WorldWideScience

Sample records for band structure comparison

  1. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  2. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  3. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian

    2008-04-01

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  4. Comprehensive comparison and experimental validation of band-structure calculation methods in III-V semiconductor quantum wells

    Science.gov (United States)

    Zerveas, George; Caruso, Enrico; Baccarani, Giorgio; Czornomaz, Lukas; Daix, Nicolas; Esseni, David; Gnani, Elena; Gnudi, Antonio; Grassi, Roberto; Luisier, Mathieu; Markussen, Troels; Osgnach, Patrik; Palestri, Pierpaolo; Schenk, Andreas; Selmi, Luca; Sousa, Marilyne; Stokbro, Kurt; Visciarelli, Michele

    2016-01-01

    We present and thoroughly compare band-structures computed with density functional theory, tight-binding, k · p and non-parabolic effective mass models. Parameter sets for the non-parabolic Γ, the L and X valleys and intervalley bandgaps are extracted for bulk InAs, GaAs and InGaAs. We then consider quantum-wells with thickness ranging from 3 nm to 10 nm and the bandgap dependence on film thickness is compared with experiments for In0.53Ga0.47 As quantum-wells. The impact of the band-structure on the drain current of nanoscale MOSFETs is simulated with ballistic transport models, the results provide a rigorous assessment of III-V semiconductor band structure calculation methods and calibrated band parameters for device simulations.

  5. Photonic band gap structure simulator

    Science.gov (United States)

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  6. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  7. Automated effective band structures for defective and mismatched supercells.

    Science.gov (United States)

    Brommer, Peter; Quigley, David

    2014-12-01

    In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) from supercell calculations in the context of random alloys. In this paper, we present bs_sc2pc, an implementation of this method in the CASTEP code, which generates an EBS using the structural data of the supercell and the underlying primitive cell with symmetry considerations handled automatically. We demonstrate the functionality of our implementation in three test cases illustrating the efficacy of this scheme for capturing the effect of vacancies, substitutions and lattice mismatch on effective primitive cell band structures. PMID:25388668

  8. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  9. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  10. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in-plane...... and out-of-plane vibrations are considered....

  11. Electronic band structure of beryllium oxide

    CERN Document Server

    Sashin, V A; Kheifets, A S; Ford, M J

    2003-01-01

    The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 +- 0.2 and 4.8 +- 0.3 eV for the oxygen s and p bands, respectively, are in accord with theoretical predictions, as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the GAMMA point. The measured full valence bandwidth of 19.4 +- 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.

  12. Quasiparticle Band Structure of BaS

    Institute of Scientific and Technical Information of China (English)

    LU Tie-Yu; CHEN De-Yan; HUANG Mei-Chun

    2006-01-01

    @@ We calculate the band structure of BaS using the local density approximation and the GW approximation (GWA),i.e. in combination of the Green function G and the screened Coulomb interaction W. The Ba 4d states are treated as valence states. We find that BaS is a direct band-gap semiconductor. The result shows that the GWA band gap (Eg-Gw = 3.921 eV) agrees excellently with the experimental result (Eg-EXPT = 3.88 eV or 3.9eV).

  13. Development of S-band accelerating structure

    International Nuclear Information System (INIS)

    In Pohang Accelerator Laboratory (PAL) in Korea construction of XFEL (X-ray Free electron Lazar) institution is under construction aiming at the completion in 2014. Energy 10 GeV of the linac part of this institution and main frequency are planned in S-band (2856 MHz), and about 178 S-band 3m accelerating structures are due to be used for this linac. The oscillation of an X-ray laser requires very low emittance electron beam. On the other hand, since the accelerating structure which accelerates an electron beam has a feed port of microwave (iris), the electromagnetic field asymmetry of the microwave feeding device called coupler worsens the emittance of an electron beam. MHI manufactured two kinds of S-band accelerating structures with which the electromagnetic field asymmetry of coupler cavity was compensated for PALXFEL linac. We report these accelerating structures. (author)

  14. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated...

  15. Band structure engineering in organic semiconductors

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  16. Band structure engineering in organic semiconductors.

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  17. Design of smooth orthogonal wavelets with beautiful structure from 2-band to 4-band

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A complete algorithm to design 4-band orthogonal wavelets with beautiful structure from 2-band orthogonal wavelets is presented. For more smoothness, the conception of transfer vanishing moment is introduced by transplanting the requirements of vanishing moment from the 4-band wavelets to the 2-band ones. Consequently, the design of 4-band orthogonal wavelets with P vanishing moments and beautiful structure from 2-band ones with P transfer vanishing moments is completed.

  18. High spin band structure in 139Nd

    Institute of Scientific and Technical Information of China (English)

    XU Qiang; ZHU Sheng-Jiang; CHE Xing-Lai; DING Huai-Bo; GU Long; ZHU Li-Hua; WU Xiao-Guang; LIU Ying; HE Chuang-Ye; LI Li-Hua; PAN Bo; HAO Xin; LI Guang-Sheng

    2009-01-01

    High-spin states in 139Nd nucleus have been reinvestigated with the reaction 128Te (16O, 5n) at a beam energy of 90 MeV. The level scheme has been expanded with spin up to 47/2 h. At the low spin states,the yrast collective structure built on the vh(-1)(11/2) multiplet shows a transitional shape with γ≈32° according to calculations of the triaxial rotor-plus-particle model. Three collective oblate bands with γ~-60° at the high spin states were identified for the first time. A band crossing is observed around hw ~0.4 MeV in one oblate band based on the 25/2- level.

  19. Complex banded structures in directional solidification processes.

    Science.gov (United States)

    Korzhenevskii, A L; Rozas, R E; Horbach, J

    2016-01-27

    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos.

  20. Self-consistent treatment of v-groove quantum wire band structure in no parabolic approximation

    Directory of Open Access Journals (Sweden)

    Crnjanski Jasna V.

    2004-01-01

    Full Text Available The self-consistent no parabolic calculation of a V-groove-quantum-wire (VQWR band structure is presented. A comparison with the parabolic flat-band model of VQWR shows that both, the self-consistency and the nonparabolicity shift sub band edges, in some cases even in the opposite directions. These shifts indicate that for an accurate description of inter sub band absorption, both effects have to be taken into the account.

  1. Banded electron structures in the plasmasphere

    Energy Technology Data Exchange (ETDEWEB)

    Burke, W.J.; Rubin, A.G.; Hardy, D.A.; Holeman, E.G.

    1995-05-01

    The low-energy plasma analyzer on CRRES has detected significant fluxes of 10-eV to 30-keV electrons trapped on plasmaspheric field lines. On energy versus time spectrograms these electrons appear as banded structures that can span the 2 < L < 6 range of magnetic shells. The authors present an example of banded electron structures, encountered in the nightside plasmasphere during the magnetically quiet January 30, 1991. Empirical analysis suggests that two clouds of low energy electrons were injected from the plasma sheet to L < 4 on January 26 and 27 while the convective electric field was elevated. The energies of electrons in the first cloud were greater than those in the second. DMSP F8 measurements show that after the second injection, the polar cap potential rapidly decreased from >50 to <20 kY. Subsequent encounters with the lower energy cloud on alternating CRRES orbits over the next 2 days showed a progressive, earthward movement of the electrons, inner boundary. Whistler and electron cyclotron harmonic emissions accompanied the most intense manifestations of cloud electrons. The simplest explanation of these measurements is that after initial injection, the AIfven boundary moved Outward, leaving the cloud electrons on closed drift paths. Subsequent fluctuations of the convective electric field penetrated the plasmasphere, transporting cloud elements inward. The magnetic shell distribution of electron temperatures in one of the banded structures suggests that radiative energy losses may be comparable in magnitude to gains due to adiabatic compression.

  2. The band-gap enhanced photovoltaic structure

    Science.gov (United States)

    Tessler, Nir

    2016-05-01

    We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.

  3. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; GU Qiang

    2011-01-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility.It is also attractive in beam dynamics in maintaining a high quality electron beam,which is an important factor in the performance of a free electron laser.In this paper,a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility.Throughout the comprehensive simulation,we conclude that the C-band structure is much more competitive.

  4. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  5. A Theoretical Structure of High School Concert Band Performance

    Science.gov (United States)

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  6. Kink Band Instability and Propagation in Layered Structures

    NARCIS (Netherlands)

    Wadee, M.A.; Hunt, G.W.; Peletier, M.A.

    2003-01-01

    A recent two-dimensional prototype model for the initiation of kink banding in compressed layered structures is extended to embrace the two propagation mechanisms of band broadening and band progression. As well as interlayer friction, overburden pressure and layer bending energy, the characteristic

  7. Dual-band electromagnetic band gap structure for noise isolation in mixed signal SiP

    OpenAIRE

    Rotaru, M. D.; Sykulski, J. K.

    2010-01-01

    A compact dual-band electromagnetic band-gap (EBG) structure is proposed. It is shown through numerical simulation using 3D electromagnetic finite element modelling that by adding a slit to the classical mushroom shape an extra resonance is introduced and thus dual-band EBG structures can be built by cascading these new elements. It is also demonstrated that this novel approach can be used to isolate noise in a system such as a dual band transceiver integrated into a mixed signal system in a ...

  8. Elucidating the stop bands of structurally colored systems through recursion

    CERN Document Server

    Amir, Ariel

    2012-01-01

    Interference phenomena are the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics; namely, specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer and solve it using recursion relations. We present experimental data for various beetles, whose optical structure resembles the proposed model. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursive relations. In order for these to converge, an infinitesimal amount of absorption needs to be present, reminiscent of the regularization procedures commonly used in physics calculations. Thus, using only the phenomenon of...

  9. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  10. The complex band structure for armchair graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N= 3M-1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nmaoribbons, and is also classified into three classes.

  11. Band structures in Sierpinski triangle fractal porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  12. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  13. Fractional Band Filling in an Atomic Chain Structure

    Science.gov (United States)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  14. Structure of nearly degenerate dipole bands in {sup 108}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, J. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Palit, R., E-mail: palit@tifr.res.in [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Saha, S.; Trivedi, T. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhat, G.H.; Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Datta, P. [Ananda Mohan College, Kolkata 700009 (India); Carroll, J.J. [US Army Research Laboratory, Adelphi, MD 20783 (United States); Chattopadhyay, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Donthi, R. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Garg, U. [University of Notre Dame, Notre Dame, IN 46556 (United States); Jadhav, S.; Jain, H.C. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Karamian, S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kumar, S. [University of Delhi, Delhi 110007 (India); Litz, M.S. [US Army Research Laboratory, Adelphi, MD 20783 (United States); Mehta, D. [Panjab University, Chandigarh 160014 (India); Naidu, B.S. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Naik, Z. [Sambalpur University, Sambalpur 143005 (India); Sihotra, S. [Panjab University, Chandigarh 160014 (India); and others

    2013-08-09

    The high spin negative parity states of {sup 108}Ag have been investigated with the {sup 11}B + {sup 100}Mo reaction at 39 MeV beam energy using the INGA facility at TIFR, Mumbai. From the γ–γ coincidence analysis, an excited negative parity band has been established and found to be nearly degenerate with the ground state band. The spin and parity of the levels are assigned using angular correlation and polarization measurements. This pair of degenerate bands in {sup 108}Ag is studied using the recently developed microscopic triaxial projected shell model approach. The observed energy levels and the ratio of the electromagnetic transition probabilities of these bands in this isotope are well reproduced by the present model. Further, it is shown that the partner band has a different quasiparticle structure as compared to the yrast band.

  15. Band structure characteristics of T-square fractal phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Jian; Fan You-Hua

    2013-01-01

    The T-square fractal two-dimensional phononic crystal model is presented in this article.A comprehensive study is performed for the Bragg scattering and locally resonant fractal phononic crystal.We find that the band structures of the fractal and non-fractal phononic crystals at the same filling ratio are quite different through using the finite element method.The fractal design has an important impact on the band structures of the two-dimensional phononic crystals.

  16. Comparison of X-Band, L-Band and C-Band Radar Images in Monitoring Subsidence in Agricultural Regions

    Science.gov (United States)

    Motagh, Mahdi; Haghshenas Haghighi, Mahmud; Shamshiri, Roghaye; Esmaeili, Mustapha

    2015-05-01

    The ongoing pattern of groundwater induced land subsidence in major valleys and agricultural regions of Iran has been recently documented by several studies (e.g. [1-4]) using C-band Interferometric Synthetic Aperture Radar (InSAR) observations. In this article we present the results of our research in which we evaluated the performance of C-band, L-band and X-band SAR data, using time-series method of small baseline subset (SBAS), to retrieve long time series of ground subsidence in agricultural regions in the country. Two major groundwater basins have been selected for this purpose: (1) Rafsanjan Valley in the Kerman province of central Iran and (2) Tehran Plain (capital of Iran). We also report on our experience using dualpolarimetry (HH/VV) X-band SAR data for Persistent Scatterer (PS) deformation analysis in natural terrains subject to high rate of deformation.

  17. Q-band EPR biodosimetry in tooth enamel microsamples: feasibility test and comparison with x-band.

    Science.gov (United States)

    Romanyukha, A; Mitchell, C A; Schauer, D A; Romanyukha, L; Swartz, H M

    2007-12-01

    A comparative study of electron paramagnetic resonance dosimetry in Q- and X-bands has shown that Q-band is able to provide accurate measurements of radiation doses even below 0.5 Gy with tooth enamel samples as small as 2 mg. The optimal amount of tooth enamel for dose measurements in Q-band was found to be 4 mg. This is less than 1% of the total amount of tooth enamel in one molar tooth. Such a small amount of tooth enamel can be harmlessly obtained in an emergency requiring after-the-fact radiation dose measurement. The other important advantage of Q-band is full resolution of the radiation-induced EPR signal from the native, background signal. This separation makes dose response measurements much easier in comparison to conventional X-band measurements in which these overlapping signals necessitate special methods for doses below 0.5 Gy. The main disadvantages of Q-band measurements are a higher level of noise and lower spectral reproducibility than in X-band. The effect of these negative factors on the precision of dose measurements in Q-band could probably be reduced by improvement of sample fixation in the resonance cavity and better optimization of signal filtration to reduce high-frequency noise.

  18. Millimeter-wave waveguiding using photonic band structures

    Science.gov (United States)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    Current trends in device miniaturization and integration, especially in the development of microwave monolithic integrated circuits, calls for flexible, arbitrarily shaped and curved interconnects. Standard dielectric waveguides and microstrip lines are subject to prohibitive losses and their functionality is limited because of their unflexible structures. The problem is addressed by confining the wave- guiding path in a substrate with a Photonic Band Gap structure in a manner that will result in the guided mode being localized within the band gap. Two devices implementing Photonic Band Structures for millimeter waves confinement are presented. The first waveguide is a linear defect in triangular lattice created in a silicon slab (TE mode). The structure consists of parallel air holes of circular cross sections. The silicon was laser drilled to create the 2D crystal. The second device consists of alumina rods arranged in a triangular lattice, surrounded by air and sandwiched between two parallel metal plates (TM mode). Electromagnetic wave (W-band) confinement was obtained in both devices for straight and bent waveguides. Three branch waveguides (intersecting line defects) was studied as well. Measurements confirmed the lowloss waveguide confinement property of the utilizing Photonic Band Gap structure. This structure can find applications in power combiner/splitter and other millimeter wave devices.

  19. Coupling between Fano and Bragg bands in photonic band structure of two-dimensional metallic photonic structures

    CERN Document Server

    Markos, Peter

    2016-01-01

    Frequency and transmission spectrum of two-dimensional array of metallic rods is investigated numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystal with dielectric rods [P. Marko\\v{s}, Phys. Rev. A 92 043814 (2015)] we identify two types of bands in the frequency spectrum: Bragg (P) bands resulting from a periodicity and Fano (F) bands which arise from Fano resonances associated with each of the cylinders within the periodic structure. It is shown that the existence of Fano band in a certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we re-examine the symmetry properties of the H- polarized band structure in the frequency range where the spectrum consists of the localized modes associated with the single scatterer resonances and we explore process of formation of Fano bands by identifying individual terms in the expansion of the LCAO states. We demonstrate how the interplay between the two scattering mechanisms affects p...

  20. Research and development report. Digital audio broadcasting: Comparison of coverage at Band 2 and Band 3

    Science.gov (United States)

    Pullen, I. R.; Doherty, P. J.; Maddocks, M. C. D.

    A Digital Audio Broadcasting (DAB) system capable of reliable reception in vehicles and portables has been developed by the EUREKA 147 project. This report describes a set of experiments performed to compare the coverage area when radiating a DAB signal of equal power in Band 2 and Band 3.

  1. Band formation in coupled-resonator slow-wave structures.

    Science.gov (United States)

    Möller, Björn M; Woggon, Ulrike; Artemyev, Mikhail V

    2007-12-10

    Sequences of coupled-resonator optical waveguides (CROWs) have been examined as slow-wave structures. The formation of photonic bands in finite systems is studied in the frame of a coupled oscillator model. Several types of resonator size tuning in the system are evaluated in a systematical manner. We show that aperiodicities in sequences of coupled microspheres provide an additional degree of freedom for the design of photonic bands. PMID:19551030

  2. Tuning the electronic band structure of PCBM by electron irradiation

    Directory of Open Access Journals (Sweden)

    Yoo Seung

    2011-01-01

    Full Text Available Abstract Tuning the electronic band structures such as band-edge position and bandgap of organic semiconductors is crucial to maximize the performance of organic photovoltaic devices. We present a simple yet effective electron irradiation approach to tune the band structure of [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM that is the most widely used organic acceptor material. We have found that the lowest unoccupied molecular orbital (LUMO level of PCBM up-shifts toward the vacuum energy level, while the highest occupied molecular orbital (HOMO level down-shifts when PCBM is electron-irradiated. The shift of the HOMO and the LUMO levels increases as the irradiated electron fluence increases. Accordingly, the band-edge position and the bandgap of PCBM can be controlled by adjusting the electron fluence. Characterization of electron-irradiated PCBM reveals that the variation of the band structure is attributed to the molecular structural change of PCBM by electron irradiation.

  3. Bulk band structure of Bi2Te3

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Aguilera, Irene; Bianchi, Marco;

    2014-01-01

    The bulk band structure of Bi2Te3 has been determined by angle-resolved photoemission spectroscopy and compared to first-principles calculations. We have performed calculations using the local density approximation (LDA) of density functional theory and the one-shot GW approximation within the all......-electron full-potential linearized augmented-plane-wave (FLAPW) formalism, fully taking into account spin-orbit coupling. Quasiparticle effects produce significant changes in the band structure of Bi2Te3 when compared to LDA. Experimental and calculated results are compared in the spectral regions where...... distinct differences between the LDA and GW results are present. Overall a superior agreement with GW is found, highlighting the importance of many-body effects in the band structure of this family of topological insulators....

  4. Band structures in near spherical {sup 138}Ce

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India)], E-mail: btumpa@veccal.ernet.in; Chanda, S. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Fakir Chand College, Diamond Harbour, West Bengal (India); Bhattacharyya, S.; Basu, S.K. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Bhowmik, R.K.; Das, J.J. [Inter University Accelerator Centre, New Delhi 110 067 (India); Pramanik, U. Datta [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Ghugre, S.S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata 700 098 (India); Madhavan, N. [Inter University Accelerator Centre, New Delhi 110 067 (India); Mukherjee, A.; Mukherjee, G. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Muralithar, S.; Singh, R.P. [Inter University Accelerator Centre, New Delhi 110 067 (India)

    2009-06-15

    The high spin states of N=80{sup 138}Ce have been populated in the fusion evaporation reaction {sup 130}Te({sup 12}C, 4n){sup 138}Ce at E{sub beam}=65 MeV. The {gamma} transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23h and 9511.3 keV, respectively, by including 53 new transitions. The negative parity {delta}I=1 band, developed on the 6536.3 keV 15{sup -} level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [{pi}g{sub 7/2}h{sub (11)/2}]x[{nu}h{sub (11)/2}]{sup -2}. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.

  5. Complex band structure of topological insulator Bi2Se3.

    Science.gov (United States)

    Betancourt, J; Li, S; Dang, X; Burton, J D; Tsymbal, E Y; Velev, J P

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations. PMID:27485021

  6. Valence band structure of strained Si/(111)Si1-xGex

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The strained Si techique has been widely adopted in the high-speed and high-performance devices and circuits. Based on the valence band E-k relations of strained Si/(111)Si1-xGex, the valence band and hole effective mass along the [111] and [-110] directions were obtained in this work. In comparison with the relaxed Si, the valence band edge degeneracy was partially lifted, and the significant change was observed band structures along the [111] and [-110] directions, as well as in its corresponding hole effective masses with the increasing Ge fraction. The results obtained can provide valuable references to the investigation concerning the Si-based strained devices enhancement and the conduction channel design related to stress and orientation.

  7. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    of a single, linearly elastic material without damping. Numerical results are presented for different combinations of classical boundary conditions, prescribed orders of the upper and lower natural frequencies of maximized natural frequency gaps, and a given minimum constraint value for the beam cross......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  8. Band structure analysis in SiGe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)

    2012-06-05

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  9. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  10. Doping-dependent quasiparticle band structure in cuprate superconductors

    NARCIS (Netherlands)

    Eder, R; Ohta, Y.; Sawatzky, G.A

    1997-01-01

    We present an exact diagonalization study of the single-particle spectral function in the so-called t-t'-t ''-J model in two dimensions. As a key result, we find that hole doping leads to a major reconstruction of the quasiparticle band structure near (pi,0): whereas for the undoped system the quasi

  11. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lower...

  12. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Roark A.; /MIT /MIT /NIFS, Gifu /JAERI, Kyoto /LLNL, Livermore; Shapiro, Michael A.; Temkin, Richard J.; /MIT; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  13. Band Structure Modifications in Deformed InP Quantum Wires

    Directory of Open Access Journals (Sweden)

    V.V. Kuryliuk

    2014-11-01

    Full Text Available The work describes the features of the band structure of deformed InP nanowires with different diameters. It is shown that the bending of quantum wires is capable of creating local minima in the conduction and valence bands which are separated from the surface of the cylindrical wire. This result opens up new possibilities for controlling both the lifetime of photoexcited carriers by keeping them at these minima and the magnitude of the photovoltage in solar energy conversion devices based on quantum wires. The work lies within a common goal aiming to develop new methods of functionalization of nanostructured surfaces using mechanical deformations.

  14. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  15. Coupling effect of quantum wells on band structure

    International Nuclear Information System (INIS)

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps. (paper)

  16. Hubbard-U band-structure methods

    DEFF Research Database (Denmark)

    Albers, R.C.; Christensen, Niels Egede; Svane, Axel

    2009-01-01

    are inconsistent with what the calculations actually do. Although many of these calculations are often treated as essentially first-principles calculations, in fact, we argue that they should be viewed from an entirely different point of view, namely, as based on phenomenological many-body corrections to band......The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...

  17. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  18. Development of X-band accelerating structures for high gradients

    Institute of Scientific and Technical Information of China (English)

    S. Bini; M. G. Grimaldi; L. Romano; F. Ruffino; R. Parodi; V. Chimenti; A. Marcelli; L. Palumbo; B. Spataro; V. A. Dolgashev; S. Tantawi; A.D. Yeremian; Y. Higashi

    2012-01-01

    Short copper standing wave (SW) structures operating at an X-band frequency have been recently designed and manufactured at the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare (INFN) using the vacuum brazing technique.High power tests of the structures have been performed at the SLAC National Accelerator Laboratory.In this manuscript we report the results of these tests and the activity in progress to enhance the high gradient performance of the next generation of structures,particularly the technological characterization of high performance coatings obtained via molybdenum sputtering.

  19. Engineering Design of a Multipurpose X-band Accelerating Structure

    CERN Document Server

    Gudkov, Dmitry; Samoshkin, Alexander; Zennaro, Riccardo; Dehler, Micha; Raguin, Jean-Yves

    2010-01-01

    Both FEL projects, SwissFEL and Fermi-Elettra each require an X-band RF accelerating structure for optimal bunch compression at the respective injectors. As the CLIC project is pursuing a program for producing and testing the X-band high-gradient RF structures, a collaboration between PSI, Elettra and CERN has been established to build a multipurpose X-band accelerating structure. This paper focuses on its engineering design, which is based on the disked cells jointed together by diffusion bonding. Vacuum brazing and laser beam welding is used for auxiliary components. The accelerating structure consists of two coupler subassemblies, 73 disks and includes a wakefield monitor and diagnostic waveguides. The engineering study includes the external cooling system, consisting of two parallel cooling circuits and an RF tuning system, which allows phase advance tuning of the cell by deforming the outer wall. The engineering solution for the installation and sealing of the wake field monitor feed-through devices that...

  20. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    Science.gov (United States)

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  1. Comparison of device models for organic solar cells: Band-to-band vs. tail states recombination

    Energy Technology Data Exchange (ETDEWEB)

    Soldera, Marcos; Taretto, Kurt [Departamento de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires, Neuquen (Argentina); Kirchartz, Thomas [Department of Physics, Imperial College London, South Kensington (United Kingdom)

    2012-01-15

    The efficiency-limiting recombination mechanism in bulk-heterojunction (BHJ) solar cells is a current topic of investigation and debate in organic photovoltaics. In this work, we simulate state-of-the-art BHJ solar cells using two different models. The first model takes into account band-to-band recombination and field dependent carrier generation. The second model assumes a Shockley-Read-Hall (SRH) recombination mechanism via tail states and field independent carrier generation. Additionally, we include in both cases optical modelling and, thus, position-dependent exciton generation and non-ideal exciton collection. We explore both recombination mechanisms by fitting light and dark current-voltage (JV) characteristics of BHJ cells of five materials: P3HT, MDMO-PPV, MEH-PPV, PCDTBT and PF10TBT, all blended with fullerene derivatives. We show that although main device parameters such as short circuit current, open circuit voltage, fill factor and ideality factor are accurately reproduced by both Langevin and tail recombination, only tail recombination reproduces also the ideality factor of dark characteristics accurately. Nevertheless, the model with SRH recombination via tail states needs the inclusion of external circuitry to account for the heavy shunt present in all the blends, except P3HT:PCBM, when illuminated. Finally, we propose a means to find analytical expressions for the short circuit current by assuming a linear relation between the recombination rate and the concentration of free minority carriers. The model reproduces experimental data of P3HT cells at various thickness values using realistic parameters for this material. Dark JV measurement (circles) of a PCDTBT:PC{sub 70}BM solar cell (Park et al., Nature Photon. 3, 297 (2009) [1]), the fit with the model including recombination via tail states (solid line) and the fit with the model reported by (Koster et al., Phys. Rev. B 72, 085205 (2005) [2]) that includes bimolecular band-to-band recombination

  2. Calculation of complex band structure for low symmetry lattices

    Science.gov (United States)

    Srivastava, Manoj; Zhang, Xiaoguang; Cheng, Hai-Ping

    2009-03-01

    Complex band structure calculation is an integral part of a first-principles plane-wave based quantum transport method. [1] The direction of decay for the complex wave vectors is also the transport direction. The existing algorithm [1] has the limitation that it only allows the transport direction along a lattice vector perpendicular to the basal plane formed by two other lattice vectors, e.g., the c-axis of a tetragonal lattice. We generalize this algorithm to nonorthogonal lattices with transport direction not aligned with any lattice vector. We show that this generalization leads to changes in the boundary conditions and the Schrodinger's equation projected to the transport direction. We present, as an example, the calculation of the complex band structure of fcc Cu along a direction perpendicular to the (111) basal plane. [1] Hyoung Joon Choi and Jisoon Ihm, Phys. Rev. B 59, 2267 (1999).

  3. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  4. Parameterization and algebraic structure of 3-band orthogonal wavelet systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a complete parameterization for the 3-band compact wavelet systems is presented. Using the parametric result, a program of the filterbank design is completed, which can give not only the filterbanks but also the graphs of all possible scaling functions and their corresponding wavelets. Especially some symmetric wavelets with small supports are given. Finally an algebraic structure for this kind of wavelet systems is characterized.

  5. Band structural properties of MoS2 (molybdenite)

    International Nuclear Information System (INIS)

    Semiconductivity and superconductivity in MoS2 (molybdenite) can be understood in terms of the band structure of MoS2. The band structural properties of MoS2 are presented here. The energy dependence of nsub(eff) and epsilon(infinity)sub(eff) is investigated. Using calculated values of nsub(eff) and epsilon(infinity)sub(eff), the Penn gap has been determined. The value thus obtained is shown to be in good agreement with the reflectivity data and also with the value obtained from the band structure. The Ravindra and Srivastava formula has been shown to give values for the isobaric temperature gradient of Esub(G)[(deltaEsub(G)/deltaT)sub(P)], which are in agreement with the experimental data, and the contribution to (deltaEsub(G)/deltaT)sub(P) due to the electron lattice interaction has been evaluated. In addition, the electronic polarizability has been calculated using a modified Lorentz-Lorenz relation. (author)

  6. Electronic band structure and photoemission: A review and projection

    International Nuclear Information System (INIS)

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs

  7. Collective Band Structures in Neutron-Rich 108Mo Nucleus

    Institute of Scientific and Technical Information of China (English)

    DING Huai-Bo; WANG Jian-Guo; XU Qiang; ZHU Sheng-Jiang; J. H. Hamilton; A. V. Ramayya; J. K. Hwang; Y. X. Luo; J. O. Rasmussen; I. Y. Lee; CHE Xing-Lai

    2007-01-01

    High spin states in the neutron-rich 108Mo nucleus are studied by measuring prompt γ-rays following the spontaneous fission of 252Cf with a Gammasphere detector array. The ground-state band is confirmed, and the one-phonon γ-vibrational band is updated with spin up to 12 h. A new collective band with the band head level at 1422.4 keV is suggested as a two-phonon γ-vibrational band. Another new band is proposed as a two-quasi-proton excitation band. Systematic characteristics of the collective bands are discussed.

  8. Determination of the band structure of LuNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Bergk, B. [Hochfeld-Magnetlabor, Forschungszentrum Rossendorf, Dresden (Germany); Inst. fuer Festkoerperphysik, Technische Univ. Dresden (Germany); Bartkowiak, M.; Ignatchik, O. [Hochfeld-Magnetlabor, Forschungszentrum Rossendorf, Dresden (Germany); Jaeckel, M. [Inst. fuer Festkoerperphysik, Technische Univ. Dresden (Germany); Wosnitza, J.; Rosner, H.; Petzold, V. [MPI fuer chemische Physik fester Stoffe, Dresden (Germany); Canfield, P. [Iowa State Univ. of Science and Technology, Ames (United States). Ames Lab., Condensed Matter Physics

    2007-07-01

    We present de Haas-van Alphen (dHvA) investigations on the nonmagnetic borocarbide superconductor LuNi{sub 2}B{sub 2}C which have been performed by use of the torque method in high magnetic fields up to 32 T and at low temperatures down to 50 mK. The complex band structure is extracted from the quantum oscillations in the normal state. In comparison with full-potential-local-orbital calculations of the band structure we are able to assign the observed dHvA frequencies to the different bands. Temperature dependent dHvA investigations allowed the extraction of the effective band masses for the several Fermi-surface sheets. We observe an enhancement of the effective masses compared to the theoretical calculations which is due to electron-phonon interaction. Finally, we are able to examine the angular dependence of the electron-phonon coupling for the different Fermi-surface sheets. (orig.)

  9. Comparison of Model Prediction With Measurements of Galactic Background Noise at L-Band

    DEFF Research Database (Denmark)

    Le Vine, David M.; Abraham, Saji; Kerr, Yann H.;

    2005-01-01

    in this window, and an accurate accounting of this background radiation is often needed for calibration. This paper presents a comparison of the background radiation predicted by a model developed from modern radio astronomy measurements with measurements made with several modern L-band remote sensing...

  10. Towards structural integration of airborne Ku-band SatCom antenna

    NARCIS (Netherlands)

    Schippers, Harmen; Verpoorte, Jaco; Hulzinga, Adriaan; Roeloffzen, Chris; Baggen, Rens

    2013-01-01

    The paper describes research towards a fully structurally integrated Ku-band SatCom antenna. This antenna covers the complete receive band for aeronautical earth stations and DVB-S broadcast in Ku band (10.7 - 12.75 GHz). The antenna front-end consists of 32 tiles where each tile has 8×8 Ku-band sta

  11. Structure of negative parity yrast bands in odd mass 125-131Ce nuclei

    Indian Academy of Sciences (India)

    Arun Bharti; Suram Singh; S K Khosa

    2010-04-01

    The negative parity yrast bands of neutron-deficient 125-131Ce nuclei are studied by using the projected shell model approach. Energy levels, transition energies and (1)/(2) ratios are calculated and compared with the available experimental data. The calculations reproduce the band-head spins of negative parity yrast bands and indicate the multi-quasiparticle structure for these bands.

  12. Electronic band structure of the layered compound Td-WTe2

    Science.gov (United States)

    Augustin, J.; Eyert, V.; Böker, Th.; Frentrup, W.; Dwelk, H.; Janowitz, C.; Manzke, R.

    2000-10-01

    We have studied the electronic structure of the layered compound Td-WTe2 experimentally using high-resolution angle-resolved photoelectron spectroscopy, and theoretically using density-functional based augmented spherical wave calculations. Comparison of the measured and calculated data shows in general good agreement. The theoretical results reveal the semimetallic as well as metallic character of Td-WTe2; the semimetallic character is due to a 0.5 eV overlap of Te 5p- and W 5d-like bands along Γ-Y, while the metallic character is due to two classical metallic bands. The rather low conductivity of Td-WTe2 is interpreted as resulting from a low density of states at the Fermi level.

  13. QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL

    Directory of Open Access Journals (Sweden)

    I. I. Vrubel

    2016-05-01

    Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.

  14. Analysis of the electronic structure of crystals through band structure unfolding

    Science.gov (United States)

    Gordienko, A. B.; Kosobutsky, A. V.

    2016-03-01

    In this work, we consider an alternative implementation of the band structure unfolding method within the framework of the density functional theory, which combines the advantages of the basis of localized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered CuCl x Br1- x copper halide alloys and F 0 center in MgO that enables us to reveal qualitatively the features remaining hidden when using the standard supercell method, because of the complex band structure of systems with defects.

  15. Role of interface band structure on hot electron transport

    Science.gov (United States)

    Garramone, John J.

    Knowledge of electron transport through materials and interfaces is fundamentally and technologically important. For example, metal interconnects within integrated circuits suffer increasingly from electromigration and signal delay due to an increase in resistance from grain boundary and sidewall scattering since their dimensions are becoming shorter than the electron mean free path. Additionally, all semiconductor based devices require the transport of electrons through materials and interfaces where scattering and parallel momentum conservation are important. In this thesis, the inelastic and elastic scattering of hot electrons are studied in nanometer thick copper, silver and gold films deposited on silicon substrates. Hot electrons are electron with energy greater than kBT above the Fermi level (EF). This work was performed utilizing ballistic electron emission microscopy (BEEM) which is a three terminal scanning tunneling microscopy (STM) technique that measures the percentage of hot electrons transmitted across a Schottky barrier interface. Hot electron attenuation lengths of the metals were extracted by measuring the BEEM current as a function of metal overlayer thickness for both hot electron and hot hole injection at 80 K and under ultra high vacuum. The inelastic and elastic scattering lengths were extracted by fitting the energetic dependence of the measured attenuation lengths to a Fermi liquid based model. A sharp increase in the attenuation length is observed at low injection energies, just above the Schottky barrier height, only for metals on Si(001) substrates. In contrast, the attenuation length measured on Si(111) substrates shows a sharp decrease. These results indicate that interface band structure and parallel momentum conservation have significant impact upon the transport of hot electrons across non epitaxial metal-semiconductor interfaces. In addition, they help to separate effects upon hot electron transport that are inherent to the metal

  16. A Banding Structure in a Ni-Cu-Si Cast Alloy

    Institute of Scientific and Technical Information of China (English)

    Qi ZHENG; Yufeng ZHENG; Hongyu ZHANG; Xiaofeng SUN; Hengrong GUAN; Zhuangqi HU

    2008-01-01

    The solidified microstructure of a Ni-Cu-Si cast alloy has been investigated, and a kind of banding structure was observed. The results showed that, the banding structure was composed of coarser particles which were Ni3Si type of precipitates and similar to the fine particles precipitate uniformly distributed within matrix of Ni solid solution, in both crystal structure and composition. The formation of bandings was resulted from cast thermal stress and dislocation walls. It was found that the cracks propagated along these bandings in tensile test. The banding structure can be depressed by reducing the cast thermal stress, which can improve the Qtensile ductility.

  17. Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHI Jun-Jie

    2006-01-01

    @@ Light propagation in a one-dimensional photonic crystal (PC), consisting of alternative slabs with refractive indices (layer thicknesses) n1 (a) and n2 (b), is investigated. An important optimal parameter matching condition,n1a ≈ n2b, is obtained for the largest photonic band gap (PBG). Moreover, we find that the exact analytical solutions for the electric/magnetic field eigenmodes at the band edges are standing waves with odd or even symmetry about the centre of each layer. The electric/magnetic field eigenfunctions at the top and bottom of the nth band have n and n - 1 nodes in one period of PC, respectively. The PBG arises from the symmetric differences of the field eigenfunctions at the band edges.

  18. Band structure of surface barrier states and resonances

    International Nuclear Information System (INIS)

    Full text: G. Binnig and H. Rohrer, Nobel Prize Winners for the invention of the Scanning Tunneling Microscope, write in the opening sentence of one of their papers, co-authored with others : 'One of the fundamental problems in surface physics is obtaining knowledge of the electron-metal-surface interaction potential.' Although it is known that the surface barrier has an 'image' asymptotic form and saturates or weakens closer to the crystal surface, the position of the image tail, momentum dependence of the barrier height and saturation closer to the surface have not been agreed upon by different workers and techniques to this day. Ab initio calculations using the density functional approximation produce locations for the position of the image tail which differ by ∼50% depending on whether the exiting or incoming electron is considered part of the crystal or a classical charge interacting with the electron gas. Very low energy electron diffraction (VLEED), k-resolved inverse photoemission spectroscopy (KRIPES) and 2-photon photoemission spectroscopy (2PPE) are sensitive to the barrier but analyses to date have not yielded consistent conclusions. In this work we have used our plane-wave scattering method to calculate the barrier energy band structure for Cu (001) over the whole SBZ to compare with experimental results from KRIPES and 2PPE data as well as the calculation of Smith et al. This calculation used a parameterized nearly-free-electron function to represent the substrate scattering and could only produce states not resonances which occur outside of bulk band gaps and above the barrier height. As well, no inelastic scattering could be included. We show that inelastic scattering, surface restructuring and an extended data-base must be included for definitive conclusions about details of the barrier. Also, our calculation shows above-barrier resonances are strong and should be measured by experimentalists to extract the momentum dependent saturation and

  19. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  20. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan;

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  1. Comparison of High Performance Network Options: EDR InfiniBand vs.100Gb RDMA Capable Ethernet

    Energy Technology Data Exchange (ETDEWEB)

    Kachelmeier, Luke Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Van Wig, Faith Virginia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Missouri Univ. of Science and Technology, Rolla, MO (United States); Erickson, Kari Natania [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2016-08-08

    These are the slides for a presentation at the HPC Mini Showcase. This is a comparison of two different high performance network options: EDR InfiniBand and 100Gb RDMA capable ethernet. The conclusion of this comparison is the following: there is good potential, as shown with the direct results; 100Gb technology is too new and not standardized, thus deployment effort is complex for both options; different companies are not necessarily compatible; if you want 100Gb/s, you must get it all from one place.

  2. Vicarious Calibration Based Cross Calibration of Solar Reflective Channels of Radiometers Onboard Remote Sensing Satellite and Evaluation of Cross Calibration Accuracy through Band-to-Band Data Comparisons

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available Accuracy evaluation of cross calibration through band-to-band data comparison for visible and near infrared radiometers which onboard earth observation satellites is conducted. The conventional cross calibration for visible to near infrared radiometers onboard earth observation satellites is conducted through comparisons of band-to-band data of which spectral response functions are overlapped mostly. There are the following major error sources due to observation time difference, spectral response function difference in conjunction of surface reflectance and atmospheric optical depth, observation area difference. These error sources are assessed with dataset acquired through ground measurements of surface reflectance and optical depth. Then the accuracy of the conventional cross calibration is evaluated with vicarious calibration data. The results show that cross calibration accuracy can be done more precisely if the influences due to the aforementioned three major error sources are taken into account.

  3. Photonic band structure of two-dimensional metal/dielectric photonic crystals

    International Nuclear Information System (INIS)

    An improved plane wave expansion method for the numerical calculation of photonic bands of metal/dielectric photonic crystal (PC) are presented. This method is applied to two-dimensional PCs with frequency-dependent dielectric constants. We obtained the photonic band structure of three kinds of structures: sawtooth, cylinder and hole PCs. The results show that the lowest band-1 is relatively flat, and does not approach zero. Also, there is no complete band-gap that extends throughout the first Brillouin zone for these three structures. However, there are partial band-gaps in different directions in the first Brillouin zone. For the complementary cylinder and hole PCs, their photonic bands are similar except for the lowest three bands; the hole PC’s lowest frequency of band-1 is larger than that of cylinder PC for the configuration R/d  =  0.2. (paper)

  4. On the Design of Laser Structured Ka Band Multi-Chip Module

    Directory of Open Access Journals (Sweden)

    Ghulam Mehdi

    2013-09-01

    Full Text Available The rapid prototyping of millimeter wave (MMW multi-chip module (MCM on low-cost ceramic-polymer composite substrate using laser ablation process is presented. A Ka band MCM front-end receiver is designed, fabricated and tested. The complete front-end receiver module except the IF and power distribution sections is realized on the single prescribed substrate. The measured receiver gain, noise figure and image rejection is 37 dB, 4.25 dB and 40 dB respectively. However, it deduced from the experimental results of the two front-end modules that the complex permittivity characteristics of the substrate are altered after the laser ablation process. The effective permittivity alteration phenomenon is further validated through the characterization and comparison of various laser ablated and chemically etched Ka band parallel-coupled band-pass filters. A simple and experimentally verified method is worked out to utilize the laser ablation structuring process on the prescribed substrate. It is anticipated that the proposed method can be applied to other laminated substrates as well with the prescribed manufacturing process.

  5. Theoretical study of relative width of photonic band gap for the 3-D dielectric structure

    Indian Academy of Sciences (India)

    G K Johri; Akhilesh Tiwari; Saumya Saxena; Rajesh Sharma; Kuldeep Srivastava; Manoj Johri

    2002-03-01

    Calculations for the relative width (/0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.

  6. Miniaturization of electromagnetic band gap structures for mobile applications

    Science.gov (United States)

    Goussetis, G.; Feresidis, A. P.; Palikaras, G. K.; Kitra, M.; Vardaxoglou, J. C.

    2005-12-01

    It is well known that interference of the human body affects the performance of the antennas in mobile phone handsets. In this contribution, we investigate the use of miniaturized metallodielectric electromagnetic band gap (MEBG) structures embedded in the case of a mobile handset as a means of decoupling the antenna from the user's hand. The closely coupled MEBG concept is employed to achieve miniaturization of the order of 15:1. Full wave dispersion relations for planar closely coupled MEBG arrays are presented and are validated experimentally. The performance of a prototype handset with an embedded conformal MEBG is assessed experimentally and is compared to a similar prototype without the MEBG. Reduction in the detuning of the antenna because of the human hand by virtue of the MEBG is demonstrated. Moreover, the efficiency of the handset when loaded with a human hand model is shown to improve when the MEBG is in place. The improvements are attributed to the decoupling of the antenna from the user's hand, which is achieved by means of suppressing the fields in the locality of the hand.

  7. Analysis of eigenfrequencies of finite periodic structures in view of location of frequency pas- and stop-bands

    DEFF Research Database (Denmark)

    Hvatov, Alexander; Sorokin, Sergey

    2013-01-01

    cell with various boundary conditions. Two classical models of periodic structures are considered, for which closed form solutions are obtained and analyzed. The regular and irregular eigenfrequencies of periodicity cells and finite periodic structures are identified, and the eigenmodes are compared....... application, however, only a finite segment of such a structure can be used. This paper is concerned with comparison of the eigenfrequency spectra of finite periodic structures with location of stop-bands for their infinite counterparts. Special attention is paid to eigenfrequencies of a single periodicity...

  8. Band Structure and Fermi-Surface Properties of Ordered beta-Brass

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Christensen, N. E.

    1973-01-01

    The band structure of ordered β-brass (β′-CuZn) has been calculated throughout the Brillouin zone by the augmented-plane-wave method. The present band model differs from previous calculations with respect to the position and width of the Cu 3d band. The derived dielectric function ε2(ω) and the p...

  9. Comparisons of Aquarius Measurements over Oceans with Radiative Transfer Models at L-Band

    Science.gov (United States)

    Dinnat, E.; LeVine, D.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    The Aquarius/SAC-D spacecraft includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. It was launched in June 2011 by NASA and CONAE (Argentine space agency). We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons are used as part of the initial assessment of Aquarius data and to estimate the radiometer calibration bias and stability. Comparisons are also being performed to assess the performance of models used in the retrieval algorithm for correcting the effect of various sources of geophysical "noise" (e.g. Faraday rotation, surface roughness). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit on monthly global maps at 150 km by 150 km resolution.

  10. Cytotoxicity Comparison of the Nanoparticles Deposited on Latex Rubber Bands between the Original and Stretched State

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    2014-01-01

    Full Text Available Understanding the biocompatibility of nanoparticles in dental materials is essential for their safe usage in the oral cavity. In this study, we investigated whether nanoparticles deposited on orthodontic latex rubber bands are involved in the induction of cytotoxicity. A method of stretching to three times (“3L” the length of the latex rubber bands was employed to detach the particles using the original length (“L” for comparison. The cytotoxicity tests were performed on extracts with mouse fibroblasts (L929 and human gingival fibroblasts (HGFs. Fourier transform infrared spectroscopy, ion chromatography, elemental analysis, and inductively coupled plasma mass spectrometry (ICP-MS were performed to detect the harmful components in the extracts from rubber bands. There was a significant decrease in the cell viability in the “L” samples compared with the “3L” samples (P<0.05 in the L929 and HGF cells. This was due to the Ni single crystal nanoparticles (~50nm from the inner surface of “L” samples that were detached in the “3L” samples as well as the Zn ion (~9 ppm detected in the extract. This study revealed that the Ni nanoparticles, as well as Zn ions, were involved in the induction of cytotoxicity from the latex rubber bands.

  11. Theoretical study on the band structure and optical properties of 4H-SiC

    Institute of Scientific and Technical Information of China (English)

    Xu Peng-Shou; Xie Chang-Kun; Pan Hai-Bin; Xu Fa-Qiang

    2004-01-01

    We have studied the band structure and optical properties of 4H-SiC by using a full potential linearized augmented plane waves (FPLAPW) method. The density of states (DOS) and band structure are presented. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With band gap correction, the real part of the dielectric function has been derived from the imaginary part by the Kramers-Kronig (KK) dispersion relationship. The values of reflectivity for normal incidence as a function of photon energy have also been calculated.We found the theoretical results are in good agreement with the experimental data.

  12. Relationships between magnetic foot points and G-band bright structures

    OpenAIRE

    Ishikawa, R.; Tsuneta, S.; Kitakoshi, Y.; Katsukawa, Y.; Bonet, J. A.; Domínguez, S. Vargas; van der Voort, L. H. M. Rouppe; Sakamoto, Y; Ebisuzaki, T.

    2008-01-01

    Magnetic elements are thought to be described by flux tube models, and are well reproduced by MHD simulations. However, these simulations are only partially constrained by observations. We observationally investigate the relationship between G-band bright points and magnetic structures to clarify conditions, which make magnetic structures bright in G-band. The G-band filtergrams together with magnetograms and dopplergrams were taken for a plage region covered by abnormal granules as well as u...

  13. Design and analysis of defected ground structure transformer for dual-band antenna

    Directory of Open Access Journals (Sweden)

    Wai-Wa Choi

    2014-12-01

    Full Text Available This study presents a novel dual-band antenna design methodology utilising a dual-frequency impedance transformer with defected ground structure (DGS. The proposed dual-frequency DGS impedance transformer generates a second resonant frequency from a conventional single-band antenna, resulting dual-band operation. Simulation studies illustrate that the adopted design achieves versatile configurations for arbitrary operating frequencies and diverse input impedance ranges in planar antenna structures. To experimentally verify the proposed design methodology, a dual-frequency DGS impedance transformer was implemented for a 2.4 GHz monopole antenna to obtain a 900/2400 MHz dual-band antenna. Measurement shows that the 10 dB return loss bandwidth in 900 MHz band is 34.4 MHz, whereas that in 2400 MHz band is wider than 530 MHz. Typical monopole radiation patterns are observed at both operating bands.

  14. Band structures in silicene on monolayer gallium phosphide substrate

    Science.gov (United States)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  15. Comparison between Ultroid and Rubber Band Ligation in Treatment of Internal Hemorrhoids

    Directory of Open Access Journals (Sweden)

    Rasoul Azizi

    2010-11-01

    Full Text Available "nHemorrhoid is one of the most common surgical diseases and different methods are available for its treatment. This study is a comparison between two methods of treatment of internal hemorrhoid, Monopolar low voltage instrument (Ultroid and Rubber Band Ligation. This method has been carried out prospectively in which 50 patients who were treated with rubber band ligation and 50 patients with Ultroid were compared according to the incidence of complications, post-operative pain and treatment response. According to this study complete success rate with Ultroid was 82% and partial success rate was 10% and no response to treatment was seen in 8%. In Rubber Band method the complete response rate was 94% (P=0.2. With Ultroid, 74% of patient reported no postoperative pain, 24% reported mild and moderate pain and 2% of patients complained of severe pain. With Rubber band ligation, 72% of patients reported no post-operative pain, 26% reported mild and moderate pain and 1% complained of severe pain (P=0.00. Rubber Band ligation and Ultroid are both considered as outpatient procedures for treatment of hemorrhoids. Both methods are mostly used for grade 1, 2 and sometime grade 3 hemorrhoids. In Ultroid method the operator is required to hold the probe for a period of time, and in most cases, the surgeon should spend between 20-25 minutes for the coagulation of three piles. Some surgeons do not have patience for this modality of internal hemorrhoid treatment. In this study we achieved acceptable results comparable with those of other techniques.

  16. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  17. Comparative studies in method for stratigraphical structure measurement of ice cores: Identification of cloudy bands

    Institute of Scientific and Technical Information of China (English)

    Morimasa Takata; Hitoshi Shoji; Atsushi Miyamoto; Kimiko Shimohara

    2003-01-01

    Cloudy bands are typical stratigraphic structure in deep ice core.Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer.We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study.Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera.We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.

  18. New bismuth borophosphate Bi4BPO10: Synthesis, crystal structure, optical and band structure analysis

    International Nuclear Information System (INIS)

    New bismuth borophosphate Bi4BPO10 was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi2O2]2+ -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi4BPO10. The strips combining stacks are separated by flat triangle [BO3]3− -anions within stacks. Neighboring stacks are separated by tetrahedral [PO4]3−-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi4BPO10 is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi4BPO10 was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi4BPO10 was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi4O3]6+ forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  19. Phononic First Band Gap of Quaternary Layered Periodic Structure with the Lumped-Mass Method

    Directory of Open Access Journals (Sweden)

    Chen Yuan

    2014-01-01

    Full Text Available Existing band gap analysis is mostly focused on the binary structure, while the researches on the quaternary layered periodic structure are still lacking. In this paper, the unidimensional lumped-mass method in the phonic crystal theory is firstly improved so that the material viscoelasticity can be taken into consideration. Then, the binary layered periodic structure is converted into a quaternary one and band gaps appear at low frequency range. Finally, the effects of density, elastic modulus, damping ratio, and the thickness of single material on the first band gap of the quaternary layered periodic structure are analyzed after the algorithm is promoted. The research findings show that effects of density, elastic modulus, and thickness of materials on the first band gap are considerable but those of damping ratio are not so distinct. This research provides theoretical bases for band gap design of the quaternary layered periodic structure.

  20. Effect of acicular ferrite on banded structures in low-carbon microalloyed steel

    Institute of Scientific and Technical Information of China (English)

    Lei Shi; Ze-sheng Yan; Yong-chang Liu; Xu Yang; Cheng Zhang; Hui-jun Li

    2014-01-01

    The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso-thermal transformation and continuous cooling processes was studied by dilatometry and microscopic observation. With respect to the iso-thermal transformation process, the specimen isothermed at 550°C consisted of AF in Mn-poor bands and martensite in Mn-rich bands, whereas the specimen isothermed at 450°C exhibited two different morphologies of AF that appeared as bands. At a continuous cooling rate in the range of 4 to 50°C/s, a mixture of AF and martensite formed in both segregated bands, and the volume fraction of martensite in Mn-rich bands was always higher than that in Mn-poor bands. An increased cooling rate resulted in a decrease in the difference of martensite volume fraction between Mn-rich and Mn-poor bands and thereby leaded to less distinct microstructural banding. The results show that Mn segregation and cooling rate strongly affect the formation of AF-containing banded structures. The formation mechanism of microstructural banding was also discussed.

  1. Study on relationships of electromagnetic band structures and left/right handed structures

    Institute of Scientific and Technical Information of China (English)

    GAO Chu; CHEN ZhiNing; WANG YunYi; YANG Ning

    2007-01-01

    Two types of dual periodic circuits are introduced. The distributions of passbands and stopbands are generated from their dispersion relationships. Based on the study, Brillouin diagrams of three representative special cases are drawn; S parameters of these three cases are simulated by Aglient ADS; the S parameters of one of the three cases are verified by an experiment. The phase characteristics are compared with those generated from the dispersion relationship. The theoretical analysis and the experimental verification show that both types of the periodic structures can behave as electromagnetic band gap (EBG) structures, right-handed structures (RHS), and left-handed structures (LHS), when they operate at different frequency ranges. Thus, the possibility of a physical structure showing these three different characteristics at different frequency ranges is proven.

  2. Band Structure and Optical Properties of Ordered AuCu3

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Lengkeek, H. P.

    1979-01-01

    The optical spectra of ordered AuCu3 have been measured at low temperatures by a direct ellipsometric technique. We find several structural elements above the absorption edge as well as in the infrared. The measured spectra are interpreted in terms of the interband absorption calculated from an ab...... initio band structure obtained by the relativistic linear muffin-tin orbitals method. The band calculation reveals that ordered AuCu3 has distinct copper and gold d bands positioned in and hybridizing with an s band common to copper and gold. The calculated state density is found to be in good agreement...

  3. The band structures of BSb and BxGa1-xSb alloys

    Institute of Scientific and Technical Information of China (English)

    XIONG DePing; ZHOU ShouLi; WANG Qi; LUO Li; HUANG YongQing; REN XiaoMin

    2009-01-01

    The band structures of BSb and BxGa1-xSb alloys are studied using first-principles calculations in the generalized gradient approximation. By SQS-8 supercells to model a random alloy, the direct transition energy-gap (Γ15v-Γ1c) bowing of 3.0 eV is obtained for BxGa1-xSb alloys in x=0-50%, in x=0-11% the energy-gap is the band-gap and increases by 7 meV/%B with boron composition increasing; by SQS-16 supercells the bowing parameter is about 1.9 eV in x= 0-12.5%. The formation enthalpies of mixing, ΔH,are calculated for BxGa1-xAs and BxGa1-xSb alloys. A comparison of enthalpies indicates that BxGa1-xSb films with boron composition of 7% may be possible.

  4. The band structures of BSb and BxGa1-xSb alloys

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The band structures of BSb and BxGa1-xSb alloys are studied using first-principles calculations in the generalized gradient approximation. By SQS-8 supercells to model a random alloy, the direct transition energy-gap (Γ15v- Γ1c) bowing of 3.0 eV is obtained for BxGa1-xSb alloys in x = 0-50%, in x = 0-11% the energy-gap is the band-gap and increases by 7 meV/%B with boron composition increasing; by SQS-16 supercells the bowing parameter is about 1.9 eV in x = 0-12.5%. The formation enthalpies of mixing, ΔH, are calculated for BxGa1-xAs and BxGa1-xSb alloys. A comparison of enthalpies indicates that BxGa1-xSb films with boron composition of 7% may be possible.

  5. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous damping......, and imperfections are studied by analyzing two examples; a 1-D filter and a 2-D wave guide. In 1-D the structural response in the band gap is shown to be insensitive to damping and small imperfections. In 2-D the similar effect of damping is noted for one type of periodic structure, whereas for...... another type the band gap effect is nearly eliminated by damping. In both 1-D and 2-D it is demonstrated how the free structural boundaries affect the response in the band gap due to local resonances. Finally, 2-D wave guides are considered by replacing the periodic structure with a homogeneous structure...

  6. Band structures of TiO2 doped with N, C and B

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result.Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.

  7. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    Science.gov (United States)

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations. PMID:27128858

  8. Band structure of germanium carbides for direct bandgap silicon photonics

    Science.gov (United States)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  9. Novel structure for magnetic rotation bands in 60Ni

    OpenAIRE

    Zhao, P. W.; Zhang, S.Q.; Peng, J.; H.Z. Liang; Ring, P.; Meng, J

    2011-01-01

    The self-consistent tilted axis cranking relativistic mean-field theory based on a point-coupling interaction has been established and applied to investigate systematically the newly observed shears bands in 60Ni. The tilted angles, deformation parameters, energy spectra, and reduced M1 and $E2$ transition probabilities have been studied in a fully microscopic and self-consistent way for various configurations and rotational frequencies. It is found the competition between the configurations ...

  10. Structural comparison of contractile nanomachines

    Directory of Open Access Journals (Sweden)

    Sebastian Kube

    2015-05-01

    Full Text Available Contractile molecular machines are a common feature among bacteriophages and prokaryotes. Due to their stability and the large size, contractile-tailed bacteriophages are traditionally investigated by electron microscopic methods. Complemented by crystallographic studies, a molecular model of contraction for the T4 phage was developed. Lately, also related contractile structures like the Photorhabdus virulence cassette-like particles, the R-Type pyocins and the contractile tubule of the bacterial Type VI secretion system have been analyzed by cryo electron microscopy. Photorhabdus virulence cassette particles and R-Type pyocins are toxin complexes reminiscent of bacteriophage tails that are secreted by bacteria to kill their insect host or competing bacteria. In contrast, the Type VI secretion system is an intracellular apparatus for injection of effector proteins into bacterial and eukaryotic cells. Although it shares homology with other contractile systems, the Type VI secretion system is additionally equipped with a recycling function, which makes it suitable for multiple rounds of action. Starting from the 3D reconstructions, we compare these molecular machines structurally and functionally to their viral counterparts and summarize the current knowledge on their respective mode of action.

  11. Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure

    Science.gov (United States)

    Xu, Kai-kai; Xiao, Zhong-yin; Tang, Jing-yao; Liu, De-jun; Wang, Zi-hua

    2016-07-01

    In the paper, a novel three-layered chiral structure is proposed and investigated, which consists of a split-ring resonator sandwiched between two layers of sub-wavelength gratings. This designed structure can achieve simultaneously asymmetric transmission with an extremely broad bandwidth and high amplitude as well as multi-band 90° polarization rotator with very low dispersion. Numerical simulations adopted two kinds of softwares with different algorithms demonstrate that asymmetric parameter can reach a maximum of 0.99 and over than 0.8 from 4.6 to 16.8 GHz, which exhibit magnitude and bandwidth improvement over previous chiral metamaterials in microwave bands (S, C, X and Ku bands). Specifically, the reason of high amplitude is analyzed in detail based on the Fabry-perot like resonance. Subsequently, the highly efficient polarization conversion with very low dispersion between two orthogonal linearly polarized waves is also analyzed by the optical activity and ellipticity. Finally, the electric fields are also investigated and further demonstrate the correctness of the simulated and calculated results.

  12. Obtaining the band structure of a complicated photonic crystal by linear operations

    Institute of Scientific and Technical Information of China (English)

    吴良; 叶卓; 何赛灵

    2003-01-01

    Absolute band gaps can be created by lifting the degeneracy in the bands of a photonic crystal.To calculate the band structure of a complicated photonic crystal generated by e.g.symmetry breaking,general forms of all possible linear operations are presented in terms of matrices and a procedure to combine these operations is given.Other forms of linear operations(such as the addition,subtraction,and translation transforms) are also presented to obtain an explicit expression for the Fourier coefficient of the dielectric function in the plane-wave expansion method.With the present method,band structures for various complicated photonic crystals(related through these linear operations) can be obtained easily and quickly.As a numerical example,a large absolute band gap for a complicated photonic crystal structure of GaAs is found in the high region of normalized frequency.

  13. Detailed study of the TE band structure of two dimensional metallic photonic crystals with square symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Sedghi, Aliasghar [Islamic Azad University, Shabestar (Iran, Islamic Republic of); Valiaghaie, Soma [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Soufiani, Ahad Rounaghi [Islamic Azad University, Sufian (Iran, Islamic Republic of)

    2014-10-15

    By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.

  14. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  15. Determination of conduction and valence band electronic structure of anatase and rutile TiO2

    Indian Academy of Sciences (India)

    Jakub Szlachetko; Katarzyna Michalow-Mauke; Maarten Nachtegaal; Jacinto Sá

    2014-03-01

    Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelastic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti -band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase possesses localized states located in the band gap where electrons can be trapped, which are almost absent in the rutile structure. This could well explain the reported longer lifetimes in anatase. It was revealed that HR-XAS is insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps.

  16. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.;

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...

  17. Observation of banded spherulites and lamellar structures by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    姜勇; 罗艳红; 范泽夫; 王霞瑜; 徐军; 郭宝华; 李林

    2003-01-01

    Lamellar structures of banded spherulites of poly(ε-caprolactone)/poly(vinyl chloride) (PCL/PVC) blends are observed using tapping mode atomic force microscopy (AFM). The surface of the PCL/PVC banded spherulites presents to be concentric periodic ups and downs. The period of the bands corresponds to the extinction rings under the polarized optical microscopy observation. The lamellae with edge-on orientation in the ridges and the flat-on lamellae in the valleys of the banded spherulites are observed clearly. The twisting between the edge-on and flat-on lamellae is also observed.

  18. Acoustic band pinning in the phononic crystal plates of anti-symmetric structure

    Institute of Scientific and Technical Information of China (English)

    Cai Chen; Zhu Xue-Feng; Chen Qian; Yuan Ying; Liang Bin; Cheng Jian-Chun

    2011-01-01

    Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a onedimensional periodic plate by using the method of supercell plane-wave expansion.The results show that all the bands are pinned in pairs at the Brillouin zone boundary as long as the anti-symmetry remains and acoustic band gaps (ABGs) only appear between certain bands.In order to reveal the relationship between the band pinning and the anti-symmetry,the method of eigenmode analysis is introduced to calculate the displacement fields of different plate structures.Further,the method of harmony response analysis is employed to calculate the reference spectra to verify the accuracy of numerical calculations of acoustic band map,and both the locations and widths of ABGs in the acoustic band map are in good agreement with those of the reference spectra.The investigations show that the pinning effect is very sensitive to the anti-symmetry of periodic plates,and by introducing different types of breakages,more ABGs or narrow pass bands will appear,which is meaningful in band gap engineering.

  19. Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band

    CERN Document Server

    Unruh, Yvonne C; Krivova, Natalie A

    2011-01-01

    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar-cycle time scales. Here we compare solar irradiance in the 220 nm to 240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.

  20. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    Science.gov (United States)

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  1. Phononic band structures and stability analysis using radial basis function method with consideration of different interface models

    Science.gov (United States)

    Yan, Zhi-zhong; Wei, Chun-qiu; Zheng, Hui; Zhang, Chuanzeng

    2016-05-01

    In this paper, a meshless radial basis function (RBF) collocation method is developed to calculate the phononic band structures taking account of different interface models. The present method is validated by using the analytical results in the case of perfect interfaces. The stability is fully discussed based on the types of RBFs, the shape parameters and the node numbers. And the advantages of the proposed RBF method compared to the finite element method (FEM) are also illustrated. In addition, the influences of the spring-interface model and the three-phase model on the wave band gaps are investigated by comparing with the perfect interfaces. For different interface models, the effects of various interface conditions, length ratios and density ratios on the band gap width are analyzed. The comparison results of the two models show that the weakly bonded interface has a significant effect on the properties of phononic crystals. Besides, the band structures of the spring-interface model have certain similarities and differences with those of the three-phase model.

  2. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    Science.gov (United States)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  3. First-principle study of energy band structure of armchair graphene nanoribbons

    Science.gov (United States)

    Ma, Fei; Guo, Zhankui; Xu, Kewei; Chu, Paul K.

    2012-07-01

    First-principle calculation is carried out to study the energy band structure of armchair graphene nanoribbons (AGNRs). Hydrogen passivation is found to be crucial to convert the indirect band gaps into direct ones as a result of enhanced interactions between electrons and nuclei at the edge boundaries, as evidenced from the shortened bond length as well as the increased differential charge density. Ribbon width usually leads to the oscillatory variation of band gaps due to quantum confinement no matter hydrogen passivated or not. Mechanical strain may change the crystal symmetry, reduce the overlapping integral of C-C atoms, and hence modify the band gap further, which depends on the specific ribbon width sensitively. In practical applications, those effects will be hybridized to determine the energy band structure and subsequently the electronic properties of graphene. The results can provide insights into the design of carbon-based devices.

  4. Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoling; Chen, Changqing, E-mail: chencq@tsinghua.edu.cn

    2013-12-15

    The band structures of two locally resonant phononic crystals (LRPCs) with periodic multilayered cylindrical inclusions embedded in an elastic matrix are investigated by the finite-element method. The inclusions consist of electroactive polymer layer(s). Tunability of the band gaps of the phononic crystals by applying electric field upon the electroactive layer is demonstrated. A simple analytical expression is presented on the relationship between the stop band boundaries and the electric field. Good agreement between the analytical and numerical predictions is obtained. The effects of initial stress on the band structures are explored. It is found that tensile initial stress shifts up the band gaps while compressive initial stress shifts down or even closes them.

  5. Efficient VLSI Architecture For CSD Basedsub-Band Tree Structure Using 4-Tap Filter

    OpenAIRE

    Radhe Kant Mishra,; Dr. Subbaratnam Kumar

    2014-01-01

    A sub-band tree structure hardware design based on canonic signed digit (CSD) architecture is presented in this paper. We have proposed based on canonic signed digit (CSD) arithmetic for low complexity and efficient implementation of sub-band tree structure. The canonic signed digit (CSD) technique has been applied to reduce the number of full adders required by 2’s complement based deigns. This architecture is suitable for high speed on-line applications. With this architectu...

  6. Dual-Band Terahertz Left-Handed Metamaterial with Fishnet Structure

    Institute of Scientific and Technical Information of China (English)

    DU Qiu-Jiao; LIU Jin-Song; WANG Ke-Jia; YI Xu-Nong; YANG Hong-Wu

    2011-01-01

    We present the design of a dual-band left-handed metamaterial with fishnet structure in the terahertz regime. Its left-handed properties are described by the retrieved effective electromagnetic parameters. We introduce an equivalent circuit which offers a theoretical explanation for the left-handed behavior of the dual-band fishnet metamaterial, and investigate its losses receiving higher figure of merit. The design is beneficial to the development of frequency agile and broadband THz materials and devices. The dual-band fishnet metamaterial can be extended to infrared and optical frequency ranges by regulating the structural parameters.

  7. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    OpenAIRE

    Hao Liu; Ziqiang Xu

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensio...

  8. Realization of Band-Notch UWB Monopole Antenna Using AMC Structure

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2013-06-01

    Full Text Available This article presents the design, simulation and testing of an Ultra Wide Band (UWB planar monopole antenna with WLAN band-notch characteristic. The proposed antenna consists, the combination of planar monopole antenna with partial ground and a pair of AMC structures. The AMC structure used for the design is mushroom-like. Design equation of EBG parameters is also proposed for FR4 substrate using transmission line model. Using proposed equations, Mushroom-like EBG structure is integrated along the feed line of a monopole antenna for WLAN (5 GHz – 6 GHz band rejection. TheCurrent distribution and equivalent circuit model of antenna is used to explain band-notch characteristic of EBG resonator. The proposed antenna is fabricated on an FR4 substrate with a thickness of 1.6 mmand εr = 4.4. The measured VSWR characteristic is less than 2 for complete UWB band except for WLAN band i.e. 5 GHz – 6 GHz. The gain of the proposed structure is around 2 dBi – 6.7 dBi for complete UWBband except for WLAN band where it is reduced to -4 dBi. The measured radiation pattern of proposed antenna is omnidirectional along H plane and bidirectional in E plane. A nearly constant group delaywith variations < 2ns, except for the notched bandwidth makes proposed antenna suitable for UWB application.

  9. Cell and band structures in cold rolled polycrystalline copper

    DEFF Research Database (Denmark)

    Ananthan, V.S.; Leffers, Torben; Hansen, Niels

    1991-01-01

    The effect of plastic strain on the deformation microstructure has been investigated in polycrystalline copper rolled at room temperature to 5, 10, 20, and 30% reduction in thickness equivalent strain 0.06-0.42). Results from transmission electron microscopy (TEM) observations show that dense...... dislocation walls (DDWs) and cells develop during the initial stages of cold rolling. Grains having a high density of DDWs are described as high wall density (HWD) structures, and grains having a low density of DDWs are described as low wall density (LWD) structures. These structures are characterised by cell...... size, misorientation across the cell walls, and the crystallographic orientation of the grains in which they appear. The DDWs in the HWD structures have special characteristics, extending along several cells and having a misorientation across them greater than that across ordinary cell boundaries...

  10. Photonic band gaps in materials with triply periodic surfaces and related tubular structures

    NARCIS (Netherlands)

    Michielsen, K; Kole, JS

    2003-01-01

    We calculate the photonic band gap of triply periodic bicontinuous cubic structures and of tubular structures constructed from the skeletal graphs of triply periodic minimal surfaces. The effect of the symmetry and topology of the periodic dielectric structures on the existence and the characteristi

  11. Comparison of C-Band and X-Band Polarimetric SAR Data for River Ice Classification on the Peace River

    Science.gov (United States)

    Łoś, H.; Osińska-Skotak, K.; Pluto-Kossakowska, J.; Bernier, M.; Gauthier, Y.; Jasek, M.; Roth, A.

    2016-06-01

    In this study, synthetic aperture radar (SAR) data from TerraSAR-X were compared with RADARSAT-2 data to evaluate their effectiveness for river ice monitoring on the Peace River. For several years RADARSAT-2 data have been successfully used for river ice observation. However, it is important to take into account data from other satellites as they may provide solutions when it is not possible to obtain images from the preferred system (e.g., in the case of acquisition priority conflicts). In this study we compared three TerraSAR-X (X-band) and three RADARSAT-2 (C-band) datasets acquired in December 2013 on a section of the Peace River, Canada. For selected classes (open water, skim ice, juxtaposed skim ice, agglomerated skim ice, frazil run and consolidated ice) we compared backscattering values in HH and VV polarisation and performed Wishart supervised classification. Covariance matrices that were previously filtered using a refined Lee filter were used as input data for classification. For all data sets the overall accuracy was higher than 80%. Similar errors associated with classification output were observed for data from both satellite systems.

  12. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  13. Polar semiconductor heterojunction structure energy band diagram considerations

    Science.gov (United States)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  14. Precise fabrication of X-band accelerating structure

    International Nuclear Information System (INIS)

    An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10-4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)

  15. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  16. Electronic Band Structures of TiO2 with Heavy Nitrogen Doping

    Institute of Scientific and Technical Information of China (English)

    XUE Jinbo; LI Qi; LIANG Wei; SHANG Jianku

    2008-01-01

    The first-principles density-functional calculation was conducted to investigate the electronic band structures of titanium dioxide with heavy nitrogen doping (TiO2-xNx).The calculation results indicate that when x≤0.25,isolated N 2p states appear above the valence-band maximum of TiO2 without a band-gap narrowing between O 2p and Ti 3d states.When x≥0.50,an obvious band gap narrowing between O 2p and Ti 3d states was observed along with the existence of isolated N 2p states above the valence-band of TiO2,indicating that the mechanism proposed by Asahi et al operates under heavy nitrogen doping condition.

  17. Berry phase and band structure analysis of the Weyl semimetal NbP

    Science.gov (United States)

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  18. Superlattice band structure: New and simple energy quantification condition

    International Nuclear Information System (INIS)

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga0.5Al0.5As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results

  19. Superlattice band structure: New and simple energy quantification condition

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  20. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  1. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    Science.gov (United States)

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications. PMID:25075939

  2. Strain effects on band structure of wurtzite ZnO: a GGA + U study

    International Nuclear Information System (INIS)

    Band structures in wurtzite bulk ZnO/Zn1−xMgxO are calculated using first-principles based on the framework of generalized gradient approximation to density functional theory with the introduction of the on-site Coulomb interaction. Strain effects on band gap, splitting energies of valence bands, electron and hole effective masses in strained bulk ZnO are discussed. According to the results, the band gap increases gradually with increasing stress in strained ZnO as an Mg content of Zn1−xMgxO substrate less than 0.3, which is consistent with the experimental results. It is further demonstrated that electron mass of conduction band (CB) under stress increases slightly. There are almost no changes in effective masses of light hole band (LHB) and heavy hole band (HHB) along [00k] and [k00] directions under stress, and stress leads to an obvious decrease in effective masses of crystal splitting band (CSB) along the same directions. (semiconductor materials)

  3. Structure sensitive bands in the vibrational spectra of metal complexes of tetraphenylporphine

    Science.gov (United States)

    Oshio, Hiroki; Ama, Tomoharu; Watanabe, Takeshi; Kincaid, James; Nakamoto, Kazuo

    The i.r. and RR spectra of twenty Fe(TPP)LL' type complexes have been measured to locate structure-sensitive bands. In i.r. spectra, band I (1350-1330 cm -1) and band III (469-432 cm -1) are spin-state sensitive whereas band II (806-790 cm -1) is oxidation-state sensitive and slightly spin-state sensitive in the Fe(II) state. To examine the nature of these bands, the i.r. spectra of Co(TPP), (Fe(TPP)) 2O and their d8 and d20 analogs have been measured, and empirical assignments proposed. In RR spectra, band C (1545-1498 cm -1, ap) and band D (1565-1540 cm -1, p) are spin-state sensitive whereas band E (391-376 cm -1, p) is sensitive to both spin and oxidation states. These results on RR spectra are in good agreement with those of previous workers.

  4. Relationships between magnetic foot points and G-band bright structures

    CERN Document Server

    Ishikawa, R; Kitakoshi, Y; Katsukawa, Y; Bonet, J A; Domínguez, S Vargas; van der Voort, L H M Rouppe; Sakamoto, Y; Ebisuzaki, T

    2008-01-01

    Magnetic elements are thought to be described by flux tube models, and are well reproduced by MHD simulations. However, these simulations are only partially constrained by observations. We observationally investigate the relationship between G-band bright points and magnetic structures to clarify conditions, which make magnetic structures bright in G-band. The G-band filtergrams together with magnetograms and dopplergrams were taken for a plage region covered by abnormal granules as well as ubiquitous G-band bright points, using the Swedish 1-m Solar Telescope (SST) under very good seeing conditions. High magnetic flux density regions are not necessarily associated with G-band bright points. We refer to the observed extended areas with high magnetic flux density as magnetic islands to separate them from magnetic elements. We discover that G-band bright points tend to be located near the boundary of such magnetic islands. The concentration of G-band bright points decreases with inward distance from the boundar...

  5. Tunable band structures of polycrystalline graphene by external and mismatch strains

    Institute of Scientific and Technical Information of China (English)

    Jiang-Tao Wu; Xing-Hua Shi; Yu-Jie Wei

    2012-01-01

    Lacking a band gap largely limits the application of graphene in electronic devices.Previous study shows that grain boundaries (GBs) in polycrystalline graphene can dramatically alter the electrical properties of graphene.Here,we investigate the band structure of polycrystalline graphene tuned by externally imposed strains and intrinsic mismatch strains at the GB by density functional theory (DFT) calculations.We found that graphene with symmetrical GBs typically has zero band gap even with large uniaxial and biaxial strain.However,some particular asymmetrical GBs can open a band gap in graphene and their band structures can be substantially tuned by external strains.A maximum band gap about 0.19 eV was observed in matched-armchair GB (5,5) | (3,7) with a misorientation of θ =13° when the applied uniaxial strain increases to 9%.Although mismatch strain is inevitable in asymmetrical GBs,it has a small influence on the band gap of polycrystalline graphene.

  6. A short remark on the band structure of free-edge platonic crystals

    Science.gov (United States)

    Smith, Michael J. A.; Meylan, Michael H.; McPhedran, Ross C.; Poulton, Chris G.

    2014-10-01

    A corrected version of the multipole solution for a thin plate perforated in a doubly periodic fashion is presented. It is assumed that free-edge boundary conditions are imposed at the edge of each cylindrical inclusion. The solution procedure given here exploits a well-known property of Bessel functions to obtain the solution directly, in contrast to the existing incorrect derivation. A series of band diagrams and an updated table of values are given for the resulting system (correcting known publications on the topic), which shows a spectral band at low frequency for the free-edge problem. This is in contrast to clamped-edge boundary conditions for the same biharmonic plate problem, which features a low-frequency band gap. The numerical solution procedure outlined here is also simplified relative to earlier publications, and exploits the spectral properties of complex-valued matrices to determine the band structure of the structured plate.

  7. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    Science.gov (United States)

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  8. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    Science.gov (United States)

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.

  9. Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation

    Science.gov (United States)

    Zhang, Xiaochuan; Wang, Yong; Yang, Jia; Qiao, Zhixia; Ren, Chunhua; Chen, Cheng

    2016-10-01

    The ferrite/pearlite banded structure causes the anisotropic behavior of steel. In this paper, digital image correlation (DIC) was used to analyze the micro deformation of this microstructure under uniaxial tension. The reliability of DIC for this application was verified by a zero-deformation experiment. The results show that the performance of DIC can satisfy the requirements of the tensile deformation measurement. Then, two uniaxial tensile tests in different directions (longitudinal direction and transverse direction) were carried out and DIC was used to measure the micro deformation of the ferrite/pearlite banded structure. The measured results show that the ferrite bands undergo the main deformation in the transverse tension, which results in the relatively weaker tensile properties in the transverse direction than in the longitudinal direction. This work is useful to guide the modification of the bands morphology and extend the application scope of DIC.

  10. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong;

    2005-01-01

    in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...... in electromagnetic and microwave applications once the Maxwell's equations are appropriately modeled. Originality/value - The method validates its values and properties through extensive studies on regular and defective 1D PBG structures in stratified medium, and it can be further extended to solving more...

  11. Pathway to Oxide Photovoltaics via Band-Structure Engineering of SnO

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Haowei; Bikowski, Andre; Zakutayev, Andriy; Lany, Stephan

    2016-10-01

    All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility of the approach.

  12. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  13. Photonic band structures of two-dimensional photonic crystals with deformed lattices

    Institute of Scientific and Technical Information of China (English)

    Cai Xiang-Hua; Zheng Wan-Hua; Ma Xiao-Tao; Ren Gang; Xia Jian-Bai

    2005-01-01

    Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

  14. Study of periodic band gap structure of the magnetized plasma photonic crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-feng; MA Li; LIU Shao-bin

    2009-01-01

    The characteristics of the periodic band gaps of the one dimension magnetized plasma photonic crystals are studied with the piecewise linear current density recursive convolution (PLCDRC) finite-differential time-domain (FDTD) method. In fre-quency-domain, the transmission coefficients of electromagnetic Gaussian pulses are computed, and the effects of the periodic structure constant, plasma layer thickness and parameters of plasma on the properties of periodic band gaps of magnetized photonic crystals are analyzed. The results show that the periodic band gaps depend strongly on the plasma parameters.

  15. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    Science.gov (United States)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  16. The LDA+U calculation of electronic band structure of GaAs

    Science.gov (United States)

    Bahuguna, B. P.; Sharma, R. O.; Saini, L. K.

    2016-05-01

    We present the electronic band structure of bulk gallium arsenide (GaAs) using first principle approach. A series of calculations has been performed by applying norm-conserving pseudopotentials and ultrasoft non-norm-conserving pseudopotentials within the density functional theory. These calculations yield too small band gap as compare to experiment. Thus, we use semiemperical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U), which is quite effective in order to describe the band gap of GaAs.

  17. Determining rotational temperatures from the OH(8-3 band, and a comparison with OH(6-2 rotational temperatures at Davis, Antarctica

    Directory of Open Access Journals (Sweden)

    F. Phillips

    2004-04-01

    Full Text Available Rotational temperatures derived from the OH(8–3 band may vary by ~18K depending on the choice of transition probabilities. This is of concern when absolute temperatures or trends determined in combination with measurements of other hydroxyl bands are important. In this paper, measurements of the OH(8–3 temperature-insensitive Q/P and R/P line intensity ratios are used to select the most appropriate transition probabilities for use with this band. Aurora, airglow and solar and telluric absorption in the OH(8–3 band are also investigated. Water vapour absorption of P1(4, airglow or auroral contamination of P1(2 and solar absorption in the vicinity of P1(5 are concerns to be considered when deriving rotational temperatures from this band.

    A comparison is made of temperatures derived from OH(6–2 and OH(8–3 spectra collected alternately at Davis (69° S, 78° E in 1990. An average difference of ~4K is found, with OH(8–3 temperatures being warmer, but a difference of this magnitude is within the two sigma uncertainty limit of the measurements.

    Key words. Atmospheric composition and structure airglow and aurora; pressure, density, and temperature

  18. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    Science.gov (United States)

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  19. Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather radar systems

    OpenAIRE

    Berne, A.D.; Delrieu, G.; Andrieu, H.

    2005-01-01

    The present study aims at a preliminary approach of multiradar compositing applied to the estimation of the vertical structure of precipitation¿an important issue for radar rainfall measurement and prediction. During the HYDROMET Integrated Radar Experiment (HIRE¿98), the vertical profile of reflectivity was measured, on the one hand, with an X-band vertically pointing radar system, and, on the other hand, with an X-band RHI scanning protocol radar. The analysis of the raw data highlights the...

  20. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    Science.gov (United States)

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-01

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures.

  1. Inertial amplification of continuous structures: Large band gaps from small masses

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev; Bilal, Osama R.; Jensen, Jakob Søndergaard;

    2016-01-01

    We investigate wave motion in a continuous elastic rod with a periodically attached inertial amplification mechanism. The mechanism has properties similar to an “inerter” typically used in vehicle suspensions, however here it is constructed and utilized in a manner that alters the intrinsic...... properties of a continuous structure. The elastodynamic band structure of the hybridrod-mechanism structure yields band gaps that are exceedingly wide and deep when compared to what can be obtained using standard local resonators, while still being low in frequency. With this concept, a large band gap may...... be realized with as much as twenty times less added mass compared to what is needed in a standard local resonator configuration. The emerging inertially enhanced continuous structure also exhibits unique qualitative features in its dispersion curves. These include the existence of a characteristic double...

  2. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Science.gov (United States)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-01

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  3. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  4. Research on the large band gaps in multilayer radial phononic crystal structure

    Science.gov (United States)

    Gao, Nansha; Wu, Jiu Hui; Guan, Dong

    2016-04-01

    In this paper, we study the band gaps (BGs) of new proposed radial phononic crystal (RPC) structure composed of multilayer sections. The band structure, transmission spectra and eigenmode displacement fields of the multilayer RPC are calculated by using finite element method (FEM). Due to the vibration coupling effects between thin circular plate and intermediate mass, the RPC structure can exhibit large BGs, which can be effectively shifted by changing the different geometry values. This study shows that multilayer RPC can unfold larger and lower BGs than traditional phononic crystals (PCs) and RPC can be composed of single material.

  5. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...

  6. Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl)

    International Nuclear Information System (INIS)

    Highlights: • We provide an ARPES comparison between the three tellurohalides BiTeX (X = I, Br, Cl). • They present a similar band structure with namely spin-split bulk and surface states. • They offer, except for BiTeCl, the possibility of ambipolar conduction. • They can be easily doped. • From the data appeared so far, BiTeBr may be the most appealing for applications. - Abstract: We present an overview of the new family of semiconductors BiTeX (X = I, Br, Cl) from the perspective of angle resolved photoemission spectroscopy. The strong band bending occurring at the surface potentially endows them with a large flexibility, as they are capable of hosting both hole and electron conduction, and can be modified by inclusion or adsorption of foreign atoms. In addition, their trigonal crystal structure lacks a center of symmetry and allows for both bulk and surface spin-split bands at the Fermi level. We elucidate analogies and differences among the three materials, also in the light of recent theoretical and experimental work

  7. Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl)

    Energy Technology Data Exchange (ETDEWEB)

    Moreschini, L., E-mail: lmoreschini@lbl.gov [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Autès, G. [Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Crepaldi, A. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Moser, S. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Johannsen, J.C. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Kim, K.S. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang 790-784 (Korea, Republic of); Berger, H.; Bugnon, Ph.; Magrez, A. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Denlinger, J.; Rotenberg, E.; Bostwick, A. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yazyev, O.V. [Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); and others

    2015-05-15

    Highlights: • We provide an ARPES comparison between the three tellurohalides BiTeX (X = I, Br, Cl). • They present a similar band structure with namely spin-split bulk and surface states. • They offer, except for BiTeCl, the possibility of ambipolar conduction. • They can be easily doped. • From the data appeared so far, BiTeBr may be the most appealing for applications. - Abstract: We present an overview of the new family of semiconductors BiTeX (X = I, Br, Cl) from the perspective of angle resolved photoemission spectroscopy. The strong band bending occurring at the surface potentially endows them with a large flexibility, as they are capable of hosting both hole and electron conduction, and can be modified by inclusion or adsorption of foreign atoms. In addition, their trigonal crystal structure lacks a center of symmetry and allows for both bulk and surface spin-split bands at the Fermi level. We elucidate analogies and differences among the three materials, also in the light of recent theoretical and experimental work.

  8. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    Science.gov (United States)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  9. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    Science.gov (United States)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  10. Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2012-01-01

    for the gap error. The calculated band gap shows a strong decrease with the thickness (m) of the InN well. In superlattices containing a single layer of InN (m = 1) the band gap increases weakly with the GaN barrier thickness n, reaching a saturation value around 2 eV. In superlattices with n = m and n > 5......InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite InN/GaN......(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...

  11. Multi-quasiparticle {gamma}-band structure in neutron-deficient Ce and Nd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, J.A. [Physics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Palit, R.; Naik, Z. [Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India); Sun, Y. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: sunyang@sjtu.edu.cn

    2009-06-01

    The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that {gamma}-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface {gamma}-oscillation in deformed nuclei based on the ground-state to {gamma}-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I=10 aligning states in {sup 134}Ce and both exhibiting a neutron character.

  12. Multi-Quasiparticle Gamma-Band Structure in Neutron-Deficient Ce and Nd Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Javid [ORNL; Bhat, G. H. [University of Kashmir, Srinagar, India; Palit, R. [Tata Institute of Fundamental Research, Mumbai, India; Naik, Z. [Tata Institute of Fundamental Research, Mumbai, India; Sun, Y. [Shanghai Jiao Tong University, Shanghai

    2009-01-01

    The newly developed multi-quasiparticle triaxial projected shell-model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce and Nd isotopes. It is observed that gamma bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma oscillation in deformed nuclei based on the ground state to gamma bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I=10 aligning states in ^{134}Ce and both exhibiting a neutron character.

  13. Energy band structure of Cr by the Slater-Koster interpolation scheme

    International Nuclear Information System (INIS)

    The matrix elements of the Hamiltonian between nine localized wave-functions in tight-binding formalism are derived. The symmetry adapted wave-functions and the secular equations are formed by the group theory method for high symmetry points in the Brillouin zone. A set of interaction integrals is chosen on physical ground and fitted via the Slater-Koster interpolation scheme to the abinito band structure of chromium calculated by the Green function method. Then the energy band structure of chromium is interpolated and extrapolated in the Brillouin zone. (author)

  14. Crystal structure and band gap of AlGaAsN

    Science.gov (United States)

    Munich, D. P.; Pierret, R. F.

    1987-09-01

    Quantum dielectric theory is applied to the quaternary alloy Al xGa 1- xAs 1- yN y to predict its electronic properties as a function of Al and N mole fractions. Results are presented for the expected crystal structure, minimum electron energy band gap, and direction in k-space of the band gap minimum for all x and y values. The results suggest that, for a proper choice of x and y, Al xGa 1- xAs 1- yN y could exhibit certain advantages over Al xGa 1- xAs when utilized in field-effect transistor structures.

  15. The calculation of the band structure in 3D phononic crystal with hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Aryadoust, Mahrokh; Salehi, H. [University of Shahid Chamran, Ahvaz (Iran, Islamic Republic of). Dept. of Physics

    2015-07-01

    In this article, the propagation of acoustic waves in the phononic crystals (PCs) of three dimensions with the hexagonal (HEX) lattice is studied theoretically. The PCs are constituted of nickel (Ni) spheres embedded in epoxy. The calculations of the band structure and the density of states are performed using the plane wave expansion (PWE) method in the irreducible part of the Brillouin zone (BZ). In this study, we analyse the dependence of the band structures inside (the complete band gap width) on c/a and filling fraction in the irreducible part of the first BZ. Also, we have analysed the band structure of the ALHA and MLHKM planes. The results show that the maximum width of absolute elastic band gap (AEBG) (0.045) in the irreducible part of the BZ of HEX lattice is formed for c/a=6 and filling fraction equal to 0.01. In addition, the maximum of the first and second AEBG widths are 0.0884 and 0.0474, respectively, in the MLHKM plane, and the maximum of the first and second AEBG widths are 0.0851 and 0.0431, respectively, in the ALHA plane.

  16. Complete multipactor suppression in an X-band dielectric-loaded accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C. [Euclid Techlabs, LLC, 5900 Harper Rd, Solon, Ohio 44139, USA; High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Gold, S. H. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA; Fischer, Richard [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-05-09

    Multipactor is a major issue limiting the gradient of rf-driven Dielectric-Loaded Accelerating (DLA) structures. Theoretical models have predicted that an axial magnetic field applied to DLA structures may completely block the multipactor discharge. However, previous attempts to demonstrate this magnetic field effect in an X-band traveling-wave DLA structure were inconclusive, due to the axial variation of the applied magnetic field, and showed only partial suppression of the multipactor loading [Jing et al., Appl. Phys. Lett. 103, 213503 (2013)]. The present experiment has been performed under improved conditions with a uniform axial magnetic field extending along the length of an X-band standing-wave DLA structure. Multipactor loading began to be continuously reduced starting from 3.5 kG applied magnetic field and was completely suppressed at 8 kG. Dependence of multipactor suppression on the rf gradient inside the DLA structure was also measured.

  17. Band gap structures in two-dimensional super porous phononic crystals.

    Science.gov (United States)

    Liu, Ying; Sun, Xiu-zhan; Chen, Shao-ting

    2013-02-01

    As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs is given. Through the component cell porosity controlling, the effects of component cells on the whole responses of the structures are investigated. The intrinsic relation between the component cell porosity and the critical porosity of Kagome honeycombs is established. These results will provide an important guidance in the band structure design of super porous phononic crystals.

  18. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Jerome Sutherland

    2001-05-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  19. Study on temperature property of band structures in onedimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using transfer matrix method, the optical transmission properties in one-dimensional (1-D) photonic crystal is analyzed.When the temperature varies, not only the refractive index of the optical medium is changed because of the thermo-optical effect, but also the thickness of the optical medium is changed due to the thermal-expansion effect. Thus, the structure of 1/4 wave-plate stack in original photonic crystal is destroyed and the band structure varies. In this work, the effects of the temperature variation on the first and second band gap in a 1-D photonic crystal are analyzed in detail. It is found that the changes of the starting wavelength, the cut-off wavelength and the forbidden band width depend linearly on the temperature.

  20. Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice

    Science.gov (United States)

    Forti, S.; Stöhr, A.; Zakharov, A. A.; Coletti, C.; Emtsev, K. V.; Starke, U.

    2016-09-01

    The electronic band structure of an epitaxial graphene superlattice, generated by intercalating a monolayer of Cu atoms, is directly imaged by angle-resolved photoelectron spectroscopy. The 3.2 nm lateral period of the superlattice is induced by a varying registry between the graphene honeycomb and the Cu atoms as imposed by the heteroepitaxial interface Cu/SiC. The carbon atoms experience a lateral potential across the supercell of an estimated value of about 65 meV. The potential leads to strong energy renormalization in the band structure of the graphene layer and the emergence of mini-Dirac cones. The mini-cones’ band velocity is reduced to about half of graphene's Fermi velocity. Notably, the ordering of the interfacial Cu atoms can be reversibly blocked by mild annealing. The superlattice indeed disappears at ∼220 °C.

  1. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...... of photoemission spectra from W single crystals. The nondirect as well as the direct models for bulk photoemission processes are investigated. The emission from the three low-index surfaces (100), (110), and (111) exhibits strong dependence on direction and acceptance cone. According to the present band model.......e., emission of those electrons which are excited in a single-step process from initial states near the surface to final states outside the crystal. The electrons that are emitted from the surface in directions perpendicular to the crystal planes carry information on the one-dimensional surface density...

  2. Global Evolutionary Algorithms in the Design of Electromagnetic Band Gap Structures with Suppressed Surface Waves Propagation

    Directory of Open Access Journals (Sweden)

    P. Kovacs

    2010-04-01

    Full Text Available The paper is focused on the automated design and optimization of electromagnetic band gap structures suppressing the propagation of surface waves. For the optimization, we use different global evolutionary algorithms like the genetic algorithm with the single-point crossover (GAs and the multi-point (GAm one, the differential evolution (DE and particle swarm optimization (PSO. The algorithms are mutually compared in terms of convergence velocity and accuracy. The developed technique is universal (applicable for any unit cell geometry. The method is based on the dispersion diagram calculation in CST Microwave Studio (CST MWS and optimization in Matlab. A design example of a mushroom structure with simultaneous electromagnetic band gap properties (EBG and the artificial magnetic conductor ones (AMC in the required frequency band is presented.

  3. New band structures and an unpaired crossing in {sup 78}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Doering, J.; Johns, G.D.; Kaye, R.A.; Solomon, G.Z.; Tabor, S.L. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Doering, J. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Devlin, M.; LaFosse, D.R.; Lerma, F.; Sarantites, D.G. [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States); Baktash, C.; Rudolph, D.; Yu, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lee, I.Y.; Macchiavelli, A.O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Birriel, I.; Saladin, J.X.; Winchell, D.F.; Wood, V.Q. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Ragnarsson, I. [Department of Mathematical Physics, Lund Institute of Technology, S-22100 Lund (Sweden)

    1999-02-01

    High-spin states in {sup 78}Kr were studied using the {sup 58}Ni({sup 23}Na,3p) reaction at 70 MeV and the {sup 58}Ni({sup 28}Si,{alpha}4p) reaction at 130 MeV. Prompt {gamma}-{gamma} coincidences were measured using the Pitt-FSU detector array and the GAMMASPHERE-MICROBALL array. Results from these experiments have led to 26 new excitation levels, some of which have been grouped into 3 new bands. Spins were assigned based on directional correlations of oriented nuclei. Two of the new negative-parity bands appear to form a signature-partner pair based on a two-quasineutron structure, in contrast to the previously known two-quasiproton negative-parity bands. A forking has been observed at the 24{sup +} state in the yrast band, which calculations suggest may result from an unpaired crossing. The available evidence suggests oblate shapes in the yrast band coexist with prolate shapes in the negative-parity bands. {copyright} {ital 1999} {ital The American Physical Society}

  4. New band structures and an unpaired crossing in {sup 78}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Doring, J.; Johns, R.A.; Solomon, G.; Tabor, S.; Devlin, M.; LaFosse, D.; Lerma, F.; Sarantites, D.; Baktash, C.; Rudolph, D.; Yu, C.H.; Lee, I.Y.; Macchiavelli, A.; Birriel, I.; Saladin, J.; Winchell, D.; Wood, V.Q.; Ragnarsson, I.

    1998-07-06

    High-spin states in {sup 78}Kr were studied using the {sup 58}Ni({sup 23}Na,3p) reaction at 70 MeV and the {sup 58}Ni({sup 28}Si,{alpha}4p) reaction at 130 MeV. Prompt {gamma}-{gamma} coincidences were measured using the Pitt-FSU detector array and the GAMMASPHERE-MICROBALL array. Results from these experiments have led to 26 new excitation levels, some of which have been grouped into 3 new bands. Spins were assigned based on directional correlations of oriented nuclei. Two of the new negative-parity bands appear to form a signature-partner pair based on a two-quasineutron structure, in contrast to the previously known two-quasiproton negative-parity bands. A forking has been observed at the 24{sup +} state in the yrast band, which calculations suggest may result from an unpaired crossing. The available evidence suggests oblate shapes in the yrast band coexist with prolate shapes in the negative-parity bands.

  5. Automatically inferred Markov network models for classification of chromosomal band pattern structures.

    Science.gov (United States)

    Granum, E; Thomason, M G

    1990-01-01

    A structural pattern recognition approach to the analysis and classification of metaphase chromosome band patterns is presented. An operational method of representing band pattern profiles as sharp edged idealized profiles is outlined. These profiles are nonlinearly scaled to a few, but fixed number of "density" levels. Previous experience has shown that profiles of six levels are appropriate and that the differences between successive bands in these profiles are suitable for classification. String representations, which focuses on the sequences of transitions between local band pattern levels, are derived from such "difference profiles." A method of syntactic analysis of the band transition sequences by dynamic programming for optimal (maximal probability) string-to-network alignments is described. It develops automatic data-driven inference of band pattern models (Markov networks) per class, and uses these models for classification. The method does not use centromere information, but assumes the p-q-orientation of the band pattern profiles to be known a priori. It is experimentally established that the method can build Markov network models, which, when used for classification, show a recognition rate of about 92% on test data. The experiments used 200 samples (chromosome profiles) for each of the 22 autosome chromosome types and are designed to also investigate various classifier design problems. It is found that the use of a priori knowledge of Denver Group assignment only improved classification by 1 or 2%. A scheme for typewise normalization of the class relationship measures prove useful, partly through improvements on average results and partly through a more evenly distributed error pattern. The choice of reference of the p-q-orientation of the band patterns is found to be unimportant, and results of timing of the execution time of the analysis show that recent and efficient implementations can process one cell in less than 1 min on current standard

  6. Crystal structure, energy band and optical properties of dysprosium monophosphate DyPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Khadraoui, Z.; Bouzidi, C., E-mail: bouzidtc@yahoo.fr; Horchani-Naifer, K.; Ferid, M.

    2014-12-25

    Graphical abstract: The monophosphate DyPO{sub 4} has been synthesized by high temperature solid-state reaction method and was structurally characterized by single crystal X-ray diffraction. DyPO{sub 4} crystallizes in the tetragonal system (I4{sub 1}/Iamd). The energy-band structure, density of states and the chemical bonds have been investigated by density functional methods (DFT). - Highlights: • The DyPO{sub 4} has been synthesized by high temperature solid-state reaction method. • DFT was used to determine the electronic structure and optical properties of DyPO{sub 4}. • The monophosphate DyPO{sub 4} is an insulator with direct band gap (6.38 eV). - Abstract: A rare earth monophosphate crystal of DyPO{sub 4} has been synthesized by high temperature solid-state reaction method and was structurally characterized by single crystal X-ray diffraction. Atomic arrangement of DyPO{sub 4} structure is based on corner and edge sharing PO{sub 4} tetrahedra and DyO{sub 8} polyhedra. The FTIR, Raman, Scanning electron microscopy, diffuse reflectance and emission spectra of the compound have been investigated. Density functional calculation using a Generalized Gradient Approximation was used to determine the electronic structure and optical properties. The calculated total and partial densities of states indicate that the top of valance band is mainly built upon O-2p states with P-3p states via σ (P–O) interactions, and the low conduction bands mostly originates from Dy-5d. The results show that the monophosphate DyPO{sub 4} is an insulator with a calculated band gap (5.8 eV) closer to the experimental value (6.38 eV)

  7. A Review of Electronic Band Structure of Graphene and Carbon Nanotubes Using Tight Binding

    Directory of Open Access Journals (Sweden)

    Davood Fathi

    2011-01-01

    Full Text Available The electronic band structure variations of single-walled carbon nanotubes (SWCNTs using Huckle/tight binding approximation theory are studied. According to the chirality indices, the related expressions for energy dispersion variations of these elements are derived and plotted for zigzag and chiral nanotubes.

  8. Evolution of structural relaxation spectra of glycerol within the gigahertz band

    Science.gov (United States)

    Franosch, T.; Göauttze, W.; Mayr, M. R.; Singh, A. P.

    1997-03-01

    The structural relaxation spectra and the crossover from relaxation to oscillation dynamics, as measured by Wuttke et al. [Phys. Rev. Lett. 72, 3052 (1994)] for glycerol within the GHz band by depolarized light scattering, are described by the solutions of a schematic mode coupling theory model. The applicability of scaling laws for the discussion of the model solutions is considered.

  9. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.;

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...

  10. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    Science.gov (United States)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  11. Band structure and optical properties of LiKB4O7 single crystal

    NARCIS (Netherlands)

    Smok, P; Seinert, H; Kityk, [No Value; Berdowski, J

    2003-01-01

    The band structure (BS), electronic charge density distribution and linear optical properties of the LiKB4O7 (LKB4) single crystal are calculated using a self-consistent norm-conserving pseudo-potential method within the framework of the local density approximation theory. Dispersion of the imaginar

  12. Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem

    KAUST Repository

    Raman, Aaswath

    2010-02-26

    We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.

  13. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared...

  14. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2013-01-01

    Full Text Available A modified electromagnetic-bandgap (M-EBG structure and its application to planar monopole ultra-wideband (UWB antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX and the wireless local area network (WLAN at 3.5 GHz and 5.5 GHz, respectively.

  15. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  16. A NEW DESIGN APPROACH FOR BANDWIDTH ENHANCEMENT AND DUAL BAND OPERATION OF MICROSTRIP U-SHAPE PATCH ANTENNA USING PHOTONIC BAND GAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    PANKAJ KUMAR GOSWAMI

    2012-02-01

    Full Text Available Microstrip patch antennas have a rapid growth of its importance in the field of wireless communication due to ease of fabrication and versatility of possible geometries. It is still being the part of development, to design a suitable antenna of high bandwidth with compact geometry for commercial applications. The purpose of thispaper is to design a compact size high bandwidth microstrip patch antenna with promising efficiency for wireless applications. A U-shape microstrip patch antenna, operating in dual band, with PBG structure is proposed. A U-shape probe feed antenna with photonic band gap structure on ground plane could be able to improvebandwidth about 32.26% in the band of frequency 1.6-2.4 GHz & about 23.75 % in the band of frequency 3.7- 4.7 GHz. The results are simulated & depicted with the help of full wave simulator IE3D V9.0.

  17. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    International Nuclear Information System (INIS)

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  18. Quasiparticle bands and structural phase transition of iron from Gutzwiller density-functional theory

    Science.gov (United States)

    Schickling, Tobias; Bünemann, Jörg; Gebhard, Florian; Boeri, Lilia

    2016-05-01

    We use the Gutzwiller density-functional theory to calculate ground-state properties and band structures of iron in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction U =9 eV and Hund's-rule coupling J =0.54 eV , we reproduce the lattice parameter, magnetic moment, and bulk modulus of bcc iron. For these parameters, bcc is the ground-state lattice structure at ambient pressure up to a pressure of pc=41 GPa where a transition to the nonmagnetic hcp structure is predicted, in qualitative agreement with experiment (pcexp=10 ,...,15 GPa ) . The calculated band structure for bcc iron is in good agreement with ARPES measurements. The agreement improves when we perturbatively include the spin-orbit coupling.

  19. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures

    Institute of Scientific and Technical Information of China (English)

    Yu Dian-Long; Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Qiu Jing

    2006-01-01

    The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.

  20. Investigation of band structure of {sup 103,105}Rh using microscopic computational technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit, E-mail: akbcw2@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics Govt. Degree College, Kathua-184142 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2015-08-28

    The high-spin structure in {sup 61}Cu nucleus is studied in terms of effective two body interaction. In order to take into account the deformed BCS basis, the basis states are expanded in terms of the core eigenfunctions. Yrast band with some other bands havew been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental data for {sup 61}Cu nucleus. On comparing the available experimental as well as other theoretical data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.

  1. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    Science.gov (United States)

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225

  2. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma

    Science.gov (United States)

    Vladimirov, S. V.; Ishihara, O.

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.

  3. Structural characteristic correlated to the electronic band gap in Mo S2

    Science.gov (United States)

    Chu, Shengqi; Park, Changyong; Shen, Guoyin

    2016-07-01

    The structural evolution with pressure in bulk Mo S2 has been investigated by high-pressure x-ray diffraction using synchrotron radiation. We found that the out-of-plane S-Mo-S bond angle θ increases and that in in-plane angle ϕ decreases linearly with increasing pressure across the known semiconducting-to-metal phase transition, whereas the Mo-S bond length and the S-Mo-S trilayer thickness display only little change. Extrapolating the experimental result along the in-plane lattice parameter with pressure, both S-Mo-S bond angles trend to those found in monolayer Mo S2 , which manifests as a structural characteristic closely correlating the electronic band gap of Mo S2 to its physical forms and phases, e.g., monolayer as direct band gap semiconductor, multilayer or bulk as indirect band gap semiconductor, and high-pressure (>19 GPa ) bulk form as metal. Combined with the effects of bond strength and van der Waals interlayer interactions, the structural correlations between the characteristic bond angle and electronic band gaps are readily extendible to other transition metal dichalcogenide systems (M X2 , where M =Mo , W and X =S , Se, Te).

  4. Band structures of carbon nanotube with spin-orbit coupling interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong, E-mail: liuhong3@njnu.edu.c [Physics Department, Nanjing Normal University, Nanjing 210046 (China)

    2011-01-01

    We explore the band structures of single-walled carbon nanotubes (SWCNTs) with two types of spin-orbit couplings. The obtained results indicate that weak Rashba spin-orbit coupling interaction can lead to the breaking of four-fold degeneracy in all tubes even though without the intrinsic SO coupling. The asymmetric splitting between conduction bands and valence bands is caused by both SO couplings at the same time. When the ratio of Rashba spin-orbit coupling to the intrinsic spin-orbit coupling is larger than 3, metallic zigzag nanotube is always metallic conductor, on the contrary it becomes semiconducting properties. However, only when this ratio is equal to about 3 or the intrinsic spin-orbit coupling is much weak, the metallic armchair nanotube still holds the metallic behavior in transport.

  5. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.;

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  6. G0W0 band structure of CdWO4

    International Nuclear Information System (INIS)

    The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby–Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin–orbit interaction at the DFT–LDA (density functional theory–local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels. (paper)

  7. Transport and band structure studies of crystalline ZnRh2O4

    Energy Technology Data Exchange (ETDEWEB)

    Mansourian-Hadavi, Negar; Wansom, Supaporn; Perry, Nicola H.; Nagaraja, Arpun R.; Mason, Thomas O.; Ye, Lin-hui; Freeman, Arthur J.

    2010-02-17

    We report the synthesis and characterization of non-d{sup 10} p-type transparent conducting oxides of the normal spinel ZnRh{sub 2}O{sub 4}. Undoped ZnRh{sub 2}O{sub 4} was successfully prepared by means of bulk solid-state synthesis. The conduction mechanism and bulk defect chemistry of polycrystalline sintered pellets of ZnRh{sub 2}O{sub 4} were studied through electrical conductivity and Seebeck coefficient measurements, in defect equilibrium at elevated temperature under controlled atmospheres. Optical diffuse reflectance measurements were also carried out to evaluate band gap. The data were analyzed in terms of an activated mobility (small polaron conduction), with a hopping energy of 0.25 eV. Results from band structure calculations by LDA+U and optical band-gap measurement by UV-visible spectrometry are in good agreement with literature data.

  8. Electronic structure of the misfit layer compound (LaS)1.14NbS2 : band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Smaalen, S. van; Wiegers, G.A.; Haas, C.; Groot, R.A. de

    1996-01-01

    In order to understand the electronic structure of the misfit layer compound (LaS)1.14NbS2 we carried out an ab initio band-structure calculation in a supercell approximation. The band structure is compared with that of the components NbS2 and LaS. The calculations show that the electronic structure

  9. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data

    Science.gov (United States)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Kleynhans, Waldo; Wessels, Konrad; Asner, Gregory; Leblon, Brigitte

    2015-07-01

    savannahs than the shorter wavelengths (X- and C-band) both as individual and combined (X + C-band) datasets. The addition of the shortest wavelengths also did not assist in the overall reduction of prediction error across different vegetation conditions (e.g. dense forested conditions, the dense shrubby layer and sparsely vegetated conditions). Although the integration of all three frequencies (X + C + L-band) yielded the best overall results for all three metrics (R2 = 0.83 for CC and AGB and R2 = 0.85 for TCV), the improvements were noticeable but marginal in comparison to the L-band alone. The results, thus, do not warrant the acquisition of all three SAR frequency datasets for tree structure monitoring in this environment.

  10. Experimental Studies Of W-band Accelerator Structures At High Field

    CERN Document Server

    Hill, M E

    2001-01-01

    A high-gradient electron accelerator is desired for high- energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagneti...

  11. Band structure and electron-phonon coupling in H3S : A tight-binding model

    Science.gov (United States)

    Ortenzi, L.; Cappelluti, E.; Pietronero, L.

    2016-08-01

    We present a robust tight-binding description, based on the Slater-Koster formalism, of the band structure of H3S in the Im3 ¯m structure, stable in the range of pressure P =180 -220 GPa. We show that the interatomic hopping between the 3 s and 3 p orbitals (and partially between the 3 p orbitals themselves) of sulfur is fundamental to capturing the relevant physics associated with the Van Hove singularities close to the Fermi level. Comparing the model so defined with density functional theory calculations we obtain a very good agreement not only of the overall band structure but also of the low-energy states and the Fermi surface properties. The description in terms of Slater-Koster parameters permits us also to evaluate at a microscopic level a hopping-resolved linear electron-lattice coupling which can be employed for further tight-binding analyses also at a local scale.

  12. Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations

    Science.gov (United States)

    Krattiger, Dimitri; Hussein, Mahmoud I.

    2014-12-01

    We present a methodology for fast band-structure calculations that is generally applicable to problems of elastic wave propagation in periodic media. The methodology, called Bloch mode synthesis, represents an extension of component mode synthesis, a set of substructuring techniques originally developed for structural dynamics analysis. In Bloch mode synthesis, the unit cell is divided into interior and boundary degrees-of-freedom, which are described, respectively, by a set of normal modes and a set of constraint modes. A combination of these mode sets then forms a reduced basis for the band structure eigenvalue problem. The reduction is demonstrated on a phononic-crystal model and a locally resonant elastic-metamaterial model and is shown to accurately predict the frequencies and Bloch mode shapes with a dramatic decrease in computation time in excess of two orders of magnitude.

  13. Band structure and itinerant magnetism in quantum critical NbFe2

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, A. P. [University of Tennessee, Knoxville (UTK); Singh, David J [ORNL

    2010-01-01

    We report first-principles calculations of the band structure and magnetic ordering in the C14 Laves phase compound NbFe{sub 2}. The magnetism is itinerant in the sense that the moments are highly dependent on ordering. We find an overestimation of the magnetic tendency within the local spin-density approximation, similar to other metals near magnetic quantum critical points. We also find a competition between different magnetic states due to band-structure effects. These lead to competing magnetic tendencies due to competing interlayer interactions, one favoring a ferrimagnetic solution and the other an antiferromagnetic state. While the structure contains Kagome lattice sheets, which could, in principle, lead to strong magnetic frustration, the calculations do not show dominant nearest-neighbor antiferromagnetic interactions within these sheets. These results are discussed in relation to experimental observations.

  14. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    CERN Document Server

    Men, Han; Freund, Robert M; Peraire, Jaime; Johnson, Steven G

    2014-01-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniq...

  15. Study on Band Structure of YbB6 and Analysis of Its Optical Conductivity Spectrum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The electronic structure of YbB6 crystal was studied by means of density functional (GGA+U) method.The calculations were performed by FLAPW method.The high accurate band structure was achieved.The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed.On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated.The results are in good agreement with the experiments.The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail.The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones.

  16. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    Science.gov (United States)

    Jin, Bin Bin; Wang, Ye Feng; Wei, Dong; Cui, Bin; Chen, Yu; Zeng, Jing Hui

    2016-06-01

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the "loss-in-potential," inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  17. Multi-instrument observations of the electric and magnetic field structure of omega bands

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    Full Text Available High time resolution data from the CUTLASS Finland radar during the interval 01:30-03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending ~5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes ~500 km and an eastward propagation velocity ~0.75 km s-1. They occur in the morning sector (~05 MLT, simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed..

    Key words. Ionosphere (auroral ionosphere; electric fields and currents · Magnetospheric physics (magnetosphere-ionosphere interactions

  18. SRTM mission-cross comparison of X adn C band data properties

    Science.gov (United States)

    Rosen, P.; Eineder, M.; Rabus, B.; Gurrola, E.; Hensley, S.; Knopfle, W.; Breit, H.; Roth, A.; Werner, M.

    2001-01-01

    This paper compares the specific properties of the X and C band data sets with respect to global coverage, height accuracy, sensor specific errors, product definition, product format and availability.

  19. Band Saw Blade Crack before and after Comparison and Analysis of Experiments (2

    Directory of Open Access Journals (Sweden)

    Gao Jin-gui

    2016-01-01

    Full Text Available Based on MJ3310 woodworking band saw machine as the research object, under the no-load and load of Vib system vibration signal acquisition, processing and analysis software of band saw blade transverse vibration test and the signal acquisition and analysis of the collected signals obtained: to determine the transverse vibration displacement 5.66μm ~ 7.86μm and the main vibration frequency between 624 Hz ~ 792 Hz, then saw blade crack at least 3 mm, need timely saw blade, cutting high hardness of wood band saw blade transverse vibration displacement and frequency will increase sharply. Can be generated according to the band saw blade crack before and after the changing rule of the horizontal vibration displacement and frequency of transverse vibration and scope, judgment and replacement time of saw blade saw blade defect types, which can fully rational utilization of saw blade work effectively.

  20. Comparison of shear banding in BMGs due to thermal-softening and free volume creation

    Institute of Scientific and Technical Information of China (English)

    LIU LongFei; DAI LanHong; BAI YiLong; KE FuJiu

    2008-01-01

    This paper reports a comparative study of shear banding in BMGs resulting from thermal softening and free volume creation. Firstly, the effects of thermal softening and free volume creation on shear instability are discussed. It is known that ther-mal softening governs thermal shear banding, hence it is essentially energy related. However, compound free volume creation is the key factor to the other instability, though void-induced softening seems to be the counterpart of thermal softening. So, the driving force for shear instability owing to free volume creation is very dif-ferent from the thermally assisted one. In particular, long wave perturbations are always unstable owing to compound free volume creation. Therefore, the shear instability resulting from coupled compound free volume creation and thermal softening may start more like that due to free volume creation. Also, the compound free volume creation implies a specific and intrinsic characteristic growth time of shear instability. Finally, the mature shear band width is governed by the corre-sponding diffusions (thermal or void diffusion) within the band. As a rough guide, the dimensionless numbers: Thermal softening related number B, Deborah number (denoting the relation of instability growth rate owing to compound free volume and loading time) and Lewis number (denoting the competition of different diffusions) show us their relative importance of thermal softening and free volume creation in shear banding. All these results are of particular significance in understanding the mechanism of shear banding in bulk metallic glasses (BMGs).

  1. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  2. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  3. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  4. Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

    Science.gov (United States)

    Izuani Che Rosid, N. A.; Ahmadi, M. T.; Ismail, Razali

    2016-09-01

    The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. Project supported by the Ministry of Higher Education (MOHE), Malaysia under the Fundamental Research Grant Scheme (FRGS) (Grant No.Q.J130000.7823.4F477). We also thank the Research Management Center (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment.

  5. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  6. Triaxial projected shell model description of high-spin band-structures in {sup 103,105}Rh isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Sheikh, J.A., E-mail: sjaphysics@gmail.com [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Dar, W.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Jehangir, S. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics, National Institute of Technology, Srinagar 190 006 (India); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai (India); Ganai, P.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics, National Institute of Technology, Srinagar 190 006 (India)

    2014-11-10

    High-spin band structures in odd-proton {sup 103,105}Rh are investigated using the microscopic triaxial projected shell model approach. It is demonstrated that the observed band structures built on one- and three-quasiparticle states are reproduced reasonably well in the present work. Further, it is evident from the analysis of the projected wavefunctions that side-band in the low-spin regime is the normal γ-band built on the ground-state configuration. However, in the high-spin regime, the side band is shown to be highly mixed and ceases to be a γ-band. We provide a complete set of electromagnetic transition probabilities for the two bands and the experimental measurements are desirable to test the predictions of the present work.

  7. Design of C-band 50 MW klystron with traveling wave output structure

    International Nuclear Information System (INIS)

    This paper presents the simulation study of a C-band 50 MW klystron with disc-loaded waveguide traveling wave output structure. The electron gun with a perveance of 1.53 μP is designed. The gun has a voltage gradient lower than 22.1 kV/mm and a cathode load current lower than 6.3 A/cm2. The beam focusing system is a space-charge balanced flow type with solenoid magnet structure and the focusing beam trajectories have a good laminar condition. A single gap cavity is adopted instead of the traveling wave output structure in the initial beam-wave interaction simulation to decide the parameters of the cavities except the output structure. A C-band disc-loaded waveguide output structure working at π/2 mode is designed and the dispersion and interaction impedance of the structure are determined by the CST code. The beam-wave interaction system with disc-loaded waveguide output structure is simulated by a three-dimensional PIC code. More than 50 MW output power is obtained. The efficiency is more than 45% and the saturate gain is more than 50 dB. The voltage gradient of the disc-loaded waveguide output structure is 30 percent less than that of the single gap cavity and there is an increase of 4% in efficiency above that of the single gap cavity. (authors)

  8. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  9. Two-dimensional microwave band-gap structures of different dielectric materials

    Indian Academy of Sciences (India)

    E D V Nagesh; G Santosh Babu; V Subramanian; V Sivasubramanian; V R K Murthy

    2005-12-01

    We report the use of low dielectric constant materials to form two-dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The selected geometries are square and triangular and the materials chosen are PTFE ( = 2.1), PVC ( = 2.38) and glass ( = 5.5). Using the plane-wave expansion method, proper lattice spacing is selected for each structure and material. The observed experimental results are analyzed with the help of the theoretical prediction.

  10. Experimental studies of W-band accelerator structures at high field

    Science.gov (United States)

    Hill, Marc Edward

    2001-06-01

    A high-gradient electron accelerator is desired for high- energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, higher than any collider. Also presented are the first measurements of the quadrapole component of the monopole accelerating field.

  11. Band structure of topological insulators from noise measurements in tunnel junctions

    International Nuclear Information System (INIS)

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes

  12. Band structure and optical properties of amber studied by first principles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Zhi-Fan, E-mail: raozhifan@163.com [Analysis and Testing Center of Yunnan, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Rong-Feng [Analysis and Testing Center of Yunnan, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-03-01

    The band structure and density of states of amber is studied by the first principles calculation based on density of functional theory. The complex structure of amber has 214 atoms and the band gap is 5.0 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The optical properties' results show that the reflectivity is low, and the refractive index is 1.65 in visible light range. The highest absorption coefficient peak is at 172 nm and another higher peak is at 136 nm. These convince that the amber would have a pretty sheen and that amber is a good and suitable crystal for jewelry and ornaments.

  13. Impact of the electronic band structure in high-harmonic generation spectra of solids

    CERN Document Server

    Tancogne-Dejean, Nicolas; Kärtner, Franz X; Rubio, Angel

    2016-01-01

    An accurate analytic model describing high-harmonic generation (HHG) in solids is derived. Extensive first-principles simulations within a time-dependent density-functional framework corroborate the conclusions of the model. Our results reveal that: (i) the emitted HHG spectra are highly anisotropic and laser-polarization dependent even for cubic crystals, (ii) the harmonic emission is enhanced by the inhomogeneity of the electron-nuclei potential, the yield is increased for heavier atoms, and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure. Our results pave the way to better control and optimize HHG in solids by engineering their band structure.

  14. Deformed configurations, band structures and spectroscopic properties of = 50 Ge and Se nuclei

    Indian Academy of Sciences (India)

    S K Ghorui; C R Praharaj

    2014-04-01

    The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost’ spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed well-mixed = 1/2+ neutron orbit comes down in energy (from the shell above = 50) to break the = 50 spherical shell closure. A = 7− isomer is predicted in 84Se at fairly low excitation energy. At higher excitation energies (8 MeV), a deformed band with = 7/2+–1/2− (based on $h_{11/2}$) neutron 1p–1h excitation, for 82Ge and 84Se, is shown in our calculation. Our study gives insight into possible deformed structures at spherical shell closure.

  15. Electronic Properties of ZnO: Band Structure and Directional Compton Profiles

    Science.gov (United States)

    Sharma, G.; Mishra, M. C.; Dhaka, M. S.; Kothari, R. K.; Joshi, K. B.; Sharma, B. K.

    2013-12-01

    The electronic band structure and directional Compton profiles (DCPs) of ZnO are studied in this work. Calculations are performed considering a set of three schemes based on density functional theory (DFT), the Hartree-Fock (HF) method, and a hybrid scheme. All band structures predict direct bandgaps. The best agreement with experiment is, however, shown by the hybrid scheme. The three schemes are also applied to compute DCPs along [100], [110], and [001] directions. These are compared with measurements made on single crystals of ZnO employing a 59.54 keV gamma-ray Compton spectrometer. Calculations overestimate the momentum density in the low-momentum region while underestimate the anisotropies. Positions of extremes in anisotropies deduced from calculations are well reproduced by the measured anisotropies in some cases. Within the experimental limits, the DCPs from the HF method are in better agreement with the measurements compared with DFT.

  16. Growth, Band Structure and Optical Properties of LiSrBO3 Crystal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bulk crystal of LiSrBO3(8.39 g) with a size of 21mm × 20mm × 15mm was grown by high temperature solution growth method. The relationship between growth habit and crystal structure was discussed. The transmission spectrum shows an UV absorption edge at about 300 nm. The melting temperature of this crystal was determined to be 942 ℃ by DTA-TG measurement. The band structure of the LiSrBO3 crystal was studied by means of the first principle method. An indirect band gap was found to be about 4.0 eV, and a low dielectric constant was estimated to be about 1.9 in terms of theoretical results.

  17. Band gap and chemically ordered domain structure of a graphene analogue BCN

    Science.gov (United States)

    Venu, K.; Kanuri, S.; Raidongia, K.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.

    2010-12-01

    Chemically synthesized few layer graphene analogues of B xC yN z are characterized by aberration corrected transmission electron microscopy and high resolution electron energy loss spectroscopy (HREELS) to determine the local phase, electronic structure and band gap. HREELS band gap studies of a B xC yN z composition reveal absorption edges at 2.08, 3.43 and 6.01 eV, indicating that the B xC yN z structure may consist of domains of different compositions. The K-absorption edge energy position of the individual elements in B xC yN z is determined and compared with h-BN and graphite. An understanding of these experimental findings is developed with complementary first-principles based calculations of the various ordered configurations of B xC yN z.

  18. Band structure and Bloch states in birefringent 1D magnetophotonic crystals: An analytical approach

    CERN Document Server

    Lévy, M; Levy, Miguel; Jalali, Amir A

    2007-01-01

    An analytical formulation for the band structure and Bloch modes in elliptically birefringent magnetophotonic crystals is presented. The model incorporates both the effects of gyrotropy and linear birefringence generally present in magneto-optic thin film devices. Full analytical expressions are obtained for the dispersion relation and Bloch modes in a layered stack photonic crystal and their properties are analyzed. It is shown that other models recently discussed in the literature are contained as special limiting cases of the formulation presented herein.

  19. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  20. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)

    2010-03-01

    We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.

  1. Electronic structure of the misfit layer compound (LaS)(1.14)NbS2 : Band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; vanSmaalen, S; Wiegers, GA; Haas, C; deGroot, RA

    1996-01-01

    In order to understand the electronic structure of the misfit layer compound (LaS)(1.14)NbS2 we carried out an ab initio band-structure calculation in a supercell approximation. The band structure is compared with that of the components NbS2 and LaS. The calculations show that the electronic structu

  2. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar st

  3. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar stru

  4. Comparison of multi-band period-luminosity relations for classical Cepheids in the Magellanic Clouds

    Science.gov (United States)

    Ngeow, Chow-Choong; Kanbur, Shashi M.

    2016-07-01

    The period-luminosity (PL) relation for classical fundamental mode Cepheids (hereafter Cepheids) is an important astrophysical tool in distance scale applications. Because of this, we initiated a program to derive multi-band PL relations with Cepheids in the Large and Small Magellanic Cloud (hereafter LMC and SMC, respectively), as there are ∼⃒ 103 Cepheids found in these two nearby galaxies. When compared the slopes of the multi-band PL relations for Cepheids in the LMC and SMC, we found that these PL slopes agree with each others except in the V and J band. We also found an excellent agreement of the PL slopes in Wesenheit function, hence we calibrated the Period-Wesenheit (PW) relation by combining the data from both Clouds, together with an accurate LMC distance based on measurement from late-type eclipsing binaries. Our calibrated Wesenheit function is MW = — 3.314 log(P) — 2.601.

  5. Comparison of Tunneling in Fe-based Superconductors with Multi-band MgB2

    Science.gov (United States)

    Zasadzinski, John; Iavarone, Maria

    MgB2 is an s-wave, phonon coupled, multiband superconductor that exhibits novel tunneling spectra including a subtle dip feature due to quasiparticle transfer between bands. Since this feature mimics the above-gap spectral dip feature observed in Fe-based superconductors, typically attributed to a strong coupling boson, it is worthwhile to consider whether quasiparticle transfer is relevant. We first show that the dip in MgB2 appears in the π-band, DOS (Δ = 2.4 meV) and is due to quasiparticle transfer to the σ-band with Δ = 7.2 meV. Reviewing the spectral dip in Fe-based superconductors, including new data on FeSe crystals, there are inconsistencies with quasiparticle transfer as the origin. The conclusion is that the spectral dip is more likely due to a boson, the resonance spin excitation, as found in cuprate superconductors.

  6. Comparison of shear banding in BMGs due to thermal-softening and free volume creation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper reports a comparative study of shear banding in BMGs resulting from thermal softening and free volume creation. Firstly,the effects of thermal softening and free volume creation on shear instability are discussed. It is known that ther-mal softening governs thermal shear banding,hence it is essentially energy related. However,compound free volume creation is the key factor to the other instability,though void-induced softening seems to be the counterpart of thermal softening. So,the driving force for shear instability owing to free volume creation is very dif-ferent from the thermally assisted one. In particular,long wave perturbations are always unstable owing to compound free volume creation. Therefore,the shear instability resulting from coupled compound free volume creation and thermal softening may start more like that due to free volume creation. Also,the compound free volume creation implies a specific and intrinsic characteristic growth time of shear instability. Finally,the mature shear band width is governed by the corre-sponding diffusions (thermal or void diffusion) within the band. As a rough guide,the dimensionless numbers: Thermal softening related number B,Deborah number (denoting the relation of instability growth rate owing to compound free volume and loading time) and Lewis number (denoting the competition of different diffusions) show us their relative importance of thermal softening and free volume creation in shear banding. All these results are of particular significance in understanding the mechanism of shear banding in bulk metallic glasses (BMGs).

  7. Banding and electronic structures of metal azides——Sensitivity and conductivity

    Institute of Scientific and Technical Information of China (English)

    肖鹤鸣; 李永富

    1995-01-01

    By using both DV-Xα and EH-CO methods, the calculation studies of the structure-property relationships of a series of metal azides, of their clusters’ electronic structures in ground and excited states, of their systems with cation vacancy and the doped Pb(N3)2, as well as their crystal band structures have been conducted. The results show that the sensitivity of ionic-type metal azides varies with the degree of difficulty of electronic transition of the losing charge on N3. A metal azide with cation vacancies has a greater sensitivity than the perfect one. When doped with monovalent metal ions, lead azide’s sensitivity increased; when with trivalent ones, its sensitivity decreased; when with divalent ones, little of it changed. Compared with heavy metal azides. an alkali metal azide has a larger band gap, a smaller band width and a greater transition energy of frontier electron with a smaller amount of losing charge on N3, and thus has lower sensitivity and conductivity than heavy metal azides.

  8. The comparison of elastic band and B-Spline polynomials methods in smoothing process of collisionfree robot trajectory

    Directory of Open Access Journals (Sweden)

    D. Reclik

    2008-08-01

    approach, which describes the comparison between elastic band and B-Spline polynomials methods in collision-free robot trajectory.

  9. Hyper-Temporal C-Band SAR for Baseline Woody Structural Assessments in Deciduous Savannas

    Directory of Open Access Journals (Sweden)

    Russell Main

    2016-08-01

    Full Text Available Savanna ecosystems and their woody vegetation provide valuable resources and ecosystem services. Locally calibrated and cost effective estimates of these resources are required in order to satisfy commitments to monitor and manage change within them. Baseline maps of woody resources are important for analyzing change over time. Freely available, and highly repetitive, C-band data has the potential to be a viable alternative to high-resolution commercial SAR imagery (e.g., RADARSAT-2, ALOS2 in generating large-scale woody resources maps. Using airborne LiDAR as calibration, we investigated the relationships between hyper-temporal C-band ASAR data and woody structural parameters, namely total canopy cover (TCC and total canopy volume (TCV, in a deciduous savanna environment. Results showed that: the temporal filter reduced image variance; the random forest model out-performed the linear model; while the TCV metric consistently showed marginally higher accuracies than the TCC metric. Combinations of between 6 and 10 images could produce results comparable to high resolution commercial (C- & L-band SAR imagery. The approach showed promise for producing a regional scale, locally calibrated, baseline maps for the management of deciduous savanna resources, and lay a foundation for monitoring using time series of data from newer C-band SAR sensors (e.g., Sentinel1.

  10. Temperature-dependent band structure of Hg1-xZnxTe-CdTe superlattices

    Science.gov (United States)

    Manassès, J.; Guldner, Y.; Vieren, J. P.; Voos, M.; Faurie, J. P.

    1991-12-01

    We present transport and far-infrared magneto-optical measurements in narrow-band-gap n-type Hg1-xZnxTe-CdTe superlattices. Hall and conductivity data obtained over a broad temperature range (1.5-300 K) show that these superlattices are semimetallic at low temperature and are degenerate intrinsic semiconductors for T>100 K, which constitutes an interesting situation in semiconductor-superlattice physics. The analysis of the data gives the Fermi energy as well as the temperature-dependent band gap, in good agreement with the calculated band structure, which predicts a semimetal-semiconductor transition induced by temperature in these heterostructures. We have measured the electron cyclotron resonances as a function of temperature with the magnetic field B applied parallel and perpendicular to the growth axis. The observed magneto-optical intraband transitions are in very satisfactory agreement with the calculated Landau levels and the Fermi energy. We show that the semimetal-semiconductor transition is characterized by an important reduction of the cyclotron mass measured with B perpendicular to the superlattice growth axis. The large variation of the conduction-band anisotropy calculated near the transition accounts for this effect.

  11. Structural Analysis of Char by Raman Spectroscopy: Improving Band Assignments through Computational Calculations from First Principles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Matthew W.; Dallmeyer, Ian; Johnson, Timothy J.; Brauer, Carolyn S.; McEwen, Jean-Sabin; Espinal, Juan F.; Garcia-Perez, Manuel

    2016-04-01

    Raman spectroscopy is a powerful tool for the characterization of many carbon 27 species. The complex heterogeneous nature of chars and activated carbons has confounded 28 complete analysis due to the additional shoulders observed on the D-band and high intensity 29 valley between the D and G-bands. In this paper the effects of various vacancy and substitution 30 defects have been systematically analyzed via molecular modeling using density functional 31 theory (DFT) and how this is manifested in the calculated gas-phase Raman spectra. The 32 accuracy of these calculations was validated by comparison with (solid-phase) experimental 33 spectra, with a small correction factor being applied to improve the accuracy of frequency 34 predictions. The spectroscopic effects on the char species are best understood in terms of a 35 reduced symmetry as compared to a “parent” coronene molecule. Based upon the simulation 36 results, the shoulder observed in chars near 1200 cm-1 has been assigned to the totally symmetric 37 A1g vibrations of various small polyaromatic hydrocarbons (PAH) as well as those containing 38 rings of seven or more carbons. Intensity between 1400 cm-1 and 1450 cm-1 is assigned to A1g 39 type vibrations present in small PAHs and especially those containing cyclopentane rings. 40 Finally, band intensity between 1500 cm-1 and 1550 cm-1 is ascribed to predominately E2g 41 vibrational modes in strained PAH systems. A total of ten potential bands have been assigned 42 between 1000 cm-1 and 1800 cm-1. These fitting parameters have been used to deconvolute a 43 thermoseries of cellulose chars produced by pyrolysis at 300-700 °C. The results of the 44 deconvolution show consistent growth of PAH clusters with temperature, development of non-45 benzyl rings as temperature increases and loss of oxygenated features between 400 °C and 46 600 °C

  12. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: growth, crystallography and electronic band structure

    Science.gov (United States)

    Wood, Grace E.; Marsden, Alexander J.; Mudd, James J.; Walker, Marc; Asensio, Maria; Avila, Jose; Chen, Kai; Bell, Gavin R.; Wilson, Neil R.

    2015-06-01

    We investigate the growth of hexagonal boron nitride (h-BN) on copper foil by low pressure chemical vapour deposition (LP-CVD). At low pressure, h-BN growth proceeds through the nucleation and growth of triangular islands. Comparison between the orientation of the islands and the local crystallographic orientation of the polycrystalline copper foil reveals an epitaxial relation between the copper and h-BN, even on Cu(100) and Cu(110) regions whose symmetry is not matched to the h-BN. However, the growth rate is faster and the islands more uniformly oriented on Cu(111) grains. Angle resolved photoemission spectroscopy measurements reveal a well-defined band structure for the h-BN, consistent with a band gap of 6 eV, that is decoupled from the copper surface beneath. These results indicate that, despite a weak interaction between h-BN and copper, van der Waals epitaxy defines the long range ordering of h-BN even on polycrystalline copper foils and suggest that large area, single crystal, monolayer h-BN could be readily and cheaply produced.

  13. Influence of the sequence on the ab initio band structures of single and double stranded DNA models

    International Nuclear Information System (INIS)

    The solid state physical approach is widely used for the characterization of electronic properties of DNA. In the simplest case the helical symmetry is explicitly utilized with a repeat unit containing only a single nucleotide or nucleotide pair. This model provides a band structure that is easily interpretable and reflects the main characteristic features of the single nucleotide or a nucleotide pair chain, respectively. The chemical variability of the different DNA chains is, however, almost completely neglected in this way. In the present work we have investigated the effect of the different sequences on the band structure of periodic DNA models. For this purpose we have applied the Hartree–Fock crystal orbital method for single and double stranded DNA chains with two different subsequent nucleotides in the repeat unit of former and two different nucleotide pairs in the latter case, respectively. These results are compared to simple helical models with uniform sequences. The valence and conduction bands related to the stacked nucleotide bases of single stranded DNA built up only from guanidine as well as of double stranded DNA built up only from guanidine–cytidine pairs showed special properties different from the other cases. Namely, they had higher conduction and lower valence band positions and this way larger band gaps and smaller widths of these bands. With the introduction of non-uniform guanidine containing sequences band structures became more similar to each other and to the band structures of other sequences without guanidine. The maximal bandwidths of the non-uniform sequences are considerably smaller than in the case of uniform sequences implying smaller charge carrier mobilities both in the conduction and valence bands. - Highlights: • HF Energy bands in DNA. • The role of aperiodicity in the DNA band structure. • Hole mobilities in quasi-periodic DNA with broader valence bands

  14. Theoretical study of structural and electronic properties of oligo(thiophene-phenylene)s in comparison with oligothiophenes and oligophenylenes

    Institute of Scientific and Technical Information of China (English)

    H. Zgou; S.M. Bouzzine; S. Bouzakraoui; M. Hamidi; M. Bouachrine

    2008-01-01

    In this work, a quantum-chemical investigation on the structural and opto-electronic properties of oligo(thiophene-phenylene)(4TP) is carried out. The results are discussed in comparison with the properties of corresponding oligothiopbene (8T) andoligophenylene (8P). As the opto-elcctronic properties of this type of conducting polymers are governed by their electronic bandgap, we shall also present a comparison among HOMO, LUMO and band gap energies of these three materials.

  15. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain (ES)); Balle, S. (Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain (ES)); Salvador, R. (Control Data Corporation, TALLAHASSEE, FL (USA) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 (USA))

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  16. DFT Study of Effects of Potassium Doping on Band Structure of Crystalline Cuprous Azide

    Institute of Scientific and Technical Information of China (English)

    ZHU,Wei-Hua; ZHANG,Xiao-Wen; WEI,Tao; XIAO,He-Ming

    2008-01-01

    The structure and defect formation energies of the K-doped CuN3 were studied using density functional theory within the generalized gradient approximation. The results show that the K-doping breaks the azide symmetry and causes asymmetric atomic displacement. As the K-doping level increases, the band gap of the doped system gradually increases. The K impurity is easily incorporated into the crystal thermodynamically. The Cu vacancy is easily created thermodynamically and the K impurity can serve as nucleation centers for vacancy clustering. Finally the effects of K-doping concentrations on the sensitivity of CuN3 were understood based on electronic structures.

  17. Comparison of CONDOR, FCI and MAFIA Calculations for a 150MW S-Band Klystron with Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sprehn, Daryl W

    2003-06-11

    To facilitate the design of high power klystrons an investigation into the reliability and accuracy of three modern particle-in-cell codes was performed. A 150 MW S-band klystron for which measurements were available was used for this comparison. The field calculations of the particle-in-cell codes are based on a finite difference time domain scheme, and use a port approximation to speed up the convergence to steady state. However, they differ in many details (e.g. calculation of E, B or A, {psi}; space charge correction; 2D or 3D modeling of output cavity).

  18. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  19. The systematics study of power law parameters of γ-band and comparison with ground state band for medium mass region

    International Nuclear Information System (INIS)

    Here, the coefficients and indices of the different spins are obtained using equation after subtracting band head difference E(2+2). The 'a' and 'b' parameters of γ-band and ground band nuclei are compared for 156Gd, 156,162-164Dy, 162-170Er, 178Hf and 186Pt. These nuclei are having the energies in γ-band up to spin Iπ = 10+

  20. The band structure of carbonmonoxide on 2-D Au islands on graphene

    KAUST Repository

    Katsiev, Khabiboulakh

    2014-06-01

    The dispersion of the occupied molecular orbitals of carbon monoxide adsorbed on Au 2D islands, vapor-deposited on graphene/Ru(0 0 0 1), is seen to be wave vector dependent, as revealed by angle-resolved photoemission. The band dispersion is similar to CO monolayers adsorbed on many single crystal metal surfaces. Thus not only are the adsorbed gold islands on graphene flat and crystalline, as evident in the dispersion of the Au d-states, but the CO molecular adlayer is both molecular and ordered as well. The experimental angle-resolved photoemission combined with model calculations of the occupied CO band structure, suggest that, in spite of being a very weakly bound adsorbate, the CO adlayer on Au 2D islands on graphene is strongly hybridized to the Au layer. . © 2014 Elsevier B.V. All rights reserved.

  1. Weakly nonlinear dispersion and stop-band effects for periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    , not necessarily small, we consider the effects of weak nonlinearity on the dispersion relation and frequency band-gaps. A novel approach, the Method of Varying Amplitudes [4], is employed. This approach is inspired by the method of direct separation of motions [5], and may be considered a natural continuation......Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples...... of frequency band-gaps, i.e. frequency ranges in which elastic waves cannot propagate. Most existing analytical methods in the field are based on Floquet theory [1]; e.g. this holds for the classical Hill’s method of infinite determinants [1,2], and themethod of space-harmonics [3]. However, application...

  2. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  3. Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure

    Science.gov (United States)

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-10-01

    We present ab initio calculations which show that the direct-band-gap, effective masses and Fermi velocities of charge carriers in ZnO monolayer (ML-ZnO) in graphene-like honeycomb structure are all tunable by application of in-plane homogeneous biaxial strain. Within our simulated strain limit of ±10%, the band gap remains direct and shows a strong non-linear variation with strain. Moreover, the average Fermi velocity of electrons in unstrained ML-ZnO is of the same order of magnitude as that in graphene. The results promise potential applications of ML-ZnO in mechatronics/straintronics and other nano-devices such as the nano-electromechanical systems (NEMS) and nano-optomechanical systems (NOMS).

  4. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Acosta, G A [Instituto de Fisica, BUAP Apartado Postal J-48, 72570 Puebla (Mexico); Schanze, H; Kuhl, U; Stoeckmann, H-J [Fachbereich Physik der Philipps-Universitaet Marburg, Renthof 5, D-35032 (Germany)], E-mail: gluna@sirio.ifuap.buap.mx

    2008-04-15

    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one-dimensional (1D) obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e.g. interstitial and substitutional) and show that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulae, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penney model.

  5. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Pingping Qiu

    2016-09-01

    Full Text Available In this paper, one-dimensional (1D and two-dimensional (2D graphene-based plasmonic photonic crystals (PhCs are proposed. The band structures and density of states (DOS have been numerically investigated. Photonic band gaps (PBGs are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  6. Impurity effects on the band structure of one-dimensional photonic crystals: Experiment and theory

    CERN Document Server

    Luna-Acosta, G A; Kuhl, U; Stoeckmann, H -J

    2007-01-01

    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one dimensional obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes, and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e. g. interstitial, substitutional) and shows that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulas, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penn...

  7. Evolution of band structures in MoS2-based homo- and heterobilayers

    International Nuclear Information System (INIS)

    Density functional theory calculations have been performed to elucidate the detailed evolution of band structures in MoS2-based homo- and heterobilayers. By constructing the energy-band alignments we observed that biaxial tensile and compressive strain in the constituent transition-metal dichalcogenide (TMD) monolayer shifts the states at the K C, Q C, and K V points down and up, respectively, while the states at the ΓV point are almost unaltered. In contrast, interlayer coupling tends to modify the states at the ΓV and Q C points by splitting the band-edge states of two strained or unstrained constituent TMD monolayers, while it does not affect the states at the K C and K V points. Considering the combined actions of strain and interlayer coupling, the relevant electronic parameters, especially the detailed evolution processes, of the band structures of the investigated bilayer systems can be clearly described. When further applying the extra biaxial strain to the three bilayer systems, it is found that energy differences ΔE(K C  −  Q C) and ΔE(K V  −  ΓV) decrease linearly as the increasing of the biaxial strain. According to the varying trends of ΔE(K C  −  Q C) and ΔE(K V  −  ΓV), MoS2 bilayer will maintain the indirect-bandgap character under any compressive or tensile strain. Differently, WS2/MoS2 heterobilayer transforms interestingly to the direct-bandgap material under the strain from  −1.6% to  −1.2% with the valence band maximum and conduction band minimum located at the K C and K V point respectively. The direct-to-indirect bandgap transition can be obtained for the WSe2/MoS2 heterobilayer when applying much larger extra tensile or compressive strain. The results offer an effective route to verify and tailor the electronic properties of TMD homo- and heterostructures and can be helpful in evaluating the performance of TMD-based electronic devices. (paper)

  8. Evolution of band structures in MoS2-based homo- and heterobilayers

    Science.gov (United States)

    Zhu, H. L.; Zhou, C. J.; Huang, X. J.; Wang, X. L.; Xu, H. Z.; Lin, Yong; Yang, W. H.; Wu, Y. P.; Lin, W.; Guo, F.

    2016-02-01

    Density functional theory calculations have been performed to elucidate the detailed evolution of band structures in MoS2-based homo- and heterobilayers. By constructing the energy-band alignments we observed that biaxial tensile and compressive strain in the constituent transition-metal dichalcogenide (TMD) monolayer shifts the states at the K C, Q C, and K V points down and up, respectively, while the states at the ΓV point are almost unaltered. In contrast, interlayer coupling tends to modify the states at the ΓV and Q C points by splitting the band-edge states of two strained or unstrained constituent TMD monolayers, while it does not affect the states at the K C and K V points. Considering the combined actions of strain and interlayer coupling, the relevant electronic parameters, especially the detailed evolution processes, of the band structures of the investigated bilayer systems can be clearly described. When further applying the extra biaxial strain to the three bilayer systems, it is found that energy differences ΔE(K C  -  Q C) and ΔE(K V  -  ΓV) decrease linearly as the increasing of the biaxial strain. According to the varying trends of ΔE(K C  -  Q C) and ΔE(K V  -  ΓV), MoS2 bilayer will maintain the indirect-bandgap character under any compressive or tensile strain. Differently, WS2/MoS2 heterobilayer transforms interestingly to the direct-bandgap material under the strain from  -1.6% to  -1.2% with the valence band maximum and conduction band minimum located at the K C and K V point respectively. The direct-to-indirect bandgap transition can be obtained for the WSe2/MoS2 heterobilayer when applying much larger extra tensile or compressive strain. The results offer an effective route to verify and tailor the electronic properties of TMD homo- and heterostructures and can be helpful in evaluating the performance of TMD-based electronic devices.

  9. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    CERN Document Server

    Kubo, K

    2003-01-01

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e sup + e sup - linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 (micro)m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques. Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.

  10. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Science.gov (United States)

    Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo

    2016-03-01

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  11. Comparison between formulas of rotational band for axially symmetric deformed nuclei

    Institute of Scientific and Technical Information of China (English)

    WU Xi; LEI Yi-An

    2008-01-01

    The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas,including Bohr-Mottelson's I(I+l)-expansion,Harris'w2-expansion,ab and abc formulas.It is shown that the simple 2-parameter ab formula is much better than the widely used 2-parameter Bohr-Mottelson's AB formula and Harris'αβ formula.The available data of the rotational spectra of both ground-state band in even-even nuclei and one-quaasiparticle band in odd-A nuclei can be conveniently and rather accurately reproduced by ab formula and abc formula.The moment of inertia and the variation with rotational frequency of angular momentum can be satisfactorily reproduced by ab and abc formulas.

  12. Nitric oxide delta band emission in the earth's atmosphere - Comparison of a measurement and a theory

    Science.gov (United States)

    Rusch, D. W.; Sharp, W. E.

    1981-01-01

    Attention is given to the altitude dependent emission rate in the delta-bands of nitric oxide as measured in the earth's atmosphere at night by a scanning ultraviolet spectrometer. It is noted that the reaction responsible is the two-body association of nitrogen and oxygen atoms. The measurements show a vertical intensity beneath the layer for the delta-band system of 19 R. The horizontal emission rate is found to increase from 70 R at 117 km to 140 R at 150 km. The data are analyzed with a one-dimensional, time-dependent, vertical-transport model of odd nitrogen photochemistry. The calculated and measured intensities agree so long as the quenching of N(2D) by atomic oxygen is near 5 x 10 to the -13 cu cm/sec.

  13. Electronic structure and phase stability of oxide semiconductors: Performance of dielectric-dependent hybrid functional DFT, benchmarked against G W band structure calculations and experiments

    Science.gov (United States)

    Gerosa, Matteo; Bottani, Carlo Enrico; Caramella, Lucia; Onida, Giovanni; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2015-04-01

    We investigate band gaps, equilibrium structures, and phase stabilities of several bulk polymorphs of wide-gap oxide semiconductors ZnO, TiO2,ZrO2, and WO3. We are particularly concerned with assessing the performance of hybrid functionals built with the fraction of Hartree-Fock exact exchange obtained from the computed electronic dielectric constant of the material. We provide comparison with more standard density-functional theory and GW methods. We finally analyze the chemical reduction of TiO2 into Ti2O3 , involving a change in oxide stoichiometry. We show that the dielectric-dependent hybrid functional is generally good at reproducing both ground-state (lattice constants, phase stability sequences, and reaction energies) and excited-state (photoemission gaps) properties within a single, fully ab initio framework.

  14. A Reconfigurable Triple-Notch-Band Antenna Integrated with Defected Microstrip Structure Band-Stop Filter for Ultra-Wideband Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    Yingsong Li

    2013-01-01

    Full Text Available A printed reconfigurable ultra-wideband (UWB monopole antenna with triple narrow band-notched characteristics is proposed for cognitive radio applications in this paper. The triple narrow band-notched frequencies are obtained using a defected microstrip structure (DMS band stop filter (BSF embedded in the microstrip feed line and an inverted π-shaped slot etched in the rectangular radiation patch, respectively. Reconfigurable characteristics of the proposed cognitive radio antenna (CRA are achieved by means of four ideal switches integrated on the DMS-BSF and the inverted π-shaped slot. The proposed UWB CRA can work at eight modes by controlling switches ON and OFF. Moreover, impedance bandwidth, design procedures, and radiation patterns are presented for analysis and explanation of this antenna. The designed antenna operates over the frequency band between 3.1 GHz and 14 GHz (bandwidth of 127.5%, with three notched bands from 4.2 GHz to 6.2 GHz (38.5%, 6.6 GHz to 7.0 GHz (6%, and 12.2 GHz to 14 GHz (13.7%. The antenna is successfully simulated, fabricated, and measured. The results show that it has wide impedance bandwidth, multimodes characteristics, stable gain, and omnidirectional radiation patterns.

  15. Unified description of rotational-, $\\gamma$-, and quasiparticle-band structures in neutron-rich mass $\\sim$ 110 region

    CERN Document Server

    Bhat, G H; Sun, Y; Palit, R

    2015-01-01

    Band structures of the neutron-rich Mo- and Ru-isotopes around A $\\sim $ 110 are investigated using the triaxial projected shell model (TPSM) approach employing multi-quasiparticle configuration space. The mass region under investigation depicts a rich variety of band structures with well developed $\\gamma$- and $\\gamma\\gamma$-bands, and quasiparticle excitations based on them. It is demonstrated that TPSM provides a reasonable description of most of the observed properties, in particular, detailed structure variations observed in Mo-isotopes are well reproduced in the present work.

  16. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  17. Band structure effects in high energy ion beam surface interaction at grazing incidence

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.; Zimny, R.; Schirmacher, A.; Becker, B.; Andrae, H.J.; Froehling, R.

    1983-05-01

    The analysis of charge state distributions after the interaction of fast Li- and N-ions with a surface at grazing incidence at energies between 50 and 350 keV yields for Li a strongly suppressed and for N an enhanced fraction of neutrals in comparison to the beam-foil interaction. These findings are supported by corresponding alkali-spectra which are dominated by lines from transitions in singly ionized atoms. The experiments are consistently interpreted in terms of a two step model: (1) collisional excitation in the close vicinity of the surface and (2) modification of this population by resonant electron transfer from (to) non localized states in the conduction (valence) band to (from) the ion. The model is also applied to interpret recent beam-foil experiments where preferential populations of Rydberg levels in highly ionized atoms were found.

  18. Modeling the band gap of CdS quantum well structures

    Science.gov (United States)

    Harris, R. A.; Terblans, J. J.

    2016-10-01

    Within the framework of the effective mass approximation, an excited electron is studied in a cadmium sulfide (CdS) quantum well with varying well widths. The envelope function approximation is employed involving a three parameter variational calculation wherein one of these parameters is the distance between the electron and the hole. The relative change in the electron's energy (relative to its energy when it is in the valence band; in the hole) is investigated as a function of the electron-hole distance. Results from numerical calculations are presented and the non-linear behavior of different sized CdS quantum wells are discussed. Comparisons between experimentally measured CdS band gap energies (as a function of well-width) and the simulation data are made. A good agreement between the current model and experimental data exists. Density functional theory (DFT) calculations are done on crystallites of extremely small sizes to compare the current model's bandgap energies to DFT-predicted bandgap values at these extremes.

  19. Study of γ-vibrational band structures in 105Nb nucleus using triaxial projected shell model approach

    International Nuclear Information System (INIS)

    The study of band structures in terms of multiphonon gamma bands is an important topic in nuclear physics. The excitation at low spin region for proton rich nuclei is an important issue, but to understand the interaction of multiquasi particle excitation with gamma vibrational band, it is mandatory to study the high spin states. There are many important phenomena like nuclei with triaxially deformed (triaxial nuclei), shape coexistence are seems to be observed in this mass region. But with the increase in neutron number, the properties like triaxiality and the multiphonon γ vibrational bands are developed, as recently observed in neutron rich region i.e in Mo and Ru

  20. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    HOU Xing-Gang; LIU An-Dong; HUANG Mei-Dong; LIAO Bin; WU Xiao-Ling

    2009-01-01

    The electronic structures of Ag-doped rutile and anatase TiO2 are studied by first-principles band calculations based on density funetionai theory with the full-potentiai linearized-augraented-plane-wave method.New occupied bands ore found between the band gaps of both Ag-doped rutile and anatase TiO2.The formation of these new bands Capri be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.

  1. Comparison of Coordinated Satellite and Ground-based X-Band Radar Collections for the Retrieval of Snow Parameters

    Science.gov (United States)

    Deeb, E. J.; Marshall, H.; LeWinter, A. L.; Finnegan, D. C.; Deems, J. S.; Landry, C.

    2012-12-01

    In many regions of the world, snow is a major source of runoff contributing to human existence/sustenance, agriculture, and industry. The uncertainties in quantifying snow mass at both spatial and temporal scales have limited the vital management of this significant component to the global water cycle. With the sensitivity of radar backscatter to physical properties of snow at higher frequencies and the availability of high resolution commercial satellite imaging radars at X-Band frequencies (e.g. 9.6 GHz), snow experiments have been conducted to examine these relationships at finer spatial and temporal scales. For the past several winters, satellite radar acquisitions (at X-Band with co- and cross-polarizations) have been coordinated with ground-based radar collections within a well-instrumented southwestern Colorado basin exhibiting a wide range of snow conditions. Snow-free satellite radar collections (at X-Band with the same viewing geometry) have also been acquired to separate the backscatter contributions of the snow volume from the underlying background target. Ancillary data sets including ground-based LiDAR-derived snow depths and scientific snow pit sampling are also incorporated into the analysis. Despite the fact that it may not be possible to retrieve snow water equivalent from multi-polarization X-Band frequency alone, preliminary results of these comparisons are shown where the ground-based radar transects overlap the satellite radar coverage. Snow parameters such as saturated surface or internal snow layers, snow surface and stratigraphic roughness, and grain size variations may be of particular interest.

  2. Quasiparticle band structure and optical properties of NH{sub 3}BH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bheema Lingam, C. [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Ramesh Babu, K.; Vaitheeswaran, G. [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500 046 (India); Tewari, Surya P. [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500 046 (India); Lebegue, S. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036), Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France)

    2011-01-15

    The quasiparticle band structure of the low temperature orthorhombic phase of NH{sub 3}BH{sub 3} is studied by using the GW approximation. It is found that NH{sub 3}BH{sub 3} is an insulator with a value of the band gap of 5.90 eV with GGA and of 9.60 eV with the GW approximation. Then, the optical properties of NH{sub 3}BH{sub 3} are obtained by the calculation of the dielectric function, corrected by a scissor shift operation corresponding to the GW correction on the band gap. Also, the optical anisotropy in NH{sub 3}BH{sub 3} is analyzed through the refractive index and static dielectric constants along the different crystallographic directions. Finally, it is found that the energy loss function has a prominent peak at 22.26 eV; at these frequencies (above 22.26 eV) NH{sub 3}BH{sub 3} becomes transparent. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Theoretical investigation of the band structure of picene single crystals within the GW approximation

    Science.gov (United States)

    Yanagisawa, Susumu; Morikawa, Yoshitada; Schindlmayr, Arno

    2014-01-01

    We investigate the band dispersion and related electronic properties of picene single crystals within the GW approximation for the electronic self-energy. The width of the upper highest occupied molecular orbital (HOMOu) band along the Γ-Y direction, corresponding to the b crystal axis in real space along which the molecules are stacked, is determined to be 0.60 eV and thus 0.11 eV larger than the value obtained from density-functional theory. As in our recent study of rubrene using the same methodology [S. Yanagisawa, Y. Morikawa, and A. Schindlmayr, Phys. Rev. B 88, 115438 (2013)], this increase in the bandwidth is due to the strong variation of the GW self-energy correction across the Brillouin zone, which in turn reflects the increasing hybridization of the HOMOu states of neighboring picene molecules from Γ to Y. In contrast, the width of the lower HOMO (HOMOl) band along Γ-Y remains almost unchanged, consistent with the fact that the HOMOl(Γ) and HOMOl(Y) states exhibit the same degree of hybridization, so that the nodal structure of the wave functions and the matrix elements of the self-energy correction are very similar.

  4. Measuring large-scale structure with quasars in narrow-band filter surveys

    Science.gov (United States)

    Abramo, L. Raul; Strauss, Michael A.; Lima, Marcos; Hernández-Monteagudo, Carlos; Lazkoz, Ruth; Moles, Mariano; de Oliveira, Claudia Mendes; Sendra, Irene; Sodré, Laerte; Storchi-Bergmann, Thaisa

    2012-07-01

    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i= 23, it could reach volumetric number densities as high as 10-4 h3 Mpc-3 (comoving) at z˜ 1.5. Such a catalogue would lead to precision measurements of the power spectrum up to z˜ 3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and non-linearities are much smaller than at z≲ 1. As a concrete example we study the future impact of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS), which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ˜100-Å full width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver excellent photometric redshifts, σz≃ 0.002 (1 +z), for millions of objects.

  5. Measuring large-scale structure with quasars in narrow-band filter surveys

    CERN Document Server

    Abramo, L Raul; Lima, Marcos; Hernández-Monteagudo, Carlos; Lazkoz, Ruth; Moles, Mariano; de Oliveira, Cláudia M; Sendra, Irene; Sodré, Laerte

    2011-01-01

    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i=23, it could reach volumetric number densities as high as 10^{-4} h^3 Mpc^{-3} (comoving) at z~1.5 . Such a catalog would lead to precision measurements of the power spectrum up to z~3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and nonlinearities are much smaller than at z<1. As a concrete example we study the future impact of J-PAS, which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ~100 A full-width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver exc...

  6. Dual Band-Notched Microstrip-Fed Vivaldi Antenna Utilizing Compact EBG Structures

    Directory of Open Access Journals (Sweden)

    K. A. Alshamaileh

    2015-01-01

    Full Text Available We propose an ultra-wideband (UWB antipodal Vivaldi antenna (AVA with high-Q stopband characteristics based on compact electromagnetic bandgap (EBG structures. First, an AVA is designed and optimized to operate over an UWB spectrum. Then, two pairs of EBG cells are introduced along the antenna feed line to suppress the frequency components at 3.6–3.9 and 5.6–5.8 GHz (i.e., WiMAX and ISM bands, resp.. Simulated and measured results show a voltage standing wave ratio (VSWR below 2 for the entire 3.1–10.6 GHz band with high attenuation at the two selected subbands. This simple yet effective approach eliminates the need to deform the antenna radiators with slots/parasitic elements or comprise multilayer substrates. Furthermore, the flexibility it offers in terms of controlling both the number and locations of the band-reject frequencies is advantageous for antennas with nonuniform flares as in the AVA.

  7. [Band electronic structures and crystal packing forces: Progress report, July 1, 1989--December 13, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report briefly summaries our research accomplishments made during the period of July 1, 1989 to December 13, 1991. A number of significant progresses were achieved in our studies of several different classes of low-dimensional solid state materials. On the basis of tight-binding band electronic structure calculations, we investigated the electronic properties of various organic conducting salts, cuprate superconductors, and transition-metal oxide and chalcogenide metals to find structure-property correlations governing of the physical properties of these low-dimensional materials. By employing a number of different quality basis sets, we also carried out extensive ab initio SCF-MO/MP2 calculations on model molecular systems to accurately describe the weak intermolecular contact interactions governing the structures of organic donor slats and molecular crystals. Our research efforts led to about 80 publications and two important computer programs.

  8. (Band electronic structures and crystal packing forces: Progress report, July 1, 1989--December 13, 1991)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report briefly summaries our research accomplishments made during the period of July 1, 1989 to December 13, 1991. A number of significant progresses were achieved in our studies of several different classes of low-dimensional solid state materials. On the basis of tight-binding band electronic structure calculations, we investigated the electronic properties of various organic conducting salts, cuprate superconductors, and transition-metal oxide and chalcogenide metals to find structure-property correlations governing of the physical properties of these low-dimensional materials. By employing a number of different quality basis sets, we also carried out extensive ab initio SCF-MO/MP2 calculations on model molecular systems to accurately describe the weak intermolecular contact interactions governing the structures of organic donor slats and molecular crystals. Our research efforts led to about 80 publications and two important computer programs.

  9. Photonic Band Gaps in 3D Network Structures with Short-range Order

    CERN Document Server

    Liew, Seng Fatt; Noh, Heeso; Schreck, Carl F; Dufresne, Eric R; O'Hern, Corey S; Cao, Hui

    2011-01-01

    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PAS) with short-range order. From calculations of the density of optical states (DOS) for PAS with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PAS, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PAS without long-range order.

  10. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates

    Science.gov (United States)

    Li, Wei-Dong; Zhang, Yunbo; Liang, J.-Q.

    2003-06-01

    The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For EC/EJ≪1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as EC/EJ˜1.

  11. Exceptional contours and band structure design in parity-time symmetric photonic crystals

    CERN Document Server

    Cerjan, Alexander; Fan, Shanhui

    2016-01-01

    We investigate the properties of multidimensional parity-time symmetric periodic systems whose non-Hermitian periodicity is an integer multiple of the underlying Hermitian system's periodicity. This creates a natural set of degeneracies which can undergo thresholdless $\\mathcal{PT}$ transitions. We derive a $\\mathbf{k} \\cdot \\mathbf{p}$ perturbation theory suited to the continuous eigenvalues of such systems in terms of the modes of the underlying Hermitian system. In photonic crystals, such thresholdless $\\mathcal{PT}$ transitions are shown to yield significant control over the band structure of the system, and can result in all-angle supercollimation, a $\\mathcal{PT}$-superprism effect, and unidirectional behavior.

  12. Staggering of the B(M1) value as a fingerprint of specific chiral bands structure

    CERN Document Server

    Grodner, Ernest

    2011-01-01

    Nuclear chirality has been intensively studdied for the last several years in the context of experimental as well as theoretical approach. Characteristic gamma selection rules have been predicted for the strong chiral symmetry breaking limit that has been observed in Cs isotopes. The presented analysis shows that the gamma selection rules cannot be attributed only to chiral symmetry breaking. The selection rules relate to structural composition of the chiral rotational bands, i.e. to odd particle configuration and the deformation of the core.

  13. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  14. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Jerome Sutherland

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  15. Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches.

    Science.gov (United States)

    Stellacci, A M; Castrignanò, A; Troccoli, A; Basso, B; Buttafuoco, G

    2016-03-01

    Hyperspectral data can provide prediction of physical and chemical vegetation properties, but data handling, analysis, and interpretation still limit their use. In this study, different methods for selecting variables were compared for the analysis of on-the-ground hyperspectral signatures of wheat grown under a wide range of nitrogen supplies. Spectral signatures were recorded at the end of stem elongation, booting, and heading stages in 100 georeferenced locations, using a 512-channel portable spectroradiometer operating in the 325-1075-nm range. The following procedures were compared: (i) a heuristic combined approach including lambda-lambda R(2) (LL R(2)) model, principal component analysis (PCA), and stepwise discriminant analysis (SDA); (ii) variable importance for projection (VIP) statistics derived from partial least square (PLS) regression (PLS-VIP); and (iii) multiple linear regression (MLR) analysis through maximum R-square improvement (MAXR) and stepwise algorithms. The discriminating capability of selected wavelengths was evaluated by canonical discriminant analysis. Leaf-nitrogen concentration was quantified on samples collected at the same locations and dates and used as response variable in regressive methods. The different methods resulted in differences in the number and position of the selected wavebands. Bands extracted through regressive methods were mostly related to response variable, as shown by the importance of the visible region for PLS and stepwise. Band selection techniques can be extremely useful not only to improve the power of predictive models but also for data interpretation or sensor design. PMID:26922749

  16. Simulation of winter wheat yield and its uncertainty band; A comparison of two crop growth models

    Science.gov (United States)

    Javad Khordadi Varamini, Mohammad; Nassiri Mahallati, Mehdi; Alizadeh, Amin

    2016-04-01

    In this study, we used the WOFOST and AquaCrop crop growth simulation models to examine crop yield responses to a set of plausible scenarios of climate change in Mashhad region, located in Ghareghom basin, northeast of Iran up to 2040. We selected winter wheat as an indicator crop. Also six AOGCMs including GFCM21, HADCM3, INCM3, IPCM4, MPEH5 and NCCCSM under A2 and B1 emission scenarios are used. LARS-WG statistical method for downscaling is utilized. In the present research, using 7-year observed crop data, the crop models were calibrated and then validated. Evaluation of WOFOST and AquaCrop models confirmed the models are able for simulating the yield of wheat grown in the study area. The results showed that average potential yield of wheat ranged from 3.43 to 8.42 and 2.76 to 6.49 ton.ha-1, in AquaCrop and WOFOST models, respectively. Finally, the uncertainty band due to the six AOGCMs for estimating crop yield is drawn and investigated. These bands show possible changes for the yield in the future period to the past one. It can be concluded the positive effects of climate warming and elevated CO2 concentrations on the production in the studied region.

  17. 16O + 16O molecular structures of positive- and negative-parity superdeformed bands in 34S

    Directory of Open Access Journals (Sweden)

    Taniguchi Yasutaka

    2016-01-01

    Full Text Available The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method(GCM. The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity super de formed(SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative parity SD band.

  18. Inter-comparison of Terra and Aqua MODIS Feflective Solar Bands using Suomi NPP VIIRS

    OpenAIRE

    Blonski, Slawomir; Cao, Changyong; Uprety, Sirish; Shao, Xi

    2013-01-01

    VIIRS (Visible Infrared Imager Radiometer Suite) onboard the Suomi NPP (National Polar-orbiting Partnership) satellite has been acquiring Earth observations for more than a year. During that time, SNO (Simultaneous Nadir Overpass) events have provided many opportunities for inter-comparisons between VIIRS and the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments from the Aqua and Terra satellites. The SNOs have occurred over snow-covered Antarctica, which provided bright surfa...

  19. Low-lying levels and high-spin band structures in sup 1 sup 0 sup 2 Rh

    CERN Document Server

    Gizon, J; Timar, J; Cata-Danil, G; Nyakó, B M; Zolnai, L; Boston, A J; Joss, D T; Paul, E S; Semple, A T; O'Brien, N J; Parry, C M; Bucurescu, D; Brant, S; Paar, V

    1999-01-01

    Levels in sup 1 sup 0 sup 2 Rh have been populated in the reaction sup 7 sup 0 Zn+ sup 3 sup 6 S at 130 MeV. The level structure of sup 1 sup 0 sup 2 Rh has been investigated using the EUROGAM II array. Low-lying states and four high-spin bands have been identified. The configurations of low-lying levels and two-quasiparticle bands are interpreted in the frame of the interacting boson-fermion-fermion model. The four observed band structures are also compared with cranked shell model calculations using a modified oscillator potential.

  20. Bohr Hamiltonian with different mass parameters applied to band structures of Eu isotopes built on Nilsson orbitals

    Indian Academy of Sciences (India)

    ERMAMATOV M J; YÉPEZ-MARTÍNEZ H; SRIVASTAVA P C

    2016-05-01

    The band structure of the proton-odd nuclei $^{153,155}$Eu, built on Nilsson orbitals, is investigated within the framework of a recently developed extended Bohr Hamiltonian model. The relative distance between spherical orbitals is taken into account by considering single-particle energies as a parameter which changes with increasing neutron number. Energy levels of each band and$B(E2)$ values inside the ground-state band are calculated and compared with the available experimental data. Thus, more comprehensive information on the structure of deformed nuclei can be obtained by studying the rotation–vibration spectra of odd nuclei built on Nilsson single-particle orbitals.

  1. Analysis of the Band-Structure in (Ga, MnAs Epitaxial Layers by Optical Methods

    Directory of Open Access Journals (Sweden)

    O. Yastrubchak

    2012-03-01

    Full Text Available The ternary III-V semiconductor (Ga, MnAs has recently drawn a lot of attention as the model diluted ferromagnetic semiconductor, combining semiconducting properties with magnetism. (Ga, MnAs layers are usually gown by the low-temperature molecular-beam epitaxy (LT-MBE technique. Below a magnetic transition temperature, TC, substitutional Mn2+ ions are ferromagnetically ordered owing to interaction with spin-polarized holes. However, the character of electronic states near the Fermi energy and the electronic structure in ferromagnetic (Ga, MnAs are still a matter of controversy. The photoreflectance (PR spectroscopy was applied to study the band-structure evolution in (Ga, MnAs layers with increasing Mn content. We have investigated thick (800-700 nm and 230-300 nm (Ga, MnAs layers with Mn content in the wide range from 0.001 % to 6 % and, as a reference, undoped GaAs layer, grown by LT-MBE on semi-insulating (001 GaAs substrates. Our findings were interpreted in terms of the model, which assumes that the mobile holes residing in the valence band of ferromagnetic (Ga, MnAs and the Fermi level position determined by the concentration of valence-band holes. The ternary III-V semiconductor (Ga, MnAs has recently drawn a lot of attention as the model diluted ferromagnetic semiconductor, combining semiconducting properties with magnetism. (Ga, MnAs layers are usually gown by the low-temperature molecular-beam epitaxy (LT-MBE technique. Below a magnetic transition temperature, TC, substitutional Mn2+ ions are ferromagnetically ordered owing to interaction with spin-polarized holes. However, the character of electronic states near the Fermi energy and the electronic structure in ferromagnetic (Ga, MnAs are still a matter of controversy. The photoreflectance (PR spectroscopy was applied to study the band-structure evolution in (Ga, MnAs layers with increasing Mn content. We have investigated thick (800-700 nm and 230-300 nm (Ga

  2. A randomized comparison of horizontal and vertical banded gastroplasty: what determines weight loss?

    DEFF Research Database (Denmark)

    Andersen, T; Pedersen, B H; Dissing, I;

    1989-01-01

    Pouch volume, stoma diameter, and pouch emptying rate were measured postoperatively and after 6 months in 45 morbidly obese patients who had been assigned to either horizontal gastroplasty (HGP) or vertical banded gastroplasty (VBGP) after pretreatment with diet alone. Pouch volume and stoma...... diameter were measured by a standardized radiographic method with blinded assessment by two observers. Pouch emptying rate was determined by a standardized scintigraphic method and expressed as the mean transit time (t60). Pouch volume and stoma diameter did not change, whereas t60 decreased by 36% during...... volume, stoma diameter, and t60. Stoma diameter was not correlated with t60. The study provides further evidence against the significance of stoma diameter and pouch emptying rate as determinants of weight loss after gastroplasty. The much smaller pouch volume after VBGP may favor weight loss....

  3. Handbook of the band structure of elemental solids from Z = 1 to Z = 112

    CERN Document Server

    Papaconstantopoulos, Dimitris A

    2015-01-01

    This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...

  4. Band structure of topological insulators from noise measurements in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Cascales, Juan Pedro, E-mail: juanpedro.cascales@uam.es; Martínez, Isidoro; Aliev, Farkhad G., E-mail: farkhad.aliev@uam.es [Dpto. Fisica Materia Condensada C3, Instituto Nicolas Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049 (Spain); Katmis, Ferhat; Moodera, Jagadeesh S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Chang, Cui-Zu [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Guerrero, Rubén [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid (Spain)

    2015-12-21

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al{sub 2}O{sub 3}/Co tunnel junctions with bottom TI electrodes of either Bi{sub 2}Te{sub 3} or Bi{sub 2}Se{sub 3}. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  5. Experimental Study Of X-band Dielectric-loaded Accelerating Structures

    CERN Document Server

    Jing, C

    2005-01-01

    A joint Argonne National Laboratory (ANL)/Naval Research Laboratory (NRL) program is under way to investigate X- band dielectric-loaded accelerating (DLA) structures, using high-power 11.424GHz radiation from the NRL Magnicon facility. As an advanced accelerator concepts, the dielectric-loaded accelerator offers the potential for a simple, inexpensive alternative to high-gradient RF linear accelerators. In this thesis, a comprehensive account of X-band DLA structure design, including theoretical calculation, numerical simulation, fabrication and testing, is presented in detail. Two types of loading dielectrics, alumina and MgxCa1−xTiO 3 (MCT), are investigated. For alumina (with dielectric constant 9.4), no RF breakdown has been observed up to 5 MW of drive power (equivalent to 8MV/m accelerating gradient) in the high power RF testing at NRL, but multipactor was observed to absorb a large fraction of the incident microwave power. Experimental results on suppression of multipactor using TiN coating o...

  6. New bismuth borophosphate Bi{sub 4}BPO{sub 10}: Synthesis, crystal structure, optical and band structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kuzubov, Aleksandr A., E-mail: alexkuzubov@gmail.com [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Zhereb, Vladimir P. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation)

    2015-08-01

    New bismuth borophosphate Bi{sub 4}BPO{sub 10} was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi{sub 2}O{sub 2}]{sup 2+} -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi{sub 4}BPO{sub 10}. The strips combining stacks are separated by flat triangle [BO{sub 3}]{sup 3−} -anions within stacks. Neighboring stacks are separated by tetrahedral [PO{sub 4}]{sup 3−}-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi{sub 4}BPO{sub 10} is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi{sub 4}BPO{sub 10} was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi{sub 4}BPO{sub 10} was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi{sub 4}O{sub 3}]{sup 6+} forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  7. The valence band structure of AgxRh1–x alloy nanoparticles

    International Nuclear Information System (INIS)

    The valence band (VB) structures of face-centered-cubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra profiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag0.5Rh0.5 alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

  8. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    International Nuclear Information System (INIS)

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO4 tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed

  9. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Science.gov (United States)

    Gao, Enlai; Xie, Bo; Xu, Zhiping

    2016-01-01

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO4 tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  10. Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers

    International Nuclear Information System (INIS)

    In this paper we describe elements of photonic crystal surface-emitting laser (PCSEL) design and operation, highlighting that epitaxial regrowth may provide advantages over current designs incorporating voids. High coupling coefficients are shown to be possible for all-semiconductor structures. We introduce type I and type II photonic crystals (PCs), and discuss the possible advantages of using each. We discussed band structure and coupling coefficients as a function of atom volume for a circular atom on a square lattice. Additionally we explore the effect PC atom size has on in-plane and out-of-plane coupling. We conclude by discussing designs for a PCSEL combined with a distributed Bragg reflector to maximize external efficiency. (paper)

  11. X-band Dielectric Loaded Rf Driven Accelerator Structures Theoretical And Experimental Investigations

    CERN Document Server

    Zou, P

    2001-01-01

    An important area of application of high-power radio frequency (RF) and microwave sources is particle acceleration. A major challenge for the current worldwide research and development effort in linear accelerator is the search for a compact and affordable very-high-energy accelerator technology for the next generation supercolliders. It has been recognized for sometime that dielectric loaded accelerator structures are attractive candidates for the next generation very-high-energy linear accelerators, because they possess several distinct advantages over conventional metallic iris- loaded accelerator structures. However, some fundamental issues, such as RF breakdown in the dielectric, Joule heating, and vacuum properties of dielectric materials, are still the subjects of intense investigation, requiring the validation by experiments conducted at high power levels. An X-band traveling-wave accelerator based on dielectric-lined waveguide has been designed and constructed. Numerical calculation, bench measuremen...

  12. Engineering design and fabrication of tapered damped X-Band accelerating structures

    CERN Document Server

    Solodko, A; Gudkov, D; Riddone, G; Grudiev, A; Atieh, S; Taborelli, M

    2011-01-01

    The accelerating structures (AS) are one of the main components of the Compact LInear Collider (CLIC), under study at CERN. Each accelerating structure contains about 30 copper discs, which form the accelerating cavity. The requirements of different technical systems, such as vacuum and cooling, have to be considered during the engineering design. A fully featured AS is very challenging and requires several technologies. Different damping methods, waveguides, vacuum manifolds, slots and chokes, result in various design configurations. In the CLIC AS each cell is damped by means of four waveguides coupled to the cell. The vacuum manifolds combine a number of functions such as damping, vacuum pumping and cooling. A silicon carbide absorber, fixed inside of each manifold, is required for effective damping of Higher Order Modes (HOMs). This paper describes the engineering design of the X-band AS with damping material, and focuses on few technical solutions.

  13. Giant Amplification in Degenerate Band Edge Slow-Wave Structures Interacting with an Electron Beam

    CERN Document Server

    Othman, Mohamed A K; Figotin, Alexander; Capolino, Filippo

    2015-01-01

    We advance here a new amplification regime based on synchronous operation of four degenerate electromagnetic (EM) modes and the electron beam referred to as super synchronization. These four EM modes arise in a Fabry-Perot cavity (FPC) when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures allowing for synchronization with only a single EM mode. We construct a mutli transmission line (MTL) model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using generalized Pierce model.

  14. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  15. Collective band structure of 166,168Hf in IBM and DPPQ models

    International Nuclear Information System (INIS)

    166,168Hf are the lightest isotopes of Hf, for which the spectral information for non-yrast levels is now available from recent experiments. The algebraic Interacting Boson Model IBM-1 is employed to reproduce their level structures and to predict the E2 transition probabilities. The pairing plus quadrupole model is used to predict their spectra and E2 transition rates and the static moments in a microscopic approach. The spin assignments Iπ of new levels and their K-band structures are studied. The validity of the inclusion of 166,168Hf as members of a U(12) super group is studied using various empirical observables. The potential energy surfaces for the two isotopes are compared and the filling of the nucleons in Nilsson orbits is analyzed, to yield a consistent comprehensive view of the spectra of the two Z = 72 isotopes. (orig.)

  16. Crystal Structure, Energy Band and Optical Properties of Phosphate In(PO3)3

    Institute of Scientific and Technical Information of China (English)

    KAN Zi-Gui; CHENG Wen-Dan; WU Dong-Sheng; ZHANG Hao; GONG Ya-Jing; ZHU Jing; TONG Hua-Nan

    2005-01-01

    The crystal of the title compound (InP3O9, Mr = 351.73) has been prepared and structurally determined by X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group Cc with a = 13.545(6), b = 19.603(7), c = 9.672(4)(A), β = 127.196(4)°, V = 2045.6(14)(A)3 and Z = 12. The compound, with a three-fold superstructure, has two kinds of infinite chains of PO4 tetrahedra along the c axis. The absorption and luminescence spectra of In(PO3)3 powder have been measured. The calculated results of crystal energy band structure by DFT indicate that the solid state is kind of insulator. What is more, the bonding and optical properties were also investigated with the CASTEP code.

  17. THE BAND STRUCTURE AND WORK FUNCTION OF TRANSPARENT CONDUCTING ALUMINUM AND MANGANESE CO-DOPED ZINC OXIDE FILMS

    Institute of Scientific and Technical Information of China (English)

    H.T. Cao; Z.L. Pei; X.B. Zhang; J. Gong; C. Sun; L.S. Wen

    2005-01-01

    Al and Mn co-doped-ZnO films have been prepared at room temperature by DC reactive magnetron sputtering technique. The optical absorption coefficient, apparent and fundamental band gap, and work function of the films have been investigated using optical spectroscopy, band structure analyses and ultraviolet photoelectron spectroscopy (UPS). ZnO films have direct allowed transition band structure, which has been confirmed by the character of the optical absorption coefficient. The apparent band gap has been found directly proportional to N2/3, showing that the effect of Burstein-Moss shift on the band gap variations dominates over the many-body effect. With only standard cleaning protocols, the work function of ZnO: (Al, Mn) and ZnO: Al films have been measured to be 4.26 and 4.21eV, respectively. The incorporation of Mn element into the matrix of ZnO, as a relatively deep donor, can remove some electrons from the conduction band and deplete the density of occupied states at the Fermi energy, which causes a loss in measured photoemission intensity and an increase in the surface work function. Based on the band gap and work function results, the energy band diagram of the ZnO: (Al, Mn)film near its surface is also given.

  18. The influence of T-square fractal shape holes on the band structure of two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojian; Fan, Youhua, E-mail: yhfan@hit.edu.cn; An, Yumin

    2013-11-15

    The influences of the T-square fractal holes on the band structures of two-dimensional phononic crystals with periodic distributed void pores are studied. Through using the finite element method, the dispersion relations in the two-dimensional phonoinc crystals with different level fractal holes are illustrated. The absolute bandgap can be easily formed in the phononic crystal with high level fractal holes, but hardly for first level ones. And the frequencies of the band structure are decreased with the increase of the fractal level. By analyzing the vibration modes of the unit cell of the phononic crystal, we find the origin of the lower frequency band is due to the locally resonant mechanism. Moreover, the impacts of the size of the fractal hole on the band structure are studied.

  19. Electronic structure of the conduction band upon the formation of ultrathin fullerene films on the germanium oxide surface

    Science.gov (United States)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Zashikhin, G. D.

    2016-06-01

    The results of the investigation of the electronic structure of the conduction band in the energy range 5-25 eV above the Fermi level E F and the interfacial potential barrier upon deposition of aziridinylphenylpyrrolofullerene (APP-C60) and fullerene (C60) films on the surface of the real germanium oxide ((GeO2)Ge) have been presented. The content of the oxide on the (GeO2)Ge surface has been determined using X-ray photoelectron spectroscopy. The electronic properties have been measured using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode. The regularities of the change in the fine structure of total current spectra (FSTCS) with an increase in the thickness of the APP-C60 and C60 coatings to 7 nm have been investigated. A comparison of the structures of the FSTCS maxima for the C60 and APP-C60 films has made it possible to reveal the energy range (6-10 eV above the Fermi level E F) in which the energy states are determined by both the π* and σ* states and the FSTCS spectra have different structures of the maxima for the APP-C60 and unsubstituted C60 films. The formation of the interfacial potential barrier upon deposition of APP-C60 and C60 on the (GeO2)Ge surface is accompanied by an increase in the work function of the surface E vac- E F by the value of 0.2-0.3 eV, which corresponds to the transfer of the electron density from the substrate to the organic films under investigation. The largest changes occur with an increase in the coating thickness to 3 nm, and with further deposition of APP-C60 and C60, the work function of the surface changes only slightly.

  20. Birefringence and band structure of CdP{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Beril, S.I.; Stamov, I.G. [Tiraspol State Corporative University, Yablocikin Street 5, 2069 Tiraspol, Republic of Moldova (Moldova, Republic of); Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2013-08-01

    The spatial dispersion in CdP{sub 2} crystals was investigated. The dispersion is positive (n{sup k||c}>n{sup k||y}) at λ>λ{sub 0} and negative (n{sup k||c}bands. Minimal direct energy intervals correspond to transitions Γ{sub 1}→Γ{sub 1} for E{sup ||}c and Γ{sub 2}→Γ{sub 1} for E⊥c. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Γ{sub 1}→Γ{sub 1} and Γ{sub 2}→Γ{sub 1} band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5–10 eV and optical functions (n, k, ε{sub 1}, ε{sub 2,}d{sup 2}ε{sub 1}/dE{sup 2} and d{sup 2}ε{sub 2}/dE{sup 2}) were calculated by using Kramers–Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  1. Comparison of wide-band inertial line of sight stabilization reference mechanizations

    Science.gov (United States)

    Luniewicz, Michael F.; Gilmore, Jerold P.; Chien, Tze T.; Negro, James E.; Wingler, Randy L.

    1992-11-01

    This paper compares, in terms of relative performance of line-of-sight (LOS) stabilization in the presence of vehicle jitter, three inertial LOS stabilization reference mechanizations for space-based optical systems: an inertially stabilized platform, the Inertial Pseudo-Star Reference Unit (IPSRU), the Optical Reference Gyro (ORG), and a strapdown wide-band inertial sensor assembly. Each of the three stabilization reference mechanizations generates a collimated alignment beam that is injected into the entrance aperture of the optical system. In the stabilized platform mechanization, the alignment beam emanates from a platform inertially stabilized from vehicle jitter in two axes, and thus the alignment beam becomes a jitter-stabilized pseudostar. An alignment loop closed around the pseudostar image and a steering mirror in the optical path stabilizes the LOS against vehicle jitter. The ORG alignment beam projects from the gyro rotor, which is decoupled from case motion and is effectively inertially stabilized. The ORG spin-speed noise is compensated with phase-lock technology. In the strapdown mechanization, the alignment beam source is hard-mounted to the vehicle. Inertial measurement of the local vehicle motion is fed forward, open loop, to a steering mirror in the optical path to compensate for alignment beam jitter.

  2. Analysis of the heterochromatin of Cebus (Primates, Platyrrhini) by micro-FISH and banding pattern comparisons

    Indian Academy of Sciences (India)

    Mariela Nieves; Edivaldo H. C. De Oliveira; Paulo J. S. Amaral; Cleusa Y. Nagamachi; Julio C. Pieczarka; María C. Mühlmann; Marta D. Mudry

    2011-04-01

    The karyotype of the neotropical primate genus Cebus (Platyrrhini: Cebidae), considered the most ancestral one, shows the greatest amount of heterochromatin described among Platyrrhini genera. Banding techniques and restriction enzyme digestion have previously revealed great variability of quantity and composition of heterochromatin in this genus. In this context, we use fluorescence in situ hybridization (FISH) to analyse this genomic region and discuss its possible role in the diversification of Cebus. We used a heterochromatin probe for chromosome 11 of Cebus libidinosus (11qHe+ CLI probe), obtained by chromosome microdissection. Twenty-six specimens belonging to the families Atelidae, Cebidae, Callitrichidae and Pithecidae (Platyrrhini) were studied. Fourteen out of 26 specimens were Cebus (Cebidae) individuals of C. libidinosus, C. xanthosternos, C. apella, C. nigritus, C. albifrons, C. kaapori and C. olivaceus. In Cebus specimens, we found 6 to 22 positive signals located in interstitial and telomeric positions along the different species. No hybridization signal was observed among the remaining Ceboidea species, thus reinforcing the idea of a Cebus-specific heterochromatin composed of a complex system of repetitive sequences.

  3. Analysis and comparison model for measuring tropospheric scintillation intensity for Ku-band frequency in Malaysia

    Directory of Open Access Journals (Sweden)

    Mandeep JS

    2011-06-01

    Full Text Available This study has been based on understanding local propagation signal data distribution characteristics and identifying and predicting the overall impact of significant attenuating factors regarding the propagation path such as impaired propagation for a signal being transmitted. Predicting propagation impairment is important for accurate link budgeting, thereby leading to better communication network system designation. This study has thus used sample data for one year concerning beacon satellite operation in Malaysia from April 2008 to April 2009. Data concerning 12GHz frequency (Ku-band and 40° elevation angle was collected and analysed, obtaining average signal amplitude value, ÷ and also standard deviation ó which is normally measured in dB to obtain long-term scintillation intensity distribution. This analysis showed that scintillation intensity distribution followed Gaussian distribution for long-term data distribution. A prediction model was then selected based on the above; Karasawa,
    ITU-R, Van de Kamp and Otung models were compared to obtain the best prediction model performance for selected data regarding specific meteorological conditions. This study showed that the Karasawa model had the best performance for predicting scintillation intensity for the selected da ta.

  4. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor.

    Science.gov (United States)

    Sahakyan, M; Tran, V H

    2016-05-25

    The physical properties of the noncentrosymmetric superconductor Th7Co3 have been investigated by means of ac-magnetic susceptibility, magnetization, specific heat, electrical resistivity, magnetoresistance and Hall effect measurements. From these data it is established that Th7Co3 is a dirty type-II superconductor with [Formula: see text] K, [Formula: see text] and moderate electron-phonon coupling [Formula: see text]. Some evidences for anisotropic superconducting gap are found, including e.g. reduced specific heat jump ([Formula: see text]) at T c, diminished superconducting energy gap ([Formula: see text]) as compared to the BCS values, power law field dependence of the Sommerfeld coefficient at 0.4 K ([Formula: see text]), and a concave curvature of the [Formula: see text] line. The magnitudes of the thermodynamic critical field and the energy gap are consistent with mean-squared anisotropy parameter [Formula: see text]. The electronic specific heat in the superconducting state is reasonably fitted to an oblate spheroidal gap model. Calculations of scalar relativistic and fully relativistic electronic band structures reveal considerable differences in the degenerate structure, resulting from asymmetric spin-orbit coupling (ASOC). A large splitting energy of spin-up spin-down bands at the Fermi level E F, [Formula: see text] meV is observed and a sizeable ratio [Formula: see text] could classify the studied compound into the class of noncentrosymmetric superconductors with strong ASOC. The noncentrosymmetry of the crystal structure and the atomic relativistic effects are both responsible for an importance of ASOC in Th7Co3. The calculated results for the density of states show a Van Hove singularity just below E F and dominant role of the 6d electrons of Th to the superconductivity.

  5. Band alignment of vanadium oxide as an interlayer in a hafnium oxide-silicon gate stack structure

    Science.gov (United States)

    Zhu, Chiyu; Kaur, Manpuneet; Tang, Fu; Liu, Xin; Smith, David J.; Nemanich, Robert J.

    2012-10-01

    Vanadium oxide (VO2) is a narrow band gap material (Eg = 0.7 eV) with a thermally induced insulator-metal phase transition at ˜343 K and evidence of an electric field induced transition at T oxidized Si(100) surface and a 2 nm hafnium oxide (HfO2) layer. The layer structure was confirmed with high resolution transmission electron microscopy. The electronic properties were characterized with x-ray and ultraviolet photoemission spectroscopy, and the band alignment was deduced on both n-type and p-type Si substrates. The valence band offset between VO2 and SiO2 is measured to be 4.0 eV. The valence band offset between HfO2 and VO2 is measured to be ˜3.4 eV. The band relation developed from these results demonstrates the potential for charge storage and switching for the embedded VO2 layer.

  6. Structural comparisons of meptazinol with opioid analgesics

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Jing-lai HAO; Yun TANG; Yan CHEN; Zhui-bai QIU

    2005-01-01

    Aim: To investigate the mechanism of action of a potent analgesic, (±)-meptazinol.Methods: The structures of meptazinol enantiomers were compared with opioid pharmacophore and tramadol. Results: Neither enantiomer of meptazinol fitted any patterns among the opioid pharmacophore and tramadol, although they did share some structural and pharmacological similarities. However, the structure superpositions implied that both enantiomers of meptazinol might share some similar analgesic mechanisms with typical opiate analgesics. Conclusion:Meptazinol should have a different mechanism of action to known analgesics,which would be helpful in further investigations of meptazinol in the search for non-addictive analgesics.

  7. Topology of time-reversal invariant energy bands with adiabatic structure

    CERN Document Server

    Gat, Omri

    2015-01-01

    We classify the topology of bands defined by the energy states of quantum systems with scale separation between slow and fast degrees of freedom, invariant under fermionic time reversal. Classical phase space transforms differently from momentum space under time reversal, and as a consequence the topology of adiabatic bands is different from that of Bloch bands. We show that bands defined over a two-dimensional phase space are classified by the Chern number, whose parity must be equal to the parity of the band rank. Even-rank bands are equivalently classified by the Kane-Mele index, an integer equal to one half the Chern number.

  8. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  9. Band Structures of $^{182}Os$ Studied by GCM based on 3D-CHFB

    CERN Document Server

    Horibata, T; Onishi, N; Ansari, A; Horibata, Takatoshi; Oi, Makito; Onishi, Naoki; Ansari, Ahmad

    1999-01-01

    Band structure properties of $^{182}$Os are investigated through a particle number and angular momentum constrained generator coordinate(GCM) calculation based on self-consistent three-dimensional cranking solutions. From the analysis of the wave function of the lowest GCM solution, we confirm that this nucleus shows a tilted rotational motion in its yrast states, at least with the present set of force parameters of the pairing-plus-quadrupole interaction Hamiltonian. A close examination of behavior of other GCM solutions reveals a sign of a possible occurrence of multi-band crossing in the nucleus. Furthermore, in the course of calculations, we have also found a new potential curve along the prime meridian on the globe of the $J=18\\hbar$ sphere. Along this new solution the characters of proton and neutron gap parameters get interchanged. Namely, $\\Delta_p$ almost vanishes while $\\Delta_n$ grows to a finite value close to the one corresponding to the principal axis rotation(PAR). A state in the new solution c...

  10. Measurements of band gap structure in diamond compressed to 370 GPa

    Science.gov (United States)

    Gamboa, Eliseo; Fletcher, Luke; Lee, Hae-Ja; Zastrau, Ulf; Gauthier, Maxence; Gericke, Dirk; Vorberger, Jan; Granados, Eduardo; Heimann, Phillip; Hastings, Jerome; Glenzer, Siegfried

    2015-06-01

    We present the first measurements of the electronic structure of dynamically compressed diamond demonstrating a widening of the band gap to pressures of up to 370 +/- 25 GPa. The 8 keV free electron laser x-ray beam from the Linac Coherently Light Source (LCLS) has been focussed onto a diamond foil compressed by two counter-propagating laser pulses to densities of up to 5.3 g/cm3 and temperatures of up to 3000 +/- 400 K. The x-ray pulse excites a collective interband transition of the valence electrons, leading to a plasmon-like loss. We find good agreement with the observed plasmon shift by including the pressure dependence of the band gap as determined from density functional theory simulations. This work was performed at the Matter at Extreme Conditions (MEC) instrument of LCLS, supported by the DOE Office of Science, Fusion Energy Science under Contract No. SF00515. This work was supported by DOE Office of Science, Fusion Energy Science under F.

  11. Relativistic Band Structure and Fermi Surface of PdTe2 by the LMTO Method

    DEFF Research Database (Denmark)

    Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    The energy bands of the trigonal layer compound PdTe2 have been calculated, using the relativistic linear muffin-tin orbitals method. The bandstructure is separated into three distinct regions with low-lying Te 5s bands, conduction bands formed by Pd 4d and Te 5p states, and high-lying bands formed...... by Pd 5p, Te 6s and Te 5d states. Density of states and joint density of states have been calculated from the bands determined over the appropriate irreducible zone. The Fermi surface consists of two closed sheets in band 11 and band 13, and sheets in band 12 connected to one another by tubes...

  12. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    Science.gov (United States)

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2016-03-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional HTCH407, about Fermi energy. Then, one-shot GW (G0W0) correction for precise computations of band structure is applied. Quasi-direct band gap of penta-graphene is obtained around 4.1-4.3 eV by G0W0 correction. Penta-graphene is an insulator and can be expected to have broad applications in future, especially in nanoelectronics and nanomechanics.

  13. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2016-01-01

    was motivated by the fact that cryospheric remote sensing is of fundamental importance in order to understand more in depth the morphology and the dynamic processes regulating ice sheets. The main objective of the tomographic experiment of the campaign herein discussed was indeed to assess the capability of P......In this paper, first results concerning the characterization of the subsurface of ice sheets and glaciers through single and multipolarization synthetic aperture radar (SAR) tomography (TomoSAR) are illustrated. To this aim, the processing of data acquired in the framework of the European Space......-band SAR to retrieve any information about ice subsurface structure. Imaging has been achieved through TomoSAR techniques, applied to airborne multibaseline data acquired in the southwest of Greenland. Different imaging approaches are compared, and the main results achieved are presented: It is found...

  14. Diffuse interstellar bands as probes of small-scale interstellar structure

    CERN Document Server

    Smith, Keith T; Sarre, Peter J

    2013-01-01

    We present observations which probe the small-scale structure of the interstellar medium using diffuse interstellar bands (DIBs). Towards HD 168075/6 in the Eagle Nebula, significant differences in DIB absorption are found between the two lines of sight, which are separated by 0.25 pc, and {\\lambda}5797 exhibits a velocity shift. Similar data are presented for four stars in the {\\mu} Sgr system. We also present a search for variations in DIB absorption towards {\\kappa} Vel, where the atomic lines are known to vary on scales of ~10 AU. Observations separated by ~9 yr yielded no evidence for changes in DIB absorption strength over this scale, but do reveal an unusual DIB spectrum.

  15. Band structure engineering of graphene by a local gate defined periodic potential

    Science.gov (United States)

    Forsythe, Carlos; Maher, Patrick; Scarabelli, Diego; Dean, Cory; Kim, Philip

    Recent improvements in 2-dimensional (2D) material layering have resulted in enhanced device quality and created pathways for new device architectures. We fabricate periodic arrays from a patterned local back gate and a uniform top gate on hBN encapsulated graphene channels. The symmetry and lattice size of the periodic potential can be determined by state-of-art electron beam lithography and etching, achieving a lattice constant of 35 nm. The strength of the electric potential modulation can be controlled through applied voltage on the patterned gate. We observe signatures of superlattice modulation near the main Dirac peak in the density dependent resistance measurement at zero magnetic field. Current studies focus on the exploration of Hofstadter fractal band structures under magnetic fields. Our nano-patterned engineered superlattices on graphene hold great promise for wider applications.

  16. From Metal Cluster to Metal Nanowire: A Topological Analysis of Electron Density and Band Structure Calculation

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2002-01-01

    Full Text Available Abstract:We investigate a theoretical model of molecular metalwire constructed from linear polynuclear metal complexes. In particular we study the linear Crn metal complex and Cr molecular metalwire. The electron density distributions of the model nanowire and the linear Crn metal complexes, with n = 3, 5, and 7, are calculated by employing CRYSTAL98 package with topological analysis. The preliminary results indicate that the bonding types between any two neighboring Cr are all the same, namely the polarized open-shell interaction. The pattern of electron density distribution in metal complexes resembles that of the model Cr nanowire as the number of metal ions increases. The conductivity of the model Cr nanowire is also tested by performing the band structure calculation.

  17. Dual-band bandpass terahertz wave filter based on microstrip resonant structure

    Science.gov (United States)

    Liu, Yu-hang; Li, Jiu-sheng

    2012-03-01

    The terahertz (THz) band, which refers to the spectral region between 0.1 and 10THz, covers the fingerprints of many chemical and biological materials. Within the past few years, there are increasing demands for experiments in terahertz frequencies, in different areas such as biotechnology, nanotechnology, space science, security, chemical and biological sensing, terahertz wave communications, and medical diagnostics. For potential applications, the functional devices, such as beam polarizers, switchs and filters, are crucial components for a terahertz system. Terahertz wave filter based on two kinds of microstrip resonant structures, has been characterized by terahertz time-domain spectroscopy in the region from 0.1 to 3THz. The experimental results for the frequency dependence of the transmittance of the terahertz wave filter show that the terahertz wave transmittance peak is of 79.5% at 0.5THz and 82.5% at 0.81THz.

  18. Total binding energy via the band structure energy of 4d group transition metals

    International Nuclear Information System (INIS)

    The binding in metals provides a basis genesis to discuss the cohesive, elastic, lattice dynamical and other allied properties of the metals. A thorough and comprehensive analysis with regard to (i) various energy terms contributing to total metallic bonding, (ii) forms of the model potential incurring the band structure part of the binding, (iii) implication of s-d hybridization and (iv) effect of electron screening, has prompted us to undertake the present study of binding in several complex metals which turn out to be superconducting at low temperatures and bear hcp, bcc and fcc configurations at room temperature i.e. yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh) and palladium (Pd). (author). 13 refs., 2 figs., 2 tabs

  19. van der Waals binding and band structure effects in graphene overlayers and graphane multilayers

    Science.gov (United States)

    Hyldgaard, Per; Rohrer, Jochen

    2011-03-01

    We study graphene formation (by selective Si evaporation) and adhesion on SiC surfaces as well as stacking and binding of graphane multilayers using a number of versions of the van der Waals Density Functional (vdW-DF) method and plane-wave density functional theory calculations. For the graphene/SiC systems and for the graphane multilayers we document that the bonding is entirely dominated by van der Waals (vdW) forces. At the same time we find that dispersive forces acting on the layers produce significant modifications in the graphene and graphane band structure. We interpret the changes and discuss a competition between wave function hybridization and interaction with the charge enhancement (between the layers) that results from density overlap. Supported by Svenska Vetenskapsrådet VR #621-2008-4346.

  20. Study of electronic structures and absorption bands of BaMgF4 crystal with F colour centre

    Institute of Scientific and Technical Information of China (English)

    Kang Ling-Ling; Liu Ting-Yu; Zhang Qi-Ren; Xu Ling-Zhi; Zhang Fei-Wu

    2011-01-01

    The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slate-theory, using a numerically discrete variational (DV-Xα)method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band.The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.

  1. Probing the graphite band structure with resonant soft-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  2. Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands

    Science.gov (United States)

    Lingbloom, Mike

    2007-01-01

    Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.

  3. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface.

    Science.gov (United States)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-07-20

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. PMID:27228462

  4. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.

  5. Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations

    Science.gov (United States)

    Das, Subrata Kumar

    Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations Subrata Kumar Das*, S. M. Deshpande, K. Chakravarty and M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pune, India ABSTRACT The Western Ghats (WGs) located parallel to the west coast of India receives a huge amount of rainfall during the Indian summer monsoon (ISM) in which topography plays a huge role in it. To understand the dynamics and microphysics of monsoon precipitating clouds over the WGs, a High Altitude Cloud Physics Laboratory (HACPL) has been setup at Mahabaleshwar (17.92 oN, 73.6 oE, ~1.4 km AMSL) in 2012. As part of this laboratory, a mobile X-band (9.5 GHz) and Ka-band (35.29 GHz) dual-polarization Doppler weather radar system is installed at Mandhardev (18.04 oN, 73.87 oE, ~1.3 km AMSL, at 26 km radial distance from the HACPL). The X-band radar shows the dominant cloud movement is from the western side of the WGs to the eastern side, crossing the HACPL and the radar site. The cloud occurrence statistics show a sudden reduction within a distance of ~30 km on the eastern side of WGs indicates the possibility of a rain shadow area. Further, we investigate the vertical structure of cloud over the HACPL, and identified four cloud modes viz., shallow cumulus mode, congestus mode, deep convective mode, and overshooting convection mode. The frequency distribution of cloud-cell base height (CBH) and cloud-cell top height (CTH) shows most of the clouds with base below 2.5 km and tops usually not exceeding 9 km. This indicates the dominance of warm-rain process in the WGs region. The positive relationships between surface rainfall rates and CTH and 0oC isotherm level have observed. Details will be presented in the upcoming symposium.

  6. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy

    OpenAIRE

    Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C.J.F.; de Groot, R. A.; Wold, A.

    1987-01-01

    The band structures of the semiconducting layered compounds MoSe2, MoS2, and WSe2 have been calculated self-consistently with the augmented-spherical-wave method. Angle-resolved photoelectron spectroscopy of MoSe2 using He I, He II, and Ne I radiation, and photon-energy-dependent normal-emission photoelectron spectroscopy using synchrotron radiation, show that the calculational results give a good description of the valence-band structure. At about 1 eV below the top of the valence band a dis...

  7. Electronic band structure of ZnO-rich highly mismatched ZnO1−xTex alloys

    International Nuclear Information System (INIS)

    We synthesized ZnO1−xTex alloys with Te composition x < 0.23 by using pulsed laser deposition. Alloys with x < 0.06 are crystalline with a columnar growth structure while samples with higher Te content are polycrystalline with random grain orientation. Electron microscopy images show a random distribution of Te atoms with no observable clustering. We found that the incorporation of a small concentration of Te (x ∼ 0.003) redshifts the ZnO optical absorption edge by more than 1 eV. The minimum band gap obtained in this work is 1.8 eV for x = 0.23. The optical properties of the alloys are explained by the modification of the valence band of ZnO, due to the anticrossing interactions of the localized Te states with the ZnO valence band extended states. Hence, the observed large band gap reduction is primarily originating from the upward shift of the valence band edge. We show that the optical data can be explained by the band anticrossing model with the localized level of Te located at 0.95 eV above the ZnO valence band and the band anticrossing coupling constant of 1.35 eV. These parameters allow the prediction of the compositional dependence of the band gap as well as the conduction and the valence band offsets in the full composition range of ZnO1−xTex alloys

  8. COMPARISON OF PAVEMENT STRUCTURES IN TUNNELS

    OpenAIRE

    Rimac, Ivan; Šimun, Miroslav; Dimter, Sanja

    2014-01-01

    Tunnels pose many fire risks. It is difficult to fight fires in tunnels due to their limited accessibility, the quantity of smoke, and high thermal radiation. Temperatures in tunnel fires can reach 1000 °C, and these fires can spread quickly and persist for long periods, the longest recorded in Europe lasting 53 h. The main requirements of tunnel pavement structures are driving safety and comfort, as well as low construction and maintenance costs. Choosing between using concrete or asphalt pa...

  9. X-band dielectric loaded RF driven accelerator structures: Theoretical and experimental investigations

    Science.gov (United States)

    Zou, Peng

    An important area of application of high-power radio frequency (RF) and microwave sources is particle acceleration. A major challenge for the current worldwide research and development effort in linear accelerator is the search for a compact and affordable very-high-energy accelerator technology for the next generation supercolliders. It has been recognized for sometime that dielectric loaded accelerator structures are attractive candidates for the next generation very-high-energy linear accelerators, because they possess several distinct advantages over conventional metallic iris- loaded accelerator structures. However, some fundamental issues, such as RF breakdown in the dielectric, Joule heating, and vacuum properties of dielectric materials, are still the subjects of intense investigation, requiring the validation by experiments conducted at high power levels. An X-band traveling-wave accelerator based on dielectric-lined waveguide has been designed and constructed. Numerical calculation, bench measurements, and 3-D electromagnetic field simulation of this dielectric loaded accelerator are presented. One critical technical problem in constructing such dielectric loaded accelerator is efficient coupling of RF power into the dielectric-lined circular waveguide. A coupling scheme has been arrived at by empirical methods. Field distribution in this coupling configuration has been studied by numerical simulation. In the conventional iris-loaded accelerator structures, the peak surface electric field E s is in general found to be at least a factor of 2 higher than the axial acceleration field Ea. Because the peak surface electric field causes electric breakdown of the structure, it represents a direct limitation on the maximum acceleration gradient that can be obtained. A novel hybrid dielectric-iris-loaded periodic accelerator structure is proposed to utilize the advantages of both dielectric-lined waveguides and conventional iris-loaded structures. Numerical

  10. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2016-08-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  11. Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron

    Directory of Open Access Journals (Sweden)

    Hong-Sub Lee

    2015-01-01

    Full Text Available Oxide semiconductors and their application in next-generation devices have received a great deal of attention due to their various optical, electric, and magnetic properties. For various applications, an understanding of these properties and their mechanisms is also very important. Various characteristics of these oxides originate from the band structure. In this study, we introduce a band structure analysis technique using a soft X-ray energy source to study a La0.7Sr0.3MnO3 (LSMO oxide semiconductor. The band structure is formed by a valence band, conduction band, band gap, work function, and electron affinity. These can be determined from secondary electron cut-off, valence band spectrum, O 1s core electron, and O K-edge measurements using synchrotron radiation. A detailed analysis of the band structure of the LSMO perovskite manganite oxide semiconductor thin film was established using these techniques.

  12. Comparison of the Giemsa C-banded and N-banded karyotypes of two Elymus species, E. dentatus and E. glaucescens (Poaceae; Triticeae)

    DEFF Research Database (Denmark)

    Linde-Laursen, I.; Seberg, O.; Salomon, B.

    1994-01-01

    The karyotypes of Elymus dentatus from Kashmir and E. glaucescens from Tierra del Fuego, both carrying genomes S and H, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype of E. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric...

  13. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor

    Science.gov (United States)

    Sahakyan, M.; Tran, V. H.

    2016-05-01

    The physical properties of the noncentrosymmetric superconductor Th7Co3 have been investigated by means of ac-magnetic susceptibility, magnetization, specific heat, electrical resistivity, magnetoresistance and Hall effect measurements. From these data it is established that Th7Co3 is a dirty type-II superconductor with {{T}\\text{c}}=1.8+/- 0.02 K, Hc2\\text{orb}text{kOe}c2p and moderate electron-phonon coupling {λ\\text{el-\\text{ph}}}=0.56 . Some evidences for anisotropic superconducting gap are found, including e.g. reduced specific heat jump (Δ {{C}p}/γ {{T}\\text{c}}=1.01 ) at T c, diminished superconducting energy gap ({{Δ }0}/{{k}\\text{B}}{{T}\\text{c}}=2.17 ) as compared to the BCS values, power law field dependence of the Sommerfeld coefficient at 0.4 K ({{C}p}/T\\propto {{H}0.6} ), and a concave curvature of the {{H}c2}≤ft({{T}\\text{c}}\\right) line. The magnitudes of the thermodynamic critical field and the energy gap are consistent with mean-squared anisotropy parameter ˜ 0.23 . The electronic specific heat in the superconducting state is reasonably fitted to an oblate spheroidal gap model. Calculations of scalar relativistic and fully relativistic electronic band structures reveal considerable differences in the degenerate structure, resulting from asymmetric spin-orbit coupling (ASOC). A large splitting energy of spin-up spin-down bands at the Fermi level E F, Δ {{E}\\text{ASOC}}˜ 100 meV is observed and a sizeable ratio Δ {{E}\\text{ASOC}}/{{k}\\text{B}}{{T}\\text{c}}˜ 640 could classify the studied compound into the class of noncentrosymmetric superconductors with strong ASOC. The noncentrosymmetry of the crystal structure and the atomic relativistic effects are both responsible for an importance of ASOC in Th7Co3. The calculated results for the density of states show a Van Hove singularity just below E F and dominant role of the 6d electrons of Th to the superconductivity.

  14. Electronic band structure of LaCoO3/Y/Mn compounds

    Science.gov (United States)

    Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad

    2013-02-01

    Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.

  15. Synthesis, physical properties and band structure of non-magnetic Y3AlC

    Science.gov (United States)

    Ghule, S. S.; Garde, C. S.; Ramakrishnan, S.; Singh, S.; Rajarajan, A. K.; Laad, Meena

    2016-10-01

    Y3AlC has been synthesized by arc melting and subsequent annealing. Rietveld analysis of the powder x-ray diffraction (XRD) data confirms cubic Pm-3m structure. Electrical resistivity (ρ) of Y3AlC exhibits metallic behaviour. No sign of superconductivity is observed down to the lowest measurement temperatures of 4.2 K in ρ, and 2 K in magnetic susceptibility (χ) and specific heat (Cp) measurements. The value of the electronic specific heat coefficient γ is 1.36 mJ/K2 mol from which the density of states (DOS) at the Fermi energy (EF) is obtained as 0.57 states/eV.unit cell. The value of Debye temperature θD is estimated to be 315 K. Electronic band structure calculations of Y3AlC reveal a pseudo-gap in the DOS at EF leading to a small value of 0.5 states/eV unit cell which matches quite well with that obtained from γ. Non-zero value of the DOS indicates metallic behaviour as confirmed by our ρ data. Covalent and ionic bonding seem to co-exist with metallic bonding in Y3AlC as indicated by van Arkel- Ketelaar triangle for Zintl-like systems.

  16. Structure of the doubly odd nucleus sup 1 sup 8 sup 0 Ta Description of 23 bands

    CERN Document Server

    Saitoh, T R; Sletten, G; Bark, R A; Toermaenen, S; Bergström, M H; Furuno, K; Furutaka, K; Hagemann, G B; Hayakawa, T; Komatsubara, T; Maj, A; Mitarai, S; Oshima, M; Sampson, J; Shizuma, T; Varmette, P G

    1999-01-01

    The structure of the doubly-odd nucleus sup 1 sup 8 sup 0 Ta has been studied by gamma-gamma coincidence measurements with a DC beam at 52 and 57 MeV and time-correlated gamma-gamma coincidence measurements with a pulsed beam at 55 MeV via the sup 1 sup 7 sup 6 Yb( sup 1 sup 1 B, alpha 3n) sup 1 sup 8 sup 0 Ta reaction. In all measurements, gamma-rays were detected in coincidence with charged particles. In the time-correlated gamma-gamma coincidence measurements with a pulsed sup 1 sup 1 B beam, three rotational bands and one octupole vibrational band have been identified above the I suppi=15 sup - T sub 1 sub / sub 2 =30 mu s isomer. The configuration of three bands built on 8 sup + states has been discussed by means of three-band mixing calculations. BCS calculations with blocking have been used in support of configuration assignment of four- and six-quasiparticle structures. Totally, 19 rotational bands, one beta-, one gamma- and two octupole-vibrational bands, plus one intrinsic state have been identified...

  17. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.

    Science.gov (United States)

    Sharma, Anuj; Manolakos, Elias S

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  18. A flexible Bloch mode method for computing complex band structures and impedances of two-dimensional photonic crystals

    CERN Document Server

    Lawrence, Felix J; Dossou, Kokou B; McPhedran, R C; de Sterke, C Martijn

    2011-01-01

    We present a flexible method that can calculate Bloch modes, complex band structures, and impedances of two-dimensional photonic crystals from scattering data produced by widely available numerical tools. The method generalizes previous work which relied on specialized multipole and FEM techniques underpinning transfer matrix methods. We describe the numerical technique for mode extraction, and apply it to calculate a complex band structure and to design two photonic crystal antireflection coatings. We do this for frequencies at which other methods fail, but which nevertheless are of significant practical interest.

  19. New method for computation of band structures in 1D photonic crystals based on the Fresnel equations

    Science.gov (United States)

    Roshan Entezar, S.

    2013-02-01

    In this paper, we present a new method for calculation of band structure in one-dimensional bilayer photonic crystals, based on the Fresnel equations. We derive a new relation to obtain the band structure without using the Floquet theorem. It is shown that this relation can be simplified under the assumption that the single-path phase-shift acquired through the individual layers of the photonic crystal be equal to ? . The results obtained by our method are compared with the ones obtained from the transfer matrix method to show that they are exactly identical.

  20. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    Science.gov (United States)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  1. Occupied and unoccupied band structure of Ag(100) determined by photoemission from Ag quantum wells and bulk samples

    International Nuclear Information System (INIS)

    Angle-resolved photoemission spectra taken from atomically uniform films of Ag on Fe(100) show layer-resolved quantum-well peaks. The measured peak positions as a function of film thickness permit a unique determination of the initial band dispersion via the Bohr-Sommerfeld quantization rule. This information, combined with normal-emission data taken from a single crystal Ag(100), leads to a unique determination of the final band dispersion. In this study, we employ a two-band model with four adjustable parameters for a simultaneous fit to these experimental results. The initial and final band dispersions deduced from the fit are accurate to better than 0.03 eV at any wave vector k within the range of measurement. The analytic formula for the band dispersions and the parameters for the best fit are given for future reference. The Fermi wave vector along [100], normalized to the Brillouin-zone size, is determined to be kF/kΓX=0.828±0.001, which is more accurate than the de Haas-van Alphen result. The corresponding Fermi velocity is νF=1.06 in units of the free-electron value. The combined reflection phase for the electron wave at the two boundaries is also deduced and compared with a semiempirical formula. This comparison allows us to deduce the edges of the hybridization gap in the Fe substrate. (c) 2000 The American Physical Society

  2. Structural footprinting in protein structure comparison: the impact of structural fragments

    Directory of Open Access Journals (Sweden)

    Wilbur W John

    2007-08-01

    Full Text Available Abstract Background One approach for speeding-up protein structure comparison is the projection approach, where a protein structure is mapped to a high-dimensional vector and structural similarity is approximated by distance between the corresponding vectors. Structural footprinting methods are projection methods that employ the same general technique to produce the mapping: first select a representative set of structural fragments as models and then map a protein structure to a vector in which each dimension corresponds to a particular model and "counts" the number of times the model appears in the structure. The main difference between any two structural footprinting methods is in the set of models they use; in fact a large number of methods can be generated by varying the type of structural fragments used and the amount of detail in their representation. How do these choices affect the ability of the method to detect various types of structural similarity? Results To answer this question we benchmarked three structural footprinting methods that vary significantly in their selection of models against the CATH database. In the first set of experiments we compared the methods' ability to detect structural similarity characteristic of evolutionarily related structures, i.e., structures within the same CATH superfamily. In the second set of experiments we tested the methods' agreement with the boundaries imposed by classification groups at the Class, Architecture, and Fold levels of the CATH hierarchy. Conclusion In both experiments we found that the method which uses secondary structure information has the best performance on average, but no one method performs consistently the best across all groups at a given classification level. We also found that combining the methods' outputs significantly improves the performance. Moreover, our new techniques to measure and visualize the methods' agreement with the CATH hierarchy, including the

  3. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    Directory of Open Access Journals (Sweden)

    Anuj Sharma

    2015-01-01

    F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

  4. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Gang [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); Heinke, Lars, E-mail: Lars.Heinke@KIT.edu; Wöll, Christof [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin [Institute of Nanotechnology (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gordan, Ovidiu D.; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  5. Surface Analysis of OFE-Copper X-Band Accelerating Structures and Possible Correlation to RF Breakdown Events

    CERN Document Server

    Harvey, S E; Kirby, R E; Marcelja, F; Adamson, K; Garwin, E L

    2003-01-01

    X-band accelerator structures meeting the Next Linear Collider (NLC) design requirements have been found to suffer vacuum surface damage caused by radio frequency (RF) breakdown, when processed to high electric-field gradients. Improved understanding of these breakdown events is desirable for the development of structure designs, fabrication procedures, and processing techniques that minimize structure damage. RF reflected wave analysis and acoustic sensor pickup have provided breakdowns localization in RF structures. Particle contaminations found following clean autopsy of four RF-processed travelling wave structures, have been catalogued and analyzed. Their influence on RF breakdown, as well as that of several other material-based properties, will be discussed.

  6. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality. PMID:27049355

  7. Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms

    Science.gov (United States)

    Takanami, Tetsuo; Selwyn Sacks, I.; Hasegawa, Akira

    2000-10-01

    Anelastic structure in the asthenosphere beneath the volcanic front in northeastern Japan arc is estimated by using the spectral amplitude ratio data of P and S waves from about 100 events which occurred in the subducting Pacific slab below Japan. These earthquakes occurred within a 90 km radius centered about the station Sawauchi (SWU), with focal depths ranging from 60 to 200 km. Waveforms were recorded by the Carnegie broad-band three-component seismograph and were corrected for instrument responses, crustal reverberations, corner frequencies, and superimposed noise. Ray paths and travel times of P and S waves are calculated using a three-dimensional velocity model [Zhao, D., Hasegawa, A., Horiuchi, S., 1992. J. Geophys. Res. 97, 19909-19928]. We find a low- Q region ( QS˜70) extending down to 55 km depth from the lower crust beneath the volcanic front. Using Q-temperature laboratory results [Sato, H., Sacks, I.S., Murase, T., Muncill, G., Fukushima, H., 1989. J. Geophys. Res. 94, 10647-10661], this implies a temperature of about 130°C higher than the eastern forearc region and about 30°C higher than the western backarc region, in good agreement with the tomographic results of Zhao et al. [Zhao, D., Hasegawa, A., Horiuchi, S., 1992. J. Geophys. Res. 97, 19909-19928]. This suggests that low velocities in the crust and uppermost mantle beneath SWU may be explained by a subsolidus temperature increase without partial melting.

  8. Band structure of 146Ce studied through γ-γ angular correlation measurements

    Science.gov (United States)

    Yamada, S.; Taniguchi, A.; Okano, K.; Aoki, K.

    The β-decay of 146La was studied using the on-line isotope separator KUR-ISOL. Gamma-gamma angular correlation measurements were performed with a 4-Ge detectors system. Spin assignments of three levels were made: 3+ for the 1576.5 keV level, 4+ for the 1627.1 keV level and 5+ for the 1810.2 keV level. The mixing ratios (E2/M1) were deduced to be δ183.2= 0.25 +/- 0.08, δ638.9= 0.33 +/- 0.05, δ959.0= 1.19+0.16-0.14, δ1015.9= 5.4+3.1-1.5 and δ1318.1= 6.5+1.7-1.1. These were compared to the calculated values obtained in three cases involving different Majorana force parameter values. The band structure of 146Ce is discussed based on the results of calculation using the IBM-2 theory.

  9. Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?

    Science.gov (United States)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?

  10. Microwave band gap and cavity mode in spoof–insulator–spoof waveguide with multiscale structured surface

    International Nuclear Information System (INIS)

    We propose a multiscale spoof–insulator–spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of a perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The ‘gap maps’ in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency range from 4.29 to 5.1 GHz. A cavity mode is observed inside the gap at 4.58 GHz, which comes from a designer ‘point defect’ in the multiscale SIS waveguide. Furthermore, ultrathin MSIS waveguides are shown to have both symmetric and antisymmetric modes with their own MBGs, respectively. The deep-subwavelength confinement and the great degree of control of the propagation of SSPPs in such structures promise potential applications in miniaturized microwave device. (paper)

  11. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    Science.gov (United States)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  12. Band gap engineering and \\vec{k}\\cdot \\vec{\\pi } electronic structure of lead and tin tellurides

    Science.gov (United States)

    Behera, S. S.; Tripathi, G. S.

    2016-06-01

    We study the effect of the variation of energy gap on the k\\cdot π electronic structure of PbTe and SnTe, using a six-level basis at the L point. The basis functions in both the systems have the same transformation properties. However, the basis functions of the band edge states in SnTe are reversed with respect to the same in PbTe. Band dispersions are obtained analytically for a two band model. As the band gap decreases, the bands become linear. Far bands are included in the electronic dispersion, using perturbation theory. Fermi energy and the Density of States at the Fermi energy, { D }({\\varepsilon }F), are calculated for different carrier concentrations and energy gaps through a self-consistent approach. Interesting results are seen when the energy gap is reduced from the respective equilibrium values. For both the systems, the Fermi energy increases as the gap is decreased. The behavior of { D }({\\varepsilon }F) is, however, different. It decreases with the gap. It is also on expected lines. Calculated values of the electronic effective mass, as a function of temperature, energy gap and carrier concentration, are compared with previously published data. As distinguished from a first principles calculation, the work has focused on the carrier dependent electronic parameters for use both by theorists and experimenters as well.

  13. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A.; Ovsyannikov, R.; Gorgoi, M.; Krause, S.; Oehzelt, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin (Germany); Lindblad, A.; Martensson, N.; Svensson, S. [Uppsala University, Department of Materials Chemistry and Department of Physics and Astronomy, Uppsala (Sweden); Karlsson, P.; Lundvuist, M. [VG Scienta AB, Uppsala (Sweden); Schmeiler, T.; Pflaum, J. [Lehrstuhl fuer Experimentelle Physik VI, Universitaet Wuerzburg und ZAE Bayern, 97074 Wuerzburg (Germany); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, 12489 Berlin (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel type of photoemission detector is introduced: the Angle Resolved Time Of Flight electron energy analyzer (ARTOF). Black-Right-Pointing-Pointer It enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. Black-Right-Pointing-Pointer The band structures of rubrene single crystal is confirmed. Black-Right-Pointing-Pointer The absence of HOMO-band dispersion for tetracene single crystals is revealed. - Abstract: We report on a novel type of photoemission detector, the Angle Resolved Time Of Flight electron energy analyzer (ARTOF 10k), which enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. This is facilitated through the combination of very high electron transmission and wide accessible angular range in one geometry. These properties make the ARTOF 10k predestined to investigate specimens that strongly suffer from radiation damage during photoemission experiments under 'standard' conditions, such as organic single crystals, as extremely low fluxes can be used while not compromising spectra accumulation times and signal-to-noise ratio. Even though organic single crystals are of increasing fundamental and applied scientific interest, knowledge of their electronic properties is still largely based on theoretical calculations due to major experimental challenges in measuring photoemission. In this work we show that the band structures of rubrene and tetracene single crystals can be obtained with unprecedented quality using the ARTOF 10k detector. The dispersion of the highest occupied band in rubrene is confirmed in accordance with an earlier report and we disclose the absence of notable dispersion for the highest occupied energy level on the surface of tetracene single crystals.

  14. Formation of the conduction band electronic structure during deposition of ultrathin dicarboximide-substituted perylene films on the oxidized silicon surface

    Science.gov (United States)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Ovsyannikov, A. D.

    2015-07-01

    The results of the investigation of the conduction band electronic structure and the interfacial potential barrier during deposition of ultrathin dicarboximide-substituted perylene films (PTCBI-C8) on the oxidized silicon surface have been presented. The measurements have been performed using the very low energy electron diffraction (VLEED) technique implemented in the total current spectroscopy (TCS) mode with a variation in the incident electron energy from 0 to 25 eV. Changes in the intensities of the maxima from the deposited PTCBI-C8 film and from the substrate with an increase in the organic coating thickness to 7 nm have been analyzed using TCS measurements. A comparison of the structure of the maxima of PTCBI-C8 and perylene-tetracarboxylic-dianhydride (PTCDA) films has made it possible to distinguish the energy range (8-13 eV above E F) in which distinct differences in the structures of maxima for PTCDA and PTCBI-C8 films are observed. This energy range corresponds to low-lying σ*-states of the conduction band of the films studied. The formation of the interfacial region of the PTCBI-C8 film and (SiO2) n-Si substrate is accompanied by an increase in the surface work function by 0.6 eV, which corresponds to the electron density charge transfer from the (SiO2) n-Si substrate to the PTCBI-C8 film.

  15. Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3.

    Science.gov (United States)

    Appell, K C; Low, P S

    1981-11-10

    group is suggested to exert significant control over the structure/stability of the cytoplasmic domain of band 3. PMID:7287756

  16. BAND-STRUCTURE AND CLUSTER-MODEL CALCULATIONS OF LACOO(3) IN THE LOW-SPIN PHASE

    NARCIS (Netherlands)

    ABBATE, M; POTZE, R; SAWATZKY, GA; FUJIMORI, A

    1994-01-01

    We present band-structure and cluster-model calCulatiOns Of LaCoO3 in the low-spin phase. The purpose of these calculations is to contrast and complement the results and conclusions of recent spectroscopic studies. The total density of states (DOS) is compared to the photoemission spectrum; the agre

  17. Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade

    Science.gov (United States)

    Alesini, D.; Bellaveglia, M.; Biagini, M. E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-11-01

    The energy upgrade of the SPARC_LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  18. Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals

    Science.gov (United States)

    Shabaev, A.; Rodina, A. V.; Efros, Al. L.

    2012-11-01

    We present a theoretical description of excitons and positively and negatively charged trions in “giant” CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thick shell NCs as a function of the CdSe/CdS conduction band offset and the CdSe core radius. We have also developed a general theory describing the fine structure of positively charged trions created in semiconductor NCs with a degenerate valence band. The calculations take into account the complex structure of the CdSe valence band and interparticle Coulomb and exchange interaction. Presented in this paper are the CdSe core size and CdSe/CdS conduction band offset dependencies (i) of the positively charged trion fine structure, (ii) of the binding energy of the negatively charged trion, and (iii) of the radiative decay time for excitons and trions. The results of theoretical calculations are in qualitative agreement with available experimental data.

  19. Microscopic nuclear structure models and methods : Chiral symmetry, Wobbling motion and $\\gamma-$bands

    CERN Document Server

    Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A

    2015-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...

  20. RESONANT ZENER TUNNELING OF ELECTRONS ACROSS THE BAND-GAP BETWEEN BOUND STATES IN THE VALENCE- AND CONDUCTION-BAND QUANTUM WELLS IN A MULTIPLE QUANTUM-WELL STRUCTURE

    OpenAIRE

    Allam, J.; Beltram, F.; Capasso, F; Cho, A.

    1987-01-01

    We report the observation of resonant tunneling effects at high applied fields in a multiple quantum-well P-I-N diode. The Al0.48In0.52As/Ga0.47In0.53As structure shows features in the dark current due to Zener tunneling of electrons from the lowest sub-band in a valence-band quantum well to the first and second sub-bands of an adjacent conduction-band well.

  1. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    International Nuclear Information System (INIS)

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement

  2. Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups.

    Science.gov (United States)

    Watanabe, Haruki; Po, Hoi Chun; Zaletel, Michael P; Vishwanath, Ashvin

    2016-08-26

    Nonsymmorphic symmetries like screws and glides produce electron band touchings, obstructing the formation of a band insulator and leading, instead, to metals or nodal semimetals even when the number of electrons in the unit cell is an even integer. Here, we calculate the electron fillings compatible with being a band insulator for all 230 space groups, for noninteracting electrons with time-reversal symmetry. Our bounds are tight-that is, we can rigorously eliminate band insulators at any forbidden filling and produce explicit models for all allowed fillings-and stronger than those recently established for interacting systems. These results provide simple criteria that should help guide the search for topological semimetals and, also, have implications for both the nature and stability of the resulting nodal Fermi surfaces. PMID:27610868

  3. Shape optimization of phononic band gap structures using the homogenization approach

    CERN Document Server

    Vondřejc, Jaroslav; Heczko, Jan

    2016-01-01

    The paper deals with optimization of the acoustic band gaps computed using the homogenized model of strongly heterogeneous elastic composite which is constituted by soft inclusions periodically distributed in stiff elastic matrix. We employ the homogenized model of such medium to compute intervals - band gaps - of the incident wave frequencies for which acoustic waves cannot propagate. It was demonstrated that the band gaps distribution can be influenced by changing the shape of inclusions. Therefore, we deal with the shape optimization problem to maximize low-frequency band gaps; their bounds are determined by analyzing the effective mass tensor of the homogenized medium. Analytic transformation formulas are derived which describe dispersion effects of resizing the inclusions. The core of the problem lies in sensitivity of the eigenvalue problem associated with the microstructure. Computational sensitivity analysis is developed, which allows for efficient using of the gradient based optimization methods. Num...

  4. Band structure and optical transitions in LaFeO3: theory and experiment.

    Science.gov (United States)

    Scafetta, Mark D; Cordi, Adam M; Rondinelli, James M; May, Steven J

    2014-12-17

    The optical absorption properties of LaFeO(3) (LFO) have been calculated using density functional theory and experimentally measured from several high quality epitaxial films using variable angle spectroscopic ellipsometry. We have analyzed the calculated absorption spectrum using different Tauc models and find the model based on a direct-forbidden transition gives the best agreement with the ab initio band gap energies and band dispersions. We have applied this model to the experimental data and determine the band gap of epitaxial LFO to be ∼2.34 eV, with a slight dependence on strain state. This approach has also been used to analyze the higher indirect transition at ∼3.4 eV. Temperature dependent ellipsometry measurements further confirm our theoretical analysis of the nature of the transitions. This works helps to provide a general approach for accurate determination of band gaps and transition energies in complex oxide materials. PMID:25406799

  5. Flat Band Quastiperiodic Lattices

    Science.gov (United States)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  6. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  7. FRASS: the web-server for RNA structural comparison

    Directory of Open Access Journals (Sweden)

    Carugo Oliviero

    2010-06-01

    Full Text Available Abstract Background The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla are available for the structural comparison of large and intact RNA molecules. Results The FRASS web-server represents a RNA chain with its Gauss integrals and allows one to compare structures of RNA chains and to find similar entries in a database derived from the Protein Data Bank. We observed that FRASS scores correlate well with the ARTS and LaJolla similarity scores. Moreover, the-web server can also reproduce satisfactorily the DARTS classification of RNA 3D structures and the classification of the SCOR functions that was obtained by the SARA method. Conclusions The FRASS web-server can be easily used to detect relationships among RNA molecules and to scan efficiently the rapidly enlarging structural databases.

  8. Simultaneous Out-of-band Interference Rejection and Radiation Enhancement in an Electronic Product via an EBG Structure

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2014-01-01

    to achieve simultaneously both the enhancement of the antenna radiation efficiency and the shrinking of its dimensions, while making the device more resilient to out-of-band electromagnetic interference (EMI). The patterning of the ground plane allows, in fact, to effectively suppress higher-order resonances......This work presents an application of a planar electromagnetic band gap (EBG) structure with a perspective product implementation in the back of the mind. The focus is on the integration of such structure under the constraint of space and system coexistence. It is discovered that it is possible...... (alternatively, parallel plate noise) and decrease the radiation efficiency of the structure forbidding higher-order modes to propagate and subsequently be diffracted by the ground plane....

  9. Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure

    Institute of Scientific and Technical Information of China (English)

    Fan Chun-Zhen; Wang Jun-Qiao; He Jin-Na; Ding Pei; Liang Er-Jun

    2013-01-01

    We theoretically investigate the photonic band gap in one-dimensional photonic crystals with a graded multilayer structure.The proposed structure constitutes an alternating composite layer (metallic nanoparticles embedded in TiO2 film) and an air layer.Regarding the multilayer as a series of capacitance,effective optical properties are derived.The dispersion relation is obtained with the solution of the transfer matrix equation.With a graded structure in the composite layer,numerical results show that the position and width of the photonic band gap can be effectively modulated by varying the number of the graded composite layers,the volume fraction of nanoparticles and the external stimuli.

  10. Band structure and effective mass calculations for III-V compound semiconductors using hybrid functionals and optimized local potentials

    International Nuclear Information System (INIS)

    The band structures of III-V semiconductors (InP, InAs, InSb, GaAs, and GaSb) are calculated using the HSE06 hybrid functional, GW, and local potentials optimized for the description of band gaps. We show that the inclusion of a quarter of the exact HF exchange allows to predict accurate direct band gaps for InP, InAs, and InSb, i.e., 1.48, 0.42, 0.28 eV, in good agreement with recent experiments, i.e., 1.42, 0.42, 0.24 eV, respectively. The calculated effective masses and Luttinger parameters are also in reasonable agreement with experiment, although a tendency towards underestimation is observed with increasing anion mass. In order to find more efficient methods than hybrid functionals, the modified Becke-Johnson exchange potential is also employed to calculate the effective masses. The agreement of the effective masses with experiment is comparable to the one obtained with the HSE06 hybrid functional. Therefore, this opens a way to model band structures of much large systems than possible using hybrid functionals.

  11. Micro-metric electronic patterning of a topological band structure using a photon beam

    Science.gov (United States)

    Golden, Mark; Frantzeskakis, Emmanouil; de Jong, Nick; Huang, Yingkai; Wu, Dong; Pan, Yu; de Visser, Anne; van Heumen, Erik; van Bay, Tran; Zwartsenberg, Berend; Pronk, Pieter; Varier Ramankutty, Shyama; Tytarenko, Alona; Xu, Nan; Plumb, Nick; Shi, Ming; Radovic, Milan; Varkhalov, Andrei

    2015-03-01

    The only states crossing EF in ideal, 3D TIs are topological surface states. Single crystals of Bi2Se3andBi2Te3 are too defective to exhibit bulk-insulating behaviour, and ARPES shows topologically trivial 2DEGs at EF in the surface region due to downward band bending. Ternary & quaternary alloys of Bi /Te /Se /Sb hold promise for obtaining bulk-insulating crystals. Here we report ARPES data from quaternary, bulk-insulating, Bi-based TIs. Shortly after cleavage in UHV, downward band bending pulls the bulk conduction band below EF, once again frustrating the ``topological only'' ambition for the Fermi surface. However, there is light at the end of the tunnel: we show that a super-band-gap photon beam generates a surface photovoltage sufficient to flatten the bands, thereby recovering the ideal, ``topological only'' situation. In our bulk-insulating quaternary TIs, this effect is local in nature, and permits the writing of arbitrary, micron-sized patterns in the topological energy landscape at the surface. Support from FOM, NWO and the EU is gratefully acknowledged.

  12. Structure comparisons of Aedes albopictus densovirus with other parvoviruses

    Institute of Scientific and Technical Information of China (English)

    CHENG LingPeng; CHEN SenXiong; Z. H. ZHOU; ZHANG JingQiang

    2007-01-01

    Parvoviridae is a family of the smallest viruses known with a wide variety of hosts. The capsid structure of the Aedes albopictus C6/36 cell densovirus (C6/36 DNV) at 1.2-nm resolution was obtained by electron cryomicroscopy (cryoEM) and three-dimensional (3D) image reconstruction. Structure comparisons between the C6/36 DNV and other parvoviruses reveal that the degree of structural similarity between C6/36 DNV and the human parvovirus B19 is higher than that between C6/36 DNV and other insect parvoviruses. The amino acid sequence comparisons of structural and non-structural proteins also reveal higher levels of similarity between C6/36 DNV and parvovirus B19 than those between C6/36 DNV and other parvoviruses. These findings indicate that C6/36 DNV is closely related to the human virus B19, and the former might evolve from the human species other than from other insect viruses.

  13. Structure comparisons of Aedes albopictus densovirus with other parvoviruses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Parvoviridae is a family of the smallest viruses known with a wide variety of hosts. The capsid structure of the Aedes albopictus C6/36 cell densovirus (C6/36 DNV) at 1.2-nm resolution was obtained by elec-tron cryomicroscopy (cryoEM) and three-dimensional (3D) image reconstruction. Structure compari-sons between the C6/36 DNV and other parvoviruses reveal that the degree of structural similarity be-tween C6/36 DNV and the human parvovirus B19 is higher than that between C6/36 DNV and other in-sect parvoviruses. The amino acid sequence comparisons of structural and non-structural proteins also reveal higher levels of similarity between C6/36 DNV and parvovirus B19 than those between C6/36 DNV and other parvoviruses. These findings indicate that C6/36 DNV is closely related to the human virus B19, and the former might evolve from the human species other than from other insect viruses.

  14. Comparison of Characteristics of Periodic and Non-Periodic Defected Ground Structures

    Institute of Scientific and Technical Information of China (English)

    LI Yuan; LI Huancai; DING Ronglin

    2006-01-01

    The filter characteristic of defected ground structure(DGS)is analyzed and the equivalent circuit of C-shaped DGS is extracted. The characteristics of non-periodic and periodic DGS with different dimensions are compared. Then the DGS is simulated and optimized with software, and the circuit board is manufactured and measured. The non-periodic structure is simple in structure and small in size and ripple compared with the periodic structure. Though the stop band of the non-periodic structure is narrow, it can meet the requirement of application. The C-shaped structure with two stop bands can select frequency in a special band.

  15. Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface

    KAUST Repository

    Upadhyay Kahaly, M.

    2011-09-20

    We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.

  16. Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    to be close to zero for several alloys and below 20 meV/atom for all the alloys. We explore to what extent the electronic properties like the band gap and band edge positions of the alloy can be evaluated by taking the weighted average of the corresponding properties of the pristine systems. In general......, this approach works well with the only exception being Cr containing compounds. Because the calculated properties of the alloys are very similar to the weighted averages, we expect that the trends observed for the ordered alloys will also hold for more realistic disordered alloys......We explore the possibility of modulating the electronic band edges of the transition metal dichalcogenides (TMD) via alloying of different semiconductors within the same group (intra-group alloying). The stability of the ordered alloys is assessed from the calculated mixing enthalpy which is found...

  17. Influence of indium clustering on the band structure of semiconducting ternary and quaternarynitride alloys

    DEFF Research Database (Denmark)

    Gorczyca,, I.; Łepkowski, S. P.; Suski, T.;

    2009-01-01

    smaller when the In atoms are clustered than when they are uniformly distributed. An explanation of this phenomenon is proposed on the basis of an analysis of the density of states and the bond lengths, performed in detail for ternary alloys. Results for the band gaps of InxGayAl1-x-yN quaternary alloys...... show a similar trend. It is suggested that the large variation in the band gaps determined on samples grown in different laboratories is caused by different degrees of In clustering....

  18. Multiple reflection-asymmetric type band structures in $^{220}Th$ and dinuclear model

    CERN Document Server

    Shneidman, T M; Antonenko, N V; Jolos, R V; Scheid, W

    2010-01-01

    The negative parity bands in $^{220}$Th are analyzed within the dinuclear system model which was previously used for describing the alternating-parity bands in deformed actinides. The model is based on the assumption that cluster type shapes are produced by the motion of nuclear system in the mass-asymmetry coordinate. To describe the reflection-asymmetric collective modes characterized by nonzero values of $K$, the intrinsic excitations of clusters are taken into account. The angular momentum dependence of the parity splitting and the staggering behavior of the $B(E1)/B(E2)$ ratios as functions of angular momentum are explained.

  19. Effect of interaction between periodic δ-doping in both well and barrier layers on modulation of superlattice band structure

    Science.gov (United States)

    Xu, Huaizhe; Yan, Qiqi; Wang, Tianmin

    2007-08-01

    The modulation of superlattice band structure via periodic δ-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the δ-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic δ-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two δ-doping's positions and heights.

  20. Application of the new LDA+GTB method for the band structure calculation of n-type cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, M.M. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation)]. E-mail: mkor@iph.krasn.ru; Ovchinnikov, S.G. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Gavrichkov, V.A. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Nekrasov, I.A. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation); Pchelkina, Z.V. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation); Anisimov, V.I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation)

    2006-05-01

    A novel hybrid scheme is proposed and applied for band structure calculations of undoped n-type cuprate Nd{sub 2}CuO{sub 4}. The ab initio LDA calculation is used to obtain single electron and Coulomb parameters of the multiband Hubbard-type model. In strong correlation regime the electronic structure within this model is calculated by the generalized tight-binding (GTB) method, that combines the exact diagonalization of the model Hamiltonian for a small cluster with perturbation treatment of the intercluster hopping and interactions. For Nd{sub 2}CuO{sub 4}, this scheme results in charge transfer insulator with value of the gap and band dispersion in agreement to the experimental data.

  1. Alpha-band activity reflects reduction of mental effort in a comparison task : A source space analysis

    NARCIS (Netherlands)

    Keil, Andreas; Mussweiler, Thomas; Epstude, Kai

    2006-01-01

    Comparison processes contribute to many core phenomena of social cognition research. Whenever humans judge a given target, they rely on comparisons with a pertinent standard. We propose that comparison processes may be so ubiquitous because they reduce mental effort. To investigate this possibility,

  2. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF

    OpenAIRE

    Vollmer, A.; R. Ovsyannikov; Gorgoi, M.; Krause, S.; Oehzelt, M.; Lindblad, Andreas; Mårtensson, Nils; Svensson, Svante; Karlsson, P; Lundvuist, M.; Schmeiler, T.; Pflaum, J.; Koch, N.

    2012-01-01

    We report on a novel type of photoemission detector, the Angle Resolved Time Of Flight electron energy analyzer (ARTOF 10k), which enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. This is facilitated through the combination of very high electron transmission and wide accessible angular range in one geometry. These properties make the ARTOF 10k predestined to investigate specimens that strongly suffer from radiation da...

  3. Crystal structure and band gap determination of HfO2 thin films

    NARCIS (Netherlands)

    Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.L.

    2007-01-01

    Valence electron energy loss spectroscopy (VEELS) and high resolution transmission electron microscopy (HRTEM) are performed on three different HfO2 thin films grown on Si (001) by chemical vapor deposition (CVD) or atomic layer deposition (ALD). For each sample the band gap (Eg) is determined by lo

  4. Optical study of the band structure of wurtzite GaP nanowires

    KAUST Repository

    Assali, S.

    2016-07-25

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading to a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ8C conduction band edge.

  5. Structure of the red absorption band of chlorophyll a in Aspidistra elatior

    NARCIS (Netherlands)

    Thomas, J.B.

    1962-01-01

    The red absorption band of chlorophyll a in chloroplasts of Aspidistra elatior consists of a main maximum and a number of weak shoulders. This number may vary in chloroplast preparations from different leaves. At most, five shoulders were noticed. Heat treatment affects the shoulders in a mutually

  6. Ossiculoplasty in intact stapes and malleus patients: a comparison of PORPs versus TORPs with malleus relocation and Silastic banding techniques.

    NARCIS (Netherlands)

    Vincent, R.; Rovers, M.M.; Mistry, N.; Oates, J.; Sperling, N.; Grolman, W.

    2011-01-01

    OBJECTIVES: To compare hearing results in patients undergoing ossiculoplasty using either partial ossicular replacement prosthesis (PORP) or total ossicular replacement prosthesis (TORP) with Silastic banding and malleus relocation techniques in cases with malleus and stapes both present and mobile.

  7. Ossiculoplasty in Intact Stapes and Malleus Patients : A Comparison of PORPs Versus TORPs With Malleus Relocation and Silastic Banding Techniques

    NARCIS (Netherlands)

    Vincent, Robert; Rovers, Maroeska; Mistry, Nina; Oates, John; Sperling, Neil; Grolman, Wilko

    2011-01-01

    Objectives: To compare hearing results in patients undergoing ossiculoplasty using either partial ossicular replacement prosthesis (PORP) or total ossicular replacement prosthesis (TORP) with Silastic banding and malleus relocation techniques in cases with malleus and stapes both present and mobile.

  8. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    International Nuclear Information System (INIS)

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV

  9. RF-components embedded with photonic-band-bap (PBG) and fishnet-metamaterial structures for high frequency accelerator application

    CERN Document Server

    Robak, Sara; Shin, Young-Min

    2015-01-01

    In the development of high efficiency and high gradient RF-accelerators, RF waveguides and cavities have been designed with Photonic Band Gap (PBG) and fishnet- metamaterial structures. The designed structures are comprised of a periodically corrugated channel sandwiched between two photonic crystal slabs with alternating high to low dielectric constants and a multi-cell cavity-resonator designed with fishnet-metamaterial apertures. The structural designs of our interest are intended to only allow an operating-mode or -band within a narrow frequency range to propagate. The simulation analysis shows that trapped non-PBG modes are effectively suppressed down to ~ -14.3 dB/cm, while PBG modes propagated with ~2 dB of insertion loss, corresponding to ~1.14 dB/cm attenuation. The pre- liminary modeling analysis on the fishnet-embedded cavity shows noticeable improvement of Q-factor and field gradient of the operating mode (TM010) compared to those of typical pillbox- or PBG-cavities. Fabrication of the Ka-band PBG...

  10. Impact of [110]/(001) uniaxial stress on valence band structure and hole effective mass of silicon*

    Institute of Scientific and Technical Information of China (English)

    Ma Jianli; Zhang Heming; Song Jianjun; Wang Guanyu; Wang Xiaoyan; Xu Xiaobo

    2011-01-01

    The valence band structure and hole effective mass of silicon under a uniaxial stress in (001) surface along the [110] direction were detailedly investigated in the framework of the k·p theory. The results demonstrated that the splitting energy between the top band and the second band for uniaxial compressive stress is bigger than that of the tensile one at the same stress magnitude, and of all common used crystallographic direction, such as [110],[001], [110] and [100], the effective mass for the top band along [110] crystallographic direction is lower under uniaxial compressive stress compared with other stresses and crystallographic directions configurations. In view of suppressing the scattering and reducing the effective mass, the [110] crystallographic direction is most favorable to be used as transport direction of the charge carrier to enhancement mobility when a uniaxial compressive stress along [110] direction is applied. The obtained results can provide a theory reference for the design and the selective of optimum stress and crystallorgraphic direction configuration of uniaxial strained silicon devices.

  11. Band structure engineering of anatase TiO{sub 2} by metal-assisted P-O coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiajun; Meng, Qiangqiang [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Jing [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601 (China); Li, Qunxiang, E-mail: liqun@ustc.edu.cn; Yang, Jinlong [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO{sub 2}. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO{sub 2} are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO{sub 2}, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO{sub 2}. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO{sub 2} are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO{sub 2} can also effectively enhance the visible light absorption.

  12. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [IPN, Orsay (France)] [and others

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  13. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    International Nuclear Information System (INIS)

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M23C6 carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M23C6 carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M23C6 enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M23C6 carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser. Experiment results indicated the wear resistance and

  14. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  15. Multiple reflection-asymmetric-type band structures in {sup 220}Th and dinuclear model

    Energy Technology Data Exchange (ETDEWEB)

    Shneidman, T.M.; Adamian, G.G.; Antonenko, N.V.; Jolos, R.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Scheid, W. [Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Giessen (Germany)

    2011-03-15

    The negative-parity bands with different values of K in {sup 220}Th are analysed within the dinuclear system model which was previously used for describing the ground-state alternating-parity bands with K = 0 in deformed actinides. The model is based on the assumption that the cluster type shapes are produced by the collective motion in the mass-asymmetry coordinate. To describe the reflection-asymmetric collective modes characterized by the nonzero values of K, the intrinsic excitations of clusters are taken into account. The observed excitation spectrum, angular-momentum dependence of the parity splitting and the staggering behaviour of the B(E1)/B(E2) ratios are explained. (orig.)

  16. UHF-Band Wireless Power Transfer System for Structural Health Monitoring Sensor Network

    OpenAIRE

    Tansheng Li; Kikuzo Sawada; Harutoshi Ogai; Wa Si

    2013-01-01

    For detecting and measuring health conditions of bridges, wireless sensor networks are used in these days. However, battery life is critically restricting the application and maintenance cost of sensor network systems. To extend life time, a wireless power transfer system at UHF band is introduced to supply the current wireless sensor network. This power transfer system is based on electric wave at 950 MHz. This power transfer system is redesigned for tiny power transmission, including a comb...

  17. Band structure in {sup 79}Y and the question of T=0 pairing

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.D.; Baktash, C.; Gross, C.J.; Galindo-Uribarri, A.; Radford, D.C.; Rudolph, D.; Rykaczewski, K.; Shapira, D.; Toth, K.S.; Yu, C.H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Satula, W. [Joint Institute of Heavy Ion Research, Oak Ridge, Tennessee 37831 (United States); Satula, W.; Reviol, W.; Riedinger, L.L.; Weintraub, W. [Department of Physics, University of Tennessee, Knoxville, Tennessee 37996 (United States); Satula, W. [Institute of Theoretical Physics, Warsaw University, PL-00681 Warsaw (Poland); Gross, C.J. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831 (United States); Birriel, I.; Saladin, J.X.; Winchell, D.F.; Wood, V.Q. [Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Clark, R.M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cunningham, R.A.; Kay, J.; Leyland, C.; Metcalfe, S.J. [CCLRC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Devlin, M.; Lafosse, D.R.; Lerma, F.; Sarantites, D.G. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Ginter, T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); MacDonald, B.D. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Piechaczek, A. [Department of Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Sylvan, G.N.; Tabor, S.L. [Florida State University, Tallahassee, Florida 32306 (United States); Wyss, R. [The Royal Institute of Technology, Physics Department Frescati, S-104 05 Stockholm (Sweden)

    1998-12-01

    Gamma rays in the N=Z+1 nucleus {sup 79}Y were identified using the reaction {sup 28}Si({sup 54}Fe,thinspp2n){sup 79}Y at a 200 MeV beam energy and an experimental setup consisting of an array of Ge detectors and the Recoil Mass Spectrometer at Oak Ridge National Laboratory. With the help of additional {gamma}-{gamma} coincidence data obtained with Gammasphere, these {gamma} rays were found to form a strongly coupled rotational band with rigid-rotor-like behavior. Results of conventional Nilsson-Strutinsky cranked shell model calculations, which predict a deformation of {beta}{sub 2}{approximately}0.4, are in excellent agreement with the properties of this band. Similar calculations for the neighboring N=Z and N=Z+1 nuclei are also in good agreement with experimental data. This suggests that the presence of the putative T=0 neutron-proton pairing does not significantly affect such simple observables as the moments of inertia of these bands at low spins. {copyright} {ital 1998} {ital The American Physical Society}

  18. Phonon-assisted ultrafast charge separation in the PCBM band structure

    Science.gov (United States)

    Smith, Samuel L.; Chin, Alex W.

    2015-05-01

    Organic solar cells separate strongly bound electron-hole pairs into free charges at interfaces between electron donor and acceptor organic semiconductors. Recently, electron-hole separation was observed on femtosecond time scales near crystallite phases of the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PCBM), which is incompatible with conventional Marcus theories of organic transport. Here we show that ultrafast charge transport in PCBM arises from its broad range of electronic eigenstates, provided by three closely spaced electronic bands near the lowest unoccupied molecular orbital. The highest band provides a charge transfer state resonant with delocalized states of the lower two bands away from the interface. This state acts as a bridge between the donor phase and the acceptor bulk, bypassing the trapped charge-transfer (CT) states below. Vibrational fluctuations enable rapid electronic transitions across this bridge, which can drive the electron more than 4 nm away from the interface within 100 fs. All this is demonstrated within a simple tight-binding Hamiltonian containing transfer integrals no larger than 8 meV.

  19. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    Science.gov (United States)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  20. The valence band electronic structure of the Cu(111) (√3X√3)R30deg-Si interface

    International Nuclear Information System (INIS)

    Full text: The structure and bonding of the copper-silicon interface is of considerable interest from a number of aspects. Firstly as a catalyst in the commercial synthesis of silane polymers, secondly as an anti-corrosion treatment, and thirdly, the formation of a well ordered and reactive silicon layer, which can be oxidised is relevant in the creation of ultra-thin silicon oxide-metal interfaces for electronic devices. Silicon is capable of forming a number of compounds with copper, the most widely studied of which is Cu3Si. Calculations have shown that when silicon impurity atoms are incorporated into a copper solid, there is an interaction between copper 3d levels and the 3s and sp levels of silicon. The silicon 2p orbitals rehybridise with the copper 3d band to form bonding and antibonding states separated by -4 eV. The resulting compounds have metallic, rather than semiconducting nature, there is charge transfer from copper to silicon and there is an increase in electron density into the silicon valence bands, making silicon more reactive. The splitting of the density of states near the Fermi edge has been measured as 4-5 eV in amorphous copper-silicon alloys, using Si Kβ fluorescence spectroscopy and has also been inferred from the 4 eV splitting of the LV V auger lines in Cu-Si compounds and in copper deposited on Si(100) and Si(111) surfaces. In this study we have used high resolution valence band photoemission spectroscopy to investigate the nature of the silicon valence bands in a well ordered silicon-copper interface. By comparing the valence band spectra of the clean surface and those from the silicon interface, we are able to identify three silicon-derived features which are in agreement with other published data. We suggest that these levels are due to emission from the 3s and 3p levels of Si

  1. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure

    Science.gov (United States)

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-04-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band.

  2. Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ding Xueyong; Li Hongfan; Lv Zhensu [Polytechnic Institute of San Ya University, Sanya, Hainan 572022 (China)

    2012-09-15

    Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Bragg structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.

  3. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NARCIS (Netherlands)

    Ho, Jen-Hsuan; Berkhoff, A.P.

    2014-01-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of

  4. Spectroscopic ellipsometry of Ni3Al in comparison with band-structure calculations

    NARCIS (Netherlands)

    Heide, P.A.M. van der; Buiting, J.J.M.; Dam, L.M. ten; Schreurs, L.W.M.; Groot, R.A. de; Vroomen, A.R. de

    1985-01-01

    The optical constants of Ni3Al from 0.5 to 5.3 eV have been determined by means of spectroscopic ellipsometry at room temperature under ultra-high vacuum conditions. Measurements were performed on a single crystal and a polycrystalline sample, which gave identical results. The results are compared w

  5. Mechanical contrast in block copolymers manifested as kink band defects

    Science.gov (United States)

    Winey, Karen I.; Polis, Daniel L.

    1998-03-01

    Kink bands are an established defect structure found in materials with a preferential slip plane, such as select crystalline solids and foliated rocks. Kink bands are induced by steady shear in a predominately parallel-oriented, lamellar poly(styrene-b-ethylene propylene) diblock copolymer. Steady shear induces kink bands which have their boundaries oriented at 45^o relative to the shearing direction. The lamellar orientations inside and outside the kink bands are asymmetric with respect to the kink band boundaries. This asymmetry is due to a lamellar dilation inside the kink band relative to lamellae outside the kink band. A comparison of the zero shear viscosities of homopolystyrene and homopoly(ethylene-propylene) suggest that the PS microdomains deform preferentially. The presence of a preferential slip plane is consistent with the formation of kink bands. Furthermore, estimates of the number of entanglements in the interpenetration zone between opposing brushes suggest an even larger disparity between PS and PEP relaxation times.

  6. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  7. A novel dual-band balun based on the dual structure of composite right/left handed transmission line

    CERN Document Server

    Xin, H; Sailing, H; Pu, Zhang; Sailing, He; Xin, Hu

    2006-01-01

    Utilizing the opposite phase shifting property of a standard Composite Right/Left Handed (CRLH) transmission line (TL) and a dual structure of CRLH (D-CRLH) TL, a dual-band balun is designed. The dual-band balun is formed by a 1x2 (3-dB) splitter with a D-CRLH phase-shifting line in the top branch and a CRLH phase-shifting line in the bottom branch. The performance of the balun is verified with circuit simulation at 2.4 GHz and 5.0GHz. The balun exhibits a very wide bandwidth for differential output phase, the return loss is well below -100dB, and the insertion losses |S12| and |S13| are around -3.03dB at both frequencies.

  8. Effect of thermal annealing on structure and optical band gap of amorphous Se72Te25Sb3 thin films

    Science.gov (United States)

    Dwivedi, D. K.; Pathak, H. P.; Kumar, Vipin; Shukla, Nitesh

    2014-04-01

    Thin films of a-Se72Te25Sb3 were prepared by vacuum evaporation technique in a base pressure of 10-6 Torr on to well cleaned glass substrate. a-Se72Te25Sb3 thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400-1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  9. Band structure of magneto-metallo-dielectric photonic crystals with hybrid one- and two-dimensional periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ayona, E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico); Halevi, P. [Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico)

    2012-06-15

    We calculate the band structure of a magneto-metallo-dielectric photonic crystal (PC) with hybrid one- and two-dimensional periodicity. Namely, the permittivity (permeability) is periodic in a plane (single direction). The metallic and magnetic properties are described, respectively, by means of the Drude model and a specific permeability model for Barium-M ferrite. Because of the dispersion of both the permeability and the permittivity, we obtain a non-standard eigenvalue problem which is possible to solve by means of a linearization technique. We found that the first band of this PC is very sensitive to the filling fraction of the magnetic component: by changing this fraction from 0.20 to 0.16 the slope - and effective index of refraction - changes from positive to negative. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure

    Science.gov (United States)

    Feng, Zhihong; Chen, Buyun; Qian, Shuangbei; Xu, Linyan; Feng, Liefeng; Yu, Yuanyuan; Zhang, Rui; Chen, Jiancui; Li, Qianqian; Li, Quanning; Sun, Chongling; Zhang, Hao; Liu, Jing; Pang, Wei; Zhang, Daihua

    2016-09-01

    We report on a new chemical sensor based on black phosphorus/molybdenum diselenide van der Waals hetero-junctions. Due to the atomically thin nature of two-dimensional (2D) materials, surface adsorption of gas molecules can effectively modulate the band alignment at the junction interface, making the device a highly sensitive detector for chemical adsorptions. Compared to sensors made of homogeneous nanomaterials, the hetero-junction demonstrates considerably lower detection limit and higher sensitivity toward nitrogen dioxide. Kelvin probe force microscopy and finite element simulations have provided experimental and theoretical explanations for the enhanced performance, proving that chemical adsorption can induce significant changes in band alignment and carrier transport behaviors. The study demonstrates the potential of van der Waals hetero-junction as a new platform for sensing applications, and provides more insights into the interaction between gaseous molecules and 2D hetero-structures.

  11. Effect of extended line defects on thermal conduction of carbon nanotubes: analyzing phonon structures by band unfolding

    International Nuclear Information System (INIS)

    We theoretically investigate the effect of extended line defects (ELDs) on thermal transport properties of carbon nanotubes (CNTs) using nonequilibrium Green’s function method. Our study shows that the thermal conductance of CNTs with ELDs can be 25% lower than that of pristine CNTs. By extending the application of the recently developed unfolding method for electronic structures to phonon spectra, we find that the unfolded phonon bands of defected CNTs are split with obvious gap opening, leading to lower phonon transmissions. Further phonon local density of states analysis reveals that the change of bonding configuration near the ELD in defected CNTs can tail the degree of phonon localization. Our results indicate that introducing ELDs might be an efficient way to control thermal conduction of CNTs. The extended unfolding method for phonon systems, found to be efficient in this work, is expected to be applicable to other systems with densely folded phonon bands. (paper)

  12. Triaxial tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-04-01

    This paper describes the application of the monolithic UNISA Folded Pendulum, optimized as inertial sensor (seismometer) for low frequency applications for characterization of sites (including underground sites) and structures (e.g. buildings, bridges, historical monuments), but, in general, for applications requiring large band low-frequency performances coupled with high sensitivities. The main characteristics of this class of sensors are high sensitivity, large measurement band, compactness, lightness, scalability, tunability of the resonance frequency, low thermal noise and very good immunity to environmental noises. The horizontal and vertical versions of folded pendulum allow an effective state-of-the-art mechanical implementation of triaxial sensors, configurable both as seismometer and/or as accelerometer.

  13. Investigate the Performance of Various Shapes of Planar Monopole Antenna on Modified Ground Plane Structures for L frequency Band Applications

    Directory of Open Access Journals (Sweden)

    Anshul Agarwal

    2013-11-01

    Full Text Available In this paper, various shapes of planar monopole antenna on different ground plane structures are presented. It is designed for the 1-2 GHz frequency band for L-band application. A monopole of square, circular, triangular and hexagon shape is mounted vertically on the dielectric of glass epoxy (FR4 lossy substrate with relative permittivity of 4.3, thickness of 1.6 mm above the ground plane through a single feeding strip. Simulation results such as impedance bandwidth, directivity, gain and radiation pattern are also analyzed and compared. The effect of feeding strip is a critical parameter for the performance of antenna, is studied for various shapes of monopole antenna are investigated. The radiation performance is also shown to be acceptable over a wide range of frequency.

  14. Logarithmic 3-Band Color Encoding: Robust Method for Display and Comparison of Compositional Maps in Electron Probe X-ray Microanalysis

    Science.gov (United States)

    Newbury, Dale E.; Bright, David S.

    1999-10-01

    Electron-excited X-ray maps recorded with the scanning electron microscope (SEM)/electron probe X-ray microanalyzer (EPMA) are a major method of presenting compositional information. Digitally recorded maps are processed in a variety of ways to improve the visibility of features. Scaling of the recorded signal to match the 8-bit gray-scale intensity range of a typical computer display system is almost always necessary. Inherent limitations of gray-scale displays have led to other intensity-encoding methods for X-ray maps, including clipping, histogram normalization, and pseudocolor scales. While feature visibility is improved by applying these scales, comparisons among image sets are difficult. Quantitative comparisons must be based on standardized intensities corrected for background to produce intensity ratio (k-value) maps. We have developed a new logarithmic, multiband color-encoding method to view these k-value maps more effectively. Three color bands are defined, starting with a dark primary color and grading to a bright pastel: blue = trace (0.001 to 0.01); green = minor (0.01 to 0.1); and red = major (0.1 to 1.0). Within each band, the color is assigned according to a logarithmic scale that depends on intensity ratio or compositional measurements. Logarithmic multiband color encoding permits direct comparisons of maps, such as maps of different elements in the same field of view or maps of the same element in different areas, because the color scale is identical for all maps.

  15. Structural comparison of human mammalian ste20-like kinases.

    Directory of Open Access Journals (Sweden)

    Christopher J Record

    Full Text Available BACKGROUND: The serine/threonine mammalian Ste-20 like kinases (MSTs are key regulators of apoptosis, cellular proliferation as well as polarization. Deregulation of MSTs has been associated with disease progression in prostate and colorectal cancer. The four human MSTs are regulated differently by C-terminal regions flanking the catalytic domains. PRINCIPAL FINDINGS: We have determined the crystal structure of kinase domain of MST4 in complex with an ATP-mimetic inhibitor. This is the first structure of an inactive conformation of a member of the MST kinase family. Comparison with active structures of MST3 and MST1 revealed a dimeric association of MST4 suggesting an activation loop exchanged mechanism of MST4 auto-activation. Together with a homology model of MST2 we provide a comparative analysis of the kinase domains for all four members of the human MST family. SIGNIFICANCE: The comparative analysis identified new structural features in the MST ATP binding pocket and has also defined the mechanism for autophosphorylation. Both structural features may be further explored for inhibitors design. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  16. Influence of the energy-band structure on ultracold reactive processes in lattices

    Science.gov (United States)

    Terrier, H.; Launay, J.-M.; Simoni, A.

    2016-03-01

    We study theoretically ultracold collisions in quasi-one-dimensional optical traps for bosonic and fermionic reactive molecules in the presence of a periodic potential along the trap axis. Elastic, reactive, and umklapp processes due to nonconservation of the center-of-mass motion are investigated for parameters of relevant experimental interest. The model naturally keeps into account the effect of excited energy bands and is particularly suited for being adapted to rigorous close-coupled calculations. Our formalism shows that a correct derivation of the parameters in tight-binding effective models must include the strong momentum dependence of the coupling constant we predict even for deep lattices.

  17. Sound waves induce Volkov-like states, band structure and collimation effect in graphene

    International Nuclear Information System (INIS)

    We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves. (paper)

  18. Band-Structure Trend in Hole-Doped Cuprates and Correlation with {Tc}{sub MAX}

    Energy Technology Data Exchange (ETDEWEB)

    Pavarini, E.; Dasgupta, I.; Saha-Dasgupta, T.; Jepsen, O.; Andersen, O. K.

    2001-07-23

    By calculation and analysis of the bare conduction bands in a large number of hole-doped high-temperature superconductors, we have identified the range of the intralayer hopping as the essential, material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu4s , apical-oxygen 2p{sub z} , and farther orbitals. Materials with higher {Tc}{sub max} have larger hopping ranges and axial orbitals more localized in the CuO{sub 2} layers.

  19. Development of accelerating structure of 9 MeV C-band electron linac

    International Nuclear Information System (INIS)

    In this paper, the design and performance characteristics of accelerating guide for C-band SW electron linac are discussed. The guide can accelerate electrons to 9 MeV or 6 MeV. Its length is about 620mm, and a Pierce electron gun has been used. A 2.5MW pulsed magnetron at 5712 MHz is served as the guide's RF power source. The two energy modes are performed by turning RF power source and the injecting voltage of electron gun. (authors)

  20. Structural-crossover-induced optical band gap variation of Hf-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jong-Seong [Busan Center, Korea Basic Science Institute, Busan 618-230 (Korea, Republic of); Jeong, Young-Eui [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Park, Sungkyun, E-mail: psk@pusan.ac.kr [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-12-01

    Highlights: • Stress changed from compressive to tensile as deposition temperature increased. • Optical band gap energy shifted to the lower energy for the films under tensile stress. • As deposition temperature increased, the oxygen vacancies decreased. - Abstract: The deposition-temperature-dependent physical properties of Hf-doped ZnO thin films grown on Al{sub 2}O{sub 3}(0 0 0 1) by pulsed laser deposition were examined. X-ray diffraction measurements showed that all the samples had the (0 0 2) orientation except for the sample grown at room temperature, which showed amorphous characteristics because of the lack of kinetic energy. The in-plane strain changed from compressive to tensile as the deposition temperature increased above 200 °C. Optical transmission data revealed that all the samples exhibited >90% transmittance regardless of the deposition temperature. However, the optical band gap decreased with increasing deposition temperature, which was related to variation in stress in the films. X-ray photoelectron spectroscopy also revealed an increase in Zn–O bonding but decreases in oxygen vacancies with increasing deposition temperature.

  1. A simple and fast heuristic for protein structure comparison

    Directory of Open Access Journals (Sweden)

    Moreno Vega Marcos

    2008-03-01

    Full Text Available Abstract Background Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. Results We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1 from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs and 1.7% (over 161 pairs with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2 in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. Conclusion We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results. Software is available for download at http://modo.ugr.es/jrgonzalez/msvns4maxcmo.

  2. Band structure of a three-dimensional topological insulator quantum wire in the presence of a magnetic field

    Science.gov (United States)

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2016-07-01

    By means of a numerical diagonalization approach, we calculate the electronic structure of a three-dimensional topological insulator (3DTI) quantum wire (QW) in the presence of a magnetic field. The QW can be viewed as a 3DTI film with lateral surfaces, when its rectangular cross section has a large aspect ratio. Our calculation indicates that nonchiral edge states emerge because of the confined states at the lateral surfaces. These states completely cover the valence band region among the Landau levels, which reasonably account for the absence of the ν Hall effect in the relevant experimental works. In an ultrathin 3DTI film, inversion between the electron-type and hole-type bands occurs, which leads to the so-called pseudo-spin Hall effect. In a 3DTI QW with a square cross section, a tilting magnetic field can establish well-defined Landau levels in all four surfaces. In such a case, the quantum Hall edge states are localized at the square corners, characterized by the linearly crossing one-dimensional band profile. And they can be shifted between the adjacent corners by simply rotating the magnetic field.

  3. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates

    Science.gov (United States)

    Chang, Yin-Jung; Shih, Ko-Han

    2016-05-01

    Internal photoemission (IPE) across an n-type Schottky junction due to standard AM1.5G solar illumination is quantified with practical considerations for Cu, Ag, and Al under direct and fully nondirect transitions, all in the context of the constant matrix element approximation. Under direct transitions, photoemitted electrons from d bands dominate the photocurrent and exhibit a strong dependence on the barrier energy ΦB but are less sensitive to the change in the metal thickness. Photocurrent is shown to be nearly completely contributed by s-state electrons in the fully nondirect approximation that offers nearly identical results as in the direct transition for metals having a free-electron-like band structure. Compared with noble metals, Al-based IPE has the highest quantum yield up to about 5.4% at ΦB = 0.5 eV and a maximum power conversion efficiency of approximately 0.31% due mainly to its relatively uniform and wide Pexc energy spectral width. Metals (e.g., Ag) with a larger interband absorption edge are shown to outperform those with shallower d-bands (e.g., Cu and Au).

  4. Experimental valence-band study of Ti(NiCu) alloys with different compositions and crystal structures

    Science.gov (United States)

    Senkovskiy, B. V.; Usachev, D. Yu.; Fedorov, A. V.; Shelyakov, A. V.; Adamchuk, V. K.

    2012-08-01

    The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 - x Cu x system ( x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.

  5. Structure-guided unidirectional variation de-striping in the infrared bands of MODIS and hyperspectral images

    Science.gov (United States)

    Zhang, Yaozong; Zhang, Tianxu

    2016-07-01

    Images taken using moderate resolution imaging spectroradiometer (MODIS) and hyperspectral imaging systems, especially in their infrared bands, usually lead to undesired stripe noises, which seriously affect the image quality. A variational de-striping model has been proven to have good performance, but knowing how to detect stripes effectively, especially to distinguish them from edges/textures, is still challenging. In this paper, a structure-guided unidirectional variational (SGUV) model that considers the structure of stripes is proposed. Because of the use of structure information, which textures and edges do not have, the proposed algorithm can effectively distinguish stripes from image textures and almost does not blur details while removing stripes. Comparative experiments based on real stripe images demonstrated that the proposed method provides optimal qualitative and quantitative results.

  6. Valence Band Structure of InAs1-xBix and InSb1-xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Directory of Open Access Journals (Sweden)

    D. P. Samajdar

    2014-01-01

    Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  7. Effect of thermal annealing on structure and optical band gap of Se66Te25In9 thin films

    Science.gov (United States)

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin

    2015-05-01

    Thin films of a-Se66Te25In9 have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (Eg) of a-Se66Te25In9 have been studied.

  8. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions.

  9. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions. PMID:21231139

  10. Optical properties and band structure of ZnP{sub 2}-D{sub 4}{sup 8}

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, 25 Oktyabrya street 107, 3300 Tiraspol, Republic of Moldova (Moldova, Republic of); Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2014-05-01

    The emission lines of bound and free excitons and their phonon replicas were observed in the luminescence spectra of ZnP{sub 2}-D{sub 4}{sup 8} crystals doped with Mn, Sn, Cd and Sb measured at 10 K. The emission lines are described by the model of axial center levels. Models of the bands of the bound excitons with different axial centers (Mn, Sn, Cd and Sb) are presented. It was observed that the indirect transitions in the excitonic bands were nonpolarized and that the direct transitions were polarized. The minimal direct energy gaps in the polarization E∥c are due to the allowed Γ{sub 1}→Γ{sub 1} transitions, and the gaps in the polarization E⊥c are due to the Γ{sub 2}→Γ{sub 1} transitions. The temperature shift coefficient of the bands gaps differs for different polarizations in the temperature interval from 2 to 10 K (ΔE/ΔT=3.5 meV/K and 1 meV/K for E∥c and E⊥c, respectively). The optical constants n, k, ε{sub 1}, ε{sub 2,}d{sup 2}ε{sub 1}/dE{sup 2} and d{sup 2}ε{sub 2}/dE{sup 2} were calculated for the energy interval 1.5–10 eV using the Kramers-Kronig analysis of measured reflection spectra. The features observed in these spectra were interpreted using two types theoretical calculations of band structure as optical transitions.

  11. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are co...

  12. Comparisons of the galaxy age, stellar velocity dispersion and K-band luminosity distributions between grouped galaxies and isolated ones

    Science.gov (United States)

    Wu, Ping; Deng, Xin-Fa

    2016-02-01

    In two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we compare the age, stellar velocity dispersion and K-band luminosity distributions of grouped galaxies with those of isolated galaxies, to explore the environmental dependence of these properties of galaxies. It is found that grouped galaxies have preferentially larger stellar velocity dispersions and are preferentially older than isolated galaxies. We also note apparent difference of K-band luminosity distribution at both extremes of density in the luminous volume-limited Main galaxy sample: grouped galaxies are preferentially more luminous than isolated galaxies, while this difference in the faint volume-limited Main galaxy sample is very small.

  13. Band gap and structure characterization of Tm2O3 films

    Institute of Scientific and Technical Information of China (English)

    WANG Jianjun; JI Ting; ZHU Yanyan; FANG Zebo; REN Weiyi

    2012-01-01

    Single crystalline Tm2O3 films were grown on Si (001) substrates by molecular beam epitaxy using metallic Tm source and atomic oxygen source.X-ray photoelectron spectroscopy,atomic force microscopy and high-resolution transmission electron microscopy were employed to investigate the compositions,surface morphology and microstructure of the sample.A very flat surface with a root mean square roughness of 0.3 nm could be reached,and a sharp interface between the film and the Si substrate was achieved.The result of optical spectrum at ultraviolet and visible wavelengths showed that the band gap of the Tm2O3 film was 5.76 eV.

  14. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I. [Los Alamos National Laboratory; Haynes, William B. [Los Alamos National Laboratory; Kurennoy, Sergey S. [Los Alamos National Laboratory; Shchegolkov, Dmitry [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  15. Resonant tunneling diode based on band gap engineered graphene antidot structures

    Science.gov (United States)

    Palla, Penchalaiah; Ethiraj, Anita S.; Raina, J. P.

    2016-04-01

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green's Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved the Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.

  16. Breakdown Localization Studies on the SwissFEL C-band Test Structures

    CERN Document Server

    Klavins, J; Le Pimpec, F; Locans, U; Shipman, N; Stingelin, L; Wohlmuther, M; Zennaro, R

    2013-01-01

    The SwissFEL main LINAC will consist of 104 Cband structures with a nominal accelerating gradient of 28MV/m. First power tests were performed on short constant impedance test-structures composed of eleven double-rounded cups. In order to localize breakdowns, two or three acoustic emission sensors were installed on the test-structures. In order to localize breakdowns we have analysed, in addition to acoustic measurements, the delay and phase of the RF power signals. Parasitic, acoustic noise emitted from the loads of the structure complicated the data interpretation and necessitated appropriate processing of the acoustic signals. The Goals of the experiments were to identify design and manufacturing errors of the structures. The results indicate that breakdowns occur mostly at the input power coupler, as also confirmed by vacuumevents at the same location. The experiments show that the LINAC test-structures fulfil the requirements in breakdown probability. Moreover developing a detection system based on acoust...

  17. Comparison of empirical and modelled energy performance across age-bands of three-bedroom dwellings in the UK

    OpenAIRE

    Summerfield, A. J.; Oreszczyn, T.; Palmer, J; Hamilton, I. G.; Lowe, R. J.

    2015-01-01

    Differences between measured and predicted energy demand of dwellings across construction age-bands are of interest since these categories mark changes in construction methods and building codes over time. This study compared empirical measures of gas consumption for three-bedroom dwellings in the UK with predictions from the Cambridge Housing Model (CHM), a bottom-up building physics model used for national energy statistics and government policy development. It used gas consumption data col...

  18. Comparison of the karyotypes ofPsathyrostachys juncea andP. huashanica (Poaceae) studied by banding techniques

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib; Bothmer, R. von

    1986-01-01

    . The patterns of both taxa are polymorphic, supporting that both taxa are outbreeders. The karyotypic characters suggest that P. juncea is more closely related to P. fragilis than either is to P. huashanica. N-banding stains weakly. Silver nitrate staining demonstrates that nucleolus organizers of both species...... have different nucleolus forming capacities. The presence of micronucleoli suggests that both species have an extra unidentified chromosome with nucleolus forming capacity....

  19. A comparison of the chromosome G-banding pattern in two Sorex species, S. satunini and S. araneus (Mammalia, Insectivora

    Directory of Open Access Journals (Sweden)

    Yuri Borisov

    2012-08-01

    Full Text Available The G-banded karyotype of S. satunini was compared with the karyotype of Sorex araneus. Extensive homology was revealed. The major chromosomal rearrangements involved in the evolutionary divergence of these species have been identified as centric fusions and centromeric shifts. From the known palaeontological age of S. satunini it is obvious that the vast chromosomal polymorphism of the S. araneus group originated during the middle Pleistocene.

  20. Polymorphism, band-structure, band-lineup, and alloy energetics of the group II oxides and sulfides MgO, ZnO, CdO, MgS, ZnS, CdS

    Science.gov (United States)

    Lany, Stephan

    2014-03-01

    The group II chalcogenides are an important class of functional semiconductor materials exhibiting a remarkable diversity in terms of structure and properties. In order to aid the materials design, a consistent set of electronic structure calculations is presented, including data on the polymorphic energy ordering, the band-structures, the band-lineups relative to the vacuum level, surface energies, as well as on the alloy energetics. To this end, current state-of-the-art electronic structure tools are employed, which, besides standard density functional theory (DFT), include totalenergy calculation in the random phase approximation and GW quasiparticle energy calculations. The ionization potentials and electron affinities are obtained by combining the results of bulk GW and surface DFT calculations. Considering both octahedral and tetrahedral coordination symmetries, exemplified by the rock-salt and zinc-blende lattices, respectively, this data reveals both the chemical and structural trends within this materials family.

  1. 16O + 16O + valence neutrons in molecular orbitals structures of positive- and negative-parity superdeformed bands in 34S

    International Nuclear Information System (INIS)

    The structures of superdeformed (SD) states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative-parity SD band

  2. Comparison of the electronic band profiles and magneto-optic properties of cubic and orthorhombic SrTbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zahid, E-mail: zahidf82@gmail.com [Materials Modeling Center, Department of Physics, University of Malakand, Chakdara (Pakistan); Khan, Imad; Ahmad, Iftikhar [Materials Modeling Center, Department of Physics, University of Malakand, Chakdara (Pakistan); Naeem, S. [Department of Physics, Islamia College University, Peshawar (Pakistan); Rahnamaye Aliabad, H.A. [Department of Physics, Hakim Savzevari University, Sabzevar (Iran, Islamic Republic of); Jalali Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Gerib Avenue, Isfahan 81744 (Iran, Islamic Republic of); Zhang, D. [Department of Physics, California State University, Fresno (United States)

    2013-08-15

    The all electrons full potential linearized augmented plane waves (FP-LAPW) method with GGA+U is used to study SrTbO{sub 3} perovskite in cubic and orthorhombic phases. The structural parameters and ground state magnetic properties are found consistent with the experimental results. The electronic band structures and density of states demonstrate that SrTbO{sub 3} is a wide band gap semiconductor in both phases. The magnetic studies of the material show that the nature of the compound is G-type anti-ferromagnetic. The calculated magnetic moment of Tb{sup +4} is found consistent with the experiments. Furthermore, the optical properties demonstrate that the optical gap of the material is 1.8 eV, which lies in the visible region of the electromagnetic spectrum and hence the compound can be used in optoelectronic devices.

  3. Comparison of reconfigurable structures for flexible word-length multiplication

    Directory of Open Access Journals (Sweden)

    O. A. Pfänder

    2008-05-01

    Full Text Available Binary multiplication continues to be one of the essential arithmetic operations in digital circuits. Even though field-programmable gate arrays (FPGAs are becoming more and more powerful these days, the vendors cannot avoid implementing multiplications with high word-lengths using embedded blocks instead of configurable logic. But on the other hand, the circuit's efficiency decreases if the provided word-length of the hard-wired multipliers exceeds the precision requirements of the algorithm mapped into the FPGA. Thus it is beneficial to use multiplier blocks with configurable word-length, optimized for area, speed and power dissipation, e.g. regarding digital signal processing (DSP applications.

    In this contribution, we present different approaches and structures for the realization of a multiplication with variable precision and perform an objective comparison. This includes one approach based on a modified Baugh and Wooley algorithm and three structures using Booth's arithmetic operand recoding with different array structures. All modules have the option to compute signed two's complement fix-point numbers either as an individual computing unit or interconnected to a superior array. Therefore, a high throughput at low precision through parallelism, or a high precision through concatenation can be achieved.

  4. A retrospective comparison of the modified tension band technique and the parallel titanium cannulated lag screw technique in transverse patella fracture

    Directory of Open Access Journals (Sweden)

    Wang Chengxue

    2014-07-01

    Full Text Available 【Abstract】Objective: To compare efficacy between the modified tension band technique and the parallel titanium cannulated lag screw technique for the transverse patella fracture. Methods:Seventy-two patients were retrospectively analyzed aged 22 to 79 years (mean, 55.6 years with transverse patella fractures, among whom 37 patients underwent the modified tension band and 35 patients received the titanium cannulated lag screw. Patients were followed up for 1-3 years. We analyzed the difference of operation time, complications, fracture reduction, fracture healing time, and the Iowa score for knee function between both groups. Results:In modified tension band group, five patients had skin irritation and seven suffered wire migration, two of whom required a second operation. In comparison, there were no complications in the titanium cannulated lag screw group, which also had a higher fracture reduction rate and less operation time. Conclusion:The parallel titanium cannulated lag screw technique has superior results and should be considered as an alternative method to treat transverse patella fracture. Key words: Fractures, bone; Patella; Titanium; Bone screws

  5. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    Science.gov (United States)

    Mayer, Marie Annette

    New technologies motivate the development of new semiconducting materials, for which structural, electrical and chemical properties are not well understood. In addition to new materials systems, there are huge opportunities for new applications, especially in solar energy conversion. In this dissertation I explore the role of band structure engineering of semiconducting oxides for solar energy. Due to the abundance and electrochemical stability of oxides, the appropriate modification could make them appealing for applications in both photovoltaics and photoelectrochemical hydrogen production. This dissertation describes the design, synthesis and evaluation of the alloy ZnO1-xSe x for these purposes. I review several methods of band structure engineering including strain, quantum confinement and alloying. A detailed description of the band anticrossing (BAC) model for highly mismatched alloys is provided, including the derivation of the BAC model as well as recent work and potential applications. Thin film ZnOxSe1-x samples are grown by pulsed laser deposition (PLD). I describe in detail the effect of growth conditions (temperature, pressure and laser fluence) on the chemistry, structure and optoelectronic properties of ZnOxSe1-x. The films are grown using different combinations of PLD conditions and characterized with a variety of techniques. Phase pure films with low roughness and high crystallinity were obtained at temperatures below 450¢ªC, pressures less than 10-4 Torr and laser fluences on the order of 1.5 J/cm 2. Electrical conduction was still observed despite heavy concentrations of grain boundaries. The band structure of ZnO1-xSex is then examined in detail. The bulk electron affinity of a ZnO thin film was measured to be 4.5 eV by pinning the Fermi level with native defects. This is explained in the framework of the amphoteric defect model. A shift in the ZnO1-xSe x valence band edge with x is observed using synchrotron x-ray absorption and emission

  6. An Optimized, Grid Independent, Narrow Band Data Structure for High Resolution Level Sets

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Museth, Ken

    2004-01-01

    that use fixed computational grids with convex boundaries our Sparse Grid can expand and/or contract dynamically in any direction with non-convex boundaries. Our data structure generalizes to any number of dimensions. Our flexible data structure can transparently be integrated with the existing finite...

  7. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland;

    2001-01-01

    phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...

  8. Comparison of the Radar Observables between NASA's S-band Polarimetric Radar (NPOL) and two-dimensional video disdrometer (2DVD)

    Science.gov (United States)

    Tokay, Ali; D'Adderio, Leo Pio; Marks, David A.; Wolff, David B.; Petersen, Walter A.; Porcù, Federico

    2016-04-01

    The NASA's S-band polarimetric radar (NPOL) has recently participated three Global Precipitation Measurement (GPM) mission Ground Validation (GV) field campaigns: Iowa Flooding Studies (IFloods) between April-June 2013, Integrated Precipitation Hydrology Experiment (IPHEx) between May-June 2014, and Olympic Mountain Experiment (OLYMPEx) between November 2015-January 2016. These field campaigns represent diverse climate regimes over flat and orographically complex terrain. The measurement fields present also different characteristics in terms of instruments arrangement and area covered. The ground based observations in these field campaigns also included a number of vertically-pointed K-band radar (MRR), two-dimensional video disdrometers (2DVD) and PARticle Size VELocity (PARSIVEL2) disdrometers, tipping bucket and weighing bucket gauges. The NPOL and ground instruments were also operated at Wallops Island, Virginia between the field campaigns. The disdrometers and MRR provide the microphysical characteristics of precipitation at the surface and in a vertical column, respectively. They are also an important asset for cross comparison of the NPOL observables. This study determines the level of agreement between radar observables and derived rain and DSD parameters through the simultaneous measurements of NPOL, the 2DVDs and PARSIVEL2s. The ground clutter and bright band on NPOL observations at its first and second elevations, respectively, was clearly identified through statistical comparisons (e.g. Person correlation coefficient, bias and absolute bias) of radar reflectivity and this has a pronounced role in radar based rainfall estimate. The MRR observations which provide the vertical profile of reflectivity, can be used to correct NPOL radar rainfall mapping.

  9. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Sanshui; He Sailing

    2002-12-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k{sub z} although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k{sub z} is founded.

  10. Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure

    Directory of Open Access Journals (Sweden)

    Eul Noh

    2013-01-01

    Full Text Available The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode.

  11. Band engineering at the GaAssbnd AlGaAs heterojunction using ultra-thin Si and Be dipole layers: a comparison of modification techniques

    Science.gov (United States)

    Wilks, S. P.; Burgess, S.; Dunstan, P.; Pan, M.; Pritchard, M. A.; Williams, R. H.; Cammack, D.; Clark, S. A.; Westwood, D. I.

    1998-01-01

    The control of semiconductor interfaces is essential to engineer new material properties for device applications. In this article we have considered the use of ultra-thin (1 monolayer) interfacial Si and Be dipoles layers to modify the band discontinuity present at the GaAssbnd AlGaAs heterojunction. Soft X-ray photoelectron spectroscopy (SXPS) was performed at the Daresbury synchrotron radiation source (SRS) on samples previously grown by molecular beam epitaxy (MBE). Detailed deconvolution of the As 3d core level spectra enabled the valence band modification due to the presence of the interlayers to be extracted. The results of this study indicate the potential of this method to induce large valence band-offset modification (+0.4 eV for Si and -0.52 eV for Be) due to the presence of the dipole layers. The effect of any near interface doping by the Si and Be layers was considered by solving Poisson's equation for these structures. Finally, the technique is compared to other band engineering methods, namely δ-doping and multi quantum barriers (MQB), to assess the potential and viability for use in real devices.

  12. Transverse C-band deflecting structure for longitudinal electron-bunch-diagnosis in XFEL “SACLA”

    Energy Technology Data Exchange (ETDEWEB)

    Ego, H., E-mail: ego@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo, Hyogo (Japan); Maesaka, H.; Sakurai, T.; Otake, Y. [RIKEN SPring-8 Center, Kouto, Sayo, Hyogo (Japan); Hashirano, T.; Miura, S. [Mitsubishi Heavy Industries, Ltd. (MHI), Itozaki, Mihara, Hiroshima (Japan)

    2015-09-21

    In the 8 GeV compact X-ray FEL “SACLA,” a single bunch of electrons is compressed to a duration of approximately 30 fs to yield a peak current of 3 kA, which creates brilliant self-amplified spontaneous emission. To measure the longitudinal profile of an ultrashort electron bunch and verify the compression, we developed a high-gradient C-band RF deflecting structure 1.8 m long and periodically loaded with racetrack-shaped irises. The irises generated a high deflection gradient for the vertically deflecting HEM11-5π/6 dipole mode and suppressed rotation of the deflection plane. The two structures were fabricated and generated a stable total deflecting voltage exceeding 60 MV and revealed the longitudinal electron-bunch profile with an effective time resolution of approximately 10 fs.

  13. Band Structure and Terahertz Optical Conductivity of Transition Metal Oxides: Theory and Application to CaRuO(3).

    Science.gov (United States)

    Dang, Hung T; Mravlje, Jernej; Georges, Antoine; Millis, Andrew J

    2015-09-01

    Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO(3)-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-liquid self-energy. For CaRuO(3), a material whose measured electromagnetic response in the terahertz frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical response which had previously been regarded as a signature of exotic physics. Signatures of deviations from Fermi-liquid behavior at higher frequencies (∼100  meV) are discussed. PMID:26382698

  14. System Coverage and Capacity Analysis on Millimeter-Wave Band for 5G Mobile Communication Systems with Massive Antenna Structure

    Directory of Open Access Journals (Sweden)

    Jun Suk Kim

    2014-01-01

    Full Text Available The use of a millimeter-wave band defined as a 30–300 GHz range is significant element for improving performance of 5th generation (5G mobile communication systems. However, since the millimeter-wave signal has peculiar propagation characteristics especially toward non-line-of-sight regions, the system architecture and antenna structure for 5G mobile communications should be designed to overcome these propagation limitations. For realization of the 5G mobile communications, electronics and telecommunications research institute (ETRI is developing central network applying various massive antenna structures with beamforming. In this paper, we have introduced the central network and evaluated the system coverage and capacity through C++ language-based simulations with real geospatial information.

  15. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  16. Design of flat-band superprism structures for on-chip spectroscopy.

    Science.gov (United States)

    Gao, Boshen; Shi, Zhimin; Boyd, Robert W

    2015-03-01

    We present a systematic design procedure of photonic crystal (PhC) superprism structures for on-chip spectroscopic applications. In specific, we propose a new figure of merit, namely the angular-group-dispersion-bandwidth-product (AGDBP) to quantitatively describe the spectroscopic performance of PhC superprism structures, and an optimum PhC structure for spectroscopic applications should have large angular group dispersion over a large bandwidth, i.e., a flat-top dispersion profile. We demonstrate the advantage of such a new design consideration by optimizing the geometry of a two-dimensional parallelogram-lattice PhC superprism structure. The performance of such a superprism spectrometer is further analyzed numerically using finite-difference time-domain simulations, which out-performs current implementations in terms of the number of achievable output spectral channels.

  17. Comparison of EEG and MEG in source localization of induced human gamma-band oscillations during visual stimulus.

    Science.gov (United States)

    Mideksa, K G; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2015-08-01

    High frequency gamma oscillations are indications of information processing in cortical neuronal networks. Recently, non-invasive detection of these oscillations have become one of the main research areas in magnetoencephalography (MEG) and electroencephalography (EEG) studies. The aim of this study, which is a continuation of our previous MEG study, is to compare the capability of the two modalities (EEG and MEG) in localizing the source of the induced gamma activity due to a visual stimulus, using a spatial filtering technique known as dynamic imaging of coherent sources (DICS). To do this, the brain activity was recorded using simultaneous MEG and EEG measurement and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head modeling technique, such as, the three-shell concentric spheres and an overlapping sphere (local sphere) have been used as a forward model to calculate the external electromagnetic potentials and fields recorded by the EEG and MEG, respectively. Our results from the time-frequency analysis, at the sensor level, revealed that the parieto-occipital electrodes and sensors from both modalities showed a clear and sustained gamma-band activity throughout the post-stimulus duration and that both modalities showed similar strongest gamma-band peaks. It was difficult to interpret the spatial pattern of the gamma-band oscillatory response on the scalp, at the sensor level, for both modalities. However, the source analysis result revealed that MEG3 sensor type, which measure the derivative along the longitude, showed the source more focally and close to the visual cortex (cuneus) as compared to that of the EEG.

  18. UHF-Band Wireless Power Transfer System for Structural Health Monitoring Sensor Network

    Directory of Open Access Journals (Sweden)

    Tansheng Li

    2013-01-01

    Full Text Available For detecting and measuring health conditions of bridges, wireless sensor networks are used in these days. However, battery life is critically restricting the application and maintenance cost of sensor network systems. To extend life time, a wireless power transfer system at UHF band is introduced to supply the current wireless sensor network. This power transfer system is based on electric wave at 950 MHz. This power transfer system is redesigned for tiny power transmission, including a combination of a rectenna and a Cockcroft-Walton boost converter, battery board, and a control board. Also, current wireless sensor network is redesigned for power transfer system. The working flow of sensor network is modified to bottom-to-top to save power of sensor modules which are the power bottleneck of this sensor system. As a result, the system is able to support a sensor module continuously with received power of −14 dBmW, when the transmitting antenna is 30 dBmW at 10 meters distance.

  19. Detailed structure of the outer disk around HD 169142 with polarized light in H-band

    CERN Document Server

    Momose, Munetake; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K; Kanagawa, Kazuhiro D; Tanaka, Hidekazu; Grady, Carol A; Sitko, Michael L; Akiyama, Eiji; Currie, Thayne; Follette, Katherine B; Mayama, Satoshi; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph C; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2015-01-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.2" <= r <= 1.2", or 29 <= r <= 174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r=29-52 AU and r=81.2-145 AU respectively show r^{-3}-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r=40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at \\lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner...

  20. X-band accelerator structures: On going R&D at the INFN

    Science.gov (United States)

    Gatti, G.; Marcelli, A.; Spataro, B.; Dolgashev, V.; Lewandowski, J.; Tantawi, S. G.; Yeremian, A. D.; Higashi, Y.; Rosenzweig, J.; Sarti, S.; Caliendo, C.; Castorina, G.; Cibin, G.; Carfora, L.; Leonardi, O.; Rigato, V.; Campostrini, M.

    2016-09-01

    The next generation of accelerators, from the compact to the large infrastructure dedicated to high energy physics, is highly demanding in terms of accelerating gradients. To upgrade performances of X band linacs at 11.424 GHz many resources are devoted to achieve high accelerating gradients and at the same time to obtain a high reliability. In the framework of a three-year funded project by the Vth Committee of the INFN to the Laboratori Nazionali di Frascati (LNF) and to the Laboratori Nazionali di Legnaro (LNL). Within a broad international collaboration the LNF has been involved in the design, manufacture and test of compact high power standing wave (SW) sections operating at high frequency while LNL is actively involved in the development of new materials and multilayers using PVD (Physical Vapor Deposition) methods. We will report about the status of the accelerating device and of the different ongoing R&D activities and characterization procedures such as tests of different materials and metallic coatings.

  1. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene.

    Science.gov (United States)

    Wang, Ya-ping; Ji, Wei-xiao; Zhang, Chang-wen; Li, Ping; Li, Feng; Ren, Miao-juan; Chen, Xin-Lian; Yuan, Min; Wang, Pei-ji

    2016-01-01

    Discovery of two-dimensional (2D) topological insulator such as group-V films initiates challenges in exploring exotic quantum states in low dimensions. Here, we perform first-principles calculations to study the geometric and electronic properties in 2D arsenene monolayer with hydrogenation (HAsH). We predict a new σ-type Dirac cone related to the px,y orbitals of As atoms in HAsH, dependent on in-plane tensile strain. Noticeably, the spin-orbit coupling (SOC) opens a quantum spin Hall (QSH) gap of 193 meV at the Dirac cone. A single pair of topologically protected helical edge states is established for the edges, and its QSH phase is confirmed with topological invariant Z2 = 1. We also propose a 2D quantum well (QW) encapsulating HAsH with the h-BN sheet on each side, which harbors a nontrivial QSH state with the Dirac cone lying within the band gap of cladding BN substrate. These findings provide a promising innovative platform for QSH device design and fabrication operating at room temperature. PMID:26839209

  2. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    Science.gov (United States)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  3. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    Science.gov (United States)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4–300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  4. Comparison of some multireference electronic structure methods in illustrative applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The performances of several multireference electronic structure methods including complete active space self-consistent field (CASSCF)-based second-order perturbation theory (CASPT2), multireference configuration interaction with single and double excitations (MR-CISD), MR-CISD with the Davidson correction (MR-CISD+Q), and the CASSCF-based block-correlated coupled cluster method (CAS-BCCC4) we developed recently are compared by applying them to study several different chemical problems involving computation of ground state potential energy surfaces, the singlet-triplet gaps in diradicals, reaction barriers, and the excitation energies of low-lying excited states. Comparison with the results from other highly accurate theoretical methods or the available experimental data demonstrate that for all the problems studied, the overall performance of CAS-BCCC4 is competitive with that of MR-CISD+Q, and better than that of CASPT2 and MR-CISD methods. Thus the CAS-BCCC4 approach is expected to be a promising theoretical method for quantitative descriptions of the electronic structures of molecules with noticeable multireference character.

  5. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  6. Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V. A., E-mail: vromaka@polynet.lviv.ua [National Academy of Sciences of Ukraine, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics (Ukraine); Rogl, P. [Universitet Wien, Institut für Physikalische Chemie (Austria); Romaka, V. V. [National University “Lvivs’ka Politekhnika” (Ukraine); Kaczorowski, D.; Stadnyk, Yu. V. [Polish Academy of Sciences, Institute of Low Temperature and Structure Research (Poland); Korzh, R. O.; Krayovskyy, V. Ya.; Kovbasyuk, T. M. [National University “Lvivs’ka Politekhnika” (Ukraine)

    2015-03-15

    The crystal and electronic structures, energy, kinetic, and magnetic characteristics of n-HfNiSn semiconductor heavily doped with a Lu acceptor impurity in the ranges T = 80–400 K and N{sub A}{sup Lu} ≈ 1.9 × 10{sup 20}−1.9 × 10{sup 21} cm{sup −3} (x = 0.01–0.10) at H ≤ 10 kG is studied. The nature of the structural-defect generation mechanism leading to changes in the band gap and the degree of semiconductor compensation is determined. Its essence is the simultaneous reduction and elimination of donor-type structural defects due to the displacement of ∼1% of Ni atoms from the Hf (4a) site, the generation of acceptor-type structural defects by substituting Ni atoms with Lu atoms at the 4c site, and the generation of donor-type defects such as vacancies at the Sn (4b) site. The results of calculations of the electronic structure of Hf{sub 1−x}Lu{sub x}NiSn are in agreement with experimental data. The results are discussed within the model of a heavily doped and compensated Shklovskii-Efros semiconductor.

  7. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas;

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate....... Calculation results are found to be in good agreement with experimental findings, showing, e.g., deep penetration of LR-SPPs in the PC structures and good confiment of the radiation inside the channels. Our results indicate that the multipe LR-SPP scattering, occurring in the investigated PC structures...

  8. Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather radar systems

    NARCIS (Netherlands)

    Berne, A.D.; Delrieu, G.; Andrieu, H.

    2005-01-01

    The present study aims at a preliminary approach of multiradar compositing applied to the estimation of the vertical structure of precipitation¿an important issue for radar rainfall measurement and prediction. During the HYDROMET Integrated Radar Experiment (HIRE¿98), the vertical profile of reflect

  9. Electrical investigation of the interface band structure in rubrene single-crystal/nickel junction

    NARCIS (Netherlands)

    Kitamura, Yuta; Shikoh, Eiji; Bisri, Satria Zulkarnaen; Takenobu, Taishi; Shiraishi, Masashi

    2011-01-01

    The electronic structure of the interface between rubrene (C42H28) single crystal and ferromagnetic Ni is studied using an electrical method from a viewpoint of spintronics applications of organic single crystals. The Schottky barrier height at the interface is estimated to be 0.56 eV, and our findi

  10. Half-metallic ferromagnets : From band structure to many-body effects

    NARCIS (Netherlands)

    Katsnelson, M. I.; Irkhin, V. Yu.; Chioncel, L.; Lichtenstein, A. I.; de Groot, R. A.

    2008-01-01

    A review of new developments in theoretical and experimental electronic-structure investigations of half-metallic ferromagnets (HMFs) is presented. Being semiconductors for one spin projection and metals for another, these substances are promising magnetic materials for applications in spintronics (

  11. Structural defect generation and band-structure features in the HfNi1−xCoxSn semiconductor

    International Nuclear Information System (INIS)

    The crystal and electronic structure and magnetic, energy, and kinetic properties of the n-HfNiSn semiconductor heavily doped with the Co acceptor impurity (HfNi1−xCoxSn) are investigated in the temperature and Co concentration ranges T = 80–400 K and NACo ≈ 9.5 × 1019-5.7 × 1021 cm−3 (x = 0.005–0.30), respectively, and under magnetic field H ≤ 10 kOe. It is established that the degree of compensation of the semiconductor changes due to transformation of the crystal structure upon doping, which leads to the generation of acceptor and donor structural defects. The calculated electronic structure is consistent with the experiment; the HfNi1−xCoxSn semiconductor is shown to be a promising thermoelectric material. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor

  12. Band structures of sup 1 sup 8 sup 2 Os studied by GCM based on 3D-CHFB

    CERN Document Server

    Horibata, T; Onishi, N; Ansari, A

    1999-01-01

    Band structure properties of sup 1 sup 8 sup 2 Os are investigated through a particle number and angular momentum constrained generator coordinate (GCM) calculation based on self-consistent three-dimensional cranking solutions. From the analysis of the wave function of the lowest GCM solution, we confirm that this nucleus shows a tilted rotational motion in its yrast states, at least with the present set of force parameters of the pairing-plus-quadrupole interaction Hamiltonian. A close examination of the behaviour of the other GCM solutions reveals a sign of a possible occurrence of multi-band crossing in the nucleus. We have also found a new potential curve along the prime meridian on the globe of the J = 18(Planck constant/2 pi) sphere. Along this new solution the characters of proton and neutron gap parameters get interchanged. Namely, DELTA sub p almost vanishes while DELTA sub n grows to a finite value close to the one corresponding to the principal axis rotation (PAR). A state in the new solution curve...

  13. Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films

    Directory of Open Access Journals (Sweden)

    Iwan V. Kityk

    2015-04-01

    Full Text Available An approach for description of the photoinduced nonlinear optical effects in the superconducting MgB2:Cr2O3 nanocrystalline film is proposed. It includes the molecular dynamics step-by-step optimization of the two separate crystalline phases. The principal role for the photoinduced nonlinear optical properties plays nanointerface between the two phases. The first modified layers possess a form of slightly modified perfect crystalline structure. The next layer is added to the perfect crystalline structure and the iteration procedure is repeated for the next layer. The total energy here is considered as a varied parameter. To avoid potential jumps on the borders we have carried out additional derivative procedure.

  14. Bottom-up Approach Design, Band Structure, and Lithium Storage Properties of Atomically Thin γ-FeOOH Nanosheets.

    Science.gov (United States)

    Song, Yun; Cao, Yu; Wang, Jing; Zhou, Yong-Ning; Fang, Fang; Li, Yuesheng; Gao, Shang-Peng; Gu, Qin-Fen; Hu, Linfeng; Sun, Dalin

    2016-08-24

    As a novel class of soft matter, two-dimensional (2D) atomic nanosheet-like crystals have attracted much attention for energy storage devices due to the fact that nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. Herein, atomically thin γ-FeOOH nanosheets with a thickness of ∼1.5 nm are synthesized in a high yield, and the band and electronic structures of the γ-FeOOH nanosheet are revealed using density-functional theory calculations for the first time. The rationally designed γ-FeOOH@rGO composites with a heterostacking structure are used as an anode material for lithium-ion batteries (LIBs). A high reversible capacity over 850 mAh g(-1) after 100 cycles at 200 mA g(-1) is obtained with excellent rate capability. The remarkable performance is attributed to the ultrathin nature of γ-FeOOH nanosheets and 2D heterostacking structure, which provide the minimized Li(+) diffusion length and buffer zone for volume change. Further investigation on the Li storage electrochemical mechanism of γ-FeOOH@rGO indicates that the charge-discharge processes include both conversion reaction and capacitive behavior. This synergistic effect of conversion reaction and capacitive behavior originating from 2D heterostacking structure casts new light on the development of high-energy anode materials. PMID:27471909

  15. Reconstruction of the Structure of Accretion Disks in Dwarf Novae from the Multi-Band Light Curves of Early Superhumps

    CERN Document Server

    Uemura, M; Ohshima, T; Maehara, H

    2012-01-01

    We propose a new method to reconstruct the structure of accretion disks in dwarf novae using multi-band light curves of early superhumps. Our model assumes that early superhumps are caused by the rotation effect of non-axisymmetrically flaring disks. We have developed a Bayesian model for this reconstruction, in which a smoother disk-structure tends to have a higher prior probability. We analyzed simultaneous optical and near-infrared photometric data of early superhumps of the dwarf nova, V455 And using this technique. The reconstructed disk has two flaring parts in the outermost region of the disk. These parts are responsible for the primary and secondary maxima of the light curves. The height-to-radius ratio is h/r=0.20---0.25 in the outermost region. In addition to the outermost flaring structures, flaring arm-like patterns can be seen in an inner region of the reconstructed disk. The overall profile of the reconstructed disk is reminiscent of the disk structure which is deformed by the tidal effect. Howe...

  16. An Update on the DOE Early Career Project on Photonic Band Gap Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I. [Los Alamos National Laboratory; Edwards, Randall L. [Los Alamos National Laboratory; Haynes, William B. [Los Alamos National Laboratory; Madrid, Michael A. [Los Alamos National Laboratory; Romero, Frank P. [Los Alamos National Laboratory; Tajima, Tsuyoshi [Los Alamos National Laboratory; Tuzel, Walter M. [Los Alamos National Laboratory; Boulware , Chase H. [Niowave, Inc; Grimm, Terry [Niowave, Inc.

    2012-06-07

    We performed fabrication of two SRF PBG resonators at 2.1 GHz and demonstrated their proof-of-principle operation at high gradients. Measured characteristics of the resonators were in good agreement with theoretical predictions. We demonstrated that SRF PBG cavities can be operated at 15 MV/m accelerating gradients. We completed the design and started fabrication of the 16-cell PBG accelerating structure at 11.7 GHz for wakefield testing at AWA.

  17. Excitonic spectra and band structure of CdGa{sub 2}Se{sub 4} birefractive crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, 25 Oktyabrya Street 107, 3300 Tiraspol, Republic of Moldova (Moldova, Republic of); Parvan, V.I. [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); Tiginyanu, I.M. [Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, 3/3 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2013-11-15

    We report on the intersection of spectral dependences of refractive indices n{sub o} and n{sub e} at the wavelengths 546 nm (λ{sub 0}) and 450 nm (λ{sub 01}) in CdGa{sub 2}Se{sub 4} single crystals. The value of difference Δn=n{sub e}−n{sub o} is equal to zero at the wavelengths involved. When placed between two crossed polarizers, the crystals of CdGa{sub 2}Se{sub 4} exhibit a transmission band at the wavelength of λ{sub 0}=546 nm (300 K). The ground and excited states of three excitonic series (A, B and C) were found out at 13 K in CdGa{sub 2}Se{sub 4} crystals, and other parameters of excitons and bands were determined. In the Γ point of Brillouin zone the effective mass of electrons m{sub c} is equal to 0.14m{sub 0}, and the effective masses of holes m{sub v2} and m{sub v3} are equal to 0.76m{sub 0} and 0.94m{sub 0}, respectively. The hole mass m{sub v1} depends upon the direction of wave vector k: at polarization E∥c, k∥a the mass m{sub v1}=1.15m{sub 0}, and at polarization E∥c, k∥b m{sub v1}=0.84m{sub 0}. The values of valence bands splitting in the center of Brillouin zone by the crystal field (Δ{sub cf}=49 meV) and spin–orbital interaction (Δ{sub so}=351 meV) were determined. The optical functions n, k, ε{sub 1} and ε{sub 2} in polarizations E⊥c and E∥c for the energy diapason from 3 to 6 eV were calculated from the reflectivity spectra by Kramers–Kronig analysis. The evidenced features are discussed on the basis of recent theoretical calculations of the band structure of CdGa{sub 2}Se{sub 4} crystals.

  18. Phonon-polariton and band structure of electro-magneto-acoustic SH wave propagation oblique to the periodic layered piezoelectric structures

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q. [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China); Tian, X.G., E-mail: tiansu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)

    2013-05-03

    Electro-magneto-acoustic SH waves propagating oblique to the periodic layered piezoelectric structures are studied under the coupling of the acoustic wave and the electromagnetic wave. Band structures of the so-called piezoelectric superlattice and phononic/photonic crystal are given both at acoustic frequencies and at optical frequencies. For the periodic layered piezoelectric structures, phonon-polaritons (the coupling modes of the phonons and photons) are found not only happening near the center of the Brillouin zone (in the long-wavelength limit) at acoustic frequencies, but also being able to appear in the whole Brillouin zone at optical frequencies. Appearing of these phonon-polaritons may provide a way to design a new type of acousto-optic devices.

  19. Effect of Zn-Cd interdiffusion on the band structure and spontaneous emission of ZnO/Zn1-xCdxO/ZnO quantum wells

    Science.gov (United States)

    Shtepliuk, I.; Khranovskyy, V.; Yakimova, R.

    2015-09-01

    Needs in more-efficient visible light sources based on quantum wells (QWs) requires the diversification of traditional optoelectronics' materials as well as development of the cost-effective approaches for reliable quantum confinement engineering. Interdiffusion approach has a great potential to become a simple method for controlling the optical properties of QWs and diminishing the quantum confined Stark effect (QCSE). In this work we theoretically study the effect of Zn-Cd interdiffusion in ZnCdO/ZnO QWs on their band structure, optical matrix elements and spontaneous emission properties. The QW intermixing leads to improving both the transverse electric (TE) and transverse magnetic (TM) optical matrix elements due to enhancement of the overlap integral between electron and hole wave functions and modification of the confinement potential from triangle-shaped to parabolic-like. The optimized diffusion length 4 Å provided by the annealing at 700 K during 60 s was determined for 2 nm-thick Zn0.85Cd0.15O QW, which offers higher spontaneous emission rate in comparison to conventional QW. The reasonable interpretation of the interdiffusion effect on the optical properties of QWs is proposed in terms of low diffusion length and high diffusion length regimes. Thus, suitable combination of annealing duration and annealing temperature with the geometrical/compositional parameters of QWs can be the efficient way for improving the optical performance of ZnO-based QWs.

  20. First-Principles Study on Influences of Crystal Structure and Orientation on Band Offsets at the CdS/Cu2ZnSnS4 Interface

    Directory of Open Access Journals (Sweden)

    Wujisiguleng Bao

    2012-01-01

    Full Text Available Cu2ZnSnS4 (CZTS has attracted much attention recently as an absorber layer material in a heterojunction solar cell. Using the first-principles method, we calculate the band offsets for the CdS/CZTS heterojunction. The valence band offset is 1.2 eV for the (001 CdS/CZTS heterointerface and 1.0 eV for the (010 heterointerface, when CZTS is considered to crystallize in the kesterite structure. When CZTS is considered to crystallize in the stannite structure,  eV for the (001 heterointerface and  eV for the (010 heterointerface. In any case, the conduction band minimum of CZTS is higher than that of CdS, and the conduction band offset is in a range between 0.1 and 0.4 eV.