band gap narrowing and the formation of continuum band, without movement of the valence band. It is argued that this design principle for band-edge modification can also be applied to other wide-band-gap semiconductors.
Phenomenology of CaKFe4As4 explained in the framework of four bands Eliashberg theory
Ummarino, G. A.
2016-10-01
Recent angle-resolved photoemission spectroscopy measurements of CaKFe4As4 report the presence of four superconductive gaps on different sheets of Fermi surface. The interesting aspect of this superconductor is that it is stoichiometric and with a high critical temperature. I show that the phenomenology of this superconductor can be explained in the framework of four-band s ± -wave Eliashberg theory choosing antiferromagnetic spin fluctuations as pairing glue. In particular, various experimental data reported in literature: the energy gaps, the critical temperature, the temperature dependence of the upper critical field, the penetration depth and the thermopower can be reproduced by this model in a strong-coupling regime with a small number of free parameters.
Anisotropy of Critical Fields in MgB2: Two-Band Ginzburg-Landau Theory for Layered Superconductors
Institute of Scientific and Technical Information of China (English)
I.N. Askerzade; B. Tanatar
2009-01-01
The temperature dependence of the anisotropy parameter of upper critical field γHc2 (T)= Hc2(T) / Hc2(T) and London penetration depth γλ(T) = λ(T)/λ (T) are calculated using two-band Ginzburg-Landau theory for layered superconductors. It is shown that, with decreasing temperature the anisotropy parameter γHc2 (T) is increased, while the London penetration depth anisotropy γλ (T) revea/s an opposite behavior. Results of our calculations are in agreement with experimental data for single crystal MgB2 and with other calculations. Results of an analysis of magnetic field Hc1 in a single vortex between superconducting layers are also presented.
Goings, Joshua J; Li, Xiaosong
2016-06-21
One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.
Theory-Agnostic Tests of GR with Multi-Band Gravitational Waves
Yunes, Nicolas; Barausse, Enrico; Chamberlain, Katherine
2017-01-01
The aLIGO detection of the black-hole binary GW150914 opened a new era for testing General Relativity in extreme gravity. One generic feature that can be constrained is the emission of dipole gravitational radiation by compact binaries. This is excluded to high accuracy in binary pulsars, but entire classes of gravitational theories predict this effect in binaries predominantly (or only) involving black holes. In this talk, I will describe how future, joint observations of GW150914-like systems by aLIGO and eLISA will dramatically improve bounds on dipole emission from black-hole binaries, probing extreme gravity with unprecedented accuracy. We acknowledge support from the NSF CAREER Grant PHY-1250636.
Lesmanne, Emeline; Espiau de Lamaestre, Roch; Boutami, Salim; Durantin, Cédric; Dussopt, Laurent; Badano, Giacomo
2016-09-01
Multispectral infrared (IR) detection is of great interest to enhance our ability to gather information from a scene. Filtering is a low-cost alternative to the complex multispectral device architectures to which the IR community has devoted much attention. Multilayer dielectric filters are standard in industry, but they require changing the thickness of at least one layer to tune the wavelength. Here, we pursue an approach based on apertures in a metallic layer of fixed thickness, in which the filtered wavelengths are selected by varying the aperture geometry. In particular, we study filters made of at least one sheet of resonating apertures in metal embedded in dielectrics. We will discuss two interesting problems that arise when one attempts to design such filters. First, metallic absorption must be taken into account. Second, the form and size of the pattern is limited by lithography. We will present some design examples and an attempt at explaining the filtering behavior based on the temporal coupled mode theory. That theory models the filter as a resonator interacting with the environment via loss channels. The transmission is solely determined by the loss rates associated with those channels. This model allows us to give a general picture of the filtering performance and compare their characteristics at different wavelength bands.
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
Hybrid density functional theory study of Cu(In1−xGaxSe2 band structure for solar cell application
Directory of Open Access Journals (Sweden)
Xu-Dong Chen
2014-08-01
Full Text Available Cu(In1−xGaxSe2 (CIGS alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuIn1−xGaxSe2 stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe2, CuIn0.25Ga0.75Se2, CuIn0.5Ga0.5Se2, CuIn0.75Ga0.25Se2 and CuInSe2 are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory.
Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys
2011-01-01
For a wide class of technologically relevant compound III-V and II-VI semiconductor materials AC and BC mixed crystals (alloys) of the type A(x)B(1-x)C can be realized. As the electronic properties like the bulk band gap vary continuously with x, any band gap in between that of the pure AC and BC systems can be obtained by choosing the appropriate concentration x, granted that the respective ratio is miscible and thermodynamically stable. In most cases the band gap does not vary linearly with...
Nguyen, Chuong V.; Hieu, Nguyen N.; Ilyasov, Victor V.
2016-08-01
In this work, we investigate band-gap tuning in bilayer MoS2 by an external electric field and by applied biaxial strain. Our calculations show that the band gaps of bilayer MoS2 can be tuned by the perpendicular electric field or biaxial strain. The band gaps of bilayer MoS2 decrease with increasing applied electric field or biaxial strain. When the electric field was introduced, electronic levels are split due to the separation of the valence sub-band and the conduction sub-band states. Our calculations also show that the change in the band gap of bilayer MoS2 is due to the separation of electronic levels by electric field via the Stark effect. At the electric field E_{Field} = 5.5 V/nm or biaxial strain ɛ = 15%, bilayer MoS2 becomes metallic. The semiconductor-metal phase transition in bilayer MoS2 plays an important role in its application for nanodevices.
能带论与电容器电容%Energy Band Theory and Capacitance of Electric Condenser
Institute of Scientific and Technical Information of China (English)
孙洪伟; 李杰
2009-01-01
According to energy band theory and electromagnetism theory, this essay discusses on the factors influen-cing the capacitance of electric condenser, considering that capacitance of electric condenser is related to the maxi-mum occupying state of valence electron in negative plate of electric condenser, i.e. exodus work of electric condens-er plate, in the same temperature, the electric condenser made by metal material with greater exodus work has grea-ter capacitance. This essay offers the principles of temperature influencing capacitance of electric condenser and elec-tric condenser thermal breakdown, offers the correct physical image of negative discharging, analyzes the physical significance of capacitance of electric condenser having direct ratio with right facing area, having inverse ratio with distance between plates, holds that the area of plates indicates the number of electrons, the distance between plates reflects the regulation of electric potential interaction. It also analyzes the energy transform process of electric con-denser charging, the result shows that the electrostatic energy on the positive plate equates with the diminishing quantity of the interacting repulsion potential of valence electrons on positive plate in numerical value; the electro-static energy on the negative plate equates with the increasing quantity of the interacting repulsion potential of va-lence electrons on negative plate in numerical value; the sum total of electrostatic energy on positive and negative is zero; the non-electrostatic force inside the source of electricity which charges electric condenser works to change the non-electrostatic field energy to electrostatic field energy between the plates, hence we verify the problem who car-ries with electromagnetic field energy which couldn't have been verified by electromagnetism theory for a long time.This essay proposes the primary thought of researching the materials of electric condenser plates, considering half metal
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
Energy Technology Data Exchange (ETDEWEB)
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
Wei, Zhendong; Li, Baoren; Du, Jingmin; Yang, Gang
2016-04-01
According to the theory of phononic crystals, a new isolator applied to ship hydraulic pipe-support with a one-dimensional periodic composite structure is designed, which is composed of metal and rubber. The vibration of the ship hydraulic pipeline can be suppressed by the band gaps (BGs) of the isolator. The band structure and frequency response function of the isolator is figured out by the transfer matrix method and the finite element method respectively. The frequency ranges and width of the BGs can be modulated to obtain the best structure of the isolator by changing the geometrical parameters. The experimental results provide an attenuation of over 20 dB in the frequency range of the BGs, and the results show good agreement with those of the numeric calculations. The research provides an effective way to control the vibration of ship hydraulic pipelines.
Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K
2014-08-28
In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.
Barausse, Enrico; Chamberlain, Katherine
2016-01-01
The aLIGO detection of the black-hole binary GW150914 opened a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by five orders of magnitude relative to current constraints, probing extreme gravity with unprecedented accuracy.
A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver
Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.
1992-01-01
A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.
Lu, Yu; Katz, Neal; Weinberg, Martin D
2011-01-01
We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al (2011). The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass halos, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalising over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in halos of different masses, the HI mass function, the redshift evolution of the stellar mass function of galaxies, and the global star formation history. Using posterior predictive checking with the available observatio...
Energy Technology Data Exchange (ETDEWEB)
Schickling, Tobias
2012-02-23
In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.
Hsu, Jin-Chen; Wu, Tsung-Tsong
2008-02-01
Based on Mindlin's piezoelectric plate theory and the plane wave expansion method, a formulation is proposed to study the frequency band gaps and dispersion relations of the lower-order Lamb waves in two-dimensional piezoelectric phononic plates. The method is applied to analyze the phononic plates composed of solid-solid and airsolid constituents with square and triangular lattices, respectively. Factors that influence the opening and width of the complete Lamb wave gaps are identified and discussed. For solid/solid phononic plates, it is suggested that the filling material be chosen with larger mass density, proper stiffness, and weak anisotropic factor embedded in a soft matrix in order to obtain wider complete band gaps of the lower-order Lamb waves. By comparing to the calculated results without considering the piezoelectricity, the influences of piezoelectric effect on Lamb waves are analyzed as well. On the other hand, for air/solid phononic plates, a background material itself with proper anisotropy and a high filling fraction of air may favor the opening of the complete Lamb wave gaps.
Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.
2013-12-01
In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result
Energy Technology Data Exchange (ETDEWEB)
Moustafa, Mohamed, E-mail: moustafa@physik.hu-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Faculty of Engineering, Pharos University in Alexandria, Canal El Mahmoudia Str., Alexandria (Egypt); Ghafari, Aliakbar; Paulheim, Alexander; Janowitz, Christoph; Manzke, Recardo [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)
2013-08-15
Highlights: ► We performed high resolution ARPES on 1T–ZrS{sub x}Se{sub 2−x}. ► A characteristic splitting of the chalcogen p-derived VB along high symmetry directions was observed. ► The splitting size at the A point of the BZ is found to increase from 0.06 to 0.31 eV from ZrS{sub 2} towards ZrSe{sub 2}. ► Electronic structure calculations based on the DFT were performed using the model of TB–MBJ. ► The calculations show that the splitting is due to SO coupling of the valence bands. -- Abstract: Angle-resolved photoelectron spectroscopy using synchrotron radiation has been performed on 1T–ZrS{sub x}Se{sub 2−x}, where x varies from 0 to 2, in order to study the influence of the spin-orbit interaction in the valence bands. The crystals were grown by chemical vapour transport technique using Iodine as transport agent. A characteristic splitting of the chalcogen p-derived valence bands along high symmetry directions has been observed experimentally. The size of the splitting increases with the increase of the atomic number of the chalcogenide, e.g. at the A point of the Brillouin zone from 0.06 eV to 0.31 eV with an almost linear dependence with x, as progressing from ZrS{sub 2} towards ZrSe{sub 2}, respectively. Electronic structure calculations based on the density functional theory have been performed using the model of Tran–Blaha [1] and the modified version of the exchange potential proposed by Becke and Johnson [2] (TB–MBJ) both with and without spin-orbit (SO) coupling. The calculations show that the splitting is mainly due to spin-orbit coupling and the degeneracy of the valance bands is lifted.
Baskaran, G.
2016-12-01
Doped band insulators, HfNCl, WO3, diamond, Bi2Se3, BiS2 families, STO/LAO interface, gate doped SrTiO3, MoS2 and so on are unusual superconductors. With an aim to build a general theory for superconductivity in doped band insulators, we focus on the BiS2 family which was discovered by Mizuguchi et al in 2012. While maximum Tc is only ˜11 K in {{LaO}}1-{{x}}{{{F}}}{{x}}{{BiS}}2, a number of experimental results are puzzling and anomalous in the sense that they resemble high T c and unconventional superconductors. Using a two orbital model of Usui, Suzuki and Kuroki, we show that the uniform low density free Fermi sea in {{LaO}}{0,5}{{{F}}}0.5{{BiS}}2 is unstable towards formation of the next nearest neighbor Bi-S-Bi diagonal valence bond (charged -2e Cooper pair) and their Wigner crystallization. Instability to this novel state of matter is caused by unscreened nearest neighbor coulomb repulsions (V ˜ 1 eV) and a hopping pattern with sulfur mediated diagonal next nearest neighbor Bi-S-Bi hopping t’ ˜ 0.88 eV, as well as larger than nearest neighbor Bi-Bi hopping, t ˜ 0.16 eV. Wigner crystals of Cooper pairs quantum melt for doping around x = 0.5 and stabilize certain resonating valence bond states and superconductivity. We study a few variational RVB states and suggest that BiS2 family members are latent high Tc superconductors, but challenged by competing orders and the fragile nature of many body states sustained by unscreened Coulomb forces. One of our superconducting states has d XY symmetry and a gap. We also predict a 2d Bose metal or vortex liquid normal state, as charged -2e valence bonds survive in the normal state.
Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.
2016-10-01
Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first
DEFF Research Database (Denmark)
Andersen, O. Krogh
1975-01-01
of Korringa-Kohn-Rostoker, linear-combination-of-atomic-orbitals, and cellular methods; the secular matrix is linear in energy, the overlap integrals factorize as potential parameters and structure constants, the latter are canonical in the sense that they neither depend on the energy nor the cell volume...
Braunstein, M.; Pack, R. T.
1992-05-01
A simple model for the photodissociation absorption spectra of bent symmetric triatomic molecules to the Wulf-Chappuis band system of ozone (10,000-22,000/cm) is applied to assign the electronic states and the diffuse vibrational bands involved. The conical intersection between the two lowest 1A-double prime states is treated in an approximate way, and the role of the lowest excited triplet states is explored. The results indicate that the Wulf band is probably due to the 3A2 state of ozone which gains intensity through spin-orbit coupling. The 1 1A-double prime (1A2) state gives rise to the featureless red wing of the Chappuis band. Most of the structure in the Chappuis band is reproduced in the model and is due to the 2 1A-double prime (1B1) state as was previously supposed.
Indian Academy of Sciences (India)
I N Askerzade
2003-09-01
Two-band Ginzburg–Landau (TB G–L) equations for a bulk MgB2 were solved analytically to determine the temperature dependence of surface critical magnetic ﬁeld Hc3(). It is shown that c3() has the same temperature dependence with c2(), similar to the case of a single-band superconductor, c3()=1.66 c2(). We use an elimination procedure for the decoupling of G–L equations of two-band superconductivity, which eases the calculations. It is expected that the temperature dependence for c3() gives positive curvature near c.
Olson, Cathy Applefeld
2011-01-01
After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…
Fang, Changming; Li, Wun Fan; Koster, Rik S.; Klimeš, Jiří; Van Blaaderen, Alfons; Van Huis, Marijn A.
2015-01-01
Knowledge about the intrinsic electronic properties of water is imperative for understanding the behaviour of aqueous solutions that are used throughout biology, chemistry, physics, and industry. The calculation of the electronic band gap of liquids is challenging, because the most accurate ab initi
Progress in designing CO2 photocatalyst based on energy band match theory%基于能带匹配理论设计CO2光催化还原催化剂的研究进展
Institute of Scientific and Technical Information of China (English)
彭辉; 吴志红; 张建林; 卢静; 吴晨啸; 李培强; 尹洪宗
2014-01-01
In the process of photocatalytic reduction of CO2,visible light could be absorbed perfectly by the catalyst with a narrowed band gap,but those absorbed light could not be entirely devoted to photocatalytic reduction of CO2,as photocatalytic reduction performance is directly related to energy band location and band structure changing has an important influence on redox ability. Beginning with the CO2 photocatalytic reduction basic principles,this paper is aimed to introduce the basic reduction process of CO2 by semiconductor photocatalyst,the decisive role of valence band and conduction band;to briefly discuss the existing mismatch problem of valence band and conduction band in the process of photocatalytic reduction of CO2;and also to describe how to improve the CO2 photocatalytic reduction efficiency using energy band match theory,such as crystal growth,composite materials,form“p-n junction” and the First Principles,which provides theoretical references for the selection and design of catalyst for the photocatalytic reduction of CO2.%光催化还原 CO2过程中，能带隙小的材料具备优良的可见光吸收性能，但吸收的可见光并不一定能够有效地被光催化还原作用所利用，这与催化剂能带位置有着直接关系，改变材料的能带结构对调节材料的氧化还原性能有着重要影响。本文从光催化还原 CO2的基本原理出发，介绍了半导体催化剂光催化还原 CO2的基本过程及催化剂价带、导带位置的决定性作用，简述了当今光催化还原 CO2过程中存在的催化剂价带、导带不匹配问题，并从特定晶面生长、材料复合、形成p-n结、第一性原理等方面综述了如何利用能带匹配理论来提高光催化还原CO2效率，为光催化还原CO2的材料的选择和设计提供了理论依据。
Long, Run; English, Niall J
2011-10-04
The electronic properties of anatase-TiO(2) codoped by N and P at different concentrations have been investigated via generalized Kohn-Sham theory with the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for exchange-correlation in the context of density functional theory. At high doping concentrations, we find that the high photocatalytic activity of (N, P)-codoped anatase TiO(2) vis-à-vis the N-monodoped case can be rationalized by a double-hole-mediated coupling mechanism [Yin et al., Phys. Rev. Lett. 2011, 106, 066801] via the formation of an effective N-P bond. On the other hand, Ti(3+) and Ti(4+) ions' spin double-exchange results in more substantial gap narrowing for larger separations between N and P atoms. At low doping concentrations, double-hole-coupling is dominant, regardless of the N-P distance.
Li, Hong; Draxl, Claudia; Wurster, Stefan; Pippan, Reinhard; Romaner, Lorenz
2017-03-01
We address the impact of tantalum alloying on dislocation properties of tungsten. To that aim, we calculate elastic constants, atomic-row displacement energy, dislocation core energy, and Peierls stress for different degrees of alloying within the framework of density-functional theory. We show that the elastic shear constants decrease monotonously with Ta content. Conversely, atomic-row displacement energy and, consequently, core energy and Peierls stress show a nonmonotonous behavior. These quantities peak at 25 at% Ta, indicating a tendency for embrittlement of W at such alloying concentrations. Our findings are in agreement with the experimental literature.
Gritti, Fabrice; Farkas, Tivadar; Heng, Josuah; Guiochon, Georges
2011-11-11
The influence of the particle size distribution (PSD) on the band broadening and the efficiency of packed columns is investigated on both theoretical and practical viewpoints. Each of the classical contributions to mass transfer kinetics, those due to longitudinal diffusion, eddy dispersion, and solid-liquid mass transfer resistance are measured and analyzed in terms of their expected and observed intensity as a function of the PSD of mixtures of the commercially available packing materials, 5 and 3 μm Luna-C₁₈ particles (Phenomenex, Torrance, CA, USA). Six 4.6 mm × 150 mm columns were packed with different mixtures of these two materials. The efficiencies of these columns were measured for a non-retained and a retained analytes in a mixture of acetonitrile and water. The longitudinal diffusion coefficient was directly measured by the peak parking method. The solid-liquid mass transfer coefficient was measured from the combination of the peak parking method, the best model of effective diffusion coefficient and the actual PSDs of the different particle mixtures measured by Coulter counter experiments. The eddy diffusion term was measured according to a recently developed protocol, by numerical integration of the peak profiles. Our results clearly show that the PSD has no measurable impact on any of the coefficients of the van Deemter equation. On the contrary and surprisingly, adding a small fraction of large particles to a batch of small particles can improve the quality of the packing of the fine particles. Our results indirectly confirm that the success of sub-3 μm shell particles is due to the roughness of their external surface, which contributes to eliminate most of the nefarious wall effects.
Durai, Mithila; Searchfield, Grant D.
2017-01-01
Objectives: A randomized cross-over trial in 18 participants tested the hypothesis that nature sounds, with unpredictable temporal characteristics and high valence would yield greater improvement in tinnitus than constant, emotionally neutral broadband noise. Study Design: The primary outcome measure was the Tinnitus Functional Index (TFI). Secondary measures were: loudness and annoyance ratings, loudness level matches, minimum masking levels, positive and negative emotionality, attention reaction and discrimination time, anxiety, depression and stress. Each sound was administered using MP3 players with earbuds for 8 continuous weeks, with a 3 week wash-out period before crossing over to the other treatment sound. Measurements were undertaken for each arm at sound fitting, 4 and 8 weeks after administration. Qualitative interviews were conducted at each of these appointments. Results: From a baseline TFI score of 41.3, sound therapy resulted in TFI scores at 8 weeks of 35.6; broadband noise resulted in significantly greater reduction (8.2 points) after 8 weeks of sound therapy use than nature sounds (3.2 points). The positive effect of sound on tinnitus was supported by secondary outcome measures of tinnitus, emotion, attention, and psychological state, but not interviews. Tinnitus loudness level match was higher for BBN at 8 weeks; while there was little change in loudness level matches for nature sounds. There was no change in minimum masking levels following sound therapy administration. Self-reported preference for one sound over another did not correlate with changes in tinnitus. Conclusions: Modeled under an adaptation level theory framework of tinnitus perception, the results indicate that the introduction of broadband noise shifts internal adaptation level weighting away from the tinnitus signal, reducing tinnitus magnitude. Nature sounds may modify the affective components of tinnitus via a secondary, residual pathway, but this appears to be less important
HYBASE : HYperspectral BAnd SElection
Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van
2009-01-01
Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of spe
Sandeep; D, P. Rai; A, Shankar; M, P. Ghimire; Anup Pradhan, Sakhya; T, P. Sinha; R, Khenata; S, Bin Omran; R, K. Thapa
2016-06-01
The structural, electronic, and magnetic properties of the Nd-doped Rare earth aluminate, La1-x Nd x AlO3 (x = 0% to 100%) alloys are studied using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The effects of the Nd substitution in LaAlO3 are studied using the supercell calculations. The computed electronic structure with the modified Becke-Johnson (mBJ) potential based approximation indicates that the La1-x Nd x AlO3 alloys may possess half-metallic (HM) behaviors when doped with Nd of a finite density of states at the Fermi level (E F). The direct and indirect band gaps are studied each as a function of x which is the concentration of Nd-doped LaAlO3. The calculated magnetic moments in the La1-x Nd x AlO3 alloys are found to arise mainly from the Nd-4f state. A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at E F. The observed decrease of the band gap with the increase in the concentration of Nd doping in LaAlO3 is a suitable technique for harnessing useful spintronic and magnetic devices. Project supported by the DST-SERB, Dy (Grant No. SERB/3586/2013-14), the UGCBSR, FRPS (Grant No. F.30-52/2014), the UGC (New Delhi, India) Inspire Fellowship DST (India), and the Deanship of Scientific Research at King Saud University (Grant No. RPG-VPP-088). M P Ghimire thanks the Alexander von Humboldt Foundation, Germany for the financial support.
Photon side-bands in mesoscopics
DEFF Research Database (Denmark)
Jauho, Antti-Pekka
1998-01-01
This paper reviews several applications of photonic side bands, used by Buttiker and Landauer (Phys. Rev. Lett. 49, 1739 (1982)) in their theory of traversal time in tunneling, in transport and optics of mesoscopic systems. Topics include generalizations of the transmission theory of transport...
William Band at Yenching University
Hu, Danian
2008-04-01
William Band (1906-1993) has been widely remembered by his American colleagues and students as ``a fine physicist and teacher,'' who taught at Washington State University in Pullman between 1949 and 1971 and authored Introduction to Quantum Statistics (1954) and Introduction to Mathematical Physics (1959). Not many, however, knew much about Band's early career, which was very ``uncommon and eventful.'' Born in England, Band graduated from University of Liverpool in 1927 with an MsSc degree in physics. Instead of pursuing his Ph.D. at Cambridge, he chose to teach physics at Yenching University, a prestigious Christian university in Beijing, China. Arriving in 1929, Band established his career at Yenching, where he taught and researched the theory of relativity and quantum mechanics, pioneered the study on low-temperature superconductivity in China, founded the country's first graduate program in physics, and chaired the Physics Department for 10 years until he fled from Yenching upon hearing of the attack on Pearl Harbor. It took him two years to cross Japanese occupied areas under the escort of the Communist force; he left China in early 1945. This presentation will explore Band's motivation to work in China and his contributions to the Chinese physics research and education.
Band structure of semiconductors
Tsidilkovski, I M
2013-01-01
Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio
Quadratic band touching points and flat bands in two-dimensional topological Floquet systems
Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.
2017-01-01
In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.
Preventing misdiagnosis in amniotic band sequence: a case report
Cristiane Rúbia Ferreira; Cibelle Freitas Pinto Lima; Ana Maria Andrello Gonçalves Pereira de Melo
2013-01-01
Amniotic band sequence (ABS) is an uncommon and heterogeneous congenital disorder caused by entrapment of fetal parts by fibrous amniotic bands, causing distinctive structural abnormalities involving limbs, trunk, and craniofacial regions. The incidence ranges between 1/1200 and 1/15,000 live births, but is higher in stillbirths and previable fetuses. The intrinsic theory attributes the constriction band syndrome as an inherent development defect of embryogenesis while the extrinsic theory pr...
Low Power Band to Band Tunnel Transistors
2010-12-15
the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley
Hashimoto, Koji
2015-01-01
We show that band spectrum of topological insulators can be identified as the shape of D-branes in string theory. The identification is based on a relation between the Berry connection associated with the band structure and the ADHM/Nahm construction of solitons whose geometric realization is available with D-branes. We also show that chiral and helical edge states are identified as D-branes representing a noncommutative monopole.
PIJNACKER, LP; FERWERDA, MA
1995-01-01
Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b
Skirka, Nicholas; Hume, Donald
2007-01-01
This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…
Magnetic and Cohesive Properties from Cononical Bands
DEFF Research Database (Denmark)
Poulsen, U. K.; Kollar, J.; Andersen, O. K.
1976-01-01
The atomic volumes, the bulk moduli, the magnetizations, the gain susceptibilities and the derivatives of these quantities with respect to pressure have been obtained from first principles for Fe, Ni, Rh, Pd, Ir and Pt at 0K using canonical band theory and the local spin-density approximation...
Fisher, Kevin; Chang, Chein-I
2009-01-01
Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.
Sizable band gap in organometallic topological insulator
Derakhshan, V.; Ketabi, S. A.
2017-01-01
Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.
Iliotibial band friction syndrome.
Lavine, Ronald
2010-07-20
Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.
Topology of Bands in Solids : From Insulators to Dirac Matter
Carpentier, David
2014-01-01
Talk at Seminaire Poincare (Bourbaphy), Paris, June 2014; Bloch theory describes the electronic states in crystals whose energies are distributed as bands over the Brillouin zone. The electronic states corresponding to a (few) isolated energy band(s) thus constitute a vector bundle. The topological properties of these vector bundles provide new characteristics of the corresponding electronic phases. We review some of these properties in the case of (topological) insulators and semi-metals.
Lifetime measurements of Triaxial Strongly Deformed bands in $^{163}$Tm
wang, X; Moore, E F; Garg, U; Gu, Y; Frauendorf, S; Carpenter, M P; Ghugre, S S; Hammond, N J; Lauritsen, T; Li, T; Mukherjee, G; Pattabiraman, N S; Seweryniak, D; Zhu, S
2007-01-01
With the Doppler Shift Attenuation Method, quadrupole transition moments, $Q_t$, were determined for the two recently proposed Triaxial Strongly Deformed (TSD) bands in $^{163}$Tm. The measured $Q_t$ moments indicate that the deformation of these bands is larger than that of the yrast, signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the region
... helps people who have a gastric band stay satisfied longer. This includes things like salad with grilled ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...
HYBASE - HYperspectral BAnd SElection tool
Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van
2008-01-01
Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to calculate the minimum number of
A simultaneous confidence band for sparse longitudinal regression
Ma, Shujie
2012-01-01
Functional data analysis has received considerable recent attention and a number of successful applications have been reported. In this paper, asymptotically simultaneous confidence bands are obtained for the mean function of the functional regression model, using piecewise constant spline estimation. Simulation experiments corroborate the asymptotic theory. The confidence band procedure is illustrated by analyzing CD4 cell counts of HIV infected patients.
The upper critical field in two-band layered superconductors
Institute of Scientific and Technical Information of China (English)
Liu Min-Xia; Gan Zi-Zhao
2007-01-01
The upper critical field of clean MgB2 is investigated using the two-band layered Ginzburg-Landau (GL) theory.The calculated results are fitted to the experimental data of clean MgB2 crystal very well in a broad temperature range.Based on the GL theory for clean superconductors,a phenomenOlogical theory for dirty superconductor is proposed.Selecting appropriate parameters,two-band layered GL theory is successfully applied to the crystal of Mg(B1-xCx)2 and the neutron irradiation samples of MgB2.
Maximizing band gaps in plate structures
DEFF Research Database (Denmark)
Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard
2006-01-01
Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated...
Energy Technology Data Exchange (ETDEWEB)
Mazumdar, Dipanjan [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Knut, R. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); JILA and Department of Physics, University of Colorado Boulder and NIST, Boulder, CO 80309 (United States); Thöle, F. [Materials Theory, ETH Zürich, Wolfgang-Pauli Strasse 27, Zürich (Switzerland); Gorgoi, M. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, BESSY II, Berlin (Germany); Faleev, Sergei; Mryasov, O.N.; Shelke, Vilas [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, AL 35487 (United States); Ederer, C.; Spaldin, N.A. [Materials Theory, ETH Zürich, Wolfgang-Pauli Strasse 27, Zürich (Switzerland); Gupta, A. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, AL 35487 (United States); Karis, O., E-mail: olof.karis@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden)
2016-04-15
Highlights: • Hard X-ray PES was used to study the bulk electronic structure of BiFeO{sub 3}. • Rhombohedral and tetragonal BiFeO{sub 3} exhibit dissimilar valence band structures. • Fe 3d states are largely unchanged between the rhombohedral and tetragonal structures. • Modified hybridization between Bi 6p and O 2p states in the two different structures. • Electronic structure calculations corroborates the experimental results. - Abstract: We investigate the electronic structure of rhombohedral-like (R) and tetragonal-like (T) BiFeO{sub 3} thin films using high energy X-ray photoelectron spectroscopy and first-principles electronic structure calculations. By exploiting the relative elemental cross sections to selectively probe the elemental composition of the valence band, we identify a strong Bi 6p contribution at the top of the valence band in both phases, overlapping in energy range with the O 2p states; this assignment is confirmed by our electronic structure calculations. We find that the measured occupied Bi 6p signal lies closer to the top of the valence band in the T phase than in the R phase, which we attribute, using our electronic structure calculations, to lower Bi–O hybridization in the T phase. We note, however, that our calculations of the corresponding densities of states underestimate the difference between the phases, suggesting that matrix element effects resulting from the different effective symmetries also contribute. Our results shed light on the chemical nature of the stereochemically active Bi lone pairs, which are responsible for the large ferroelectric polarization of BiFeO{sub 3}.
Cassagne, D.
Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.
Distribution Free Prediction Bands
Lei, Jing
2012-01-01
We study distribution free, nonparametric prediction bands with a special focus on their finite sample behavior. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band estimator by combining the idea of "conformal prediction" (Vovk et al. 2009) with nonparametric conditional density estimation. The proposed estimator, called COPS (Conformal Optimized Prediction Set), always has finite sample guarantee in a stronger sense than the original conformal prediction estimator. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data driven method for selecting the bandwidth are developed. The method is illustrated first in simulated data. Then, an application shows that the proposed method gives desirable prediction intervals in an automatic way, as compared to the classical linear regression modeling.
Begaud, Xavier
2013-01-01
Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog
Photonic band gap in thin wire metamaterials.
Hock, Kai Meng
2008-03-01
We investigate the band structure of a class of photonic crystals made from only thin wires. Using a different method, we demonstrate that a complete photonic band gap is possible for such materials. Band gap materials normally consist of space filling dielectric or metal, whereas thin wires occupy a very small fraction of the volume. We show that this is related to the large increase in scattering at the Brillouin zone boundary. The method we developed brings together the calculation techniques in three different fields. The first is the calculation of scattering from periodic, tilted antennas, which we improve upon. The second is the standard technique for frequency selective surface design. The third is obtained directly from low energy electron diffraction theory. Good agreements with experiments for left handed materials, negative materials, and frequency selective surfaces are demonstrated.
Shear band in sand with spatially varying density
Borja, Ronaldo I.; Song, Xiaoyu; Rechenmacher, Amy L.; Abedi, Sara; Wu, Wei
2013-01-01
Bifurcation theory is often used to investigate the inception of a shear band in a homogeneously deforming body. The theory predicts conjugate shear bands that have the same likelihood of triggering. For structures loaded symmetrically the choice of which of the two conjugate shear bands will persist is arbitrary. In this paper we show that spatial density variation could be a determining factor for the selection of the persistent shear band in a symmetrically loaded localizing sand body. We combine experimental imaging on rectangular sand specimens loaded in plane strain compression with mesoscale finite element modeling on symmetrically loaded sand specimens to show that spatial heterogeneity in density does have a profound impact on the persistent shear band.
Exceptionally large banded spherulites
Lagasse, R. R.
1994-07-01
This article concerns the crystallization of maleic anhydride from a blend containing 2 wt% of poly(acrylonitrile). High speed photography and temperature measurements during the crystallization as well as X-ray diffraction from the blend after crystallization are consistent with a banded spherulitic morphology.
De Michielis, L.; Daǧtekin, N.; Biswas, A.; Lattanzio, L.; Selmi, L.; Luisier, M.; Riel, H.; Ionescu, A. M.
2013-09-01
In this paper, an analytical band-to-band tunneling model is proposed, validated by means of drift-diffusion simulation and comparison with experimental data, implemented in Verilog-A, and finally proven with SPICE simulator through simulation of circuits featuring tunneling diodes. The p-n junction current calculation starts from a non-local Band-to-Band tunneling theory including the electron-phonon interaction and therefore it is particularly suited for indirect semiconductor materials such as silicon- or germanium-based interband tunneling devices.
DUAL BAND MONOPOLE ANTENNA DESIGN
Directory of Open Access Journals (Sweden)
P. Jithu
2013-06-01
Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.
Complex banded structures in directional solidification processes.
Korzhenevskii, A L; Rozas, R E; Horbach, J
2016-01-27
A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos.
Diffuse interstellar absorption bands
Institute of Scientific and Technical Information of China (English)
XIANG FuYuan; LIANG ShunLin; LI AiGen
2009-01-01
The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.
Diffuse interstellar absorption bands
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The diffuse interstellar bands(DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s,the exact nature of DIBs still remains unclear. This article reviews the history of the detections of DIBs in the Milky Way and external galaxies,the major observational characteristics of DIBs,the correlations or anti-correlations among DIBs or between DIBs and other interstellar features(e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise),and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.
Micromechanics of shear banding
Energy Technology Data Exchange (ETDEWEB)
Gilman, J.J.
1992-08-01
Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.
Energy Technology Data Exchange (ETDEWEB)
Mohanta, S. K.; Mishra, S. N. [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005 (India)
2014-05-07
Employing the time differential perturbed angular distribution method, we have measured local susceptibility and spin relaxation rate of {sup 54}Fe nuclei implanted in III-V and II-VI semiconductors, CdTe, CdSe, and InSb. The magnetic response of Fe, identified to occupy the metal as well as the semi-metal atom sites, exhibit Curie-Weiss type susceptibility and Korringa like spin relaxation rate, revealing the existence of localized moments with small spin fluctuation temperature. The experimental results are supported by first principle electronic structure calculations performed within the frame work of density functional theory.
Delin, A
2002-01-01
We have performed a systematic density-functional study of the mercury chalcogenide compounds $\\beta$-HgS, HgSe, and HgTe using an all-electron full-potential linear muffin-tin orbital (FP-LMTO) method. We find that, in the zinc-blende structure, both HgSe and HgTe are semimetals whereas $\\beta$-HgS has a small spin-orbit induced band gap. Our calculated relativistic photoemission and inverse photoemission spectra (PES and IPES, respectively) reproduce very well the most recently measured spectra, as do also our theoretical optical spectra. In contrast to the normal situation, we find that the local density approximation (LDA) to the density functional gives calculated equilibrium volumes in much better agreement with experiment than does the generalized gradient corrected functional (GGA). We also address the problem of treating relativistic $p$ electrons with methods based on a scalar-relativistic basis set, and show that the effect is rather small for the present systems.
Effect of hydrogenation on the band gap of graphene nano-flakes
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp; Iyama, Tetsuji; Kawabata, Hiroshi
2014-03-03
The effects of hydrogenation on the band gap of graphene have been investigated by means of density functional theory method. It is generally considered that the band gap increases with increasing coverage of hydrogen atom on the graphene. However, the present study shows that the band gap decreases first with increasing hydrogen coverage and reaches the lowest value at finite coverage (γ = 0.3). Next, the band gap increases to that of insulator with coverage from 0.3 to 1.0. This specific feature of the band gap is reasonably explained by broken symmetry model and the decrease of pi-conjugation. The electronic states of hydrogenated graphene are discussed. - Highlights: • Density functional theory calculations were carried out for hydrogen on graphene • Effects of hydrogenation on the band gap of graphene were examined. • The band gap showed a minimum at a finite coverage. • Mechanism of specific band gap feature was discussed.
Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence
Directory of Open Access Journals (Sweden)
G. Baskaran
2006-01-01
Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.
Semiconductors bonds and bands
Ferry, David K
2013-01-01
As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.
Bernath, Peter; Carleer, Michel; Fally, Sophie; Jenouvrier, Alain; Vandaele, Ann Carine; Hermans, Christian; Mérienne, Marie-France; Colin, Reginald
1998-11-01
The Wulf bands of oxygen in the 240-290 nm spectral region are caused by collision-induced absorption of the Herzberg III ( A' 3Δu- X3Σ-g) system. These bands had been previously attributed to the oxygen dimer, (O 2) 2. Under atmospheric conditions the Wulf bands are thus the long-wavelength extension of the Herzberg continuum. Absorption of solar radiation by the Wulf bands may be an additional source of NO in the stratosphere.
Multi-band model of quantum electron devices
Unlu, Mehmet Burcin
Wigner function equations for multi-band quantum devices are presented in this presentation. These quantum transport equations are derived from the equations of motion of non-equilibrium Green's function with the generalized Kadanoff Baym ansatz, and the multi-band k.p Hamiltonian including the spin-orbit interaction. The results are applied to a two-band resonant inter-band tunneling structure. A Wigner function representation is developed for the quantum transport theory of the conduction band electrons in Rashba effect resonant tunneling structures with a phonon bath. In narrow band gap heterostructures, spin splitting occurs mainly as a result of inversion asymmetry in the spatial dependence of the potential or as a result of external electric field. This "zero magnetic field spin splitting" is due to the Rashba term in the effective mass Hamiltonian. A theoretical study of the spin-dependent resonant tunneling structure based on multi-band non-equilibrium Green's functions is also presented in this work. Again, the quantum transport equations are derived using multiband non-equilibrium Green's function formulation in generalized Kadanoff-Baym ansatz. Finally, numerical results are presented based on the multi-band Wigner-Poisson code. This code is able to simulate multi-band resonant tunneling structures.
Optimum design of band-gap beam structures
DEFF Research Database (Denmark)
Olhoff, Niels; Niu, Bin; Cheng, Gengdong
2012-01-01
-sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...
Diluted magnetic semiconductors with narrow band gaps
Gu, Bo; Maekawa, Sadamichi
2016-10-01
We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.
Tanaka, K.; Eschrig, M.
2008-03-01
We study electronic structure and thermodynamic properties of a two-band superconductor, in which one band is ballistic and quasi-two dimensional (2D), and the other is diffusive and three dimensional (3D). We assume that superconductivity in the 3D diffusive band is ``weak'', i.e., mostly induced, as is the case in MgB2. Hybridization with the ``weak'' 3D diffusive band has significant and intriguing influence on the electronic properties of the ``strong'' 2D ballistic band. In particular, the effects of Coulomb interactions in the diffusive band and unusual Kramer-Pesch effect are examined. Furthermore, based on a circular-cell approximation within the quasiclassical theory of superconductivity, we explore the effects of magnetic field on vortex structure in such a two-band superconductor. We discuss hybridization of Abrikosov flux lines in the 3D diffusive band with pancake vortices in the 2D ballistic band.
Flow equations for band-matrices
Mielke, A
1998-01-01
Continuous unitary transformations can be used to diagonalize or approximately diagonalize a given Hamiltonian. In the last four years, this method has been applied to a variety of models of condensed matter physics and field theory. With a new generator for the continuous unitary transformation proposed in this paper one can avoid some of the problems of former applications. General properties of the new generator are derived. It turns out that the new generator is especially useful for Hamiltonians with a banded structure. Two examples, the Lipkin model, and the spin--boson model are discussed in detail.
Theoretical Simulation for Identical Bands
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Jing; CHEN Yong-Shou; GAO Zao-Chun
2004-01-01
@@ The frequency of occurrence of identical bands is studied by analysing a large number of rotational bands calculated with the reflection asymmetric shell model, and the statistical properties of identical bands indicated in all the experimental observations are reproduced within the mean field approximation and beyond mean field treatment, such as angular momentum projection. The distributions of the calculated J(2), Eγ and the fractional change of J(2) are discussed.
Cluster banding heat source model
Institute of Scientific and Technical Information of China (English)
Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan
2006-01-01
Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.
Band calculation of lonsdaleite Ge
Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee
2017-01-01
The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.
Scarless platysmaplasty for platysmal bands
Directory of Open Access Journals (Sweden)
Shiffman Melvin
2004-01-01
Full Text Available Transection of plastysmal bands has required a surgical approach that leaves scars and limits patient activities for a period of time. The author has developed a simple method to transect the platysmal bands under local anesthesia without resorting to skin incisions. The transection is performed with the use of a Vicryl ® suture that is inserted through the skin, around the platysmal band, and then out through the original entry point. A back and forth motion of the suture cuts through the band.
Iliotibial band Z-lengthening.
Richards, David P; Alan Barber, F; Troop, Randal L
2003-03-01
Iliotibial band friction syndrome (ITBFS) is a common overuse injury reported to afflict 1.6% to 12% of runners. It results from an inflammatory response secondary to excessive friction that occurs between the lateral femoral epicondyle and the iliotibial band. Initial treatments include rest, anti-inflammatory medication, modalities (ice or heat), stretching, physical therapy, and possibly a cortisone injection. In recalcitrant cases of ITBFS, surgery has been advocated. This report describes a surgical technique of Z-lengthening of the iliotibial band in patients presenting with lateral knee pain localized to the iliotibial band at the lateral femoral epicondyle and Gerdy's tubercle who failed all nonoperative efforts.
Garage Band or GarageBand[R]? Remixing Musical Futures
Vakeva, Lauri
2010-01-01
In this paper, I suggest that it is perhaps time to consider the pedagogy of popular music in more extensive terms than conventional rock band practices have to offer. One direction in which this might lead is the expansion of the informal pedagogy based on a "garage band" model to encompass various modes of digital artistry wherever this artistry…
Composite fermions for fractionally filled Chern bands
Shankar, R.
2012-02-01
We consider fractionally filled bands with a non-zero Chern index that exhibit the Fractional Quantum Hall Effect in zero external fieldootnotetextR. Roy and S. Sondhi, Physics 4, 46 (2011) and papers reviewed therein. a possibility supported by numerical work.ootnotetextIbid. Analytic treatments are complicated by a non-constant Berry flux and the absence of Composite Fermions (CF), which would not only single out preferred fractions, but also allow us compute numerous response functions at nonzero frequencies, wavelengths and temperature using either Chern-Simons field theory or our Hamiltonian formalism.ootnotetextG. Murthy and R. Shankar, Rev. Mod. Phys., 75, 1101, (2003) We describe a way to introduce CF's by embedding the Chern band in an auxiliary problem involving Landau levels. The embedded band can be designed to approximate a prescribed Chern density in k space which determines the commutation relations of the charge densities and hence preserve all dynamical and algebraic aspects of the original problem. We find some states for which the filling fraction and dimensionless Hall conductance are not equal. The approach extends to two-dimensional time-reversal invariant topological insulators and to composite bosons.
Long Lake banding project, 1965
US Fish and Wildlife Service, Department of the Interior — This report summarizes the results of a banding project on Long Lake in 1965. The dates at the banding site were July 27th through August 8th. As in the past, the...
Quantum interference of independently generated telecom-band single photons
Energy Technology Data Exchange (ETDEWEB)
Patel, Monika [Center for Photonic Communication and Computing, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112 (United States); Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N. [Center for Photonic Communication and Computing, Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3118 (United States); Kumar, Prem [Center for Photonic Communication and Computing, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112, USA and Center for Photonic Communication and Computing, Department of Electrical Engineering (United States)
2014-12-04
We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.
Spatially-protected Topology and Group Cohomology in Band Insulators
Alexandradinata, A.
This thesis investigates band topologies which rely fundamentally on spatial symmetries. A basic geometric property that distinguishes spatial symmetry regards their transformation of the spatial origin. Point groups consist of spatial transformations that preserve the spatial origin, while un-split extensions of the point groups by spatial translations are referred to as nonsymmorphic space groups. The first part of the thesis addresses topological phases with discretely-robust surface properties: we introduce theories for the Cnv point groups, as well as certain nonsymmorphic groups that involve glide reflections. These band insulators admit a powerful characterization through the geometry of quasimomentum space; parallel transport in this space is represented by the Wilson loop. The non-symmorphic topology we study is naturally described by a further extension of the nonsymmorphic space group by quasimomentum translations (the Wilson loop), thus placing real and quasimomentum space on equal footing -- here, we introduce the language of group cohomology into the theory of band insulators. The second part of the thesis addresses topological phases without surface properties -- their only known physical consequences are discrete signatures in parallel transport. We provide two such case studies with spatial-inversion and discrete-rotational symmetries respectively. One lesson learned here regards the choice of parameter loops in which we carry out transport -- the loop must be chosen to exploit the symmetry that protects the topology. While straight loops are popular for their connection with the geometric theory of polarization, we show that bent loops also have utility in topological band theory.
Modeling the amide I bands of small peptides
Jansen, Thomas la Cour; Dijkstra, Arend G.; Watson, Tim M.; Hirst, Jonathan D.; Knoester, Jasper
2006-01-01
In this paper different floating oscillator models for describing the amide I band of peptides and proteins are compared with density functional theory (DFT) calculations. Models for the variation of the frequency shifts of the oscillators and the nearest-neighbor coupling between them with respect
The possible mass region for shears bands and chiral doublets
Energy Technology Data Exchange (ETDEWEB)
Meng, J. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Frauendorf, S.
1998-03-01
The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial deformed nuclei is reported. More emphasis has been paid to the new discovered phenomena - chiral doublets and their explanation. The possible mass region for the shears bands and chiral doublets and their experimental signature are discussed. (author)
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism and refle......Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism...... and reflectivism. Yet, ironically, there has been little attention to Waltz's very explicit and original arguments about the nature of theory. This article explores and explicates Waltz's theory of theory. Central attention is paid to his definition of theory as ‘a picture, mentally formed' and to the radical anti......-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory...
Wide band polarizer with suspended germanium resonant grating
Institute of Scientific and Technical Information of China (English)
Wugang Cao; Jianyong Ma; Changhe Zhou
2012-01-01
An ultra broad band polarizer that operates in the telecommunication wavelength band is proposed.This device,which consists of a single suspended germanium resonant grating layer,is designed using the inverse mathematical method and the rigorous vector diffraction theory.Calculated results indicate that the ultra broad band polarizer exhibits extremely high reflection (R ＞ 99％) for TE polarization light and high transmission (T ＞ 99％) for TM polarization at the wavelength range greater than 300 nm,and it has an extinction ratio of approximately 1 000 at the 1 550-nm central wavelength.The results of the rigorous coupled wave analysis indicate that the extremely wide band property of the TE polarization is caused by the excitation of strong modulation guided modes in the design wavelength range.
Microstrip microwave band gap structures
Indian Academy of Sciences (India)
V Subramanian
2008-04-01
Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.
Band head spin assignment of superdeformed bands in 86Zr
Dadwal, Anshul; Mittal, H. M.
2016-11-01
Two parameter expressions for rotational spectra viz. variable moment of inertia (VMI), ab formula and three parameter Harris ω 2 expansion are used to assign the band head spins (I 0) of four rotational superdeformed bands in 86Zr. The least-squares fitting method is employed to obtain the band head spins of these four bands in the A ∼ 80 mass region. Model parameters are extracted by fitting of intraband γ-ray energies, so as to obtain a minimum root-mean-square (rms) deviation between the calculated and the observed transition energies. The calculated transition energies are found to depend sensitively on the assigned spins. Whenever an accurate band head spin is assigned, the calculated transition energies are in agreement with the experimental transition energies. The dynamic moment of inertia is also extracted and its variation with rotational frequency is investigated. Since a better agreement of band head spin with experimental results is found using the VMI model, it is a more powerful tool than the ab formula and Harris ω 2 expansion.
Magnetic phase diagrams from non-collinear canonical band theory
DEFF Research Database (Denmark)
Shallcross, Sam; Nordstrom, L.; Sharma, S.
2007-01-01
to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...
Theory of Tunneling Spectroscopy of Multi-Band Superconductors
Burmistrova, Angelina V.; Devyatov, Igor A.; Golubov, Alexander A.; Yada, Keiji; Tanaka, Yukio
2013-01-01
We present the derivation of boundary conditions on a wave function at the normal metal/superconductor (N/S) interface by extending the tight-binding approach developed for semiconducting heterostructures [Phys. Rev. 27 (1983) 3519]. Based on these boundary conditions, we formulate a quantitative th
Lifetime measurements of triaxial strongly deformed bands in {sup 163}Tm.
Energy Technology Data Exchange (ETDEWEB)
Wang, X.; Janssens, R. V. F.; Moore, E. F.; Garg, U.; Gu, Y.; Frauendorf, S.; Carpenter, M. P.; Ghugre, S. S.; Hammond, N. J.; Lauritsen, T.; Li, T.; Mukherjee, G.; Pattabiraman, N. S.; Seweryniak, D.; Zhu, S.; Physics; Univ. of Notre Dame; Kolkata Center
2007-06-21
With the Doppler Shift Attenuation Method, quadrupole transition moments Qt were determined for the two recently proposed triaxial strongly deformed (TSD) bands in {sup 163}Tm. The measured Qt values indicate that the deformation of these bands is larger than that of the yrast signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the region.
Extended Ginzburg-Landau formalism for two-band superconductors.
Shanenko, A A; Milošević, M V; Peeters, F M; Vagov, A V
2011-01-28
Recent observation of unusual vortex patterns in MgB(2) single crystals raised speculations about possible "type-1.5" superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bands-and does not support the "type-1.5" behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/T(c) parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→T(c). The extended version of the two-band GL formalism improves the validity of GL theory below T(c) and suggests revisiting the earlier calculations based on the standard model.
Band description of materials with localizing orbitals
Energy Technology Data Exchange (ETDEWEB)
Koelling, D.D.
1986-03-01
Density functional theory is a form of many-body theory which maps the problem onto an equivalent single particle-like system by limiting to the ground state (or some limited ensemble). So it should be surprising that this ground state theory could have any relevance whatsoever to the excitation properties of a material - and yet it does when used carefully. However, the most interesting materials involve active orbitals which are at least partially localized in space and this has profound effects both on the ground state and the excitation spectrum. My long term interest is in Ce and actinide compounds such that the popular concerns are mixed valence, heavy fermions, and the various forms of magnetic transitions. Band structure calculations can give a great deal of information concerning the mechanisms and degree of the localization as shown by examples using the Ce and U Ll/sub 2/ structured materials and the Ce cubic Laves phase materials. There are some difficulties due to an incomplete knowledge of the functionals involved which causes an underestimate of the local character. This is illustrated and discussed.
A bespoke single-band Hubbard model material
Griffin, S. M.; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.
2016-02-01
The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the "standard model" of condensed-matter physics. The model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form, multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model to determine the relevance of the model in the description of real materials. After identifying an appropriate crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping, and we propose specific materials for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which the single-band Hubbard model on a triangular lattice exhibits exotic d -wave superconductivity.
The interpretation of the Wulf absorption band of ozone
Minaev, Boris; Ågren, Hans
1994-01-01
Intensities and energies of the three lowest singlet—triplet transitions of the ozone molecule have been obtained by means of analytic response theory calculations based on multi-configuration wavefunctions. Contrary of the accepted interpretation of a 1A 2←X 1A 1 transition we find that the lowest electronic band in the ozone spectrum, the Wulf band, is due to a singlet—triplet 3A 2←X 1A 1 transition (oscillator strength 6 × 10 -7). The calculations also explain the absence of observable absorption to the lowest a 3B 2 state because of negligible oscillator strength (8 × 10 -10).
Nekrasov, Nikita
2004-01-01
We present the evidence for the existence of the topological string analogue of M-theory, which we call Z-theory. The corners of Z-theory moduli space correspond to the Donaldson-Thomas theory, Kodaira-Spencer theory, Gromov-Witten theory, and Donaldson-Witten theory. We discuss the relations of Z-theory with Hitchin's gravities in six and seven dimensions, and make our own proposal, involving spinor generalization of Chern-Simons theory of three-forms. Based on the talk at Strings'04 in Paris.
Analysis of damage localization for ductile metal in process of shear band propagation
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Distribution of localized damage in shear band can' t be predicted theoretically based on classical elastoplastic theory. The average damage variable in shear band was considered to be a non-local variable. Based on non-local theory, an analytical expression for the localized damage in strain-softening region of shear band in the process of shear band propagation was presented using boundary condition and symmetry of local damage variable, etc. The results show that dynamic shear softening modulus, dynamic shear strength and shear elastic modulus influence the distribution of the localized damage in shear band. Internal length of ductile metal only governs the thickness of shear band. In the strain-softening region of shear band, the local damage variable along shear band's tangential and normal directions is non-linear and highly non-uniform. The non-uniformities in the normal and tangential directions of shear band stem from the interactions and interplaying among microstructures and the non-uniform distribution of shear stress, respectively. At the tail of the strain-softening region, the maximum value of local damage variable reaches 1. This means that material at this position fractures completely. At the tip of shear band and upper as well as lower boundaries, no damage occurs. Local damage variable increases as dynamic shear softening modulus decreases or shear elastic modulus increases, leading to difficulty in identification or detection of damage for less ductile metal material at higher strain rates.
Macroscopic optical response and photonic bands
Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis
2012-01-01
We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...
Dual coupling effective band model for polarons
Marchand, Dominic J. J.; Stamp, Philip C. E.; Berciu, Mona
2017-01-01
Nondiagonal couplings to a bosonic bath completely change polaronic dynamics, from the usual diagonally coupled paradigm of smoothly varying properties. We study, using analytic and numerical methods, a model having both diagonal Holstein and nondiagonal Su-Schrieffer-Heeger (SSH) couplings. The critical coupling found previously in the pure SSH model, at which the k =0 effective mass diverges, now becomes a transition line in the coupling constant plane—the form of the line depends on the adiabaticity parameter. Detailed results are given for the quasiparticle and ground-state properties, over a wide range of couplings and adiabaticity ratios. The new paradigm involves a destabilization, at the transition line, of the simple Holstein polaron to one with a finite ground-state momentum, but with everywhere a continuously evolving band shape. No "self-trapping transition" exists in any of these models. The physics may be understood entirely in terms of competition between different hopping terms in a simple renormalized effective band theory. The possibility of further transitions is suggested by the results.
Directory of Open Access Journals (Sweden)
P. Kutin
2006-04-01
Full Text Available This paper deals with design and realization of a PLL synthesizer for the microwave XÃ¢ÂˆÂ’band. The synthesizer is intended for use as a local oscillator in a KÃ¢ÂˆÂ’band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal from the frequency doubler is filtered by a band-pass filter and finally amplified by a single stage amplifier.
Holographic Multi-Band Superconductor
Huang, Ching-Yu; Maity, Debaprasad
2011-01-01
We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.
P. Kutin; Vagner, P.
2006-01-01
This paper deals with design and realization of a PLL synthesizer for the microwave XÃ¢ÂˆÂ’band. The synthesizer is intended for use as a local oscillator in a KÃ¢ÂˆÂ’band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal ...
Band structure analysis in SiGe nanowires
Energy Technology Data Exchange (ETDEWEB)
Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)
2012-06-05
One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.
Automated effective band structures for defective and mismatched supercells
Brommer, Peter; Quigley, David
2014-12-01
In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) from supercell calculations in the context of random alloys. In this paper, we present bs_sc2pc, an implementation of this method in the CASTEP code, which generates an EBS using the structural data of the supercell and the underlying primitive cell with symmetry considerations handled automatically. We demonstrate the functionality of our implementation in three test cases illustrating the efficacy of this scheme for capturing the effect of vacancies, substitutions and lattice mismatch on effective primitive cell band structures.
Microscopic study of superdeformed rotational bands in {sup 151} Tb
Energy Technology Data Exchange (ETDEWEB)
El Aouad, N.; Dudek, J.; Li, X.; Luo, W.D.; Molique, H.; Bouguettoucha, A.; Byrski, TH.; Beck, F.; Finck, C.; Kharraja, B. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Dobaczewski, J. [Warsaw Univ. (Poland); Kharraja, B. [Notre Dame Univ., IN (United States). Dept. of Physics
1996-12-31
Structure of eight superdeformed bands in the nucleus {sup 151}Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exit and predictions related to the structure of rotational bands calculated within the two models are nearly parallel. An interpretation scenario for the structure of the superdeformed bands is presented and predictions related to the exit spins are made. Small but systematic discrepancies between experiment and theory, analyzed in terms of the dynamical moments, J{sup (2)}, are shown to exist. The pairing correlations taken into account by using the particle-number-projection technique are shown to increase the disagreement. Sources of these systematic discrepancies are discussed - they are most likely related to the yet not optimal parametrization of the nuclear interactions used. (authors). 60 refs.
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation
Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.
2016-07-01
We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.
Preventing misdiagnosis in amniotic band sequence: a case report
Directory of Open Access Journals (Sweden)
Cristiane Rúbia Ferreira
2013-03-01
Full Text Available Amniotic band sequence (ABS is an uncommon and heterogeneous congenital disorder caused by entrapment of fetal parts by fibrous amniotic bands, causing distinctive structural abnormalities involving limbs, trunk, and craniofacial regions. The incidence ranges between 1/1200 and 1/15,000 live births, but is higher in stillbirths and previable fetuses. The intrinsic theory attributes the constriction band syndrome as an inherent development defect of embryogenesis while the extrinsic theory proposes that an early amnion rupture is responsible for the adherent bands. It is also suggested that amputations and constriction rings might be due to vascular disturbances. Anomalies resulting from amniotic bands are quite variable and sometimes may simulate chromosomal abnormalities. The authors report a case of a 36-week-gestation male neonate who lived for 29 hours after a vaginal delivery with an Apgar score of 8/9/9. The mother was primipara, and the prenatal was uneventful except for two episodes of urinary tract infections. The newborn examination depicted multiple anomalies characterized by exencephaly, bilateral labial cleft with distorted nostrils and palate cleft. There was also facial skin tag band, exophthalmos with hypoplasia of the eyelids. The limbs showed distal amputation of the fingers in both hands and feet, oligodactyly associated with syndactyly in the left foot, ring constriction in the right leg, the presence of right hyperextension, and clubfoot. The upper limbs showed length discrepancies. Karyotype analysis was normal at 46 XY. The authors conclude that the recognition of the malformations secondary to ABS is important in genetic counseling to prevent misdiagnosis between chromosomal and secondary disruption disorders.
Metaphyseal bands in osteogenesis imperfecta
Directory of Open Access Journals (Sweden)
Suresh S
2010-01-01
Full Text Available An increasing number of patients with osteogenesis imperfecta are undergoing pamidronate therapy to prevent the incidence of fragility fractures. The authors herein report a child aged 3 years who received five cycles of pamidronate, resulting in metaphyseal bands, known as "zebra lines."
Institute of Scientific and Technical Information of China (English)
王为成
2001-01-01
Like many people, you may be dreaming of a career(职业) as rock and roll stars. There are two ways to go about getting one. First is the traditional way. Find some friends and form a group. Learn to play the guitar or the drums. Write your own songs. Spend hours arguing about the band name. Then go out on the road.
DEFF Research Database (Denmark)
1999-01-01
An optical fibre having a periodicidal cladding structure provididing a photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction...
Familial band-shaped keratopathy.
Ticho, U; Lahav, M; Ivry, M
1979-01-01
A brother and sister out of a consanguinous family of four siblings are presented as prototypes of primary band-shaped keratopathy. The disease manifested sever progressive changes of secondary nature over two years of follow-up. Histology and treatment are described.
Piotrowski, W. S.; Raue, J. E.
1984-01-01
Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.
Piotrowski, W. S.; Raue, J. E.
1984-05-01
Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.
A Bespoke Single-Band Hubbard Model Material
Griffin, S M; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.
2015-01-01
The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the `standard model' of condensed matter physics. The model has been remarkably successful at addressing a range of correlation effects in solids, but beyond one dimension its solution is intractable. Much current research aims, therefore, at finding appropriate approximations to the Hubbard model phase diagram. Here we take the new ap...
Characterization of the valence and conduction bands in Si nanocrystals
van Buuren, T.; Terminello, L.; Chase, L.; Callcott, T.; Grush, M.
1998-03-01
Silicon nanocrystals with a mean diameter between 1 and 4 nm were produced by thermal evaporation of Si in Ar buffer gas and deposited on a substrate. The size-distribution and diameter of the clusters were characterized by atomic force microscopy. The valence and conduction band edges of the Si nanocrystals were measured in-situ using soft x-ray emission (SXE) and absorption (XAS) spectroscopies. The valence band of the smallest Si nanocrystals is shifted by much as 0.7 eV relative to bulk Si. Significant changes in the shape of the spectra are also observed between the Si nanocrytals and bulk Si. We interpret the shift and changes in the spectra of the valence band as resulting from an altered electronic band structure in the confined Si structures. A smaller but proportional shift of the conduction band to higher energy is also observed in the XAS spectra of the silicon nanostructures. We compare the experimentally measured bandgap to recent electronic structure calculations and find, that the experimentally measured bandgap is smaller than that predicted by theory. Work supported by the U.S. Department of Energy, BES-Materials Sciences, under Contract W-7405-ENG-48.
Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets.
Xu, Pengtao; Milstein, Tyler J; Mallouk, Thomas E
2016-05-11
Exfoliated nanosheets derived from Dion-Jacobson phase layer perovskites (TBAxH1-xA2B3O10, A = Sr, Ca, B = Nb, Ta) were grown layer-by-layer on fluorine-doped tin oxide and gold electrode surfaces. Electrochemical impedance spectra (EIS) of the five-layer nanosheet films in contact with aqueous electrolyte solutions were analyzed by the Mott-Schottky method to obtain flat-band potentials (VFB) of the oxide semiconductors as a function of pH. Despite capacitive contributions from the electrode-solution interface, reliable values could be obtained from capacitance measurements over a limited potential range near VFB. The measured values of VFB shifted -59 mV/pH over the pH range of 4-8 and were in close agreement with the empirical correlation between conduction band-edge potentials and optical band gaps proposed by Matsumoto ( J. Solid State Chem. 1996, 126 (2), 227-234 ). Density functional theory calculations showed that A-site substitution influenced band energies by modulating the strength of A-O bonding, and that subsitution of Ta for Nb on B-sites resulted in a negative shift of the conduction band-edge potential.
Band gap tuning of amorphous Al oxides by Zr alloying
DEFF Research Database (Denmark)
Canulescu, Stela; Jones, N. C.; Borca, C. N.;
2016-01-01
minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...
The Critical Criterion on Runaway Shear Banding in Metallic Glasses
Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.
2016-02-01
The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.
Tunable band structure and effective mass of disordered chalcopyrite
Wang, Ze-Lian; Xie, Wen-Hui; Zhao, Yong-Hong
2017-02-01
The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1- x Ag x Ga X 2 ( X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1- x Ag x Ga Se 2, and from 2.33 to 2.64 eV for Cu1- x Ag x Ga S 2. The band gap minima and maxima occur at around x = 0:5 and x = 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1- x Ag x Ga X 2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGa X 2.
Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires
Panda, Jaya Kumar; Chakraborty, Arup; Ercolani, Daniele; Gemmi, Mauro; Sorba, Lucia; Roy, Anushree
2016-10-01
In this article we demonstrate type-II band alignment at the wurtzite/zinc-blende hetero-interface in InAs polytype nanowires using resonance Raman measurements. Nanowires were grown with an optimum ratio of the above mentioned phases, so that in the electronic band alignment of such NWs the effect of the difference in the crystal structure dominates over other perturbing effects (e.g. interfacial strain, confinement of charge carriers and band bending due to space charge). Experimental results are compared with the band alignment obtained from density functional theory calculations. In resonance Raman measurements, the excitation energies in the visible range probe the band alignment formed by the E 1 gap of wurtzite and zinc-blende phases. However, we expect our claim to be valid also for band alignment near the fundamental gap at the heterointerface.
Cooper pairing in the insulating valence band in iron-based superconductors
Hu, Lun-Hui; Chen, Wei-Qiang; Zhang, Fu-Chun
2015-04-01
Conventional Cooper pairing arises from attractive interaction of electrons in the metallic bands. A recent experiment on Co-doped LiFeAs shows superconductivity in the insulating valence band, which is evolved from a metallic hole band upon doping. Here we examine this phenomenon by studying superconductivity in a three-orbital Hamiltonian relevant to the doped LiFeAs. We show explicitly that Cooper pairing of the insulating hole band requires a finite pairing interaction strength. For strong coupling, the superconductivity in the hole band is robust against the sink of the hole band below the Fermi level. Our theory predicts a substantial upward shift of the chemical potential in the superconducting transition for Co-doped LiFeAs.
First principles study and empirical parametrization of twisted bilayer MoS2 based on band-unfolding
Tan, Yaohua; Chen, Fan W.; Ghosh, Avik W.
2016-09-01
We explore the band structure and ballistic electron transport in twisted bilayer MoS2 using the density functional theory. The sphagetti like bands are unfolded to generate band structures in the primitive unit cell of the original 2H MoS2 bilayer and projected onto the original bands of an individual layer. The corresponding twist angle dependent bandedges are extracted from the unfolded band structures. Based on a comparison within the same primitive unit cell, an efficient two band effective mass model for indirect ΓV and ΛC valleys is created and parametrized by fitting to the unfolded band structures. With the two band effective mass model, we calculate transport properties—specifically, the ballistic transmission in arbitrarily twisted bilayer MoS2 .
Harrison, Walter A.
2002-12-01
In the context of computational physics other methods are more accurate, but tight-binding theory allows very direct physical interpretation and is simple enough to allow much more realistic treatments beyond the local density approximation. We address several important questions of this last category: How does the gap enhancement from Coulomb correlations vary from material to material? Should the enhanced gap be used for calculating the dielectric constant? For calculating the effective mass in k-dot-p theory? How valid is the scissors approximation? How does one line up bands at an interface? How should we match the envelope function at interfaces in effective-mass theory? Why can the resulting quantum-well states seem to violate the uncertainty principle? How should f-shell electrons be treated when they are intermediate between band-like and core-like? The answers to all of these questions are given and discussed.
ALMA Band 5 Cartridge Performance
Billade, Bhushan; Lapkin, I.; Nystrom, O.; Sundin, E.; Fredrixon, M.; Finger, R.; Rashid, H.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, Victor
2010-03-01
Work presented here concerns the design and performance of the ALMA Band 5 cold cartridge, one of the 10 frequency channels of ALMA project, a radio interferometer under construction at Atacama Desert in Chile. The Band 5 cartridge is a dual polarization receiver with the polarization separation performed by orthomode transducer (OMT). For each polarization, Band 5 receiver employs sideband rejection (2SB) scheme based on quadrature layout, with SIS mixers covering 163-211 GHz with 4-8 GHz IF. The LO injection circuitry is integrated with mixer chip and is implemented on the same substrate, resulting in a compact 2SB assembly. Amongst the other ALMA bands, the ALMA Band 5 being the lowest frequency band that uses all cold optics, has the largest mirror. Consequently, ALMA Band 5 mirror along with its support structure leaves very little room for placing OMT, mixers and IF subsystems. The constraints put by the size of cold optics and limited cartridge space, required of us to revise the original 2SB design and adopt a design where all the components like OMT, mixer, IF hybrid, isolators and IF amplifier are directly connected to each other without using any co-ax cables in-between. The IF subsystem uses the space between 4 K and 15 K stage of the cartridge and is thermally connected to 4 K stage. Avoiding co-ax cabling required use of custom designed IF hybrid, furthermore, due to limited cooling capacity at 4 K stage, resistive bias circuitry for the mixers is moved to 15 K stage and the IF hybrid along with an integrated bias-T is implemented using superconducting micro-strip lines. The E-probes for both LO and RF waveguide-to-microstrip transitions are placed perpendicular to the wave direction (back-piece configuration). The RF choke at the end of the probes provides a virtual ground for the RF/LO signal, and the choke is DC grounded to the chassis. The on-chip LO injection is done using a microstrip line directional coupler with slot-line branches in the
S-Band propagation measurements
Briskman, Robert D.
1994-08-01
A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.
Control Banding and Nanotechnology Synergist
Energy Technology Data Exchange (ETDEWEB)
Zalk, D; Paik, S
2009-12-15
The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with
An extension to flat band ferromagnetism
Gulacsi, M.; Kovacs, G.; Gulacsi, Z.
2014-11-01
From flat band ferromagnetism, we learned that the lowest energy half-filled flat band gives always ferromagnetism if the localized Wannier states on the flat band satisfy the connectivity condition. If the connectivity conditions are not satisfied, ferromagnetism does not appear. We show that this is not always the case namely, we show that ferromagnetism due to flat bands can appear even if the connectivity condition does not hold due to a peculiar behavior of the band situated just above the flat band.
Compaction bands in porous rocks: localization analysis using breakage mechanics
Das, Arghya; Nguyen, Giang; Einav, Itai
2010-05-01
It has been observed in fields and laboratory studies that compaction bands are formed within porous rocks and crushable granular materials (Mollema and Antonellini, 1996; Wong et al., 2001). These localization zones are oriented at high angles to the compressive maximum principal stress direction. Grain crushing and pore collapse are the integral parts of the compaction band formation; the lower porosity and increased tortuosity within such bands tend to reduce their permeability compared to the outer rock mass. Compaction bands may thereafter act as flow barriers, which can hamper the extraction or injection of fluid into the rocks. The study of compaction bands is therefore not only interesting from a geological viewpoint but has great economic importance to the extraction of oil or natural gas in the industry. In this paper, we study the formation of pure compaction bands (i.e. purely perpendicular to the principal stress direction) or shear-enhanced compaction bands (i.e. with angles close to the perpendicular) in high-porosity rocks using both numerical and analytical methods. A model based on the breakage mechanics theory (Einav, 2007a, b) is employed for the present analysis. The main aspect of this theory is that it enables to take into account the effect that changes in grain size distribution has on the constitutive stress-strain behaviour of granular materials at the microscopic level due to grain crushing. This microscopic phenomenon of grain crushing is explicitly linked with a macroscopic internal variable, called Breakage, so that the evolving grain size distribution can be continuously monitored at macro scale during the process of deformation. Through the inclusion of an appropriate parameter the model is also able to capture the effects of pore collapse on the macroscopic response. Its possession of few physically identifiable parameters is another important feature which minimises the effort of their recalibration, since those become less
Effective temperature dynamics of shear bands in metallic glasses
Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.
2014-12-01
We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.
Williams, Jeffrey
1994-01-01
Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…
DEFF Research Database (Denmark)
Linder, Stefan; Foss, Nicolai Juul
Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting and informational conditions, the theory addresses problems of ex...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....
DEFF Research Database (Denmark)
Linder, Stefan; Foss, Nicolai Juul
2015-01-01
Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting, and informational conditions, the theory addresses problems of ex...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....
Institute of Scientific and Technical Information of China (English)
MA Hai-Liang; YAN Yu-Liang; ZHANG Xi-Zhen; ZHOU Dong-Mei; DONG Bao-Guo
2009-01-01
The negative parity high spin states in 45Ti have been investigated with the interacting shell model including the full fp shell and the configuration dependent cranked Nilsson-Strutinsky approach. Generally,the shell model has successfully reproduced the energy levels of negative parity bands, especially has a good description of the signature inversion at 17/2-. The reduced electric quadrupole transition probabilities of high spin states are calculated by the two models and compared with the experimental results. Reasonable agreement between theories and experiment are obtained, while the shell model can give more fine structures.The large differences of elctromagnetic moments between the shell model calculation and observation call for more elaborate effective interaction and more active shells.
Rowan, D. R.
1989-01-01
The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.
Relativistic Model for two-band Superconductivity
Ohsaku, Tadafumi
2003-01-01
To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Harris, Tina
2015-04-29
Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.
Rowen, Louis H
1991-01-01
This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**""As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of non
Theoretical study on the two-band degenerate-gaps superconductors: Application to SrPt3P
Huang, Hai; Hou, Li-Chao; Zhao, Bin-Peng
2016-09-01
We study the magnetic properties of two-band degenerate-gaps superconductors with two-band isotropic Ginzburg-Landau theory. The exact solutions of upper critical field and London penetration depth are obtained, and the calculations reproduce the experimental data of the recently observed superconducting crystal SrPt3P in a broad temperature range. It directly underlies that SrPt3P is a multi-band superconductor with equal gaps in two Fermi surface sheets.
Metamaterial Absorbers in Terahertz Band
Institute of Scientific and Technical Information of China (English)
Qi-Ye Wen; Huai-Wu Zhang; Qing-Hui Yang; Man-Man Mo
2013-01-01
In recent years, a great deal of effort has been made to a create terahertz (THz) wave absorber based on metamaterials (MM). Metamaterials absorbers have a variety of potential applications including thermal emitters, detector, stealth technology, phase imaging, etc. In this paper, we firstly introduce the basic structure and work principle of the THz MM absorbers, and a transmission line model is developed for devices analysis. To expand the application of THz absorbers, dual-band and broadband THz MM absorbers are designed, fabricated, and measured. At the end of this article, the future development trends of MM absorbers are discussed.
Bonds and bands in semiconductors
Phillips, Jim
2009-01-01
This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s
Resolved target detection in clutter using correlated, dual-band imagery
Stotts, Larry B.
2015-10-01
This paper develops a log-likelihood ratio test statistic for resolved target detection in dual-band imagery because the previous work indicates that most of the processing gains come from processing just two bands. Simple, closed-form equations for the closed-form probabilities of false alarm and detection are given. A computer simulation validates the theory. A constant false alarm rate version of the theory is applied to real available multiband data with quasi-resolved target sets and fixed clutter noise. The results show very reasonable performance in target detectability using three sets of correlated dual-band images. Finally, this paper shows that the resolved target detection problem depends on the weighted difference between the dual-band target contrasts. The theoretical development reaffirms that the signal-to-noise ratio or contrast-to-noise ratio is approximately the weighted difference squared, divided by the normalized total image noise variance.
Fractional Chern Insulators in Harper-Hofstadter Bands with Higher Chern Number
Möller, Gunnar; Cooper, Nigel R.
2015-09-01
The Harper-Hofstadter model provides a fractal spectrum containing topological bands of any integer Chern number C . We study the many-body physics that is realized by interacting particles occupying Harper-Hofstadter bands with |C |>1 . We formulate the predictions of Chern-Simons or composite fermion theory in terms of the filling factor ν , defined as the ratio of particle density to the number of single-particle states per unit area. We show that this theory predicts a series of fractional quantum Hall states with filling factors ν =r /(r |C |+1 ) for bosons, or ν =r /(2 r |C |+1 ) for fermions. This series includes a bosonic integer quantum Hall state in |C |=2 bands. We construct specific cases where a single band of the Harper-Hofstadter model is occupied. For these cases, we provide numerical evidence that several states in this series are realized as incompressible quantum liquids for bosons with contact interactions.
Study On Planar Whispering Gallery Dielectric Resonators; 2, A Multiple-Band Device
Annino, G; Martinelli, M
2002-01-01
The basic theory underlying the realization of simple multiple-band non-homogeneous dielectric resonators, whose spectral response is the overlap of single-resonator frequency bands, is developed exploiting a general approach discussed in the previous companion paper. The limit frequencies of the proposed devices, given only by the dielectric properties of the involved materials, can differ in principle by several decades. Experimental confirmations have been obtained on a composite structure built up with teflon and polyethylene; as predicted by the theory, the overall band includes frequencies which range about from 20 GHz to more than 400 GHz, when high frequency resonances are selectively excited. The localization of the higher frequency radiation between the positive steps of the dielectric constant, which is the basic properties of these non-homogeneous resonators, has been experimentally verified by mapping the electromagnetic field intensity. Possible applications of multiple-band Whispering Gallery d...
Tap Teens' Curiosity with Lab Band.
Saunders, Jane
2002-01-01
Describes the Lab Band project used with 12th grade students at the Westgate Collegiate and Vocational Institute in Thunder Bay, Ontario (Canada). Explains that each band student taught a peer how to play their instrument which created versatility in the band. States that all students kept a reflective journal. (CMK)
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two-color HgCdTe photodiodes and quantum well infrared photodetectors is presented.More attention is devoted to HgCdTe detectors. The two-color detector arrays are based upon an n-P-N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p-n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials.Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP's narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.
Ultrathin flexible dual band terahertz absorber
Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming
2015-09-01
We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.
Relaxation and cross section effects in valence band photoemission spectroscopy
Energy Technology Data Exchange (ETDEWEB)
McFeely, F.R.
1976-09-01
Various problems relating to the interpretation of valence band x-ray photoemission (XPS) spectra of solids are discussed. The experiments and calculations reported herein deal with the following questions: (1) To what extent do many-body effects manifest themselves in an XPS valence band spectrum, and thus invalidate a direct comparison between the photoemission energy distribution, I(E), and the density of states, N(E), calculated on the basis of ground-state one-electron theory. (2) The effect of the binding-energy-dependent photoemission cross section on I(E) at XPS energies. (3) In favorable cases indicated by (1) and (2) we examine the effect of the interaction of the crystal field with the apparent spin-orbit splittings of core levels observed in XPS spectra. (4) The use of tight binding band structure calculations to parameterize the electronic band structure from XPS and other data is described. (5) The use of high energy angle-resolved photoemission on oriented single crystals to gain orbital symmetry information is discussed. (6) The evolution of the shape of the photoemission energy distribution (of polycrystalline Cu) as a function of photon energy from 50 less than or equal h ..omega.. less than or equal 175 is discussed.
Photovoltaic properties of low band gap ferroelectric perovskite oxides
Huang, Xin; Paudel, Tula; Dong, Shuai; Tsymbal, Evgeny
2015-03-01
Low band gap ferroelectric perovskite oxides are promising for photovoltaic applications due to their high absorption in the visible optical spectrum and a possibility of having large open circuit voltage. Additionally, an intrinsic electric field present in these materials provides a bias for electron-hole separation without requiring p-n junctions as in conventional solar cells. High quality thin films of these compounds can be grown with atomic layer precision allowing control over surface and defect properties. Initial screening based on the electronic band gap and the energy dependent absorption coefficient calculated within density functional theory shows that hexagonal rare-earth manganites and ferrites are promising as photovoltaic absorbers. As a model, we consider hexagonal TbMnO3. This compound has almost ideal band gap of about 1.4 eV, very high ferroelectric Curie temperature, and can be grown epitaxially. Additionally hexagonal TbMnO3 offers possibility of coherent structure with transparent conductor ZnO. We find that the absorption is sufficiently high and dominated by interband transitions between the Mn d-bands. We will present the theoretically calculated photovoltaic efficiency of hexagonal TbMnO3 and explore other ferroelectric perovskite oxides.
Self-assembly of colloidal bands driven by a periodic external field
Nunes, André S.; Araújo, Nuno A. M.; Telo da Gama, Margarida M.
2016-01-01
We study the formation of bands of colloidal particles driven by periodic external fields. Using Brownian dynamics, we determine the dependence of the band width on the strength of the particle interactions and on the intensity and periodicity of the field. We also investigate the switching (field-on) dynamics and the relaxation times as a function of the system parameters. The observed scaling relations were analyzed using a simple dynamic density-functional theory of fluids.
Self-assembly of colloidal bands driven by a periodic external field
Energy Technology Data Exchange (ETDEWEB)
Nunes, André S.; Araújo, Nuno A. M., E-mail: nmaraujo@fc.ul.pt; Telo da Gama, Margarida M. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa (Portugal)
2016-01-21
We study the formation of bands of colloidal particles driven by periodic external fields. Using Brownian dynamics, we determine the dependence of the band width on the strength of the particle interactions and on the intensity and periodicity of the field. We also investigate the switching (field-on) dynamics and the relaxation times as a function of the system parameters. The observed scaling relations were analyzed using a simple dynamic density-functional theory of fluids.
Translation of Michael Sadowsky's paper "The differential equations of the M\\"obius band"
Hinz, Denis F
2014-01-01
This article is a translation of Michael Sadowsky's original paper "Die Differentialgleichungen des M\\"obiusschen Bandes." in Jahresbericht der Deutschen Mathermatiker-Vereinigung 39 (2. Abt. Heft 5/8, Jahresversammlung vom 16. bis 23. September), 49-51 (1929), which is a short version of his paper "Theorie der elastisch biegsamen undehnbaren B\\"ander mit Anwendungen auf das M\\"obiussche Band" in 3. internationaler Kongress f\\"ur technische Mechanik, Stockholm, 1930.
Prediction of shear bands in sand based on granular flow model and two-phase equilibrium
Institute of Scientific and Technical Information of China (English)
张义同; 齐德瑄; 杜如虚; 任述光
2008-01-01
In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.
First principles study and empirical parametrization of twisted bilayer MoS2 based on band-unfolding
Tan, Yaohua; Ghosh, Avik
2016-01-01
We explore the band structure and ballistic electron transport in twisted bilayer $\\textrm{MoS}_2$ using Density Functional Theory (DFT). The sphagetti like bands are unfolded to generate band structures in the primitive unit cell of the original un-twisted $\\textrm{MoS}_2$ bilayer and projected onto an individual layer. The corresponding twist angle dependent indirect bandedges are extracted from the unfolded band structures. Based on a comparison within the same primitive unit cell, an efficient two band effective mass model for indirect conduction and valence valleys is created and parameterized by fitting the unfolded band structures. With the two band effective mass model, transport properties - specifically, we calculate the ballistic transmission in arbitrarily twisted bilayer $\\textrm{MoS}_2$.
Iliotibial band syndrome: evaluation and management.
Strauss, Eric J; Kim, Suezie; Calcei, Jacob G; Park, Daniel
2011-12-01
Iliotibial band syndrome is a common overuse injury typically seen in runners, cyclists, and military recruits. Affected patients report lateral knee pain associated with repetitive motion activities. The diagnosis is usually made based on a characteristic history and physical examination, with imaging studies reserved for cases of recalcitrant disease to rule out other pathologic entities. Several etiologies have been proposed for iliotibial band syndrome, including friction of the iliotibial band against the lateral femoral epicondyle, compression of the fat and connective tissue deep to the iliotibial band, and chronic inflammation of the iliotibial band bursa. The mainstay of treatment is nonsurgical; however, in persistent or chronic cases, surgical management is indicated.
Evolutions of Compaction Bands of Saturated Soils
Institute of Scientific and Technical Information of China (English)
鲁晓兵; 王义华; 崔鹏
2004-01-01
The development of compaction bands in saturated soils, which is coupling-rate, inertial and pore-pressure-dependent, under axisymmetric loading was discussed, using a simple model and a matching technique at the moving boundary of a band. It is shown that the development of compaction bands is dominated by the coupling-rate and pore-pressure effects of material. The soil strength makes the band shrinking, whilst pore pressure diffusion makes the band expand. Numerical simulations were carried out in this paper.
Stable Band-Gaps in Phononic Crystals by Harnessing Hyperelastic Transformation Media
Liu, Yan; Feng, Xi-Qiao
2016-01-01
The band structure in phononic crystals (PCs) is usually affected by the deformations of their soft components. In this work, hyperelastic transformation media is proposed to be integrated in the PCs'design, to achieve stable elastic band-gaps which is independent with finite mechanical deformations. For a one-dimensional (1D) PC, we demonstrate the semi-linear soft component can keep all elastic wave bands unchanged with the external deformation field. While for neo-Hookean soft component, only S-wave bands can be precisely retained. The change of the P-wave bands can be predicted by using a lumped mass method. Numerical simulations are performed to validate our theory predictions and the robustness of the proposed PCs.
Card, Jeffrey W; Fikree, Hana; Haighton, Lois A; Blackwell, James; Felice, Brian; Wright, Teresa L
2015-11-01
A banding scheme theory has been proposed to assess the potency/toxicity of biologics and assist with decisions regarding the introduction of new biologic products into existing manufacturing facilities. The current work was conducted to provide a practical example of how this scheme could be applied. Information was identified for representatives from the following four proposed bands: Band A (lethal toxins); Band B (toxins and apoptosis signals); Band C (cytokines and growth factors); and Band D (antibodies, antibody fragments, scaffold molecules, and insulins). The potency/toxicity of the representative substances was confirmed as follows: Band A, low nanogram quantities exert lethal effects; Band B, repeated administration of microgram quantities is tolerated in humans; Band C, endogenous substances and recombinant versions administered to patients in low (interferons), intermediate (growth factors), and high (interleukins) microgram doses, often on a chronic basis; and Band D, endogenous substances present or produced in the body in milligram quantities per day (insulin, collagen) or protein therapeutics administered in milligram quantities per dose (mAbs). This work confirms that substances in Bands A, B, C, and D represent very high, high, medium, and low concern with regard to risk of cross-contamination in manufacturing facilities, thus supporting the proposed banding scheme.
Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands
Directory of Open Access Journals (Sweden)
Kenta Obata
2015-11-01
Full Text Available The present study evaluates inter-band radiometric consistency across the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER visible and near-infrared (VNIR bands and develops an inter-band calibration algorithm to improve radiometric consistency. Inter-band radiometric comparison of current ASTER data shows a root mean square error (RMSE of 3.8%–5.7% among radiance outputs of spectral bands due primarily to differences between calibration strategies of the NIR band for nadir-looking (Band 3N and the other two bands (green and red bands, corresponding to Bands 1 and 2. An algorithm for radiometric calibration of Bands 2 and 3N with reference to Band 1 is developed based on the band translation technique and is used to obtain new radiometric calibration coefficients (RCCs for sensor sensitivity degradation. The systematic errors between radiance outputs are decreased by applying the derived RCCs, which result in reducing the RMSE from 3.8%–5.7% to 2.2%–2.9%. The remaining errors are approximately equal to or smaller than the intrinsic uncertainties of inter-band calibration derived by sensitivity analysis. Improvement of the radiometric consistency would increase the accuracy of band algebra (e.g., vegetation indices and its application. The algorithm can be used to evaluate inter-band radiometric consistency, as well as for the calibration of other sensors.
Wintucky, Edwin G.; Simons, Rainee N.
2015-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).
The LDA+U calculation of electronic band structure of GaAs
Bahuguna, B. P.; Sharma, R. O.; Saini, L. K.
2016-05-01
We present the electronic band structure of bulk gallium arsenide (GaAs) using first principle approach. A series of calculations has been performed by applying norm-conserving pseudopotentials and ultrasoft non-norm-conserving pseudopotentials within the density functional theory. These calculations yield too small band gap as compare to experiment. Thus, we use semiemperical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U), which is quite effective in order to describe the band gap of GaAs.
Chang, CC
2012-01-01
Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko
Aubin, Jean-Pierre; Saint-Pierre, Patrick
2011-01-01
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explai
Localized crystallization in shear bands of a metallic glass
Yan, Zhijie; Song, Kaikai; Hu, Yong; Dai, Fuping; Chu, Zhibing; Eckert, Jürgen
2016-01-01
Stress-induced viscous flow is the characteristic of atomic movements during plastic deformation of metallic glasses in the absence of substantial temperature increase, which suggests that stress state plays an important role in mechanically induced crystallization in a metallic glass. However, it is poorly understood. Here, we report on the stress-induced localized crystallization in individual shear bands of Zr60Al15Ni25 metallic glass subjected to cold rolling. We find that crystallization in individual shear bands preferentially occurs in the regions neighboring the amorphous matrix, where the materials are subjected to compressive stresses demonstrated by our finite element simulations. Our results provide direct evidence that the mechanically induced crystallization kinetics is closely related with the stress state. The crystallization kinetics under compressive and tensile stresses are interpreted within the frameworks of potential energy landscape and classical nucleation theory, which reduces the role of stress state in mechanically induced crystallization in a metallic glass.
Broad band invisibility cloak made of normal dielectric multilayer
Xu, Xiaofei; Xiong, Shuai; Fan, Jinlong; Zhao, Jun-Ming; Jiang, Tian
2011-01-01
We present the design, fabrication and performance test of a quasi three-dimensional carpet cloak made of normal dielectric in the microwave regime. Taking advantage of a simple linear coordinate transformation we design a carpet cloak with homogeneous anisotropic medium and then practically realize the device with multilayer of alternating normal dielectric slabs based on the effective medium theory. As a proof-of-concept example, we fabricate the carpet cloak with multilayer of FR4 dielectric slabs with air spacing. The performance of the fabricated design is verified through full-wave numerical simulation and measurement of the far-field scattering electromagnetic waves in a microwave anechoic chamber. Experimental results have demonstrated pronounced cloaking effect in a very broad band from 8 GHz to 18 GHz (whole X and Ku band) due to the low loss, non-dispersive feature of the multilayer dielectric structure.
Band structure of germanium carbides for direct bandgap silicon photonics
Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.
2016-08-01
Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.
Roman, Steven
2006-01-01
Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students. The exercises have also been im
Cox, David A
2012-01-01
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!"—Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galo
Dufwenberg, Martin
2011-03-01
Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website.
Hashiguchi, Koichi
2009-01-01
This book details the mathematics and continuum mechanics necessary as a foundation of elastoplasticity theory. It explains physical backgrounds with illustrations and provides descriptions of detailed derivation processes..
Lindsey, J. F.
1976-01-01
The isolation between the upper S-band quad antenna and the S-band payload antenna on the shuttle orbiter is calculated using a combination of plane surface and curved surface theories along with worst case values. A minimum value of 60 db isolation is predicted based on recent antenna pattern data, antenna locations on the orbiter, curvature effects, dielectric covering effects and edge effects of the payload bay. The calculated value of 60 db is significantly greater than the baseline value of 40 db. Use of the new value will result in the design of smaller, lighter weight and less expensive filters for S-band transponder and the S-band payload interrogator.
Giemsa C-banding of Barley Chromosomes. I: Banding Pattern Polymorphism
DEFF Research Database (Denmark)
Linde-Laursen, Ib
1978-01-01
Twenty barley (Hordeum vulgare) lines studied had a common basic chromosome banding pattern. Most bands ranged from medium to very small in size. The most conspicuous banding occurred at or near the centromeres, in the proximal, intercalary parts of most chromosome arms and beside the secondary c...... 7. Seventeen differently banded karyotypes were found. Some banding pattern polymorphisms can be used in cytological and cytogenetic studies....
Band width and multiple-angle valence-state mapping of diamond
Energy Technology Data Exchange (ETDEWEB)
Jimenez, I.; Terminello, L.J.; Sutherland, D.G.J. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
The band width may be considered the single most important parameter characterizing the electronic structure of a solid. The ratio of band width and Coulomb repulsion determines how correlated or delocalized an electron system is. Some of the most interesting solids straddle the boundary between localized and delocalized, e.g. the high-temperature superconductors. The bulk of the band calculations available today is based on local density functional (DF) theory. Even though the Kohn-Sham eigenvalues from that theory do not represent the outcome of a band-mapping experiment, they are remarkably similar to the bands mapped via photoemission. Strictly speaking, one should use an excited state calculation that takes the solid`s many-body screening response to the hole created in photoemission into account. Diamond is a useful prototype semiconductor because of its low atomic number and large band width, which has made it a long-time favorite for testing band theory. Yet, the two experimental values of the band width of diamond have error bars of {+-}1 eV and differ by 3.2 eV. To obtain an accurate valence band width for diamond, the authors use a band-mapping method that collects momentum distributions instead of the usual energy distributions. This method has undergone extensive experimental and theoretical tests in determining the band width of lithium fluoride. An efficient, imaging photoelectron spectrometer is coupled with a state-of-the-art undulator beam line at the Advanced Light Source to allow collection of a large number of data sets. Since it takes only a few seconds to take a picture of the photoelectrons emitted into a 84{degrees} cone, the authors can use photon energies as high as 350 eV where the cross section for photoemission from the valence band is already quite low, but the emitted photoelectrons behave free-electron-like. This make its much easier to locate the origin of the inter-band transitions in momentum space.
Group theory and its applications
Thapa, Ram Kumar
2019-01-01
Every molecule possesses symmetry and hence has symmetry operations and symmetry elements. From symmetry properties of a system we can deduce its significant physical results. Consequently it is essential to operations of a system forms a group. Group theory is an abstract mathematical tool that underlies the study of symmetry and invariance. By using the concepts of symmetry and group theory, it is possible to obtain the members of complete set of known basis functions of the various irreducible representations of the group. I practice this is achieved by applying the projection operators to linear combinations of atomic orbital (LCAO) when the valence electrons are tightly bound to the ions, to orthogonalized plane waves (OPW) when valence electrons are nearly free and to the other given functions that are judged to the particular system under consideration. In solid state physics the group theory is indispensable in the context of finding the energy bands of electrons in solids. Group theory can be applied...
Vollhardt, D.; Byczuk, K.; Kollar, M.
2011-01-01
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the ...
Fluctuation conductivity in two-band superconductor SmFeAsO0.8F0.2
Directory of Open Access Journals (Sweden)
Askerzade I.N.
2015-09-01
Full Text Available In this study we have calculated the fluctuation conductivity near critical temperature of SmFeAsO0.8F0.2 superconductor using two-band Ginzburg-Landau theory. It was illustrated that in the absence of external magnetic field, the two-band model reduced to a single effective band theory with modified temperature dependences. The calculations revealed three-dimensional character of fluctuations of conductivity in the new Fe-based superconductor SmFeAsO0.8F0.2. It has been shown that such a model is in good agreement with experimental data for this compound.
Cosmic microwave background theory.
Bond, J R
1998-01-01
A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.
Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří
1988-01-01
Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal...
Liu, Baoding
2015-01-01
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...
DEFF Research Database (Denmark)
Hjørland, Birger
2009-01-01
Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......, evaluate and use such systems. Based on "a post-Kuhnian view" of paradigms this paper put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism and pragmatism...
DEFF Research Database (Denmark)
Bjerg, Ole; Presskorn-Thygesen, Thomas
2017-01-01
The paper is a contribution to current debates about conspiracy theories within philosophy and cultural studies. Wittgenstein’s understanding of language is invoked to analyse the epistemological effects of designating particular questions and explanations as a ‘conspiracy theory......’. It is demonstrated how such a designation relegates these questions and explanations beyond the realm of meaningful discourse. In addition, Agamben’s concept of sovereignty is applied to explore the political effects of using the concept of conspiracy theory. The exceptional epistemological status assigned...... to alleged conspiracy theories within our prevalent paradigms of knowledge and truth is compared to the exceptional legal status assigned to individuals accused of terrorism under the War on Terror. The paper concludes by discussing the relation between conspiracy theory and ‘the paranoid style...
Nonstationary Narrow-Band Response and First-Passage Probability
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
The notion of a nonstationary narrow-band stochastic process is introduced without reference to a frequency spectrum, and the joint distribution function of two consecutive maxima is approximated by use of an envelope. Based on these definitions the first passage problem is treated as a Markov po...... point process. The theory is applied to the response of a linear oscillator excited by a stationary process from t equals 0, and a simple algebraic relation between the nonstationary and stationary correlation functions of the response is derived....
First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2
Institute of Scientific and Technical Information of China (English)
HOU Xing-Gang; LIU An-Dong; HUANG Mei-Dong; LIAO Bin; WU Xiao-Ling
2009-01-01
The electronic structures of Ag-doped rutile and anatase TiO2 are studied by first-principles band calculations based on density funetionai theory with the full-potentiai linearized-augraented-plane-wave method.New occupied bands ore found between the band gaps of both Ag-doped rutile and anatase TiO2.The formation of these new bands Capri be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.
2009-01-01
The electronic properties and photocatalytic activity of nitrogen (N) and/or tungsten (W)-doped anatase are calculated using density functional theory. For N-doping, isolated N 2p states above the top of the valence band are responsible for experimentally observed redshifts in the optical absorption edge. For W-doping, W 5d states below the conduction band lead to band gap narrowing; the transition energy is reduced by 0.2 eV. Addition of W to the N-doped system yields significant band gap na...
Double-hole-mediated coupling of dopants and its impact on band gap engineering in TiO2.
Yin, Wan-Jian; Wei, Su-Huai; Al-Jassim, Mowafak M; Yan, Yanfa
2011-02-11
A double-hole-mediated coupling of dopants is unraveled and confirmed in TiO2 by density-functional theory calculations. We find that when a dopant complex on neighboring oxygen sites in TiO2 has net two holes, the holes will strongly couple to each other through significant lattice relaxation. The coupling results in the formation of fully filled impurity bands lying above the valence band of TiO2, leading to a much more effective band gap reduction than that induced by monodoping or conventional donor-acceptor codoping. Our results suggest a new path for semiconductor band gap engineering.
Effective band structure of random alloys.
Popescu, Voicu; Zunger, Alex
2010-06-11
Random substitutional A(x)B(1-x) alloys lack formal translational symmetry and thus cannot be described by the language of band-structure dispersion E(k(→)). Yet, many alloy experiments are interpreted phenomenologically precisely by constructs derived from wave vector k(→), e.g., effective masses or van Hove singularities. Here we use large supercells with randomly distributed A and B atoms, whereby many different local environments are allowed to coexist, and transform the eigenstates into an effective band structure (EBS) in the primitive cell using a spectral decomposition. The resulting EBS reveals the extent to which band characteristics are preserved or lost at different compositions, band indices, and k(→) points, showing in (In,Ga)N the rapid disintegration of the valence band Bloch character and in Ga(N,P) the appearance of a pinned impurity band.
Li, Weidong; Gao, Yanfei; Bei, Hongbin
2016-10-01
As a commonly used method to enhance the ductility in bulk metallic glasses (BMGs), the introduction of geometric constraints blocks and confines the propagation of the shear bands, reduces the degree of plastic strain on each shear band so that the catastrophic failure is prevented or delayed, and promotes the formation of multiple shear bands. The clustering of multiple shear bands near notches is often interpreted as the reason for improved ductility. Experimental works on the shear band arrangements in notched metallic glasses have been extensively carried out, but a systematic theoretical study is lacking. Using instability theory that predicts the onset of strain localization and the free-volume-based finite element simulations that predict the evolution of shear bands, this work reveals various categories of shear band arrangements in double edge notched BMGs with respect to the mode mixity of the applied stress fields. A mechanistic explanation is thus provided to a number of related experiments and especially the correlation between various types of shear bands and the stress state.
Li, Weidong; Gao, Yanfei; Bei, Hongbin
2016-01-01
As a commonly used method to enhance the ductility in bulk metallic glasses (BMGs), the introduction of geometric constraints blocks and confines the propagation of the shear bands, reduces the degree of plastic strain on each shear band so that the catastrophic failure is prevented or delayed, and promotes the formation of multiple shear bands. The clustering of multiple shear bands near notches is often interpreted as the reason for improved ductility. Experimental works on the shear band arrangements in notched metallic glasses have been extensively carried out, but a systematic theoretical study is lacking. Using instability theory that predicts the onset of strain localization and the free-volume-based finite element simulations that predict the evolution of shear bands, this work reveals various categories of shear band arrangements in double edge notched BMGs with respect to the mode mixity of the applied stress fields. A mechanistic explanation is thus provided to a number of related experiments and especially the correlation between various types of shear bands and the stress state. PMID:27721462
Valence and conduction band structure of the quasi-two-dimensional semiconductor Sn S2
Racke, David A.; Neupane, Mahesh R.; Monti, Oliver L. A.
2016-02-01
We present the momentum-resolved photoemission spectroscopy of both the valence and the conduction band region in the quasi-two-dimensional van der Waals-layered indirect band gap semiconductor Sn S2 . Using a combination of angle-resolved ultraviolet photoemission and angle-resolved two-photon photoemission (AR-2PPE) spectroscopy, we characterize the band structure of bulk Sn S2 . Comparison with density functional theory calculations shows excellent quantitative agreement in the valence band region and reveals several localized bands that likely originate from defects such as sulfur vacancies. Evidence for a moderate density of defects is also observed by AR-2PPE in the conduction band region, leading to localized bands not present in the computational results. The energetic structure and dispersion of the conduction bands is captured well by the computational treatment, with some quantitative discrepancies remaining. Our results provide a broader understanding of the electronic structure of Sn S2 in particular and van der Waals-layered semiconductors in general.
Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
Vatanabe, Sandro L; Paulino, Glaucio H; Silva, Emílio C N
2014-08-01
Phononic crystals (PCs) can exhibit phononic band gaps within which sound and vibrations at certain frequencies do not propagate. In fact, PCs with large band gaps are of great interest for many applications, such as transducers, elastic/acoustic filters, noise control, and vibration shields. Previous work in the field concentrated on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Because the main property of PCs is the presence of band gaps, one possible way to design microstructures that have a desired band gap is through topology optimization. Thus in this work, the main objective is to maximize the width of absolute elastic wave band gaps in piezocomposite materials designed by means of topology optimization. For band gap calculation, the finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional piezocomposite unit cells. Higher order frequency branches are investigated. The results demonstrate that tunable phononic band gaps in piezocomposite materials can be designed by means of the present methodology.
Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation
Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian
2016-01-01
We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.
Mode decomposition based on crystallographic symmetry in the band-unfolding method
Ikeda, Yuji; Carreras, Abel; Seko, Atsuto; Togo, Atsushi; Tanaka, Isao
2017-01-01
The band-unfolding method is widely used to calculate the effective band structures of a disordered system from its supercell model. The unfolded band structures show the crystallographic symmetry of the underlying structure, where the difference of chemical components and the local atomic relaxation are ignored. However, it has still been difficult to decompose the unfolded band structures into the modes based on the crystallographic symmetry of the underlying structure, and therefore detailed analyses of the unfolded band structures have been restricted. In this study, a procedure to decompose the unfolded band structures according to the small representations (SRs) of the little groups is developed. The decomposition is performed using the projection operators for SRs derived from the group representation theory. The current method is employed to investigate the phonon band structure of disordered face-centered-cubic Cu0.75Au0.25 , which has large variations of atomic masses and force constants among the atomic sites due to the chemical disorder. In the unfolded phonon band structure, several peculiar behaviors such as discontinuous and split branches are found in the decomposed modes corresponding to specific SRs. They are found to occur because different combinations of the chemical elements contribute to different regions of frequency.
Fade Mitigation Techniques at Ka-Band
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
Multi-band Modelling of Appearance
DEFF Research Database (Denmark)
2002-01-01
the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...... to lighting conditions. Results show that localisation accuracy of facial features is considerably increased using this appearance representation under normal and abnormal lighting and at multiple scales....
Multi-band Modelling of Appearance
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Larsen, Rasmus
2003-01-01
the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...... to lighting conditions. Results show that the localisation accuracy of facial features is considerably increased using this appearance representation under diffuse and directional lighting and at multiple scales....
Coherent band pathways between knots and links
Buck, Dorothy
2014-01-01
We categorise coherent band (aka nullification) pathways between knots and 2-component links. Additionally, we characterise the minimal coherent band pathways (with intermediates) between any two knots or 2-component links with small crossing number. We demonstrate these band surgeries for knots and links with small crossing number. We apply these results to place lower bounds on the minimum number of recombinant events separating DNA configurations, restrict the recombination pathways and determine chirality and/or orientation of the resulting recombinant DNA molecules.
Surface Material Characterization from Multi-band Optical Observations
Hall, D.
2010-09-01
Ground-based optical and radar sites routinely acquire resolved images of satellites. These resolved images provide the means to construct accurate wire-frame models of the observed body, as well as an understanding of its orientation as a function of time. Unfortunately, because such images are typically acquired in a single spectral band, they provide little information on the types of materials covering the satellite's various surfaces. Detailed surface material characterization generally requires spectrometric and/or multi-band photometric measurements. Fortunately, many instruments provide such multi-band information (e.g., spectrographs and multi-channel photometers). However, these sensors often measure the brightness of the entire satellite, with no spatial resolution at all. Because such whole-body measurements represent a summation of contributions from many reflecting surfaces, an ―un-mixing‖ or inversion process must be employed to determine the materials covering each of the satellite's individual sub-components. The first section of this paper describes the inversion theory required to retrieve satellite surface material properties from temporal sequences of whole-body multi-band brightness measurements. The inversion requires the following as input: 1) a set of multi-band measurements of a satellite's reflected-sunlight brightness, 2) the satellite's wire-frame model, including each major component capable of reflecting sunlight, 3) the satellite's attitude, specifying the body’s orientation at the time of each multi-band measurement, and 4) a database of bi-directional reflection distribution functions for a set of candidate surface materials. As output, the inversion process yields estimates of the fraction of each major satellite component covered by each candidate material. The second section of the paper describes several tests of the method by applying it to simulated multi-band observations of a cubical satellite with different materials
Band engineering of thermoelectric materials.
Pei, Yanzhong; Wang, Heng; Snyder, G J
2012-12-01
Lead chalcogenides have long been used for space-based and thermoelectric remote power generation applications, but recent discoveries have revealed a much greater potential for these materials. This renaissance of interest combined with the need for increased energy efficiency has led to active consideration of thermoelectrics for practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. The simple high symmetry NaCl-type cubic structure, leads to several properties desirable for thermoelectricity, such as high valley degeneracy for high electrical conductivity and phonon anharmonicity for low thermal conductivity. The rich capabilities for both band structure and microstructure engineering enable a variety of approaches for achieving high thermoelectric performance in lead chalcogenides. This Review focuses on manipulation of the electronic and atomic structural features which makes up the thermoelectric quality factor. While these strategies are well demonstrated in lead chalcogenides, the principles used are equally applicable to most good thermoelectric materials that could enable improvement of thermoelectric devices from niche applications into the mainstream of energy technologies.
Density of States for Warped Energy Bands
Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco
2016-02-01
Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest.
Triaxial superdeformed bands in {sup 86}Zr
Energy Technology Data Exchange (ETDEWEB)
Sarantites, D.G.; LaFosse, D.R.; Devlin, M.; Lerma, F. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Wood, V.Q.; Saladin, J.X.; Winchell, D.F. [Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Baktash, C.; Yu, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Afanasjev, A.V.; Ragnarsson, I. [Department of Mathematical Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)
1998-01-01
Four new superdeformed bands have been found in the nucleus {sup 86}Zr. The good agreement between experiment and configuration-dependent shell correction calculations suggests that three of the bands have triaxial superdeformed shapes. Such unique features in mass A{approximately}80 superdeformed bands have been predicted, but not observed experimentally until now. A fourth band in {sup 86}Zr is interesting due to a fairly constant and unusually high dynamic moment of inertia. Possible interpretations of this structure are discussed. {copyright} {ital 1998} {ital The American Physical Society}
Magnetic resonance imaging of iliotibial band syndrome.
Ekman, E F; Pope, T; Martin, D F; Curl, W W
1994-01-01
Seven cases of iliotibial band syndrome and the pathoanatomic findings of each, as demonstrated by magnetic resonance imaging, are presented. These findings were compared with magnetic resonance imaging scans of 10 age- and sex-matched control knees without evidence of lateral knee pain. Magnetic resonance imaging signal consistent with fluid was seen deep to the iliotibial band in the region of the lateral femoral epicondyle in five of the seven cases. Additionally, when compared with the control group, patients with iliotibial band syndrome demonstrated a significantly thicker iliotibial band over the lateral femoral epicondyle (P iliotibial band in the disease group was 5.49 +/- 2.12 mm, as opposed to 2.52 +/- 1.56 mm in the control group. Cadaveric dissections were performed on 10 normal knees to further elucidate the exact nature of the area under the iliotibial band. A potential space, i.e., a bursa, was found between the iliotibial band and the knee capsule. This series suggests that magnetic resonance imaging demonstrates objective evidence of iliotibial band syndrome and can be helpful when a definitive diagnosis is essential. Furthermore, correlated with anatomic dissection, magnetic resonance imaging identifies this as a problem within a bursa beneath the iliotibial band and not a problem within the knee joint.
Asymmetric localization in disordered Landau bands
Energy Technology Data Exchange (ETDEWEB)
Nita, M [Institute of Physics and Technology of Materials, PO Box MG7, Bucharest-Magurele (Romania); Aldea, A [Institute of Physics and Technology of Materials, PO Box MG7, Bucharest-Magurele (Romania); Zittartz, J [Institute of Theoretical Physics, Cologne University, 50937 Cologne (Germany)
2007-06-06
We show that, due to band mixing, the eigenstate localization within the disordered Landau bands gets an asymmetric structure: the degree of localization increases in the lower part of the band and decreases in the upper one. The calculation is performed for a two-dimensional lattice with the Anderson disorder potential and we prove that this effect is related to the upper shift of the extended states within the band and is enhanced by the disorder strength. The asymmetric localization and the energy shift disappear when the interband coupling is switched off.
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
Directory of Open Access Journals (Sweden)
Kathleen Holtz Deal
2007-05-01
Full Text Available Psychodynamic theory, a theory of personality originated by Sigmund Freud, has a long and complex history within social work and continues to be utilized by social workers. This article traces the theory’s development and explains key concepts with an emphasis on its current relational focus within object relations theory and self-psychology. Empirical support for theoretical concepts and the effectiveness of psychodynamic therapies is reviewed and critiqued. Future directions are discussed, including addressing cultural considerations, increasing research, and emphasizing a relational paradigm
Bernardo, Jose M
2000-01-01
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critica
DEFF Research Database (Denmark)
Smith, Shelley
This paper came about within the context of a 13-month research project, Focus Area 1 - Method and Theory, at the Center for Public Space Research at the Royal Academy of the Arts School of Architecture in Copenhagen, Denmark. This project has been funded by RealDania. The goals of the research...... project, Focus Area 1 - Method and Theory, which forms the framework for this working paper, are: * To provide a basis from which to discuss the concept of public space in a contemporary architectural and urban context - specifically relating to theory and method * To broaden the discussion of the concept...
Lubliner, Jacob
2008-01-01
The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and
A New Wide Band Planar Antenna and FDTD Simulation
Institute of Scientific and Technical Information of China (English)
WANGHonziian; GAOBenqing
2003-01-01
A new planar trigonometric curve (PTC)antenna is firstly proposed. The finite difference time domain method (FDTD) is used to analysis the input impedance and pattern of this antenna. The image the-ory is firstly applied to obtain the impedance using FDTD.Using the image theory the computation time and RAMspace needed by the calculation of monopole antenna can be reduced greatly, while the results remain almost the same level as those of the experiments. The FDTD sim-ulation of this PTC antenna exhibit the very wide band results in impedance (14:1) and pattern (5.7:1), which are much better than those of the circular disc monopole an-tenna (CMA) and Trilateral monoDole antenna (TLA).
Hodges, Wilfrid
1993-01-01
An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.
Nel, Louis
2016-01-01
This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...
Koschmann, Timothy; Roschelle, Jeremy; Nardi, Bonnie A.
1998-01-01
Includes three articles that discuss activity theory, based on "Context and Consciousness." Topics include human-computer interaction; computer interfaces; hierarchical structuring; mediation; contradictions and development; failure analysis; and designing educational technology. (LRW)
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
1988-06-30
MATRICES . The monograph Nonnegative Matrices [6] is an advanced book on all aspect of the theory of nonnegative matrices and...and on inverse eigenvalue problems for nonnegative matrices . The work explores some of the most recent developments in the theory of nonnegative...k -1, t0 . Define the associated polynomial of type <z>: t t-t 2 t-t 3 t-tk_ 1,X - x - x . . .X- where t = tk . The
Two novel silicon phases with direct band gaps.
Fan, Qingyang; Chai, Changchun; Wei, Qun; Yang, Yintang
2016-05-14
Due to its abundance, silicon is the preferred solar-cell material despite the fact that many silicon allotropes have indirect band gaps. Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in the solar cell industry. Looking for direct band gap silicon is still an important field in material science. Based on density function theory with the ultrasoft pseudopotential scheme in the frame of the local density approximation and the generalized gradient approximation, we have systematically studied the structural stability, absorption spectra, electronic, optical and mechanical properties and minimum thermal conductivity of two novel silicon phases, Cm-32 silicon and P21/m silicon. These are both thermally, dynamically and mechanically stable. The absorption spectra of Cm-32 silicon and P21/m silicon exhibit significant overlap with the solar spectrum and thus, excellent photovoltaic efficiency with great improvements over Fd3[combining macron]m Si. These two novel Si structures with direct band gaps could be applied in single p-n junction thin-film solar cells or tandem photovoltaic devices.
Kohn-Sham potential with discontinuity for band gap materials
Kuisma, M.; Ojanen, J.; Enkovaara, J.; Rantala, T. T.
2010-09-01
We model a Kohn-Sham potential with the discontinuity at integer particle numbers starting from the approximation by (GLLB) Gritsenko [Phys. Rev. A 51, 1944 (1995)10.1103/PhysRevA.51.1944]. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those obtained by accurate many-body perturbation-theory-based optimized potential methods. In addition, the resulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-correlation hole is modeled using a generalized gradient approximation (GGA) energy density and the response of the hole-to-density variations is evaluated by using the common-denominator approximation and homogeneous electron-gas-based assumptions. In our modification, we have chosen the PBEsol potential as the GGA to model the exchange hole and add a consistent correlation potential. The method is implemented in the GPAW code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which is as fast as GGA to calculate.
Solid State KA-Band, Solid State W-Band and TWT Amplifiers Project
National Aeronautics and Space Administration — Phase I of the proposal describes plans to develop a state of the art transmitter for the W-Band and KA -Band Cloud Radar system. Our focus will be concentrated in...
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Band plan. 90.1213 Section 90.1213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND... § 90.1213 Band plan. The following channel center frequencies are permitted to be aggregated...
Complex band structure and superlattice electronic states
Schulman, J. N.; McGill, T. C.
1981-04-01
The complex band structures of the bulk materials which constitute the alternating layer (001) semiconductor-semiconductor superlattice are investigated. The complex bands near the center of the Brillouin zone in the [001] direction are studied in detail. The decay lengths of superlattice states whose energies lie in the bulk band gaps of one of the semiconductors are determined from the dispersion curves of these bands for imaginary k-->. This method is applied using a tight-binding band-structure calculation to two superlattices: the AlAs-GaAs superlattice and the CdTe-HgTe superlattice. The decay lengths of AlAs-GaAs superlattice conduction-band minimum states are found to be substantially shorter than those for the CdTe-HgTe superlattice. These differences in the decay of the states in the two superlattices result in differences in the variation of the conduction-band effective masses with the thickness of the AlAs and CdTe layers. The conduction-band effective masses increase more rapidly with AlAs thickness in the AlAs-GaAs superlattice than with CdTe thickness in the CdTe-HgTe superlattice.
Concert Band Instrumentation: Realities and Remedies.
Rogers, George L.
1991-01-01
Suggests ways to solve problems resulting from imbalanced instrumentation in school concert bands. Identifies sources of imbalance. Encourages band directors to plan for correct instrumentation, to match students' characteristics and abilities to instruments, and to recruit students to play needed instruments. Discusses the benefits of balanced…
Link adaptation in unlicensed radio bands
Haartsen, Jaap C.; Schutter, George B.W.
2005-01-01
This paper presents a new collaborative mechanism for efficient coordination of radio communication devices, in particular addressing the unlicensed ISM band at 2.4 GHz. As the traffic in the ISM band is increasing tremendously, the potential for interference between uncoordinated devices is becomin
Error Analysis of Band Matrix Method
Taniguchi, Takeo; Soga, Akira
1984-01-01
Numerical error in the solution of the band matrix method based on the elimination method in single precision is investigated theoretically and experimentally, and the behaviour of the truncation error and the roundoff error is clarified. Some important suggestions for the useful application of the band solver are proposed by using the results of above error analysis.
Low band gap polymers for organic photovoltaics
DEFF Research Database (Denmark)
Bundgaard, Eva; Krebs, Frederik C
2007-01-01
Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...
Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor
Lan, Yann Wen
2016-09-05
The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.
Band gap engineering in polymers through chemical doping and applied mechanical strain
Lanzillo, Nicholas A.; Breneman, Curt M.
2016-08-01
We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.
DEFF Research Database (Denmark)
Palsgaard, Mattias Lau Nøhr; Crovetto, Andrea; Gunst, Tue
2016-01-01
In this paper we present a method to obtain the band offset of semiconductor heterointerfaces from Density Functional Theory together with the nonequilibrium Green's function method. Band alignment and detailed properties of the interface between Cu2ZnSnSe4 and CdS are extracted directly from first...... principles simulations. The interface is important for photovoltaics applications where in particular the band offsets are important for efficiency. The band bending pose a problem for accurate atomistic simulations of band offsets due to its long range. Here we investigate two different methods for dealing...
Evolution of structural relaxation spectra of glycerol within the gigahertz band
Franosch, T.; Göauttze, W.; Mayr, M. R.; Singh, A. P.
1997-03-01
The structural relaxation spectra and the crossover from relaxation to oscillation dynamics, as measured by Wuttke et al. [Phys. Rev. Lett. 72, 3052 (1994)] for glycerol within the GHz band by depolarized light scattering, are described by the solutions of a schematic mode coupling theory model. The applicability of scaling laws for the discussion of the model solutions is considered.
Band structure and optical properties of LiKB4O7 single crystal
Smok, P; Seinert, H; Kityk, [No Value; Berdowski, J
2003-01-01
The band structure (BS), electronic charge density distribution and linear optical properties of the LiKB4O7 (LKB4) single crystal are calculated using a self-consistent norm-conserving pseudo-potential method within the framework of the local density approximation theory. Dispersion of the imaginar
SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING
Institute of Scientific and Technical Information of China (English)
Kou Kit-Ian; Qian Tao
2005-01-01
In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.
Thermodynamics Fundamental Equation of a "Non-Ideal" Rubber Band from Experiments
Ritacco, Herna´n A.; Fortunatti, Juan C.; Devoto, Walter; Ferna´ndez-Miconi, Eugenio; Dominguez, Claudia; Sanchez, Miguel D.
2014-01-01
In this paper, we describe laboratory and classroom exercises designed to obtain the "fundamental" equation of a rubber band by combining experiments and theory. The procedure shows students how classical thermodynamics formalism can help to obtain empirical equations of state by constraining and guiding in the construction of the…
Band structure of superdeformed bands in odd-A Hg nuclei
Institute of Scientific and Technical Information of China (English)
陈星渠; 邢正
1997-01-01
Through particle-rotor model, band structure of superdeformed bands in odd-A Hg nuclei is analysed. An overall and excellent agreement between the calculated and observed kinematic and dynamic moments of inertia is obtained. The electromagnetic transition properties of SD bands can be used to identify the configuration with certainty.
Band-type microelectrodes for amperometric immunoassays
Energy Technology Data Exchange (ETDEWEB)
Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kang, Min-Jung [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)
2016-07-20
A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3′,5′-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. - Highlights: • A band-type microelectrode was made using a parylene-N film as a passivation layer. • The band-type microelectrode was 14-times more sensitive than circular-type electrode. • The influence of geometry on microelectrode properties was simulated using COMSOL. • The band-type electrode was applied to ELISA kits for hHBsAg and hHIV-antibodies.
Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi
2016-10-01
Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.
Determination of band alignment in the single-layer MoS2/WSe2 heterojunction
Chiu, Ming-Hui
2015-07-16
The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang
2016-08-09
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang
2016-01-01
The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014
Energy Technology Data Exchange (ETDEWEB)
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang
2016-07-21
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.
Localization in band random matrix models with and without increasing diagonal elements.
Wang, Wen-ge
2002-06-01
It is shown that localization of eigenfunctions in the Wigner band random matrix model with increasing diagonal elements can be related to localization in a band random matrix model with random diagonal elements. The relation is obtained by making use of a result of a generalization of Brillouin-Wigner perturbation theory, which shows that reduced Hamiltonian matrices with relatively small dimensions can be introduced for nonperturbative parts of eigenfunctions, and by employing intermediate basis states, which can improve the method of the reduced Hamiltonian matrix. The latter model deviates from the standard band random matrix model mainly in two aspects: (i) the root mean square of diagonal elements is larger than that of off-diagonal elements within the band, and (ii) statistical distributions of the matrix elements are close to the Lévy distribution in their central parts, except in the high top regions.
TiO2 Band Restructuring by B and P Dopants.
Li, Lei; Meng, Fanling; Hu, Xiaoying; Qiao, Liang; Sun, Chang Q; Tian, Hongwei; Zheng, Weitao
2016-01-01
An examination of the effect of B- and P-doping and codoping on the electronic structure of anatase TiO2 by performing density functional theory calculations revealed the following: (i) B- or P-doping effects are similar to atomic undercoordination effects on local bond relaxation and core electron entrapment; (ii) the locally entrapped charge adds impurity levels within the band gap that could enhance the utilization of TiO2 to absorb visible light and prolong the carrier lifetime; (iii) the core electron entrapment polarizes nonbonding electrons in the upper edges of the valence and conduction bands, which reduces not only the work function but also the band gap; and (iv) work function reduction enhances the reactivity of the carriers and band gap reduction promotes visible-light absorption. These observations may shed light on effective catalyst design and synthesis.
TUNABLE Band Structures of 2d Multi-Atom Archimedean-Like Phononic Crystals
Xu, Y. L.; Chen, C. Q.; Tian, X. G.
2012-06-01
Two dimensional multi-atom Archimedean-like phononic crystals (MAPCs) can be obtained by adding "atoms" at suitable positions in primitive cells of traditional simple lattices. Band structures of solid-solid and solid-air MAPCs are computed by the finite element method in conjunction with the Bloch theory. For the solid-solid system, our results show that the MAPCs can be suitably designed to split and shift band gaps of the corresponding traditional simple phononic crystal (i.e., with only one scatterer inside a primitive cell). For the solid-air system, the MAPCs have more and wider band gaps than the corresponding traditional simple phononic crystal. Numerical calculations for both solid-solid and solid-air MAPCs show that the band gap of traditional simple phononic crystal can be tuned by appropriately adding "atoms" into its primitive cell.
Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant
Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.
2014-05-01
Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).
A NEW DE-NOISING METHOD BASED ON 3-BAND WAVELET AND NONPARAMETRIC ADAPTIVE ESTIMATION
Institute of Scientific and Technical Information of China (English)
Li Li; Peng Yuhua; Yang Mingqiang; Xue Peijun
2007-01-01
Wavelet de-noising has been well known as an important method of signal de-noising.Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied widely.Compared with traditional 2-band wavelet,3-band wavelet has advantages in many aspects.According to this theory,an adaptive signal de-noising method in 3-band wavelet domain based on nonparametric adaptive estimation is proposed.The experimental results show that in 3-band wavelet domain,the proposed method represents better characteristics than Donoho method in protecting detail and improving the signal-to-noise ratio of reconstruction signal.
Possibility Theory versus Probability Theory in Fuzzy Measure Theory
Directory of Open Access Journals (Sweden)
Parul Agarwal
2015-05-01
Full Text Available The purpose of this paper is to compare probability theory with possibility theory, and to use this comparison in comparing probability theory with fuzzy set theory. The best way of comparing probabilistic and possibilistic conceptualizations of uncertainty is to examine the two theories from a broader perspective. Such a perspective is offered by evidence theory, within which probability theory and possibility theory are recognized as special branches. While the various characteristic of possibility theory within the broader framework of evidence theory are expounded in this paper, we need to introduce their probabilistic counterparts to facilitate our discussion.
What Good is Second Language Acquisition Theory?
Institute of Scientific and Technical Information of China (English)
Scott Thornbury
2009-01-01
First, the answers Check your answers on page 38 and see how many you got right. If you did well in the test, you are probably one of those teachers who are not only interested in SLA theory, but are keen to explore its classroom applications. If, on the other band, you didn't do so well, you are certainly not alone.
Systematic analysis of the unique band gap modulation of mixed halide perovskites.
Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha
2016-02-14
Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.
Tunable band structures of polycrystalline graphene by external and mismatch strains
Institute of Scientific and Technical Information of China (English)
Jiang-Tao Wu; Xing-Hua Shi; Yu-Jie Wei
2012-01-01
Lacking a band gap largely limits the application of graphene in electronic devices.Previous study shows that grain boundaries (GBs) in polycrystalline graphene can dramatically alter the electrical properties of graphene.Here,we investigate the band structure of polycrystalline graphene tuned by externally imposed strains and intrinsic mismatch strains at the GB by density functional theory (DFT) calculations.We found that graphene with symmetrical GBs typically has zero band gap even with large uniaxial and biaxial strain.However,some particular asymmetrical GBs can open a band gap in graphene and their band structures can be substantially tuned by external strains.A maximum band gap about 0.19 eV was observed in matched-armchair GB (5,5) | (3,7) with a misorientation of θ =13° when the applied uniaxial strain increases to 9％.Although mismatch strain is inevitable in asymmetrical GBs,it has a small influence on the band gap of polycrystalline graphene.
Flat band degeneracy and near-zero refractive index materials in acoustic crystals
Directory of Open Access Journals (Sweden)
Shiqiao Wu
2016-01-01
Full Text Available A Dirac-like cone is formed by utilizing the flat bands associated with localized modes in an acoustic crystal (AC composed of a square array of core-shell-structure cylinders in a water host. Although the triply-degeneracy seems to arise from two almost-overlapping flat bands touching another curved band, the enlarged view of the band structure around the degenerate point reveals that there are actually two linear bands intersecting each other at the Brillouin zone center, with another flat band passing through the same crossing point. The linearity of dispersion relations is achieved by tuning the geometrical parameters of the cylindrical scatterers. A perturbation method is used to not only accurately predict the linear slopes of the dispersions, but also confirm the linearity of the bands from first principles. An effective medium theory based on coherent potential approximation is developed, and it shows that a slab made of the AC carries a near-zero refractive index around the Dirac-like point. Full-wave simulations are performed to unambiguously demonstrate the wave manipulating properties of the AC structures such as perfect transmission, unidirectional transmission and wave front shaping.
Residual stress dependant anisotropic band gap of various (hkl) oriented BaI2 films
Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G.
2013-11-01
The thermally evaporated layer structured BaI2 grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different six (hkl) orientations show stress free anisotropic band gaps (2.48-3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (-0.071 eV/GPa) found to be significantly higher than that calculated (-0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass me*=0.66m0 and the hole effective mass mh*=0.53m0 have been determined from the calculated band structure.
DEFF Research Database (Denmark)
Carroll, Joseph; Clasen, Mathias; Jonsson, Emelie
2017-01-01
Biocultural theory is an integrative research program designed to investigate the causal interactions between biological adaptations and cultural constructions. From the biocultural perspective, cultural processes are rooted in the biological necessities of the human life cycle: specifically human...... and ideological beliefs, and artistic practices such as music, dance, painting, and storytelling. Establishing biocultural theory as a program that self-consciously encompasses the different particular forms of human evolutionary research could help scholars and scientists envision their own specialized areas...... of research as contributions to a coherent, collective research program. This article argues that a mature biocultural paradigm needs to be informed by at least 7 major research clusters: (a) gene-culture coevolution; (b) human life history theory; (c) evolutionary social psychology; (d) anthropological...
Carrier concentration dependence of band gap shift in n-type ZnO:Al films
Lu, J. G.; Fujita, S.; Kawaharamura, T.; Nishinaka, H.; Kamada, Y.; Ohshima, T.; Ye, Z. Z.; Zeng, Y. J.; Zhang, Y. Z.; Zhu, L. P.; He, H. P.; Zhao, B. H.
2007-04-01
Al-doped ZnO (AZO) thin films have been prepared by mist chemical vapor deposition and magnetron sputtering. The band gap shift as a function of carrier concentration in n-type zinc oxide (ZnO) was systematically studied considering the available theoretical models. The shift in energy gap, evaluated from optical absorption spectra, did not depend on sample preparations; it was mainly related to the carrier concentrations and so intrinsic to AZO. The optical gap increased with the electron concentration approximately as ne2/3 for ne≤4.2×1019 cm-3, which could be fully interpreted by a modified Burstein-Moss (BM) shift with the nonparabolicity of the conduction band. A sudden decrease in energy gap occurred at 5.4-8.4×1019 cm-3, consistent with the Mott criterion for a semiconductor-metal transition. Above the critical values, the band gap increased again at a different rate, which was presumably due to the competing BM band-filling and band gap renormalization effects, the former inducing a band gap widening and the latter an offsetting narrowing. The band gap narrowing (ΔEBGN) derived from the band gap renormalization effect did not show a good ne1/3 dependence predicated by a weakly interacting electron-gas model, but it was in excellent agreement with a perturbation theory considering different many-body effects. Based on this theory a simple expression, ΔEBGN=Ane1/3+Bne1/4+Cne1/2, was deduced for n-type ZnO, as well as p-type ZnO, with detailed values of A, B, and C coefficients. An empirical relation once proposed for heavily doped Si could also be used to describe well this gap narrowing in AZO.
Density functional theory studies of doping in Titania
2010-01-01
The structural and electronic properties of rutile and anatase, and the influence of both mono- and co-doping, have been studied using Density Functional Theory. Ge-doped anatase and rutile exhibit different band gap-narrowing mechanisms; in particular, host Ti 3d states move to lower energy regions in anatase and Ge 4s impurities states locate below the conduction band of rutile. For S-doping, S 3p states locate above the top of the valence band and mix with O 2p states, leading to band gap ...
Evolution of compactive shear localization bands: geological data and numerical models
Ambre, J.; Saillet, E.; Chemenda, A. I.; Wibberley, C.
2011-12-01
Compactive shear bands with different ratio of compactive to shear inelastic deformation were recently studied in detail in different regions within the porous rocks. Among them are nicely exposed networks of conjugate cataclastic bands formed in a single tectonic event in the "Bassin du Sud-Est" (Provence, France) in Cretaceous sandstones. Microanalysis of the material within the bands shows that they underwent mainly thrust-sense shearing with a minor compactive component. The most striking feature of the evolution of these bands is their thickening at the flanks by incorporation of the intact host rock into the deformation bands and formation of new strands. This feature as well as the general band pattern was reproduced in 2-D finite-difference models where the hardening modulus h grew with inelastic deformation. This growth causes strengthening of the material within the initial bands (resulting from deformation bifurcation) and considerably slows down its inelastic deformation after it reaches a maximal value defined by all the constitutive parameters and most of all by the rate of increase in h. The strengthening above a certain level results in the band widening due to the accretion at its edges of material not yet deformed as it becomes involved in compactive shearing. The inelastic deformation is therefore the most rapid along the band flanks, while the thickening with time of the band core part mainly undergoes elastic unloading starting from some stage. The initial band spacing depends on the initial h value h0 and increases with h0 in accordance with predictions from bifurcation theory. During deformation, the spacing reduces due to the propagation of bands that largely saturate the model/layer, resulting in a band pattern that resembles the natural band networks. The increase of h imposed in the models appears therefore as both an important and realistic property that can also be derived from available experimental rock testing data. On the other hand
Stewart, Ian
2003-01-01
Ian Stewart's Galois Theory has been in print for 30 years. Resoundingly popular, it still serves its purpose exceedingly well. Yet mathematics education has changed considerably since 1973, when theory took precedence over examples, and the time has come to bring this presentation in line with more modern approaches.To this end, the story now begins with polynomials over the complex numbers, and the central quest is to understand when such polynomials have solutions that can be expressed by radicals. Reorganization of the material places the concrete before the abstract, thus motivating the g
Gamma Vibrational Bands and Chiral Doublet Bands in A≈100 Neutron-rich Nuclei
Institute of Scientific and Technical Information of China (English)
ZHU Sheng-jiang; DING Huai-bo; J.H.Hamilton; A.V.Ramayya; CHE Xing-lai; J.K.Hwang; Y.X.Luo; J.O.Rasmussen; K.Li; WANG Jian-guo; XU Qiang; GU Long; YANG Yun-yi; S.Frauendorf; V.Dimitrov
2009-01-01
The level structures of neutron-rich ~(105)Mo,~(106)Mo,~(108)Mo and 110Ru nuclei in A≈100 region have been carefully investigated by coincidence measurements of the prompt γ-rays populated in the spontaneous fission of ~(252)Cf with the Gammasphere detector array.In 105Mo,one-phonon K =9/2 and two-phonon K=13/2 γ-vibrational bands have been identified.In ~(108)Mo,one-phonon γ-vibrational band is expanded and two-phonon γ-vibrational band has been identified.Two similar sets of bands in ~(106)Mo and ~(110)Ru are observed to high spins,which have been proposed as the soft chiral γ-vibrational bands.The characteristics for these γ-vibrational bands and chiral doublet bands have been discussed.
Effective theories of universal theories
Wells, James D
2015-01-01
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably $S$ and $T$ parameters) are only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the $h^3$, $hff$, $hVV$ vertices, 3 parameters for $hVV$ vertices absent in the Standard Model, and 1 four-fermion coupling of order $y_f^2$. All these parameters are defined in an unambiguous and basis-indepen...
Quasiparticle Band Structure of BaS
Institute of Scientific and Technical Information of China (English)
LU Tie-Yu; CHEN De-Yan; HUANG Mei-Chun
2006-01-01
@@ We calculate the band structure of BaS using the local density approximation and the GW approximation (GWA),i.e. in combination of the Green function G and the screened Coulomb interaction W. The Ba 4d states are treated as valence states. We find that BaS is a direct band-gap semiconductor. The result shows that the GWA band gap (Eg-Gw = 3.921 eV) agrees excellently with the experimental result (Eg-EXPT = 3.88 eV or 3.9eV).
One-Dimensional Anisotropic Band Gap Structure
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.
Asymmetric acoustic transmission in multiple frequency bands
Energy Technology Data Exchange (ETDEWEB)
Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-11-23
We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.
Catalogue of diffuse interstellar band measurements
Snow, T. P., Jr.; York, D. G.; Welty, D. E.
1976-01-01
Diffuse-band data have been collected from the literature and reduced statistically to a common measurement system, enabling correlation analyses to be made with a larger quantity of data than previously possible. A full listing of the catalogued data is presented, along with some discussion of the correlations. One important application of such studies is the identification of cases of peculiar diffuse-band behavior, and a table is given showing all cases of band strengths deviating by more than twice the mean dispersion from the best-fit correlations. This table may be useful in planning further observations.
R. Veenhoven (Ruut)
2014-01-01
markdownabstract__Abstract__ Assumptions Livability theory involves the following six key assumptions: 1. Like all animals, humans have innate needs, such as for food, safety, and companionship. 2. Gratification of needs manifests in hedonic experience. 3. Hedonic experience determines how much we
de Vreese, C.H.; Lecheler, S.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.
2016-01-01
Political issues can be viewed from different perspectives and they can be defined differently in the news media by emphasizing some aspects and leaving others aside. This is at the core of news framing theory. Framing originates within sociology and psychology and has become one of the most used th
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2013-08-01
Written by the author of the widely acclaimed textbook. Theoretical Atomic Physics Includes sections on quantum reflection, tunable Feshbach resonances and Efimov states. Useful for advanced students and researchers. This book presents a concise and modern coverage of scattering theory. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. The level of abstraction is kept as low as at all possible, and deeper questions related to mathematical foundations of scattering theory are passed by. The book should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. It is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Lenz, Alexander
2016-01-01
We set the scene for theoretical issues in charm physics that were discussed at CHARM 2016 in Bologna. In particular we emphasize the importance of improving our understanding of standard model contributions to numerous charm observables and we discuss also possible tests of our theory tools, like the Heavy Quark Expansion via the lifetime ratios of $D$-mesons
Hall, Marshall
2011-01-01
Includes proof of van der Waerden's 1926 conjecture on permanents, Wilson's theorem on asymptotic existence, and other developments in combinatorics since 1967. Also covers coding theory and its important connection with designs, problems of enumeration, and partition. Presents fundamentals in addition to latest advances, with illustrative problems at the end of each chapter. Enlarged appendixes include a longer list of block designs.
DEFF Research Database (Denmark)
Bertelsen, Olav Wedege; Bødker, Susanne
2003-01-01
the young HCI research tradition. But HCI was already facing problems: lack of consideration for other aspects of human behavior, for interaction with other people, for culture. Cognitive science-based theories lacked means to address several issues that came out of the empirical projects....
DEFF Research Database (Denmark)
Monthoux, Pierre Guillet de; Statler, Matt
2014-01-01
The recent Carnegie report (Colby, et al., 2011) characterizes the goal of business education as the development of practical wisdom. In this chapter, the authors reframe Scharmer’s Theory U as an attempt to develop practical wisdom by applying certain European philosophical concepts. Specifically...
Plummer, MD
1986-01-01
This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.
Xu, Sheng; Shen, Xiao; Hallman, Kent A.; Haglund, Richard F.; Pantelides, Sokrates T.
2017-03-01
The debate about whether the insulating phases of vanadium dioxide (V O2 ) can be described by band theory or whether it requires a theory of strong electron correlations remains unresolved even after decades of research. Energy-band calculations using hybrid exchange functionals or including self-energy corrections account for the insulating or metallic nature of different phases but have not yet successfully accounted for the observed magnetic orderings. Strongly correlated theories have had limited quantitative success. Here we report that by using hard pseudopotentials and an optimized hybrid exchange functional, the energy gaps and magnetic orderings of both monoclinic V O2 phases and the metallic nature of the high-temperature rutile phase are consistent with available experimental data, obviating an explicit role for strong correlations. We also identify a potential candidate for the newly found metallic monoclinic phase.
Microscopic theory of equilibrium polariton condensates
Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.
2016-12-01
We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.
Magnetic Dipole Band in 113^In
Institute of Scientific and Technical Information of China (English)
马克岩; 杨东; 陆景彬; 王烈林; 王辉东; 刘运祚; 刘弓冶; 李黎; 马英君; 杨森; 李广生; 贺创业; 李雪琴
2012-01-01
High spin states in the odd-A nucleus 113^In have been investigated using the re- action 110^Pd（7^Li, 4n） at a beam energy of 50 MeV. A new positive parity dipole band with the configuration of π（g9/2）^-lv（h11/2）^2 v （g7/2）^2 is established. The effective interaction V（θ） values of this band have been successfully described by a semiclassical geometric model based on shear mechanism, which show that the dipole band has the characteristics of magnetic rotation. In addition the collective rotational angular momentum for this band is extracted. The results show that the core contribution increases gradually with the increase of the rotation frequency.
Multi Band Gap High Efficiency Converter (RAINBOW)
Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.
1997-01-01
The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.
Shear bands in magnesium alloy AZ31
Institute of Scientific and Technical Information of China (English)
杨平; 毛卫民; 任学平; 唐全波
2004-01-01
During deformation of magnesium at low temperatures, cracks always develop at shear bands. The origin of the shear bands is the {101-1} twinning in basal-oriented grains and the mobility of this type of twin boundary is rather low. The most frequent deformation mechanisms in magnesium at low temperature are basal slip and {1012} twinning, all leading to the basal texture and therefore the formation of shear bands with subsequent fracture. The investigation on the influences of initial textures and grain sizes reveals that a strong prismatic initial texture of parallels to TD and fine grains of less than 5 μm can restrict the formation and expansion of shear bands effectively and therefore improve the mechanical properties and formability of magnesium.
Radio Band Observations of Blazar Variability
Aller, Margo F; Hughes, Philip A
2010-01-01
The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging; such measurements, now available in all four Stokes parameters, together with theoretical simulations, identify the origin of radio band variability and probe the characteristics of the radio jet where the broadband blazar emission originates. Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part based on limited modeling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this picture by reproducing the observed centimeter-band variations observed more generally, and are of current interest since these shocks may play a role in the gamma-ray flaring detected by Fermi. Recent UMRAO multifrequency Stokes V studies of bright blazars identify the spec...
Institute of Scientific and Technical Information of China (English)
HE Xiao-xiang; DENG Hong-wei
2009-01-01
A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.
Development of Sintered Iron Driving Bands
Directory of Open Access Journals (Sweden)
R. P. Khanna
1974-07-01
Full Text Available The present investigation reports some detailed studies carried out on the development testing and proving of sintered Iron Driving Bands. Sintering studies on two different types of iron powders together with a few Fe-Cu compositions have been made and based on the results there of, parameters for development iron driving bands have been standardised. The results obtained clearly demonstrate that substitution of copper by sintered iron is highly practicable alternative.
Modification in band gap of zirconium complexes
Sharma, Mayank; Singh, J.; Chouhan, S.; Mishra, A.; Shrivastava, B. D.
2016-05-01
The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.
Home-use cancer detecting band aid
Zalevsky, Zeev; Rudnitsky, Arkady; Sheinman, Victor; Tzoy, Andrey; Toktosunov, Aitmamat; Adashov, Arkady
2016-03-01
In this paper we present a novel concept in which special band aid is developed for early detection of cancer. The band aid contains an array of micro needles with small detection array connected to each needle which inspects the color of the surface of the skin versus time after being pinched with the needles. We were able to show in pre-clinical trials that the color varies differently if the skin is close to tumor tissue.
Design of Compact Penta-Band and Hexa-Band Microstrip Antennas
Srivastava, Kunal; Kumar, Ashwani; Kanaujia, Binod K.
2016-03-01
This paper presents the design of two multi-band microstrip antennas. The antenna-1 gives Penta-Band and antenna-2 gives Hexa-band in the WLAN band. The frequency bands of the antenna-1 are Bluetooth 2.47 GHz (2.43 GHz-2.54 GHz), WiMax band 3.73 GHz (3.71 GHz-3.77 GHz), WLAN 5.1 GHz (4.99 GHz-5.13 GHz), upper WLAN 6.36 GHz (6.29 GHz-6.43 GHz), C band band 7.42 GHz (7.32 GHz-7.50 GHz) and the antenna-2 are WLAN band 2.6 GHz (2.56 GHz-2.63 GHz), 3.0 GHz (2.94 GHz-3.05 GHz), WiMax band 3.4 GHz (3.34 GHz-3.55 GHz), 4.85 GHz (4.81 GHz-4.92 GHz), WLAN 5.3 GHz (5.27 GHz-5.34 GHz) and upper WLAN 6.88 GHz. Both the antennas are fabricated and their measured results are presented to validate the simulated results. Proposed antennas have compact sizes and good radiation performances.
Energy Technology Data Exchange (ETDEWEB)
Pretolesi, F.; Derchi, L.E. [Cattedra di Radiologia R, Univ. di Genova (Italy); Camerini, G.; Gianetta, E.; Marinari, G.M.; Scopinaro, N. [Semeiotica Chirurgica R, Univ. di Genova (Italy)
2001-03-01
The aim of this study was to analyse radiological findings in patients surgically treated for adjustable silicone gastric banding (ASGB) for morbid obesity complicated by band penetration into the gastric lumen. We reviewed the records of four patients with surgically confirmed penetration of gastric band into the gastric lumen; three had preoperative opaque meal, one only a plain abdominal film. Vomiting was the presenting symptom in two cases, whereas others had new weight gain and loss of early satiety. Two patients had normally closed bands: radiography showed that their position had changed from previous controls and the barium meal had passed out of their lumen. Two patients had an open band. One patient had the band at the duodeno-jejunal junction, and the tube connecting the band to the subcutaneous port presented a winding course suggesting the duodenum. In the other case, both plain film and barium studies failed to demonstrate with certainty the intragastric position of the band. As ASGB is becoming widely used, radiologists need to be familiar with its appearances and its complications. Band penetration into the stomach is a serious complication which needs band removal. Patients with this problem, often with non-specific symptoms and even those who are asymptomatic, are encountered during radiographic examinations requested either for gastric problems or follow-up purposes, and have to be properly diagnosed. (orig.)
Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses
Energy Technology Data Exchange (ETDEWEB)
Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.
2015-08-15
Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.
Composition dependent band offsets of ZnO and its ternary alloys
Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong
2017-01-01
We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1−xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1−xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 − 2.33x + 1.77x2 for Zn1−xMgxO and Zn1−xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics. PMID:28134298
Helms, Lester L
2014-01-01
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In ...
Hashiguchi, Koichi
2014-01-01
This book was written to serve as the standard textbook of elastoplasticity for students, engineers and researchers in the field of applied mechanics. The present second edition is improved thoroughly from the first edition by selecting the standard theories from various formulations and models, which are required to study the essentials of elastoplasticity steadily and effectively and will remain universally in the history of elastoplasticity. It opens with an explanation of vector-tensor analysis and continuum mechanics as a foundation to study elastoplasticity theory, extending over various strain and stress tensors and their rates. Subsequently, constitutive equations of elastoplastic and viscoplastic deformations for monotonic, cyclic and non-proportional loading behavior in a general rate and their applications to metals and soils are described in detail, and constitutive equations of friction behavior between solids and its application to the prediction of stick-slip phenomena are delineated. In additi...
2015-01-01
A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor.
DEFF Research Database (Denmark)
Stein, Irene F.; Stelter, Reinhard
2011-01-01
Communication theory covers a wide variety of theories related to the communication process (Littlejohn, 1999). Communication is not simply an exchange of information, in which we have a sender and a receiver. This very technical concept of communication is clearly outdated; a human being...... is not a data processing device. In this chapter, communication is understood as a process of shared meaning-making (Bruner, 1990). Human beings interpret their environment, other people, and themselves on the basis of their dynamic interaction with the surrounding world. Meaning is essential because people...... ascribe specific meanings to their experiences, their actions in life or work, and their interactions. Meaning is reshaped, adapted, and transformed in every communication encounter. Furthermore, meaning is cocreated in dialogues or in communities of practice, such as in teams at a workplace or in school...
Ashkenazi, J.; Kuper, C. G.
1989-12-01
The cuprate superconductors are modelled by two metallic CuO 2planes, separated by insulating layers, in an extended Hubbard Hamiltonian. Hybridization of O(2 p) and Cu( d) orbitals splits the wide bands of LDA theory, yielding a narrow conduction band of antibonding holes. Holes on the two CuO 2 planes are correlated via interplane hopping, giving a non-magnetic normal Fermi liquid. Charge exchange between the planes and the intervening layers generates attraction and a BCS condensation.
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Band-to-Band Tunnel Transistor Design and Modeling for Low Power Applications
2012-05-10
tunneling phenomenon which was first observed over 50 years ago in narrow bandgap germanium p-n junction diodes by Esaki [2.1], operates by having electrons...Tunneling devices utilizing the band-to-band tunneling mechanism have been known to overcome this fundamental limit. In this thesis , the tunneling...band gap Ge devices and Strained Si/Ge hetero-structure devices utilizing a lower effective bandgap are also explored to improve the performance of the
Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio.
Daga, R R; Thode, G; Amores, A
1996-01-01
The chromosome complement of Danio rerio was investigated by Giemsa staining and C-banding, Ag-NORs and replication banding. The diploid number of this species is 2n = 50 and the arm number (NF) = 100. Constitutive heterochromatin was located at the centromeric position of all chromosome pairs. Nucleolus organizer regions appeared in the terminal position of the long arms of chromosomes 1, 2 and 8. Replication banding pattern allowed the identification of each chromosome pair.
Energy Technology Data Exchange (ETDEWEB)
Palacios, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)]. E-mail: pablop@etsit.upm.es; Sanchez, K. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J.C. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J.J. [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2007-05-31
Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Temperature dependence of the magnetization M(T) of two-band superconductors is studied in the vicinity of upper critical field Hc2 by using a two-band Ginzburg-Landau (GL) theory. It is shown that magnetization M(T) has a nonlinear character due to positive curvature of upper critical field Hc2(T) and temperature dependence of effective Ginzburg-Landau parameter (n)eff(T). The results are shown to be in qualitative agreement with experimental data for the superconducting magnesium diboride, MgB2.
Defect-band mediated ferromagnetism in Gd-doped ZnO thin films
Venkatesh, S.
2015-01-07
Gd-doped ZnO thin films prepared by pulsed laser deposition with Gd concentrations varying from 0.02–0.45 atomic percent (at. %) showed deposition oxygen pressure controlled ferromagnetism. Thin films prepared with Gd dopant levels (
Crystal structure and band gap of AlGaAsN
Munich, D. P.; Pierret, R. F.
1987-09-01
Quantum dielectric theory is applied to the quaternary alloy Al xGa 1- xAs 1- yN y to predict its electronic properties as a function of Al and N mole fractions. Results are presented for the expected crystal structure, minimum electron energy band gap, and direction in k-space of the band gap minimum for all x and y values. The results suggest that, for a proper choice of x and y, Al xGa 1- xAs 1- yN y could exhibit certain advantages over Al xGa 1- xAs when utilized in field-effect transistor structures.
First-principles studies of the electric-field effect on the band structure of trilayer graphenes
Wang, Yun-Peng; Li, Xiang-Guo; Cheng, Hai-Ping
Electric-field effects on the electronic structure of trilayer graphene are investigated using the density functional theory in the generalized gradient approximation. Two different stacking orders, namely Bernal and rhombohedral, of trilayer graphene are considered. Our calculations reproduce the experimentally data on band gap opening in Bernal stacking and band overlap in rhombohedral trilayer graphene. In addition, we studied effects of charge doping using dual gate configurations. The size of band gap opening in Bernal trilayer graphene can be tuned by charge doping, and charge doping also causes an electron-hole asymmetry in the density of states. Furthermore, hole-doping can reopen a band gap in the band overlapping region of rhombohedral trilayer grapheme induced by electric fields, which contributes to an extra peak in the optical conductivity spectra. This work is supported by DOE # DE-FG02-02ER45995.
Analytic evaluation of Raman intensities in coupled-cluster theory
Gauss, Jürgen; Kallay, Mihaly; O'Neill, Darragh P.
2008-01-01
Abstract We present the first implementation for the analytic calculation of polarizability derivatives using coupled-cluster theory. These derivatives are related to the intensity of bands seen in Raman spectroscopy, and are therefore important quantities which can also be measured experimentally. The required theory of analytic third derivatives is discussed and also connected to response theory to allow the calculation of frequency-dependent quantities. This work includes the...
Exner, Ulrike; Kaiser, Jasmin; Gier, Susanne
2013-01-01
In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains. The chemical composition of this dolomite cement (10–12 wt% FeO) differs from detrital dolomite grains in the host rock (<2 wt% FeO). This observation in combination with stable isotope data suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from an external, non-meteoric source. After an initial increase of porosity by dilation, disaggregation and fragmentation of detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the porosity relative to the host sediment. The retention of pyrite cement by these cementation bands as well as the different degree of oil staining on either side of the bands demonstrate that these cementation bands act as effective barriers to the migration of fluids and should be considered in reservoir models. PMID:26321782
Mitov, Mihail I; Greaser, Marion L; Campbell, Kenneth S
2009-03-01
GelBandFitter is a computer program that uses non-linear regression techniques to fit mathematical functions to densitometry profiles of protein gels. This allows for improved quantification of gels with partially overlapping and potentially asymmetric protein bands. The program can also be used to analyze immunoblots with closely spaced bands. GelBandFitter was developed in Matlab and the source code and/or a Windows executable file can be downloaded at no cost to academic users from http://www.gelbandfitter.org.
Ultrawide low frequency band gap of phononic crystal in nacreous composite material
Energy Technology Data Exchange (ETDEWEB)
Yin, J.; Huang, J.; Zhang, S., E-mail: zhangs@dlut.edu.cn; Zhang, H.W.; Chen, B.S.
2014-06-27
The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model.
Modifying the band gap and optical properties of Germanium nanowires by surface termination
Legesse, Merid; Fagas, Giorgos; Nolan, Michael
2017-02-01
Semiconductor nanowires, based on silicon (Si) or germanium (Ge) are leading candidates for many ICT applications, including next generation transistors, optoelectronics, gas and biosensing and photovoltaics. Key to these applications is the possibility to tune the band gap by changing the diameter of the nanowire. Ge nanowires of different diameter have been studied with H termination, but, using ideas from chemistry, changing the surface terminating group can be used to modulate the band gap. In this paper we apply the generalised gradient approximation of density functional theory (GGA-DFT) and hybrid DFT to study the effect of diameter and surface termination using -H, -NH2 and -OH groups on the band gap of (001), (110) and (111) oriented germanium nanowires. We show that the surface terminating group allows both the magnitude and the nature of the band gap to be changed. We further show that the absorption edge shifts to longer wavelength with the -NH2 and -OH terminations compared to the -H termination and we trace the origin of this effect to valence band modifications upon modifying the nanowire with -NH2 or -OH. These results show that it is possible to tune the band gap of small diameter Ge nanowires over a range of ca. 1.1 eV by simple surface chemistry.
Study of electronic structures and absorption bands of BaMgF4 crystal with F colour centre
Institute of Scientific and Technical Information of China (English)
Kang Ling-Ling; Liu Ting-Yu; Zhang Qi-Ren; Xu Ling-Zhi; Zhang Fei-Wu
2011-01-01
The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slate-theory, using a numerically discrete variational (DV-Xα)method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band.The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.
Spin-split bands of metallic hydrogenated ZnO ( 10 1 ¯ 0 surface: First-principles study
Directory of Open Access Journals (Sweden)
Moh. Adhib Ulil Absor
2016-02-01
Full Text Available For spintronics applications, generation of significant spin transport is required, which is achieved by applying a semiconductor surface exhibiting metallic spin-split surface-state bands. We show that metallic spin-split surface-state bands are achieved on hydrogenated ZnO ( 10 1 ¯ 0 surface by using first-principles density-functional theory calculations. We find that these metallic surface-state bands with dominant Zn-s and p orbitals exhibit Rashba spin splitting with a strong anisotropic character. This finding makes spintronics devices using oxide electronics surface materials possible.
Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.
2015-09-01
Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.
Semiclassical spin transport in spin-orbit-coupled bands.
Culcer, Dimitrie; Sinova, Jairo; Sinitsyn, N A; Jungwirth, T; MacDonald, A H; Niu, Q
2004-07-23
Motivated by recent interest in novel spintronics effects, we develop a semiclassical theory of spin transport that is valid for spin-orbit coupled bands. Aside from the obvious convective term in which the average spin is transported at the wave packet group velocity, the spin current has additional contributions from the wave packet's spin and torque dipole moments. Electric field corrections to the group velocity and carrier spin contribute to the convective term. Summing all terms we obtain an expression for the intrinsic spin-Hall conductivity of a hole-doped semiconductor, which agrees with the Kubo formula prediction for the same quantity. We discuss the calculation of spin accumulation, which illustrates the importance of the torque dipole near the boundary of the system.
Summary and Analysis of the U.S. Government Bat Banding Program
Ellison, Laura E.
2008-01-01
This report summarizes the U.S. Government Bat Banding Program (BBP) from 1932 to 1972. More than 2 million bands were issued during the program, of which approximately 1.5 million bands were applied to 36 bat species by scientists in many locations in North America including the U.S., Canada, Mexico, and Central America. Throughout the BBP, banders noticed numerous and deleterious effects on bats, leading to a moratorium on bat banding by the U.S. Fish and Wildlife Service, and a resolution to cease banding by the American Society of Mammalogists in 1973. One of the main points of the memorandum written to justify the moratorium was to conduct a 'detailed evaluation of the files of the bat-banding program.' However, a critical and detailed evaluation of the BBP was never completed. In an effort to satisfy this need, I compiled a detailed history of the BBP by examining the files and conducting a literature review on bat banding activities during the program. I also provided a case study in managing data and applying current mark-recapture theory to estimate survival using the information from a series of bat bands issued to Clyde M. Senger during the BBP. The majority of bands applied by Senger were to Townsend's big-eared bat (Corynorhinus townsendii), a species of special concern for many states within its geographic range. I developed a database management system for the bat banding records and then analyzed and modeled survival of hibernating Townsend's big-eared bats at three main locations in Washington State using Cormack-Jolly-Seber (CJS) open models and the modeling capabilities of Program MARK. This analysis of a select dataset in the BBP files provided relatively precise estimates of survival for wintering Townsend's big-eared bats. However, this dataset is unique due to its well-maintained and complete state and because there were high recapture rates over the course of banding; it is doubtful that other unpublished datasets of the same quality exist
Collective Band Structures in Neutron-Rich 108Mo Nucleus
Institute of Scientific and Technical Information of China (English)
DING Huai-Bo; WANG Jian-Guo; XU Qiang; ZHU Sheng-Jiang; J. H. Hamilton; A. V. Ramayya; J. K. Hwang; Y. X. Luo; J. O. Rasmussen; I. Y. Lee; CHE Xing-Lai
2007-01-01
High spin states in the neutron-rich 108Mo nucleus are studied by measuring prompt γ-rays following the spontaneous fission of 252Cf with a Gammasphere detector array. The ground-state band is confirmed, and the one-phonon γ-vibrational band is updated with spin up to 12 h. A new collective band with the band head level at 1422.4 keV is suggested as a two-phonon γ-vibrational band. Another new band is proposed as a two-quasi-proton excitation band. Systematic characteristics of the collective bands are discussed.
Mesoscopic colonization of a spectral band
Bertola, M; Mo, M Y
2009-01-01
We consider the unitary matrix model in the limit where the size of the matrices become infinite and in the critical situation when a new spectral band is about to emerge. In previous works the number of expected eigenvalues in a neighborhood of the band was fixed and finite, a situation that was termed "birth of a cut" or "first colonization". We now consider the transitional regime where this microscopic population in the new band grows without bounds but at a slower rate than the size of the matrix. The local population in the new band organizes in a "mesoscopic" regime, in between the macroscopic behavior of the full system and the previously studied microscopic one. The mesoscopic colony may form a finite number of new bands, with a maximum number dictated by the degree of criticality of the original potential. We describe the delicate scaling limit that realizes/controls the mesoscopic colony. The method we use is the steepest descent analysis of the Riemann-Hilbert problem that is satisfied by the asso...
Automated coregistration of MTI spectral bands.
Energy Technology Data Exchange (ETDEWEB)
Theiler, J. P. (James P.); Galbraith, A. E. (Amy E.); Pope, P. A. (Paul A.); Ramsey, K. A. (Keri A.); Szymanski, J. J. (John J.)
2002-01-01
In the focal plane of a pushbroom imager, a linear array of pixels is scanned across the scene, building up the image one row at a time. For the Multispectral Thermal Imager (MTI), each of fifteen different spectral bands has its own linear array. These arrays are pushed across the scene together, but since each band's array is at a different position on the focal plane, a separate image is produced for each band. The standard MTI data products resample these separate images to a common grid and produce coregistered multispectral image cubes. The coregistration software employs a direct 'dead reckoning' approach. Every pixel in the calibrated image is mapped to an absolute position on the surface of the earth, and these are resampled to produce an undistorted coregistered image of the scene. To do this requires extensive information regarding the satellite position and pointing as a function of time, the precise configuration of the focal plane, and the distortion due to the optics. These must be combined with knowledge about the position and altitude of the target on the rotating ellipsoidal earth. We will discuss the direct approach to MTI coregistration, as well as more recent attempts to 'tweak' the precision of the band-to-band registration using correlations in the imagery itself.
Endoscopic iliotibial band release in snapping hip.
Zini, Raul; Munegato, Daniele; De Benedetto, Massimo; Carraro, Andrea; Bigoni, Marco
2013-01-01
Several open surgical techniques have been used to treat recalcitrant cases of snapping iliotibial band with varying results. Recently, endoscopic techniques have become available. The purpose of this study was to investigate the results of a modified endoscopic iliotibial band release using a longitudinal retrospective case series. Fifteen patients (three men and 12 women) with symptomatic external snapping hip were treated with an endoscopic release of the iliotibial band. The average age was 25 years (range 16-37 years). The procedure was performed in the lateral decubitus position using two portals; the iliotibial band was transversally released using a radiofrequency hook probe. The mean follow-up period was 33.8 months (range 12-84 months). The snapping phenomenon was overcome in all the patients. The mean pre-op pain VAS score was 5.5 mm (range 5-7 mm) and the mean post-op pain VAS score was 0.53 mm (range 0-2 mm) with a statistically significant reduction with respect to the preoperative value (piliotibial band release is a safe and reproducible technique with excellent results in terms of snapping phenomenon resolution, patient satisfaction, and return to previous level of activity. After strenuous sporting activities 40% of patients complained of very slight pain.
Merris, Russell
2001-01-01
A lively invitation to the flavor, elegance, and power of graph theoryThis mathematically rigorous introduction is tempered and enlivened by numerous illustrations, revealing examples, seductive applications, and historical references. An award-winning teacher, Russ Merris has crafted a book designed to attract and engage through its spirited exposition, a rich assortment of well-chosen exercises, and a selection of topics that emphasizes the kinds of things that can be manipulated, counted, and pictured. Intended neither to be a comprehensive overview nor an encyclopedic reference, th
2009-01-01
This book deals with the basic subjects of design theory. It begins with balanced incomplete block designs, various constructions of which are described in ample detail. In particular, finite projective and affine planes, difference sets and Hadamard matrices, as tools to construct balanced incomplete block designs, are included. Orthogonal latin squares are also treated in detail. Zhu's simpler proof of the falsity of Euler's conjecture is included. The construction of some classes of balanced incomplete block designs, such as Steiner triple systems and Kirkman triple systems, are also given.
Goldie, Charles M
1991-01-01
This book is an introduction, for mathematics students, to the theories of information and codes. They are usually treated separately but, as both address the problem of communication through noisy channels (albeit from different directions), the authors have been able to exploit the connection to give a reasonably self-contained treatment, relating the probabilistic and algebraic viewpoints. The style is discursive and, as befits the subject, plenty of examples and exercises are provided. Some examples and exercises are provided. Some examples of computer codes are given to provide concrete illustrations of abstract ideas.
Blyth, T S; Sneddon, I N; Stark, M
1972-01-01
Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli
Diestel, Reinhard
2012-01-01
HauptbeschreibungThis standard textbook of modern graph theory, now in its fourth edition, combinesthe authority of a classic with the engaging freshness of style that is the hallmarkof active mathematics. It covers the core material of the subject with concise yetreliably complete proofs, while offering glimpses of more advanced methodsin each field by one or two deeper results, again with proofs given in full detail.The book can be used as a reliable text for an introductory course, as a graduatetext, and for self-study. Rezension"Deep, clear, wonderful. This is a serious book about the
Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film
Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.
2016-10-01
This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.
Obituary: David L. Band (1957-2009)
Cominsky, Lynn
2011-12-01
David L. Band, of Potomac Maryland, died on March 16, 2009 succumbing to a long battle with spinal cord cancer. His death at the age of 52 came as a shock to his many friends and colleagues in the physics and astronomy community. Band showed an early interest and exceptional aptitude for physics, leading to his acceptance at the Massachusetts Institute of Technology as an undergraduate student in 1975. After graduating from MIT with an undergraduate degree in Physics, Band continued as a graduate student in Physics at Harvard University. His emerging interest in Astrophysics led him to the Astronomy Department at the Harvard Smithsonian Center for Astrophysics (CfA), where he did his dissertation work with Jonathan Grindlay. His dissertation (1985) entitled "Non-thermal Radiation Mechanisms and Processes in SS433 and Active Galactic Nuclei" was "pioneering work on the physics of jets arising from black holes and models for their emission, including self-absorption, which previewed much to come, and even David's own later work on Gamma-ray Bursts," according to Grindlay who remained a personal friend and colleague of Band's. Following graduate school, Band held postdoctoral positions at the Lawrence Livermore Laboratory, the University of California at Berkeley and the Center for Astronomy and Space Sciences at the University of California San Diego where he worked on the BATSE experiment that was part of the Compton Gamma Ray Observatory (CGRO), launched in 1991. BATSE had as its main objective the study of cosmic gamma-ray bursts (GRBs) and made significant advances in this area of research. Band became a world-renowned figure in the emerging field of GRB studies. He is best known for his widely-used analytic form of gamma-ray burst spectra known as the "Band Function." After the CGRO mission ended, Band moved to the Los Alamos National Laboratory where he worked mainly on classified research but continued to work on GRB energetics and spectra. When NASA planned
Simplicial band depth for multivariate functional data
López-Pintado, Sara
2014-03-05
We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.
Band structure engineering in organic semiconductors
Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl
2016-06-01
A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.
Topological flat bands from dipolar spin systems.
Yao, N Y; Laumann, C R; Gorshkov, A V; Bennett, S D; Demler, E; Zoller, P; Lukin, M D
2012-12-28
We propose and analyze a physical system that naturally admits two-dimensional topological nearly flat bands. Our approach utilizes an array of three-level dipoles (effective S=1 spins) driven by inhomogeneous electromagnetic fields. The dipolar interactions produce arbitrary uniform background gauge fields for an effective collection of conserved hard-core bosons, namely, the dressed spin flips. These gauge fields result in topological band structures, whose band gap can be larger than the corresponding bandwidth. Exact diagonalization of the full interacting Hamiltonian at half-filling reveals the existence of superfluid, crystalline, and supersolid phases. An experimental realization using either ultracold polar molecules or spins in the solid state is considered.
Design of broad-band mixer on V-band%V波段宽带混频器的设计
Institute of Scientific and Technical Information of China (English)
宋翔; 年夫顺; 代秀
2012-01-01
Because of broad-band mixer's broad working band and low conversion loss,it is often used in communication, radar and microwave measurement systems. In this paper, the design and the performance of a V-band single balance mixer based on fin-line circuit are described. From the theory of the single balance mixer,the design of the single balance mixer-circuit and the structure of waveguide to fin line are expounded. Finally,the conversion loss of this mixer is less than 10 dBm and has a good flatness when the mixer's RF is sweeping from 50~75 GHz.%宽带混频器由于其工作带宽大,变频损耗低,在通信、雷达以及微波毫米波测试仪器等系统得到广泛的应用.介绍了一种V波段鳍线单平衡混频器的设计过程并给出了测试结果.从单平衡混频器的基本原理出发,阐述了鳍线单平衡混频电路和矩形波导到鳍线的过渡结构的设计.最后制作出的宽带混频器在射频频率为50～75 GHz的整个V波段内,变频损耗小于10 dBm,并有良好的变频损耗平坦度.
Band selection study for SMILES-2
Suzuki, Makoto; Shiotani, Masato; Ochiai, Satoshi; Baron, Philippe; Manago, Naohiro; Nishibori, Toshiyuki; Mizuno, Akira; Ozeki, Hiroyuki; Uzawa, Yoshinori; Maezawa, Hiroyuki
2016-07-01
Submillimeter limb sounding is very useful technique to investigate Earth's middle atmosphere since it can measure both reactive minor species (ClO, BrO, HO¬2, etc) and stable species (O3, HCl, etc) at day/night conditions as already established by UARS/MLS, Odin/SMR, and Aura/MLS. Superconducting Submillimeter-Wave Limb-emission Sounder (SMILES) was the first instrument to use 4K cooled SIS (Superconductor-Insulator-Superconductor) detection system for the limb sounding of the atmosphere in the frequency regions 625 GHz (Bands A and B) and 650 GHz (Band C) [1]. It has demonstrated its very high sensitivity (System Temperature, Tsys ~250K) for measuring stratospheric and mesospheric species, O3, HCl, ClO, HO2, HOCl, BrO, and O3 isotopes from Oct. 12, 2009 to Apr. 21, 2010 [2-5]. Since SMILES operation has terminated after only 6 months operation due to failure of sub-mm local oscillator (and later 4K cooler system), there exist strong scientific demand to develop successor of SMILES, the SMILES-2, which has optimized and enhanced frequency coverage to observe: (a) BrO and HOCl without interferences of stronger emission lines, (b) N2O, H2O, NO2, and CH3Cl not covered by the SMILES frequency regions, and (c) O2 line to measure temperature. This paper discusses possible SMILES-2 band selection considering limited instrument resources (number of SIS mixers and sub-mm local oscillator) and scientific requirements. This paper describes current status of SMILES-2 band selection study; (1) known issues of SMILES observations, (2) SMILES-2 scientific requirements, (3) methods of band selection study, (4) temperature, horizontal wind speed, H2O sensitivity study, (5) BrO and HOCl line selection, and (6) current band selection and possible instrument design.
Quasiparticle band structure of antiferromagnetic Eu Te
Energy Technology Data Exchange (ETDEWEB)
Mathi Jaya, S.; Nolting, W. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Lehrstuhl Festkoerpertheorie, Invalidenstrasse 110, D-10115 Berlin (Germany)
1997-11-24
The temperature-dependent electronic quasiparticle spectrum of the antiferromagnetic semiconductor Eu Te is derived by use of a combination of a many-body model procedure with a tight-binding-'linear muffin tin orbital' (TB - LMTO) band structure calculation. The central part is the d-f model for a single band electron ('test electron') being exchange coupled to the anti ferromagnetically ordered localized moments of the Eu ions. The single-electron Bloch energies of the d-f model are taken from a TB-LMTO calculation for paramagnetic Eu Te. The d-f model is evaluated by a recently proposed moment conserving Green function technique to get the temperature-dependent sublattice-quasiparticle band structure (S-QBS) and sublattice-quasiparticle density of states (S-QDOS) of the unoccupied 5 d-6 s energy bands. Unconventional correlation effects and the appearance of characteristic quasiparticles ('magnetic polarons') are worked out in detail. The temperature dependence of the S-QDOS and S-QBS is mainly provoked by the spectral weights of the energy dispersions. Minority- and majority-spin spectra coincide for all temperatures but with different densities of states. Upon cooling from T{sub N} to T = 0 K the lower conduction band edge exhibits a small blue shift of -0.025 eV in accordance with the experiment. Quasiparticle damping manifesting itself in a temperature-dependent broadening of the spectral density peaks arises from spin exchange processes between (5 d-6 s) conduction band electrons and localized 4 f moments. (author)
Fuzzy Riesz subspaces, fuzzy ideals, fuzzy bands and fuzzy band projections
Hong Liang
2015-01-01
Fuzzy ordered linear spaces, Riesz spaces, fuzzy Archimedean spaces and $\\sigma$-complete fuzzy Riesz spaces were defined and studied in several works. Following the efforts along this line, we define fuzzy Riesz subspaces, fuzzy ideals, fuzzy bands and fuzzy band projections and establish their fundamental properties.
Pullen, I. R.; Doherty, P. J.; Maddocks, M. C. D.
A Digital Audio Broadcasting (DAB) system capable of reliable reception in vehicles and portables has been developed by the EUREKA 147 project. This report describes a set of experiments performed to compare the coverage area when radiating a DAB signal of equal power in Band 2 and Band 3.
Demming, Anna
2013-08-01
A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted
Quantum numbers and band topology of nanotubes
Damnjanovic, M; Vukovic, T; Maultzsch, J
2003-01-01
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.
X-band uplink ground systems development
Hartop, R.; Johns, C.; Kolbly, R.
1980-04-01
The design of an X-band exciter and transmitter control system is presented. For the exciter design such aspects as the block diagram, expected oscillator frequency stability, effect of instability of the cables between the control room and the antenna, improvement in uplink stability obtained with the transmitter phase control loop, expected frequency stability of exciter references for the doppler extractors, expected performance of the X-band range modulator, and the frequency stability improvement to be obtained with temperature control of the hardware environment are covered.
Planar Tri-Band Antenna Design
Directory of Open Access Journals (Sweden)
M. Pokorny
2008-04-01
Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.
Optimal Band Allocation for Cognitive Cellular Networks
Liu, Tingting
2011-01-01
FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.
Diffuse Interstellar Bands and Their Families
Wszolek, B
2006-01-01
Diffuse interstellar bands (DIBs) still await an explanation. One expects that some progress in this field will be possible when all the known DIBs are divided into families in such a way that only one carrier is responsible for all bands belonging to the given family. Analysing high resolution optical spectra of reddened stars we try to find out spectroscopic families for two prominent DIBs, at 5780 and 5797 angstroms. Among the DIBs, observed in the spectral range from 5590 to 6830 angstroms, we have found 8 candidates to belong to 5780 spectroscopic family and the other 12 DIBs candidating to family of 5797 structure.
Proximal iliotibial band syndrome: case report
Directory of Open Access Journals (Sweden)
Guilherme Guadagnini Falotico
2013-08-01
Full Text Available OBJECTIVE: The overuse injuries in the hip joint occur commonly in sports practitioners and currently due to technical advances in diagnostic imaging, especially magnetic resonance imaging (MRI, are often misdiagnosed. Recently, a group of people were reported, all female, with pain and swelling in the pelvic region.T2-weighted MRI showed increased signal in the enthesis of the iliotibial band (ITB along the lower border of the iliac tubercle. We report a case of a 34 year old woman, non-professional runner, with pain at the iliac crest with no history of trauma and whose MRI was compatible with the proximal iliotibial band syndrome.
Ka-band waveguide rotary joint
Yevdokymov, Anatoliy
2013-04-11
The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.
Shear banding phenomena in a Laponite suspension
Ianni, F; Gentilini, S; Ruocco, G
2007-01-01
Shear localization in an aqueous clay suspension of Laponite is investigated through dynamic light scattering, which provides access both to the dynamics of the system (homodyne mode) and to the local velocity profile (heterodyne mode). When the shear bands form, a relaxation of the dynamics typical of a gel phase is observed in the unsheared band soon after flow stop, suggesting that an arrested dynamics is present during the shear localization regime. Periodic oscillations of the flow behavior, typical of a stick-slip phenomenon, are also observed when shear localization occurs. Both results are discussed in the light of various theoretical models for soft glassy materials.
Inversion of band patterns in spherical tumblers.
Chen, Pengfei; Lochman, Bryan J; Ottino, Julio M; Lueptow, Richard M
2009-04-10
Bidisperse granular mixtures in spherical tumblers segregate into three bands: one at each pole and one at the equator. For low fill levels, large particles are at the equator; for high fill levels, the opposite occurs. Segregation is robust, though the transition depends on fill level, particle size, and rotational speed. Discrete element method simulations reproduce surface patterns and reveal internal structures. Particle trajectories show that small particles flow farther toward the poles than large particles in the upstream portion of the flowing layer for low fill levels leading to a band of small particles at each pole. The opposite occurs for high fill levels, though more slowly.
Innovative solutions for iliotibial band syndrome.
Fredericson, M; Guillet, M; Debenedictis, L
2000-02-01
Though recognizing the sharp, burning lateral knee pain of iliotibial band syndrome isn't difficult, treating the condition can be a challenge because underlying myofascial restrictions can significantly contribute to the patient's pain and disability. The physical exam should include a thorough evaluation to identify tender trigger points as well as tenderness and possible swelling at the distal iliotibial band. After acute symptoms are alleviated with activity restriction and modalities, problematic trigger points can be managed with massage therapy or other treatments. A stepwise stretching and strengthening program can expedite patients' return to running.
Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology
Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan
2016-05-01
This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.
Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.
Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun
2015-05-27
We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.
Band filling and interband scattering effects in MgB2: carbon versus aluminum doping.
Kortus, Jens; Dolgov, Oleg V; Kremer, Reinhard K; Golubov, Alexander A
2005-01-21
We argue, based on band structure calculations and the Eliashberg theory, that the observed decrease of T(c) of Al and C doped MgB2 samples can be understood mainly in terms of a band filling effect due to the electron doping by Al and C. A simple scaling of the electron-phonon coupling constant lambda by the variation of the density of states as a function of electron doping is sufficient to capture the experimentally observed behavior. Further, we also explain the long standing open question of the experimental observation of a nearly constant pi gap as a function of doping by a compensation of the effect of band filling and interband scattering. Both effects together generate a nearly constant pi gap and shift the merging point of both gaps to higher doping concentrations, resolving the discrepancy between experiment and theoretical predictions based on interband scattering only.
An improved d-band model of the catalytic activity of magnetic transition metal surfaces
Bhattacharjee, Satadeep; Lee, S C
2016-01-01
The d-band center model of Hammer and N{\\o}rskov is widely used in understanding and predicting catalytic activity on transition metal (TM) surfaces. Here, we demonstrate that this model is inadequate for capturing the complete catalytic activity of the magnetically polarized TM surfaces and propose its generalization. We validate the generalized model through comparison of adsorption energies of the NH$_3$ molecule on the surfaces of 3d TMs (V, Cr, Mn, Fe, Co, Ni, Cu and Zn) determined with spin-polarized density functional theory (DFT)-based methods with the predictions of our model. Compared to the conventional d-band model, where the nature of the metal-adsorbate interaction is entirely determined through the energy and the occupation of the d-band center, we emphasize that for the surfaces with high spin polarization, the metal-adsorbate system can be stabilized through a competition of the spin-dependent metal-adsorbate interactions.
Communication: Band bending at the interface in polyethylene-MgO nanocomposite dielectric
Kubyshkina, Elena; Unge, Mikael; Jonsson, B. L. G.
2017-02-01
Polymer nanocomposite dielectrics are promising materials for electrical insulation in high voltage applications. However, the physics behind their performance is not yet fully understood. We use density functional theory to investigate the electronic properties of the interfacial area in magnesium oxide-polyethylene nanocomposite. Our results demonstrate polyethylene conduction band matching with conduction bands of different surfaces of magnesium oxide. Such band bending results in long range potential wells of up to 2.6 eV deep. Furthermore, the fundamental influence of silicon treatment on magnesium oxide surface properties is assessed. We report a reduction of the surface-induced states at the silicon-treated interface. The simulations provide information used to propose a new model for charge trapping in nanocomposite dielectrics.
Warren, Richard M.; Bashford, James A.; Lenz, Peter W.
2005-11-01
There is a need, both for speech theory and for many practical applications, to know the intelligibilities of individual passbands that span the speech spectrum when they are heard singly and in combination. While indirect procedures have been employed for estimating passband intelligibilities (e.g., the Speech Intelligibility Index), direct measurements have been blocked by the confounding contributions from transition band slopes that accompany filtering. A recent study has reported that slopes of several thousand dBA/octave produced by high-order finite impulse response filtering were required to produce the effectively rectangular bands necessary to eliminate appreciable contributions from transition bands [Warren et al., J. Acoust. Soc. Am. 115, 1292-1295 (2004)]. Using such essentially vertical slopes, the present study employed sentences, and reports the intelligibilities of their six 1-octave contiguous passbands having center frequencies from 0.25 to 8 kHz when heard alone, and for each of their 15 possible pairings.
Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry
Luo, Xi
2016-01-01
The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.
Correlated phases of bosons in the flat lowest band of the dice lattice.
Möller, G; Cooper, N R
2012-01-27
We study correlated phases occurring in the flat lowest band of the dice-lattice model at flux density one-half. We discuss how to realize this model, also referred to as the T(3) lattice, in cold atomic gases. We construct the projection of the model to the lowest dice band, which yields a Hubbard Hamiltonian with interaction-assisted hopping processes. We solve this model for bosons in two limits. In the limit of large density, we use Gross-Pitaevskii mean-field theory to reveal time-reversal symmetry breaking vortex lattice phases. At low density, we use exact diagonalization to identify three stable phases at fractional filling factors ν of the lowest band, including a classical crystal at ν = 1/3, a supersolid state at ν = 1/2, and a Mott insulator at ν = 1.
Evidence for Flat Bands near the Fermi Level in Epitaxial Rhombohedral Multilayer Graphene.
Pierucci, Debora; Sediri, Haikel; Hajlaoui, Mahdi; Girard, Jean-Christophe; Brumme, Thomas; Calandra, Matteo; Velez-Fort, Emilio; Patriarche, Gilles; Silly, Mathieu G; Ferro, Gabriel; Soulière, Véronique; Marangolo, Massimiliano; Sirotti, Fausto; Mauri, Francesco; Ouerghi, Abdelkarim
2015-05-26
The stacking order of multilayer graphene has a profound influence on its electronic properties. In particular, it has been predicted that a rhombohedral stacking sequence displays a very flat conducting surface state: the longer the sequence, the flatter the band. In such a flat band, the role of electron-electron correlation is enhanced, possibly resulting in high Tc superconductivity, magnetic order, or charge density wave order. Here we demonstrate that rhombohedral multilayers are easily obtained by epitaxial growth on 3C-SiC(111) on a 2° off-axis 6H-SiC(0001). The resulting samples contain rhombohedral sequences of five layers on 70% of the surface. We confirm the presence of the flat band at the Fermi level by scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy, in close agreement with the predictions of density functional theory calculations.
Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface
Upadhyay Kahaly, M.
2011-09-20
We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.
Band gap of β-PtO2 from first-principles
Directory of Open Access Journals (Sweden)
Yong Yang
2012-06-01
Full Text Available We studied the band gap of β-PtO2 using first-principles calculations based on density functional theory (DFT. The results are obtained within the framework of the generalized gradient approximation (GGA, GGA+U, GW, and the hybrid functional methods. For the different types of calculations, the calculated band gap increases from ∼0.46 eV to 1.80 eV. In particular, the band gap by GW (conventional and self-consistent calculation shows a tendency of converging to ∼1.25 ± 0.05 eV. The effect of on-site Coulomb interaction on the bonding characteristics is also analyzed.
Mian, D B; Nguessan, K L P; Aissi, G; Boni, S
2014-01-01
Amniotic band syndrome (ABS) is a fetal congenital malformation, affecting mainly the limbs, but also the craniofacial area and internal organs. Two mains pathogenic mechanisms are proposed in its genesis. Firstly the early amnion rupture (exogenous theory) leading to fibrous bands, which wrap up the fetal body; secondly, the endogenous theory privileges vascular origin, mesoblastic strings not being a causal agent. The authors believe that the second theory explain the occurrence of ABS. The outcome of the disease during pregnancy depends on the gravity of the malformations. Interruption of the pregnancy is usually proposed when diagnosis of severe craniofacial and visceral abnormalities is confirmed. Whereas minor limb defects can be repaired with postnatal surgery. In case of an isolated amniotic band with a constricted limb, in utero lysis of the band can be considered to avoid a natural amputation. In an African country, such treatment is not possible as far as the antenatal diagnosis.
Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.
Klein, Andreas
2015-04-10
Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers. There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new
High-frequency homogenization of zero frequency stop band photonic and phononic crystals
Antonakakis, Tryfon; Guenneau, Sebastien
2013-01-01
We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...
Research on design system of band conveyer driven by linear friction
Institute of Scientific and Technical Information of China (English)
JIA Chang-xi; HE Mei-rong
2009-01-01
The band conveyer driven by linear friction is a new device. It can reduce drive size and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original conveyer and solving the problems of capacity insufficiency. The technology has brought certain difficulty for engineers, because it has certain difficulty both in theory and in calculation. Therefore, Visual Basic 6.0 programming technology was used to develop a set of "the design system of the band conveyer driven by linear friction." After being proved in the field, it can completely meet the demands of the design. This paper introduced its main theory or basis in design, so as to provide related technical support to this kind of project.
Analysis of Reliability of CET Band4
Institute of Scientific and Technical Information of China (English)
王铁琳
2005-01-01
CET Band 4 has been carried out for more than a decade. It becomes so large- scaled, so popular and so influential that many testing experts and foreign language teachers are willing to do research on it. In this paper, I will mainly analyse its reliability from the perspective of writing test and speaking test.
Faraday Rotation and L Band Oceanographic Measurements
DEFF Research Database (Denmark)
Skou, Niels
2003-01-01
Spaceborne radiometric measurements of the L band brightness temperature over the oceans make it possible to estimate sea surface salinity. However, Faraday rotation in the ionosphere disturbs the signals and must be corrected. Two different ways of assessing the disturbance directly from...
Antarctic analog for dilational bands on Europa
Hurford, T. A.; Brunt, K. M.
2014-09-01
Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven.
Small X-Band Oscillator Antennas
Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.
2009-01-01
A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.
Band Gap Narrowing in Heavily Doped Silicon.
Gupta, Tapan Kumar
Two analytic models for transport and band gap narrowing in heavily doped (N_{rm D} > 10^{20} cm^ {-3}) silicon have been set up and verified through measurements on n^{+} -p junction devices. The first model is based on calculation of the ratio of the charge present in the emitter of the n^{+} region of the junction to that of the charge present in the absence of band gap shrinkage. Fermi-Dirac statistics are employed and are found to have a significant effect at this doping level. The second model is based on current transport of minority carriers in the n^{+} region. In this model only two parameters need to be known, the diffusion coefficient and the diffusion length for minority carriers, to calculate the band gap narrowing. An empirical relation between band gap narrowing and donor concentration has also been established based on experimental values of diffusion coefficient and mobility. These models have been verified by several different experimental techniques including surface photovoltage, open circuit voltage decay, photoconductivity decay and modulation reflection spectroscopy. The results indicate that, in the impurity range above about 10^{20} cm^{-3}, Fermi-Dirac statistics must be invoked in order to achieve a satisfactory fit with experimental data.
Production of S-band Accelerating Structures
Piel, C; Vogel, H; Vom Stein, P
2004-01-01
ACCEL currently produces accelerating structures for several scientific laboratories. Multi-cell cavities at S-band frequencies are required for the projects CLIC-driver-linac, DLS and ASP pre-injector linac and the MAMI-C microtron. Based on those projects differences and similarities in design, production technologies and requirements will be addressed.
von der Lühe, O.; Volkmer, R.; Kentischer, T. J.; Geißler, R.
2012-11-01
The design and characteristics of the Broad-Band Imager (BBI) of GREGOR are described. BBI covers the visible spectral range with two cameras simultaneously for a large field and with critical sampling at 390 nm, and it includes a mode for observing the pupil in a Foucault configuration. Samples of first-light observations are shown.
Swanson, David
2011-01-01
We give elementary proofs of formulas for the area and perimeter of a planar convex body surrounded by a band of uniform thickness. The primary tool is a integral formula for the perimeter of a convex body which describes the perimeter in terms of the projections of the body onto lines in the plane.
Energy bands and gaps near an impurity
Mihóková, E.; Schulman, L. S.
2016-10-01
It has been suggested that in the neighborhood of a certain kind of defect in a crystal there is a bend in the electronic band. We confirm that this is indeed possible using the Kronig-Penney model. Our calculations also have implications for photonic crystals.
Multi-Frequency Band Pyroelectric Sensors
Directory of Open Access Journals (Sweden)
Chun-Ching Hsiao
2014-11-01
Full Text Available A methodology is proposed for designing a multi-frequency band pyroelectric sensor which can detect subjects with various frequencies or velocities. A structure with dual pyroelectric layers, consisting of a thinner sputtered ZnO layer and a thicker aerosol ZnO layer, proved helpful in the development of the proposed sensor. The thinner sputtered ZnO layer with a small thermal capacity and a rapid response accomplishes a high-frequency sensing task, while the thicker aerosol ZnO layer with a large thermal capacity and a tardy response is responsible for low-frequency sensing tasks. A multi-frequency band pyroelectric sensor is successfully designed, analyzed and fabricated in the present study. The range of the multi-frequency sensing can be estimated by means of the proposed design and analysis to match the thicknesses of the sputtered and the aerosol ZnO layers. The fabricated multi-frequency band pyroelectric sensor with a 1 μm thick sputtered ZnO layer and a 20 μm thick aerosol ZnO layer can sense a frequency band from 4000 to 40,000 Hz without tardy response and low voltage responsivity.
Improvement of band selectivity of electromagnetic crystals
Directory of Open Access Journals (Sweden)
Nazarko A. I.
2009-11-01
Full Text Available The estimation of crystal-like structures band selectivity is considered. Methods of increasing of electromagnetic crystal’s selectivity are proposed. The experimental and theoretical characteristics illustrating possibility of substantial improvement of spectral properties of such structures are presented.
DEFF Research Database (Denmark)
Gravesen, Jens
2005-01-01
t is shown that a closed polygon with an odd number of vertices is the median of exactly one piecewise planar cylinder and one piecewise planar Möbius band, intersecting each other orthogonally. A closed polygon with an even number of vertices is in the generic case neither the median of a piecew...
High frequency band crossings in ^168Lu.
Roux, D. G.; Li, Y.; Ma, W. C.; Amro, H.; Thompson, J.; Winger, J.; Hagemann, G.; Herskind, B.; Jensen, D.; Sletten, G.; Wilson, J.; Fallon, P.; Diamond, R.; Goergen, A.; Machiavelli, A.; Ward, D.; Hübel, H.; Domscheit, J.
2003-10-01
High spin states in ^168Lu were populated using the ^123Sb(^48Ca,3n) reaction at 203 MeV. The beam was provided by the 88" cyclotron at LBNL, and coincident gamma rays were detected with the Gammasphere spectrometer array. An analysis of the data which had been sorted into three- and four- dimensional histograms confirmed the four previously known (J.H.Ha et al. J. Phys. Soc. Japan 71 (2002) 1663-1671) pairs of signature partner bands and extended them to considerably higher spins (in one case up to a tentative 50 hbar). In addition, a new pair of signature partners, as well as a new doubly decoupled band were found. On the basis of the present data, the configuration of one of the known bands, previously assigned π d_3/2 øtimes ν i_13/2 was reassigned as π d_5/2 øtimes ν i_13/2. High frequency band crossings, beyond the first ν i_13/2 alignment, were observed for the first time. These results will be discussed with reference to Cranking Shell Model calculations.
Laparoscopic gastric band removal complicated by splenosis.
Nicolas, Gregory; Schoucair, Ramy; Shimlati, Rasha; Rached, Linda; Khoury, George
2016-08-01
In any patient, the occurrence of postsplenectomy splenosis can complicate the planning of further surgeries. In our case, the gastric sleeve procedure was aborted, as it would have put the patient's life in danger. Therefore, only the gastric band was removed, eliminating future erosion.
Plasmonic band gap cavities on biharmonic gratings
Kocabas, Askin; Seckin Senlik, S.; Aydinli, Atilla
2008-05-01
In this paper, we have experimentally demonstrated the formation of plasmonic band gap cavities in infrared and visible wavelength range. The cavity structure is based on a biharmonic metallic grating with selective high dielectric loading. A uniform metallic grating structure enables strong surface plasmon polariton (SPP) excitation and a superimposed second harmonic component forms a band gap for the propagating SPPs. We show that a high dielectric superstructure can dramatically perturb the optical properties of SPPs and enables the control of the plasmonic band gap structure. Selective patterning of the high index superstructure results in an index contrast in and outside the patterned region that forms a cavity. This allows us to excite the SPPs that localize inside the cavity at specific wavelengths, satisfying the cavity resonance condition. Experimentally, we observe the formation of a localized state in the band gap and measure the dispersion diagram. Quality factors as high as 37 have been observed in the infrared wavelength. The simplicity of the fabrication and the method of testing make this approach attractive for applications requiring localization of propagating SPPs.
US Greenwich High School Band in China
Institute of Scientific and Technical Information of China (English)
2007-01-01
<正>A 229-member Greenwich High School (GHS) Band of Connecticut,the U. S.,organized and sent by the Chinese Cultural Exchange of the U. S.,visited Beijing,Xi’an,Shanghai and Suzhou from April 13 to 24 at the invitation of the CPAFFC.
Superfluidity in topologically nontrivial flat bands.
Peotta, Sebastiano; Törmä, Päivi
2015-11-20
Topological invariants built from the periodic Bloch functions characterize new phases of matter, such as topological insulators and topological superconductors. The most important topological invariant is the Chern number that explains the quantized conductance of the quantum Hall effect. Here we provide a general result for the superfluid weight Ds of a multiband superconductor that is applicable to topologically nontrivial bands with nonzero Chern number C. We find that the integral over the Brillouin-zone of the quantum metric, an invariant calculated from the Bloch functions, gives the superfluid weight in a flat band, with the bound Ds⩾|C|. Thus, even a flat band can carry finite superfluid current, provided the Chern number is nonzero. As an example, we provide Ds for the time-reversal invariant attractive Harper-Hubbard model that can be experimentally tested in ultracold gases. In general, our results establish that a topologically nontrivial flat band is a promising concept for increasing the critical temperature of the superconducting transition.
Antarctic Analog for Dilational Bands on Europa
Hurford, T. A.; Brunt, K. M.
2014-01-01
Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven.
Radio Band Observations of Blazar Variability
Indian Academy of Sciences (India)
Margo F. Aller; Hugh D. Aller; Philip A. Hughes
2011-03-01
The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging. Such measurements now available in all four Stokes parameters, together with theoretical simulations, identify the origin of radio band variability and probe the characteristics of the radio jet where the broadband blazar emission originates. Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part, based on limited modelling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this picture by reproducing the observed centimeter-band variations observed more generally, and are of current interest since these shocks may play a role in the -ray flaring detected by Fermi. Recent UMRAO multifrequency Stokes V studies of bright blazars identify the spectral variability properties of circular polarization for the first time and demonstrate that polarity flips are relatively common. All-Stokes data are consistent with the production of circular polarization by linear-to-circular mode conversion in a region that is at least partially selfabsorbed. Detailed analysis of single-epoch, multifrequency, all-Stokes VLBA observations of 3C 279 support this physical picture and are best explained by emission from an electron-proton plasma.
Orff Techniques to Freshen Up Band Rehearsal
Misenhelter, Dale
2004-01-01
Experienced band directors know they need teaching strategies and activities that are not only innovative but also provide creative and engaging breaks in the routine for students. In addition, expectations based on the National Standards suggest new approaches to many of the performance-polishing strategies directors have come to rely on.…
Enhanced C-band Coaxial Orthomode Transducer
Directory of Open Access Journals (Sweden)
S. I. Piltyay
2014-06-01
Full Text Available Introduction. In this paper a novel configuration of wideband coherent coaxial OMT is presented. General Design of an Orthomode Transducer. The OMT consists of elements of 3 main types: a turnstile junction between coaxial quad-ridged waveguide and 4 coaxial transmission lines; 4 right-angle coaxial junctions for each polarization; 2 antiphase power combiners/dividers. A Turnstile Junction Optimization. The optimization of a turnstile junction has been performed. Its minimized reflection coefficient is less than −28 dB in the operation frequency band 3.4–5.4 GHz. An Optimized Right-Angle Coaxial Junction. A right-angle coaxial junction has been optimized to provide reflection coefficient, which is less than −42 dB in the operation frequency band 3.4–5.4 GHz. An Antiphase Power Combiner/Divider. The optimization of an antiphase power com-biner/divider has been performed. Its minimized reflection coefficient is less than −38 dB. Conclusions. A wideband coaxial orthomode transducer has been developed for the operation frequency band 3.4–5.4 GHz. In this frequency band the reflection coefficient is less than −27 dB.
New Kronig-Penney Equation Emphasizing the Band Edge Conditions
Szmulowicz, Frank
2008-01-01
The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However,…
Picosecond thermometer in the amide I band of myoglobin
DEFF Research Database (Denmark)
Austin, R.H.; Xie, A.; Meer, L. van der;
2005-01-01
The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 mu m which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost no tempera...
47 CFR 15.715 - TV bands database administrator.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false TV bands database administrator. 15.715 Section... Band Devices § 15.715 TV bands database administrator. The Commission will designate one or more entities to administer a TV bands database. Each database administrator shall: (a) Maintain a database...
47 CFR 15.714 - TV bands database administration fees.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false TV bands database administration fees. 15.714 Section 15.714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.714 TV bands database administration fees. (a) A TV bands database...
Convergence of valence bands for high thermoelectric performance for p-type InN
Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju
2015-12-01
Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.
Band structure and transport studies of copper selenide: An efficient thermoelectric material
Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay
2014-10-01
We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .
General Theories of Regulation
Hertog, J.A. den
1999-01-01
This chapter makes a distinction between three types of theories of regulation: public interest theories, the Chicago theory of regulation and the public choice theories. The Chicago theory is mainly directed at the explanation of economic regulation; public interest theories and public choice theor
Endres, James; Egger, David A.; Kulbak, Michael; Kerner, Ross A.; Zhao, Lianfeng; Silver, Scott H.; Hodes, Gary; Rand, Barry P.; Cahen, David; Kronik, Leeor; Kahn, Antoine
2016-01-01
We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory lead...
{ital {Delta}I}=4 Bifurcation in Identical Superdeformed Bands
Energy Technology Data Exchange (ETDEWEB)
Haslip, D.; Flibotte, S.; Gervais, G.; Nieminen, J.; Svensson, C.; Waddington, J.; Wilson, J. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); de France, G. [Centre de Recherches Nucleaires et ULP, F-67037 Strasbourg Cedex 2 (France); Devlin, M.; LaFosse, D.; Lerma, F.; Sarantites, D. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Galindo-Uribarri, A. [AECL, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (CANADA); Hackman, G. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lee, I.; Macchiavelli, A.; MacLeod, R. [Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Mullins, S. [Department of Nuclear Physics, RSPhysSE, ANU, Canberra, ACT 0200 (Australia)
1997-05-01
{Delta}I=4 bifurcation has been observed in two superdeformed bands, the newly discovered yrast superdeformed band of {sup 148}Eu, and a previously known excited band in {sup 148}Gd. Both of these bands have moments of inertia that are identical to the yrast band of {sup 149}Gd, the first superdeformed band in which this bifurcation was observed. This first observation of {Delta}I=4 bifurcation in identical superdeformed bands provides a crucial test of recent models. {copyright} {ital 1997} {ital The American Physical Society}
The meaning of DAPI bands observed after C-banding and FISH procedures.
Barros e Silva, A E; Guerra, M
2010-04-01
Under specific technical conditions chromosome staining with 4',6-diamidino-2-phenylindole (DAPI) permits characterization of heterochromatic regions as AT-rich (DAPI(+)) or AT-poor (DAPI(-)), especially when the chromosomes are counterstained with chromomycin A(3) (CMA), which preferentially binds to GC-rich DNA. DAPI(+) bands also often have been observed after C-banding or FISH. In these cases, however, it is not clear whether only AT-rich regions stain positively with DAPI or other heterochromatins with different base compositions also are stained. We evaluated the meaning of DAPI bands observed after C-banding and FISH using three plant species bearing different types of heterochromatin: DAPI(+)/CMA(-), DAP(-)/CMA(+) and DAPI(0)/CMA(0) (neutral bands). Additional tests were performed using propidium iodide, a fluorochrome without preferential affinity for AT or GC. Our results indicate that AT-rich heterochromatin stains as DAPI(+) bands after C-banding or FISH, but other kinds of heterochromatin also may be stained by DAPI.
Radiation Dosimetry of Dental Enamel Using X-Band and Q-Band EPR Spectroscopy
de, Tania; Romanyukha, Alex; Pass, Barry; Misra, Prabhakar
2010-02-01
Electron paramagnetic resonance (EPR) dosimetry of tooth enamel can be used for individual dose reconstruction following radiation accidents. The purpose of this study was to develop a rapid, minimally invasive technique for obtaining a sample of dental enamel small enough to not disturb the structure and functionality of a tooth and to improve the sensitivity of the spectral signals using X-band (9.4 GHz) and Q-band (34 GHz) EPR spectroscopy. EPR measurements in X-band were performed on 100 mg isotropic powdered enamel samples and Q-band measurements done on 4 mg (1x1x3 mm) enamel biopsy samples. All samples were obtained from discarded teeth collected during normal dental treatment. In order to study the variation of the Radiation-Induced Signal (RIS) at different orientations in the applied magnetic field samples were placed in the resonance cavity for Q-band EPR. In X-band spectra, the RIS is distinct from the ``native'' radiation-independent signal only for doses > 0.5Gy. Q-band, however, resolves the RIS and ``native'' signals and improves sensitivity by a factor of 20 enabling measurements in 2-4 mg tooth enamel samples. )
Gladkova, Irina; Shahriar, Fazlul; Grossberg, Michael; Bonev, George; Hillger, Donald; Miller, Steve
2011-10-01
The ABI on GOES-R will provide imagery in two narrow visible bands (red, blue), which is not sufficient to directly produce color (RGB) images. In this paper we present a method to estimate green band from a simulated ABI multi-spectral image. To address this problem we propose to use statistical learning to train and update functions that estimate the value for the 550 nm green channel using the values that will be present in other bands of the ABI as input parameters. One challenge is that in order to exploit as many bands as possible, we cannot use straightforward non-parametric methods such as a look-up tables because the number of entries in look-up tables grows exponentially with the number of input parameters. Other simple approaches such as simple linear regression on the multi-spectral input parameters will not produce satisfactory results due to the underlying non-linearity of the data. For instance, the relationship among different spectra for cloud footprints will be radically different from that of a desert surface. The approach we propose is to use piecewise multi-linear regression on the multi-spectral input to train the green channel predictor. Our predictor is built from the combination of a classifier followed by a multi-linear function. The classifier assigns each pixel to a class based on the array of values from the simulated (or proxy) ABI bands at that pixel. To each class is associated a set of coefficients for a multi-linear predictor for 550 nm green channel to be predicted. Thus, the parameters of the predictor consist of parameters of the classifier, as well as coefficients defining the approximating hyperplane for each class. To determine these classifiers we will use methods based on K-means clustering, as well as multi-variable piecewise linear approximation.
Laser-induced damage of 1064-nm narrow-band interference filters under different laser modes
Institute of Scientific and Technical Information of China (English)
Weidong Gao(高卫东); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)
2004-01-01
The laser-induced damage behavior of narrow-band interference filters was investigated with a Nd:YAG laser at 1064 nm under single-pulse mode and free-running laser mode.The absorption measurement of such coatings has been performed by surface thermal lensing(STL)technique.The relationship between damage morphology and absorption under the two different laser modes was studied in detail.The explanation was given by the standing-wave distribution theory.
Spatial and Temporal Evolution of Ultra-Wide-Band Optical Pulses in Propagation
Institute of Scientific and Technical Information of China (English)
XU Jing-Zhou; WANG Li; YANG Guo-Zhen
2000-01-01
The propagation of ultrashort coherent electromagnetic pulses with broad spectral bandwidth in free space is studied by using scalar diffraction theory. It is confirmed and experimentally demonstrated that the diffraction not only affects the spatial structure but also changes the temporal waveform of an ultra-wide-band pulse during propagation. The terahertz pulse travelling as basic mode of Gaussian beam is discussed in detail
Band gap tunning in BN-doped graphene systems with high carrier mobility
Kaloni, T. P.
2014-02-17
Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02 eV to 2.43 eV. We demonstrate a low effective mass of the charge carriers.
Simulation Analysis of a Strip Dipole Excited Electromagnetic Band-Gap (EBG) Structure
2015-07-01
that the phase of the scattered near fields at the EBG surface is more applicable to characterizing the EBG for antenna applications. A new set of...number of unit cells is also demonstrated. 15. SUBJECT TERMS electromagnetic band gap, strip dipole, reflection phase, vias, near fields, bandwidth...Image Theory Approximation 10 2.4 The Periodic Boundary Condition (PBC) Approach 11 2.5 The Phase of the Near Electric Field (NEF) 12 3. Analysis of an
Dichroic Filter for Separating W-Band and Ka-Band
Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.
2012-01-01
The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.
Boykin, Timothy; Luisier, Mathieu; Klimeck, Gerhard; Jiang, Xueping; Kharche, Neerav; Zhou, Yu; Nayak, Saroj
2012-02-01
The commonly used single-pz orbital first nearest-neighbor tight-binding model faces two main problems: (i) it fails to reproduce asymmetries in the bulk graphene bands; (ii) it cannot provide a realistic model for hydrogen passivation of the edge atoms. As a result, some armchair graphene nanoribbons (AGNRs) are incorrectly predicted as metallic. A new nearest-neighbor, three orbital per atom p/d tight-binding model [1] is built to address these issues. The parameters of the model are fit to bandstructures obtained from first-principles density-functional theory and many-body perturbation theory within the GW approximation, giving excellent agreement with the ab initio AGNR bands. This model is employed to calculate the current-voltage characteristics of an AGNR MOSFET and the conductance of rough-edge AGNRs, finding significant differences versus the single-pz model. Taken together these results demonstrate the importance of an accurate and computational efficient band structure model for predicting the performance of graphene-based nanodevices. [1] T. B. Boykin, M. Luisier, G. Klimeck, X. Jiang, N. Kharche, Y. Zhou and S. Nayak, J. Appl. Phys. 109, 104304 (2011)
Bickel, Peter J
2010-01-01
In the first part of this paper we give an elementary proof of the fact that if an infinite matrix $A$, which is invertible as a bounded operator on $\\ell^2$, can be uniformly approximated by banded matrices then so can the inverse of $A$. We give explicit formulas for the banded approximations of $A^{-1}$ as well as bounds on their accuracy and speed of convergence in terms of their band-width. In the second part we apply these results to covariance matrices $\\Sigma$ of Gaussian processes and study mixing and beta mixing of processes in terms of properties of $\\Sigma$. Finally, we note some applications of our results to statistics.
The Science Case for ALMA Band 2 and Band 2+3
Fuller, G A; Beltran, M; Casasola, V; Caselli, P; Cicone, C; Costagliola, F; De Breuck, C; Hunt, L; Jimenez-Serra, I; Laing, R; Longmore, S; Massardi, M; Paladino, R; Ramstedt, S; Richards, A; Testi, L; Vergani, D; Viti, S; Wagg, J
2016-01-01
We discuss the science drivers for ALMA Band 2 which spans the frequency range from 67 to 90 GHz. The key science in this frequency range are the study of the deuterated molecules in cold, dense, quiescent gas and the study of redshifted emission from galaxies in CO and other species. However, Band 2 has a range of other applications which are also presented. The science enabled by a single receiver system which would combine ALMA Bands 2 and 3 covering the frequency range 67 to 116 GHz, as well as the possible doubling of the IF bandwidth of ALMA to 16 GHz, are also considered.
Antonius, Gabriel; Poncé, Samuel; Lantagne-Hurtubise, Étienne; Auclair, Gabriel; Côté, Michel; Gonze, Xavier
2015-03-01
The electron-phonon coupling in solids renormalizes the band structure, reducing the band gap by several tenths of an eV in light-atoms semiconductors. Using the Allen-Heine-Cardona theory (AHC), we compute the zero-point renormalization (ZPR) as well as the quasiparticle lifetimes of the full band structure in diamond, BN, LiF and MgO. We show how dynamical effects can be included in the AHC theory, and still allow for the use of a Sternheimer equation to avoid the summation over unoccupied bands. The convergence properties of the electron-phonon coupling self-energy with respect to the Brillouin zone sampling prove to be strongly affected by dynamical effects. We complement our study with a frozen-phonon approach, which reproduces the static AHC theory, but also allows to probe the phonon wavefunctions at finite displacements and include anharmonic effects in the self-energy. We show that these high-order components tend to reduce the strongest electron-phonon coupling elements, which affects significantly the band gap ZPR.
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard; Jiang, Xueping; Kharche, Neerav; Zhou, Yu; Nayak, Saroj K.
2011-05-01
Accurate modeling of the π-bands of armchair graphene nanoribbons (AGNRs) requires correctly reproducing asymmetries in the bulk graphene bands, as well as providing a realistic model for hydrogen passivation of the edge atoms. The commonly used single-pz orbital approach fails on both these counts. To overcome these failures we introduce a nearest-neighbor, three orbital per atom p/d tight-binding model for graphene. The parameters of the model are fit to first-principles density-functional theory -based calculations as well as to those based on the many-body Green's function and screened-exchange formalism, giving excellent agreement with the ab initio AGNR bands. We employ this model to calculate the current-voltage characteristics of an AGNR MOSFET and the conductance of rough-edge AGNRs, finding significant differences versus the single-pz model. These results show that an accurate band structure model is essential for predicting the performance of graphene-based nanodevices.
Amniotic Band Syndrome, Perinatal Hospice, and Palliative Care versus Active Management
Directory of Open Access Journals (Sweden)
Shadi Rezai
2016-01-01
Full Text Available Introduction. Amniotic band syndrome and sequence are a relatively rare condition in which congenital anomalies occur as a result of the adherence and entrapment of fetal parts with coarse fibrous bands of the amniotic membrane. A large percentage of reported cases have an atypical gestational history. The frequency of this obstetric complication is not affected by fetal gender, genetic abnormality, or prenatal infection. Case. A 21-year-old, G1P0 female parturient at 18 weeks and 5 days with a single intrauterine gestation during a routine ultrasound evaluation was noted to have amniotic band sequence. The pregnancy was subsequently complicated by preterm premature rupture of membranes with oligohydramnios, resulting in a surviving neonate scheduled for rehabilitative treatment. Conclusion. Amniotic band syndrome is an uncommon congenital anomaly resulting in multiple disfiguring and disabling manifestations. Several theories are proposed with most involving early rupture of the amnion and entanglement of fetal parts by amniotic bands. This syndrome can be manifested by development of multiple malformations, with the majority of the defects being limb abnormalities of a disorganized nature, as in the case we present. In the absence of a clear etiology of consequential congenital abnormalities, obstetric management guidelines should use shared decision models to focus on the quality of life for the offspring.
Dielectric function spectra and inter-band optical transitions in TlGaS{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Toshiyuki [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531 (Japan); Shim, YongGu, E-mail: shim@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531 (Japan); Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016 (Japan); Mamedov, Nazim [Department of Ellipsometry, Institute of Physics, Azerbaijan National Academy of Sciences, H. Javid Ave. 33, Baku AZ-1143 (Azerbaijan)
2014-11-28
TlGaS{sub 2} with a quasi-two-dimensional structure has been accessed by spectroscopic ellipsometry over the 1.5–6.0 eV spectral range. A uniaxial approach applicable to monoclinic TlGaS{sub 2} at room temperature has been employed for ellipsometric data treatment. Principal components of the dielectric function tensor have then been retrieved. Inter-band optical transitions associated with the obtained dielectric function have been determined by using standard critical point analysis. The transitions have been assigned within the electronic band structure obtained for TlGaS{sub 2} from calculations based on density functional theory. - Highlights: • We investigate the dielectric function spectra of TlGaS{sub 2}. • Inter-band optical transition energies are extracted by critical point analysis. • The electronic band structure and the dielectric functions of TlGaS{sub 2} are calculated. • The electronic band states related to the optical transitions are assigned.
Directory of Open Access Journals (Sweden)
Arwin Q. Tan
2014-12-01
Full Text Available Band tradition in the Philippines traces its origins to the regimental bands of the Spanish colonial period. As a representation of social power, the regimental band was a symbol of Spain’s hierarchical relation with the colony. The elevation of a Filipino musician to the rank of the bands’ highest position, the bandmaster, enabled the accumulation of cultural capital, providing him a highly influential position in his local community that is almost equivalent to his Spanish counterpart. This paper examines how music was used as cultural capital by some Filipinos, framed in the band tradition of the Spanish military regiments of the late nineteenth century Philippines. Using Bourdieu’s theory of cultural and social capital and his concept of habitus, this paper aims to trace the development of a new social class and the reproduction of its accumulated cultural capital. The eventual attainment of prestige as a result of occupying the highest position in the Spanish regimental bands afforded the bandmasters significant influence in their communities that transmuted cultural capital into social, symbolic, even economic capital.
Band structure of fcc-C60 solid state crystal study
Directory of Open Access Journals (Sweden)
S Javanbakht
2009-09-01
Full Text Available We studied the architecture of the C60 cluster to drive its atomic positions which can be seen at room temperature. We then used the obtained carbon positions as a basis set for the fcc structure to construct the fcc-C60 compound. Self consistent calculations were performed based on the density functional theory (DFT utilizing the accurate WIEN2K code to solve the single-particle Kohen-Sham equation within the augmented plane waves plus local orbital (APW+lo method. The cohesive energy has been found to be 1.537 eV for the fcc-C60 . The calculated small cohesive energy that results from the weak Van der Waals-London interactions among a C60 cluster with its nearest neighbors is in good agreement with experiment. The electron densities of states (DOSs were calculated for a C60 macromolecule as well as the fcc-C60 compound and the results were compared with each other. The band gap from DOS calculations has been found to be 0.7 eV. Band structures were also calculated within the generalized gradient approximation (GGA. The band structure calculation results in 1.04 eV for the direct band gap. Two kinds of σ and π bonds were determined in the band structure. Our results are in good agreement with experiment and pseudopotential calculations.
The origin of peculiar molecular bands in cool DQ white dwarfs
Kowalski, P. M.
2010-09-01
Aims: The DQ white dwarfs are stars whose atmosphere is enriched with carbon, which for cool stars (Teff fluid-like atmospheres of cool DQ white dwarfs. Methods: In our investigation we use a density functional theory based quantum mechanical approach. Results: The electronic transition energy Te increases monotonically with the helium density (ΔTe (eV)~1.6 ρ (g/cm3)). This causes the Swan absorption to occur at shorter wavelengths compared with unperturbed C2. On the other hand the pressure-induced increase in the vibrational frequency is insufficient to account for the observed Swan bands shifts. Our findings are in line with the shape of the distorted molecular bands observed in DQp stars, but the predicted photospheric density required to reproduce these spectral features is one order of magnitude lower than the one predicted by the current models. This indicates pollution by hydrogen or reflects incomplete knowledge of the properties of fluid-like atmospheres of these stars. Conclusions: Our work shows that at the physical conditions encountered in the fluid-like atmospheres of cool DQ white dwarfs the strong interactions between C2 and helium atoms cause an increase in Te, which should produce a blueward shift of the Swan bands. This is consistent with the observations and indicates that the observed Swan-like molecular bands are most likely the pressure-shifted bands of C2.
The Origin of Lueders's Bands in Deformed Rock
Energy Technology Data Exchange (ETDEWEB)
Olsson, W.A.
1999-03-31
Lueders' bands are shear deformation features commonly observed in rock specimens that have been deformed experimentally in the brittle-ductile transition regime. For specimens that contain both faults (shear fractures that separate the specimen) and bands, the bands form earlier in the deformation history and their orientations are often different from the fault These differences pose the question of the relationship between these two structures. Understanding the origin of these features may shed light on the genesis of apparent natural analogues, and on the general process of rock deformation and fracture in the laboratory. This paper presents a hypothesis for the formation of Lueders' bands in laboratory specimens based on deformation localization theory considered in the context of the nonuniform stress distribution of the conventional triaxial experiment Lueders' bands and faults appear to be equivalent reflections of the localization process as it is controlled by nonuniform distributions of stress and evolution of incremental constitutive parameters resulting from increasing damage. To relate conditions for localization in laboratory specimens to natural settings, it will be necessary to design new experiments that create uniform stress and deformation fields, or to extract constitutive data indirectly from standard experiments using computational means.
Rusydi, Febdian; Shukri, Ganes; Saputro, Adithya G.; Agusta, Mohammad K.; Dipojono, Hermawan K.; Suprijadi, Suprijadi
2017-04-01
We study the Q/B-band dipole strength of zinc tetrabenzoporphyrin (ZnTBP) using density functional theory (DFT) in various solvents. The solvents are modeled using the polarized continuum model (PCM). The dipole strength calculations are approached by a two-level system, where the Q-band is described by the HOMO → LUMO electronic transition and the B-band by the HOMO-1 → LUMO electronic transition. We compare the results with the experimental data of the Q/B-band intensity ratio. We also perform time-dependent DFT coupled with PCM to calculate the Q/B-band oscillator strength ratio of ZnTBP. The results of both methods show a general trend with respect to the experimental Q/B-band intensity ratio in solvents, except for the calculation in the water solvent. Even so, the approximation is a good starting point for studying the UV-vis spectrum based on DFT study alone.
Investigation and Mitigation of the Crosstalk Effect in Terra MODIS Band 30
Directory of Open Access Journals (Sweden)
Junqiang Sun
2016-03-01
Full Text Available It has been previously reported that thermal emissive bands (TEB 27–29 in the Terra (T- MODerate resolution Imaging Spectroradiometer (MODIS have been significantly affected by electronic crosstalk. Successful linear theory of the electronic crosstalk effect was formulated, and it successfully characterized the effect via the use of lunar observations as viable inputs. In this paper, we report the successful characterization and mitigation of the electronic crosstalk for T-MODIS band 30 using the same characterization methodology. Though the phenomena of the electronic crosstalk have been well documented in previous works, the novel for band 30 is the need to also apply electronic crosstalk correction to the non-linear term in the calibration coefficient. The lack of this necessity in early works thus demonstrates the distinct difference of band 30, and, yet, in the same instances, the overall correctness of the characterization formulation. For proper result, the crosstalk correction is applied to the band 30 calibration coefficients including the non-linear term, and also to the earth view radiance. We demonstrate that the crosstalk correction achieves a long-term radiometric correction of approximately 1.5 K for desert targets and 1.0 K for ocean scenes. Significant striping removal in the Baja Peninsula earth view imagery is also demonstrated due to the successful amelioration of detector differences caused by the crosstalk effect. Similarly significant improvement in detector difference is shown for the selected ocean and desert targets over the entire mission history. In particular, band 30 detector 8, which has been flagged as “out of family” is restored by the removal of the crosstalk contamination. With the correction achieved, the science applications based on band 30 can be significantly improved. The linear formulation, the characterization methodology, and the crosstalk effect correction coefficients derived using lunar
Stochastic analysis of the time evolution of laminar-turbulent bands of plane Couette flow.
Rolland, Joran
2015-11-01
This article is concerned with the time evolution of the oblique laminar-turbulent bands of transitional plane Couette flow under the influence of turbulent noise. Our study is focused on the amplitude of modulation of turbulence (the bands). In order to guide the numerical study of the flow, we first perform an analytical and numerical analysis of a Stochastic Ginzburg-Landau (GL) equation for a complex order parameter. The modulus of this order parameter models the amplitude of modulation of turbulence. Firstly, we compute the autocorrelation function of said modulus once the band is established. Secondly, we perform a calculation of average and fluctuations around the exponential growth of the order parameter. This type of analysis is similar to the Stochastic Structural Stability Theory (S3T). We then perform numerical simulations of the Navier-Stokes equations in order to confront these predictions with the actual behaviour of the bands. Computation of the autocorrelation function of the modulation of turbulence shows quantitative agreement with the model: in the established band regime, the amplitude of modulation follows an Ornstein-Uhlenbeck process. In order to test the S3T predictions, we perform quench experiments, sudden decreases of the Reynolds number from uniform turbulence, in which modulation appears. We compute the average evolution of the amplitude of modulation and the fluctuations around it. We find good agreement between numerics and modeling. The average trajectory grows exponentially, at a rate clearly smaller than that of the formation of laminar holes. Meanwhile, the actual time evolution remains in a flaring envelope, centered on the average, and expanding at the same rate. These results provide further validation of the stochastic modeling for the time evolution of the bands for further studies. Besides, they stress on the difference between the oblique band formation and the formation of laminar holes.
Axionic Band Structure of the Cosmological Constant
Bachlechner, Thomas C
2015-01-01
We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by |det(Q)|~exp(N). Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.
Axionic band structure of the cosmological constant
Bachlechner, Thomas C.
2016-01-01
We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges 풬 determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by √{det (풬⊤풬 ) }∝eN. Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.
Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands
Directory of Open Access Journals (Sweden)
I. Prudyus
2014-12-01
Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.
Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; SHI Jun-Jie
2006-01-01
@@ Light propagation in a one-dimensional photonic crystal (PC), consisting of alternative slabs with refractive indices (layer thicknesses) n1 (a) and n2 (b), is investigated. An important optimal parameter matching condition,n1a ≈ n2b, is obtained for the largest photonic band gap (PBG). Moreover, we find that the exact analytical solutions for the electric/magnetic field eigenmodes at the band edges are standing waves with odd or even symmetry about the centre of each layer. The electric/magnetic field eigenfunctions at the top and bottom of the nth band have n and n - 1 nodes in one period of PC, respectively. The PBG arises from the symmetric differences of the field eigenfunctions at the band edges.
Quantum-Dot Intermediate-Band Solar Cells with Inverted Band Alignment
Energy Technology Data Exchange (ETDEWEB)
Francheschetti, A.; Lany, S.; Bester, G.
2008-01-01
The intermediate-band concept was proposed over a decade ago as a possible route to increase the efficiency of single-junction solar cells. Despite a number of experimental attempts to realize this concept, no efficiency improvement over conventional single-junction solar cells has so far been demonstrated. This is likely due to the fact that the intermediate band itself acts to enhance electron-hole recombination. In this work we propose a novel intermediate-band solar-cell architecture based on doped semiconductor nanostructures having an inverted type-I band alignment with the surrounding host. The recombination of carriers in the nanostructures is prevented by ultra-fast charge transfer to the host, thereby removing the main obstacle to achieve high conversion efficiency.
Design of UWB Band-pass Filters with GPS Band Rejection
Institute of Scientific and Technical Information of China (English)
Seung-back JUNG; Seung-in YANG
2010-01-01
This paper presents a compact Ultra-Wideband (UWB)band-pass filter using a high-pass filter and a low-pass one,and the resonator with Iumped elements.The structure of our proposed bandpass filter is very simple and the Defected Ground Structure (DGS) structure is used to get the low-pass filter characteristics.This proposed band-pass filter can be much smaller than a cascaded type filter.As a result of simulation,the insertion loss is less than 0.3 dB throughout the pass-band of 2.2 GHz～10.6 GHz,while the return loss is more than 18 dB.And it has rejection level of 36 dB at GPS band.
Cosmic microwave background theory
Bond, J. Richard
1998-01-01
A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321
THEORIES OF CORPORATE GOVERNANCE
Directory of Open Access Journals (Sweden)
Sorin Nicolae BORLEA
2013-03-01
Full Text Available This study attempts to provide a theoretical framework for the corporate governance debate. The review of various corporate governance theories enhances the major objective of corporate governance which is maximizing the value for shareholders by ensuring good social and environment performances. The theories of corporate governance are rooted in agency theory with the theory of moral hazard’s implications, further developing within stewardship theory and stakeholder theory and evolving at resource dependence theory, transaction cost theory and political theory. Later, to these theories was added ethics theory, information asymmetry theory or the theory of efficient markets. These theories are defined based on the causes and effects of variables such as: the configuration of the board of directors, audit committee, independence of managers, the role of top management and their social relations beyond the legal regulatory framework. Effective corporate governance requires applying a combination
Gauge theory and little gauge theory
Koizumi, Kozo
2016-01-01
The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.
Electrical band-gap narrowing in n- and p-type heavily doped silicon at 300 K
Van Cong, H.; Brunet, S.
1986-09-01
Based on previous results band-gap narrowing in heavily doped silicon at 300 K is investigated and expressed in terms of impurity size-and-doping effects. The results obtained for n- and p-type heavily doped silicon are compared with other theories and experiments.
DUAL MODE WIDEBAND BAND-PASS FILTER WITH NOTCHED BAND FOR COMMUNICATION SYSTEM
Institute of Scientific and Technical Information of China (English)
Wang Hui; Yang Guo; Wu Wen; Ge Sheng
2011-01-01
This paper presents a planar microstrip wideband dual mode Band-Pass Filter (BPF) from 2 GHz to 3.4 GHz with a notched band at 2.62 GHz.The dual mode band-pass filter consists of a ring resonator with two quarter-wavelength open-circuited stubs at φ -90° and φ =0°,respectively.A square perturbation stub has been put at the corner of the ring resonator to increase the narrow stopbands and improve the performance of selectivity.By using a parallel-coupled feed line,a narrow notched band is introduced at the required frequency and its Fractional BandWidth (FBW) is about 5％.The proposed filter has a narrow notched band and a wide pass-band with a sharp cutoff frequency characteristic,the attenuation rate for the sharp cutoff frequency responses is 297.17 dB/GHz (calculated from 1.959 GHz with -34.43 dB to 2.065 GHz with -2.93 dB) and 228.10 dB/GHz (calculated from 3.395 GHz with -2.873 dB to 3.507 GHz with -28.42 dB).This filter has the advantages of good insertion loss in both operating bands and two rejections of greater than 16 dB in the range of 1.59 GHz to 1.99 GHz and 3.49 GHz to 3.98 GHz.Having been presented in this article,the measurement results agree well with the simulation results,which validates our idea.
Riyopoulos, Spilios
1996-03-01
A guiding center fluid theory is applied to model steady-state, single mode, high-power magnetron operation. A hub of uniform, prescribed density, feeds the current spokes. The spoke charge follows from the continuity equation and the incompressibility of the guiding center flow. Included are the spoke self-fields (DC and AC), obtained by an expansion around the unperturbed (zero-spoke charge) flow in powers of ν/V1, ν, and V1 being the effective charge density and AC amplitude. The spoke current is obtained as a nonlinear function of the detuning from the synchronous (Buneman-Hartree, BH) voltage Vs; the spoke charge is included in the self-consistent definition of Vs. It is shown that there is a DC voltage region of width ‖V-Vs‖˜V1, where the spoke width is constant and the spoke current is simply proportional to the AC voltage. The magnetron characteristic curves are ``flat'' in that range, and are approximated by a linear expansion around Vs. The derived formulas differ from earlier results [J. F. Hull, in Cross Field Microwave Devices, edited by E. Okress (Academic, New York, 1961), pp. 496-527] in (a) there is no current cutoff at synchronism; the tube operates well below as well above the BH voltage; (b) the characteristics are single valued within the synchronous voltage range; (c) the hub top is not treated as virtual cathode; and (d) the hub density is not equal to the Brillouin density; comparisons with tube measurements show the best agreement for hub density near half the Brillouin density. It is also shown that at low space charge and low power the gain curve is symmetric relative to the voltage (frequency) detuning. While symmetry is broken at high-power/high space charge magnetron operation, the BH voltage remains between the current cutoff voltages.
Verification of L-band SAR calibration
Larson, R. W.; Jackson, P. L.; Kasischke, E.
1985-01-01
Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.
Arthroscopic treatment of iliotibial band syndrome.
Cowden, Courtney H; Barber, F Alan
2014-02-01
Lateral knee pain in athletes is commonly seen in the sports medicine clinic, and the diagnosis of iliotibial band (ITB) syndrome is frequently made. Although conservative management including rest from activity, equipment modification, oral nonsteroidal anti-inflammatory drug use, and physical therapy is the mainstay of treatment initially, refractory cases do exist. Multiple surgical techniques have been described including an arthroscopic technique. Arthroscopic release of the ITB attachment to the lateral femoral epicondyle and resection of the lateral synovial recess for recalcitrant ITB syndrome comprise a valid option that can have a good outcome. This option avoids the complications associated with open surgery and allows for a complete arthroscopic knee examination. Division or lengthening of the ITB band itself is not a necessary step in this technique.
The First Six ALMA Band 10 Receivers
Fujii, Y.; Gonzalez, A.; Kroug, M.; Kaneko, K.; Miyachi, A.; Yokoshima, T.; Kuroiwa, K.; Ogawa, H.; Makise, K.; Wang, Z.; Uzawa, Y.
2013-01-01
The first six Atacama Large Millimeter/submillimeter Array (ALMA) Band 10 (787-950 GHz) receivers have been developed and characterized during the receiver preproduction phase. State-of-the-art measurement systems at THz frequencies have been implemented and successfully used to measure the performance of the first six receivers. Extensive tests ranging from receiver sensitivity and stability to optical aperture efficiency on the secondary antenna have been performed. Performance of all six receivers is well within the stringent ALMA requirements. Moreover, our extensive tests have shown that there are no big performance differences between receivers. These results indicate that the ALMA Band 10 receiver is ready for the production phase, during which an additional 67 receivers will be produced and characterized.
Energy Technology Data Exchange (ETDEWEB)
Krasnykh, A.; Decker, F.-J.; /SLAC; LeClair, R.; /INTA Technologies, Santa Clara
2012-08-28
The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.
Modulation transfer functions at Ka band
Hesany, Vahid; Sistani, Bita; Salam, Asif; Haimov, Samuel; Gogineni, Prasad; Moore, Richard K.
The modulation transfer function (MTF) is often used to describe the modulation of the radar signal by the long waves. MTFs were measured at 35 GHz (Ka band) with a switched-beam vector slope gauge/scatterometer on the research platform NORDSEE as part of the SAXON-FPN experiment. Three independent measurements of the scattering were available for each height measurement. This provided the opportunity to average the time series to reduce the effects of fading noise and sea spikes, or, alternatively, to append the time series to achieve more degrees of freedom in the spectral estimates. For upwind measurements, the phase of the VV-polarized Ka-band MTF was always positive, which implies that the maximum of the radar return originates from the forward face of the long-scale waves. This phase increases with increasing wind speed. The magnitude of the MTF decreases with increasing wind speed.
The band gap and band offset in ultrathin oxide-semiconductor heterostructures
Schmeißer, D.; Henkel, K.; Bergholz, M.; Tallarida, M.
2010-03-01
In ultrathin high- k oxide layers knowledge of the band line up and band gap is essential for modeling the transport properties and to learn about a device's long term stability and reliability. However, such data are hard to determine in such ultrathin layers and usually are extrapolated from values for bulk samples or are taken from the literature. In our in situ approach we use electron energy loss spectroscopy, valence band photoelectron spectroscopy, X-ray absorption spectroscopy, and resonant inelastic X-ray scattering to obtain the loss function and the valence and conduction band densities of states. From such data we derive the values of the band offsets and of the band gap. We discuss the ability of this combination of different techniques for the analysis of such complex ultrathin dielectric systems and discuss in detail the properties of the native oxide in SiO 2/Si(001) and SiO 2/3C-SiC(001).
Shuttle Ku-band and S-band communications implementation study
Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.
1980-05-01
Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.
Band geometry, Berry curvature, and superfluid weight
Liang, Long; Vanhala, Tuomas I.; Peotta, Sebastiano; Siro, Topi; Harju, Ari; Törmä, Päivi
2017-01-01
We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-Cooper-Schrieffer (BCS) mean-field framework. We show how to separate the geometric contribution to the superfluid weight from the conventional one, and that the geometric contribution is associated with the interband matrix elements of the current operator. Our theory can be applied to systems with or without time-reversal symmetry. In both cases the geometric superfluid weight can be related to the quantum metric of the corresponding noninteracting systems. This leads to a lower bound on the superfluid weight given by the absolute value of the Berry curvature. We apply our theory to the attractive Kane-Mele-Hubbard and Haldane-Hubbard models, which can be realized in ultracold atom gases. Quantitative comparisons are made to state of the art dynamical mean-field theory and exact diagonalization results.
Wanum, van M.; Dijk, van R.; Hek, de A.P.; Vliet, van F.E.
2009-01-01
A broadband class E High Power Amplifier (HPA) is presented. This HPA is designed to operate at S-band (2.75 to 3.75 GHz). A power added efficiency of 50% is obtained for the two stage amplifier with an output power of 35.5 dBm on a chip area of 5.25 times 2.8 mm2.
Wanum, M. van; Dijk, R. van; Hek, A.P. de; Vliet, F.E. van
2009-01-01
A broadband class E High Power Amplifier (HPA) is presented. This HPA is designed to operate at S-band (2.75 to 3.75 GHz). A power added efficiency of 50% is obtained for the two stage amplifier with an output power of 35.5 dBm on a chip area of 5.25 × 2.8 mm2.
LANDSAT 4 band 6 data evaluation
1984-01-01
The objectives of this investigation are to evaluate and monitor the radiometric integrity of the LANDSAT-D Thematic Mapper (TM) thermal infrared channel (Band 6) data to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Efforts this period have concentrated on underflight data collection. Two successful flights were made on September 18 and October 6. The radiosonde data for these flights have been obtained.
Band Iron Formations and Satellite Magnetic Anomalies
Nazarova, K. A.; Wasilewski, P.
2005-05-01
Band Iron Formations (BIF) are mainly Precambrian (2.5-1.8 Ga) sedimentary deposits and are composed of alternating layers of iron rich material and silica (chert). Precambrian BIF mark growth in the level of free oxygen in the atmosphere and the ocean which happened about 2.2 Ga. Distribution of main BIF includes Hamersley Range, Australia; Transvaal-Griquatown, South Africa; Minas Gerais, Brazil; Labrador Trough, Canada, and Kursk-Krivoi Rog (Russia). Together these five very large BIF deposits constitute about 90 percent of Earth's total estimated BIF (5.76*10 14 ). On each continent these ancient rocks usually metamorphosed and crystallized include what are variously described as hematite-quartzites, banded iron formations, banded jaspers or calico-rocks. West African, Hudson Bay and Western Australian Satellite Magnetic Anomalies coincide with distribution BIF deposits. The Kursk Satellite Magnetic Anomaly (KMA) (about 22 nT at the altitude=400km, centered at 51o N, 37o E) also was identified by ground and aeromagnetic observations and is recognized as one of the largest magnetic anomaly on the Earth. Magnetic modeling shows that immense Precambrian iron ore deposits (iron bands) of Voronezh uplift are the main source of KMA. Magnetic properties of 10000 BIF samples outcropped in the KMA area have been measured and analyzed (Krutikhovskaya et al., 1964) Rockmag BIF dataset is presented at: http://core2.gsfc.nasa.gov/MPDB/datasets.html. Mean NRM value is about 42 A/M, Qn about 1.4. Demagnetization tests suggest that hard and stable NRM component is caused by hematite occurring in BIF in different forms and grain sizes. Hematite deposits discovered on Mars in western equatorial area with layered topography of Aram Chaos and Sinus Meridiani could be of hydrothermal origin and may be formed similar to hematite precipitated in BIF on Earth.
Structural Evolution of a Warm Frontal Precipitation Band During GCPEx
Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen
2015-01-01
A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).
Collective Bands in Neutron-Rich 104Mo Nucleus
Institute of Scientific and Technical Information of China (English)
杨利明; 姜卓; 全明吉; J. H. Hamilton; A. V. Ramayya; J. K. Hwang; X. Q. Zhang; B. R. S. Babu; J. Komicki; E. F. Jones; W. C. Ma; 朱胜江; J. D. Cole; R. Aryaeinejad; M. W. Drigert; I. Y. Lee; J. O. Rasmussen; M. A. Stover; G. M. Ter-Akopian; A. V. Daniel; 李科; 朱凌燕; 甘翠云; 萨哈伊; 龙桂鲁; 许瑞清; 张征
2001-01-01
Levels in the neutron-rich 104Mo nucleus have been investigated by observing prompt γ-rays from the spontaneous fission of 252Cf with the Gammasphere detector array. The ground-state band, the one-phonon and the twophonon γ-vibrational bands as well as a quasiparticle band have been confirmed and expanded with spin up to 14h. Other two side bands probably built on new quasiparticle states are identified. The possible configurations for the quasiparticle bands are discussed. Two of the quasiparticle bands show larger moments of inertia and may have pair-free characteristics. The levels of the ground-state band, the one-phonon γ-band and the two-phonon γ-band calculated from a general collective model are in close agreement with the experimental data.
Enhancing bird banding information sharing across the western hemishpere
Rojo, A.; Berlanga, H.; Howes, L.; Tomosy, M.
2007-01-01
Bird banding and marking provide indispensable tools for ornithological research, management, and conservation of migratory birds and their habitats along migratory routes, breeding and non-breeding grounds. With the growing interest in international coordination of tracking bird movements, coordination amongst developing and existing programs is essential for effective data management. The North American Bird Banding Program (Canadian Bird Banding Office and U.S. Bird Banding Laboratory and the Mexican government) has been working to enhance collaboration with other Western Hemisphere countries to establish a voluntary bird banding communication network. This network addresses challenges, such as: demonstrating how sharing banding expertise and information management can support the stewardship of Western Hemisphere migratory birds, ensuring that valuable banding and encounter data are captured and shared. With increasing numbers of international scientific and conservation initiatives, bird banding and marking programs must provide essential international coordination functions as well as support local activities by facilitating access to bands, training, data management and encounter reporting.
Axionic Band Structure of the Cosmological Constant
Bachlechner, Thomas C.
2015-01-01
We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by |det(Q)|~exp(N). Our construction motivates the existence of a landscape with a vas...
Interface bands in carbon nanotube superlattices
Energy Technology Data Exchange (ETDEWEB)
Jaskolski, W.; Pelc, M. [Instytut Fizyki UMK, Grudziadzka 5, 87-100 Torun (Poland); Santos, H.; Chico, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Ayuela, A. [Centro de Fisica de Materiales CSIC-UPV/EHU, Departamento de Fisica de Materiales (Facultad de Quimicas), and Donostia International Physics Center (DIPC), 20080 Donostia (Spain)
2010-02-15
We study the electronic band structure of several carbon nanotube superlattices built of two kinds of intermolecular junctions: (12, 0)/(6, 6) and (8, 0)/(14, 0). In particular, we focus on the energy bands originating from interface states. We find that in case of the metallic (12, 0)/(6, 6) superlattices, the interface bands change periodically their character from bonding- to antibonding-like vs. increasing length of the (6, 6) tube. We show that these changes are related to the decay of the charge density Friedel oscillations in the metallic (6, 6) tube. However, when we explore other chiralities without rotational symmetry, no changes in bondingantibonding character are observed for semiconductor superlattices, as exemplified in the case of (8, 0)/(14, 0) superlattices. Our results indicate that unless metallic tubes are employed in the junctions, the bonding-antibonding crossings are not present (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Multi-Band Feeds: A Design Study
Maan, Yogesh; Raja, Wasim; Mehta, Nikhil
2012-01-01
Broadband antenna feeds are of particular interest to existing and future radio telescopes for multi-frequency studies of astronomical sources. Although a 1:15 range in frequency is difficult to achieve, the well-known Eleven feed design offers a relatively uniform response over such a range, and reasonably well-matched responses in E & H planes. However, given the severe Radio Frequency Interference in several bands over such wide spectral range, one desires to selectively reject the corresponding bands. With this view, we have explored the possibilities of having a multi-band feed antenna spanning a wide frequency range, but which would have good response only in a number of pre-selected (relatively) RFI-free windows (for a particular telescope-site). The designs we have investigated use the basic configuration of pairs of dipoles as in the Eleven feed, but use simple wire dipoles instead of folded dipoles used in the latter. From our study of the two designs we have investigated, we find that the desig...
The Negative Parity Bands in $^{156}$Gd
Jentschel, Michael; Curien, Dominique; Dudek, Jerzy; Haas, Florent
2014-01-01
The high flux reactor of the Institut Laue-Langevin is the world most intense neutron source for research. Using the ultra high-resolution crystal spectrometers GAMS installed at the in-pile target position H6/H7 it is possible to measure nuclear state lifetimes using the Gamma Ray Induced Recoil (GRID) technique. In bent crystal mode, the spectrometers allow to perform spectroscopy with a dynamic range of up to six orders magnitude. At a very well collimated external neutron beam it is possible to install a highly efficient germanium detector array to obtain coincidences and angular correlations. The mentioned techniques were used to study the first two negative parity bands in $^{156}$Gd. These bands have been in the focus of interest since they seem to show signatures of a tetrahedral symmetry. A surprisingly high B(E2) value of about 1000 W.u. for the $4^- \\rightarrow 2^-$ transition was discovered. It indicates that the two first negative parity bands cannot be considered to be signature partners.
Enhanced C-band Coaxial Orthomode Transducer
Directory of Open Access Journals (Sweden)
S. I. Piltyay
2014-09-01
Full Text Available Introduction. In this paper a novel configuration of wideband coherent coaxial OMT is presented. General Design of an Orthomode Transducer. The OMT consists of elements of 3 main types: a turnstile junction between coaxial quad-ridged waveguide and 4 coaxial transmission lines; 4 coaxial transmission lines of LMR400 type; 2 antiphase power combiners/dividers. A Turnstile Junction Optimization. The optimization of a turnstile junction has been performed. Its minimized reflection coefficient is less than −28 dB in the operation frequency band 3.4–5.4 GHz. A Wideband Antiphase Power Combiner/Divider. The optimization of an antiphase power combiner/divider has been performed. Its minimized reflection coefficient is less than −38 dB. Characteristics of Coaxial Orthomode Transducer Developed. The simulation of OMT characteristics has been performed using CST Design Studio software. Conclusions. A wideband coherent coaxial orthomode transducer has been developed for the operation frequency band 3.4–5.4 GHz. In this frequency band the reflection coefficient of OMT is less than −24 dB and its crosspolar isolation exceeds 38 dB. The wideband coaxial OMT developed can be used in dual-polarized multiband antennas for satellite telecommunications and for radioastronomy.
Midfrequency band dynamics of large space structures
Coppolino, Robert N.; Adams, Douglas S.; Levine, Marie B.
2004-09-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Frequency Arrangement For 700 MHz Band
Directory of Open Access Journals (Sweden)
Ancans G.
2015-02-01
Full Text Available The 694-790 MHz (700 MHz band was allocated by the 2012 World Radiocommunication Conference (WRC-12 in ITU Region 1 (Europe included, to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT. At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15. In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.
Banded electron structures in the plasmasphere
Energy Technology Data Exchange (ETDEWEB)
Burke, W.J.; Rubin, A.G.; Hardy, D.A.; Holeman, E.G.
1995-05-01
The low-energy plasma analyzer on CRRES has detected significant fluxes of 10-eV to 30-keV electrons trapped on plasmaspheric field lines. On energy versus time spectrograms these electrons appear as banded structures that can span the 2 < L < 6 range of magnetic shells. The authors present an example of banded electron structures, encountered in the nightside plasmasphere during the magnetically quiet January 30, 1991. Empirical analysis suggests that two clouds of low energy electrons were injected from the plasma sheet to L < 4 on January 26 and 27 while the convective electric field was elevated. The energies of electrons in the first cloud were greater than those in the second. DMSP F8 measurements show that after the second injection, the polar cap potential rapidly decreased from >50 to <20 kY. Subsequent encounters with the lower energy cloud on alternating CRRES orbits over the next 2 days showed a progressive, earthward movement of the electrons, inner boundary. Whistler and electron cyclotron harmonic emissions accompanied the most intense manifestations of cloud electrons. The simplest explanation of these measurements is that after initial injection, the AIfven boundary moved Outward, leaving the cloud electrons on closed drift paths. Subsequent fluctuations of the convective electric field penetrated the plasmasphere, transporting cloud elements inward. The magnetic shell distribution of electron temperatures in one of the banded structures suggests that radiative energy losses may be comparable in magnitude to gains due to adiabatic compression.
Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps
Zhang, Miao; Gao, Guoying; Kutana, Alex; Wang, Yanchao; Zou, Xiaolong; Tse, John S.; Yakobson, Boris I.; Li, Hongdong; Liu, Hanyu; Ma, Yanming
2015-07-01
The search for new candidate semiconductors with direct band gaps of ~1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer Bx/2Nx/2C1-x stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of Bx/2Nx/2C1-x phases possess direct band gaps within the optical range, thereby they can potentially be used in high-efficiency conversion of solar energy to electric power, as well as in p-n junction photovoltaic modules. The present results also show that the band gaps of Bx/2Nx/2C1-x can be widely tuned within the optical range by changing the concentration of carbon, thus allowing the fast development of band gap engineered materials in optoelectronics. These new findings may enable new approaches to the design of microelectronic devices.The search for new candidate semiconductors with direct band gaps of ~1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer Bx/2Nx/2C1-x stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of Bx/2Nx/2C1-x phases possess direct band gaps within the optical range, thereby they can
Extended collective bands in neutron-rich 109Ru
Institute of Scientific and Technical Information of China (English)
DING Huai-Bo; ZHU Sheng-Jiang; J.H. Hamilton; A.V. Ramayya; J. K. Hwang; K. Li; S.H. Liu; Y.X. Luo; J.O. Rasmussen; C.T. Goodin; I. Y. Lee; WANG Jian-Guo; CHE Xing-Lai; GU Long
2009-01-01
Levels in the neutron-rich 109Ru have been studied by observing the prompt γ-rays following the spontaneous fission fragments of 252Cf. The ground state band and the negative parity bands have been confirmed and extended. A positive parity band with the band head level at 332.5 keV is newly identified and suggested as a single-neutron excitation band built on the 7/2+ [404] Nilsson orbital. Some structural characteristics of these bands are discussed.
Theory of semiconductor junction devices a textbook for electrical and electronic engineers
Leck, J H
1967-01-01
Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe
1982-02-01
of collections of associations, Need theory consists of interrelated concepts, social learning theory consists of rule application in the social...Ryan’s Learning Subdivisions Hierarchically Arranged -27- Landy: ONR Annual Report Expectancy Theory Effectance Theory Social Learning Theory Self-Esteem
Müller, Gert; Sacks, Gerald
1990-01-01
These proceedings contain research and survey papers from many subfields of recursion theory, with emphasis on degree theory, in particular the development of frameworks for current techniques in this field. Other topics covered include computational complexity theory, generalized recursion theory, proof theoretic questions in recursion theory, and recursive mathematics.
Composite Photon Theory Versus Elementary Photon Theory
Perkins, Walton A
2015-01-01
The purpose of this paper is to show that the composite photon theory measures up well against the Standard Model's elementary photon theory. This is done by comparing the two theories area by area. Although the predictions of quantum electrodynamics are in excellent agreement with experiment (as in the anomalous magnetic moment of the electron), there are some problems, such as the difficulty in describing the electromagnetic field with the four-component vector potential because the photon has only two polarization states. In most areas the two theories give similar results, so it is impossible to rule out the composite photon theory. Pryce's arguments in 1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has been realized that in the composite theory the antiphoton does not interact with matter because it is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental tests that can determine which theory is correct.