WorldWideScience

Sample records for band structure superconductivity

  1. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  2. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering.

    Science.gov (United States)

    Peng, R; Xu, H C; Tan, S Y; Cao, H Y; Xia, M; Shen, X P; Huang, Z C; Wen, C H P; Song, Q; Zhang, T; Xie, B P; Gong, X G; Feng, D L

    2014-09-26

    The interface between transition metal compounds provides a rich playground for emergent phenomena. Recently, significantly enhanced superconductivity has been reported for single-layer FeSe on Nb-doped SrTiO3 substrate. Yet it remains mysterious how the interface affects the superconductivity. Here we use in situ angle-resolved photoemission spectroscopy to investigate various FeSe-based heterostructures grown by molecular beam epitaxy, and uncover that electronic correlations and superconducting gap-closing temperature (Tg) are tuned by interfacial effects. Tg up to 75 K is observed in extremely tensile-strained single-layer FeSe on Nb-doped BaTiO3, which sets a record high pairing temperature for both Fe-based superconductor and monolayer-thick films, providing a promising prospect on realizing more cost-effective superconducting device. Moreover, our results exclude the direct correlation between superconductivity and tensile strain or the energy of an interfacial phonon mode, and highlight the critical and non-trivial role of FeSe/oxide interface on the high Tg, which provides new clues for understanding its origin.

  3. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  4. Photonic band structure computations.

    Science.gov (United States)

    Hermann, D; Frank, M; Busch, K; Wolfle, P

    2001-01-29

    We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

  5. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  6. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    Unknown

    culated band structure to obtain the T = 0 K values of the London penetration depth and the superconducting coherence length. The penetration depth ... determined values of these quantities. This indicates the limitations of a the- ... bulk modulus and Tc. In §3 we present the calculations of the zero temperature penetration ...

  7. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are ...

  8. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  9. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    Science.gov (United States)

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  10. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  11. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence

    Directory of Open Access Journals (Sweden)

    G. Baskaran

    2006-01-01

    Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.

  12. Fluctuations in a superconducting quantum critical point of multi-band metals

    Energy Technology Data Exchange (ETDEWEB)

    Ramires, A [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, Niteroi, RJ, 24.210-340 (Brazil); Continentino, M A, E-mail: mucio@cbpf.br [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2011-03-30

    In multi-band metals quasi-particles arising from different atomic orbitals coexist at a common Fermi surface. Superconductivity in these materials may appear due to interactions within a band (intra-band) or among the distinct metallic bands (inter-band). Here we consider the suppression of superconductivity in the intra-band case due to hybridization. The fluctuations at the superconducting quantum critical point (SQCP) are obtained by calculating the response of the system to a fictitious space- and time-dependent field, which couples to the superconducting order parameter. The appearance of superconductivity is related to the divergence of a generalized susceptibility. For a single-band superconductor this coincides with the Thouless criterion. For fixed chemical potential and large hybridization, the superconducting state has many features in common with breached pair superconductivity with unpaired electrons at the Fermi surface. The T = 0 phase transition from the superconductor to the normal state is in the universality class of the density-driven Bose-Einstein condensation. For a fixed number of particles and in the strong coupling limit, the system still has an instability to the normal state with increasing hybridization.

  13. Monte Carlo study of superconductivity in the three-band Emery model

    International Nuclear Information System (INIS)

    Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.

    1990-01-01

    We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity

  14. Structural safety features for superconducting magnets

    International Nuclear Information System (INIS)

    Lehner, J.; Reich, M.; Powell, J.; Bezler, P.; Gardner, D.; Yu, W.; Chang, T.Y.

    1975-01-01

    A survey has been carried out for various potential structural safety problems of superconducting fusion magnets. These areas include: (1) Stresses due to inhomogeneous temperature distributions in magnets where normal regions have been initiated. (2) Stress distributions and yield forces due to cracks and failed regions. (3) Superconducting magnet response due to seismic excitation. These analyses have been carried out using a variety of large capacity finite element computer codes that allow for the evaluation of stresses in elastic or elastic-plastic zones and around singularities in the magnet structure. Thus far, these analyses have been carried out on UWMAK-I type magnet systems

  15. Crossover from weak to strong coupling superconductivity in multi-band systems

    Energy Technology Data Exchange (ETDEWEB)

    Dinola Neto, Francisco [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, Niteroi, RJ, 24.210-340 (Brazil); Continentino, Mucio A [Centro Brasileiro de Pesquisas FIsicas, Rua Dr Xavier Sigaud, 150-Urca, Rio de Janeiro, RJ, 22290-180 (Brazil); Lacroix, Claudine, E-mail: claudine.lacroix@grenoble.cnrs.f [Institut Neel, CNRS-UJF, 25 avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2010-02-24

    The study of superconductivity in correlated systems is an exciting area of condensed matter physics. In this paper we consider superconducting ground states in systems described by two-band models with different effective masses. These two bands are coupled through an effective hybridization that can be directly tuned by pressure. We consider the cases of s-wave superconductivity associated with the electrons in a narrow band and also with inter-band pairing. To study the system in the strong coupling regime we introduce the s-wave scattering length a{sub s}, and obtain the superconducting order parameters and the chemical potential as functions of the interaction strength 1/k{sub F}a{sub s} along the BCS-BEC crossover at T = 0. Finally, we discuss the phase diagram of this model as a function of external pressure and how our results can be applied for two-band systems as Fe pnictides or heavy fermions. The main result of this study is the occurrence of a superconducting quantum critical point (SQCP) in this two-band model.

  16. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    Science.gov (United States)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar–Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  17. First-order superconducting transition in the inter-band model

    Energy Technology Data Exchange (ETDEWEB)

    Gomes da Silva, M. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); Instituto Federal de Educação Ciência e Tecnologia do Amazonas, Av. 7 de Setembro, 1975 - Centro, Manaus, AM 69020-120 (Brazil); Dinóla Neto, F., E-mail: dinola@ufam.edu.br [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); Padilha, I.T. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Continentino, M.A. [Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ (Brazil)

    2014-04-01

    The comprehension about the theoretical features of superconductivity is an interesting and fundamental topic in condensed matter physics. Several theoretical proposals were considered to describe the new classes of superconducting compounds and alloys. In this work we propose to study a non-conventional superconducting system where the Cooper pairs are formed by fermions from different bands described via two band model with hybridization. In this inter-band scenario we find a first-order phase transition at low temperatures and we observe a tricritical point in the phase diagram. In our description, the control parameter is the hybridization that can be tuned by external pressure. This fact indicates the possibility to observe discontinuities in the SC gap amplitude through applying pressure on the system.

  18. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-03

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  19. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  20. Gallium beam lithography for superconductive structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Lewis, Rupert M.

    2018-01-30

    The present invention relates to the use of gallium beam lithography to form superconductive structures. Generally, the method includes exposing a surface to gallium to form an implanted region and then removing material adjacent to and/or below that implanted region. In particular embodiments, the methods herein provide microstructures and nanostructures in any useful substrate, such as those including niobium, tantalum, tungsten, or titanium.

  1. Optimizing the configuration of a superconducting photonic band gap accelerator cavity to increase the maximum achievable gradients

    Directory of Open Access Journals (Sweden)

    Evgenya I. Simakov

    2014-02-01

    Full Text Available We present a design of a superconducting rf photonic band gap (SRF PBG accelerator cell with specially shaped rods in order to reduce peak surface magnetic fields and improve the effectiveness of the PBG structure for suppression of higher order modes (HOMs. The ability of PBG structures to suppress long-range wakefields is especially beneficial for superconducting electron accelerators for high power free-electron lasers (FELs, which are designed to provide high current continuous duty electron beams. Using PBG structures to reduce the prominent beam-breakup phenomena due to HOMs will allow significantly increased beam-breakup thresholds. As a result, there will be possibilities for increasing the operation frequency of SRF accelerators and for the development of novel compact high-current accelerator modules for the FELs.

  2. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  3. Electronic structure and relaxation dynamics in a superconducting topological material.

    Science.gov (United States)

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M Mofazzel; Shin, Shik; Chou, Fangcheng; Hasan, M Zahid; Durakiewicz, Tomasz

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc ~ 3 K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc ~ 2.5 K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excited topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. Our results will be helpful in understanding low temperature superconducting states of these topological materials.

  4. Construction of a superconducting RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Givens, J.; Potter, J.M.

    1994-01-01

    This paper reports the development status of a niobium superconducting RFQ operating at 194 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The length of the structure is 52 cm, and the vanes are modulated to enable tests with an ion beam. The construction of a prototype niobium resonator is described

  5. Heat Transport as a Probe of Superconducting Gap Structure

    International Nuclear Information System (INIS)

    Petrovic, C.; Shakeripour, H.; Taillefer, L.

    2009-01-01

    The structure of the superconducting gap provides important clues on the symmetry of the order parameter and the pairing mechanism. The presence of nodes in the gap function imposed by symmetry implies an unconventional order parameter, other than s-wave. Here we show how measurements of the thermal conductivity at very low temperature can be used to determine whether such nodes are present in a particular superconductor, and shed light on their nature and location. We focus on the residual linear term at T → 0. A finite value in zero magnetic field is strong evidence for symmetry-imposed nodes, and the dependence on impurity scattering can distinguish between a line of nodes or point nodes. Application of a magnetic field probes the low-energy quasiparticle excitations, whether associated with nodes or with a small value of the gap on some part of the Fermi surface, as in a multi-band superconductor. We frame our discussion around archetypal materials: Nb for s-wave, Tl 2 Ba 2 CuO 6+δ for d-wave, Sr 2 RuO 4 for p-wave, and NbSe 2 for multi-band superconductivity. In that framework, we discuss three heavy-fermion superconductors: CeIrIn 5 , CeCoIn 5 and UPt 3 .

  6. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed

  7. Construction of a superconducting RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Crandall, K.R.

    1993-01-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed

  8. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  9. Construction of a superconducting RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L. [Argonne National Lab., IL (United States); Crandall, K.R. [AccSys Technology, Inc., Pleasanton, CA (United States)

    1993-07-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed.

  10. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs

  11. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  12. Electronic structure and superconductivity of europium

    International Nuclear Information System (INIS)

    Nixon, Lane W.; Papaconstantopoulos, D.A.

    2010-01-01

    We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane-wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schroedinger equation to move the occupied 4f valence states below the Γ 1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc and hcp structures are also found to agree with and follow a T c trend similar to recent measurement by Debessai et al.

  13. STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES

    International Nuclear Information System (INIS)

    Schrage, D.

    2000-01-01

    The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2

  14. Modulated structure calculated for superconducting hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arnab; Tse, John S.; Yao, Yansun [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2017-09-11

    Compression of hydrogen sulfide using first principles metadynamics and molecular dynamics calculations revealed a modulated structure with high proton mobility which exhibits a diffraction pattern matching well with experiment. The structure consists of a sublattice of rectangular meandering SH{sup -} chains and molecular-like H{sub 3}S{sup +} stacked alternately in tetragonal and cubic slabs forming a long-period modulation. The novel structure offers a new perspective on the possible origin of the superconductivity at very high temperatures in which the conducting electrons in the SH chains are perturbed by the fluxional motions of the H{sub 3}S resulting in strong electron-phonon coupling. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Photonic band gap structure simulator

    Science.gov (United States)

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  16. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  17. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  18. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  19. Energy band theory of heterometal superposed film and relevant comments on superconductivity in heterometal systems

    International Nuclear Information System (INIS)

    Zhang, L.; Yin, D.

    1981-08-01

    A method for calculating the electronic structure of a heterogeneous metal-metal interface is discussed. It combines a series of well-defined interface plane-wave orbitals and the muffin-tin orbitals. The problem of high-Tsub(c) superconductivity in systems containing metal-metal interfaces and the related problem in compounds is addressed

  20. Structural aspects of superconducting fusion magnets

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.

    1977-01-01

    Some methods for studying various static, dynamic, elastic-plastic, and fracture mechanics problems of superconducting magnets are described. Sample solutions are given for the UWMAK-I magnet. Finite element calculations were used

  1. Miniaturized high-temperature superconducting multiplexer with cascaded quadruplet structure

    Science.gov (United States)

    Xu, Zhang; Jingping, Liu; Shaolin, Yan; Lan, Fang; Bo, Zhang; Xinjie, Zhao

    2015-06-01

    In this paper, compact high temperature superconducting (HTS) multiplexers are presented for satellite communication applications. The first multiplexer consists of an input coupling node and three high-order bandpass filters, which is named triplexer. The node is realized by a loop microstrip line instead of conventional T-junction to eliminate the redundant susceptance due to combination of three filters. There are two eight-pole band-pass filters and one ten-pole band-pass filter with cascaded quadruplet structure for realizing high isolation. Moreover, the triplexer is extended to a multiplexer with six channels so as to verify the expansibility of the suggested approach. The triplexer is fabricated using double-sided YBa2Cu3O7 thin films on a 38 × 25 mm2 LaAlO3 substrate. The experimental results, when compared with those ones from the T-junction multiplexer, show that our multiplexer has lower insertion loss, smaller sizes and higher isolation between any two channels. Also, good agreement has been achieved between simulations and measurements, which illustrate the effectiveness of our methods for the design of high performance HTS multiplexers.

  2. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  3. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  4. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...

  5. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict...

  6. Single Pixel, Single Band Microstrip Antenna for Sub-Millimeter Wavelength Detection Using Transition Edge Superconducting Bolometric Receivers

    Science.gov (United States)

    Hunt, Cynthia; Bock, Jamie J.; Day, Peter K.; Goldin, Alexey; Lange, Andrew E.; Leduc, Henry G.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    We are developing a single pixel antenna coupled bolometric detector as a precursor to the SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) instrument. Our device consists of a dual slot microstrip antenna coupled to an Al/Ti/Au voltage-biased transition edge superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting microstrip lines and terminating the lines at a normal metal resistor on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized to for 100GHz band measurements, ideal for future implementation as an astronomical sub-millimeter instrument. We will present recent tests of these single pixel detectors.

  7. 2nd Rochester Conference on Superconductivity in D- and F- Band Metals

    CERN Document Server

    Superconductivity in d- and f- band metals

    1976-01-01

    The occurrence of superconductivity among the d- and f-band metals remains one of the unsolved problems of physics. The first Rochester conference on this subject in October 1971 brought together approximately 100 experimentalists and theorists, and that conference was considered successful; the published proceedings well-represented the current research at that time and has served as a "handbook" to many. In the four and one half years since the first conference, impressive progress has been made in many areas (although Berndt Matthias would be one of the first to point out that raising the m"aximum transition temperature by a significant amount was not one of them). For a variety of reasons, I decided that it was time for a Second Rochester Conference on Superconductivity in d- and f-Band Metals and it was held on April 30 and May 1, 1976. It would appear that this conference was even more successful judging from the quality of the talks and various comments made to me. I believe that this was due...

  8. Pressure dependence of structural phase transition and superconducting transition in CsI

    CERN Document Server

    Nirmala-Louis, C

    2003-01-01

    The self-consistent band structure calculation for CsI performed both in CsCl and HCP structures using the TB-LMTO method is reported. The equilibrium lattice constant, bulk modulus and the phase-transition pressure at which the compound undergoes structural phase transition from CsCl to HCP are predicted from the total-energy calculations. The band structure, density of states (DOS), electronic charge distributions, metallization and superconducting transition temperature (T sub c) of CsI are obtained as a function of pressure for both the CsCl and HCP structures. It is found that the charge transfer from s and p states to d state causes metallization and superconductivity in CsI. The highest T sub c estimated is 2.11 K and the corresponding pressure is 1.8 Mbar. This value is in agreement with the recent experimental observation. The experimental trend - ''metallization and superconductivity is rather insensitive to the crystal structure of CsI'' - is also confirmed in our work. (Abstract Copyright [2003], ...

  9. Structure and superconductivity of isotope-enriched boron-doped diamond

    OpenAIRE

    Evgeny A Ekimov, Vladimir A Sidorov, Andrey V Zoteev, Yury B Lebed, Joe D Thompson and Sergey M Stishov

    2008-01-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrat...

  10. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  11. A wideband superconducting filter at Ku-band based on interdigital coupling

    Science.gov (United States)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  12. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  13. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  14. A common thread in unconventional superconductivity. The functional renormalization group in multi-band systems

    International Nuclear Information System (INIS)

    Platt, Christian

    2012-01-01

    The superconducting properties of complex materials like the recently discovered iron-pnictides or strontium-ruthenate are often governed by multi-orbital effects. In order to unravel the superconductivity of those materials, we develop a multi-orbital implementation of the functional renormalization group and study the pairing states of several characteristic material systems. Starting with the iron-pnictides, we find competing spin-fluctuation channels that become attractive if the superconducting gap changes sign between the nested portions of the Fermi surface. Depending on material details like doping or pnictogen height, these spin fluctuations then give rise to s ± -wave pairing with or without gap nodes and, in some cases, also change the symmetry to d-wave. Near the transition from nodal s ± -wave to d-wave pairing, we predict the occurrence of a time-reversal symmetry-broken (s+id)-pairing state which avoids gap nodes and is therefore energetically favored. We further study the electronic instabilities of doped graphene, another fascinating material which has recently become accessible and which can effectively be regarded as multi-orbital system. Here, the hexagonal lattice structure assures the degeneracy of two d-wave pairing channels, and the system then realizes a chiral (d+id)-pairing state in a wide doping range around van-Hove filling. In addition, we also find spin-triplet pairing as well as an exotic spin-density wave phase which both become leading if the long-ranged hopping or interaction parameters are slightly modified, for example, by choosing different substrate materials. Finally, we consider the superconducting state of strontium-ruthenate, a possible candidate for chiral spin-triplet pairing with fascinating properties like the existence of half-quantum vortices obeying non-Abelian statistics. Using a microscopic three orbital description including spin-orbit coupling, we demonstrate that ferromagnetic fluctuations are still

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  16. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  17. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Here, we study theoretically the low-lying as well as the excited deformed bands and their electromagnetic properties to search for various structures, spherical and deformed, of the exotic nuclei 82Ge and 84Se by employing the deformed Hartree–Fock (HF) and angular momentum (J) projection method ...

  18. Vibronic Jahn-Teller coupling and structural-systematic aspects of superconductivity in ceramic materials

    International Nuclear Information System (INIS)

    Reinen, D.

    1993-09-01

    The following subjects were mainly investigated: 1. Development of a concept concerning the mechanism of superconductivity in ceramic oxides from the standpoint of solid state chemistry. An important criterion for generating superconductivity in ceramic oxides seems to be the overlap of a narrow, weakly antibonding and metal-centred band with a very broad band of predominant oxygen character in the Fermi region. Spectroscopic investigations are in favour of such a concept and additionally indicate a vibronic coupling mechanism of the Jahn-Teller- or pseudo-Jahn-Teller type. 2. Synthesis of potentially superconducting ceramic oxides. A series of oxidic compounds with transition metal ions (Ni 2+ /Ni 3+ /Ni 4+ , Mn 3+ /Mn 4+ , Cu 2+ /Cu 3+ etc.) and with cations, possessing a lone electron pair (Sb 3+ , Bi 3+ , Pb 2+ , Tl + ) was prepared (K 2 NiF 4 -structure). The investigation of these ceramic materials led to interesting insight into the nature of the M-O-bond and the cooperative interactions between the metal ion centres; new superconductors could not be synthesized, however. (orig.) [de

  19. Structure and bonding of superconducting LaC2

    International Nuclear Information System (INIS)

    Babizhetskyy, V; Jepsen, O; Kremer, R K; Simon, A; Ouladdiaf, B; Stolovits, A

    2014-01-01

    We have synthesized polycrystalline samples of superconducting LaC 2 and investigated them by x-ray and neutron powder diffraction, magnetic susceptibility and heat capacity measurements. Depending on the preparation conditions we find superconductivity below ∼1.8 K. A comparison of the superconducting anomaly in the heat capacity with theoretical predictions indicates LaC 2 to be a weak-coupling BCS-type superconductor. Evidence for a structural phase transition has not been found from the neutron powder diffraction experiments carried out down to 4 K. A negative thermal expansion of the c lattice parameter was observed below ∼50 K. The electronic structure of LaC 2 has been calculated ab initio and it is compared with that of YC 2 . The carbon–carbon distance of LaC 2 has been determined from the neutron powder diffraction experiments and it is compared and discussed with respect to those observed in other superconducting binary and ternary La and Y carbides and carbide halides. (paper)

  20. Structure and bonding of superconducting LaC2.

    Science.gov (United States)

    Babizhetskyy, V; Jepsen, O; Kremer, R K; Simon, A; Ouladdiaf, B; Stolovits, A

    2014-01-15

    We have synthesized polycrystalline samples of superconducting LaC2 and investigated them by x-ray and neutron powder diffraction, magnetic susceptibility and heat capacity measurements. Depending on the preparation conditions we find superconductivity below ~1.8 K. A comparison of the superconducting anomaly in the heat capacity with theoretical predictions indicates LaC2 to be a weak-coupling BCS-type superconductor. Evidence for a structural phase transition has not been found from the neutron powder diffraction experiments carried out down to 4 K. A negative thermal expansion of the c lattice parameter was observed below ~50 K. The electronic structure of LaC2 has been calculated ab initio and it is compared with that of YC2. The carbon-carbon distance of LaC2 has been determined from the neutron powder diffraction experiments and it is compared and discussed with respect to those observed in other superconducting binary and ternary La and Y carbides and carbide halides.

  1. Structural design of superconducting magnets for the large coil program

    International Nuclear Information System (INIS)

    Gray, W.H.; Long, C.J.; Stoddart, W.C.T.

    1979-09-01

    The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the USA, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns that are being investigated with the LCP are presented

  2. Structural materials for large superconducting magnets for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly.

  3. Structural materials for large superconducting magnets for tokamaks

    International Nuclear Information System (INIS)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly

  4. Specific heat, Electrical resistivity and Electronic band structure properties of noncentrosymmetric Th7Fe3superconductor.

    Science.gov (United States)

    Tran, V H; Sahakyan, M

    2017-11-17

    Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.

  5. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  6. Chiral classical states in a rhombus and a rhombi chain of Josephson junctions with two-band superconducting elements

    CERN Document Server

    Dias, R G; Coutinho, B C; Martins, L P

    2014-01-01

    We present a study of Josephson junctions arrays with two-band superconducting elements in the highcapacitance limit. We consider two particular geometries for these arrays: a single rhombus and a rhombi chain with two-band superconducting elements at the spinal positions. We show that the rhombus shaped JJ circuit and the rhombi chain can be mapped onto a triangular JJ circuit and a JJ two-leg ladder, respectively, with zero effective magnetic flux, but with Josephson couplings that are magnetic flux dependent. If the two-band superconductors are in a sign-reversed pairing state, one observes transitions to or from chiral phase configurations in the mapped superconducting arrays when magnetic flux or temperature are varied. The phase diagram for these chiral configurations is discussed. When half-flux quantum threads each rhombus plaquette, new phase configurations of the rhombi chain appear that are characterized by the doubling of the periodicity of the energy density along the chain, with every other two-...

  7. Photonic band structure of isotropic and anisotropic Abrikosov lattices in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zandi, Hesam [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: zandi@ee.sharif.edu; Kokabi, Alireza [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Jafarpour, Aliakbar [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: fardmanesh@sharif.edu; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States)

    2007-12-01

    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity for both orthogonal polarizations, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field, leading to nonlinear behavior of the band structure, which also has nonlinear dependence on the temperature. The similar analysis for every arbitrary lattice structure is also possible to be developed by this approach as presented in this work. We also present some examples and discuss the results.

  8. Precision photonic band structure calculation of Abrikosov periodic lattice in type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kokabi, Alireza; Zandi, Hesam; Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: fardmanesh@sharif.edu

    2007-09-01

    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field, leading to nonlinear behavior of the band structure, which also has nonlinear dependence on the temperature. The similar analysis for every arbitrary lattice structure is also possible to be developed by this approach as presented in this work. We also present some examples and discuss the results.

  9. Structure and superconductivity of isotope-enriched boron-doped diamond.

    Science.gov (United States)

    Ekimov, Evgeny A; Sidorov, Vladimir A; Zoteev, Andrey V; Lebed, Julia B; Thompson, Joe D; Stishov, Sergey M

    2008-12-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of 10 B, 11 B, 13 C and 12 C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the 'diamond-carbon'-related nature of superconductivity and the importance of the electron-phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm -1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co-C-B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.

  10. Surface band structures on Nb(001)

    International Nuclear Information System (INIS)

    Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.

    1994-01-01

    We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed

  11. Cryogenic structures of superconducting coils for fusion experimental reactor 'ITER'

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu; Shimamoto, Susumu

    2013-01-01

    This paper describes both structural materials and structural design of the Toroidal Field (TF) coil and Central Solenoid (CS) for the International Thermonuclear Experimental Reactor (ITER). All the structural materials used in the superconducting coil system of the ITER are austenitic stainless steels. Although 316LN is used in the most parts of the superconducting coil system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by the Japan Atomic Energy Agency (JAEA) and Japanese steel companies, are used in the highest stress area of the TF coil case and the whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. Structural materials are classified into five grades depending on stress distribution in the TF coil case. JAEA made an industrial specification for mass production based on the ITER requirements. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)' issued by the Japan Society of Mechanical Engineers (JSME) in October 2008, which was established using an extrapolation method of 4 K material strengths from room temperature strength and chemical compositions developed by JAEA. It enables steel suppliers to easily control the quality of products at room temperature. JAEA has already started actual production with several manufacturing companies. The first JJ1 product to be used in the TF coil case and the first JK2LB jackets for CS were completed in October and September 2013, respectively. (author)

  12. Changing optical band structure with single photons

    Science.gov (United States)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  13. Superconducting gap structure of heavy-Fermion compound URu2Si2 determined by angle-resolved thermal conductivity

    Science.gov (United States)

    Kasahara, Y.; Shishido, H.; Shibauchi, T.; Haga, Y.; Matsuda, T. D.; Onuki, Y.; Matsuda, Y.

    2009-05-01

    In heavy-Fermion compound URu2Si2, unusual superconductivity is embedded in an enigmatic 'hidden order' phase. Recently, it has been shown that URu2Si2 is essentially a multiband superconductor associated with the semimetallic compensated electronic structure. Here, to pin down the detailed superconducting gap structure, we have performed thermal transport measurements on ultraclean URu2Si2 single crystals in magnetic fields rotating various directions relative to the crystal axes. By changing the amplitude of magnetic fields, we determined the nodal topology of electron and hole band separately. The results indicate a new type of unconventional superconductivity with two distinct gaps, in which horizontal line nodes lie within the basal ab plane of the light-hole band with small gap and point nodes along the c-axis in the heavy electron band with large gap. This gap structure is consistent with 'chiral' d-wave symmetry with a form {\\hat{k}}_{z}({\\hat{k}}_{x}+i{\\hat{k}}_{y}) .

  14. Superconducting gap structure of heavy-Fermion compound URu2Si2 determined by angle-resolved thermal conductivity

    International Nuclear Information System (INIS)

    Kasahara, Y; Shishido, H; Shibauchi, T; Matsuda, Y; Haga, Y; Matsuda, T D; Onuki, Y

    2009-01-01

    In heavy-Fermion compound URu 2 Si 2 , unusual superconductivity is embedded in an enigmatic 'hidden order' phase. Recently, it has been shown that URu 2 Si 2 is essentially a multiband superconductor associated with the semimetallic compensated electronic structure. Here, to pin down the detailed superconducting gap structure, we have performed thermal transport measurements on ultraclean URu 2 Si 2 single crystals in magnetic fields rotating various directions relative to the crystal axes. By changing the amplitude of magnetic fields, we determined the nodal topology of electron and hole band separately. The results indicate a new type of unconventional superconductivity with two distinct gaps, in which horizontal line nodes lie within the basal ab plane of the light-hole band with small gap and point nodes along the c-axis in the heavy electron band with large gap. This gap structure is consistent with 'chiral' d-wave symmetry with a form k-circumflex z (k-circumflex x +ik-circumflex y ).

  15. Band-Structure of Thallium by the LMTO Method

    DEFF Research Database (Denmark)

    Holtham, P. M.; Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    The relativistic band structure of thallium has been calculated using the linear muffin-tin orbital (LMTO) method. The positions and extents of the bands were found to follow the Wigner-Seitz rule approximately, and the origin of the dispersion of the bands was established from the canonical s...... and p bands for the HCP structure. Energy bands have been evaluated both with and without spin-orbit coupling which is particularly large in thallium. Energy bands close to the Fermi level were found to be mainly 6p like in character. The 6s states lay below the 6p bands and were separated from them...

  16. Electronic structure and superconductivity in strongly correlated systems in the pseudogap regime

    Energy Technology Data Exchange (ETDEWEB)

    Puig-Puig, L.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Departament de Fisica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Ballaterra (Barcelona) (Spain)

    1995-12-15

    We propose effective potentials from a screened Coulomb interaction which arises from spin-fluctuation effects within a three-dimensional Hubbard single-band model for systems with strongly correlated electrons within the pseudogap regime. This regime is characterized by the existence in the normal state of at least two structures located at both sides of the Fermi level and split by a gap or pseudogap. This is the most crucial assumption in the analysis performed in this work. We consider the proposed effective interactions between fermions, analyzing the possibility of obtaining superconductivity by means of the formulation of the corresponding Dyson-like equations for the normal and anomalous one-body propagators in the state with bosonic condensation. We also include vertex effects within these effective fermion-fermion interactions and discuss their influence in this formalism in order to consider a Migdal-like theory appropriate to Hubbard systems. In cases where superconductivity is found, the critical temperature is obtained and the influence of the band and potential parameters is analyzed.

  17. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  18. Macroscopic structural coherence in two-component superconductivity

    International Nuclear Information System (INIS)

    Bar-Yam, Y.

    1991-01-01

    In two-component theory pairing arises from localized negative-U states and mobility arises from extended single particle states. A small hybridization of localized and extended states enables mobility and pairing to provide a high Tc. RPA analysis of the ''normal'' state implies uncondensed charged pairs carry current, while long lived single particle excitations are neutral electron-hole hybrids. At Tc pairs condense and single particle states undergo Cooper pairing. In the superconducting state pair-pair excitations exist in the BCS-like fermionic gap. Signatures of this theory range from distintive Tc, Δ, H c , ξ, conductance anomalies in sound and bulk modulii at Tc, linear temperature dependence of normal state resistivity, 2e charge carriers in the normal state, linear voltage dependence in normal-state-tunneling conductance, and finite zero-bias conductance in superconducting state tunneling. Quantitative comparisons with superconducting properties of YBa 2 Cu 3 O 7 were presented. A distinctive signature is the prediction of dynamical structural correlations which are local above Tc and macroscopic below Tc. Experiments provide direct evidence for such dynamical correlations: neutron diffraction ''thermal ovals'', channeling experiment cross section changes as a function of temperature near Tc, pair-distribution-function neutron diffraction including inelastic and elastic scattering showing direct evidence for dynamic correlations which change at Tc, and EXAFS showing a large dynamical displacement of oxygen atoms tunneling between sites separated by 0.13A. In two-component theory strong lattice coupling is consistent with low isotope shifts since tunneling occurs by a virtual Franck-Condon transition. Predictions for the dynamical structure factor are presented. (orig.)

  19. Multiple band structures in 70Ge

    Science.gov (United States)

    Haring-Kaye, R. A.; Morrow, S. I.; Döring, J.; Tabor, S. L.; Le, K. Q.; Allegro, P. R. P.; Bender, P. C.; Elder, R. M.; Medina, N. H.; Oliveira, J. R. B.; Tripathi, Vandana

    2018-02-01

    High-spin states in 70Ge were studied using the 55Mn(18O,p 2 n ) fusion-evaporation reaction at a beam energy of 50 MeV. Prompt γ -γ coincidences were measured using the Florida State University Compton-suppressed Ge array consisting of three Clover detectors and seven single-crystal detectors. An investigation of these coincidences resulted in the addition of 31 new transitions and the rearrangement of four others in the 70Ge level scheme, providing a more complete picture of the high-spin decay pattern involving both positive- and negative-parity states with multiple band structures. Spins were assigned based on directional correlation of oriented nuclei ratios, which many times also led to unambiguous parity determinations based on the firm assignments for low-lying states made in previous work. Total Routhian surface calculations, along with the observed trends in the experimental kinematic moment of inertia with rotational frequency, support the multiquasiparticle configurations of the various crossing bands proposed in recent studies. The high-spin excitation spectra predicted by previous shell-model calculations compare favorably with the experimental one determined from this study.

  20. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  1. Electronic band structures of binary skutterudites

    International Nuclear Information System (INIS)

    Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar

    2015-01-01

    The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures

  2. Superconducting structure with layers of niobium nitride and aluminum nitride

    Science.gov (United States)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  3. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  4. Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses.

    Science.gov (United States)

    Beck, M; Rousseau, I; Klammer, M; Leiderer, P; Mittendorff, M; Winnerl, S; Helm, M; Gol'tsman, G N; Demsar, J

    2013-06-28

    Observations of radiation-enhanced superconductivity have thus far been limited to a few type-I superconductors (Al, Sn) excited at frequencies between the inelastic scattering rate and the superconducting gap frequency 2Δ/h. Utilizing intense, narrow-band, picosecond, terahertz pulses, tuned to just below and above 2Δ/h of a BCS superconductor NbN, we demonstrate that the superconducting gap can be transiently increased also in a type-II dirty-limit superconductor. The effect is particularly pronounced at higher temperatures and is attributed to radiation induced nonthermal electron distribution persisting on a 100 ps time scale.

  5. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  6. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... nuclei, e.g., in 16O (Z = N = 8) [12,13] and 56Ni (Z = N = 28) [14–16], coexisting with the spherical ground configuration. Recently, Hwang et al [2] have observed deformed rotational bands in 82Ge. To our knowledge, these deformed rotational bands have not been studied theoretically so far though there ...

  7. Superconducting properties and electronic structure of NaBi

    International Nuclear Information System (INIS)

    Kushwaha, S K; Krizan, J W; Gibson, Q D; Cava, R J; Xiong, J; Liang, T; Ong, N P; Klimczuk, T

    2014-01-01

    Resistivity, dc magnetization, and heat capacity measurements are reported for superconducting NaBi. T c , the electronic contribution to the specific heat γ, the ΔC p /γT c ratio, and the Debye temperature are found to be 2.15 K, 3.4 mJ mol −1  K −2 , 0.78, and 140 K respectively. The calculated electron–phonon coupling constant (λ ep = 0.62) implies that NaBi is a moderately coupled superconductor. The upper critical field and coherence length are found to be 250 Oe and 115 nm, respectively. Electronic structure calculations show NaBi to be a good metal, in agreement with the experiments; the p x and p y orbitals of Bi dominate the electronic states at the Fermi Energy. (fast track communication)

  8. ARPES measurements of SnAs electronic band structure

    Science.gov (United States)

    Bezotosnyi, P. I.; Dmitrieva, K. A.; Gavrilkin, S. Yu.; Pervakov, K. S.; Tsvetkov, A. Yu.; Martovitski, V. P.; Rybkin, A. G.; Vilkov, O. Yu.; Pudalov, V. M.

    2017-10-01

    We report experimental study of the electronic band structure of SnAs superconductor with the NaCl type lattice structure by angular resolved photoelectron spectroscopy (ARPES). The determined band structure, in general, is in a good agreement with the calculated one. However, at odd with the calculated band structure, the experimental data reveals splitting of one of the upper valence bands into three branches along the \\bar K - \\bar Γ - \\bar K and \\bar M - \\bar Γ - \\bar M' symmetry directions. We assume this splitting can be caused by the spin orbit coupling of electrons or a mixed valence of Sn atoms in the compound.

  9. Engineering the Electronic Band Structure for Multiband Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  10. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsenyev

    2016-08-01

    Full Text Available We present a study of higher order mode (HOM damping in the first multicell superconducting radio-frequency (SRF cavity with a photonic band gap (PBG coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs. Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  11. Bi-directional evolutionary optimization for photonic band gap structures

    Science.gov (United States)

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  12. Bi-directional evolutionary optimization for photonic band gap structures

    International Nuclear Information System (INIS)

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-01-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  13. Influence of pulse electric current on structure and superconducting properties of high temperature superconductor

    International Nuclear Information System (INIS)

    Rajchenko, A.I.; Flis, A.A.; Chernenko, L.I.; Kryuchkova, N.I.

    1998-01-01

    The influence of high-density pulse current treatment at room temperature on structure and superconducting properties of HTSC Y Ba 2 Cu 3 O x ceramics is studied. The structures of the samples are found to undergo appreciable changes as the density of pulse current is gradually increased from its minimum value; as a certain threshold value is attained, there occurs a melting-off of coarse grains with a partial destroying of intergrain contact areas followed by superconductivity loss. A further increase in the treatment current density results in a restoration of the superconducting properties probably due to the occurrence of aligned-with-current superconducting bridges between the melted-off grains. The superconducting transition temperature in the samples does not charge but subsequent thermal treatment causes this temperature to increase

  14. Band structure engineered layered metals for low-loss plasmonics

    DEFF Research Database (Denmark)

    Gjerding, Morten Niklas; Pandey, Mohnish; Thygesen, Kristian Sommer

    2017-01-01

    dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal...

  15. Determination of conduction and valence band electronic structure ...

    Indian Academy of Sciences (India)

    Abstract. Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelas- tic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti d-band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase ...

  16. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    Science.gov (United States)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more

  17. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  18. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  19. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Tsuyoshi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  20. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  1. Shell model description of band structure in 48Cr

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-01-01

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements

  2. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    Science.gov (United States)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  3. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  4. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    Science.gov (United States)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  5. Soliton-induced critical current oscillations in two-band superconducting bridges

    Science.gov (United States)

    Marychev, P. M.; Vodolazov, D. Yu.

    2018-03-01

    Using time-dependent Ginzburg-Landau theory we find oscillations of critical current density jc as a function of the length L of the bridge formed from a two-band superconductor. We explain this effect by the appearance of the phase solitons in the bridge at j

  6. Analysis of Higher Order Modes in Large Superconducting Radio Frequency Accelerating Structures

    CERN Document Server

    Galek, Tomasz; Brackebusch, Korinna; Van Rienen, Ursula

    2015-01-01

    Superconducting radio frequency cavities used for accelerating charged particle beams are commonly used in accelerator facilities around the world. The design and optimization of modern superconducting RF cavities requires intensive numerical simulations. Vast number of operational parameters must be calculated to ensure appropriate functioning of the accelerating structures. In this study, we primarily focus on estimation and behavior of higher order modes in superconducting RF cavities connected in chains. To calculate large RF models the state-space concatenation scheme, an efficient hybrid method, is employed.

  7. Band structure peculiarities of magnetic photonic crystals

    Science.gov (United States)

    Gevorgyan, A. H.; Golik, S. S.

    2017-10-01

    In this work we studied light diffraction in magneto-photonic crystals (MPC) having large magneto-optical activity and modulation large depth. The case of arbitrary angles between the direction of the external static magnetic field and the normal to the border of the MPC layer is considered. The problem is solved by Ambartsumian's modified layer addition method. It is found that there is a new type of non-reciprocity, namely, the relation R (α) ≠ R (- α) takes place, where R is the reflection coefficient, and α is the incidence angle. It is shown the formation of new photonic band gap (PBG) at oblique incidence of light, which is not selective for the polarization of the incident light, in the case when the external magnetic field is directed along the medium axis. Such a system can be used as: a tunable polarization filter, polarization mirror, circular (elliptical) polarizer, tunable optical diode, etc.

  8. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    - stant and/or magnetic permeability (or in particular impedance) are periodic and the propagation of electromagnetic waves is forbidden at certain frequencies when allowed to pass through these structures. This is similar to the electronic band.

  9. Superconductivity in the PbO-type structure alpha-FeSe.

    Science.gov (United States)

    Hsu, Fong-Chi; Luo, Jiu-Yong; Yeh, Kuo-Wei; Chen, Ta-Kun; Huang, Tzu-Wen; Wu, Phillip M; Lee, Yong-Chi; Huang, Yi-Lin; Chu, Yan-Yi; Yan, Der-Chung; Wu, Maw-Kuen

    2008-09-23

    The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides La[O(1-x)F(x)] FeAs by Kamihara et al. [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05-0.12) with Tc = 26 K. J Am Chem Soc 130:3296-3297.] was a real surprise and has generated tremendous interest. Although superconductivity exists in alloy that contains the element Fe, LaOMPn (with M = Fe, Ni; and Pn = P and As) is the first system where Fe plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to search whether there exists other Fe based planar compounds that exhibit superconductivity. Here, we report the observation of superconductivity with zero-resistance transition temperature at 8 K in the PbO-type alpha-FeSe compound. A key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. FeSe, compared with LaOFeAs, is less toxic and much easier to handle. What is truly striking is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Therefore, this result provides an opportunity to better understand the underlying mechanism of superconductivity in this class of unconventional superconductors.

  10. Phonon band structures of the three dimensional latticed pentamode metamaterials

    Directory of Open Access Journals (Sweden)

    Guan Wang

    2017-02-01

    Full Text Available The artificially designed three-dimensional (3D pentamode metamaterials have such an extraordinary characteristic that the solid materials behave like liquids. Meanwhile, the ideal structure of the pentamode metamaterials arranges in the same way as that of the diamond crystals. In the present research, we regard three types of pentamode metamaterials derived from the 3D crystal lattices as research objects. The phonon band structures of the candidate pentamode structures are calculated by using the finite element method (FEM. We illustrate the relation between the ratio of the bulk modulus B and the shear modulus G of different combinations of D and d. Finally, we find out the relationship between the phonon band structure and the structure parameters. It is useful for generating the phonon band structure and controlling elastic wave propagation.

  11. Concurrence of superconductivity and structure transition in Weyl semimetal TaP under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yufeng; Zhou, Yonghui; Guo, Zhaopeng; Han, Fei; Chen, Xuliang; Lu, Pengchao; Wang, Xuefei; An, Chao; Zhou, Ying; Xing, Jie; Du, Guan; Zhu, Xiyu; Yang, Huan; Sun, Jian; Yang, Zhaorong; Yang, Wenge; Mao, Ho-Kwang; Zhang, Yuheng; Wen, Hai-Hu

    2017-12-01

    Weyl semimetal defines a material with three-dimensional Dirac cones, which appear in pair due to the breaking of spatial inversion or time reversal symmetry. Superconductivity is the state of quantum condensation of paired electrons. Turning a Weyl semimetal into superconducting state is very important in having some unprecedented discoveries. In this work, by doing resistive measurements on a recently recognized Weyl semimetal TaP under pressures up to about 100 GPa, we show the concurrence of superconductivity and a structure transition at about 70 GPa. It is found that the superconductivity becomes more pronounced when decreasing pressure and retains when the pressure is completely released. High-pressure x-ray diffraction measurements also confirm the structure phase transition from I41md to P-6m2 at about 70 GPa. More importantly, ab-initial calculations reveal that the P-6m2 phase is a new Weyl semimetal phase and has only one set of Weyl points at the same energy level. Our discovery of superconductivity in TaP by high pressure will stimulate investigations on superconductivity and Majorana fermions in Weyl semimetals.

  12. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  13. Surface and Superconductivity

    Science.gov (United States)

    Gor'kov, L. P.

    2006-07-01

    Experiments reveal the existence of metallic bands at surfaces of metals and insulators. The bands can be doped externally. We review properties of surface superconductivity that may set up in such bands at low temperatures and various means of superconductivity defection. The fundamental difference as compared to the ordinary superconductivity in metals, besides its two-dimensionality lies in the absence of the center of space inversion. This results in mixing between the singlet and triplet channels of the Cooper pairing.

  14. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  15. Topological classification of crystalline insulators through band structure combinatorics

    NARCIS (Netherlands)

    Kruthoff, J.; de Boer, J.; van Wezel, J.; Kane, C.L.; Slager, R.J.

    2017-01-01

    We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or

  16. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    Abstract. We report the use of low dielectric constant materials to form two- dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The se- lected geometries are square and triangular and the materials chosen ...

  17. Electronic structure and superconductivity of divalent metals under very high pressure

    International Nuclear Information System (INIS)

    Bireckoven, B.

    1987-05-01

    A single crystal, high-pressure diamond cell has been developed for the study of superconductors under pressures to over 50 GPa. A high sensitivity AC-SQUID magnetometer has been employed to detect the diamagnetic response of the very small samples at T C . The T C (p)-dependence of the lead-manometer has been calibrated against the ruby-pressure-scale up to pressures of 30 GPa. In spite of the well-known fcc/hcp-transition at 13 GPa lead shows a smooth T C (p)-behaviour and thus is a very suitable manometer. Band structure calculations for the alkaline earth metals indicate an appreciable s-to-d transfer with increasing pressure. In fact, superconductivity was previously observed in the pressure induced d-transition metals Sr and Ba (however not yet in Ca). For the first time the author presents a quantitative investigation of T C as a function of p up to 50 GPa. Both elements turn out to be ''good'' superconductors featuring T C 's of about 7 K. The possibility of a generalized phase diagram for the alkaline earth metals will be critically discussed. At any rate, the occurrence of such high T C 's is rather strong evidence for a substantial d-transition metal character at high p. Investigations of very dilute BaEu-alloys up to 45 GPa reveal a strong monotonic increase of ΔT C = T C Ba -T C BaEu . (orig./GSCH)

  18. Ultra small angle neutron scattering from superconducting filament structures

    International Nuclear Information System (INIS)

    Amenitsch, H.

    1999-01-01

    With a perfect crystal camera, ultra small-angle scattering measurements were performed to investigate the internal diffusion process of tin inside a superconducting multi-filament wire caused by a temperature treatment. Commercially available Nb 3 Sn superconducting multi-filament wires were treated at 700 C with varying ageing times up to 144 h. A theoretical model taking into account the geometrical form, the size distribution, the interference term and the multiple scattering has been developed to understand and to describe the small angle diffraction pattern. Additionally, the diffusion of H and D into the filament wires was used to vary the scattering length density inside the wires. The results show a direct relationship between the different technological treatments and the characteristic small-angle scattering parameters, like Guinier radius and small-angle scattering probability. (orig.) [de

  19. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  20. Self-consistent, relativistic, ferromagnetic band structure of gadolinium

    International Nuclear Information System (INIS)

    Harmon, B.N.; Schirber, J.; Koelling, D.D.

    1977-01-01

    An initial self-consistent calculation of the ground state magnetic band structure of gadolinium is described. A linearized APW method was used which included all single particle relativistic effects except spin-orbit coupling. The spin polarized potential was obtained in the muffin-tin form using the local spin density approximation for exchange and correlation. The most striking and unorthodox aspect of the results is the position of the 4f spin-down ''bands'' which are required to float just on top of the Fermi level in order to obtain convergence. If the 4f states (l = 3 resonance) are removed from the occupied region of the conduction bands the magnetic moment is approximately .75 μ/sub B//atom; however, as the 4f spin-down states are allowed to find their own position they hybridize with the conduction bands at the Fermi level and the moment becomes smaller. Means of improving the calculation are discussed

  1. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  2. Structure and superconductivity of double-doped Mg1-x(Al0.5Li0.5)xB2

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2003-01-01

    A series of polycrystalline samples of Mg1-x(Al0.5Li0.5)(x)B-2 (0less than or equal toxless than or equal to0.6) were prepared by a solid state reaction method and their structure, superconducting transition temperature and magneto-transport properties were investigated by means of X-ray diffract......A series of polycrystalline samples of Mg1-x(Al0.5Li0.5)(x)B-2 (0less than or equal toxless than or equal to0.6) were prepared by a solid state reaction method and their structure, superconducting transition temperature and magneto-transport properties were investigated by means of X......-ray diffraction (XRD), ac-susceptibility and resistance in varied magnetic fields. The double doping leads to decreases in both the lattice parameters a and c. The superconducting transition temperature (T-c) decreases with double doping, but the T-c is systematically higher than that of the single Al......-doped samples. It is suggested that the hole band filling has little effect on T-c at high doping level, while the disorder induced by doping plays an important role in suppressing T-c. A systematic comparison with Al-doped MgB2 of the structure, superconducting transition and irreversibility field is made. (C...

  3. Bulk band structure of Bi2Te3

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Aguilera, Irene; Bianchi, Marco

    2014-01-01

    The bulk band structure of Bi2Te3 has been determined by angle-resolved photoemission spectroscopy and compared to first-principles calculations. We have performed calculations using the local density approximation (LDA) of density functional theory and the one-shot GW approximation within the al...... distinct differences between the LDA and GW results are present. Overall a superior agreement with GW is found, highlighting the importance of many-body effects in the band structure of this family of topological insulators....

  4. An algebraic approach to scattering and band structure problems

    International Nuclear Information System (INIS)

    Alhassid, Y.

    1984-01-01

    It is shown that both bound and scattering states of a class of potentials are related to the unitary representations of certain groups. For such systems the scattering matrix can be calculated in a completely algebraic way through the use of the Euclidean group to describe asymptotic behaviour. The band structures associated with a family of periodic potentials can also be obtained from the group theory. These results suggest that an algebraic approach to scattering and band structure problems similar to that applied to bound states is possible

  5. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  6. Band structure analysis in SiGe nanowires

    International Nuclear Information System (INIS)

    Amato, Michele; Palummo, Maurizia; Ossicini, Stefano

    2012-01-01

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  7. Band structure analysis in SiGe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)

    2012-06-05

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  8. Microtraps for neutral atoms using superconducting structures in the critical state

    International Nuclear Information System (INIS)

    Emmert, A.; Brune, M.; Raimond, J.-M.; Nogues, G.; Lupascu, A.; Haroche, S.

    2009-01-01

    Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanent currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.

  9. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    Science.gov (United States)

    2015-03-20

    vacancy and added impurities in them are investigated using 96 atom slab of graphene . The relaxed structures and charge distribution plots of graphene 24... graphene gets reconstructed. In order to further improve the band gap opening in the graphene we introduced impurity atoms in the vacancies and...distorted Dirac cones at the Fermi point can be a check mark for presence of equal concentration of p-type and n-type impurities in graphene . The

  10. The relationship of structure to superconductivity in the Pr-Ba-Cu-O system

    Science.gov (United States)

    Minseo, P.

    1994-05-01

    The relation of structure to lack of superconductivity in Pr-Ba-Cu-O was systematically investigated. First, the phase equilibria of this system was studied to find the processing parameters which maximize the cation-site ordering between Pr and Ba ions. Second, a comparative study between superconducting Nd-Ba-Cu-O and nonsuperconducting Pr-Ba-Cu-O was performed by forming solid-solution Nd-Pr-Ba-Cu-O. The relation between structure and superconductivity in Nd(1-x)Pr(x)Ba2Cu3O(7-delta) is investigated. T sub c decreases monotonically with increasing x and superconductivity disappears at around x = 0.3 to 0.4. T sub c is enhanced by 10 K when the sample is processed at an oxygen partial pressure (PO2) of 0.01 atm, followed by oxygenation at 450 C. Depression of T sub c as a function of x and PO2 is explained in terms of a charge-transfer model. It is suggested that destruction of superconductivity in the RE(1-x)Pr(x)Ba2Cu3O(7-delta) (RE=rare-earth) system can be viewed as disruption of four-fold planar coordinated Cu ions in the chain-site due to permanent occupation of extra Pr ions on Ba sites.

  11. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    Al'perovich, G.I.; Gusatinskij, A.N.; Geguzin, I.I.; Blokhin, M.A.; Torbov, V.I.; Chukalin, V.I.; AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem)

    1977-01-01

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  12. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  13. X-band photonic band-gap accelerator structure breakdown experiment

    Directory of Open Access Journals (Sweden)

    Roark A. Marsh

    2011-02-01

    Full Text Available In order to understand the performance of photonic band-gap (PBG structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz. The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65  MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110  MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100  MV/m and a surface magnetic field of 890  kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14  MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  14. Superconducting properties and the structural transition in compounds with the A-15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, L.P.; Dorokhov, O.N.

    1976-11-01

    The dependence of T/sub c/ on composition and strain is computed and compared with the corresponding dependence of T/sub m/. It is shown that the superconducting and structural properties of the A-15 compounds can be described, at least qualitatively, in the quasi-one-dimensional model previously developed by the authors. It is assumed that the superconductivity mechanism is analogous to that of the BCS theory. The upper critical field, H/sub c//sub 2/, of the V/sub 3/Si and Nb/sub 3/Sn compounds turns out to be much higher than that of V or Nb.

  15. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...... superconducting weak links that includes the heating effects self-consistently. Our model is combined with that of Octavio, Blonder, Klapwijk, and Tinkham [Phys. Rev. B 27, 6739 (1983)], which is based on the idea of multiple Andreev scattering in the contact. The shape and the temperature variation...

  16. Structure design of the Westinghouse superconducting magnet for the Large Coil Program

    International Nuclear Information System (INIS)

    Domeisen, F.N.; Hackworth, D.T.; Stuebinger, L.R.

    1978-01-01

    In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin

  17. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  18. Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing; Liu, Liyao; Xu, Wei; Zhu, Daoben [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhang, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Yu, Lei [Department of Chemistry, University of Kentucky, Lexington, KY (United States); Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2018-01-02

    A highly crystalline copper(II) benzenehexathiolate coordination polymer (Cu-BHT) has been prepared. The two-dimensional kagome structure has been confirmed by powder X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy. The as-prepared sample exhibits bulk superconductivity at about 0.25 K, which is confirmed by the zero resistivity, AC magnetic susceptibility, and specific heat measurements. Another diamagnetic transition at about 3 K suggests that there is a second superconducting phase that may be associated with a single layer or few layers of Cu-BHT. It is the first time that superconductivity has been observed in a coordination polymer. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Three-dimensional photonic band gaps in woven structures

    CERN Document Server

    Tsai Ya Chih; Pendry, J B

    1998-01-01

    In this paper, we studied the photonic properties of dielectric fibres woven into three-dimensional (3D) structures. Such fibres can be fabricated on the micrometre scale, and hence the gaps are in the far-infrared to the infrared regime. The vector-wave transfer matrix method is applied to evaluate the photonic band structures. We have also employed the constant-frequency dispersion surface scheme to investigate the development of a full band gap. Such a 3D absolute gap is observed in a rectangular lattice, but at a fairly large dielectric constant for the fibres. Ways to improve on this have been suggested. Our study indicates that woven structures are promising materials for realizing the 3D photonic insulator in the infrared regime. (author)

  20. Pinpointing Gap Minima in Ba(Fe0:94Co0:06)2 via Band Structure Calculations and Electronic Raman Scattering

    Science.gov (United States)

    2010-08-03

    structure for the Fe-pnictide superconductors is still rather rudimentary, with several conflicting reports of either nodes, deep gap minima, or fully...2. PACS numbers: 74.25.nd,74.70.Xa,74.20.Pq,71.15.Mb Since the discovery of high temperature superconductivity in the iron pnictides, identifying the...a substantial interband contribution deriving largely from these same bands. These results support the conjecture based on symmetry in Ref. 6 that

  1. Hubbard-U band-structure methods

    DEFF Research Database (Denmark)

    Albers, R.C.; Christensen, Niels Egede; Svane, Axel

    2009-01-01

    The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...

  2. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  3. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies. Ph.D. Thesis Final Report

    Science.gov (United States)

    Richard, Mark A.

    1993-01-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  4. Band structure engineered layered metals for low-loss plasmonics

    Science.gov (United States)

    Gjerding, Morten N.; Pandey, Mohnish; Thygesen, Kristian S.

    2017-04-01

    Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics.

  5. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  6. High-spin structure of yrast-band in Kr

    Indian Academy of Sciences (India)

    pp. 185–189. High-spin structure of yrast-band in. 78. Kr. P K JOSHI, R PALIT, H C JAIN, S NAGARAJ and J A SHEIKH. Tata Institute of Fundamental Research, Mumbai 400 005, India. Abstract. Lifetime of levels up to 22. ·. , have been measured in Kr and an oblate shape is assigned to the ground state using the CSM and ...

  7. Importance of complex band structure and resonant states for tunneling

    Czech Academy of Sciences Publication Activity Database

    Dederichs, P. H.; Mavropoulos, Ph.; Wunnicke, O.; Papanikolaou, N.; Bellini, V.; Zeller, R.; Drchal, Václav; Kudrnovský, Josef

    2002-01-01

    Roč. 240, - (2002), s. 108-113 ISSN 0304-8853 R&D Projects: GA AV ČR IAA1010829; GA ČR GA202/00/0122; GA MŠk OC P5.30 Grant - others:TSR(XX) 01398 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * tunneling * band structure * interface effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  8. Proximity-induced superconductivity in crystalline Cu and Co nanowires and nanogranular Co structures

    International Nuclear Information System (INIS)

    Kompaniiets, M.; Begun, E.; Porrati, F.; Huth, M.; Dobrovolskiy, O. V.; Neetzel, C.; Ensinger, W.

    2014-01-01

    We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements up to three pairs of Pt-based voltage leads were attached at different distances beside the inner inducer electrode, thus allowing us to probe the proximity effect over a length of 2–12 μm. Up to 30% resistance drops with respect to the normal-state value have been observed for the crystalline Co and Cu nanowires when sweeping the temperature below T c of the inducer (5.2 K). By contrast, relative R(T) drops were found to be an order of magnitude smaller for the nanogranular Co nanowire structure. Our analysis of the resistance data shows that the superconducting proximity length in crystalline Cu and Co is about 1 μm at 2.4 K, attesting to a long-range proximity effect in the Co nanowire. Moreover, this long-range proximity effect is insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. At the same time, proximity-induced superconductivity in the nanogranular Co nanowire is strongly suppressed due to the dominating Cooper pair scattering caused by its intrinsic microstructure

  9. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Science.gov (United States)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.

    2015-06-01

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  10. Tuners, microphonics, and control systems in superconducting accelerating structures

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1990-01-01

    Manufacturing tolerances, thermal stresses, acoustic noise, and cooling fluid pressure fluctuations all conspire to make the field in the cavity not precisely what the accelerator physicist has in mind. Tuners and control systems are the tools used to fight back: they regulate the field in the cavity to the desired magnitude and phase. Amplitude and phase stabilities are usually of greater concern in superconducting cavities than in copper cavities. The key to achieving a stable gradient and phase is feedback. A probe must be placed in the cavity itself to sense the present cavity status. Electronic control is then given the responsibility to correct for any measured disturbance. The electronic modulation of forward power has been implemented in a number of ways. Perhaps the easiest implementation to understand has two separate control loops, one for amplitude and one for phase (phase-amplitude loops). Other major electronic control devices include complex phasor modulator (CPM-amplitude loops), vector loop, and variable reactance. 'Slow' tuners are used when the tuning range of the 'fast' tuner plus electronic tuning is not enough to compensate for unpredictability or drift in the static frequency setting. (N.K.)

  11. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tafti, F. F.; Torikachvili, M. S.; Stillwell, R. L.; Baer, B.; Stavrou, E.; Weir, S. T.; Vohra, Y. K.; Yang, H. -Y.; McDonnell, E. F.; Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Jeffries, J. R.

    2017-01-01

    Extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P ≈ 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, P ≈ 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed.

  12. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS.

    Science.gov (United States)

    Lai, Xiaofang; Liu, Ying; Lü, Xujie; Zhang, Sijia; Bu, Kejun; Jin, Changqing; Zhang, Hui; Lin, Jianhua; Huang, Fuqiang

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Finally, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.

  13. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  14. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin–orbit interactions. The linearized \

  15. Band gaps in grid structure with periodic local resonator subsystems

    Science.gov (United States)

    Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong

    2017-09-01

    The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.

  16. Crossing points in the electronic band structure of vanadium oxide

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2010-03-01

    Full Text Available The electronic band structures of several models of vanadium oxide are calculated. In the models 1-3, every vanadium atom is connected to 4 oxygen atoms and every oxygen atom is connected to 4 vanadium atoms. In model 1, a=b=c 2.3574 Å; in model 2, a= 4.7148 Å, b= 2.3574 Å and c= 2.3574 Å; and in model 3, a= 4.7148 Å, b= 2.3574 Å and c= 4.7148 Å. In the models 4-6, every vanadium atom is connected to 4 oxygen atoms and every oxygen atom is connected to 2 vanadium atoms. In model 4, a=b= 4.551 Å and c= 2.851 Å; in model 5, a=b=c= 3.468 Å; and in model 6, a=b=c= 3.171 Å. We have searched for a crossing point in the band structure of all the models. In model 1 there is a point at which five bands appear to meet but the gap is 7.3 meV. In model 2 there is a crossing point between G and F points and there is a point between F and Q with the gap ≈ 3.6608 meV. In model 3, the gap is very small, ~ 10-5 eV. In model 4, the gap is 5.25 meV. In model 5, the gap between Z and G points is 2.035 meV, and in model 6 the gap at Z point is 4.3175 meV. The crossing point in model 2 looks like one line is bent so that the supersymmetry is broken. When pseudopotentials are replaced by a full band calculation, the crossing point changes into a gap of 2.72 x 10-4 eV.

  17. Optical processes in different types of photonic band gap structures

    Science.gov (United States)

    Wang, Zhiguo; Gao, Mengqin; Ullah, Zakir; Chen, Haixia; Zhang, Dan; Zhang, Yiqi; Zhang, Yanpeng

    2015-06-01

    For the first time, we investigate the photonic band gap (PBG) structure in the static and moving electromagnetically induced grating (EIG) through scanning the frequency detunings of the probe field, dressing field and coupling field. Especially, the suppression and enhancement of the four wave mixing band gap signal (FWM BGS) and the probe transmission signal (PTS) can be observed when we scan the dressing field frequency detuning in the FWM BGS system. It is worth noting that the PBG structure and FWM BGS appear at the right of the electromagnetically induced transparency (EIT) position in the case of scanning the frequency detuning of the coupling field in the FWM BGS system, while the PBG structure and FWM BGS appears at the left of the EIT position on the condition of scanning the probe field frequency detuning. Moreover, in the moving PBG structure, we can obtain the nonreciprocity of FWM BGS. Furthermore, we can modulate the intensity, width, location of the FWM BGS and PTS through changing the frequency detunings and intensities of the probe field, dressing field and coupling field, sample length and the frequency difference of coupling fields in EIG. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  18. A Compact UWB Band-Pass Filter Using Embedded Circular Slot Structures for Improved Upper Stop-band Performance

    DEFF Research Database (Denmark)

    Shen, Ming; Ren, Jian; Mikkelsen, Jan Hvolgaard

    2016-01-01

    This paper presents an ultra-wideband band-pass filter designed using a slot-line ring resonator and two pairs of embedded circular slot structures. The slot-line ring resonator is used to form the desired UWB passband, and the upper stop-band response is suppressed by embedding the circular slot...

  19. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  20. Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures.

    Science.gov (United States)

    Skopelitis, Petros; Cherotchenko, Evgenia D; Kavokin, Alexey V; Posazhennikova, Anna

    2018-03-09

    We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.

  1. Annealing treatment effects on structure and superconductivity in Y1Ba2Cu3O/sub 9-//sub x/

    International Nuclear Information System (INIS)

    Beyers, R.; Lim, G.; Engler, E.M.

    1987-01-01

    We report the effects of heat treatment and ambient on the structure and superconducting properties of Y 1 Ba 2 Cu 3 O/sub 9-//sub x/. The structure undergoes an orthorhombic-to-tetragonal transition on heating at about 700 0 C, caused by oxygen loss and disordering of oxygen vacancies on the copper plane between the barium layers. Heat treatments that promote maximum ordering of the oxygen vacancies result in superior superconducting properties

  2. Tunable superconducting critical temperature in ballistic hybrid structures with strong spin-orbit coupling

    Science.gov (United States)

    Simensen, Haakon T.; Linder, Jacob

    2018-02-01

    We present a theoretical description and numerical simulations of the superconducting transition in hybrid structures including strong spin-orbit interactions. The spin-orbit coupling is taken to be of Rashba type for concreteness, and we allow for an arbitrary magnitude of the spin-orbit strength as well as an arbitrary thickness of the spin-orbit coupled layer. This allows us to make contact with the experimentally relevant case of enhanced interfacial spin-orbit coupling via atomically thin heavy metal layers. We consider both interfacial spin-orbit coupling induced by inversion asymmetry in an S/F junction, as well as in-plane spin-orbit coupling in the ferromagnetic region of an S/F/S and an S/F structure. Both the pair amplitudes, local density of states, and critical temperature show dependency on the Rashba strength and, importantly, the orientation of the exchange field. In general, spin-orbit coupling increases the critical temperature of a proximity system where a magnetic field is present, and enhances the superconducting gap in the density of states. We perform a theoretical derivation which explains these results by the appearance of long-ranged singlet correlations. Our results suggest that Tc in ballistic spin-orbit coupled superconducting structures may be tuned by using only a single ferromagnetic layer.

  3. Rich stoichiometries of stable Ca-Bi system: Structure prediction and superconductivity

    Science.gov (United States)

    Dong, Xu; Fan, Changzeng

    2015-03-01

    Using a variable-composition ab initio evolutionary algorithm implemented in the USPEX code, we have performed a systematic search for stable compounds in the Ca-Bi system at different pressures. In addition to the well-known tI12-Ca2Bi and oS12-CaBi2, a few more structures were found by our calculations, among which phase transitions were also predicted in Ca2Bi (tI12 --> oI12 --> hP6), Ca3Bi2 (hP5 --> mC20 --> aP5) and CaBi (tI2 --> tI8), as well as a new phase (Ca3Bi) with a cF4 structure. All the newly predicted structures can be both dynamically and thermodynamically stable with increasing pressure. The superconductive properties of cF4-CaBi3, tI2-CaBi and cF4-Ca3Bi were studied and the superconducting critical temperature Tc can be as high as 5.16, 2.27 and 5.25 K, respectively. Different superconductivity behaviors with pressure increasing have been observed by further investigations.

  4. A theoretical quest for high temperature superconductivity on the example of low-dimensional carbon structures.

    Science.gov (United States)

    Wong, C H; Lortz, R; Buntov, E A; Kasimova, R E; Zatsepin, A F

    2017-11-17

    High temperature superconductivity does not necessarily require correlated electron systems with complex competing or coexisting orders. Instead, it may be achieved in a phonon-mediated classical superconductor having a high Debye temperature and large electronic density of states at the Fermi level in a material with light atoms and strong covalent bonds. Quasi-1D conductors seem promising due to the Van Hove singularities in their electronic density of states. In this sense, quasi-1D carbon structures are good candidates. In thin carbon nanotubes, superconductivity at ~15 K has been reported, and it is likely the strong curvature of the graphene sheet which enhances the electron-phonon coupling. We use an ab-initio approach to optimize superconducting quasi-1D carbon structures. We start by calculating a T c of 13.9 K for (4.2) carbon nanotubes (CNT) that agrees well with experiments. Then we reduce the CNT to a ring, open the ring to form chains, optimize bond length and kink structure, and finally form a new type of carbon ring that reaches a T c value of 115 K.

  5. Microwave dependence of subharmonic gap structure in superconducting junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffman; Kofoed, Bent; Pedersen, Niels Falsig

    1974-01-01

    are integers: m=1,2,3,… and n=0,1,2,…. The power dependence of the satellite structure and the microwave-assisted tunneling structure is consistent for all junctions tested with the expression Jn2(m e Vrf / h ν), where Jn(x) is the ordinary Bessel function of order n, Vrf is the amplitude of the induced...

  6. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  7. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  8. Band structure in Platinum nuclei (A ∼ 182)

    International Nuclear Information System (INIS)

    Popescu, D.G.

    1991-01-01

    In this thesis, the author studies the band structure in Platinum nuclei and has divided his work in 5 parts: in the first, the author makes a general presentation of nucleus physics with a high angular momentum and introduces to the deformed nucleus notion -axial, triaxial or mixing of different deformations. The notion of form co-existence will be used to interpret the experimental results. In the second part, the author describes the detection means which have been used to make measurements. An abstract of theoretical notions, usefull for the understanding of fusion-evaporation reaction is presented. The author explains the details, performances and different modes of using of 'Chateau de cristal' and others used spectrometers. In the third part, the author presents all experimental data. He has effected γ coincidence measurements for Pt, Au and Ir nuclei. In the fourth part, for a classical analysis or an interpretation in the frame of cranking model the author presents theoretical models which are adapted at the study of high spin states and band structures

  9. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  10. Structural analysis and superconductivity of CeFeAsO1-xHx

    Science.gov (United States)

    Matsuishi, Satoru; Hanna, Taku; Muraba, Yoshinori; Kim, Sung Wng; Kim, Jung Eun; Takata, Masaki; Shamoto, Shin-Ich; Smith, Ronald I.; Hosono, Hideo

    2012-01-01

    We performed the neutron powder diffraction (NPD) and synchrotron x-ray diffraction measurements on CeFeAsO1-x(D,H)x (x = 0.0 - 0.48) as a representative of 1111-type family of iron-based superconductors LnFeAsO1-xHx (Ln = lanthanoid). Deuterated and hydrogenated samples (CeFeAsO1-xDx and CeFeAsO1-xHx) were synthesized by the solid-state reaction of a metal oxide, arsenides, and a hydride and a deuteride source under an applied pressure of 2 GPa. No distinct differences were found between the structural and superconducting properties of the hydride and deuteride samples. Rietveld analyses of the NPD patterns demonstrated that deuterium exclusively substitutes on the oxygen sites in the 1111-type structures according to the nominal composition. Bulk superconductivity was observed over a wide x region (0.1 x x = 0.25. It was concluded from density functional theory calculations and comparison with the superconducting dome of the fluorine-substituted system that the charge state of the hydrogen substituting the oxygen sites was -1. The relationship between the lattice parameter a and Tc in our samples prepared from metal hydrides is almost the same as that reported previously for samples prepared from cerium hydroxide. These results strongly suggest that H- ions exclusively occupy the oxygen sites in both samples, regardless of the hydrogen species in the starting material.

  11. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.

  12. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity β = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is Δf/f = 1.6 x 10 -6 E/sub a/ 2

  13. Multi-cell superconducting structures for high energy e+ e- colliders and free electron laser linacs

    CERN Document Server

    Sekutowicz, J

    2008-01-01

    This volume, which is the first in the EuCARD Editorial Series on “Accelerator Science and Technology”, is closely combined with the most advanced particle accelerators – based on Superconducting Radio Frequency (SRF) technology. In general, SRF research includes following areas: high gradient cavities, cavity prototyping, thin film technologies, large grain and mono-crystalline niobium and niobium alloys, quenching effects in superconducting cavities, SRF injectors, photo-cathodes, beam dynamics, quality of electron beams, cryogenics, high power RF sources, low level RF controls, tuners, RF power coupling to cavities, RF test infrastructures, etc. The monograph focuses on TESLA structures used in FLASH machine and planned for XFEL and ILC experiments.

  14. Structural and superconducting properties of sputter-deposited niobium films for applications in RF accelerating cavities

    CERN Document Server

    Peck, M A

    2000-01-01

    The present work presents the results of a systematic study of superconducting and structural properties of niobium films sputter deposited onto the inner walls of radiofrequency copper resonators. The measured superconducting quantities include the surface resistance, the critical temperature, the penetration depth and the upper and lower critical fields. In addition to films grown with different discharge gases (Xe, Kr, Ar, Ne and Ar-Ne mixtures) and to films grown on substrates prepared under different conditions, the study also includes massive niobium cavities. The surface resistance is analysed in terms of its dependence on the temperature and on the rf field amplitude and, when possible, compared to theoretical predictions. In general, good agreement with BCS theory is observed. All experimental results are presented in the form of a simple, but adequate parameterisation. The residual resistance is observed to be essentially uncorrelated with the other variables, but strongly dependent on the macroscop...

  15. Structural feature controlling superconductivity in compressed BaFe2As2

    International Nuclear Information System (INIS)

    Yang, Wenge; Jia, Feng-Jiang; Tang, Ling-Yun; Tao, Qian; Xu, Zhu-An; Chen, Xiao-Jia

    2014-01-01

    Superconductivity can be induced with the application of pressure but it disappears eventually upon heavy compression in the iron-based parent compound BaFe 2 As 2 . Structural evolution with pressure is used to understand this behavior. By performing synchrotron X-ray powder diffraction measurements with diamond anvil cells up to 26.1 GPa, we find an anomalous behavior of the lattice parameter with a S shape along the a axis but a monotonic decrease in the c-axis lattice parameter with increasing pressure. The close relationship between the axial ratio c/a and the superconducting transition temperature T c is established for this parent compound. The c/a ratio is suggested to be a measure of the spin fluctuation strength. The reduction of T c with the further increase of pressure is a result of the pressure-driven weakness of the spin-fluctuation strength in this material

  16. Study of Higher Order Modes in Superconducting Accelerating Structures for Linac Applications

    CERN Document Server

    Schuh, Marcel; Welsch, C P

    2011-01-01

    Higher Order Modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor and complex pulse structure. Therefore, the full HOM spectrum has to be analysed in detail to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam dynamics simulation code, Simulation of higher order Mode Dynamics (SMD), focusing on beam-HOM interaction, has been developed in the frame of this project. SMD allows to analyse the beam behaviour under the presence of HOMs, taking into account many important effects, such as for example the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. SMD is used to investigate in detail into the effects of HOMs in the Superconducting Proton Linac (SPL) at CERN and in particular their potential to drive beam instabili- ties in the longitudinal and transverse direction. Based...

  17. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...... with the transformed space technique in order to make the algorithm flexible in terms of non-uniform spatial sampling. Findings - Through the studies of the wave propagation characteristics on PBG structures in stratified medium, it has been found that the proposed method retains excellent accuracy in the occasions...

  18. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent.

  19. Electronic structure and superconductivity of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  20. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  1. Jamming of superconducting vortices in a funnel structure

    International Nuclear Information System (INIS)

    Vlasko-Vlasov, V; Benseman, T; Welp, U; Kwok, W K

    2013-01-01

    We report direct visual evidence of vortex retardation in a funnel structure patterned into a twin free YBCO crystal using laser lithography and ion milling. Magneto-optical images of flux entry with changing applied magnetic field show delayed flux propagation near the narrow end of the funnel which we interpret as a result of the jamming of vortices in the funnel neck. Furthermore, with AC magnetic fields, we observe the formation of macroturbulent flux domains whose motion is arrested at the constricted end of the funnel due to vortex jamming. (paper)

  2. Subharmonic energy-gap structure in superconducting weak links

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev; Octavio, M.

    1988-01-01

    We present corrected calculations of the subharmonic energy-gap structure using the model of Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the weak link. We show that while the overall predictions of this model do not change qualitatively, the details...... of the predicted curves are different and in better agreement with experiment. We also present calculation of the current-voltage characteristics and of the excess currents for T=0, as the normal scattering parameter Z is varied. We also show how the calculation can be shortened using symmetry arguments...

  3. Imaging of current distributions in superconducting thin film structures; Abbildung von Stromverteilungen in supraleitenden Duennfilmstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Doenitz, D.

    2006-10-31

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference

  4. Numerical analysis of the superconducting magnet outer vessel of a Maglev train by a structural and electromagnetic coupling method

    Science.gov (United States)

    Matsue, H.; Demachi, K.; Miya, K.

    2001-09-01

    The harmonic magnetic field generated by the ground coils can cause vibration of the superconducting magnet, which must be reduced as it generates heat in the liquid helium temperature range. Therefore, it is important for the design of lighter magnets to exactly estimate the electromagnetic force on the superconducting magnet. Some causes of the vibration were analyzed by the structural and electromagnetic coupling FEM-BEM method.

  5. Band structure of ABC-trilayer graphene superlattice

    International Nuclear Information System (INIS)

    Uddin, Salah; Chan, K. S.

    2014-01-01

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k y direction for k x  = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case

  6. Competition between FFLO and BCS superconducting states in clean asymmetrical ferromagnet-superconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Proshin, Yurii N.; Khusainov, Marat M.; Minnullin, Arthur [Kazan Federal University, Kazan (Russian Federation)

    2014-05-15

    The theory of proximity effect, based on the boundary-value problem for the Eilenberger function in view of the in-plane Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, is proposed for thin asymmetrical structures FS, where F is a ferromagnetic metal and S is a BCS superconductor. The dependencies of critical temperature on an exchange field of the F metal, electronic correlations in the S and F metals, and thicknesses of layers F and S are calculated for four-layered FS systems and FS superlattices. A proposed classification of states includes up to 8 different states which are characterized by phase shifts between superconducting order parameters for neighboring S(F) layers and mutual orientation of magnetizations in adjacent F layers. For asymmetrical FS systems the solitary reentrant superconductivity is predicted. It is shown that the 2D-FFLO state prevails over the BCS one on the solitary peaks wings. The real candidate for observing predicted phenomena is Gd/La system, for which we found the sign and value of the constant of electronelectron interaction in gadolinium and explain the experimentally observed absence of the suppression of three dimensional superconductivity for symmetrical Gd/La superlattice. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    Standley, R.W.

    1980-01-01

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/) 2 244 , where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  8. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  9. Intrinsic properties of high-spin band structures in triaxial nuclei

    Science.gov (United States)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  10. Structure of negative parity yrast bands in odd mass 125−131Ce ...

    Indian Academy of Sciences (India)

    nated by rotational bands, built on the ground and low-lying excited states. The behaviour of these rotational bands can provide useful information about the un- derlying nuclear structure. The 125Ce nucleus is the lightest even–odd isotope of which the band structures have been published by Paul et al [2]. Excited states.

  11. Nodes to the grindstone: viewpoint on ``Band- and momentum-dependent electron dynamics in superconducting Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ as seen via electronic Raman scattering" [arXiv:0910.0898

    OpenAIRE

    Hirschfeld, P. J.

    2009-01-01

    Raman spectroscopy of a cobalt-doped iron-pnictide superconductor reveals the complex electronic structure of the superconducting state in this material. [Viewpoint on Phys. Rev. B 80, 180510 (2009), arXiv:0910.0898

  12. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    Science.gov (United States)

    Knox, Kevin R.

    2011-12-01

    In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load

  13. Structural analysis of a superconducting central solenoid for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Heim, J.R.

    1993-01-01

    The Tokamak Physics Experiment (TPX) concept design uses superconducting coils to accomplish magnetic confinement. The central solenoid (CS) magnet is divided vertically into 8 equal segments which are powered independently. The eddy current heating from the pulsed operation is too high for a case type construction; therefore, a open-quotes no caseclose quotes design has been chosen. This open-quotes no caseclose quotes design uses the conductor conduit as the primary structure and the electrical insulation as a structural adhesive. This electrical insulation is the open-quotes weak linkclose quotes in the coil winding pack structure and needs to be modeled in detail. A global finite element model with smeared winding pack properties was used to study the CS magnet structural behavior. The structural analysis results and peak stresses will be presented

  14. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    Science.gov (United States)

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  15. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  16. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  17. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  18. Cresting the wave: proper motions of the Eastern Banded Structure

    Science.gov (United States)

    Deason, Alis J.; Belokurov, Vasily; Koposov, Sergey E.

    2018-01-01

    We study the kinematic properties of the Eastern Banded Structure (EBS) and Hydra I overdensity using exquisite proper motions derived from the Sloan Digital Sky Survey (SDSS) and Gaia source catalogue. Main sequence turn-off stars in the vicinity of the EBS are identified from SDSS photometry; we use the proper motions and, where applicable, spectroscopic measurements of these stars to probe the kinematics of this apparent stream. We find that the EBS and Hydra I share common kinematic and chemical properties with the nearby Monoceros Ring. In particular, the proper motions of the EBS, like Monoceros, are indicative of prograde rotation (Vϕ ∼ 180-220 km s-1), which is similar to the Galactic thick disc. The kinematic structure of stars in the vicinity of the EBS suggests that it is not a distinct stellar stream, but rather marks the 'edge' of the Monoceros Ring. The EBS and Hydra I are the latest substructures to be linked with Monoceros, leaving the Galactic anti-centre a mess of interlinked overdensities which likely share a unified, Galactic disc origin.

  19. Structure re-determination and superconductivity observation of bulk 1T MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuqiang; He, Jianqiao; Bu, Kejun [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing (China); Pan, Jie; Wang, Dong; Che, Xiangli; Zhao, Wei; Lin, Tianquan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); Luo, Ruichun; Liu, Pan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Mu, Gang; Zhang, Hui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai (China); Huang, Fuqiang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing (China)

    2018-01-26

    2H MoS{sub 2} has been intensively studied because of its layer-dependent electronic structures and novel physical properties. Though the metastable 1T MoS{sub 2} with a [MoS{sub 6}] octahedron was observed over the microscopic area, the true crystal structure of 1T phase has not been strictly determined. Moreover, the true physical properties have not been demonstrated from experiments owing to the challenge for the preparation of pure 1T MoS{sub 2} crystals. 1T MoS{sub 2} single crystals were successfully synthesized and the crystal structure of 1T MoS{sub 2} re-determined from single-crystal X-ray diffraction. 1T MoS{sub 2} crystallizes in the space group P anti 3m1 with a cell of a=b=3.190(3) Aa and c=5.945(6) Aa. The individual MoS{sub 2} layer consists of MoS{sub 6} octahedra sharing edges with each other. More surprisingly, the bulk 1T MoS{sub 2} crystals undergo a superconducting transition of T{sub c}=4 K, which is the first observation of superconductivity in pure 1T MoS{sub 2} phase. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. A new perspective for analyzing complex band structures of phononic crystals

    Science.gov (United States)

    Meng, Lingkai; Shi, Zhifei; Cheng, Zhibao

    2018-03-01

    Rewriting the formulation of the Bloch waves, this paper presents a new perspective for analyzing the complex band structures of the in-plane waves in 2D phononic crystals. Using the proposed formulation, a new finite element based method is developed for analyzing 2D periodic systems. The results of the validation example prove that the proposed method can provide exact solutions for both the real and complex band structures of 2D periodic systems. Furthermore, using the proposed method, the complex band structures of a 2D periodic structure are calculated. The physical meanings of the obtained complex band structures are discussed by performing the wave mode analysis.

  1. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  2. Related electrical, superconducting and structural characteristics of low temperature indium films

    International Nuclear Information System (INIS)

    Belevtsev, B.I.; Pilipenko, V.V.; Yatsuk, L.Ya.

    1981-01-01

    Reported are results of a complex study of electrical, superconducting and structural properties of indium films vacuum evaporated onto a liquid helium-cooled substrate. Structural electron diffraction investigations gave a better insight into the general features of the annealing during the warming-up of cold-deposited films. It is found that the annealing of indium films to about 80 to 100 K entails an irreversible growth of interplanar separations due to decreasing inhomogeneous microstresses. As the films are warmed from 100 to 300 K, the principal annealing processes are determined by crystallite growth and development of dominating orientation. The changes in the residual resistance and in Tsub(c) with warming the cold-deported films are explained on the base of structural data obtained. In particular, a direct relationship is revealed between the crystallite size and Tsub(c) [ru

  3. structure-chemical analyses of half-antiperovskites and superconductivity of parkerites; Strukturchemische Untersuchungen an Halbantiperowskiten und Supraleitung der Parkerite

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Philipp

    2015-04-22

    The aim of this work was the structural investigation on Halfantiperowskites. In the process four new compounds were synthesized and a new ordering variant was found. Furthermore superconductivity was measured on selected compounds of the Parkerite-type of structure and an attempt was made to change the transition temperature by selective doping.

  4. A Novel Idea for Coil Collar Structures in Accelerator Superconducting Magnets

    CERN Document Server

    Fessia, P

    2002-01-01

    The dipoles for several different machines (LHC, SSC, HERA) were designed using non-magnetic metallic collars to contain the superconducting coils. The coils are of two types, main and floating. This paper describes a structure with combined steel and plastic collars. Since the floating collars do not give an important contribution to the global rigidity of the dipole we propose to suppress them. The plastic collars are just fillers to limit the helium contained in the cold mass. Some data about thermoplastic materials to be possibly used for the collars are given and some estimations of mass and cost of this configuration are made. Finally the results of the tests of a 1-m-long twin aperture dipole with mixed steel-plastic collars are shortly described. The replacement of expensive alloys by high performance plastic in non-structural components can be a cost-effective solution in view of future projects where superconducting magnets are involved and contained costs are a key issue.

  5. Relations between structural and superconducting properties of bulk and thin film high-Tc materials

    International Nuclear Information System (INIS)

    Hessel Andersen, N.

    1994-06-01

    The structural ordering of oxygen deficient and Co-doped YBCO (YBa 2 Cu 3-y Co y O 6+x ) have been studied experimentally, and by computer simulations of the oxygen ordering in the basal plane of the structure. The calculations are based on the two-dimensional ASYNNNI model and its modifications. Good agreement is established between the ASYNNNI calculations and the experimentally observed structural properties of the double cell ortho-II structure and the oxygen disordering process from Co-doping into the basal plane. A model that relates the superconducting transition temperature T c (x) of undoped YBCO and T c (y) of Co-doped YBCO to the formation of specific domains of the two orthorhombic ordered oxygen phases, ortho-I and ortho-II, shows a close agreement with experimental T c (x) and T c (y) data of samples prepared under equilibrium conditions. The structural changes as a result of metal ion substitutions and oxidation/reduction processes have been studied by neutron powder diffraction in Pb 2 Sr 2 Ln 1-x Ca x Cu 3 O 8+y (Ln = Y and Ho), Nd 1.85 Ce 0.15 CuO 4+y , and chemically oxidized La 2-x Sr x CuO 4+y 2 Cu 3-y Al y O 6+x (y 2 Cu 3 O 6+x and Bi 2 Sr 2 CaCu 2 O 8+x thin films deposited on SrTiO 3 (001), MgO (001), LaAlO 3 (001), and NdGaO 3 (001) substrates has been studied by x-ray diffraction, TEM and RBS, and the structural ordering has been analysed in relation to their superconducting properties. (au) (30 ills., 29 refs.)

  6. Long-range spin-singlet proximity effect for a Josephson system with a single-crystal ferromagnet due to its band-structure features

    Science.gov (United States)

    Avdeev, M. V.; Proshin, Yu. N.

    2018-03-01

    A possible explanation for the long-range proximity effect observed in single-crystalline cobalt nanowires sandwiched between two tungsten superconducting electrodes [Nat. Phys. 6, 389 (2010), 10.1038/nphys1621] is proposed. The theoretical model uses properties of a ferromagnet band structure. Specifically, to connect the exchange field with the momentum of quasiparticles the distinction between the effective masses in majority and minority spin subbands and the Fermi-surface anisotropy are considered. The derived Eilenberger-like equations allowed us to obtain a renormalized exchange interaction that is completely compensated for some crystallographic directions under certain conditions. The proposed theoretical model is compared with previous approaches.

  7. Electronic band structure in porous silicon studied by photoluminescence and photoluminescence excitation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Kim, Young-You

    2004-01-01

    In this research, we used photoluminescence (PL) and photoluminescence excitation (PLE) to visualize the electronic band structure in porous silicon (PS). From the combined results of the PLE measurements at various PL emission energies and the PL measurements under excitation at various PLE absorption energies, we infer that three different electronic band structures, originating from different luminescent origins, give rise to the PL spectrum. Through either thermal activation or diffusive transfer, excited carriers are moved to each of the electronic band structures.

  8. The New Superconductor tP-SrPd2Bi2: Structural Polymorphism and Superconductivity in Intermetallics.

    Science.gov (United States)

    Xie, Weiwei; Seibel, Elizabeth M; Cava, Robert J

    2016-04-04

    We consider a system where structural polymorphism suggests the possible existence of superconductivity through the implied structural instability. SrPd2Bi2 has two polymorphs, which can be controlled by the synthesis temperature: a tetragonal form (CaBe2Ge2-type) and a monoclinic form (BaAu2Sb2-type). Although the crystallographic difference between the two forms may, at first, seem trivial, we show that tetragonal SrPd2Bi2 is superconducting at 2.0 K, whereas monoclinic SrPd2Bi2 is not. We rationalize this finding and place it in context with other 1-2-2 phases.

  9. Coupled electromagnetic and structural finite element analysis of a superconducting dipole model

    International Nuclear Information System (INIS)

    Hirtenfelder, F.

    1996-01-01

    Many devices contain parts that undergo motion due to electromagnetic forces. The motion causes the electromagnetic fields to change. Thus the electromagnetic fields must be computed along with the structural motion. In many cases the motion produced by electromagnetic forces is desired motion. However, in many devices, some undesired motion can occur due to electromagnetic forces. The motion creases motion-induced eddy currents which in turn affect the electromagnetic fields and forces. A finite element technique is described that fully couples structural and electromagnetic analysis in the time domain. The code is applied to a superconducting dipole model in order to study deformations and stresses during ramp and quench. The results of this coupled analysis enables the designer to visualize deformations, vibrations, displacements and all electromagnetic field quantities of the device and to try different solutions to enhance its performance

  10. Structural Health Monitoring of Superconducting Magnets at CERN Using Fiber Bragg Grating Sensors

    CERN Document Server

    Chiuchiolo, A; Perez, J C; Bajas, H; Guinchard, M; Giordano, M; Breglio, G; Consales, M; Cusano, A

    2014-01-01

    The use of Fiber Bragg Grating sensors is becoming particularly challenging for monitoring different parameters in extreme operative conditions such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses. This work reports the use of the FBG for a new generation of accelerator magnets with the goal to develop an adequate sensing technology able to provide complementary or alternative information to the conventional strain gauges through the whole service life of the magnet. The study is focused on the mechanical performances of the magnet structure, which has to preserve the sensitive coils from any damage during the entire magnet fabrication process preventing even microscopic movements of the winding that can eventually initiate a transition from superconducting to normal conducting state of the material used (called in the specific literature as “quench”). The FBGs have been glued on the aluminium structure of two magnets prototypes by using an adhesive suitable for cryog...

  11. Optical model with multiple band couplings using soft rotator structure

    Science.gov (United States)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  12. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  13. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  14. Energy Band Structure Studies Of Zinc-Blende GaAs and InAs ...

    African Journals Online (AJOL)

    Energy band structures, density of states and structural parameters of all the compounds are presented and discussed in context with available theoretical and experimental studies. Our results show that the energy band gaps of the semiconductors are underestimated. But overall our results show reasonable agreement ...

  15. Stationary transport in mesoscopic hybrid structures with contacts to superconducting and normal wires: A Green's function approach for multiterminal setups

    Science.gov (United States)

    Arrachea, Liliana

    2009-03-01

    We generalize the representation of the real-time Green’s functions introduced by Langreth and Nordlander [Phys. Rev. B 43, 2541 (1991)] and Meir and Wingreen [Phys. Rev. Lett. 68, 2512 (1992)] in stationary quantum transport in order to study problems with hybrid structures containing normal (N) and superconducting (S) pieces without introducing Nambu representation. We illustrate the treatment in a S-N junction under a stationary bias. We derive expressions for the normal and Andreev transmission functions, and we show the equivalence between these expressions and Blonder-Tinkham-Klapwijk formulation. Finally, we investigate in detail the behavior of the equilibrium currents in a normal ring threaded by a magnetic flux with attached superconducting wires at equilibrium. We analyze the flux sensitivity of the Andreev states, and we show that their response is equivalent to the one corresponding to the Cooper pairs with momentum q=0 in an isolated superconducting ring.

  16. New bismuth borophosphate Bi4BPO10: Synthesis, crystal structure, optical and band structure analysis

    International Nuclear Information System (INIS)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S.; Kuzubov, Aleksandr A.; Zhereb, Vladimir P.; Kirik, Sergei D.

    2015-01-01

    New bismuth borophosphate Bi 4 BPO 10 was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi 2 O 2 ] 2+ -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi 4 BPO 10 . The strips combining stacks are separated by flat triangle [BO 3 ] 3− -anions within stacks. Neighboring stacks are separated by tetrahedral [PO 4 ] 3− -anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi 4 BPO 10 is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi 4 BPO 10 was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi 4 BPO 10 was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi 4 O 3 ] 6+ forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  17. An improved phase-control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  18. An improved phase-control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  19. Structure research of L-band travelling-wave buncher

    International Nuclear Information System (INIS)

    Zhou Wenzhen; Zhang Xiangyang; Ding Shuling

    1996-01-01

    The authors introduce design and tuning of two kinds of the buncher of the L-band high current injector of China Institute of Atomic Energy. Characteristics of the few cavities buncher is shown and the effects of the two modes of the buncher in high current injector are given

  20. A Concept for the Use and Integration of Super-Conducting Magnets in Structural Systems in General and Maglev Guideway Mega-Structures in Particular

    Science.gov (United States)

    Ussery, Wilfred T.; MacCalla, Eric; MacCalla, Johnetta; Elnimeiri, Mahjoub; Goldsmith, Myron; Polk, Sharon Madison; Jenkins, Mozella; Bragg, Robert H.

    1996-01-01

    Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed

  1. Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure

    Science.gov (United States)

    Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling

    2017-11-01

    A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.

  2. Effect of pressure on the structural properties and electronic band structure of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, U.; Olguin, D.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Cantarero, A. [Department of Materials Sciences, University of Valencia, 46000 Burjasot (Spain); Hanfland, M. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2007-01-15

    The structural properties of GaSe have been investigated up to 38 GPa by monochromatic X-ray diffraction. The onset of the phase transition from the {epsilon}-GaSe to a disordered NaCl-type structural motif is observed near 21 GPa. Using the experimentally determined lattice parameters of the layered {epsilon}-phase as input, constrained ab-initio total energy calculations were performed in order to optimize the internal structural parameters at different pressures. The results obtained for the nearest-neighbor Ga-Se distance agree with those derived from recent EXAFS measurements. In addition, information is obtained on the changes of Ga-Ga and Se-Se bond lengths which were not accessible to a direct experimental determination yet. Based on the optimized structural parameters, we report calculations of band gap changes of {epsilon}-GaSe under pressure. The optical response and electronic band structure of the metallic high-pressure phase of GaSe are discussed briefly. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Finite element analysis of structural response of superconducting magnet for a fusion reactor

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.; Bezler, P.; Chang, T.Y.; Prachuktam, S.

    1975-01-01

    In the proposal Tokamak fusion reactor, the superconducting unit consists of an assembly of D-shaped magnets standing vertically and arranged in a toroidal configuration. Each magnet is a composite structure comprised of Nb-22%Ti and Nb-48%Ti, and stabilizing metals such as copper and aluminum or stainless steel held together by reinforced epoxies which also serve as insulators and spacers. The magnets are quite large, typically 15-20 meters in diameter with rectangular cross sections around 0.93x2m. Under static loading condition, the magnet is subjected to dead weight and large magnetic field forces, which may induce high stresses in the structure. Furthermore, additional stresses due to earthquake must also be considered for the design of the component. Both static and dynamic analyses of a typical field magnet have been performed by use of the finite element method. The magnet was assumed to be linearly elastic with equivalent homogeneous material properties. Various finite element models have been considered in order to better represent the structure for a particular loading case. For earthquake analysis, the magnet was assumed to be subjected to 50% of the El Centro 1940 earthquake and the dynamic response was obtained by the displacement spectrum analysis procedure. In the paper, numerical results are presented and the structure behavior of the magnet under static and dynamic loading conditions is discussed

  4. Structural design of the superconducting Poloidal Field coils for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Zbasnik, J.P.

    1993-01-01

    The Tokamak Physics Experiment concept design uses superconducting coils made from cable-in-conduit conductor to accomplish both magnetic confinement and plasma initiation. The Poloidal Field (PF) magnet system is divided into two subsystems, the central solenoid and the outer ring coils, the latter is focus of this paper. The eddy current heating from the pulsed operation is excessive for a case type construction; therefore, a ''no case'' design has been chosen. This ''no case'' design uses the conductor conduit as the primary structure and the electrical insulation (fiberglass/epoxy wrap) as a structural adhesive. The model integrates electromagnetic analysis and structural analysis into the finite element code ANSYS to solve the problem. PF coil design is assessed by considering a variety of coil current wave forms, corresponding to various operating modes and conditions. The structural analysis shows that the outer ring coils are within the requirements of the fatigue life and fatigue crack growth requirements. The forces produced by the Toroidal Field coils on the PF coils have little effect on the maximum stresses in the PF coils. In addition in an effort to reduce the cost of the coils new elongated PF coils design was proposed which changes the aspect ratio of the outer ring coils to reduce the number of turns in the coils. The compressive stress in the outer ring coils is increased while the tensile stress is decreased

  5. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  6. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    Science.gov (United States)

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  7. Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa 2Cu 3O x

    Science.gov (United States)

    Farneth, W. E.; Bordia, R. K.; McCarron, E. M.; Crawford, M. K.; Flippen, R. B.

    1988-06-01

    A detailed study of the superconducting properties and the crystal symmetry of YBa 2Cu 3O x as a function of oxygen content (x) is presented. We correlate the oxygen content, structure and superconducting transition temperature for YBa 2Cu 3O x (6topotactic intercalation/deintercalation of oxygen. It is shown that the orthorhombic to tetragonal phase transition coincides with a loss in superconductivity for samples prepared both by quenching from high temperature and samples prepared by deoxygenation at low temperature. For the orthorhombic phase, T c monotonically decreases as x goes from 7.0 to 6.4 along with a complementary decrease in the extent of orthorhombic distortion. The decrease in T c, however, is not uniform. For quenched samples it shows a plateau for x ˜ 6.75 to 6.55 and then a rather abrupt drop around x ˜ 6.5. Comparison of our data with the literature indicates that the dependence of superconducting properties and crystal structure on the oxygen content can be a complex function of sample processing history. Samples with the same oxygen content but prepared in different ways may have x-ray powder patterns that are indistinguishable, but significantly different electrical properties.

  8. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  9. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization

    Directory of Open Access Journals (Sweden)

    Maximilian Wormser

    2017-09-01

    Full Text Available We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.

  10. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization.

    Science.gov (United States)

    Wormser, Maximilian; Wein, Fabian; Stingl, Michael; Körner, Carolin

    2017-09-22

    We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.

  11. Hybrid quantum systems: Outsourcing superconducting qubits

    Science.gov (United States)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  12. Three-dimensional band structure of LaSb and CeSb: Absence of band inversion

    Science.gov (United States)

    Oinuma, H.; Souma, S.; Takane, D.; Nakamura, T.; Nakayama, K.; Mitsuhashi, T.; Horiba, K.; Kumigashira, H.; Yoshida, M.; Ochiai, A.; Takahashi, T.; Sato, T.

    2017-07-01

    We have performed angle-resolved photoemission spectroscopy (ARPES) of LaSb and CeSb, a candidate of topological insulators. Using soft-x-ray photons, we have accurately determined the three-dimensional bulk band structure and revealed that the band inversion at the Brillouin-zone corner, a prerequisite for realizing the topological-insulator phase, is absent in both LaSb and CeSb. Moreover, unlike the ARPES data obtained with soft-x-ray photons, those with VUV photons were found to suffer significant kz broadening. These results suggest that LaSb and CeSb are topologically trivial semimetals, and unusual Dirac-cone-like states observed with VUV photons are not of the topological origin.

  13. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Nabeta, Masahiro, E-mail: nabeta@mp.okayama-u.ac.jp; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-11-15

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  14. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  15. Vertical Line Nodes in the Superconducting Gap Structure of Sr_{2}RuO_{4}

    Directory of Open Access Journals (Sweden)

    E. Hassinger

    2017-03-01

    Full Text Available There is strong experimental evidence that the superconductor Sr_{2}RuO_{4} has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound, and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr_{2}RuO_{4}. Theoretical scenarios have been proposed to account for the existence of deep minima or accidental nodes (minima tuned to zero or below by material parameters within a p-wave state. Other scenarios propose chiral d-wave and f-wave states, with horizontal and vertical line nodes, respectively. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima are vertical (parallel to the tetragonal c axis or horizontal (perpendicular to the c axis. Here, we report thermal conductivity measurements on single crystals of Sr_{2}RuO_{4} down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T=0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to T_{c}/30 and down to H_{c2}/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H=0 to H=H_{c2}. These findings show that the gap structure of Sr_{2}RuO_{4} consists of vertical line nodes. This rules out a chiral d-wave state. Given that the c-axis dispersion (warping of the Fermi surface in Sr_{2}RuO_{4} varies strongly from sheet to sheet, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr_{2}RuO_{4}. To reconcile the gap structure

  16. Vertical Line Nodes in the Superconducting Gap Structure of Sr2 RuO4

    Science.gov (United States)

    Hassinger, E.; Bourgeois-Hope, P.; Taniguchi, H.; René de Cotret, S.; Grissonnanche, G.; Anwar, M. S.; Maeno, Y.; Doiron-Leyraud, N.; Taillefer, Louis

    2017-01-01

    There is strong experimental evidence that the superconductor Sr2 RuO4 has a chiral p -wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound, and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2 RuO4 . Theoretical scenarios have been proposed to account for the existence of deep minima or accidental nodes (minima tuned to zero or below by material parameters) within a p -wave state. Other scenarios propose chiral d -wave and f -wave states, with horizontal and vertical line nodes, respectively. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima) are vertical (parallel to the tetragonal c axis) or horizontal (perpendicular to the c axis). Here, we report thermal conductivity measurements on single crystals of Sr2 RuO4 down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T =0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to Tc/30 and down to Hc 2/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H =0 to H =Hc 2. These findings show that the gap structure of Sr2 RuO4 consists of vertical line nodes. This rules out a chiral d -wave state. Given that the c -axis dispersion (warping) of the Fermi surface in Sr2 RuO4 varies strongly from sheet to sheet, the small a -c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p -wave order parameter for Sr2 RuO4 . To reconcile the gap structure revealed by our data with a p -wave

  17. Electron momentum density, band structure, and structural properties of SrS

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G., E-mail: gsphysics@gmail.com [University of Kota, Department of Pure and Applied Physics (India); Munjal, N.; Vyas, V. [Banasthali University, Department of Physics (India); Kumar, R.; Sharma, B. K. [University of Rajasthan, Department of Physics (India); Joshi, K. B. [MLS University, Department of Physics (India)

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  18. First direct observation of a nearly ideal graphene band structure

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; Chiang, S.; Soukiassian, P.; Berger, C.; de Heer, W.A.; Lanzara, A.; Conrad, E.H.; (CNRS-UMR); (UCB); (CEAS); (SOLEIL); (GIT)

    2009-12-10

    Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000{bar 1}) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K point. Each cone corresponds to an individual macroscale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.

  19. First direct observation of a nearly ideal graphene band structure.

    Science.gov (United States)

    Sprinkle, M; Siegel, D; Hu, Y; Hicks, J; Tejeda, A; Taleb-Ibrahimi, A; Le Fèvre, P; Bertran, F; Vizzini, S; Enriquez, H; Chiang, S; Soukiassian, P; Berger, C; de Heer, W A; Lanzara, A; Conrad, E H

    2009-11-27

    Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(0001) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K point. Each cone corresponds to an individual macroscale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.

  20. Phases and structural characteristics of high Tc superconducting oxide in (Bi, Pb)-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chen, Zuyano; Li, Zhengrong; Qian, Yitai; Zhou, Quien; Cheng, Tingzhu

    1989-01-01

    The various phases, which are responsible for variant maximum d-value including 18.5 angstrom, 15.4 angstrom, 12.2 angstrom, 6.2 angstrom, 3.2 angstrom and possible 9.1 angstrom respectively, observed in high Tc superconducting complex oxide of (Bi,Pb)-Sr-Ca-Cu-O system are reported in this paper according to the result of X-ray diffraction on platelike crystals or crystallites synthesized under different preparation conditions. The phase of tetragonal system with c=3.21 angstrom, a=3.86 angstrom is possible parent structural unit and it is of great significance to the structure constitution of various phases with large lattice parameter c and structural characteristics of superconducting oxide. In view of the above a model of two-dimension stack-up which causes a stack in variant styles along c-axis and constitute various phases with different lattice parameter c is proposed and discussed

  1. Three band crossings in the yrast structure of 162Hf

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Courtney, L.H.

    1988-01-01

    The yrast sequence of 162 Hf has been observed up to a level tentatively assigned as 38 + and reveals a continuing rotational character up to that spin. Sharp backbends at rotational frequencies of 0.27 and 0.42 MeV/ℎ are attributed to isub(13/2) neutron and hsub(11/2) proton alignments, respectively. A gradual increase in the aligned angular momentum of the yrast levels between these two sharp backbends is attributed to the rotational alignment of a pair of negative parity quasineutrons (mostly hsub(9/2) in character). The interpretation of this effect is supported by the failure of the negative parity bands, which already contain this aligned hsub(9/2) neutron, to gain alignment in the same rotational frequency range. While the alignment of the hsub(9/2) quasineutrons has been predicted in the cranked shell model to occur in the rare-earth region with a large interaction strength, this represents the first clear observation of such a band crossing. (author)

  2. Stability of graphene band structures against an external periodic perturbation: Na on graphene

    Science.gov (United States)

    Hwang, C. G.; Shin, S. Y.; Choi, Seon-Myeong; Kim, N. D.; Uhm, S. H.; Kim, H. S.; Hwang, C. C.; Noh, D. Y.; Jhi, Seung-Hoon; Chung, J. W.

    2009-03-01

    The electronic structure of Na-adsorbed graphenes formed on the 6H-SiC(0001) substrate was studied using angle-resolved photoemission spectroscopy with synchrotron photons and ab initio pseudopotential calculations. It was found that the band of the graphenes sensitively changes upon Na adsorption especially at low temperature. With increasing Na dose, the π band appears to be quickly diffused into the background at 85 K whereas it becomes significantly enhanced with its spectral intensity at room temperature (RT). A new parabolic band centered at ktilde 1.15Å-1 also forms near Fermi energy with Na at 85 K while no such band was observed at RT. Such changes in the band structure are found to be reversible with temperature. The changes in the π band of graphene are mainly driven by the Na-induced potential especially at low temperature where the potential becomes periodic due to the crystallized Na overlayer. The new parabolic band turns out to be the π band of the underlying buffer layer partially filled by the charge transfer from Na adatoms. The increase in the hopping rate of Na adatoms at RT by 5 orders of magnitude prevents such a charge transfer, explaining the absence of the new band at RT.

  3. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  4. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    Science.gov (United States)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  5. Disorder enabled band structure engineering of a topological insulator surface

    International Nuclear Information System (INIS)

    Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei

    2017-01-01

    Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2 X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.

  6. Band Jahn-Teller structural phase transition in Y2In

    Science.gov (United States)

    Svanidze, E.; Georgen, C.; Hallas, A. M.; Huang, Q.; Santiago, J. M.; Lynn, J. W.; Morosan, E.

    2018-02-01

    The number of paramagnetic materials that undergo a structural phase transition is rather small, which can perhaps explain the limited understanding of the band Jahn-Teller mechanism responsible for this effect. Here we present a structural phase transition observed in paramagnetic Y2In at temperature T0=250 ±5 K. Below T0, the high-temperature hexagonal P 63/m m c phase transforms into the low-temperature orthorhombic P n m a phase. This transition is accompanied by an unambiguous thermal hysteresis of about 10 K, observed in both magnetic susceptibility M /H (T ) and resistivity ρ (T ) , indicating a first-order transition. Band structure calculations suggest a band Jahn-Teller mechanism, during which the degeneracy of electron bands close to the Fermi energy is broken. We establish that this structural phase transition does not have a magnetic component; however, the possibility of a charge density wave formation has not been eliminated.

  7. Complete flexural vibration band gaps in membrane-like lattice structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Qiu Jing; Wang Gang; Zhao Honggang

    2006-01-01

    The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates

  8. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  9. Cell and band structures in cold rolled polycrystalline copper

    DEFF Research Database (Denmark)

    Ananthan, V.S.; Leffers, Torben; Hansen, Niels

    1991-01-01

    dislocation walls (DDWs) and cells develop during the initial stages of cold rolling. Grains having a high density of DDWs are described as high wall density (HWD) structures, and grains having a low density of DDWs are described as low wall density (LWD) structures. These structures are characterised by cell...... size, misorientation across the cell walls, and the crystallographic orientation of the grains in which they appear. The DDWs in the HWD structures have special characteristics, extending along several cells and having a misorientation across them greater than that across ordinary cell boundaries...... operating slip systems. Two generations of microbands are found to develop with increasing deformation. The first generation microbands are related to a continuous development of the structure according to the principle of grain subdivision, whereas the second generation microbands relate to localised shear...

  10. Subharmonic energy gap structure in the Josephson radiation at 35 GHz from a superconducting thin-film microbridge

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Levinsen, M. T.; Lindelof, Poul Erik

    1979-01-01

    Nonresonant detection of the Josephson radiation 35 GHz from a superconducting thin-film microbridge is reported. The high frequency and the accuracy of these measurements lead to a new important observation: subharmonic energy gap structure in the detected integral power. The maximum integral po...... power measured was as large as 8×10−11 W. Applied Physics Letters is copyrighted by The American Institute of Physics....

  11. Finite-element simulation of the performance of a superconducting meander structure shielding for a cryogenic current comparator

    Energy Technology Data Exchange (ETDEWEB)

    De Gersem, H., E-mail: degersem@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schlossgartenstraße 8, 64289 Darmstadt (Germany); Marsic, N.; Müller, W.F.O. [Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schlossgartenstraße 8, 64289 Darmstadt (Germany); Kurian, F.; Sieber, T.; Schwickert, M. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2016-12-21

    The ferrite core and measuring coil of a cryogenic current comparator have to be shielded against external magnetic fields by a compact, efficient meander structure made of superconducting niobium. A design with minimized material and production costs is only feasible when a highly accurate magnetic field simulator is available. 3D field models become prohibitively large. The cylindrical symmetry of the devices motivates to develop a quasi-3D field solver, exploiting the symmetry while still capable of representing 3D field distributions.

  12. Stationary transport in mesoscopic hybrid structures with contacts to superconducting and normal wires. A Green's function approach for multiterminal setups

    OpenAIRE

    Arrachea, Liliana

    2008-01-01

    We generalize the representation of the real time Green's functions introduced by Langreth and Nordlander [Phys. Rev. B 43 2541 (1991)] and Meir and Wingreen [Phys. Rev. Lett. 68 2512 (1992)] in stationary quantum transport in order to study problems with hybrid structures containing normal (N) and superconducting (S) pieces. We illustrate the treatment in a S-N junction under a stationary bias and investigate in detail the behavior of the equilibrium currents in a normal ring threaded by a m...

  13. Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-T_c superconductors

    OpenAIRE

    Takei, So; Fregoso, Benjamin M.; Galitski, Victor; Sarma, S. Das

    2012-01-01

    The possibility of inducing topological superconductivity with cuprate high-temperature superconductors (HTSC) is studied for various heterostructures. We first consider a ballistic planar junction between a HTSC and a metallic ferromagnet. We assume that inversion symmetry breaking at the tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and allows equal-spin triplet superconductivity to exist in the ferromagnet. Bogoliubov-de Gennes equations are obtained by explicitly ...

  14. Structural, electronic, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd)

    Energy Technology Data Exchange (ETDEWEB)

    Puvaneswari, S. [Department of Physics, E.M.G. Yadava Women' s College, Madurai, Tamilnadu 625 014 (India); Rajeswarapalanichamy, R., E-mail: rrpcaspd2003@gmail.com [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India); Sudha Priyanga, G. [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India)

    2015-02-01

    The structural stability, electronic structure, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd) are investigated in tetragonal (P4/mbm), fluorite (Fm3m), orthorhombic (Pnnm), pyrite (Pa-3) and hexagonal (P6/mmm) phases using first principles calculations. The calculated lattice parameters are in good agreement with other theoretical results. Among the considered structures, RhN{sub 2} and PdN{sub 2} are found to be most stable in tetragonal structure, whereas RuN{sub 2} is stable in fluorite structure. A sequence of structural phase transition is predicted under high pressure in these metal nitrides. The electronic structure reveals that these nitrides are metallic. These metal nitrides are found to be covalent, ionic and metallic in the stable phase. The observations show that these metal nitrides are mechanically stable at ambient condition. The superconducting transition temperatures for RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are found to be 1.65 K, 5.01 K and 8.7 K respectively. - Highlights: • Electronic, structural and elastic properties of RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are studied. • A pressure induced structural phase transition is predicted. • Electronic structure reveals that these materials exhibit metallic behavior. • High bulk modulus indicates that RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are superhard materials. • Superconducting temperature values are reported.

  15. A 50 mm bore superconducting dipole with a unique iron yoke structure

    International Nuclear Information System (INIS)

    Dell'Orco, D.; Caspi, S.; O'Neill, J.; Lietzke, A.; Scanlan, R.; Taylor, C.E.; Wandesforde, A.

    1992-08-01

    A 50 mm bore superconducting dipole with a thin stainless steel collar and a close in elliptical iron yoke was designed in order to obtain a high transfer function SW low saturation effects on the multipoles, and a one meter model was built and tested. Training behavior of the first 1 m model, called D19, is presented at 4.3 K and 1.8 K. At 1.8 K it reached the record field of 10.06 T. The two layer cos θ winding uses 30 and 36 strand cables identical to the cables of the 50 mm bore SSC dipole and it has an operating field of 6.6 T at 4.35 K with a current of 5800 A. To evaluate behavior at high fields, the mechanical structure for the model was designed for 10 T. The thin collar itself provides only a minimum prestress of 10 MPa. and the full prestress of 70 MPa is given by the iron yoke. An aluminum spacer is used to control the gap size in the vertically split iron yoke. The tapered gap in the yoke is determined by the size of the Al spacer so that during cooldown there is no loss of coil prestress and the gap remains closed when the magnet is energized

  16. Effect of malic acid doping on the structural and superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N.; Sudesh; Stuti Rani; Varma, G.D.

    2010-01-01

    The samples have been prepared via standard solid state reaction route with nominal compositions MgB 2 + x wt% malic acid (x = 0, 5 and 10) by sintering at two different temperatures: 800 and 850 deg C in argon atmosphere. Improvement in upper critical fields (H c2 ) and irreversibility field (H irr ) of doped samples as compared to undoped samples have been observed. At 10 K, critical current densities (J c ) of the 5 and 10 wt% malic acid doped MgB 2 samples sintered at 850 deg C have higher values as compared to undoped sample sintered at the same temperature in the fields greater than 3 T. However, J c values of 5 wt% malic acid doped sample are higher than 10 wt% doped sample in the entire applied field region (0 - 7 T). In case of the samples sintered at 800 deg C improvement in J c values of 5 wt% doped sample have been found in entire field region as compared to undoped sample. On the other hand we see deterioration in J c values of 10 wt% doped samples sintered at 800 deg C as compared to undoped samples sintered at same temperature. The correlations between structural and superconducting properties will be described and discussed in this paper. (author)

  17. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. [Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear; Clifft, B.E.; Shepard, K.W. [Argonne National Lab., IL (United States)

    1992-09-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  18. Upgraded phase control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Added, N.; Clifft, B.E.; Shepard, K.W.

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs

  19. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. (Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear); Clifft, B.E.; Shepard, K.W. (Argonne National Lab., IL (United States))

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  20. Upgraded phase control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Added, N.

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K

  1. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  2. Effect of fluorination on the structure and superconducting properties of the Hg-1201 phase

    International Nuclear Information System (INIS)

    Abakumov, A.M.; Aleshin, V.A.; Antipov, E.V.; Mikhajlova, D.A.; Putilin, S.N.; Rozova, M.G.; Aksenov, V.L.; Balagurov, A.M.

    1997-01-01

    A fluorination of the reduced Hg-1201 phase with T c =61 K carried out with XeF 2 resulted first in an increase in T c up to 97 K and then in a decrease and even a suppression of superconductivity due to overdoping. Neutron power refinement performed on fluorinated HgBa 2 CuO 4 F δ samples showed twice the amount of extra fluorine (δ≅0.24 and 0.32) in comparison with those for the oxygenated Hg-1201 phases with close T c (δ=0.12 and 0.19). This supports the ionic model of the hole doping in the Hg-1201: 2 holes per extra oxygen and 1 hole per extra fluorine. The exchange of extra oxygen for a double amount of fluorine extends the shortening of the apical Cu-O bond distances, while the in-plane distances, as well as T c , do not vary. These results show that the structural nature of T c variation in Hg-1201 under high pressure can be mainly due to the compression of the in-plane Cu-O bond distances

  3. Low-frequency photonic band structures in graphene-like triangular metallic lattice

    Science.gov (United States)

    Wang, Kang

    2016-11-01

    We study the low frequency photonic band structures in triangular metallic lattice, displaying Dirac points in the frequency spectrum, and constructed upon the lowest order regular polygonal tiles. We show that, in spite of the unfavourable geometrical conditions intrinsic to the structure symmetry, the lowest frequency photonic bands are formed by resonance modes sustained by local structure patterns, with the corresponding electric fields following a triangular distribution at low structure filling rate and a honeycomb distribution at high filling rate. For both cases, the lowest photonic bands, and thus the plasma gap, can be described in the framework of a tight binding model, and analysed in terms of local resonance modes and their mutual correlations. At high filling rate, the Dirac points and their movement following the structure deformation are described in the same framework, in relation with local structure patterns and their variations, as well as the particularity of the metallic lattice that enhances the topological anisotropy.

  4. Superconductivity Bordering Rashba Type Topological Transition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  5. Cell and band structures in cold rolled polycrystalline copper

    DEFF Research Database (Denmark)

    Ananthan, V.S.; Leffers, Torben; Hansen, Niels

    1991-01-01

    The effect of plastic strain on the deformation microstructure has been investigated in polycrystalline copper rolled at room temperature to 5, 10, 20, and 30% reduction in thickness equivalent strain 0.06-0.42). Results from transmission electron microscopy (TEM) observations show that dense...... dislocation walls (DDWs) and cells develop during the initial stages of cold rolling. Grains having a high density of DDWs are described as high wall density (HWD) structures, and grains having a low density of DDWs are described as low wall density (LWD) structures. These structures are characterised by cell...... size, misorientation across the cell walls, and the crystallographic orientation of the grains in which they appear. The DDWs in the HWD structures have special characteristics, extending along several cells and having a misorientation across them greater than that across ordinary cell boundaries...

  6. Structural and superconducting properties of PIT processed sintered MgB{sub 2}/Fe wires

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S.; Nakamura, T.; Osamura, K.; Muta, I.; Hoshino, T

    2004-10-01

    In this paper, we report the structural and superconducting properties of MgB{sub 2}/Fe wires that are produced by different sintering conditions. Good quality MgB{sub 2}/Fe wires are fabricated by the powder-in-tube (PIT) method using commercially available MgB{sub 2} powder at ambient pressure. In order to check the annealing effect, the different pieces of the as-rolled wires are sintered at 1323 K for 0.30-1.20 ks. XRD data confirms that they are hexagonal MgB{sub 2} structure. All the sintered samples show higher T{sub c} values in the range of 38.2-38.4 K with high J{sub c} than the as-rolled sample. No significant change in T{sub c} is seen among the annealed samples. On the other hand, the annealed samples show significant change in the J{sub c} values as well as in micro-structural features due to variable sintering time. On annealing at 1323 K for 0.60 ks, we obtain the best quality sample with a J{sub c} of 372 A/mm{sup 2} at 33.1 K in self-field with a maximum T{sub c} of 38.4 K. Among the annealed samples, 1.20 ks sample shows lower J{sub c}. Longer annealing time reduced J{sub c}, indicating a possible interfacial reaction between the Fe sheath and the MgB{sub 2} core.

  7. Band Structures Analysis Method of Two-Dimensional Phononic Crystals Using Wavelet-Based Elements

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2017-10-01

    Full Text Available A wavelet-based finite element method (WFEM is developed to calculate the elastic band structures of two-dimensional phononic crystals (2DPCs, which are composed of square lattices of solid cuboids in a solid matrix. In a unit cell, a new model of band-gap calculation of 2DPCs is constructed using plane elastomechanical elements based on a B-spline wavelet on the interval (BSWI. Substituting the periodic boundary conditions (BCs and interface conditions, a linear eigenvalue problem dependent on the Bloch wave vector is derived. Numerical examples show that the proposed method performs well for band structure problems when compared with those calculated by traditional FEM. This study also illustrates that filling fractions, material parameters, and incline angles of a 2DPC structure can cause band-gap width and location changes.

  8. Electron microscopy and x-ray diffraction evidence for two Z-band structural states.

    Science.gov (United States)

    Perz-Edwards, Robert J; Reedy, Michael K

    2011-08-03

    In vertebrate muscles, Z-bands connect adjacent sarcomeres, incorporate several cell signaling proteins, and may act as strain sensors. Previous electron microscopy (EM) showed Z-bands reversibly switch between a relaxed, "small-square" structure, and an active, "basketweave" structure, but the mechanism of this transition is unknown. Here, we found the ratio of small-square to basketweave in relaxed rabbit psoas muscle varied with temperature, osmotic pressure, or ionic strength, independent of activation. By EM, the A-band and both Z-band lattice spacings varied with temperature and pressure, not ionic strength; however, the basketweave spacing was consistently 10% larger than small-square. We next sought evidence for the two Z-band structures in unfixed muscles using x-ray diffraction, which indicated two Z-reflections whose intensity ratios and spacings correspond closely to the EM measurements for small-square and basketweave if the EM spacings are adjusted for 20% shrinkage due to EM processing. We conclude that the two Z-reflections arise from the small-square and basketweave forms of the Z-band as seen by EM. Regarding the mechanism of transition during activation, the effects of Ca(2+) in the presence of force inhibitors suggested that the interconversion of Z-band forms was correlated with tropomyosin movement on actin. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Influence of strain on band structure of semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Raičević Nevena

    2009-01-01

    Full Text Available The influence of the mechanical strain on the electronic structure of the asymmetric (In,GaAs/GaAs quantum well is considered. Both the direct influence of strain on the orbital part of the electronic structure and an indirect influence through the strain dependent Rashba and Dresselhaus Hamiltonians are taken into account. The analyzed quantum well is taken to have a triangular shape, and is oriented along the direction. For this direction, there exists both the intrinsic and strain-induced spin-orbit interaction. For all analyzed types of spin-orbit interaction, subband splittings depend linearly on the in-plane wave vector. On the other hand, the electronic structure for the Rashba type of the strain-induced spin-orbit interaction shows isotropic dependence in the k-space, while the electronic structure due to the Dresselhaus type shows anisotropy. Furthermore, the Rashba strain-induced spin-orbit interaction increases subband splitting, while the effect of the Dresselhaus Hamiltonian on the electronic structure is opposite to the intrinsic spin-orbit interaction for certain polar angles.

  10. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaco, S.

    1992-01-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure. (Author) 3 refs., 2 figs., tab

  11. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  12. Compact UWB Filtering-Antenna with Controllable WLAN Band Rejection Using Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    A. Alhegazi

    2018-04-01

    Full Text Available An ultra-wideband (UWB filtering-antenna with controllable band notch is reported in this paper. The filtering-antenna consists of a modified monopole antenna and defected microstrip structure (DMS. The monopole antenna is modified using microstrip transition in the feedline and block with a triangular-shape slot on each side of the circular patch to produce wider impedance bandwidth with better return loss. The DMS is constructed using U-shaped slot etched on the feedline to provide band notch and remove WLAN band (5.1-5.8 GHz. A switch is employed in the DMS to control the created band notch. The measured results show that the proposed design exhibits a wide impedance bandwidth with controllable WLAN band rejection, realized peak gain of 4.85 dB and omnidirectional radiation pattern. Therefore, the proposed design is suitable for UWB applications.

  13. Electrical properties and band structures of Pb1-x Snx Te alloys

    International Nuclear Information System (INIS)

    Ocio, Miguel

    1972-01-01

    Both p type alloys Pb 0.72 Sn 0.28 Te and Pb 0.53 Sn 0.47 Te have been studied in the present work. The main obtained results are the following: the materials have a two-valence band structure, the first band following non-parabolic Cohen's dispersion law; at low temperatures, carriers are scattered by ionized impurities; the Coulomb potentials being screened almost completely, impurities act like neutral centers. At room temperature, scattering by acoustic modes can explain lattice mobility behavior; reversing of the thermo-power, for samples with carrier densities of about 10 20 cm -3 , is possibly due to inter-band scattering between both valence bands; a very simple picture of the band parameters variations as a function of alloy fraction is suggested. (author) [fr

  14. Precise fabrication of X-band accelerating structure

    International Nuclear Information System (INIS)

    Higo, T.; Sakai, H.; Higashi, Y.; Koike, S.; Takatomi, T.

    1994-01-01

    An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10 -4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)

  15. Band structures of graphene hexagonal lattice semiconductor quantum dots

    Science.gov (United States)

    Peng, Juan; Li, Shu-Shen

    2010-12-01

    Electronic structures of coupled semiconductor quantum dots (QDs) arranged as graphene hexagonal lattice are studied theoretically using the tight-binding method. In our calculations, the electrons can hop to the third-nearest-neighbors, and the overlap matrix as well as the multicenter integral are taken into account. The novel two-dimensional Dirac-like electronic excitations in graphene are found in these artificial planar QD structures. The results provide the theoretical basis for searching Dirac fermions in QD materials and have great significance for investigating and making semiconductor QD devices.

  16. Determination of conduction and valence band electronic structure ...

    Indian Academy of Sciences (India)

    insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps. Keywords. Photo-catalysis; high-resolution RIXS; electronic structure. 1. Introduction. Photocatalysis is an emerging field that offers poten- tial to address some of the energy and waste manage- ment challenges.

  17. Band structure features of nonlinear optical yttrium aluminium borate crystal

    Czech Academy of Sciences Publication Activity Database

    Reshak, Ali H; Auluck, S.; Majchrowski, A.; Kityk, I. V.

    2008-01-01

    Roč. 10, č. 10 (2008), s. 1445-1448 ISSN 1293-2558 Institutional research plan: CEZ:AV0Z60870520 Keywords : Electronic structure * DFF * FPLAPW * LDA Subject RIV: BO - Biophysics Impact factor: 1.742, year: 2008

  18. Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system

    Directory of Open Access Journals (Sweden)

    Shuyin Yu

    2014-10-01

    Full Text Available Using first-principles variable-composition evolutionary methodology, we explored the high-pressure structures of beryllium hydrides between 0 and 400 GPa. We found that BeH2 remains the only stable compound in this pressure range. The pressure-induced transformations are predicted as I b a m → P 3 ̄ m 1 → R 3 ̄ m → C m c m → P 4 / n m m , which occur at 24, 139, 204 and 349 GPa, respectively. P 3 ̄ m 1 and R 3 ̄ m structures are layered polytypes based on close packings of H atoms with Be atoms filling all octahedral voids in alternating layers. Cmcm and P4/nmm contain two-dimensional triangular networks with each layer forming a kinked slab in the ab-plane. P 3 ̄ m 1 and R 3 ̄ m are semiconductors while Cmcm and P4/nmm are metallic. We have explored superconductivity of both metal phases, and found large electron-phonon coupling parameters of λ = 0.63 for Cmcm with a Tc of 32.1-44.1 K at 250 GPa and λ = 0.65 for P4/nmm with a Tc of 46.1-62.4 K at 400 GPa. The dependence of Tc on pressure indicates that Tc initially increases to a maximum of 45.1 K for Cmcm at 275 GPa and 97.0 K for P4/nmm at 365 GPa, and then decreases with increasing pressure for both phases.

  19. Physical properties and structure of large grain/single crystal niobium for superconducting RF cavities

    International Nuclear Information System (INIS)

    Ermakov, A; Jelezov, I; Singer, X; Singer, W; Wen, H; Spiwek, M; Viswanathan, G B; Levit, V; Fraser, H L

    2008-01-01

    The R and D program on superconducting cavities fabricated from electron beam melted large grain/single crystal (LG/SC) niobium discs explores it's potential for production of approximately 1000 cavities for the European XFEL. Thermal, electrical, mechanical properties, crystal orientation and structure are investigated with the aim to make the fabrication procedure more efficient. In opposite to fine grain niobium the thermal conductivity of LG/SC has a pronounced maximum at 2K. Calculation found a correlation between thermal conductivity enhancement and phonon scattering at the grain boundaries. Detected enhancement is very susceptible to plastic deformation that can cause the complete elimination of the low temperature peak. The final annealing at 800 deg. C of cavities made from large grain niobium is necessary for hydrogen outgassing, as well as for the thermal conductivity enhancement due to stress relaxation and recovery of crystal defects introduced at the cavity fabrication. The effects of annealing temperature up to 1200 deg. C, heating rate, and holding time on the structure recovery after rolling are also established. Total elongation at the uniaxial tensile tests for LG is very high (50-110%) and depends significantly on the load direction, because only very few grains are in the gage length. The elongation after fracture by bi-axial testing (bulging test) for LG is lower (<15%) yet sufficient for deep drawing of half-cells. Metallographic investigation of and electron beam welding tests on, niobium single crystals show that an appropriate disc enlargement and annealing can be done without destruction of the single crystal. These tests showed that a cavity can be produced without grain boundaries even in the welding area. On base of the results a fabrication method of single crystal cavities is proposed

  20. Structural and superconducting properties of YBa2Cu3-xMxOy (M=Ag, Al

    Directory of Open Access Journals (Sweden)

    S Falahati

    2009-08-01

    Full Text Available   Samples of YBa2Cu3-xAgxOy with x=0, 0.1, 0.15, 0.2, 0.3 and samples of YBa2Cu3-xAlxOy with x=0, 0.01, 0.02, 0.03 and 0.045 are prepared by the sol-gel method. Structural and superconducting properties of samples are studied by electrical resistivity (R-T, X-ray diffraction (XRD and scanning electron microscopy (SEM. All the samples show transition to superconducting state and the transition temperatures of the samples increased with increasing Ag doping up to x=0.15. R-T measurements show a small decrease of TC (zero with increasing Al doping up to x=0.02, and followed by a faster decrease with increasing doping concentration. YBCO grains are better linked with increasing Ag doping. So, Ag has positive effects in superconducting properties of YBCO. The crystal structure of samples was refined by MAUD. These results show tha, Ag is substituted for Cu(1 in YBCO. According to these analysis, we introduce x=0.15 as the optimum value for doping concentration .

  1. Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity

    Science.gov (United States)

    Shen, Yao; Wang, Qisi; Hao, Yiqing; Pan, Bingying; Feng, Yu; Huang, Qingzhen; Harriger, L. W.; Leao, J. B.; Zhao, Yang; Chisnell, R. M.; Lynn, J. W.; Cao, Huibo; Hu, Jiangping; Zhao, Jun

    2016-02-01

    We use neutron diffraction to study the structure and magnetic phase diagram of the newly discovered pressure-induced superconductor CrAs. Unlike most magnetic unconventional superconductors where the magnetic moment direction barely changes upon doping, here we show that CrAs exhibits a spin reorientation from the a b plane to the a c plane, along with an abrupt drop of the magnetic propagation vector at a critical pressure (Pc≈0.6 GPa). This magnetic phase transition, accompanied by a lattice anomaly, coincides with the emergence of bulk superconductivity. With further increasing pressure, the magnetic order completely disappears near the optimal Tc regime (P ≈0.94 GPa). Moreover, the Cr magnetic moments tend to be aligned antiparallel between nearest neighbors with increasing pressure toward the optimal superconductivity regime. Our findings suggest that the noncollinear helimagnetic order is strongly coupled to structural and electronic degrees of freedom, and that the antiferromagnetic correlations between nearest neighbors might be essential for superconductivity.

  2. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  3. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    Science.gov (United States)

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications.

  4. Superlattice band structure: New and simple energy quantification condition

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  5. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  6. Band structure of a two-dimensional Dirac semimetal from cyclotron resonance

    Science.gov (United States)

    Shuvaev, A. M.; Dziom, V.; Mikhailov, N. N.; Kvon, Z. D.; Shao, Y.; Basov, D. N.; Pimenov, A.

    2017-10-01

    Knowing the band structure of materials is one of the prerequisites to understanding their properties. Therefore, angle-resolved photoemission spectroscopy (ARPES) has become a highly demanded experimental tool to investigate the band structure. However, especially in thin film materials with a layered structure and several capping layers, access to the electronic structure by ARPES is limited. Therefore, several alternative methods to obtain the required information have been suggested. Here we directly invert the results by cyclotron resonance experiments to obtain the band structure of a two-dimensional (2D) material. This procedure is applied to the mercury telluride quantum well with a critical thickness which is characterized by a 2D electron gas with linear dispersion relations. The Dirac-like band structure in this material could be mapped both on the electron and on the hole side of the band diagram. In this material, purely linear dispersion of the holelike carriers is in contrast to detectable quadratic corrections for the electrons.

  7. Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence

    International Nuclear Information System (INIS)

    Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.

  8. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  9. Pathway to oxide photovoltaics via band-structure engineering of SnO

    Directory of Open Access Journals (Sweden)

    Haowei Peng

    2016-10-01

    Full Text Available All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn. Using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility of the approach.

  10. The LDA+U calculation of electronic band structure of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Bahuguna, B. P., E-mail: pk.svnit@gmail.com; Sharma, R. O.; Saini, L. K. [Applied Physics Department, Sardar Vallabhbhai National Institute of Technology, Surat-395007 (India)

    2016-05-06

    We present the electronic band structure of bulk gallium arsenide (GaAs) using first principle approach. A series of calculations has been performed by applying norm-conserving pseudopotentials and ultrasoft non-norm-conserving pseudopotentials within the density functional theory. These calculations yield too small band gap as compare to experiment. Thus, we use semiemperical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U), which is quite effective in order to describe the band gap of GaAs.

  11. Pathway to oxide photovoltaics via band-structure engineering of SnO

    Science.gov (United States)

    Peng, Haowei; Bikowski, Andre; Zakutayev, Andriy; Lany, Stephan

    2016-10-01

    All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility of the approach.

  12. Superconductivity in compensated and uncompensated semiconductors

    OpenAIRE

    Yanase, Youichi; Yorozu, Naoyuki

    2009-01-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from th...

  13. Band structure analysis of (1 × 2)-H/Pd(110)-pr

    Science.gov (United States)

    Shuttleworth, I. G.

    2013-09-01

    A novel method of band structure analysis based on the atomic orbital (AO) coefficients in LCAO-DFT has been applied to the (1 × 2)-H/Pd(110)-pr system. The analysis has revealed symmetry-dependent Pd 4d band splitting due to H ligand effects; ensemble effects due to the (1 × 2) Pd reconstruction are shown to be relatively minor.

  14. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...... in electromagnetic and microwave applications once the Maxwell's equations are appropriately modeled. Originality/value - The method validates its values and properties through extensive studies on regular and defective 1D PBG structures in stratified medium, and it can be further extended to solving more...

  15. Crystal structure, electrical properties and electronic band structure of tantalum ditelluride

    CERN Document Server

    Vernes, A; Bensch, W; Heid, W; Naether, C

    1998-01-01

    Motivated by the unexpectedly strong influence of the Te atoms on the structural and bonding properties of the transition metal tellurides, we have performed a detailed study of TaTe sub 2. Experimentally, this comprises a crystal structure determination as well as electrical resistivity measurements. The former analysis leads to an accurate update of the structural data reported in the 1960s, while the latter provides evidence for the mainly electronic character of scattering processes leading to the electrical conductivity. In addition, the electronic properties of TaTe sub 2 have been calculated using the TB-LMTO method. The partial density of states reflects the close connection of the Ta zigzag chains and the Te-Te network. This finding explains the charge transfer in the system in a rather simple way. The orthogonal-orbital character of the bands proved the existence of pi-bonds. The Fermi-surface study supports the interpretation of the experimental resistivity measurements. (author)

  16. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  17. Band structure and phonon properties of lithium fluoride at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  18. Band structure and phonon properties of lithium fluoride at high pressure

    International Nuclear Information System (INIS)

    Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.

    2016-01-01

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  19. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  20. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...... behavior of these structures, and the computed results generally match well with ones published in the literature. It is also found that the FDTD method is a robust, versatile, and powerful numerical technique to perform such numerical studies. The proposed PBG filter structures may be applied in microwave...

  1. Band structure of the solid state - interpretation of the nature of the chemical bond in some transition metal compounds in terms of energy band structure calculations

    International Nuclear Information System (INIS)

    Neckel, A.; Schwarz, K.; Eibler, R.; Weinberger, P.; Rastl, P.

    1975-01-01

    The nature of chemical binding for some transition metal compounds (ScN, ScO, TiC, TiN, Tio, VC, VN, VO) with NaCl structure is discussed in terms of energy band structure calculations. The discussion is based on the wave functions and energy eigenvalues, as calculated by the 'Quasi self sonsistent APW method' as well as on the energy eigen values and eigen vectors resulting from the Slater-Koster LCAO-Tight binding interpolation scheme. The LCAO-TB l-like partial density of states can be used to analyse the valence bands. This analysis shows, that the deepest valence band has predominantly s-character. The following bands, which can be derived in essence from the atomic 2p states of the of the non metal are characterized not only by the partial p-like density of states but also by a substantial contribution from the d-like partial density of states, which is decreasing going from a particular Carbide to the corresponding Oxide. For the valence bands, which can be associated with the atomic 3d states of the metal, the density of states exhibits besides the partial d-density of states small contributions from the partial p-like density of states. The decomposition of the d-like partial density of states into an esub(g)-like and a tsub(2g)-like contribution is discussed. By analyzing the APW crystal wave functions the partial l-like charges inside each atomic sphere can be obtained. If the APW total charges within the atomic spheres are compared with the charges of a hypothetical crystal, which correspond to a superposition of the charge densities of the neutral atoms, a transfer of electrons from the metal to the non-metal sphere is found for all compounds under investigation. (orig.) [de

  2. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    Science.gov (United States)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  3. Band structure calculations for dilute nitride quantum wells under compressive or tensile strain

    International Nuclear Information System (INIS)

    Carrere, H; Marie, X; Barrau, J; Amand, T; Bouzid, S Ben; Sallet, V; Harmand, J-C

    2004-01-01

    We have calculated the band structure of InGaAsN/GaAs(N)/GaAs compressively strained quantum wells (QW) emitting at 1.3 μm using the band anticrossing model and an eight-band kp Hamiltonian. The calculated interband optical transition energies have been compared to the experimental ones deduced from photocurrent, photoluminescence and excitation of photoluminescence spectroscopy experiments and measured laser characteristics extracted from the recent literature. Because of the high compressive strain in the QW, strain-compensated structures may be required in order to grow stable multiple QWs; in view of this we have studied the band structure of InGaAsN/GaAsP/GaAs QWs emitting at 1.3 μm. Dilute nitride structures also offer the possibility of growing tensile strained QW lasers on InP substrate emitting in the 1.55 μm emission wavelength range. In order to evaluate the potentialities of such structures we have determined the band characteristics of InGaAsN/InGaAsP/InP heterostructures with a TM polarized fundamental transition

  4. Coupling between Fano and Bragg bands in the photonic band structure of two- dimensional metallic photonic structures

    Czech Academy of Sciences Publication Activity Database

    Markoš, P.; Kuzmiak, Vladimír

    2016-01-01

    Roč. 94, č. 3 (2016), č. článku 033845. ISSN 2469-9926 R&D Projects: GA MŠk(CZ) LD14028 Institutional support: RVO:67985882 Keywords : Crystal structure * Photonic crystals * Two-dimensional arrays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  5. Mixed-mu superconducting bearings

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  6. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...

  7. Electronic band structure of a type-II ‘W’ quantum well calculated by an eight-band k · p model

    International Nuclear Information System (INIS)

    Yu Xiu; Wang Qing; Wei Xin; Chen Liang-Hui; Gu Yong-Xian

    2011-01-01

    In this paper, we present an investigation of type-II ‘W’ quantum wells for the InAs/Ga 1−x In x Sb/AlSb family, where ‘W’ denotes the conduction profile of the material. We focus our attention on using the eight-band k · p model to calculate the band structures within the framework of finite element method. For the sake of clarity, the simulation in this paper is simplified and based on only one period—AlSb/InAs/Ga 1−x In x Sb/InAs/AlSb. The obtained numerical results include the energy levels and wavefunctions of carriers. We discuss the variations of the electronic properties by changing several important parameters, such as the thickness of either InAs or Ga 1−x In x Sb layer and the alloy composition in Ga 1−x In x Sb separately. In the last part, in order to compare the eight-band k · p model, we recalculate the conduction bands of the ‘W’ structure using the one-band k · p model and then discuss the difference between the two results, showing that conduction bands are strongly coupled with valence bands in the narrow band gap structure. The in-plane energy dispersions, which illustrate the suppression of the Auger recombination process, are also obtained. (general)

  8. Structural and superconducting properties of as-cast Nb3Al

    International Nuclear Information System (INIS)

    Mondal, Puspen; Manekar, Meghmalhar; Roy, S.B.; Kumar, Ravi; Ganguli, Tapas

    2007-01-01

    We present the results of x-ray diffraction and magnetization measurements on the as-cast compound Nb 3 Al. X-ray diffraction shows the presence of the Al 5 Nb 3 Al phase along with a bcc Nb-Al solid solution. The average grain size of Nb 3 Al estimated from the line broadening is about 35 nm. Magnetization measurements show a superconducting transition temperature of about 16.8 K which is amongst the highest known T c for the as-cast sample. In the superconducting state, the sample shows interesting thermo-magnetic history effects in the temperature and field variation of magnetization. (author)

  9. Research on the Band Gap Characteristics of Two-Dimensional Phononic Crystals Microcavity with Local Resonant Structure

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2015-01-01

    Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.

  10. Coupling of structure to magnetic and superconducting orders in quasi-one-dimensional K2Cr3As3

    Science.gov (United States)

    Taddei, K. M.; Zheng, Q.; Sefat, A. S.; de la Cruz, C.

    2017-11-01

    Quasi-one-dimensional A2Cr3As3 (with A =K , Cs, Rb) is an intriguing new family of superconductors which exhibit many similar features to the cuprate and iron-based unconventional superconductor families. Yet, in contrast to these systems, no charge or magnetic ordering has been observed which could provide the electronic correlations presumed necessary for an unconventional superconducting pairing mechanism—an absence which defies predictions of first-principles models. We report the results of neutron scattering experiments on polycrystalline K2Cr3As3 (Tc˜7 K ) which probed the low-temperature dynamics near Tc. Neutron diffraction data evidence a subtle response of the nuclear lattice to the onset of superconductivity while inelastic scattering reveals a highly dispersive column of intensity at the commensurate wave vector q =(00 1/2 ) which loses intensity beneath Tc—indicative of short-range magnetic fluctuations. Using linear spin-wave theory, we model the observed scattering and suggest a possible structure to the short-range magnetic order. These observations suggest that K2Cr3As3 is in close proximity to a magnetic instability and that the incipient magnetic order both couples strongly to the lattice and competes with superconductivity, in direct analogy with the iron-based superconductors.

  11. Structural and physical properties of the NaxCoO2·yH2O superconducting system

    International Nuclear Information System (INIS)

    Shi, Y G; Li, J Q; Yu, H C; Zhou, Y Q; Zhang, H R; Dong, C

    2004-01-01

    The structural features and physical properties of Na x CoO 2 and Na x CoO 2 ·yH 2 O materials have been investigated. The Na x CoO 2 -yH 2 O samples, in general, undergo superconducting transitions at around 3.5 K. Energy dispersive x-ray analyses suggest that our samples have average compositions of Na 0.65 CoO 2 for the parent compounds and Na 0.26 CoO 2 ·yH 2 O for the superconducting oxyhydrates. Transmission electron microscopy observations reveal a new superstructure with wave vector q = in the parent material. This superstructure becomes very weak in the superconducting samples. Electron energy loss spectra analyses show that the Co ions have valence states of around +3.3 in Na 0.65 CoO 2 and around +3.7 in Na 0.26 CoO 2 -yH 2 O

  12. Qubit compatible superconducting interconnects

    Science.gov (United States)

    Foxen, B.; Mutus, J. Y.; Lucero, E.; Graff, R.; Megrant, A.; Chen, Yu; Quintana, C.; Burkett, B.; Kelly, J.; Jeffrey, E.; Yang, Yan; Yu, Anthony; Arya, K.; Barends, R.; Chen, Zijun; Chiaro, B.; Dunsworth, A.; Fowler, A.; Gidney, C.; Giustina, M.; Huang, T.; Klimov, P.; Neeley, M.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2018-01-01

    We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the three dimensional integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1 K), limited by the aluminum. These interconnects have an average critical current of 26.8 mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.

  13. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate....... Determination of band-gaps and the corresponding attenuation levels is an im-portant practical problem. Most existing analytical methods in the field are based on Floquet theory; e.g. this holds for the classical Hill’s method of infinite determinants, and the method of space-harmonics. However, application....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed...

  14. Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2012-01-01

    N/GaN(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...... for the gap error. The calculated band gap shows a strong decrease with the thickness (m) of the InN well. In superlattices containing a single layer of InN (m = 1) the band gap increases weakly with the GaN barrier thickness n, reaching a saturation value around 2 eV. In superlattices with n = m and n > 5...

  15. The Goettingen high-Tc superconductivity research pool: the effects of structure and structural defects on the performance of high-Tc superconductors. Final reports

    International Nuclear Information System (INIS)

    1992-02-01

    The compilation presents the final reports prepared by the various teams of the Goettingen research pool for high-Tc superconductivity. The reports are entitled: Structure and phase transition in high-Tc superconductors (Krebs/Freyhardt). Preparation and critical properties of high-Tc superconductors (Freyhardt/Heinemann/Zimmermann). EMC measurements in high-Tc superconductors (Bormann/Noelting). Phase analysis of the various phases observed in the preparation of high-Tc superconductors (Faupel/Hehenkamp). Positron annihilation in high-Tc superconductors (Hehenkamp). Preparation and characterization of thin films consisting of superconducting oxide ceramics (v. Minnigerode/Samwer). High-Tc superconductivity in monocrystals (Winzer/Beuermann). Microwave conductivity in high-Tc superconductors (Helberg). High-resolution structural analyses in high-Tc superconductors (Kupcik/Bente). Synthesis, structural analyses and spectroscopy of high-Tc superconductors (Bente). Synthesis, monocrystal growing, crystal structure of high-Tc superconductors (Schwarzmann). Ion-beam-aided studies in high-Tc superconductors (Uhrmacher). (orig./MM) [de

  16. Magnetoresistance in the superconducting state at the (111) LaAlO3/SrTiO3 interface

    Science.gov (United States)

    Davis, S.; Huang, Z.; Han, K.; Ariando, Venkatesan, T.; Chandrasekhar, V.

    2017-10-01

    Condensed-matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order are known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3 (LAO) and SrTiO3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is on the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.

  17. Crystal structure, magnetic susceptibility and thermopower of superconducting and non-superconducting Nd1.85Ce0.15CuO4+#upsilone#

    DEFF Research Database (Denmark)

    Mangelschots, I.; Andersen, N.H.; Lebech, B.

    1992-01-01

    An experimental study of superconducting and non-superconducting Nd1.85Ce0.15CuO4+y, including structure determination by neutron powder diffraction, recording of oxygen changes by gas volumetry, and susceptibility and thermoelectric measurements, is reported. Difference neutron diffraction...... patterns from samples prepared on-line at the spectrometer show that the structures of superconducting and non-superconducting samples are identical within the limits set by the statistical errors of our data. Simultaneous gas volumetric measurements reveal that DELTAy

  18. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  19. Dielectric band structure of crystals: General properties, and calculations for silicon

    International Nuclear Information System (INIS)

    Car, R.; Baroni, S.; Tosatti, E.; Leelaprute, S.

    1981-02-01

    We shift the dielectric band structure method, orginially proposed by Baldereschi and Tosatti for the description of microscopic electronic screening in crystals. Some general properties are examined first, including the requirements of causality and stability. The specific test case of silicon is then considered. Dielectric bands are calculated, according to several different prescriptions for the construction of the dielectric matrix. It is shown that the results allow a very direct appraisal of the screening properties of the system, as well as of the quality of the dielectric model adopted. The electronic charge displacement induced by γsub(25') and X 3 phonon-like displacements of the atoms is also calculated and compared with the results of existent full self-consistent calculations. Conclusions are drawn on the relative accuracies of the dielectric band structures. (author)

  20. A Compact Quad-Band Bandpass Filter Based on Defected Microstrip Structure

    Science.gov (United States)

    Chen, Lei; Li, Xiao Yan; Wei, Feng

    2017-07-01

    A compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.

  1. Electronic structure of MgB2

    Indian Academy of Sciences (India)

    Boron isotope effect [2] has been observed in MgB2 re- vealing that the pairing mechanism leading to superconductivity is of phononic origin. The electronic band structure combined with strong coupling superconductivity theory can therefore be expected to give a good quantitative description of this compound. Motivated.

  2. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    Science.gov (United States)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  4. Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-Tc superconductors

    Science.gov (United States)

    Takei, So; Fregoso, Benjamin M.; Galitski, Victor; Das Sarma, S.

    2013-01-01

    The possibility of inducing topological superconductivity with cuprate high-temperature superconductors (HTSC) is studied for various heterostructures. We first consider a ballistic planar junction between a HTSC and a metallic ferromagnet. We assume that inversion symmetry breaking at the tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and allows equal-spin triplet superconductivity to exist in the ferromagnet. Bogoliubov-de Gennes equations are obtained by explicitly modeling the barrier and taking account of the transport anisotropy in the HTSC. By making use of the self-consistent boundary conditions and solutions for the barrier and HTSC regions, an effective equation of motion for the ferromagnet is obtained where Andreev scattering at the barrier is incorporated as a boundary condition for the ferromagnetic region. For a ferromagnet layer deposited on a (100) facet of the HTSC, triplet p-wave superconductivity is induced. For the layer deposited on a (110) facet, the induced gap does not have the p-wave orbital character, but has an even orbital symmetry and an odd dependence on energy. For the layer on the (001) facet, an exotic f-wave superconductivity is induced. We also consider the induced triplet gap in a one-dimensional half-metallic nanowire deposited on a (001) facet of a HTSC. Due to the breaking of translational symmetry in the direction perpendicular to the wire axis, the expression for the gap receives contributions from different perpendicular momentum eigenstates in the superconductor. We find that for a wire axis along the a axis, these different contributions constructively interfere and give rise to a robust triplet p-wave gap. For a wire oriented 45∘ away from the a axis, the different contributions destructively interfere and the induced triplet p-wave gap vanishes. For the appropriately oriented wire, the induced p-wave gap may give rise to Majorana fermions at the ends of the half-metallic wire. In light of the

  5. Superconducting tin core fiber

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary [Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA (United States)

    2014-11-13

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  6. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  7. Extended analysis of the field-angle-dependent heat capacity of (TMTSF)2ClO4 toward identification of the superconducting gap structure

    International Nuclear Information System (INIS)

    Yonezawa, Shingo; Maeno, Yoshiteru; Jérome, Denis

    2013-01-01

    In this paper, we present detailed analyses of the field-angle dependence of the heat capacity of the quasi-one-dimensional superconductor (TMTSF) 2 ClO 4 with various models of superconducting gap structure. We clarify that the superconducting gap structure with line nodes at k y = ±0.25b * is the only structure that is consistent with our experiment, irrespective of the value of the anion gap. The observed field-angle dependence of the heat capacity indicates that two of the four nodes mainly contribute to the quasiparticle excitation

  8. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam

    International Nuclear Information System (INIS)

    Zhang, Shunzu; Gao, Yuanwen

    2017-01-01

    A theoretical model is established to study the size-dependent performance of flexural wave propagation in magneto-elastic phononic crystal (PC) nanobeam with surface effect based on Euler–Bernoulli beam theory and Gurtin–Murdoch theory. Considering the magneto-mechanical coupling constitutive relation of magnetostrictive material, the influence of surface effect on band structure is calculated by the plane wave expansion method for PC nanobeam subjected to pre-stress and magnetic field loadings. Through the example of an epoxy/Terfenol-D PC nanobeam, it can be observed that the characteristics of flexural wave band structures are size-dependent, and remarkably affected by surface effect when the dimension of the PC beam reduces to the nanoscale. The edges and width of the band gap with surface effect are higher than those without surface effect, especially for high frequency region. And surface effect gradually reduces with the increasing of bulk layer-to-surface layer thickness ratio until the band gap descends to a constant for the conventional one in the absence of surface effect. The effects of surface elasticity and piezomagneticity on band gap are more prominent than the residual surface stress. In addition, a distinctly nonlinear variation of band gap appears under the combined effects of pre-stress and magnetic field. Moreover, with the varying of filling fraction, multi-peaks of the width of the band gap are obtained and discussed. These results could be helpful for the intelligent regulation of magneto-elastic PC nanobeam and the design of nanobeam-based devices. (paper)

  9. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam

    Science.gov (United States)

    Zhang, Shunzu; Gao, Yuanwen

    2017-11-01

    A theoretical model is established to study the size-dependent performance of flexural wave propagation in magneto-elastic phononic crystal (PC) nanobeam with surface effect based on Euler-Bernoulli beam theory and Gurtin-Murdoch theory. Considering the magneto-mechanical coupling constitutive relation of magnetostrictive material, the influence of surface effect on band structure is calculated by the plane wave expansion method for PC nanobeam subjected to pre-stress and magnetic field loadings. Through the example of an epoxy/Terfenol-D PC nanobeam, it can be observed that the characteristics of flexural wave band structures are size-dependent, and remarkably affected by surface effect when the dimension of the PC beam reduces to the nanoscale. The edges and width of the band gap with surface effect are higher than those without surface effect, especially for high frequency region. And surface effect gradually reduces with the increasing of bulk layer-to-surface layer thickness ratio until the band gap descends to a constant for the conventional one in the absence of surface effect. The effects of surface elasticity and piezomagneticity on band gap are more prominent than the residual surface stress. In addition, a distinctly nonlinear variation of band gap appears under the combined effects of pre-stress and magnetic field. Moreover, with the varying of filling fraction, multi-peaks of the width of the band gap are obtained and discussed. These results could be helpful for the intelligent regulation of magneto-elastic PC nanobeam and the design of nanobeam-based devices.

  10. Superconductivity in compensated and uncompensated semiconductors.

    Science.gov (United States)

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature T c around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  11. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  12. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2013-01-01

    Full Text Available A modified electromagnetic-bandgap (M-EBG structure and its application to planar monopole ultra-wideband (UWB antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX and the wireless local area network (WLAN at 3.5 GHz and 5.5 GHz, respectively.

  13. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    Science.gov (United States)

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.

  14. Band structure analysis of an analytically solvable Hill equation with continuous potential

    Science.gov (United States)

    Morozov, G. V.; Sprung, D. W. L.

    2015-03-01

    This paper concerns analytically solvable cases of Hill’s equation containing a continuously differentiable periodic potential. We outline a procedure for constructing the Floquet-Bloch fundamental system, and analyze the band structure of the system. The similarities to, and differences from, the cases of a piecewise constant periodic potential and the Mathieu potential, are illuminated.

  15. Band structure of thin films by the linear augmented-plane-wave method

    DEFF Research Database (Denmark)

    Jepsen, O.; Madsen, J.; Andersen, Ole Krogh

    1978-01-01

    We present a linear augmented-plane-wave method for solving the band-structure problem in thin crystalline films. The potential is separated into a muffin-tin potential inside the film, a potential depending exclusively on the normal coordinate outside the film, and corrections in both regions...

  16. Structure of negative parity yrast bands in odd mass 125−131Ce ...

    Indian Academy of Sciences (India)

    4. — journal of. April 2010 physics pp. 525–539. Structure of negative parity yrast bands in odd mass 125−131Ce nuclei. ARUN BHARTI∗, SURAM SINGH and S K KHOSA. Department of ... in 125Ce have been extensively studied up to very high spins in recent years [3,4]. ... The detailed theory of PSM is given in [12].

  17. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared...

  18. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...

  19. The Electronic Band Structure of Platinum Oxide (PtO) | Omehe ...

    African Journals Online (AJOL)

    We have performed the electronic band structure of the bulk and monolayer of PtO using the full potential linear muffin-tin orbital and the projector augmented wave method with the density functional theory. We applied the LDA and LDA+U scheme to both methods. It was found out that the LDA calculation of bulk PtO ...

  20. Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem

    KAUST Repository

    Raman, Aaswath

    2010-02-26

    We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.

  1. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    Science.gov (United States)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  2. Band Structure Engineering in 2D Photonic Crystal Waveguide with Rhombic Cross-Section Elements

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Gharaati

    2014-01-01

    Full Text Available Two-dimensional photonic crystal (2D PhC waveguides with square lattice composed of dielectric rhombic cross-section elements in air background, by using plane wave expansion (PWE method, are investigated. In order to study the change of photonic band gap (PBG by changing of elongation of elements, the band structure of the used structure is plotted. We observe that the size of the PBG changes by variation of elongation of elements, but there is no any change in the magnitude of defect modes. However, the used structure does not have any TE defect modes but it has TM defect mode for any angle of elongation. So, the used structure can be used as optical polarizer.

  3. Observation of dark-current signals from the S-band structures of the SLAC linac

    International Nuclear Information System (INIS)

    Assmann, R.; Decker, F.J.; Seidel, M.; Siemann, R.H.; Whittum, D.

    1997-07-01

    It is well known that the electro-magnetic fields in high-gradient RF structures can cause electron emission from the metallic structure walls. If the emitted electrons are captured and accelerated by the accelerating fields so-called dark-current is induced. Dark-currents have been measured and studied for various RF-structures. In this paper the authors present measurements of RF induced signals for the SLC S-band structures. For nominal gradients of 17 MV/m it is shown that the dark-current can be strong enough to significantly reduce the signal-to-noise ratio of the SLC beam wire scanners. They also show results from RF measurements in the dipole band. The measurements are compared to more direct observations of dark-current and it is tried to connect the results to possible effects on the accelerated particle beam

  4. Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure

    International Nuclear Information System (INIS)

    Heng, Jiang; Mi-Lin, Zhang; Yu-Ren, Wang; Yan-Ping, Hu; Ding, Lan; Qun-Li, Wu; Huan-Tong, Lu

    2010-01-01

    The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption. (condensed matter: structure, thermal and mechanical properties)

  5. Spins, Parity, Excitation Energies, and Octupole Structure of an Excited Superdeformed Band in 194Hg and Implications for Identical Bands

    Science.gov (United States)

    Hackman, G.; Khoo, T. L.; Carpenter, M. P.; Lauritsen, T.; Lopez-Martens, A.; Calderin, I. J.; Janssens, R. V.; Ackermann, D.; Ahmad, I.; Agarwala, S.; Blumenthal, D. J.; Fischer, S. M.; Nisius, D.; Reiter, P.; Young, J.; Amro, H.; Moore, E. F.; Hannachi, F.; Korichi, A.; Lee, I. Y.; Macchiavelli, A. O.; Døssing, T.; Nakatsukasa, T.

    1997-11-01

    An excited superdeformed band in 194Hg, observed to decay directly to both normal-deformed and superdeformed yrast states, is proposed to be a Kπ = 2- octupole vibrational band, based on its excitation energies, spins, and likely parity. The transition energies are identical to those of the yrast superdeformed band in 192Hg, but originate from levels with different spins and parities. The evolution of transition energies with spin suggests that cancellations between pairing and particle alignment are partly responsible for the identical transition energies.

  6. Electronic structure and band alignment of 9,10-phenanthrenequinone passivated silicon surfaces

    Science.gov (United States)

    Avasthi, Sushobhan; Qi, Yabing; Vertelov, Grigory K.; Schwartz, Jeffrey; Kahn, Antoine; Sturm, James C.

    2011-07-01

    In this work we demonstrate that the room-temperature deposition of the organic molecule 9,10-phenanthrenequinone (PQ) reduces the surface defect density of the silicon (100) surface by chemically bonding to the surface dangling bonds. Using various spectroscopic measurements we have investigated the electronic structure and band alignment properties of the PQ/Si interface. The band-bending at the PQ-passivated silicon surface is negligible for both n- and p-type substrates, demonstrating a low density of surface defects. Finally we show that PQ forms a semiconducting wide-bandgap type-I heterojunction with silicon.

  7. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  8. Structural and superconducting properties of epitaxial Fe{sub 1+y}Se{sub 1-x}Te{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan; Yuan, Feifei; Grinenko, Vadim; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Sala, Alberto; Putti, Marina [Dipartimento di Fisica, Universita di Genova (Italy)

    2015-07-01

    The iron based superconductor Fe(Se,Te) is in the center of much ongoing research. The reason for this is on the one hand its simple crystal structure, that consists only of stacked Fe(Se,Te) layers so that structural and superconducting properties can be connected more easily, on the other hand FeSe itself shows a high sensibility for strain and changes in stoichiometry and can have potentially very high critical temperatures under hydrostatic pressure or in monolayers. We investigate epitaxial thin films of Fe{sub 1+y}Se{sub 1-x}Te{sub x} grown by pulsed laser deposition on different single crystalline substrates. A high crystalline quality and a superconducting transition of up to about 20 K can be achieved using optimized deposition parameters. The influence of growth conditions, Te-doping, film thickness and post growth oxygen treatment on the structural and superconducting properties on these films will be presented in detail.

  9. Crystal structure and energy band and optical properties of phosphate Sr3P4O13

    International Nuclear Information System (INIS)

    Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone

  10. On the structural properties and superconductivity of room-temperature chemically oxidized La2-xBaxCuO4+y (0<=x<=0.15)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.

    1996-01-01

    The insertion of oxygen within the structure of La2-xBaxCuO4+y (x less than or equal to 0.15), by means of room-temperature chemical oxidation, modifies both the physical and the structural features of these materials, Concerning the superconducting properties, the extra oxygen gives rise...

  11. Effects of extra oxygen on the structure and superconductivity of La2-xCaxCuO4+y prepared by chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario Franco, M.A.

    1998-01-01

    The insertion of an excess of oxygen within the structure of La2-xCaxCuO4 (x less than or equal to 0.12) by means of room temperature chemical oxidation modifies the physical properties and the crystal structure of these cuprates. The superconducting features of the starting La2-xCaxCuO4 samples...

  12. Thermal transport in topological-insulator-based superconducting hybrid structures with mixed singlet and triplet pairing states.

    Science.gov (United States)

    Li, Hai; Zhao, Yuan Yuan

    2017-11-22

    In the framework of the Bogoliubov-de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.

  13. Effective theory of exotic superconductivity in LaAlO3/SrTiO3 interfaces

    Science.gov (United States)

    Esmailzadeh, Haniyeh; Moghaddam, Ali G.

    2018-05-01

    Motivated by experimental and theoretical works about superconductivity at the oxide interfaces, we provide a simple model for possible unconventional pairings inside the exotic two-dimensional electron gas formed in heterostructures of SrTiO3 and LaAlO3. At the low energy limit, the electron gas at the interfaces is usually modeled with an effective three band model considering of 3d t2g orbitals which are slightly coupled by atomic spin-orbit couplings (SOC). Considering direct superconducting pairing in two higher delocalized bands and by exploiting a perturbative scheme based on canonical transformation, we derive the effective pairing amplitudes with possibly exotic nature inside the localized dxy band as well as various inter-band pairing components. In particular we show that equal-spin triplet pairings are possible between the band dxy and any of other dxz and dyz bands. In addition weaker effective pairings take place inside the localized band itself and between delocalized dxz and dyz bands with singlet and opposite-spin triplet characters. These unconventional effective pairings are indeed mediated by SOC-induced higher order virtual transitions between the bands and particularly into the localized band. Our model suggest that unconventional effective superconductivity is possible at oxide interfaces, simply, due to the special band structure and important role of atomic SOC and perhaps other magnetic effects present at these heterostructures.

  14. Band-structure calculations for the 3d transition metal oxides in GW

    Science.gov (United States)

    Lany, Stephan

    2013-02-01

    Many-body GW calculations have emerged as a standard for the prediction of band gaps, band structures, and optical properties for main-group semiconductors and insulators, but it is not well established how predictive the GW method is in general for transition metal (TM) compounds. Surveying the series of 3d oxides within a typical GW approach using the random-phase approximation reveals mixed results, including cases where the calculated band gap is either too small or too large, depending on the oxidation states of the TM (e.g., FeO/Fe2O3, Cu2O/CuO). The problem appears to originate mostly from a too high average d-orbital energy, whereas the splitting between occupied and unoccupied d symmetries seems to be reasonably accurate. It is shown that augmenting the GW self-energy by an attractive (negative) and occupation-independent on-site potential for the TM d orbitals with a single parameter per TM cation can reconcile the band gaps for different oxide stoichiometries and TM oxidation states. In Cu2O, which is considered here in more detail, standard GW based on wave functions from initial density or hybrid functional calculations yields an unphysical prediction with an incorrect ordering of the conduction bands, even when the magnitude of the band gap is in apparent agreement with experiment. The correct band ordering is restored either by applying the d-state potential or by iterating the wave functions to self-consistency, which both have the effect of lowering the Cu-d orbital energy. While it remains to be determined which improvements over standard GW implementations are needed to achieve an accurate ab initio description for a wide range of transition metal compounds, the application of the empirical on-site potential serves to mitigate the problems specifically related to d states in GW calculations.

  15. Ab initio electronic band structure study of III-VI layered semiconductors

    Science.gov (United States)

    Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés

    2013-08-01

    We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.

  16. Dual Band Notched EBG Structure based UWB MIMO/Diversity Antenna with Reduced Wide Band Electromagnetic Coupling

    Science.gov (United States)

    Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta

    2017-10-01

    A dual band-notched MIMO/Diversity antenna is proposed in this paper. The proposed antenna ensures notches in WiMAX band (3.3-3.6 GHz) besides WLAN band (5-6 GHz). Mushroom Electromagnetic Band Gap (EBG) arrangements are employed for discarding interfering frequencies. The procedure followed to attain notches is antenna shape independent with established formulas. The electromagnetic coupling among two narrowly set apart Ultra-Wide Band (UWB) monopoles is reduced by means of decoupling bands and slotted ground plane. Monopoles are 90° angularly parted with steps on the radiator. This aids to diminish mutual coupling and also adds in the direction of impedance matching by long current route. S21 or else mutual coupling of fewer than 15 dB is established over antenna operating range. Two-port envelope correlation coefficient is lower than 0.02 in UWB range of 3.1 GHz-10.6 GHz. The shifting in notch frequencies by varying variables in formulas is also reported. The suggested antenna is designed on low budget FR-4 substrate with measurements as (58 × 45 × 1.6) mm3. Simulated and measured results of fabricated antenna are found to be in close agreement.

  17. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference...... phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...... PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...

  18. Phase diagram of the La-Si binary system under high pressure and the structures of superconducting LaSi 5 and LaSi 10

    Science.gov (United States)

    Yamanaka, Shoji; Izumi, Satoshi; Maekawa, Shoichi; Umemoto, Keita

    2009-08-01

    The La-Si binary phase diagram under a high pressure of 13.5 GPa was experimentally constructed. New superconducting silicides LaSi 5 and LaSi 10 were found, which have peritectic decomposition temperatures at 1000 and 750 °C, respectively. The single crystal X-ray structural analysis revealed that there are two polymorphs in LaSi 5. The α-form obtained by heating a molar mixture of LaSi 2 and 3 Si at about 700 °C or by a rapid cooling from 1000 °C under pressure crystallizes with the space group C2 /m and the lattice parameters a=15.11(3), b=4.032(6), c=8.26(1) Å, and β=109.11(1)°. The β-form obtained by a slow cooling from 800-950 °C to 600 °C under pressure has the same space group but with slightly different lattice parameters, a=14.922(7), b=3.906(2), c=8.807(4) Å, and β=107.19(1)°. The β-form is formed during the incomplete transformation of the α-form on cooling, and has always been obtained as a mixture with the α-form. The compound can be characterized as a Zintl phase with a polyanionic framework ∞3[Si] with large tunnels running along the b axis hosting lanthanum ions. In the β-form, three of the five Si sites are disordered. The two polymorphs contain one dimensional sila-polyacene ribbons, Si ladder polymer, running along the b axis. The α-form showed superconductivity with the transition temperature T c of 11.5 K. LaSi 10 crystallizes with the space group 6 3/ mmc and the lattice parameters a=9.623(4), c=4.723(3) Å. It is composed of La containing Si 18 polyhedra (La@Si 18) of hexagonal beer-barrel shape, which form straight columns by stacking along the c-axis via face sharing. One-dimensional columns of La@Si 18 barrels are edge-shared, and bundled with infinite Si trigonal bipyramid chains via corner sharing. The Si atoms in the straight chains have a five-fold coordination. LaSi 10 became a superconductor with T c=6.7 K. The ab initio calculation of the electric band structures showed that α-LaSi 5 and LaSi 10 are metallic

  19. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  20. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    International Nuclear Information System (INIS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-01-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M   =  Mo, W; X   =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)

  1. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  2. Electronic structures and band gaps of chains and sheets based on phenylacetylene units

    International Nuclear Information System (INIS)

    Kondo, Masakazu; Nozaki, Daijiro; Tachibana, Masamitsu; Yumura, Takashi; Yoshizawa, Kazunari

    2005-01-01

    We investigate the electronic structures of polymers composed of π-conjugated phenylacetylene (PA) units, m-PA-based and p-PA-based wires, at the extended Hueckel level of theory. It is demonstrated that these conjugated systems should have a variety of electric conductance. All of the one-dimensional (1D) chains and the two-dimensional (2D) sheet based on the m-PA unit are insulators with large band gaps of 2.56 eV because there is no effective orbital interaction with neighboring chains. On the other hand, p-PA-based 1D chains have relatively small band gaps that decrease with an increase in chain width (1.17-1.74 eV) and are semiconductive. The p-PA-based sheet called 'graphyne', a 2D-limit of the p-PA-based 1D chains, shows a small band gap of 0.89 eV. The variety of band electronic structures is discussed in terms of frontier crystal orbitals

  3. Superconductivity in SnO: A Nonmagnetic Analog to Fe-Based Superconductors?

    DEFF Research Database (Denmark)

    Forthaus, M. K.; Sengupta, K.; Heyer, O.

    2010-01-01

    and superconductivity disappears for p≳16  GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc...

  4. Pressure effect on crystal structure and superconductivity of La0.8Th0.2FeAsO

    International Nuclear Information System (INIS)

    Kumar, Ravhi S.; Antonio, Daniel; Cornelius, Andrew L.; Zhao, Yusheng; Kanagaraj, M.; Arumugam, S.; Sinogeikin, Stanislav; Prakash, J.; Thakur, Gohil S.; Ganguli, A.K.; Hartmann, Thomas

    2011-01-01

    We have studied the effect of pressure on the superconducting transition temperature (T c ) of thorium doped La 1-x Th x FeAsO (x = 0.2) superconductor under hydrostatic pressures up to 1.6 GPa by resistivity and magnetization experiments. Application of pressure increases the T c to 31 K with a positive pressure coefficient of ∝1 K/GPa. Low temperature X-ray diffraction studies performed at 7.8 K at high pressures show no pressure induced structural changes and the tetragonal P4/nmm structure is found to persist up to 31 GPa. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Autopsy on an RF-Processed X-band Travelling Wave Structure

    International Nuclear Information System (INIS)

    Le Pimpec, Frederic

    2002-01-01

    In an effort to locate the cause(s) of high electric-field breakdown in x-band accelerating structures, we have cleanly-autopsied (no debris added by post-operation structure disassembly) an RF-processed structure. Macroscopic localization provided operationally by RF reflected wave analysis and acoustic sensor pickup was used to connect breakdowns to autopsied crater damage areas. Surprisingly, the microscopic analyses showed breakdown craters in areas of low electric field. High currents induced by the magnetic field on sharp corners of the input coupler appears responsible for the extreme breakdown damage observed

  6. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-01

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  7. Experimental Studies of W-Band Accelerator Structures at High Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Marc E

    2001-02-09

    A high-gradient electron accelerator is desired for high-energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, a higher gradient than any collider. Planar accelerator devices naturally have an rf quadrupole component of the accelerating field. Presented for the first time are the measurements of this effect.

  8. Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.

    Science.gov (United States)

    N Nair, Maya; Palacio, Irene; Celis, Arlensiú; Zobelli, Alberto; Gloter, Alexandre; Kubsky, Stefan; Turmaud, Jean-Philippe; Conrad, Matthew; Berger, Claire; de Heer, Walter; Conrad, Edward H; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-04-12

    The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp 2 hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

  9. Thermal stability of the optical band gap and structural order in hot-wire-deposited amorphous silicon

    CSIR Research Space (South Africa)

    Arendse, CJ

    2009-01-01

    Full Text Available and that the structural disorder increases upon annealing. The increase in the structural disorder results in a broadening of the valence and conduction band tails, thereby pinning the valence and conduction band edges closer together, resulting in a decrease...

  10. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdS e2

    Science.gov (United States)

    ElGhazali, Moaz A.; Naumov, Pavel G.; Mirhosseini, Hossein; Süß, Vicky; Müchler, Lukas; Schnelle, Walter; Felser, Claudia; Medvedev, Sergey A.

    2017-08-01

    The evolution of electrical transport properties, the electronic band structure, and lattice dynamics of PdS e2 is studied under high pressure. The emergence of superconductivity is reported in the high-pressure pyrite-type phase of PdS e2 . In this transition-metal dichalcogenide, the critical temperature of superconductivity rapidly increases with pressure up to 13.1 K. Ab initio electronic band structure calculations indicate the presence of Dirac and nodal-line fermions in the vicinity of the Fermi energy protected by the pyrite structure symmetry, which can lead to interesting superconducting states. Raman spectroscopy shows a direct correlation between critical temperature and bonding strength of Se-Se dumbbells in PdS e2 , underlining the crucial role of bonding for tuning the superconductivity.

  11. Investigation of superconducting niobium 1170 MHz cavities

    International Nuclear Information System (INIS)

    Anashin, V.V.; Bibko, S.I.; Fadeyev, E.I.

    1988-01-01

    The design, fabrication and experiments with superconducting L-band single cell cavities are described. These cavities model a cell of an accelerating RF structure. The cavities have been fabricated from technical grade and higher purity grade sheet niobium using deep-drawing, electron beam welding and chemical polishing. They have spherical geometry and are excited in the TM 010 mode. A computerized set-up was used for cavity tests. Qo=1.5 x 10 9 and E acc = 4.3 MV/m were obtained in the cavity made of higher purity grade niobium. 6 references, 8 figures, 3 tables

  12. Superconducting niobium cavity with cooling fins

    International Nuclear Information System (INIS)

    Isagawa, Shigeru.

    1978-04-01

    Cooling efficiency of a superconducting cavity is shown to be improved by applying a fin structure. Internal heating can be suppressed in a certain degree and the higher rf field is expected to be reached on surfaces of the cavity which is immersed in superfluid He 4 liquid. The rf measurements were made on a C-band niobium cavity with cylindrical and circular fins around the wall. Fields of 39 mT and 25 MV/m were attained for TM 010 mode cavity after surface treatments including high temperature annealing in a UHV furnace. (auth.)

  13. Tunneling conductance in a gapped graphene-based superconducting structure: Case of massive Dirac electrons

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Tang, I-Ming; Hoonsawat, Rassmidara

    2009-01-01

    The tunneling conductance in a NG/SG graphene junction in which the graphene was grown on a SiC substrate is simulated. The carriers in the normal graphene (NG) and the superconducting graphene (SG) are treated as massive relativistic particles. It is assumed that the Fermi energy in the NG and SG are E FN ∼400 meV and E FS ∼400 meV+U, respectively. Here U is the electrostatic potential from the superconducting gate electrode. It is seen that the Klein tunneling disappears in the case where a gap exist in the energy spectrum. As U→∞, the zero bias normalized conductance becomes persistent at a minimal value of G/G 0 ∼1.2. The normalized conductance G/G 0 is found to depend linearly on U with constant slope of α=2/(E FN -mv F 2 )∼7.4, where 2mv F 2 is the size of the gap Δ opening up in the energy spectrum of the graphene grown on the SiC substrate. It is found that G/G 0 ≅2+αU for potentials in the range -270 meV 0 ∼2Θ(U). This last behavior indicates that a NG/SG junction made with gapped graphene could be used as a nano switch having excellent characteristics.

  14. Observation of wakefields in a beam-driven photonic band gap accelerating structure

    Directory of Open Access Journals (Sweden)

    C. Jing

    2009-12-01

    Full Text Available Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG accelerating structure. Major monopole (TM_{01}- and TM_{02}-like and dipole (TM_{11}- and TM_{12}-like modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be ∼10  times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to ∼30  MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.

  15. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  16. Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering.

    Science.gov (United States)

    Yuan, Wei; Zhou, Ning; Shi, Lei; Zhang, Ke-Qin

    2015-07-01

    Because structural color is fadeless and dye-free, structurally colored materials have attracted great attention in a wide variety of research fields. In this work, we report the use of a novel structural coloration strategy applied to the fabrication of colorful colloidal fibers. The nanostructured fibers with tunable structural colors were massively produced by colloidal electrospinning. Experimental results and theoretical modeling reveal that the homogeneous and noniridescent structural colors of the electrospun fibers are caused by two phenomena: reflection due to the band gap of photonic structure and Mie scattering of the colloidal spheres. Our unprecedented findings show promise in paving way for the development of revolutionary dye-free technology for the coloration of various fibers.

  17. Automated band annotation for RNA structure probing experiments with numerous capillary electrophoresis profiles.

    Science.gov (United States)

    Lee, Seungmyung; Kim, Hanjoo; Tian, Siqi; Lee, Taehoon; Yoon, Sungroh; Das, Rhiju

    2015-09-01

    Capillary electrophoresis (CE) is a powerful approach for structural analysis of nucleic acids, with recent high-throughput variants enabling three-dimensional RNA modeling and the discovery of new rules for RNA structure design. Among the steps composing CE analysis, the process of finding each band in an electrophoretic trace and mapping it to a position in the nucleic acid sequence has required significant manual inspection and remains the most time-consuming and error-prone step. The few available tools seeking to automate this band annotation have achieved limited accuracy and have not taken advantage of information across dozens of profiles routinely acquired in high-throughput measurements. We present a dynamic-programming-based approach to automate band annotation for high-throughput capillary electrophoresis. The approach is uniquely able to define and optimize a robust target function that takes into account multiple CE profiles (sequencing ladders, different chemical probes, different mutants) collected for the RNA. Over a large benchmark of multi-profile datasets for biological RNAs and designed RNAs from the EteRNA project, the method outperforms prior tools (QuSHAPE and FAST) significantly in terms of accuracy compared with gold-standard manual annotations. The amount of computation required is reasonable at a few seconds per dataset. We also introduce an 'E-score' metric to automatically assess the reliability of the band annotation and show it to be practically useful in flagging uncertainties in band annotation for further inspection. The implementation of the proposed algorithm is included in the HiTRACE software, freely available as an online server and for download at http://hitrace.stanford.edu. sryoon@snu.ac.kr or rhiju@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  19. Theoretical analysis of electronic band structure of 2- to 3-nm Si nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Hapala, Prokop; Kůsová, Kateřina; Pelant, Ivan; Jelínek, Pavel

    2013-01-01

    Roč. 87, č. 19 (2013), "195420-1"-"195420-13" ISSN 1098-0121 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108 Grant - others:AVČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : Si nanoparticles * electronic band structure * nanoparticles * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  20. Fabrication and cold test of photonic band gap resonators and accelerator structures

    Directory of Open Access Journals (Sweden)

    Evgenya I. Smirnova

    2005-09-01

    Full Text Available We present the detailed description of the successful design and cold test of photonic band gap (PBG resonators and traveling-wave accelerator structures. Those tests provided the essential basis for later hot test demonstration of the first PBG accelerator structure at 17.140 GHz [E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett., 95, 074801 (2005.PRLTAO0031-900710.1103/PhysRevLett.95.074801]. The advantage of PBG resonators is that they were built to support only the main, TM_{01}-like, accelerator mode while not confining the higher-order modes (HOM or wakefields. The design of the PBG resonators was based on a triangular lattice of rods, with a missing rod at the center. Following theoretical analysis, the rod radius divided by the rod spacing was held to a value of about 0.15 to avoid supporting HOM. For a single-cell test the PBG structure was fabricated in X-band (11 GHz and brazed. The mode spectrum and Q factor (Q=5 000 agreed well with theory. Excellent HOM suppression was evident from the cold test. A six-cell copper PBG accelerator traveling-wave structure with reduced long-range wakefields was designed and was built by electroforming at Ku-band (17.140 GHz. The structure was tuned by etching the rods. Cold test of the structure yielded excellent agreement with the theoretical design. Successful results of the hot test of the structure demonstrating the acceleration of the electron beam were published in E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett., 95, 074801 (2005.PRLTAO0031-900710.1103/PhysRevLett.95.074801

  1. Fabrication and superconducting properties of a simple-structured jelly-roll Nb{sub 3}Al wire with low-temperature heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.J. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Yan, G., E-mail: gyan@c-wst.com [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Pan, X.F. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Zhang, P.X. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Qi, M. [Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Liu, X.H.; Feng, Y. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Superconductivity and New Energy R& D Center, Southwest Jiaotong University (SWJTU), Chengdu 610031 (China)

    2015-06-15

    Highlights: • Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the jelly-roll method. • The length of 18-cores Nb{sub 3}Al superconducting wire reaches 100 m without any breakage and intermediate anneal. • This wire has the uniform filament-shapes and fine long-wire homogeneity. • This Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. - Abstract: With extremely high critical current density (J{sub c}) and excellent strain tolerance, Nb{sub 3}Al superconductor is considered as an alternative to Nb{sub 3}Sn for application of high-field magnets. However, owing to their complex structure, Nb{sub 3}Al superconducting wires can hardly meet the requirement of engineering application at present. In this work, a novel simple-structured Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the conventional jelly-roll method, as well as a heat-treatment of 800–850 °C for 20–50 h. The results show that a 18-filament superconducting wire with length longer than 100 m can be successfully prepared by this method, and also this Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. These suggest that with further optimization, the simple-structured Nb{sub 3}Al superconducting wires are very promising to fabricate the km-grade long wires to meet the requirement of engineering application.

  2. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    Science.gov (United States)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  3. Extracting E versus k⃗ effective band structure from supercell calculations on alloys and impurities

    Science.gov (United States)

    Popescu, Voicu; Zunger, Alex

    2012-02-01

    The supercell approach to defects and alloys has circumvented the limitations of those methods that insist on using artificially high symmetry, yet this step usually comes at the cost of abandoning the language of E versus k⃗ band dispersion. Here we describe a computational method that maps the energy eigenvalues obtained from large supercell calculations into an effective band structure (EBS) and recovers an approximate E(k⃗) for alloys. Making use of supercells allows one to model a random alloy A1-xBxC by occupying the sites A and B via a coin-toss procedure, affording many different local environments (polymorphic description) to occur. We present the formalism and implementation details of the method and apply it to study the evolution of the impurity band appearing in the dilute GaN:P alloy. We go beyond the perfectly random case, realizing that many alloys may have nonrandom microstructures, and investigate how their formation is reflected in the EBS. It turns out that the EBS is extremely sensitive in determining the critical disorder level for which delocalized states start to appear in the intermediate band. In addition, the EBS allows us to identify the role played by atomic relaxation in the positioning of the impurity levels.

  4. A High-Power Test of an X-Band Molybdenum-Iris Structure

    CERN Document Server

    Wuensch, Walter; Grudiev, A; Heikkinen, Samuli Tapio; Syratchev, I V; Taborelli, M; Wilson, Ian H; Adolphsen, C E

    2004-01-01

    In order to achieve accelerating gradients above 150 MV/m, alternative materials to copper are being investigated by the CLIC study. The potential of refractory metals has already been demonstrated in tests in which a tungsten-iris and a molybdenum-iris structure reached 150 and 193 MV/m respectively (30 GHz and a pulse length of 15 ns). In order to extend the investigation to the pulse lengths required for a linear collider, a molybdenum-iris structure scaled to X-band was tested at the Next Linear Collider Test Accelerator (NLCTA). The structure conditioned to only 65 MV/m (100 ns pulse length) in the available testing time and much more slowly than is typical of a copper structure. However the structure showed no sign of saturation and a microscopic inspection of the rf surfaces corroborated that the structure was still at an early stage of conditioning. The X-band and 30 GHz results are compared and what has been learned about material quality, surface preparation and conditioning strategy is discussed.

  5. Magnetic and structural features of RNi2B2C and RNiBC (R=Er, Ho, Dy, Tb, Gd) superconducting compounds

    OpenAIRE

    Baggio-Saitovitch, E. M.; Sánchez, D. R.; Micklitz, H.

    2002-01-01

    Temperature dependent Mössbauer spectroscopy on 57Fe doped (1 at % of Ni) RNi2B2C and RNiBC provided clear evidence of a pair-breaking field at the Ni site for non-superconducting compounds. This field is not present in the superconducting collinear AF DyNi2B2C, however it appears when this compound is diluted with non-magnetic Lu (Dy1-xLu xNi2B2C). Important local information on the spin structure of the R magnetic moments is obtained for both systems. The local symmetries of RNi2B2C and RNi...

  6. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  7. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  8. Synthesis, structural parameters and superconducting properties of 1201-type (Hg,M)Sr{sub 2}CuO{sub 4+{delta}} (M = Cr, Mo or Re): an overview

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S [Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India); Prakash, Om [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India); Padalia, B D [Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India); Selvam, P [Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076 (India)

    2004-10-01

    A brief overview of the current state of development of 1201-type, Ba-free, mercury cuprates, (Hg,M)Sr{sub 2}CuO{sub 4+{delta}} (M = Cr, Mo or Re), is presented. Our focus here is confined to synthesis methods, chemical stabilization, structural parameters and superconducting properties of this Hg/Sr 1201 system. (topical review)

  9. Structure and superconductivity of room temperature chemically oxidized La2-xNdxCuO4+y (0<=x<=0.5)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.

    1997-01-01

    of oxygen introduced in the semiconducting starting materials relieves partially the distortion of the structure, which increases for increasing Nd content, and provides the hole doping required for superconductivity. The extra oxygen content decreases along this series of compounds as the Nd...

  10. INTERLAYER OPTICAL CONDUCTIVITY OF A SUPERCONDUCTING BILAYER

    NARCIS (Netherlands)

    GARTSTEIN, YN; RICE, MJ; VANDERMAREL, D

    1994-01-01

    We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to

  11. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...

  12. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  13. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    Science.gov (United States)

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-01

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  14. A wave-bending structure at Ka-band using 3D-printed metamaterial

    Science.gov (United States)

    Wu, Junqiang; Liang, Min; Xin, Hao

    2018-03-01

    Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.

  15. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    Science.gov (United States)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  16. Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method

    International Nuclear Information System (INIS)

    Osadchy, A V; Obraztsova, E D; Volotovskiy, S G; Golovashkin, D L; Savin, V V

    2016-01-01

    In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars. (paper)

  17. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain (ES)); Balle, S. (Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain (ES)); Salvador, R. (Control Data Corporation, TALLAHASSEE, FL (USA) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 (USA))

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  18. Experimental validation of superconducting quantum interference device sensors for electromagnetic scattering in geologic structures

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.H. Jr.; Flynn, E.; Ruminer, P. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project has supported the collaborative development with Sandia National Laboratories (SNL) and the University of New Mexico (UNM) of two critical components for a hand-held low-field magnetic sensor based on superconducting quantum interference device (SQUID) sensor technology. The two components are a digital signal processing (DSP) algorithm for background noise rejection and a small hand-held dewar cooled by a cryocooler. A hand-held sensor has been designed and fabricated for detection of extremely weak magnetic fields in unshielded environments. The sensor is capable of measuring weak magnetic fields in unshielded environments and has multiple applications. We have chosen to pursue battlefield medicine as the highest probability near-term application because of stated needs of several agencies.

  19. Superconducting accelerating structure for particle velocities from 0.12 to 0.23 c

    International Nuclear Information System (INIS)

    Shepard, K.W.; Zinkann, G.P.

    1983-01-01

    A split-ring resonator has been designed for an optimum particle velocity #betta# = v/c = 0.16 and a frequency of 145.5 MHz. The ratio of peak-surface electric field to effective accelerating field in the resonator has been reduced 20% from the value obtained in previously developed split-ring resonators. The improved design results from the use of elliptically-sectioned loading arms and drift tubes, which have been enlarged to reduce peak-surface fields and also shaped to eliminate beam-steering effects in the resonator. All fabrication problems presented by the more-complex geometry have been solved, and a prototype superconducting niobium resonator has been completed. An accelerating field of 3.3 MV/m at 4 watts rf input has been so far achieved, corresponding to an effective accelerating potential of 1.17 MV per resonator

  20. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  1. Ab initio electronic band structure calculation of InP in the wurtzite phase

    Science.gov (United States)

    Dacal, Luis C. O.; Cantarero, Andrés

    2011-05-01

    We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a=0.4150 nm, c=0.6912 nm, and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (-1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.

  2. Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies.

    Science.gov (United States)

    King, Tzu-Chyang; Chen, De-Xin; Lin, Wei-Cheng; Wu, Chien-Jang

    2015-10-10

    In this work, the photonic band gap (PBG) structure in a one-dimensional ferroelectric photonic crystal (PC) is theoretically investigated. We consider a PC, air/(AB)N/air, in which layer A is a dielectric of MgO and layer B is taken to be a ferroelectric of Ba0.55Sr0.45TiO3 (BSTO). With an extremely high value in the dielectric constant in BSTO, the calculated photonic band structure at microwave frequencies exhibits some interesting features that are significantly different from those in a usual dielectric-dielectric PC. First, the photonic transmission band consists of multiple and nearly discrete transmission peaks. Second, the calculated bandwidth of the PBG is nearly unchanged as the angle of incidence varies in the TE wave. The bandwidth will slightly reduce for the TM mode. Thus, a wide omnidirectional PBG can be obtained. Additionally, the effect of the thickness of the ferroelectric layer on the PBG is much more pronounced compared to the dielectric layer thickness. That is, the increase of ferroelectric thickness can significantly decrease the PBG bandwidth.

  3. Reply to ``Comment on `Band structure engineering of graphene by strain: First-principles calculations' ''

    Science.gov (United States)

    Gui, Gui; Li, Jin; Zhong, Jianxin

    2009-10-01

    We reply to the Comment by Farjam and Rafii-Tabar [Phys. Rev. B 80, 167401 (2009)] on our paper [Phys. Rev. B 78, 075435 (2008)]. We show that the gap opening found in our paper is due to the use of a small number of k points in the calculation which prevents revealing the sharp contact of the two bands near K or R . Once a large number of k points is used, the density-functional theory (DFT) VASP codes give the same conclusion as obtained by Farjam and Rafii-Tabar by using the QUANTUM-ESPRESSO codes, namely, there is no gap opening in the band structure of graphene under small planar strain. We also point out that all other results in our paper remain correct, except for the conclusion of the gap opening. The results demonstrate the importance of using a large number of k points for determining the gap width of the band structure of graphene under strain as well as the validity of the DFT VASP codes for the system.

  4. Tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    Among the different mechanical architectures present in literature, the Watts linkage is one of the most promising ones for the implementation of a new class of mechanical accelerometers (horizontal, vertical and angular). In this paper, we present monolithic implementations of uniaxial and triaxial mechanical seismometers and accelerometers based on the UNISA Folded Pendulum mechanical configuration, optimized for low frequency characterization of sites (including underground sites) and structures as inertial sensor (seismometer). This mechanical architecture allows the design and implementation of very large band monolithic sensors (10-7Hz 102 Hz), whose sensitivities for the most common applications are defined by the noise introduced by their readouts (e.g. ¡ 10-12 m/sqrt(Hz) with classical LVDT readouts). These unique features, coupled other relevant properties like scalability, compactness, lightness, high directivity, frequency tunability (typical resonance frequencies in the band 10-1 Hz 102 Hz), very high immunity to environmental noises and low cost make this class of sensors very effective for the implementation of uniaxial (horizontal and/or vertical) and triaxial seismometers and accelerometers for ground, space and underwater applications, including UHV and cryogenics ones. Typical applications of this class of monolithic sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering, characterization of sites (including underground sites), structures (e.g. buildings, bridges, historical monuments), and, in general, in all applications requiring large band-low frequency performances coupled with high sensitivities and compactness.

  5. On superconductivity of matter at hight density and the effects of inducing nuclear chirality in molecular structures

    DEFF Research Database (Denmark)

    da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik

    2013-01-01

    Superconductivity is described by the well-known Bardeen-Cooper-Schrieffer (BCS) theory, which is a symmetry breaking approximation. Color superconductivity shows up in extremely high density matter and temperature, which is here investigated and compared to the other end of the scale of low energy....../temperature of organic superconductors. An approach to color superconductivity conciliating the BCS theory with the color SU(3) symmetry, the cornerstone of the rigorous theory of the strong interaction, Quantum Chromo-Dynamics (QCD), is used to describe the superconducting phase. The magnetization of a high density...

  6. High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods

    Directory of Open Access Journals (Sweden)

    Brian J. Munroe

    2013-01-01

    Full Text Available An improved single-cell photonic band-gap (PBG structure with an inner row of elliptical rods (PBG-E was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz, achieving a gradient of 128  MV/m at a breakdown probability of 3.6×10^{-3} per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.

  7. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    Science.gov (United States)

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  8. The band structure of carbonmonoxide on 2-D Au islands on graphene

    KAUST Repository

    Katsiev, Khabiboulakh

    2014-06-01

    The dispersion of the occupied molecular orbitals of carbon monoxide adsorbed on Au 2D islands, vapor-deposited on graphene/Ru(0 0 0 1), is seen to be wave vector dependent, as revealed by angle-resolved photoemission. The band dispersion is similar to CO monolayers adsorbed on many single crystal metal surfaces. Thus not only are the adsorbed gold islands on graphene flat and crystalline, as evident in the dispersion of the Au d-states, but the CO molecular adlayer is both molecular and ordered as well. The experimental angle-resolved photoemission combined with model calculations of the occupied CO band structure, suggest that, in spite of being a very weakly bound adsorbate, the CO adlayer on Au 2D islands on graphene is strongly hybridized to the Au layer. . © 2014 Elsevier B.V. All rights reserved.

  9. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-09-09

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  10. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  11. Band gap widening and quantum tunnelling effects of Ag/MgO/p-Si MOS structure

    Science.gov (United States)

    Kamarulzaman, Norlida; Badar, Nurhanna; Fadilah Chayed, Nor; Firdaus Kasim, Muhd

    2016-10-01

    MgO films of various thicknesses were fabricated via the pulsed laser deposition method. The MgO thin films obtained have the advantage of high quality mirror finish, good densification and of uniform thickness. The MgO thin films have thicknesses of between 43 to 103 nm. They are polycrystalline in nature with oriented growth mainly in the direction of the [200] and [220] crystal planes. It is observed that the band gap of the thin films increases as the thickness decreases due to quantum effects, however, turn-on voltage has the opposite effect. The decrease of the turn-on as well as the tunnelling voltage of the thinner films, despite their larger band gap, is a direct experimental evidence of quantum tunnelling effects in the thin films. This proves that quantum tunnelling is more prominent in low dimensional structures.

  12. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Acosta, G A [Instituto de Fisica, BUAP Apartado Postal J-48, 72570 Puebla (Mexico); Schanze, H; Kuhl, U; Stoeckmann, H-J [Fachbereich Physik der Philipps-Universitaet Marburg, Renthof 5, D-35032 (Germany)], E-mail: gluna@sirio.ifuap.buap.mx

    2008-04-15

    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one-dimensional (1D) obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e.g. interstitial and substitutional) and show that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulae, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penney model.

  13. Fermi surface and band structure of BiPd from ARPES studies

    Science.gov (United States)

    Lohani, H.; Mishra, P.; Gupta, Anurag; Awana, V. P. S.; Sekhar, B. R.

    2017-03-01

    We present a detailed electronic structure study of the non-centrosymmetric superconductor BiPd based on our angle resolved photoemission spectroscopy (ARPES) measurements and Density Functional Theory (DFT) based calculations. We observe a high intensity distribution on the Fermi surface (FS) of this compound resulting from various electron and hole like bands which are present in the vicinity of the Fermi energy (Ef). The near Ef states are primarily composed of Bi-6p with a little admixture of Pd-4dx2-y2/zy orbitals. There are various spin-orbit split bands involved in the crossing of Ef making a complex FS. The FS mainly consists of multi sheets of three dimensions which disfavor the nesting between different sheets of the FS. Our comprehensive study elucidates that BiPd could be a s-wave multiband superconductor.

  14. Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure

    Science.gov (United States)

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-10-01

    We present ab initio calculations which show that the direct-band-gap, effective masses and Fermi velocities of charge carriers in ZnO monolayer (ML-ZnO) in graphene-like honeycomb structure are all tunable by application of in-plane homogeneous biaxial strain. Within our simulated strain limit of ± 10%, the band gap remains direct and shows a strong non-linear variation with strain. Moreover, the average Fermi velocity of electrons in unstrained ML-ZnO is of the same order of magnitude as that in graphene. The results promise potential applications of ML-ZnO in mechatronics/straintronics and other nano-devices such as the nano-electromechanical systems (NEMS) and nano-optomechanical systems (NOMS).

  15. Weak-coupling superconductivity in a strongly correlated iron pnictide.

    Science.gov (United States)

    Charnukha, A; Post, K W; Thirupathaiah, S; Pröpper, D; Wurmehl, S; Roslova, M; Morozov, I; Büchner, B; Yaresko, A N; Boris, A V; Borisenko, S V; Basov, D N

    2016-01-05

    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.

  16. Lunar banding in the scleractinian coral Montastraea faveolata: Fine-scale structure and influence of temperature

    Science.gov (United States)

    Winter, Amos; Sammarco, Paul W.

    2010-10-01

    Lunar cycles play an important role in controlling biological rhythms in many organisms, including hermatypic corals. Coral spawning is correlated with environmental factors, including surface seawater temperature (SST) and lunar phase. Calcium carbonate skeletons of corals possess minute structures that, when viewed via X-radiography, produce high-density (HD) annual banding patterns. Some corals possess dissepiments that serve as the microstructural base for upward corallite growth. Here we report the results of detailed structural analysis of the skeleton of Montastraea faveolata (Scleractinia) (Ellis and Solander, 1786) and quantify the number of dissepiments that occur between HD bands, including interannual and intercorallite variability. Using a 30 year database, spanning from 1961 to 1991, we confirm earlier speculation by several authors that the frequencies of these microbands within a year is tightly linked to the lunar cycle. We also demonstrate that the frequency distribution of the number of these dissepiments per year is skewed to lower numbers. Extensive statistical analyses of long-term daily SST records (University of Puerto Rico, Mayaguez) revealed that precipitation of dissepiments is suppressed in years of cooler-than-average seawater temperature. We propose that dissepiment deposition is driven primarily by lunar cycle and seawater temperature, particularly at lower temperatures, and banding is generally unaffected by normal or high temperatures. These fine-scale banding patterns are also strongly correlated with the number of lunar months between reproductive spawning events in average or warmer-than-average seawater temperature years. This microbanding may represent another proxy for high-resolution estimates of variance in marine palaeo-temperatures, particularly during cooler SST years.

  17. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  18. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    CERN Document Server

    Kubo, K

    2003-01-01

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e sup + e sup - linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 (micro)m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques. Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.

  19. A Reconfigurable Triple-Notch-Band Antenna Integrated with Defected Microstrip Structure Band-Stop Filter for Ultra-Wideband Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    Yingsong Li

    2013-01-01

    Full Text Available A printed reconfigurable ultra-wideband (UWB monopole antenna with triple narrow band-notched characteristics is proposed for cognitive radio applications in this paper. The triple narrow band-notched frequencies are obtained using a defected microstrip structure (DMS band stop filter (BSF embedded in the microstrip feed line and an inverted π-shaped slot etched in the rectangular radiation patch, respectively. Reconfigurable characteristics of the proposed cognitive radio antenna (CRA are achieved by means of four ideal switches integrated on the DMS-BSF and the inverted π-shaped slot. The proposed UWB CRA can work at eight modes by controlling switches ON and OFF. Moreover, impedance bandwidth, design procedures, and radiation patterns are presented for analysis and explanation of this antenna. The designed antenna operates over the frequency band between 3.1 GHz and 14 GHz (bandwidth of 127.5%, with three notched bands from 4.2 GHz to 6.2 GHz (38.5%, 6.6 GHz to 7.0 GHz (6%, and 12.2 GHz to 14 GHz (13.7%. The antenna is successfully simulated, fabricated, and measured. The results show that it has wide impedance bandwidth, multimodes characteristics, stable gain, and omnidirectional radiation patterns.

  20. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    Science.gov (United States)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  1. The energy band structure of ultra small capacitance weak links - QED in condensed matter circuits

    International Nuclear Information System (INIS)

    Prance, H.; Clark, T.D.; Prance, R.J.; Spiller, T.P.; Diggins, J.; Ralph, J.F.

    1993-01-01

    We consider various superconducting weak link circuits in which quantum effects dominate. We show that in this quantum regime these circuits take on a quantum electrodynamic description, at least as far as the electromagnetic field contribution is concerned. (orig.)

  2. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    OpenAIRE

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2015-01-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional, about Fermi energy.

  3. Numerical and Experimental Investigation of Stop-Bands in Finite and Infinite Periodic One-Dimensional Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Manconi, Elisabetta; Vanali, Marcello

    2016-01-01

    structure. Numerical examples are presented, and results are discussed and validated experimentally. Very good agreement between the numerical and experimental models in terms of stop-bands is shown. In particular, the results show that the stop-bands obtained using a wave approach (applied to a single cell...

  4. Quasiclassical description of multi-band superconductors with two order parameters

    Energy Technology Data Exchange (ETDEWEB)

    Moor, Andreas

    2014-05-19

    This Thesis deals with multi-band superconductors with two order parameters, i.e., the superconductivity and the spin-density wave, also touching on one-band superconductors with a charge-density wave, as well as with only the superconducting order parameter. Quasiclassical description of suchlike structures is developed and applied to investigation of various effects, inter alia, the Josephson and the proximity effects, the Knight shift, the Larkin-Ovchinnikov-Fulde-Ferrell-like state, and the interplay of the order parameters in coexistence regime. The applicability of the developed approach to pnictides is discussed.

  5. High power experimental studies of hybrid photonic band gap accelerator structures

    Directory of Open Access Journals (Sweden)

    JieXi Zhang

    2016-08-01

    Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19  MV/m, corresponding to a surface electric field of 78  MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20  MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  6. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  7. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  8. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh (India); Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Avanov, L. A., E-mail: levon.a.avanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3

  9. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

  10. Lamé polynomials, hyperelliptic reductions and Lamé band structure.

    Science.gov (United States)

    Maier, Robert S

    2008-03-28

    The band structure of the Lamé equation, viewed as a one-dimensional Schrödinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partly incorrect. The Hermite-Krichever Ansatz, which expresses Lamé equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lamé equation parameters take complex values, are investigated. If the Lamé equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lamé polynomials, i.e. band-edge solutions, are given. A table in the earlier literature is corrected.

  11. Dual Band-Notched Microstrip-Fed Vivaldi Antenna Utilizing Compact EBG Structures

    Directory of Open Access Journals (Sweden)

    K. A. Alshamaileh

    2015-01-01

    Full Text Available We propose an ultra-wideband (UWB antipodal Vivaldi antenna (AVA with high-Q stopband characteristics based on compact electromagnetic bandgap (EBG structures. First, an AVA is designed and optimized to operate over an UWB spectrum. Then, two pairs of EBG cells are introduced along the antenna feed line to suppress the frequency components at 3.6–3.9 and 5.6–5.8 GHz (i.e., WiMAX and ISM bands, resp.. Simulated and measured results show a voltage standing wave ratio (VSWR below 2 for the entire 3.1–10.6 GHz band with high attenuation at the two selected subbands. This simple yet effective approach eliminates the need to deform the antenna radiators with slots/parasitic elements or comprise multilayer substrates. Furthermore, the flexibility it offers in terms of controlling both the number and locations of the band-reject frequencies is advantageous for antennas with nonuniform flares as in the AVA.

  12. Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge

    Science.gov (United States)

    Snyman, Izak; Florens, Serge

    2017-11-01

    Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.

  13. Structural studies of Nd1.85Ce0.15CuO4 + Ag superconducting ...

    Indian Academy of Sciences (India)

    reported that silver promotes the c-axis orientation and crys- tallization of the superconducting [3] phase and catalyzes the inter-granular coupling of the superconducting grains. Ag addition also leads to the enhancement of critical current density of almost all bulk high temperature superconductors including the rare earth ...

  14. Structural changes and the nature of superconductivity in rare-earth doped CaFe2As2

    Science.gov (United States)

    Drye, Tyler

    Chemical substitution into iron-pnictide parent compounds (e.g. AFe2As2 where A=Ba, Sr, or Ca) has proven to be an effective means to induce bulk high-temperature superconductivity in these systems. By doping CaFe2As2 with rare-earth lanthanides (La, Ce, Pr, and Nd), we have observed a 47 K superconducting phase coexisting with a lattice distorting "collapse" transition. Both of these effects have important ramifications: the collapse transition occurs when interlayer As atoms form a bond, shrinking the c-axis lattice constant and simultaneously quenching the iron magnetic moment. This transition is further explored in context of a similar system, Sr-doped BaNi2As2. The superconducting phase, given the right combination of conditions, appears with a critical temperature as high as 49 K, but always in a very small volume of the sample (as determined by shielding effects). This has led to interesting theories about the nature of this superconductivity. A recently posited idea of "interfacial superconductivity" has been ruled out by our tests. Additionally, increasing the concentration of rare-earth atoms does not increase the superconducting volume fraction, but, in fact lowers the transition temperature, excluding the hypothesis that rare-earth defects are responsible for the minority superconducting phase. New pressure measurements have shown that the superconducting phase is stabilized when antiferromagnetic order is fully suppressed.

  15. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  16. Electronic band structure and magnetism of Fe16N2 calculated by the FLAPW method

    Science.gov (United States)

    Tanaka, Hirofumi; Harima, Hisatomo; Yamamoto, Tetsuya; Katayama-Yoshida, Hiroshi; Nakata, Yoshiyuki; Hirotsu, Yoshihiko

    2000-12-01

    Electronic band structure calculations based on the full-potential linear augmented plane-wave method have been performed for Fe16N2. The calculations are performed with the crystal parameters recently refined [H. Tanaka et al., Acta Mater. 45, 1401 (1997)] in addition to the previous reported structure [K. H. Jack, Proc. R. Soc. London, Ser. A 208, 200 (1951)]. Jack's model (J model) led to the model of Tanaka et al. (T model), where Fe atoms at the 8h site shift to N atoms along the [110] direction. The calculated average moment per Fe atom for the T model is slightly smaller than that for the J model. We cannot theoretically expect a large magnetic moment based on any Fe16N2 structure. The presence of another material that has a large magnetic moment must be considered to explain the large magnetic moment of the Fe-N system.

  17. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  18. Calculation of the band structure of 2d conducting polymers using the network model

    International Nuclear Information System (INIS)

    Sabra, M. K.; Suman, H.

    2007-01-01

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  19. Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures

    International Nuclear Information System (INIS)

    Bakhadyrkhanov, M.K.; Isamov, S.B.; Iliev, K.M. et al.

    2014-01-01

    Photoelectric properties of monocrystalline silicon with multiply charged nanoclusters are studied that generate 'silicon clusters', i.e., nano-sized graded band gap structures. Multiply charged nanoclusters of manganese atoms strongly influence the photoelectric properties of monocrystalline silicon and expand the range of spectral sensitivity up to 8 μm; the photoelectric sensitivity reaches ∼10 9 . Conditions occur for the emergence of photo-emf in such a material in the infrared region when hν< E g . The obtained experimental data expand the functional capabilities for the application of silicon with multiply charged impurity atoms. (authors)

  20. A multi-mesh finite element method for phase-field based photonic band structure optimization

    Science.gov (United States)

    Wu, Shengyang; Hu, Xianliang; Zhu, Shengfeng

    2018-03-01

    A novel finite element method with multiple meshes is proposed, which is applied to solve the phase-field models for photonic band structures optimization. In our approach, fine meshes are used for the phase field evolution, which allows fine resolution for shape representations. The coarse meshes are adopted for the finite element analysis of the state equation. Such a multi-mesh approach could save a considerable amount of computational costs. Numerical convergence is illustrated through comparisons between our computational results and benchmarks. The efficiency and robustness of the multi-mesh approach are also shown.

  1. Effect of edge defects on band structure of zigzag graphene nanoribbons

    Science.gov (United States)

    Wadhwa, Payal; Kumar, Shailesh; Dhilip Kumar, T. J.; Shukla, Alok; Kumar, Rakesh

    2018-04-01

    In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp3 to sp2 hybridized carbon atoms. On the basis of theoretical analyses, bandgap values of ZGNRs are found to be strongly dependent on the relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding the bandgap of nanoribbons for their electronic applications.

  2. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  3. Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7-δ

    Science.gov (United States)

    Dadras, S.; Falahati, S.; Dehghani, S.

    2018-05-01

    In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.

  4. Correlation between structural relaxation enthalpy and superconducting properties of amorphous Zr70Cu30 and Zr70Ni30 alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Matsuzaki, K.; Toyota, N.; Chen, H.S.; Masumoto, T.; Fukase, T.

    1985-01-01

    The anneal-induced change in the superconducting properties together with the irrecoverable relaxation enthalpy (ΔHsub(i,exo)) and recoverable relaxation enthalpy (ΔHsub(r,endo)) of amorphous Zr 70 Cu 30 and Zr 70 Ni 30 alloys was examined. The increase in ΔHsub(i,exo) and the degradation of Tsub(c) progress logarithmically with annealing time tsub(a) in a temperature range of 373 to 523 K. The activation energy and the attempted frequency were respectively estimated to be 1.5 eV and 6.6 x 10 13 sec -1 for the increase in ΔHsub(i,exo) and 1.5 eV and 1.9 x 10 14 sec -1 for the degradation of Tsub(c). The recoverable structure relaxation exerts little effect on Tsub(c). Based on the agreement between the kinetic parameters for the changes of ΔHsub(i,exo) and Tsub(c), it appears that the degradation of Tsub(c) on annealing is associated with the irrecoverable structural relaxation as a result of the annihilation of frozen-in defects and the topological and compositional atomic rearrangement. The values of the attempted frequency being of the order of Debye frequency suggest that the irrecoverable structural relaxation processes occur more or less independently from each other. (author)

  5. 16O + 16O molecular structures of positive- and negative-parity superdeformed bands in 34S

    Directory of Open Access Journals (Sweden)

    Taniguchi Yasutaka

    2016-01-01

    Full Text Available The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method(GCM. The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity super de formed(SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative parity SD band.

  6. Alternative superconducting systems

    International Nuclear Information System (INIS)

    1992-01-01

    In the context of the experiment on 'Development of high temperature superconducting system components' supported by the German Ministry of Research and Technology, investigations were carried out by the Working Party of Prof. von Schnering at the Max Planck Institute for Solids Research, the aim of which is to find characteristic structural features of superconducting substances. Alternative systems are to be looked for with the aid of correlation of superconducting properties with simple electronic and chemical structure models, where very powerful 3D computer graphics are used to visualize them. The theoretical and information technology part of the work was supplemented by experiments. Superconducting phases and related compounds were represented and their structures and physical properties were determined. According to the tasks described above, the report is divided into three sections. Starting with the description of a program system for three-dimensional representation of structures and properties of periodic systems, in the second section a process for calculating node surfaces is explained and the importance of curvature in chemical structures is pointed out. The results of the experiments are collected in the third part. (orig.) [de

  7. STATUS OF X-BAND STANDING WAVE STRUCTURE STUDIES AT SLAC

    International Nuclear Information System (INIS)

    Dolgashev, Valery A.

    2003-01-01

    The linacs proposed for the Next Linear Collider (NLC) and Japanese Linear Collider (JLC) would contain several thousand X-Band accelerator structures that would operate at a loaded gradient of 50 MV/m. An extensive experimental and theoretical program is underway at SLAC, FNAL and KEK to develop structures that reliably operate at this gradient. The development of standing wave structures is a part of this program. The properties of standing wave structures allow them to operate at the loaded gradient in contrast to traveling wave structures that need conditioning to the unloaded gradient (65 MV/m for NLC/JLC). The gradients in the standing structures tested thus far have been limited by input coupler breakdowns. The behavior of these breakdowns is consistent with a model of pulsed heating due to high magnetic fields. New input couplers have been designed to reduce maximum magnetic fields. This paper discusses design considerations related to high power performance, wakefield suppression and results of high power tests of prototype standing wave structures

  8. Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2.

    Science.gov (United States)

    Sato, T; Nakayama, K; Sekiba, Y; Richard, P; Xu, Y-M; Souma, S; Takahashi, T; Chen, G F; Luo, J L; Wang, N L; Ding, H

    2009-07-24

    We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_{2}As_{2} (transition temperature T_{c} = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface around the Brillouin-zone center is qualitatively similar to that of optimally doped Ba_{1-x}K_{x}Fe_{2}As_{2} (x = 0.4; T_{c} = 37 K), the Fermi surface topology around the zone corner (M point) is markedly different: the two electron Fermi surface pockets are completely absent due to an excess of hole doping. This result indicates that the electronic states around the M point play an important role in the high-T_{c} superconductivity of Ba_{1-x}K_{x}Fe_{2}As_{2} and suggests that the interband scattering via the antiferromagnetic wave vector essentially controls the T_{c} value in the overdoped region.

  9. Relativistic Band Structure and Fermi Surface of PdTe2 by the LMTO Method

    DEFF Research Database (Denmark)

    Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    The energy bands of the trigonal layer compound PdTe2 have been calculated, using the relativistic linear muffin-tin orbitals method. The bandstructure is separated into three distinct regions with low-lying Te 5s bands, conduction bands formed by Pd 4d and Te 5p states, and high-lying bands formed...

  10. Band structure of topological insulators from noise measurements in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Juan Pedro, E-mail: juanpedro.cascales@uam.es; Martínez, Isidoro; Aliev, Farkhad G., E-mail: farkhad.aliev@uam.es [Dpto. Fisica Materia Condensada C3, Instituto Nicolas Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049 (Spain); Katmis, Ferhat; Moodera, Jagadeesh S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Chang, Cui-Zu [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Guerrero, Rubén [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid (Spain)

    2015-12-21

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al{sub 2}O{sub 3}/Co tunnel junctions with bottom TI electrodes of either Bi{sub 2}Te{sub 3} or Bi{sub 2}Se{sub 3}. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  11. One-dimensional electromagnetic band gap plasma structure formed by atmospheric pressure plasma inhomogeneities

    Science.gov (United States)

    Babitski, V. S.; Callegari, Th.; Simonchik, L. V.; Sokoloff, J.; Usachonak, M. S.

    2017-08-01

    The ability to use plasma columns of pulse discharges in argon at atmospheric pressure to form a one-dimensional electromagnetic band gap structure (or electromagnetic crystal) in the X-band waveguide is demonstrated. We show that a plasma electromagnetic crystal attenuates a microwave propagation in the stopband more than by 4 orders of magnitude. In order to obtain an effective control of the transmission spectrum comparable with a metallic regular structure, the electron concentration in plasma inhomogeneities should vary within the range from 1014 cm-3 to 1016 cm-3, while gas temperature and mean electron energy must be in the range of 2000 K and 0.5 eV, respectively, to lower electron collision frequency around 1010 s-1. We analyze in detail the time evolution response of the electromagnetic crystal according to the plasma parameters for the duration of the discharge. The interest of using atmospheric pressure discharges is to increase the microwave breakdown threshold in discharge volumes, whereby it becomes possible to perform dynamic control of high power microwaves.

  12. Consideration of relativistic effects in band structure calculations based on the empirical tight-binding method

    International Nuclear Information System (INIS)

    Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.

    1988-01-01

    The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available

  13. Valence-band structure of cubic CdS as determined by angle-resolved photoemission

    Science.gov (United States)

    Stampfl, A. P. J.; Hofmann, Ph.; Schaff, O.; Bradshaw, A. M.

    1997-04-01

    The valence-band structure of cubic CdS along the Γ-Σ-X direction and at all high-symmetry points has been experimentally determined using angle-resolved photoemission and compared to two local density approximation (LDA) calculations as well as to a recent quasiparticle calculation. The Cd 4d level was found to be semibandlike with an energy dispersion of up to 1 eV. The energy difference between the experimental and our calculated linear-muffin-tin orbital (LMTO) LDA energies falls, as expected, along a line of positive gradient. The quasiparticle calculation by Pollmann and co-workers fits the experimental values somewhat better than the LMTO calculation, although a difference of ~1.0 eV was still found to occur for the Cd 4d band. The self-interaction and relaxation-corrected pseudopotential LDA results by the same group give the best fit to within ~+/-0.5 eV for nearly all critical energies measured. Comparison with previously reported photoemission results on the wurtzite structure shows that energies at equivalent symmetry points agree within experimental error.

  14. Handbook of the band structure of elemental solids from Z = 1 to Z = 112

    CERN Document Server

    Papaconstantopoulos, Dimitris A

    2015-01-01

    This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...

  15. Momentum-Space Imaging of the Dirac Band Structure in Molecular Graphene via Quasiparticle Interference

    Science.gov (United States)

    Stephenson, Anna; Gomes, Kenjiro K.; Ko, Wonhee; Mar, Warren; Manoharan, Hari C.

    2014-03-01

    Molecular graphene is a nanoscale artificial lattice composed of carbon monoxide molecules arranged one by one, realizing a dream of exploring exotic quantum materials by design. This assembly is done by atomic manipulation with a scanning tunneling microscope (STM) on a Cu(111) surface. To directly probe the transformation of normal surface state electrons into massless Dirac fermions, we map the momentum space dispersion through the Fourier analysis of quasiparticle scattering maps acquired at different energies with the STM. The Fourier analysis not only bridges the real-space and momentum-space data but also reveals the chiral nature of those quasiparticles, through a set of selection rules of allowed scattering involving the pseudospin and valley degrees of freedom. The graphene-like band structure can be reshaped with simple alterations to the lattice, such as the addition of a strain. We analyze the effect on the momentum space band structure of multiple types of strain on our system. Supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515.

  16. Superconductivity : Controlling magnetism

    NARCIS (Netherlands)

    Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.

    Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the

  17. Effect of molecular intercalation on the local structure of superconducting Nax(NH3)yMoSe2 system

    Science.gov (United States)

    Simonelli, L.; Paris, E.; Wakita, T.; Marini, C.; Terashima, K.; Miao, X.; Olszewski, W.; Ramanan, N.; Heinis, D.; Kubozono, Y.; Yokoya, T.; Saini, N. L.

    2017-12-01

    We have studied the local structure of layered Nax(NH3)yMoSe2 system by Mo K-edge extended X-ray absorption fine structure (EXAFS) measurements performed as a function of temperature. We find that molecular intercalation in MoSe2 largely affects the Mo-Se network while Mo-Mo seems to sustain small changes. The Einstein temperature (ΘE) of Mo-Mo distance hardly changes (∼264 K) indicating that bond strength of this distance remains unaffected by intercalation. On the other hand, Mo-Se distance suffers a softening, revealed by the decrease of ΘE from ∼364 K to ∼350 K. The results indicate that Na+ ion transported by NH3 molecules may enter between the two MoSe-layers resulting reduced Se-Se coupling. Therefore, increased hybridization between Se 4p and Mo 4d orbitals due to inter-layer disorder is the likely reason of metallicity in intercalated MoSe2 and superconductivity at low temperature.

  18. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  19. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  20. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  1. The valence band structure of AgxRh1–x alloy nanoparticles

    International Nuclear Information System (INIS)

    Yang, Anli; Sakata, Osami; Kusada, Kohei; Kobayashi, Hirokazu; Yayama, Tomoe; Ishimoto, Takayoshi; Yoshikawa, Hideki; Koyama, Michihisa

    2014-01-01

    The valence band (VB) structures of face-centered-cubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra profiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag 0.5 Rh 0.5 alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

  2. Time-resolved ARPES at LACUS: Band Structure and Ultrafast Electron Dynamics of Solids.

    Science.gov (United States)

    Crepaldi, Alberto; Roth, Silvan; Gatti, Gianmarco; Arrell, Christopher A; Ojeda, José; van Mourik, Frank; Bugnon, Philippe; Magrez, Arnaud; Berger, Helmuth; Chergui, Majed; Grioni, Marco

    2017-05-31

    The manipulation of the electronic properties of solids by light is an exciting goal, which requires knowledge of the electronic structure with energy, momentum and temporal resolution. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) is the most direct probe of the effects of an optical excitation on the band structure of a material. In particular, tr-ARPES in the extreme ultraviolet (VUV) range gives access to the ultrafast dynamics over the entire Brillouin zone. VUV tr-ARPES experiments can now be performed at the ASTRA (ARPES Spectrometer for Time-Resolved Applications) end station of Harmonium, at LACUS. Its capabilities are illustrated by measurements of the ultrafast electronic response of ZrSiTe, a novel topological semimetal characterized by linearly dispersing states located at the Brillouin zone boundary.

  3. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation

    Science.gov (United States)

    Wu, Z.; Zheng, Y.; Wang, K. W.

    2018-02-01

    We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.

  4. Engineering design and fabrication of tapered damped X-Band accelerating structures

    CERN Document Server

    Solodko, A; Gudkov, D; Riddone, G; Grudiev, A; Atieh, S; Taborelli, M

    2011-01-01

    The accelerating structures (AS) are one of the main components of the Compact LInear Collider (CLIC), under study at CERN. Each accelerating structure contains about 30 copper discs, which form the accelerating cavity. The requirements of different technical systems, such as vacuum and cooling, have to be considered during the engineering design. A fully featured AS is very challenging and requires several technologies. Different damping methods, waveguides, vacuum manifolds, slots and chokes, result in various design configurations. In the CLIC AS each cell is damped by means of four waveguides coupled to the cell. The vacuum manifolds combine a number of functions such as damping, vacuum pumping and cooling. A silicon carbide absorber, fixed inside of each manifold, is required for effective damping of Higher Order Modes (HOMs). This paper describes the engineering design of the X-band AS with damping material, and focuses on few technical solutions.

  5. Analytical and Numerical Calculations of Two-Dimensional Dielectric Photonic Band Gap Structures and Cavities for Laser Acceleration

    CERN Document Server

    Samokhvalova, Ksenia R; Liang Qian, Bao

    2005-01-01

    Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.

  6. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  7. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography

    Directory of Open Access Journals (Sweden)

    Victor Cazcarra-Bes

    2017-11-01

    Full Text Available Synthetic Aperture Radar Tomography (TomoSAR allows the reconstruction of the 3D reflectivity of natural volume scatterers such as forests, thus providing an opportunity to infer structure information in 3D. In this paper, the potential of TomoSAR data at L-band to monitor temporal variations of forest structure is addressed using simulated and experimental datasets. First, 3D reflectivity profiles were extracted by means of TomoSAR reconstruction based on a Compressive Sensing (CS approach. Next, two complementary indices for the description of horizontal and vertical forest structure were defined and estimated by means of the distribution of local maxima of the reconstructed reflectivity profiles. To assess the sensitivity and consistency of the proposed methodology, variations of these indices for different types of forest changes in simulated as well as in real scenarios were analyzed and assessed against different sources of reference data: airborne Lidar measurements, high resolution optical images, and forest inventory data. The forest structure maps obtained indicated the potential to distinguish between different forest stages and the identification of different types of forest structure changes induced by logging, natural disturbance, or forest management.

  8. Dispersive and resonant properties of finite one-dimensional photonic band gap structures

    Science.gov (United States)

    Bowden, C. M.; Scalora, Michael; Bloemer, Mark J.; Sibilia, Concita; D'Aguanno, Giuseppe; Centini, Marco; Bertolotti, Mario

    2000-06-01

    The report is a review of work one-dimensional photonic band gap (PBG) materials, carried out by the Quantum Optics Group at the US Army Aviation and Missile Command during the past few years. This work has benefited from national and international collaborations between academic, industrial, and governmental research organizations. The research effort has benefited from a multifaceted approach that combined innovative, theoretical methods with fabrication techniques in order to address the physics of structures of finite length, i.e., the description of spatio-temporal linear and nonlinear dynamics and boundary conditions. In this work we will review what we consider three major breakthroughs: (a) the discovery of transparent metals; (b) discovery of critical phase matching conditions in PBG structures for second harmonic and nonlinear frequency conversion; (c) development of a PBG true time delay device. Our report addresses linear and nonlinear wave propagation in PBG materials, one-dimensional structures in particular. Most investigators generally address two and three-dimensional structures. We choose one-dimensional systems because in the past they have proven to be quite challenging and have pointed the way to the new physical phenomena that are the subject of this report. In addition, one-dimensional systems can be used as a blueprint for higher dimensional structures, where the work is necessarily much more computationally intensive, and the physics much less transparent as a result.

  9. Observation of high-spin oblate band structures in Pm141

    Science.gov (United States)

    Gu, L.; Zhu, S. J.; Wang, J. G.; Yeoh, E. Y.; Xiao, Z. G.; Zhang, S. Q.; Meng, J.; Zhang, M.; Liu, Y.; Ding, H. B.; Xu, Q.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Li, G. S.; Wang, L. L.; Zheng, Y.; Zhang, B.

    2011-06-01

    The high-spin states of Pm141 have been investigated through the reaction Te126(F19,4n) at a beam energy of 90 MeV. A previous level scheme has been updated with spins up to 49/2ℏ. Six collective bands at high spins are newly observed. Based on the systematic comparison, one band is proposed as a decoupled band; two bands with strong ΔI=1 M1 transitions inside the bands are suggested as the oblate bands with γ ~-60°; three other bands with large signature splitting have been proposed with the oblate-triaxial deformation with γ~ -90°. The triaxial n-particle-n-hole particle rotor model calculations for one of the oblate bands in Pm141 are in good agreement with the experimental data. The other characteristics for these bands have been discussed.

  10. Crystal growth, structure, and electronic band structure of tetracene-TCNQ

    NARCIS (Netherlands)

    Buurma, A. J. C.; Jurchescu, O. D.; Shokaryev, I.; Baas, J.; Meetsma, A.; de Wijs, G. A.; de Groot, R. A.; Palstra, T. T. M.

    2007-01-01

    We have grown the charge-transfer salt of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and the electron donor tetracene using physical vapor transport. The crystal structure was solved by singlecrystal X-ray diffraction and the symmetry was found to be triclinic (space group PT).

  11. Birefringence and band structure of CdP{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Beril, S.I.; Stamov, I.G. [Tiraspol State Corporative University, Yablocikin Street 5, 2069 Tiraspol, Republic of Moldova (Moldova, Republic of); Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2013-08-01

    The spatial dispersion in CdP{sub 2} crystals was investigated. The dispersion is positive (n{sup k||c}>n{sup k||y}) at λ>λ{sub 0} and negative (n{sup k||c}bands. Minimal direct energy intervals correspond to transitions Γ{sub 1}→Γ{sub 1} for E{sup ||}c and Γ{sub 2}→Γ{sub 1} for E⊥c. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Γ{sub 1}→Γ{sub 1} and Γ{sub 2}→Γ{sub 1} band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5–10 eV and optical functions (n, k, ε{sub 1}, ε{sub 2,}d{sup 2}ε{sub 1}/dE{sup 2} and d{sup 2}ε{sub 2}/dE{sup 2}) were calculated by using Kramers–Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  12. Bulk electronic structure of superconducting LaRu2P2 single crystals measured by soft-X-ray angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Razzoli, E; Kobayashi, M; Strocov, V N; Delley, B; Bukowski, Z; Karpinski, J; Plumb, N C; Radovic, M; Chang, J; Schmitt, T; Patthey, L; Mesot, J; Shi, M

    2012-06-22

    We present a soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu(2)P(2). The observed electronic structure is in good agreement with density functional theory (DFT) calculations. However, it is significantly different from its counterpart in high-temperature superconducting Fe pnictides. In particular, the bandwidth renormalization present in the Fe pnictides (~2-3) is negligible in LaRu(2)P(2) even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu(2) P(2) has a different origin with respect to the iron pnictides. Finally, we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.

  13. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    Science.gov (United States)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-11-01

    We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  14. Summary of the workshop on structural analysis needs for magnetic fusion energy superconducting magnets

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.

    1976-09-01

    The technical portions of the meeting were divided into three major sessions as follows: (1) Review of methods being presently used by the MFE community for structural evaluation of current designs. (2) Future structural analysis needs. (3) Open discussions dealing with adequacy of present methods, the improvements needed for MFE magnet structural analysis, and the establishment of an MFE magnet structural advisory group. Summaries of the individual talks presented on Wednesday and Thursday (i.e., items 1 and 2 above) are included following the workshop schedule given later in this synopsis

  15. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  16. Touching points in the energy band structure of bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C Huy; Nguyen, V Lien

    2014-01-01

    The energy band structure of the bilayer graphene superlattices with zero-averaged periodic δ-function potentials are studied within the four-band continuum model. Using the transfer matrix method, the study is mainly focused on examining the touching points between adjacent minibands. For the zero-energy touching points the dispersion relation derived shows a Dirac-like double-cone shape with the group velocity which is periodic in the potential strength P with the period of π and becomes anisotropic at relatively large P. From the finite-energy touching points we have identified those located at zero wave-number. It was shown that for these finite-energy touching points the dispersion is direction-dependent in the sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice direction, respectively. We have also calculated the density of states and the conductivity which demonstrates a manifestation of the touching points examined. (paper)

  17. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    Science.gov (United States)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  18. Band edge electronic structure of transition metal/rare earth oxide dielectrics

    Science.gov (United States)

    Lucovsky, Gerald

    2006-10-01

    This article addresses band edge electronic structure of transition metal/rare earth (TM/RE) non-crystalline and nano-crystalline elemental and complex oxide high- k dielectrics for advanced semiconductor devices. Experimental approaches include X-ray absorption spectroscopy (XAS) from TM, RE and oxygen core states, photoconductivity (PC), and visible/vacuum ultra-violet (UV) spectroscopic ellipsometry (SE) combined with ab initio theory is applied to small clusters. These measurements are complemented by Fourier transform infra-red absorption (FTIR), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Two issues are highlighted: Jahn-Teller term splittings that remove d-state degeneracies of states at the bottom of the conduction band, and chemical phase separation and crystallinity in Zr and Hf silicates and ternary (Zr(Hf)O 2) x(Si 3N 4) y(SiO 2) 1- x- y alloys. Engineering solutions for optimization of both classes of high- k dielectric films, including limits imposed on the continued and ultimate scaling of the equivalent oxide thickness (EOT) are addressed.

  19. First-principles energy band calculation for CaBi{sub 2}O{sub 4} with monoclinic structure

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroyuki; Ishii, Shin' ichirou [Integrated Arts and Science, Kitakyushu National College of Technology, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985 (Japan); Yamada, Kenji [Department of Materials Science and Chemical Engineering, Kitakyushu National College of Technology, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985 (Japan); Matsushima, Shigenori, E-mail: smatsu@kct.ac.jp [Department of Materials Science and Chemical Engineering, Kitakyushu National College of Technology, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985 (Japan); Arai, Masao [Computational Materials Science Center (CMSC), National Institute of Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kobayashi, Kenkichiro [Department of Materials Science, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8011 (Japan)

    2010-05-15

    The electronic structure of CaBi{sub 2}O{sub 4} is calculated by a GGA approach. The valence band maximum is approximately located at the {Gamma}-point or the Y-point and the conduction band minimum at the V-point. This means that CaBi{sub 2}O{sub 4} is an indirect energy gap material. The conduction band is composed of Bi 6p-O 2p interaction. On the other hand, the valence band can be divided into two energy regions ranging from -9.92 to -7.40 eV (lower valence band) and -4.69 to 0 eV (upper valence band). The former is mainly constructed from Bi 6s states interacting slightly with O 2s and 2p states, and the latter consists of O 2p states hybridizing with Bi 6s and 6p states. The states near the valence band maximum are strongly localized and the mobility of holes generated by band gap excitation is predicted to be fairly low.

  20. High-gradient experiment on X-band disk-loaded structures

    International Nuclear Information System (INIS)

    Higo, T.; Taniuchi, T.; Yamamoto, M.; Odagiri, J.; Tokumoto, S.; Mizuno, H.; Takata, K.; Wilson, I.; Wuensch, W.

    1993-09-01

    The high-gradient performance of two travelling-wave X-band accelerating structures 20 cm long has been studied. One of the structures, KEK, was conditioned up to an average accelerating gradient (Eav) of 68 MV/m in 600 hours, while the other, CERN, reached 85 MV/m in 50 hours. In the latter case the maximum output power was fed from the SLED system and the maximum field inside the structure was 138 MV/m. This maximum level was limited by the available power from the klystron. Operation at the Eav=50 MV/m level was found to be stable for both structures. The associated dark current at this level was less than a few μA for CERN but 20 to 30 μA for KEK. Since the two electrical designs are almost the same the difference in dark current must be attributed to the difference in the two fabrication techniques. Modified Fowler-Northeim plots of downstream dark current showed a change of slope, a kink, around 50 to 60 MV/m above which the field enhancement factor was substantially increased. (author)

  1. High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure

    Directory of Open Access Journals (Sweden)

    Xiaowei Wu

    2017-05-01

    Full Text Available A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK. This X-band structure showed good high-gradient performance of up to 100  MV/m and obtained a breakdown rate of 1.27×10^{−8} per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN, thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.

  2. A PPM-focused klystron at X-band with a traveling-wave output structure

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1995-01-01

    We have developed algorithms for designing disk-loaded traveling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 Ghz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a PPM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m. copyright 1995 American Institute of Physics

  3. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  4. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  5. A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    J. Wang

    2014-04-01

    Full Text Available A novel compact narrow-band bandstop filter is implemented by using the proposed spiral-shaped defected microstrip structure (SDMS in this paper. Compared with other DMSs, the presented SDMS exhibits the advantage of compact size and narrow stopband. Meanwhile, an approximate design rule of the SDMS is achieved and the effects of the dimensions on the resonant frequency and 3 dB fractional bandwidth (FBW are analyzed in detail. Both the simulation and measurement results of the fabricated bandstop filter show that it has a 10 dB stopband from 3.4 GHz to 3.6 GHz with more than 45 dB rejection at the center frequency.

  6. From Metal Cluster to Metal Nanowire: A Topological Analysis of Electron Density and Band Structure Calculation

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2002-01-01

    Full Text Available Abstract:We investigate a theoretical model of molecular metalwire constructed from linear polynuclear metal complexes. In particular we study the linear Crn metal complex and Cr molecular metalwire. The electron density distributions of the model nanowire and the linear Crn metal complexes, with n = 3, 5, and 7, are calculated by employing CRYSTAL98 package with topological analysis. The preliminary results indicate that the bonding types between any two neighboring Cr are all the same, namely the polarized open-shell interaction. The pattern of electron density distribution in metal complexes resembles that of the model Cr nanowire as the number of metal ions increases. The conductivity of the model Cr nanowire is also tested by performing the band structure calculation.

  7. Superconducting rotating electronic machine

    International Nuclear Information System (INIS)

    Cheon, Hui Yeong

    1989-04-01

    This book is divided into ten chapters, which handles summary of superconducting electronic machine, aspect of using of superconductor, superconducting direct current : Homopolar D. C. Machines, Drum machines, segmented slip-ring principle and carbon fibre brushes, superconducting alternating current turbine generator, design of superconducting alternating current machine, performance of superconducting alternating current machine, superconducting turbo generator by new rotor design, basic design of superconducting current generator, generator and power model, design of rotor and information of material property.

  8. Probing the graphite band structure with resonant soft-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  9. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    International Nuclear Information System (INIS)

    th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-01-01

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers

  10. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  11. QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL

    Directory of Open Access Journals (Sweden)

    I. I. Vrubel

    2016-05-01

    Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.

  12. Mining single-electron spectra of the interface states from a supercell band structure of silicene on an Ag (111 ) substrate with band-unfolding methodology

    Science.gov (United States)

    Iwata, Jun-Ichi; Matsushita, Yu-ichiro; Nishi, Hirofumi; Guo, Zhi-Xin; Oshiyama, Atsushi

    2017-12-01

    We develop a new position-resolved band-unfolding method based on the density functional theory to clarify the single-electron energy spectrum of (3 ×3 ) silicene on Ag (111 ) substrate. The position-resolved scheme enables us to clarify each contribution from each spatial region to the single-electron spectrum, which facilitates the chemical identification of each electron state. We find interface states which are distributed in the region of silicene and top two layers of the Ag substrate near the Fermi level and also below the Fermi level. The states are unique in silicene on a substrate in the sense that they are mixtures of Si and Ag orbitals. The obtained electronic structure near the Fermi level is interesting, featuring a hyperbolic-paraboloid-shaped energy band which leads to 12 Dirac-like cones at the boundary of the primitive Brillouin zone of Ag (111 ) . Characteristics of measured photoemission spectra are satisfactorily explained by the obtained unfolded bands.

  13. Investigations of the electronic structure and superconductivity in newly predicted metallic crystalline carbon

    International Nuclear Information System (INIS)

    Suresh C Sharma

    2007-01-01

    This project investigated the electronic, structural, and optical properties of fullerene-based materials under high pressure/temperature conditions. It involved: (1) Raman spectroscopy and X-ray diffraction measurements on C-60 fullerenes compressed in diamond anvil cell, (2) synthesis of C-60 thin films and determination of their electronic structure by photoemission spectroscopy, and (3) investigations of the adsorption of water molecules into single-walled carbon nanotubes

  14. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  15. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  16. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  17. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  18. Superconductivity in boron carbide? Clarification by low-temperature MIR/FIR spectra.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U

    2011-11-02

    The electronic structure and phonon density of B(13)B(2) boron carbide calculated by Calandra et al (2004 Phys. Rev. B 69 224505) defines this compound as metallic, and the authors predict superconductivity with T(C)s up to 36.7 K. Their results are affected by the same deficiencies as former band structure calculations on boron carbides based on hypothetical crystal structures deviating significantly from the real ones. We present optical mid IR/far IR (MIR/FIR) spectra of boron carbide with compositions between B(4.3)C and B(10.37)C, evidencing semiconducting behaviour at least down to 30 K. There is no indication of superconductivity. The spectra yield new information on numerous localized gap states close to the valence band edge.

  19. Variational energy band theory for polarons: Mapping polaron structure with the global-local method

    International Nuclear Information System (INIS)

    Brown, D.W.; Lindenberg, K.; Zhao, Y.

    1997-01-01

    In this paper we revisit from a contemporary perspective a classic problem of polaron theory in one dimension using a new variational approach generalizing that of Toyozawa, based on delocalized trial states including mixed gobal and local exciton-phonon correlations. Polaron structure is represented by variational surfaces giving the optimal values of the complete set of exciton and phonon amplitudes for every value of the joint exciton-phonon crystal momentum κ. Characteristic small polaron, large polaron, and nearly free phonon structures are identified, and the manner in which these compete and/or coexist is examined in detail. Through such examination, the parameter space of the problem is mapped, with particular attention given to problematic areas such as the highly quantum mechanical weak-coupling regime, the highly nonlinear intermediate-coupling regime, and to the self-trapping transition that may be said to mark the onset of the strong-coupling regime. Complete energy bands are presented in illustrative cases, and the principal trends in the ground-state energy, polaron bandwidth, and effective mass are identified. The internal structure of our variational Bloch states is examined for qualities that might reflect the typical characteristics of solitons, finding some intriguing qualitative comparisons, but little that bears close scrutiny. copyright 1997 American Institute of Physics

  20. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.