WorldWideScience

Sample records for band gap structures

  1. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian

    2008-04-01

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  2. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  3. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated...

  4. The band-gap enhanced photovoltaic structure

    Science.gov (United States)

    Tessler, Nir

    2016-05-01

    We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.

  5. Bi-directional evolutionary optimization for photonic band gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fei [Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia); School of Civil Engineering, Central South University, Changsha 410075 (China); Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au [Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia); Key Laboratory of Advanced Technology for Vehicle Body Design & Manufacture, Hunan University, Changsha, 410082 (China); Jia, Baohua [Centre for Micro-Photonics, Faculty of Engineering & Industrial Science, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122 (Australia)

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  6. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  7. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Ze; LI Feng-Ming

    2012-01-01

    The propagation of elastic waves in magnetoelectroelastic grid structures is studied.Band gap properties are presented and the effects of the magnetoelectroelastic coupling and initial stress are considered. Numerical calculations are performed using the plane-wave expansion method.The results show that the band gap width can be tuned by the initial stress.It is hoped that our results will be helpful for designing acoustic filters with magnetoelectroelastic materials and grid structures.

  8. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    Science.gov (United States)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  9. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lower...

  10. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong;

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...

  11. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.

    Science.gov (United States)

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-05-27

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

  12. Unfolding the band structure of non-crystalline photonic band gap materials.

    Science.gov (United States)

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-20

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  13. Optical Properties of One-dimensional Three-component Photonic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Theoretical study of the optical properties of one-dimensional three-component photonic band gap structure, which is composed of three alternating dielectric layers of different refractive indices and thickness in a unit cell, is performed. This one-dimensional photonic band gap structure exhibits the transparency band and forbidden band. We find that there are several mini-bands of the allowed transmission to be created within the photonic band gap region of the structure if a defect designed specially is introduced inside the structure. This characteristic is very important for some practical applications.

  14. Pattern reconfigurable antenna using electromagnetic band gap structure

    Science.gov (United States)

    Ismail, M. F.; Rahim, M. K. A.; Majid, H. A.; Hamid, M. R.; Yusoff, M. F. M.; Dewan, R.

    2017-01-01

    In this paper, a single rectangular patch antenna incorporated with an array of electromagnetic band gap (EBG) structures is proposed. The proposed antenna features radiation pattern agility by means of connecting the shorting pin vias to the EBG unit cells. The proposed design consists of 32 mm × 35.5 mm rectangular patch antenna and 10.4-mm-square mushroom-like EBG unit cells. The EBGs are placed at both sides of the antenna radiating patch and located on the thicker substrate of thickness, h. The copper tape which represents the PIN diode is used to control the connection between the EBG's via and the ground plane as reconfigurable mechanism of the antenna. The simulated result shows by switching the ON and OFF EBG structures in either sides or both, the directional radiation pattern can be tilted from 0 to +14°. The proposed antenna exhibits 7.2 dB realized gain at 2.42 GHz. The parametric study on EBG and antenna is also discussed.

  15. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan;

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  16. Photonic band gap of one-dimensional periodic structure containing dispersive left-handed metamaterials

    Institute of Scientific and Technical Information of China (English)

    Zhanshan Wang; Tian Sang; Fengli Wang; Yonggang Wu; Lingyan Chen

    2008-01-01

    Band structures of one-dimensional(1D)photonic crystals(PCs)containing dispersive left-handed metamaterials are studied theoretically.The results show that the structure possesses a type of photonic band gap originating from total internal reflection(TIR).In contrast to photonic band gaps corresponding to zero average refractive index and zero phase.the TIR gap exhibits sharp angular effect and has no polarization effect.It should also be noted that band structures of transverse electric(TE) and transverse magnetic(TM) mode waves are exactly the same in the PCs we studied.

  17. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  18. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Roark A.; /MIT /MIT /NIFS, Gifu /JAERI, Kyoto /LLNL, Livermore; Shapiro, Michael A.; Temkin, Richard J.; /MIT; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  19. Analysis of two-dimensional photonic band gap structure with a rhombus lattice

    Institute of Scientific and Technical Information of China (English)

    Limei Qi; Ziqiang Yang; Xi Gao; Zheng Liang

    2008-01-01

    @@ The relative band gap for a rhombus lattice photonic crystal is studied by plane wave expansion method and high frequency structure simulator (HFSS) simulation. General wave vectors in the first Briliouin zone are derived. The relative band gap as a function of air-filling factor and background material is investigated, respectively, and the nature of photonic band gap for different lattice angles is analyzed by the distribution of electric energy. These results would provide theoretical instruction for designing optical integrated devices using photonic crystal with a rhombus lattice.

  20. Study of periodic band gap structure of the magnetized plasma photonic crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-feng; MA Li; LIU Shao-bin

    2009-01-01

    The characteristics of the periodic band gaps of the one dimension magnetized plasma photonic crystals are studied with the piecewise linear current density recursive convolution (PLCDRC) finite-differential time-domain (FDTD) method. In fre-quency-domain, the transmission coefficients of electromagnetic Gaussian pulses are computed, and the effects of the periodic structure constant, plasma layer thickness and parameters of plasma on the properties of periodic band gaps of magnetized photonic crystals are analyzed. The results show that the periodic band gaps depend strongly on the plasma parameters.

  1. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    Science.gov (United States)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  2. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    Science.gov (United States)

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  3. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures

    Institute of Scientific and Technical Information of China (English)

    Yu Dian-Long; Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Qiu Jing

    2006-01-01

    The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.

  4. Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method

    Science.gov (United States)

    Ferrando, V.; Castro-Palacio, J. C.; Marí, B.; Monsoriu, J. A.

    2014-02-01

    The scattering properties of particles in a one-dimensional Fibonacci sequence based potential have been analyzed by means of the Transfer Matrix Method. The electronic band gaps are examined comparatively with those obtained using the corresponding periodic potentials. The reflection coefficient shows self-similar properties for the Fibonacci superlattices. Moreover, by using the generalized Bragg's condition, the band gaps positions are derived from the golden mean involved in the design of the superlattice structure.

  5. Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHI Jun-Jie

    2006-01-01

    @@ Light propagation in a one-dimensional photonic crystal (PC), consisting of alternative slabs with refractive indices (layer thicknesses) n1 (a) and n2 (b), is investigated. An important optimal parameter matching condition,n1a ≈ n2b, is obtained for the largest photonic band gap (PBG). Moreover, we find that the exact analytical solutions for the electric/magnetic field eigenmodes at the band edges are standing waves with odd or even symmetry about the centre of each layer. The electric/magnetic field eigenfunctions at the top and bottom of the nth band have n and n - 1 nodes in one period of PC, respectively. The PBG arises from the symmetric differences of the field eigenfunctions at the band edges.

  6. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    Science.gov (United States)

    2015-03-20

    successfully to realise the full applications of graphene? What is the current status of the graphene based devices or Electronics ? How the graphene...gap value has increased to 1.5eV. It is reflected in the density of states (Fig.20c). The nitrogen atoms are at a distance of 5Ȧ. And there is a...completely modified.The calculation of surface doping of graphene with S is repeated with 96 atom simulation cell. The band gap value is 0.7 eV. The value of

  7. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...

  8. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Science.gov (United States)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  9. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  10. Photonic band gaps in materials with triply periodic surfaces and related tubular structures

    NARCIS (Netherlands)

    Michielsen, K; Kole, JS

    2003-01-01

    We calculate the photonic band gap of triply periodic bicontinuous cubic structures and of tubular structures constructed from the skeletal graphs of triply periodic minimal surfaces. The effect of the symmetry and topology of the periodic dielectric structures on the existence and the characteristi

  11. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    CERN Document Server

    Men, Han; Freund, Robert M; Peraire, Jaime; Johnson, Steven G

    2014-01-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniq...

  12. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  13. Photonic Band Gap Structures with Periodically Arranged Atoms in a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Yu; CHEN Fang; ZHOU Jian-Ying

    2005-01-01

    @@ Linear transmission, reflection and absorption spectra for a new two-dimensional photonic crystal with periodically arranged resonant atoms are examined. Numerical results show that a twin-gap structure with forbidden bands displaced from a non-doped bandgap structure can be produced as a result of atomic polarization. The absorption spectrum is also significantly altered compared to the single atom entity.

  14. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...

  15. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...

  16. Crystal structure and band gap of AlGaAsN

    Science.gov (United States)

    Munich, D. P.; Pierret, R. F.

    1987-09-01

    Quantum dielectric theory is applied to the quaternary alloy Al xGa 1- xAs 1- yN y to predict its electronic properties as a function of Al and N mole fractions. Results are presented for the expected crystal structure, minimum electron energy band gap, and direction in k-space of the band gap minimum for all x and y values. The results suggest that, for a proper choice of x and y, Al xGa 1- xAs 1- yN y could exhibit certain advantages over Al xGa 1- xAs when utilized in field-effect transistor structures.

  17. Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure

    Institute of Scientific and Technical Information of China (English)

    刘征; 徐建军; 林志方

    2003-01-01

    We simulate the changes of the photonic band structure of the crystal in two dimensions with a quasi-fractal structure when it is fined to a fractal. The result shows that when the dielectric distribution is fined, the photonic band structure will be compressed on the whole and the ground photonic band gap (PBG) closed while the next PBGs shrunk, in conjunction with their position declining in the frequency spectrum. Furthermore, the PBGs in the high zone are much more sensitive than those in low zones.

  18. Electronic structure of the valence band of II--VI wide band gap semiconductor interfaces

    OpenAIRE

    1996-01-01

    In this work we present the electronic band structure for (001)--CdTe interfaces with some other II--VI zinc blende semiconductors. We assume ideal interfaces. We use tight binding Hamiltonians with an orthogonal basis ($s p^3 s^*$). We make use of the well--known Surface Green's Function Matching method to calculate the interface band structure. In our calculation the dominion of the interface is constituted by four atomic layers. We consider here anion--anion interfaces only. We have includ...

  19. Band gap formation and control in coupled periodic ferromagnetic structures

    Science.gov (United States)

    Morozova, M. A.; Sharaevskaya, A. Yu.; Sadovnikov, A. V.; Grishin, S. V.; Romanenko, D. V.; Beginin, E. N.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2016-12-01

    We demonstrate theoretically and experimentally the formation of additional bandgaps in the spectrum of spin waves in coupled magnonic crystals. We present the analytical model, which reveals the mechanism of bandgaps formation in coupled structures. In particular, the formation of one, two, or three bandgaps in the region of the first Bragg resonance is demonstrated and control of its characteristics by the variation of the complex coupling coefficient between magnonic crystals is shown. The spatially-resolved Brillouin light scattering spectroscopy and microwave measurements demonstrate the bandgap splitting in the spin-wave spectrum. The main advantage of proposed coupled structure, as compared to the conventional magnonic crystal, is the tunability of multiple bandgaps in the spin-wave spectrum, which enables potential applications in the frequency selective magnonic devices.

  20. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.

    Science.gov (United States)

    Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G

    2014-09-22

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.

  1. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  2. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland;

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference ph...

  3. Cherenkov oscillator operating at the second band gap of leakage waveguide structures

    Science.gov (United States)

    Jang, Kyu-Ha; Park, Seong Hee; Lee, Kitae; Jeong, Young Uk

    2016-10-01

    An electromagnetic wave source operating around second band gaps of metallic grating structures is presented. The considered metallic grating structures are not perfect periodic but inhomogeneously structured within a period to have a second band gap where the wavelength is equal to the period of the structures. The radiation mechanism by an electron beam in the structures is different from the well-known Smith-Purcell radiation occurring in perfect periodic grating structures. That is, the radiating wave has a single frequency and the radiation is unidirectional. When the energy of the electron beam is synchronized at the standing wave point in the dispersion curves, strong interaction happens and coherent radiation perpendicular to the grating surface is generated with relatively lower starting oscillation current.

  4. Cherenkov oscillator operating at the second band gap of leakage waveguide structures

    Directory of Open Access Journals (Sweden)

    Kyu-Ha Jang

    2016-10-01

    Full Text Available An electromagnetic wave source operating around second band gaps of metallic grating structures is presented. The considered metallic grating structures are not perfect periodic but inhomogeneously structured within a period to have a second band gap where the wavelength is equal to the period of the structures. The radiation mechanism by an electron beam in the structures is different from the well-known Smith-Purcell radiation occurring in perfect periodic grating structures. That is, the radiating wave has a single frequency and the radiation is unidirectional. When the energy of the electron beam is synchronized at the standing wave point in the dispersion curves, strong interaction happens and coherent radiation perpendicular to the grating surface is generated with relatively lower starting oscillation current.

  5. Two-dimensional microwave band-gap structures of different dielectric materials

    Indian Academy of Sciences (India)

    E D V Nagesh; G Santosh Babu; V Subramanian; V Sivasubramanian; V R K Murthy

    2005-12-01

    We report the use of low dielectric constant materials to form two-dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The selected geometries are square and triangular and the materials chosen are PTFE ( = 2.1), PVC ( = 2.38) and glass ( = 5.5). Using the plane-wave expansion method, proper lattice spacing is selected for each structure and material. The observed experimental results are analyzed with the help of the theoretical prediction.

  6. Global Evolutionary Algorithms in the Design of Electromagnetic Band Gap Structures with Suppressed Surface Waves Propagation

    Directory of Open Access Journals (Sweden)

    P. Kovacs

    2010-04-01

    Full Text Available The paper is focused on the automated design and optimization of electromagnetic band gap structures suppressing the propagation of surface waves. For the optimization, we use different global evolutionary algorithms like the genetic algorithm with the single-point crossover (GAs and the multi-point (GAm one, the differential evolution (DE and particle swarm optimization (PSO. The algorithms are mutually compared in terms of convergence velocity and accuracy. The developed technique is universal (applicable for any unit cell geometry. The method is based on the dispersion diagram calculation in CST Microwave Studio (CST MWS and optimization in Matlab. A design example of a mushroom structure with simultaneous electromagnetic band gap properties (EBG and the artificial magnetic conductor ones (AMC in the required frequency band is presented.

  7. A PHOTONIC BAND GAP FIBRE

    DEFF Research Database (Denmark)

    1999-01-01

    An optical fibre having a periodicidal cladding structure provididing a photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction...

  8. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.;

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  9. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)

    2010-03-01

    We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.

  10. Dispersion characteristics of a slow wave structure with a modified photonic band gap

    Institute of Scientific and Technical Information of China (English)

    Gao Xi; Yang Zi-Qiang; Cao Wei-Ping; Jiang Yan-Nan

    2011-01-01

    This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.

  11. Crystal Structure and Band Gap Engineering in Polyoxometalate-Based Inorganic-Organic Hybrids.

    Science.gov (United States)

    Roy, Soumyabrata; Sarkar, Sumanta; Pan, Jaysree; Waghmare, Umesh V; Dhanya, R; Narayana, Chandrabhas; Peter, Sebastian C

    2016-04-04

    We have demonstrated engineering of the electronic band gap of the hybrid materials based on POMs (polyoxometalates), by controlling its structural complexity through variation in the conditions of synthesis. The pH- and temperature-dependent studies give a clear insight into how these experimental factors affect the overall hybrid structure and its properties. Our structural manipulations have been successful in effectively tuning the optical band gap and electronic band structure of this kind of hybrids, which can find many applications in the field of photovoltaic and semiconducting devices. We have also addressed a common crystallographic disorder observed in Keggin-ion (one type of heteropolyoxometalate [POMs])-based hybrid materials. Through a combination of crystallographic, spectroscopic, and theoretical analysis of four new POM-based hybrids synthesized with tactically varied reaction conditions, we trace the origin and nature of the disorder associated with it and the subtle local structural coordination involved in its core picture. While the crystallography yields a centrosymmetric structure with planar coordination of Si, our analysis with XPS, IR, and Raman spectroscopy reveals a tetrahedral coordination with broken inversion symmetry, corroborated by first-principles calculations.

  12. Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap

    Science.gov (United States)

    Dewan, Raimi; Rahim, M. K. A.; Himdi, Mohamed; Hamid, M. R.; Majid, H. A.; Jalil, M. E.

    2017-01-01

    A metamaterial of electromagnetic band gap (EBG) is incorporated to an antenna for frequency reconfigurability is proposed. The EBG consists of two identical unit cells that provide multiple band gaps at 1.88-1.94, 2.25-2.44, 2.67-2.94, 3.52-3.54, and 5.04-5.70 GHz with different EBG configurations. Subsequently, the antenna is incorporated with EBG. The corresponding incorporated structure successfully achieves various reconfigurable frequencies at 1.60, 1.91, 2.41, 3.26, 2.87, 5.21, and 5.54 GHz. The antenna has the potential to be implemented for Bluetooth, Wi-Fi, WiMAX, LTE, and cognitive radio applications.

  13. Crystal structure, conformation, vibration and optical band gap analysis of bis[ rac-propranolol nitrate

    Science.gov (United States)

    Franklin, S.; Balasubramanian, T.; Nehru, K.; Kim, Youngmee

    2009-06-01

    The crystal structure of the title rac-propranolol salt, CHNO2+·NO3-, consists of two protonated propranolol residues and nitrate anions. Three virtually flat fragments, characteristics of most of the β-adrenolytics with oxy-methylene bridge are present in both the cations (A and B). The plane of the propranolol chain is twisted with respect to the plane of the aromatic ring in both the cations. Present study investigates the conformation and hydrogen bonding interactions, which play an important role in biological functions. A gauche conformation is observed for the oxo-methylene bridge of cation A, while a trans conformation prevails in cation B. These conformations are found in majority of β-blockers. Presence of twenty intermolecular hydrogen bonds mediating through the anions stabilizes the crystal packing. Vibration analysis and earlier theoretical predictions complement the structure analysed. From the UV-Vis spectral analysis for the crystal, the optical band gap is found to be Eg = 5.12 eV, where as the chloride salt has Eg = 3.81 eV. The increase in the band gap may be attributed by the increase in the number of intermolecular hydrogen bonds. Good optical transmittance in the entire visible region and the direct band gap property suggest that it is a suitable candidate for optical applications in UV region.

  14. Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.

    Science.gov (United States)

    N Nair, Maya; Palacio, Irene; Celis, Arlensiú; Zobelli, Alberto; Gloter, Alexandre; Kubsky, Stefan; Turmaud, Jean-Philippe; Conrad, Matthew; Berger, Claire; de Heer, Walter; Conrad, Edward H; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-04-12

    The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp(2) hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

  15. Theoretical study of relative width of photonic band gap for the 3-D dielectric structure

    Indian Academy of Sciences (India)

    G K Johri; Akhilesh Tiwari; Saumya Saxena; Rajesh Sharma; Kuldeep Srivastava; Manoj Johri

    2002-03-01

    Calculations for the relative width (/0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.

  16. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  17. Photonic Band Gaps in 3D Network Structures with Short-range Order

    CERN Document Server

    Liew, Seng Fatt; Noh, Heeso; Schreck, Carl F; Dufresne, Eric R; O'Hern, Corey S; Cao, Hui

    2011-01-01

    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PAS) with short-range order. From calculations of the density of optical states (DOS) for PAS with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PAS, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PAS without long-range order.

  18. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure.

    Science.gov (United States)

    Simakov, Evgenya I; Arsenyev, Sergey A; Buechler, Cynthia E; Edwards, Randall L; Romero, William P; Conde, Manoel; Ha, Gwanghui; Power, John G; Wisniewski, Eric E; Jing, Chunguang

    2016-02-12

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  19. Analytical and Numerical Calculations of Two-Dimensional Dielectric Photonic Band Gap Structures and Cavities for Laser Acceleration

    CERN Document Server

    Samokhvalova, Ksenia R; Liang Qian, Bao

    2005-01-01

    Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.

  20. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  1. Shape optimization of phononic band gap structures using the homogenization approach

    CERN Document Server

    Vondřejc, Jaroslav; Heczko, Jan

    2016-01-01

    The paper deals with optimization of the acoustic band gaps computed using the homogenized model of strongly heterogeneous elastic composite which is constituted by soft inclusions periodically distributed in stiff elastic matrix. We employ the homogenized model of such medium to compute intervals - band gaps - of the incident wave frequencies for which acoustic waves cannot propagate. It was demonstrated that the band gaps distribution can be influenced by changing the shape of inclusions. Therefore, we deal with the shape optimization problem to maximize low-frequency band gaps; their bounds are determined by analyzing the effective mass tensor of the homogenized medium. Analytic transformation formulas are derived which describe dispersion effects of resizing the inclusions. The core of the problem lies in sensitivity of the eigenvalue problem associated with the microstructure. Computational sensitivity analysis is developed, which allows for efficient using of the gradient based optimization methods. Num...

  2. Low band gap polymers for organic photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...

  3. Band-gap control in phosphorene/BN structures from first-principles calculations

    Science.gov (United States)

    Marsoner Steinkasserer, Lukas Eugen; Suhr, Simon; Paulus, Beate

    2016-09-01

    Using both DFT as well as G0W0 calculations, we investigate static and dynamic effects on the phosphorene band gap upon deposition and encapsulation on/in BN multilayers. We demonstrate how competing long- and short-range effects cause the phosphorene band gap to increase at low P -BN interlayer spacings, while the band gap is found to drop below that of isolated phosphorene in the BN/P bilayer at intermediate distances around 4 Å. Subsequent stacking of BN layers, i.e., BN/BN/P and BN/BN/BN/P is found to have a negligible effect at the DFT level while at the G0W0 level, increased screening lowers the band gap as compared to the BN/P bilayer. Encapsulation between two BN layers, on the other hand, is found to further increase the phosphorene band gap with respect to the BN/P bilayer. Lastly we investigate the use of the GLLB-SC functional as a starting point for G0W0 calculations showing it to, in the case of phosphorene, yield results close to those obtained from G W0@P B E .

  4. Crystal structure re-investigation in wide band gap CIGSe compounds

    Energy Technology Data Exchange (ETDEWEB)

    Souilah, M. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 03 (France)], E-mail: marc.souilah@cnrs-imn.fr; Rocquefelte, X.; Lafond, A.; Guillot-Deudon, C. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 03 (France); Morniroli, J.-P. [Laboratoire de Metallurgie Physique et Genie des Materiaux, UMR CNRS 8517, USTL and ENSCL, Bat C6, Cite Scientifique, 59655 Villeneuve d' Ascq Cedex (France); Kessler, J. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 03 (France)

    2009-02-02

    There is agreement in the literature that Cu(In{sub 1} {sub -} {sub x}Ga{sub x})Se{sub 2} (CIGSe) absorber used in solar cells has an optimum composition (x {approx} 0.3) corresponding to a band gap (1.1-1.2 eV) far below the theoretical value giving the maximum (1.4-1.5 eV). This paper presents a re-investigation of the crystal structure of bulk CIGSe compounds for both stoichiometric and Cu-poor compositions. Regardless of the gallium content, all the stoichiometric compounds are found to adopt the well-known chalcopyrite structure (space group I-42d) while a modification of the structure is evidenced for the high Ga-content Cu-poor compounds. The X-ray diffraction analyses demonstrate that the crystal structure of Cu{sub 0.743}In{sub 0.543} Ga{sub 0.543}Se{sub 2} is derived from that of the stannite structure (space-group I-42m). Ab-initio calculations show a strong dependence of the electronic structure near the Fermi level with the copper content. Such modifications are expected to significantly change the optical properties of Cu-poor CIGSe materials.

  5. Low-frequency and tuning characteristic of band gap in a symmetrical double-sided locally resonant phononic crystal plate with slit structure

    Science.gov (United States)

    Wang, X. P.; Jiang, P.; Song, A. L.

    2016-09-01

    In this paper, the low-frequency and tuning characteristic of band gap in a two-dimensional phononic crystal structure, consisting of a square array of aluminum cylindrical stubs deposited on both sides of a thin rubber plate with slit structure, are investigated. Using the finite element method, the dispersion relationships and power transmission spectra of this structure are calculated. In contrast to a typical phononic crystal without slit structure, the proposed slit structure shows band gaps at lower frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the lowest band gaps. Additionally, the influence of the slit parameters and stub parameters on the band gaps in slit structure are investigated. The geometrical parameters of the slits and stubs were found to influence the band gaps; this is critical to understand for practical applications. These results will help in fabricating phononic crystal structures whose band frequency can be modulated at lower frequencies.

  6. Band gap and conductivity variations of ZnO nano structured thin films annealed under Vacuum

    Science.gov (United States)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). The samples were annealed under vacuum and conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. All the results were compared with that of the sample annealed under air. It was observed that the band gap decreases and concequently conductivity of the samples increases when the samples are annealed under vacuum.

  7. Structure-Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites.

    Science.gov (United States)

    Stoumpos, Constantinos C; Mao, Lingling; Malliakas, Christos D; Kanatzidis, Mercouri G

    2017-01-03

    The present study deals with the structural characterization and classification of the novel compounds 1-8 into perovskite subclasses and proceeds in extracting the structure-band gap relationships between them. The compounds were obtained from the employment of small, 3-5-atom-wide organic ammonium ions seeking to discover new perovskite-like compounds. The compounds reported here adopt unique or rare structure types akin to the prototype structure perovskite. When trimethylammonium (TMA) was employed, we obtained TMASnI3 (1), which is our reference compound for a "perovskitoid" structure of face-sharing octahedra. The compounds EASnI3 (2b), GASnI3 (3a), ACASnI3 (4), and IMSnI3 (5) obtained from the use of ethylammonium (EA), guanidinium (GA), acetamidinium (ACA), and imidazolium (IM) cations, respectively, represent the first entries of the so-called "hexagonal perovskite polytypes" in the hybrid halide perovskite library. The hexagonal perovskites define a new family of hybrid halide perovskites with a crystal structure that emerges from a blend of corner- and face-sharing octahedral connections in various proportions. The small organic cations can also stabilize a second structural type characterized by a crystal lattice with reduced dimensionality. These compounds include the two-dimensional (2D) perovskites GA2SnI4 (3b) and IPA3Sn2I7 (6b) and the one-dimensional (1D) perovskite IPA3SnI5 (6a). The known 2D perovskite BA2MASn2I7 (7) and the related all-inorganic 1D perovskite "RbSnF2I" (8) have also been synthesized. All compounds have been identified as medium-to-wide-band-gap semiconductors in the range of Eg = 1.90-2.40 eV, with the band gap progressively decreasing with increased corner-sharing functionality and increased torsion angle in the octahedral connectivity.

  8. Photonic band gap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas;

    2005-01-01

    -size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of ~20 nm centered at 1550 nm. The possibilities...

  9. Optical study of the band structure of wurtzite GaP nanowires

    KAUST Repository

    Assali, S.

    2016-07-25

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading to a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ8C conduction band edge.

  10. Theoretical investigation into tunable band gaps of an Euler- Bernoulli beam with 2DOF LR structures

    Science.gov (United States)

    Xingqian, Zhao; Changgeng, Shuai; Yan, Gao; Rustighi, Emiliano

    2016-09-01

    This paper is concerned with an intelligent phonotic crystals (IPC) consisting of an Euler-Bernoulli beam attached with 2DOF locally resonant (LR) structures. The novel design of the dielectric electroactive polymer (DEAP) rings acting as the springs of oscillators is presented that could be employed to control the transmission of flexural waves on the beam. Tunable band gaps (BGs) can be realized by changing the stiffness of each oscillator driven by the external electric field, where the DEAPs transform electric energy directly into mechanical work under the applied voltage. Discrete copper (Cu) strips are then attached to the DEAP to allow the deformation of DEAP rings. The transfer matrix (TM) theory is adopted to assist readers to better understand the formation of the BG. Simulation results show that this particular configuration is effective for attenuating the flexural waves at low frequencies below 1000Hz where the tunable BGs may occur. Moreover, it is found that a wider BG can be achieved and shifts towards higher frequencies by increasing the applied voltages.

  11. Simulation Analysis of a Strip Dipole Excited Electromagnetic Band-Gap (EBG) Structure

    Science.gov (United States)

    2015-07-01

    that the phase of the scattered near fields at the EBG surface is more applicable to characterizing the EBG for antenna applications. A new set of...number of unit cells is also demonstrated. 15. SUBJECT TERMS electromagnetic band gap, strip dipole, reflection phase, vias, near fields, bandwidth...Image Theory Approximation 10 2.4 The Periodic Boundary Condition (PBC) Approach 11 2.5 The Phase of the Near Electric Field (NEF) 12 3. Analysis of an

  12. Microwave band gap and cavity mode in spoof-insulator-spoof waveguide with multiscale structured surface

    CERN Document Server

    Zhang, Qiang; Han, Dezhuan; Qin, Fei Fei; Zhang, Xiao Ming; Yao, Yong

    2015-01-01

    We propose a multiscale spoof-insulator-spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The "gap maps" in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency...

  13. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  14. Two-dimensional deterministic photonic band gap structures based on the quasiperiodic sequences at millimeter wave frequencies

    Directory of Open Access Journals (Sweden)

    Y. Trabelsi

    2011-08-01

    Full Text Available Two-dimensional quasi-periodic band gap structures were investigated theoretically in microwave frequency range. Quasiperiodic photonic crystal based on the square range, arranged in a quasi-periodical fashion which follows Thue Morse or Fibonaci period substitutional sequences were obtained by the inflation rules emerging from the quasi-periodic sequence. The introduction of 2D quasi-periodicity distribution like Thue Morse or Fibonacci order and deterministic aperiodicity give some interesting microwave properties and offers amultitude of adjacent pseudo-band gap in different frequency range. The potential of photonic structures are explored by varying the structural parameters. The photonic band gap formation was explored as function of geometries of the structures such as pillar radius and parameters of quasi-periodical sequences. The electromagnetic field distribution can be described as a quasi-localized state varied by some defect carried by Thue Morse order. These structures provide interesting properties, which could be used to design novelmicrowave devices.

  15. Investigations on crystalline structure and optical band gap of nearly stoichiometric LiNbO3 nanoparticles

    Science.gov (United States)

    Debnath, C.; Kar, S.; Verma, S.; Bartwal, K. S.

    2014-11-01

    The structural and optical characteristics of nearly stoichiometric lithium niobate, LiNbO3 nanoparticles have been studied. The results are very different compared to the bulk LiNbO3 single crystals. The nanoparticles were synthesized by citrate gel method and the phase was confirmed by powder X-ray diffraction. The size and size distribution of the nanoparticles were obtained by XRD, SEM, TEM and DLS experiments. The particles were in the range of 50-200 nm and most of the particles are about 100 nm of size. The lattice parameters obtained from selected area electron diffraction are aH = 5.213 Å and cH = 14.026 Å for hexagonal system which are slightly larger than the other reported values (JCPDS). The optical properties were obtained from optical absorption spectroscopy in UV-vis.-NIR and IR (FTIR) range, the electronic band gap structure were determined from the fundamental absorption edge in the UV region. The indirect band gap was of 4.78 eV where as the direct gap was of 6.0 eV which are much larger than the other experimental values. The absorption features in the UV range indicate the discrete nature of conduction band and the allowed energy levels in the forbidden gap appeared due to surface defects.

  16. Structure, band gap, and Mn-related mid-gap states in epitaxial single crystal (Zn1-xMgx)1-yMnyO thin films

    Science.gov (United States)

    Zhu, Dapeng; Liu, Guolei; Xiao, Shuqin; Yan, Shishen; He, Shumin; Cai, Li; Li, Qinghao; Cao, Qiang; Hu, Shujun; Chen, Yanxue; Kang, Shishou; Mei, Liangmo

    2013-05-01

    Epitaxial (Zn1-xMgx)1-yMnyO thin films were grown on c-Al2O3 substrates by radio frequency oxygen plasma assisted molecular beam epitaxy. Single crystal structure of the (Zn1-xMgx)1-yMnyO films was revealed by reflection high energy electron diffraction and X-ray diffraction. The band gap of the films can be tuned dramatically with increasing the Mg concentration, while the onset energy of Mn-related mid-gap absorption band only shows a small blue shift. Photoconductivity measurements indicate the Mn-related mid-gap states in (Zn1-xMgx)1-yMnyO films can create free carriers and contribute to charge transfer transitions. The conduction band offset ΔEC = 0.13 eV and valence band offset ΔEV = 0.1 eV were obtained for ZnO/Zn0.8Mg0.2O heterostructures, which increase to ΔEC = 0.21 eV and ΔEV = 0.14 eV for ZnO/Zn0.7Mg0.3O heterostructures.

  17. Band gap structures in two-dimensional super porous phononic crystals.

    Science.gov (United States)

    Liu, Ying; Sun, Xiu-zhan; Chen, Shao-ting

    2013-02-01

    As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs is given. Through the component cell porosity controlling, the effects of component cells on the whole responses of the structures are investigated. The intrinsic relation between the component cell porosity and the critical porosity of Kagome honeycombs is established. These results will provide an important guidance in the band structure design of super porous phononic crystals.

  18. Sizable band gap in organometallic topological insulator

    Science.gov (United States)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  19. Optical processes of photonic band gap structure with dressing field in atomic system

    Science.gov (United States)

    Zhang, Yun-Zhe; Liu, Zhe; Cai, Kang-Ning; Zhong, Hua; Zhang, Wei-Tao; Liu, Jun-Feng; Zhang, Yan-Peng

    2016-12-01

    We experimentally investigate probe transmission signals (PTS), the four-wave mixing photonic band gap signal (FWM BGS), and the fluorescence signal (FLS) in an inverted Y-type four level atomic system. For the first time, we compare the FLS of the two ground-state hyperfine levels of Rb 85. In particular, the second-order and the fourth-order fluorescence signals perform dramatic dressing discrepancies under the two hyperfine levels. Moreover, we find that the dressing field has some dressing effects on three such types of signals. Therefore, we demonstrate that the characteristics of PTS, FWM BGS, and FLS can be controlled by frequency detunings, the powers or phases of the dressing field. Such research could have potential applications in optical diodes, amplifiers, and quantum information processing.

  20. Resonant tunneling diode based on band gap engineered graphene antidot structures

    Science.gov (United States)

    Palla, Penchalaiah; Ethiraj, Anita S.; Raina, J. P.

    2016-04-01

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green's Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved the Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.

  1. Band gap and structure characterization of Tm2O3 films

    Institute of Scientific and Technical Information of China (English)

    WANG Jianjun; JI Ting; ZHU Yanyan; FANG Zebo; REN Weiyi

    2012-01-01

    Single crystalline Tm2O3 films were grown on Si (001) substrates by molecular beam epitaxy using metallic Tm source and atomic oxygen source.X-ray photoelectron spectroscopy,atomic force microscopy and high-resolution transmission electron microscopy were employed to investigate the compositions,surface morphology and microstructure of the sample.A very flat surface with a root mean square roughness of 0.3 nm could be reached,and a sharp interface between the film and the Si substrate was achieved.The result of optical spectrum at ultraviolet and visible wavelengths showed that the band gap of the Tm2O3 film was 5.76 eV.

  2. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I. [Los Alamos National Laboratory; Haynes, William B. [Los Alamos National Laboratory; Kurennoy, Sergey S. [Los Alamos National Laboratory; Shchegolkov, Dmitry [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  3. Effect of Gd doping on the structural, optical band-gap, dielectric and magnetic properties of ZnO nanoparticles

    Science.gov (United States)

    Franco, A., Jr.; Pessoni, H. V. S.

    2017-02-01

    Nanostructured Zn1-xGdxOδ (0 ≤ x ⩽ 0.02) powders were synthesized by the combustion reaction method (CR) with the purpose to investigate the effect of Gd doping on the structural, optical band-gap, dielectric and magnetic properties at room temperature. The structure and morphology of all samples were characterized by X-ray diffraction (XRD), and transmission electron microscope (TEM). The XRD patterns of all samples exhibited sharp and intensive peaks of hexagonal wurtzite structure of ZnO without any evidence of spurious crystalline phases. The nanoparticles crystalized in roughly spherical morphology with bimodal particle size distribution centered at ∼ 30 , ∼ 100 and ∼ 70 , ∼ 160 nm for undoped and Gd - doped ZnO (x=0.02), respectively. Diffuse reflectance spectrum of each sample was obtained by using a UV/VIS/Near spectrometer and the optical band-gap, Eg, values decreased with increasing Gd doping concentration; being ∼ 3.23 , and ∼ 3.17 eV for x=0 and 0.02, respectively at room temperature. This red shift on the band-gap was discussed in terms of new band levels below the conducting band. Also, the dielectric permittivity data of all samples could be evaluated by the Cole- Cole model. Seems that both oxygen vacancies (VO) or/and interstitial oxygen (O″ı¨) defects present in the Gd - doped ZnO samples play an important rule in the dielectric permittivity at room temperature. Furthermore, all Gd - doped ZnO samples exhibited typical paramagnetic behavior at rom temperature.

  4. Effect of thermal annealing on structure and optical band gap of amorphous Se72Te25Sb3 thin films

    Science.gov (United States)

    Dwivedi, D. K.; Pathak, H. P.; Kumar, Vipin; Shukla, Nitesh

    2014-04-01

    Thin films of a-Se72Te25Sb3 were prepared by vacuum evaporation technique in a base pressure of 10-6 Torr on to well cleaned glass substrate. a-Se72Te25Sb3 thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400-1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  5. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure

    Science.gov (United States)

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-04-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band.

  6. Modeling the band gap of CdS quantum well structures

    Science.gov (United States)

    Harris, R. A.; Terblans, J. J.

    2016-10-01

    Within the framework of the effective mass approximation, an excited electron is studied in a cadmium sulfide (CdS) quantum well with varying well widths. The envelope function approximation is employed involving a three parameter variational calculation wherein one of these parameters is the distance between the electron and the hole. The relative change in the electron's energy (relative to its energy when it is in the valence band; in the hole) is investigated as a function of the electron-hole distance. Results from numerical calculations are presented and the non-linear behavior of different sized CdS quantum wells are discussed. Comparisons between experimentally measured CdS band gap energies (as a function of well-width) and the simulation data are made. A good agreement between the current model and experimental data exists. Density functional theory (DFT) calculations are done on crystallites of extremely small sizes to compare the current model's bandgap energies to DFT-predicted bandgap values at these extremes.

  7. Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure.

    Science.gov (United States)

    Tolhurst, Thomas M; Leedahl, Brett; Andrews, Justin L; Marley, Peter M; Banerjee, Sarbajit; Moewes, Alexander

    2016-06-21

    New V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off dxy band in the ζ-phase. States of dxy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO6] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V2O5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V2O5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase.

  8. Effect of Pd ion doping in the band gap of SnO{sub 2} nanoparticles: structural and optical studies

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Brajesh; Venugopal, B. [Pondicherry University, Centre for Nanoscience and Technology (India); Amirthapandian, S.; Panigrahi, B. K. [Indira Gandhi Centre for Atomic Research, Ion Beam and Computer Simulation Section, Materials Science Group (India); Thangadurai, P., E-mail: thangadurai.p@gmail.com [Pondicherry University, Centre for Nanoscience and Technology (India)

    2013-10-15

    Pd ion doping has influenced the band gap of SnO{sub 2} nanoparticles. Undoped and Pd ion-doped SnO{sub 2} nanoparticles were synthesized by chemical co-precipitation method. A tetragonal phase of SnO{sub 2} with a grain size range of 7-13 nm was obtained (studied by X-ray diffraction and transmission electron microscopy). A decreasing trend in the particle size with increasing doping concentration was observed. The presence of Pd in doped SnO{sub 2} was confirmed by chemical analysis carried out by energy-dispersive spectroscopy in the transmission electron microscope. Diffuse reflectance spectra showed a blue shift in absorption with increasing palladium concentration. Band gap of SnO{sub 2} nanoparticles was estimated from the diffuse reflectance spectra using Kubelka-Munk function and it was increasing with the increase of Pd ion concentration from 3.73 to 4.21 eV. The variation in band gap is attributed predominantly to the lattice strain and particle size. All the samples showed a broad photoluminescence emission centered at 375 nm when excited at 270 nm. A systematic study on the structural and optical properties of SnO{sub 2} nanoparticles is presented.

  9. Modification of structure and optical band-gap of nc-Si:H films with ion irradiation

    Science.gov (United States)

    Zhu, Yabin; Wang, Zhiguang; Sun, Jianrong; Yao, Cunfeng; Shen, Tielong; Li, Bingsheng; Wei, Kongfang; Pang, Lilong; Sheng, Yanbin; Cui, Minghuan; Li, Yuanfei; Wang, Ji; Zhu, Huiping

    2012-09-01

    Hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated by using hot-wire chemical vapor deposition are irradiated at room temperature with 6.0 MeV Xe-ions. The irradiation fluences are 1.0 × 1013, 5.0 × 1013 and 1.0 × 1014 Xe-ions/cm2. The structure and optical band-gap of the irradiated films varying with ion fluence are investigated by means of X-ray diffraction, Raman and UV-Vis-NIR spectroscopes, as well as transmission electron microscopy. It is found that the crystallite size, the crystalline fraction and the optical band-gap decrease continuously with increasing the ion fluence. The crystalline fraction of the films irradiated to the fluences from 0 to 1.0 × 1014 Xe-ions/cm2 decreases from about 65.7% to 2.9% and the optical band-gap decreases from about 2.1 to 1.6 eV. Possible origins of the modification of the nc-Si:H films under 6.0 MeV Xe-ions irradiation are briefly discussed.

  10. Structural, optical and electrical properties of tin oxide thin films for application as a wide band gap semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Ahmad, Shabir; Aziz, Anver; Siddiqui, Azher Majid, E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2015-08-28

    Tin oxide (SnO) thin films were synthesized using thermal evaporation technique. Ultra pure metallic tin was deposited on glass substrates using thermal evaporator under high vacuum. The thickness of the tin deposited films was kept at 100nm. Subsequently, the as-deposited tin films were annealed under oxygen environment for a period of 3hrs to obtain tin oxide films. To analyse the suitability of the synthesized tin oxide films as a wide band gap semiconductor, various properties were studied. Structural parameters were studied using XRD and SEM-EDX. The optical properties were studied using UV-Vis Spectrophotometry and the electrical parameters were calculated using the Hall-setup. XRD and SEM confirmed the formation of SnO phase. Uniform texture of the film can be seen through the SEM images. Presence of traces of unoxidised Sn has also been confirmed through the XRD spectra. The band gap calculated was around 3.6eV and the optical transparency around 50%. The higher value of band gap and lower value of optical transparency can be attributed to the presence of unoxidised Sn. The values of resistivity and mobility as measured by the Hall setup were 78Ωcm and 2.92cm{sup 2}/Vs respectively. The reasonable optical and electrical parameters make SnO a suitable candidate for optoelectronic and electronic device applications.

  11. Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer

    Energy Technology Data Exchange (ETDEWEB)

    Sisodia, Namita, E-mail: namitasisodiya@gmail.com [Department of Physics, Holkar Science Collage, Indore-452017 (India)

    2015-06-24

    By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of the width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically.

  12. Two-dimensional wide-band-gap II-V semiconductors with a dilated graphene-like structure

    Science.gov (United States)

    Zhang, Xue-Jing; Liu, Bang-Gui

    2016-12-01

    Since the advent of graphene, two-dimensional (2D) materials have become very attractive and there is growing interest in exploring new 2D materials beyond graphene. Here, through density-functional theory (DFT) calculations, we predict 2D wide-band-gap II-V semiconductor materials of M3X2 (M = Zn, Cd and X = N, P, As) with a dilated graphene-like honeycomb structure. In this structure the group-V X atoms form two X-atomic planes symmetrically astride the centering group-IIB M atomic plane. Our DFT calculation shows that 2D Zn3N2, Zn3P2 and Zn3As2 have direct band gaps of 2.87, 3.81 and 3.55 eV, respectively, and 2D Cd3N2, Cd3P2 and Cd3As2 exhibit indirect band gaps of 2.74, 3.51 and 3.29 eV, respectively. Each of the six 2D materials is shown to have effective carrier (either hole or electron) masses down to 0.03m 0-0.05m 0. The structural stability and feasibility of experimental realization of these 2D materials has been shown in terms of DFT phonon spectra and total energy comparison with related existing bulk materials. On the experimental side, there already are many similar two-coordinate structures of Zn and other transition metals in various organic materials. Therefore, these 2D semiconductors can enrich the family of 2D electronic materials and may have promising potential for achieving novel transistors and optoelectronic devices.

  13. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  14. Plasmonic band gap cavities on biharmonic gratings

    Science.gov (United States)

    Kocabas, Askin; Seckin Senlik, S.; Aydinli, Atilla

    2008-05-01

    In this paper, we have experimentally demonstrated the formation of plasmonic band gap cavities in infrared and visible wavelength range. The cavity structure is based on a biharmonic metallic grating with selective high dielectric loading. A uniform metallic grating structure enables strong surface plasmon polariton (SPP) excitation and a superimposed second harmonic component forms a band gap for the propagating SPPs. We show that a high dielectric superstructure can dramatically perturb the optical properties of SPPs and enables the control of the plasmonic band gap structure. Selective patterning of the high index superstructure results in an index contrast in and outside the patterned region that forms a cavity. This allows us to excite the SPPs that localize inside the cavity at specific wavelengths, satisfying the cavity resonance condition. Experimentally, we observe the formation of a localized state in the band gap and measure the dispersion diagram. Quality factors as high as 37 have been observed in the infrared wavelength. The simplicity of the fabrication and the method of testing make this approach attractive for applications requiring localization of propagating SPPs.

  15. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Science.gov (United States)

    Sanz, Mikel; Rebollar, Esther; Ganeev, Rashid A.; Castillejo, Marta

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3-3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  16. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Mikel, E-mail: mikel.sanz@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Rebollar, Esther [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Ganeev, Rashid A. [Voronezh State University, Voronezh 394006 (Russian Federation); Castillejo, Marta [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3–3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  17. Effect of thermal annealing on structure and optical band gap of Se66Te25In9 thin films

    Science.gov (United States)

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin

    2015-05-01

    Thin films of a-Se66Te25In9 have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (Eg) of a-Se66Te25In9 have been studied.

  18. Photonic band gap in thin wire metamaterials.

    Science.gov (United States)

    Hock, Kai Meng

    2008-03-01

    We investigate the band structure of a class of photonic crystals made from only thin wires. Using a different method, we demonstrate that a complete photonic band gap is possible for such materials. Band gap materials normally consist of space filling dielectric or metal, whereas thin wires occupy a very small fraction of the volume. We show that this is related to the large increase in scattering at the Brillouin zone boundary. The method we developed brings together the calculation techniques in three different fields. The first is the calculation of scattering from periodic, tilted antennas, which we improve upon. The second is the standard technique for frequency selective surface design. The third is obtained directly from low energy electron diffraction theory. Good agreements with experiments for left handed materials, negative materials, and frequency selective surfaces are demonstrated.

  19. Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling.

    Science.gov (United States)

    Taubert, Richard; Dregely, Daniel; Stroucken, Tineke; Christ, Andre; Giessen, Harald

    2012-02-21

    Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or excitonic systems, the coupling efficiency of the particle plasmons utilized here is several orders of magnitude larger and widely tunable by changing the size and geometry of the plasmonic nanowires. We are thus able to explore the regime where the coupling distance is even limited by the large radiative decay rate of the oscillators. This Bragg-stacked coupling scheme will open a new route for future plasmonic applications such as far-field coupling to quantum emitters without quenching, plasmonic cavity structures and plasmonic distributed gain schemes for spasers.

  20. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    Science.gov (United States)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  1. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gao, Weiwei; Abtew, Tesfaye A. [Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260 (United States); Zhang, Peihong, E-mail: pzhang3@buffalo.edu, E-mail: wqzhang@mail.sic.ac.cn [Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260 (United States); Beijing Computational Science Research Center, Beijing 100084 (China); Zhang, Wenqing, E-mail: pzhang3@buffalo.edu, E-mail: wqzhang@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); School of Chemistry and Chemical Engineering and Sate Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu 210093 (China)

    2013-11-14

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV.

  2. Symmetry-Driven Band Gap Engineering in Hydrogen Functionalized Graphene

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Holm; Grubisic Cabo, Antonija; Balog, Richard;

    2016-01-01

    Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one disti...

  3. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate...... structures. Using a self-consistent description based on the Green's function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects in these structures...

  4. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion.

    Science.gov (United States)

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C T; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful "rainbow" pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  5. An Update on the DOE Early Career Project on Photonic Band Gap Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I. [Los Alamos National Laboratory; Edwards, Randall L. [Los Alamos National Laboratory; Haynes, William B. [Los Alamos National Laboratory; Madrid, Michael A. [Los Alamos National Laboratory; Romero, Frank P. [Los Alamos National Laboratory; Tajima, Tsuyoshi [Los Alamos National Laboratory; Tuzel, Walter M. [Los Alamos National Laboratory; Boulware , Chase H. [Niowave, Inc; Grimm, Terry [Niowave, Inc.

    2012-06-07

    We performed fabrication of two SRF PBG resonators at 2.1 GHz and demonstrated their proof-of-principle operation at high gradients. Measured characteristics of the resonators were in good agreement with theoretical predictions. We demonstrated that SRF PBG cavities can be operated at 15 MV/m accelerating gradients. We completed the design and started fabrication of the 16-cell PBG accelerating structure at 11.7 GHz for wakefield testing at AWA.

  6. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    Science.gov (United States)

    2015-05-01

    structures. 4 The Hamiltonian describing the system contains 2 parts: H0, which includes the parts that can be treated exactly using a single...phonons, and the carrier–carrier interactions via Coulomb potential. We describe the dynamics of the system using the density matrix method.2,3 The...algebra, we obtain the following form of the Hamiltonian for the effective 2-level system : 0 * 1 ( ) ( ) , ( ) ( ) 22 ac eff eff ac t t t t

  7. Second harmonic generation from metallo-dielectric multilayer photonic band gap structures

    CERN Document Server

    Larciprete, M C; Cappeddu, M G; De Ceglia, D; Centini, M; Fazio, E; Sibilia, C; Bloemer, M J; Scalora, M

    2008-01-01

    We experimentally and theoretically investigate the second order nonlinear optical response of metallo-dielectric multilayer structures composed of Ag and Ta2O5 layers, deposited by magnetron sputtering. Second harmonic generation measurements were performed in reflection mode as a function of incidence angle, using femtosecond pulses originating from a Ti:Sapphire laser system tuned at 800 nm. The dependence of the generated signal was investigated as a function of pump intensity and polarization state. Our experimental results show that the conversion efficiency from a periodic metallo-dielectric sample may be enhanced by at least a factor of 30 with respect to the conversion efficiency from a single metal layer, thanks in part to the increased number of active surfaces, pump field localization and penetration inside the metal layers. The conversion efficiency maximum shifts from 70 degrees for the single silver layer down to approximately 55 degrees for the stack. The experimental results are found to be i...

  8. Diamond Opal-Replica Photonic Crystals and Graphitic Metallic Photonic Band Gap Structures: Fabrication and Properties

    Science.gov (United States)

    Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.

    1998-03-01

    We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.

  9. Multi Band Gap High Efficiency Converter (RAINBOW)

    Science.gov (United States)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  10. Revisiting orbital-fluctuation-mediated superconductivity in LiFeAs: Nontrivial spin-orbit interaction effects on the band structure and superconducting gap function

    Science.gov (United States)

    Saito, Tetsuro; Yamakawa, Youichi; Onari, Seiichiro; Kontani, Hiroshi

    2015-10-01

    The precise gap structure in LiFeAs (Tc=18 K) given by ARPES studies offers significant information that helps us understand the pairing mechanism in iron-based superconductors. The most remarkable characteristic in the LiFeAs gap structure would be that "the largest gap emerges on the tiny hole-pockets around the Z point." This result has been naturally explained in terms of the orbital-fluctuation scenario [T. Saito et al., Phys. Rev. B 90, 035104 (2014)], 10.1103/PhysRevB.90.035104, whereas the opposite result is obtained by the spin-fluctuation scenario. In this paper, we study the gap structure in LiFeAs by taking the spin-orbit interaction (SOI) into account, motivated by the recent ARPES studies that revealed a significant SOI-induced modification of the Fermi surface topology. For this purpose, we construct two possible tight-binding models with finite SOI by referring the band structures given by different ARPES groups. In addition, we extend the gap equation for multiorbital systems with finite SOI, and calculate the gap functions by applying the orbital-spin fluctuation theory. On the basis of both SOI-induced band structures, the main characteristics of the gap structure in LiFeAs are naturally reproduced only in the presence of strong interorbital interactions between (dx z /y z-dx y) orbitals. Thus the experimental gap structure in LiFeAs is a strong evidence for the orbital-fluctuation pairing mechanism.

  11. Modification in band gap of zirconium complexes

    Science.gov (United States)

    Sharma, Mayank; Singh, J.; Chouhan, S.; Mishra, A.; Shrivastava, B. D.

    2016-05-01

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  12. Photonic band gap of 2D complex lattice photonic crystal

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  13. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    Science.gov (United States)

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  14. Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions

    Science.gov (United States)

    Dong, L.; Alpay, S. P.

    2011-07-01

    The electrical properties, the spontaneous polarization, and the piezoelectric response of ZnO can be tailored by alloying ZnO with BeO for applications such as electrodes in flat panel displays and solar cells, blue and ultraviolet (UV) light emitting devices, and highly sensitive UV detectors. We present here the results of a study that employs density-functional theory to analyze the crystal structure, the band structure, spontaneous polarization, and piezoelectric properties of Zn1-xBexO solid solutions. Our findings indicate that Zn1-xBexO alloys may have a different crystal structure than the end components ZnO and BeO that crystallize in the prototypical wurtzite structure (P63mc). It is shown that orthorhombic lattices with Pmn21, Pna21, or P21 structures may have lower formation energies than the wurtzite lattice at a given Be composition. The band-gap energies of Zn1-xBexO in the wurtzite and the orthorhombic structures are nearly identical and the bowing of the band-gap energy increases with increasing Be concentration. The spontaneous polarization of Zn1-xBexO in the orthorhombic lattice is markedly larger compared to the wurtzite structure while the piezoelectric polarization in the wurtzite and orthorhombic structures varies linearly with the Be concentration.

  15. Band Gap Engineering of Two-Dimensional Nitrogene

    Science.gov (United States)

    Li, Jie-Sen; Wang, Wei-Liang; Yao, Dao-Xin

    2016-01-01

    In our previous study, we have predicted the novel two-dimensional honeycomb monolayers of pnictogen. In particular, the structure and properties of the honeycomb monolayer of nitrogen, which we call nitrogene, are very unusual. In this paper, we make an in-depth investigation of its electronic structure. We find that the band structure of nitrogene can be engineered in several ways: controlling the stacking of monolayers, application of biaxial tensile strain, and application of perpendicular electric field. The band gap of nitrogene is found to decrease with the increasing number of layers. The perpendicular electric field can also reduce the band gap when it is larger than 0.18 V/Å, and the gap closes at 0.35 V/Å. A nearly linear dependence of the gap on the electric field is found during the process. Application of biaxial strain can decrease the band gap as well, and eventually closes the gap. After the gap-closing, we find six inequivalent Dirac points in the Brillouin zone under the strain between 17% and 28%, and the nitrogene monolayer becomes a Dirac semimetal. These findings suggest that the electronic structure of nitrogene can be modified by several techniques, which makes it a promising candidate for electronic devices. PMID:27680297

  16. THE STUDY OF THERMAL EFFECTS AND DEFECT MODE PROPERTIES ON THE ONE-DIMENSIONAL PHONONIC BAND GAP STRUCTURES

    Directory of Open Access Journals (Sweden)

    Arafa H. Aly

    2014-03-01

    Full Text Available In the present work, we describe an efficient study of the stop-band/pass-band dispersive behavior of 1D phononic crystal. We have treated the propagation and localization of in-plane (P and S/anti-plane (SH shear waves in perfect/defect phononic crystals. Based on the transfer matrix method and Bloch theory, the dispersion relations were calculated and plotted for both SH and in-plane waves. In order to confirm the results, the reflection coefficients were plotted for in-plane waves and compared with dispersion relations results. The effect of several parameters such as type and thickness of defect layer on the waves localization had be taken in account. Moreover, we have studied the effect of temperature on the phononic band gaps for SH and in-plane waves. These results can be useful in using phononic crystals as temperature sensor materials. Also, the presented analysis can be extended to acoustic filters and wave multiplexer.

  17. Diluted II-VI oxide semiconductors with multiple band gaps.

    Science.gov (United States)

    Yu, K M; Walukiewicz, W; Wu, J; Shan, W; Beeman, J W; Scarpulla, M A; Dubon, O D; Becla, P

    2003-12-12

    We report the realization of a new mult-band-gap semiconductor. Zn(1-y)Mn(y)OxTe1-x alloys have been synthesized using the combination of oxygen ion implantation and pulsed laser melting. Incorporation of small quantities of isovalent oxygen leads to the formation of a narrow, oxygen-derived band of extended states located within the band gap of the Zn(1-y)Mn(y)Te host. When only 1.3% of Te atoms are replaced with oxygen in a Zn0.88Mn0.12Te crystal the resulting band structure consists of two direct band gaps with interband transitions at approximately 1.77 and 2.7 eV. This remarkable modification of the band structure is well described by the band anticrossing model. With multiple band gaps that fall within the solar energy spectrum, Zn(1-y)Mn(y)OxTe1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%.

  18. Band Gap Narrowing in Heavily Doped Silicon.

    Science.gov (United States)

    Gupta, Tapan Kumar

    Two analytic models for transport and band gap narrowing in heavily doped (N_{rm D} > 10^{20} cm^ {-3}) silicon have been set up and verified through measurements on n^{+} -p junction devices. The first model is based on calculation of the ratio of the charge present in the emitter of the n^{+} region of the junction to that of the charge present in the absence of band gap shrinkage. Fermi-Dirac statistics are employed and are found to have a significant effect at this doping level. The second model is based on current transport of minority carriers in the n^{+} region. In this model only two parameters need to be known, the diffusion coefficient and the diffusion length for minority carriers, to calculate the band gap narrowing. An empirical relation between band gap narrowing and donor concentration has also been established based on experimental values of diffusion coefficient and mobility. These models have been verified by several different experimental techniques including surface photovoltage, open circuit voltage decay, photoconductivity decay and modulation reflection spectroscopy. The results indicate that, in the impurity range above about 10^{20} cm^{-3}, Fermi-Dirac statistics must be invoked in order to achieve a satisfactory fit with experimental data.

  19. Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Edgar, E-mail: edemova@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Pozo, Ignacio del, E-mail: ignacio.dpf@gmail.com [Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago (Chile); Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile)

    2013-10-15

    The structure and the optical band gap of CdO–ZnO nanocomposites were studied. Characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS) analysis confirms that CdO phase is present in the nanocomposites. TEM analysis confirms the formation of spheroidal nanoparticles and nanorods. The particle size was calculated from Debey–Sherrer′s formula and corroborated by TEM images. FTIR spectroscopy shows residual organic materials (aromatic/Olefinic carbon) from nanocomposites surface. CdO content was modified in the nanocomposites in function of polyvinylalcohol (PVA) added. The optical band gap is found to be red shift from 3.21 eV to 3.11 eV with the increase of CdO content. Photoluminescence (PL) measurements reveal the existence of defects in the synthesized CdO–ZnO nanocomposites. - Graphical abstract: Optical properties of ZnO, CdO and ZnO/CdO nanoparticles. Display Omitted - Highlights: • TEM analysis confirms the presence of spherical nanoparticles and nanorods. • The CdO phase is present in the nanocomposites. • The band gap of the CdO–ZnO nanocomposites is slightly red shift with CdO content. • PL emission of CdO–ZnO nanocomposite are associated to structural defects.

  20. Structured ZnO films: Effect of copper nitrate addition to precursor solution on topography, band gap energy and photocatalytic activity

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Kaleva, A.; Hyvärinen, L.; Levänen, E.

    2017-02-01

    ZnO is a widely studied semiconductor material with interesting properties such as photocatalytic activity leading to wide range of applications, for example in the field of opto-electronics and self-cleaning and antimicrobial applications. Doping of photocatalytic semiconductor materials has been shown to introduce variation in the band gap energy of the material. In this work, ZnO rods were grown on a stainless steel substrates using hydrothermal method introducing copper nitrate into the precursor solution. Zinc nitrate and hexamethylenetetramine were used as precursor materials and the growth was conducted at 90 °C for 2 h in order to achieve a well-aligned evenly distributed rod structure. Copper was introduced as copper nitrate that was added in the precursor solution in the beginning of the growth. The as-prepared films were then heat-treated at 350 °C and band gap measurements were performed for prepared films. It was found that increase in the copper concentration in the precursor solution decreased the band gap of the ZnO film. Methylene blue discolouration tests were then performed in order to study the effect of the copper nitrate addition to precursor solution on photocatalytic activity of the structured ZnO films.

  1. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  2. Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides.

    Science.gov (United States)

    Viñes, Francesc; Lamiel-García, Oriol; Chul Ko, Kyoung; Yong Lee, Jin; Illas, Francesc

    2017-04-30

    The effect of the amount of Hartree-Fock mixing parameter (α) and of the screening parameter (w) defining the range separated HSE type hybrid functional is systematically studied for a series of seven metal oxides: TiO2 , ZrO2 , CuO2 , ZnO, MgO, SnO2 , and SrTiO3 . First, reliable band gap values were determined by comparing the optimal α reproducing the experiment with the inverse of the experimental dielectric constant. Then, the effect of the w in the HSE functional on the calculated band gap was explored in detail. Results evidence the existence of a virtually infinite number of combinations of the two parameters which are able to reproduce the experimental band gap, without a unique pair able to describe the full studied set of materials. Nevertheless, the results point out the possibility of describing the electronic structure of these materials through a functional including a screened HF exchange and an appropriate correlation contribution. © 2017 Wiley Periodicals, Inc.

  3. Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors

    Science.gov (United States)

    Vincenti, Maria Antonietta; Trevisi, Simona; De Sario, Marco; Petruzzelli, Vincenzo; D'Orazio, Antonella; Prudenzano, Francesco; Cioffi, Nicola; de Ceglia, Domenico; Scalora, Michael

    2008-03-01

    In this paper we report a numerical study of a palladium-based metallo-dielectric photonic band gap structure for the purpose of detecting H2. In particular, and as an example, we will explore applications to the diagnosis of lactose malabsorption, more commonly known as lactose intolerance condition. This pathology occurs as a result of an incomplete absorption or digestion of different substances, causing an increased spontaneous emission of H2 in human breath. Palladium is considered in order to exploit its well known ability to absorb hydrogen spontaneously. The proposed structure is particularly able to detect the lactose malabsorption level of the patient with relatively high sensitivity and rapidity.

  4. Structure, band gap, and Mn-related mid-gap states in epitaxial single crystal (Zn{sub 1-x}Mg{sub x}){sub 1-y}Mn{sub y}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Dapeng; Liu Guolei; Xiao Shuqin; Yan Shishen; He Shumin; Cai Li; Li Qinghao; Hu Shujun; Chen Yanxue; Kang Shishou; Mei Liangmo [School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China); Cao Qiang [School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China); Department of Physics, Qufu Normal University, Qufu, Shandong 273165 (China)

    2013-05-07

    Epitaxial (Zn{sub 1-x}Mg{sub x}){sub 1-y}Mn{sub y}O thin films were grown on c-Al{sub 2}O{sub 3} substrates by radio frequency oxygen plasma assisted molecular beam epitaxy. Single crystal structure of the (Zn{sub 1-x}Mg{sub x}){sub 1-y}Mn{sub y}O films was revealed by reflection high energy electron diffraction and X-ray diffraction. The band gap of the films can be tuned dramatically with increasing the Mg concentration, while the onset energy of Mn-related mid-gap absorption band only shows a small blue shift. Photoconductivity measurements indicate the Mn-related mid-gap states in (Zn{sub 1-x}Mg{sub x}){sub 1-y}Mn{sub y}O films can create free carriers and contribute to charge transfer transitions. The conduction band offset {Delta}E{sub C} = 0.13 eV and valence band offset {Delta}E{sub V} = 0.1 eV were obtained for ZnO/Zn{sub 0.8}Mg{sub 0.2}O heterostructures, which increase to {Delta}E{sub C} = 0.21 eV and {Delta}E{sub V} = 0.14 eV for ZnO/Zn{sub 0.7}Mg{sub 0.3}O heterostructures.

  5. Absolute band gaps in two-dimensional graphite photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  6. Band Gap Tuning of Armchair Graphene Nanoribbons by Using Antidotes

    Science.gov (United States)

    Zoghi, Milad; Goharrizi, Arash Yazdanpanah; Saremi, Mehdi

    2017-01-01

    The electronic properties of armchair graphene nanoribbons (AGNRs) can be changed by creating antidotes within the pristine ribbons and producing antidote super lattice AGNRs (ASL-AGNRs). In the present work, band gap tuning of ASL-AGNRs is investigated by varying the width of ribbons ( d W) and the distance between antidotes ( d L) for five different antidote topologies. Numerical tight-binding model is applied to obtain the band structure of the ribbons. Based on our results, it is found that the band gap of ASL-AGNRs can be increased or decreased in different cases. Furthermore, changing the width of ribbons generally results in more predictable␣band gap profiles compared to the variation of distance between antidotes. Consequently, by opting appropriate antidote topologies and dimensional parameters ( d W and d L), it is possible to gain a desired band gap size. This can be considered as an alternative solution in design of electronic and optoelectronic devices where tunable band gap values are needed.

  7. Diluted magnetic semiconductors with narrow band gaps

    Science.gov (United States)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  8. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  9. Wide band gap carbon allotropes: Inspired by zeolite-nets

    Science.gov (United States)

    Wei, Zhi-Jing; Zhao, Hui-Yan; Wang, Jing; Liu, Ying

    2016-10-01

    Based on the topologies proposed for zeolites, six metastable semiconductor carbon allotropes with band gaps of 2.72-3.89 eV are predicted using ab initio density functional calculations. The hardnesses of these allotropes are about 90%-94% that of diamond, indicating that they may be superhard materials. We also present simulated X-ray diffraction spectra of these new carbon allotropes to provide a basis for possible experimental observations and synthesis. These new carbon structures with a range of band gaps and with hardnesses comparable to diamond could be potential targets for the synthesis of hard and transparent materials.

  10. Experimental studies of surface plasmon polariton band gap effect

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Leosson, K.;

    2003-01-01

    the dependence of the SPP band gap (SPPBG) effect manifested via the SPP reflection and guiding (along line defects) on the parameters of the surface structures (period, filling factor and lattice orientation). We find that the SPPBG effect is stronger along &ggr;K direction for all investigated periodic...

  11. Topological Design of Cellular Phononic Band Gap Crystals

    Directory of Open Access Journals (Sweden)

    Yang Fan Li

    2016-03-01

    Full Text Available This paper systematically investigated the topological design of cellular phononic crystals with a maximized gap size between two adjacent bands. Considering that the obtained structures may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume fraction of solid material so that the resulting structures can be lightweight, as well. In particular, we first conducted the finite element analysis of the phononic band gap crystals and then adapted a very efficient optimization procedure to resolve this problem based on bi-directional evolutionary structure optimization (BESO algorithm in conjunction with the homogenization method. A number of optimization results for maximizing band gaps with bulk and shear modulus constraints are presented for out-of-plane and in-plane modes. Numerical results showed that the optimized structures are similar to those obtained for composite case, except that additional slim connections are added in the cellular case to support the propagation of shear wave modes and meanwhile to satisfy the prescribed bulk or shear modulus constraints.

  12. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.;

    2016-01-01

    minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...

  13. Tl{sub 4}CdI{sub 6} – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa (Poland)

    2015-08-01

    A novel infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved.

  14. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

    Science.gov (United States)

    Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2016-12-01

    Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

  15. Electronic structure of layered quaternary chalcogenide materials for band-gap engineering: The example of Cs2MIIM3IVQ8

    Science.gov (United States)

    Besse, Rafael; Sabino, Fernando P.; Da Silva, Juarez L. F.

    2016-04-01

    Quaternary chalcogenide materials offer a wide variety of chemical and physical properties, and hence, those compounds have been widely studied for several technological applications. Recently, experimental studies have found that the chalcogenide Cs2MIIM3IVQ8 family (MII = Mg , Zn , Cd , Hg , MIV = Ge , Sn and Q = S , Se , Te ), which includes 24 compounds, yields a wide range of band gaps, namely, from 1.07 to 3.4 eV, and hence, they have attracted great interest. To obtain an improved atomistic understanding of the role of the cations and anions on the physical properties, we performed a first-principles investigation of the 24 Cs2MIIM3IVQ8 compounds employing density functional theory within semilocal and hybrid exchange-correlation energy functionals and the addition of van der Waals corrections to improve the description of the weakly interacting layers. Our lattice parameters are in good agreement with the available experimental data (i.e., 11 compounds), and the equilibrium volume increases linearly by increasing the atomic number of the chalcogen, which can be explained by the increased atomic radius of the chalcogen atoms from S to Te . We found that van der Waals corrections play a crucial role in the lattice parameter in the stacking direction of the Cs2MIIM3IVQ8 layers, while the binding energy per unit area has similar magnitude as obtained for different layered materials. We obtained that the band gaps follow a linear relation as a function of the unit cell volume, which can be explained by the atomic size of the chalcogen atom and the relative position of the Q p states within the band structure. The fundamental and optical band gaps differ by less than 0.1 eV. The band gaps obtained with the hybrid functional are in good agreement with the available experimental data. Furthermore, we found from the Bader analysis, that the Coulomb interations among the cations and anions play a crucial role on the energetic properties.

  16. Lamb wave band gaps in locally resonant phononic crystal strip waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yuanwei, E-mail: yaoyw@scut.edu.cn [Department of Physics, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Fugen [Experiment and Educational Center, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Xin [Department of Physics, Guangdong University of Technology, Guangzhou 510006 (China); Hou, Zhilin [Department of Physics, South China University of Technology, Guangzhou 510640 (China)

    2012-01-09

    Using finite element method, we have made a theoretically study of the band structure of Lamb wave in a locally resonant phononic crystal strip waveguide with periodic soft rubber attached on the two sides of epoxy main plate. The numerical results show that the Lamb wave band gap based on local resonant mechanism can be opened up in the stub strip waveguides, and the width of the local resonant band gap is narrower than that based on the Bragg scattering mechanism. The results also show that the stub shape and width have influence on the frequency and width of the Lamb wave band gap. -- Highlights: ► The local resonant Lamb wave band gap can be opened up in a stub strip waveguides. ► The width of the local resonant band gap is narrower than that Bragg scattering band gap. ► The shape and width of the stub have strongly influence on the local resonant band gap.

  17. Slow light and band gaps in metallodielectric cylinder arrays.

    Science.gov (United States)

    Shainline, Jeffrey M; Xu, Jimmy

    2009-05-25

    We consider two-dimensional three-component photonic crystals wherein one component is modeled as a drude-dispersive metal. It is found that the dispersion relation of light in this environment depends critically on the configuration of the metallic and dielectric components. In particular, for the case of an incident electromagnetic wave with electric field vector parallel to the axis of the cylinders it is shown that the presence of dielectric shells covering the metallic cylinders leads to a closing of the structural band gap with increased filling factor, as would be expected for a purely dielectric photonic crystal. For the same polarization, the photonic band structure of an array of metallic shell cylinders with dielectric cores do not show the closing of the structural band gap with increased filling factor of the metallic component. In this geometry, the photonic band structure contains bands with very small values of group velocity with some bands having a maximum of group velocity as small as .05c.

  18. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    Science.gov (United States)

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  19. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2016-08-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  20. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin

    2016-08-01

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  1. Electroluminescence from indirect band gap semiconductor ReS2

    Science.gov (United States)

    Gutiérrez-Lezama, Ignacio; Aditya Reddy, Bojja; Ubrig, Nicolas; Morpurgo, Alberto F.

    2016-12-01

    It has been recently claimed that bulk crystals of transition metal dichalcogenide (TMD) ReS2 are direct band gap semiconductors, which would make this material an ideal candidate, among all TMDs, for the realization of efficient opto-electronic devices. The situation is however unclear, because even more recently an indirect transition in the PL spectra of this material has been detected, whose energy is smaller than the supposed direct gap. To address this issue we exploit the properties of ionic liquid gated field-effect transistors (FETs) to investigate the gap structure of bulk ReS2. Using these devices, whose high quality is demonstrated by a record high electron FET mobility of 1100 cm2 V-1 s-1 at 4 K, we can induce hole transport at the surface of the material and determine quantitatively the smallest band gap present in the material, irrespective of its direct or indirect nature. The value of the band gap is found to be 1.41 eV, smaller than the 1.5 eV direct optical transition but in good agreement with the energy of the indirect optical transition, providing an independent confirmation that bulk ReS2 is an indirect band gap semiconductor. Nevertheless, contrary to the case of more commonly studied semiconducting TMDs (e.g., MoS2, WS2, etc) in their bulk form, we also find that ReS2 FETs fabricated on bulk crystals do exhibit electroluminescence when driven in the ambipolar injection regime, likely because the difference between direct and indirect gap is only 100 meV. We conclude that ReS2 does deserve more in-depth investigations in relation to possible opto-electronic applications.

  2. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  3. THE STUDY OF THERMAL EFFECTS AND DEFECT MODE PROPERTIES ON THE ONE-DIMENSIONAL PHONONIC BAND GAP STRUCTURES

    OpenAIRE

    Arafa H. Aly; Ahmed Mehaney

    2014-01-01

    In the present work, we describe an efficient study of the stop-band/pass-band dispersive behavior of 1D phononic crystal. We have treated the propagation and localization of in-plane (P and S)/anti-plane (SH) shear waves in perfect/defect phononic crystals. Based on the transfer matrix method and Bloch theory, the dispersion relations were calculated and plotted for both SH and in-plane waves. In order to confirm the results, the reflection coefficients were plotted for in-plane waves and co...

  4. Surface band-gap narrowing in quantized electron accumulation layers.

    Science.gov (United States)

    King, P D C; Veal, T D; McConville, C F; Zúñiga-Pérez, J; Muñoz-Sanjosé, V; Hopkinson, M; Rienks, E D L; Jensen, M Fuglsang; Hofmann, Ph

    2010-06-25

    An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.

  5. Structuring the Information Gap.

    Science.gov (United States)

    Edge, Julian

    1984-01-01

    Describes an information gap procedure to teach a new structure which requires students to look for and exchange information in order to complete a task in an English as a second language class. Illustrates the method with a set of materials and suggests ways for teachers to produce similar materials. (SED)

  6. Engineering the hypersonic phononic band gap of hybrid Bragg stacks.

    Science.gov (United States)

    Schneider, Dirk; Liaqat, Faroha; El Boudouti, El Houssaine; El Hassouani, Youssef; Djafari-Rouhani, Bahram; Tremel, Wolfgang; Butt, Hans-Jürgen; Fytas, George

    2012-06-13

    We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one-dimensional crystals forward to a detailed understanding, a precondition to engineer dispersion relations in such structures.

  7. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; Spencer, James E.; /SLAC; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  8. Photovoltaic properties of low band gap ferroelectric perovskite oxides

    Science.gov (United States)

    Huang, Xin; Paudel, Tula; Dong, Shuai; Tsymbal, Evgeny

    2015-03-01

    Low band gap ferroelectric perovskite oxides are promising for photovoltaic applications due to their high absorption in the visible optical spectrum and a possibility of having large open circuit voltage. Additionally, an intrinsic electric field present in these materials provides a bias for electron-hole separation without requiring p-n junctions as in conventional solar cells. High quality thin films of these compounds can be grown with atomic layer precision allowing control over surface and defect properties. Initial screening based on the electronic band gap and the energy dependent absorption coefficient calculated within density functional theory shows that hexagonal rare-earth manganites and ferrites are promising as photovoltaic absorbers. As a model, we consider hexagonal TbMnO3. This compound has almost ideal band gap of about 1.4 eV, very high ferroelectric Curie temperature, and can be grown epitaxially. Additionally hexagonal TbMnO3 offers possibility of coherent structure with transparent conductor ZnO. We find that the absorption is sufficiently high and dominated by interband transitions between the Mn d-bands. We will present the theoretically calculated photovoltaic efficiency of hexagonal TbMnO3 and explore other ferroelectric perovskite oxides.

  9. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  10. 具有带隙结构的迟滞比较器电路设计%Circuit Design of Hysteresis Comparator with Band-Gap Structure

    Institute of Scientific and Technical Information of China (English)

    徐静萍

    2011-01-01

    According to the requirement of low voltage and high stability, a circuit for the hysteresis comparator with band-gap structure is designed based on micropower consumption DC-DC converter drived by LED. Its minimum input voltage is 1. 2 V. Its core circuits consists of Band-gap comparator, emitter follower and hysteresis comparator. The bipolar technology is adopted in the circuit design. The circuit designed with the tecnology was simulated and verified with HSpice software.The results show that the hysteresis voltage of the hysteresis comparator is 8 mV, and the variation of the overturn threshold voltage with input voltage and temperature is small.%基于LED驱动的微功耗DC-DC转换器,针对低压高稳定性的要求设计了一款具有带隙结构的迟滞比较器电路,它的最低输入电压为1.2 V,其核心电路有带隙基准比较器、射极跟随器和迟滞比较器.整个电路采用Bipolar工艺设计,利用HSpice软件对所设计的电路进行了仿真与验证.结果表明,迟滞比较器的迟滞电压为8 mV.翻转门限电压随输入电压和温度的变化均很小.

  11. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    Science.gov (United States)

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  12. Two novel silicon phases with direct band gaps.

    Science.gov (United States)

    Fan, Qingyang; Chai, Changchun; Wei, Qun; Yang, Yintang

    2016-05-14

    Due to its abundance, silicon is the preferred solar-cell material despite the fact that many silicon allotropes have indirect band gaps. Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in the solar cell industry. Looking for direct band gap silicon is still an important field in material science. Based on density function theory with the ultrasoft pseudopotential scheme in the frame of the local density approximation and the generalized gradient approximation, we have systematically studied the structural stability, absorption spectra, electronic, optical and mechanical properties and minimum thermal conductivity of two novel silicon phases, Cm-32 silicon and P21/m silicon. These are both thermally, dynamically and mechanically stable. The absorption spectra of Cm-32 silicon and P21/m silicon exhibit significant overlap with the solar spectrum and thus, excellent photovoltaic efficiency with great improvements over Fd3[combining macron]m Si. These two novel Si structures with direct band gaps could be applied in single p-n junction thin-film solar cells or tandem photovoltaic devices.

  13. Analysis on Band Gaps of MCM-41 Type of Materials

    Institute of Scientific and Technical Information of China (English)

    HAN Pei-de; LIANG Jian; XU Bing-she; LIU Xu-guang; PENG Lian-mao

    2004-01-01

    The concept and analysis method of photonic crystals and band gaps are introduced into one-dimensional(1D) ordered mesoporous materials. MCM-41 type of materials are treated theoretically as photonic crystals. The formation of band gaps is exhibited and confirmed by a calculation of transfer matrix technique. PBG was found around 9-42 nm in soft X-ray region. The photonic band-gap was predicted to be dependent on incident direction, pore size and lattice constant. The mesoporous materials with different pore sizes and different lattice constants have different band-gap widths.

  14. Eu3+-Doped Wide Band Gap Zn2SnO4 Semiconductor Nanoparticles: Structure and Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana; Ivetic, Tamara B.; Litvinchuk, Alexander P.; Fairbrother, Andrew; Miljevic, Bojan B.; Strbac, Goran R.; Rodriguez, Alejandro Perez; Lukic-Petrovic, Svetlana R.

    2016-08-25

    Nanocrystalline Zn2SnO4 powders doped with Eu3+ ions were synthesized via a mechanochemical solid-state reaction method followed by postannealing in air at 1200 degrees C. X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Raman and photoluminescence (PL) spectroscopies provide convincing evidence for the incorporation of Eu3+ ions into the host matrix on noncentrosymmetric sites of the cubic inverse spinel lattice. Microstructural analysis shows that the crystalline grain size decreases with the addition of Eu3+. Formation of a nanocrystalline Eu2Sn2O7 secondary phase is also observed. Luminescence spectra of Eu3+-doped samples show several emissions, including narrow-band magnetic dipole emission at 595 nm and electric dipole emission at 615 nm of the Eu3+ ions. Excitation spectra and lifetime measurements suggest that Eu3+ ions are incorporated at only one symmetry site. According to the crystal field theory, it is assumed that Eu3+ ions participate at octahedral sites of Zn2+ or Sn4+ under a weak crystal field, rather than at the tetrahedral sites of Zn2+, because of the high octahedral stabilization energy for Eu3+. Activation of symmetry forbidden (IR-active and silent) modes is observed in the Raman scattering spectra of both pure and doped samples, indicating a disorder of the cation sublattice of Zn2SnO4 nanocrystallites. These results were further supported by the first principle lattice dynamics calculations. The spinel-type Zn2SnO4 shows effectiveness in hosting Eu3+ ions, which could be used as a prospective green/red emitter. This work also illustrates how sustainable and simple preparation methods could be used for effective engineering of material properties.

  15. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO₂.

    Science.gov (United States)

    Waterhouse, G I N; Wahab, A K; Al-Oufi, M; Jovic, V; Anjum, D H; Sun-Waterhouse, D; Llorca, J; Idriss, H

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  16. Band gap engineering of indium zinc oxide by nitrogen incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.J., E-mail: jjosila@hotmail.com [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo la Bufa, Fracc. Progreso, C.P. 98060 Zacatecas (Mexico); Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava, Zona Universitaria, C.P. 78270 San Luis Potosí (Mexico); Aguilar-Frutis, M.A.; Alarcón, G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Unidad Legaría, Calz. Legaría No. 694, Col. Irrigación, C.P. 11500 México D.F. (Mexico); Falcony, C. [Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional campus Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México D.F. (Mexico); and others

    2014-09-15

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N{sub 2}/Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N{sub 2}/Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10{sup −4} Ω cm with a carrier concentration of 5.1 × 10{sup 20} cm{sup −3}.

  17. Origin of multiple band gap values in single width nanoribbons

    Science.gov (United States)

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-11-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering.

  18. Band gap transmission in periodic bistable mechanical systems

    Science.gov (United States)

    Frazier, Michael J.; Kochmann, Dennis M.

    2017-02-01

    We theoretically and numerically investigate the supratransmission phenomenon in discrete, nonlinear systems containing bistable elements. While linear waves cannot propagate within the band gaps of periodic structures, supratransmission allows large-amplitude waves to transmit energy through the band gap. For systems lacking bistability, the threshold amplitude for such energy transmission at a given frequency in the linear band gap is fixed. We show that the topological transitions due to bistability provide an avenue for switching the threshold amplitude between two well-separated values. Moreover, this versatility is achieved while leaving the linear dispersion properties of the system essentially unchanged. Interestingly, the behavior changes when an elastic chain is coupled to bistable resonators (in an extension of the well-studied linear locally resonant metamaterials). Here, we show that a fraction of the injected energy is confined near the boundary due to the resonators, providing a means of regulating the otherwise unrestrained energy flow due to supratransmission. Together, the results illustrate new means of controlling nonlinear wave propagation and energy transport in systems having multi-stable elements.

  19. Characterization of all-glass photonic band gap fiber

    Science.gov (United States)

    Buczynski, Ryszard; Kujawa, Ireneusz; Lusawa, Marzenna; Pysz, Dariusz; Martynkien, Tadeusz; Berghmans, Francis; Nasilowski, Tomasz; Thienpont, Hugo; Stepien, Ryszard

    2008-12-01

    In this paper we report on the fabrication and characterization of a double glass micro-structured fiber with low index core and photonic cladding made of high index micro-rods. Micro rods are made of lead-oxide F2 commercially available glass (SCHOTT Inc.) with a refractive index nD=1.619, while as background we use a borosilicate NC21 glass with a refractive index nD=1.533. The fiber cladding is composed of 8 rings of F2 glass micro rods ordered in hexagonal lattice. A core is created by replacement of seven F2 rods with NC21 rods. A fabricated fiber has a linear filling factor of 0.75 and micro rods diameter of 1.2 μm. A core has a diameter of 3.7 μm while cladding and total fiber diameter are 42,6μm and 120 μm, respectively. Using supercontinuum source we have measured transmission properties of the fabricated fiber. Based on measurements of the fiber samples of 18-80 cm long we have identified two photonic band gaps. Fist band gap is localized in visible range at 610 nm central wavelength. The second broadband photonic band gap is localized in near infrared and it is 80 nm wide at 840 nm central wavelength.

  20. Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl{sub 2}O{sub 4}, ZnGa{sub 2}O{sub 4} and ZnIn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B [CMT-group and EMAT, Departement Fysica, Universiteit Antwerpen Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Tandon, N [Instituut voor Kern- en Stralingsfysica, K U Leuven Celestijnenlaan 200D, B-3001 Leuven (Belgium); Cottenier, S; Van Speybroeck, V; Waroquier, M, E-mail: Hemant.Dixit@ua.ac.be [Center for Molecular Modeling, Ghent University Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2011-06-15

    We examine the electronic structure of the family of ternary zinc spinel oxides ZnX{sub 2}O{sub 4} (X=Al, Ga and In). The band gap of ZnAl{sub 2}O{sub 4} calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.8-3.9 eV. The DFT band gap of ZnGa{sub 2}O{sub 4} is 2.82 eV and is underestimated compared with the experimental value of 4.4-5.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl{sub 2}O{sub 4} probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified Becke-Johnson (MBJ) potential approximation, to calculate the band gap of ZnX{sub 2}O{sub 4}. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl{sub 2}O{sub 4}, the predicted band gap values are >6 eV, i.e. {approx}2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.

  1. Characterization of Structural Defects in Wide Band-Gap Compound Materials for Semiconductor and Opto-Electronic Applications

    Science.gov (United States)

    Goue, Ouloide Yannick

    Single crystals of binary and ternary compounds are touted to replace silicon for specialized applications in the semiconductor industry. However, the relative high density of structural defects in those crystals has hampered the performance of devices built on them. In order to enhance the performance of those devices, structurally perfect single crystals must be grown. The aim of this thesis is to investigate the interplay between crystal growth process and crystal quality as well as structural defect types and transport property. To this end, the thesis is divided into two parts. The first part provides a general review of the theory of crystal growth (chapter I), an introduction to the materials being investigated (chapter II and III) and the characterization techniques being used (chapter IV). • In chapter I, a brief description of the theory of crystal growth is provided with an eye towards the driving force behind crystal nucleation and growth along with the kinetic factors affecting crystal growth. The case of crystal growth of silicon carbide (SiC) by physical vapor transport (PVT) and chemical vapor deposition (CVD) is discussed. The Bridgman, travelling heater method (THM) and physical transport growth of cadmium zinc telluride (CZT) is also treated. In chapters II and III, we introduce the compound materials being investigated in this study. While a description of their crystal structure and properties is provided, the issues associated with their growth are discussed. In chapter IV, a description of the characterization techniques used in these studies is presented. These techniques are synchrotron X-ray topography (SXRT), transmission electron microscopy, transmission infrared microscopy (TIM), micro-Raman spectroscopy (muRS) and light microscopy. Extensive treatment of SXRT technique is also provided. In the second part, the experimental results obtained in the course of these studies are presented and discussed. These results are divided into

  2. Local density of optical states of an asymmetric waveguide grating at photonic band gap resonant wavelength

    Science.gov (United States)

    Alatas, Husin; Sumaryada, Tony I.; Ahmad, Faozan

    2015-01-01

    We have investigated the characteristics of local density of optical states (LDOS) at photonic band gap resonant wavelength of an asymmetric waveguide grating based on Green's function formulation. It is found that the LDOS of the considered structure exhibits different characteristics in its localization between the upper and lower resonant wavelengths of the corresponding photonic band gap edges.

  3. Synthesis of narrow band gap (V 2O 5) x-(TiO 2) 1- x nano-structured layers via micro arc oxidation

    Science.gov (United States)

    Bayati, M. R.; Moshfegh, A. Z.; Golestani-Fard, F.

    2010-02-01

    V 2O 5-TiO 2 layers with a sheet-like morphology were synthesized by micro arc oxidation process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Phase structure and chemical composition of the layers were also studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. It was revealed that the composite layers had a sheet-like structure average thickness of which was about 100 nm depending on the applied voltage. The layers consisted of anatase, rutile, and vanadium pentoxide phases fractions of which varied with the applied voltage. The optical properties of the layers were also examined employing a UV-vis spectrophotometer. It was found that the absorption edge of the grown composite layers shifted toward the visible wavelengths when compared to MAO-synthesized pure titania layers. The band gap energy of the composite layers was calculated as 2.58 eV. Furthermore, photo-catalytic performance of the layers was examined by measuring the decomposition rate of methylene blue under ultraviolet and visible irradiations. The results demonstrated that about 90% and 68% of methylene blue solution was decomposed after 120 min ultraviolet and visible irradiations over the composite layers, respectively.

  4. Band gap engineering in silicene: A theoretical study of density functional tight-binding theory

    Science.gov (United States)

    Zaminpayma, Esmaeil; Nayebi, Payman

    2016-10-01

    In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.

  5. Photonic band gap enhancement in frequency-dependent dielectrics.

    Science.gov (United States)

    Toader, Ovidiu; John, Sajeev

    2004-10-01

    We illustrate a general technique for evaluating photonic band structures in periodic d -dimensional microstructures in which the dielectric constant epsilon (omega) exhibits rapid variations with frequency omega . This technique involves the evaluation of generalized electromagnetic dispersion surfaces omega ( k--> ,epsilon) in a (d+1) -dimensional space consisting of the physical d -dimensional space of wave vectors k--> and an additional dimension defined by the continuous, independent, variable epsilon . The physical band structure for the photonic crystal is obtained by evaluating the intersection of the generalized dispersion surfaces with the "cutting surface" defined by the function epsilon (omega) . We apply this method to evaluate the band structure of both two- and three-dimensional (3D) periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into semiconductor-based photonic crystals. We apply our method to two models in which epsilon (omega) describes a resonant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscillators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the full 3D photonic band gap (PBG) can be considerably enhanced. In the second model, we consider a coupled resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielectric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are

  6. Solid state dielectric screening versus band gap trends and implications

    Science.gov (United States)

    Ravichandran, Ram; Wang, Alan X.; Wager, John F.

    2016-10-01

    High-frequency (optical) and low-frequency (static) dielectric constant versus band gap trends, as well as index of refraction versus band gap trends are plotted for 107 inorganic semiconductors and insulators. These plots are describable via power-law fitting. Dielectric screening trends that emerge from this analysis have important optical and electronic implications. For example, barrier lowering during Schottky emission, phonon-assisted or Fowler-Nordheim tunneling, or Frenkel-Poole emission from a trap is found to be significantly more pronounced with increasing band gap due to a reduction in the optical dielectric constant with increasing band gap. The decrease in the interface state density with increasing band gap is another optical dielectric constant trend. The tendency for a material with a wider band gap to be more difficult to dope is attributed to an increase in the ionization energy of the donor or acceptor dopant, which in turn, depends on the optical dielectric constant and the effective mass. Since the effective mass for holes is almost always larger than that for electrons, p-type doping is more challenging than n-type doping in a wide band gap material. Finally, the polar optical phonon-limited mobility depends critically upon the reciprocal difference of the optical and the static dielectric constant. Consequently, electron and hole mobility tend to decrease with increasing band gap in a polar material.

  7. Sub-band-gap laser micromachining of lithium niobate

    DEFF Research Database (Denmark)

    Christensen, F. K.; Müllenborn, Matthias

    1995-01-01

    method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 106µm3/s. This enables fast micromachining of small piezoelectric...

  8. Designer disordered materials with large complete photonic band gaps

    CERN Document Server

    Florescu, Marian; Steinhardt, Paul J; 10.1073/pnas.0907744106

    2010-01-01

    We present designs of 2D isotropic, disordered photonic materials of arbitrary size with complete band gaps blocking all directions and polarizations. The designs with the largest gaps are obtained by a constrained optimization method that starts from a hyperuniform disordered point pattern, an array of points whose number variance within a spherical sampling window grows more slowly than the volume. We argue that hyperuniformity, combined with uniform local topology and short-range geometric order, can explain how complete photonic band gaps are possible without long-range translational order. We note the ramifications for electronic and phononic band gaps in disordered materials.

  9. Strain modulated band gap of edge passivated armchair graphene nanoribbons

    CERN Document Server

    Peng, Xihong

    2011-01-01

    First principles calculations were performed to study strain effects on band gap of armchair graphene nanoribbons (AGNRs)with different edge passivation, including H, O, and OH group. The band gap of the H-passivated AGNRs shows a nearly periodic zigzag variation under strain. For O and OH passivation, the zigzag patterns are significantly shifted by a modified quantum confinement due to the edges. In addition, the band gap of the O-passivated AGNRs experiences a direct-to-indirect transition with sufficient tensile strain (~5%). The indirect gap reduces to zero with further increased strain.

  10. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  11. Molecular doping and band-gap opening of bilayer graphene.

    OpenAIRE

    Samuels, AJ; Carey, JD

    2013-01-01

    The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asymmetric charge distribution between the top and bottom layers and in the formation of an energy gap. ...

  12. Electronic structures of bare and terephthalic acid adsorbed TiO2(110)-(1 × 2) reconstructed surfaces: origin and reactivity of the band gap states.

    Science.gov (United States)

    Zhang, Wenhua; Liu, Liming; Wan, Li; Liu, Lingyun; Cao, Liang; Xu, Faqiang; Zhao, Jin; Wu, Ziyu

    2015-08-21

    Combined core level spectroscopy, valence spectroscopy and density functional theory studies have probed the terephthalic acid (TPA) adsorption behavior and the electronic structure of the rutile TiO2(110)-(1 × 2) reconstructed surface at room temperature. The TiO2(110)-(1 × 2) reconstructed surface exhibits an electron rich nature owing to the unsaturated coordination of the surface terminated Ti2O3 rows. Deprotonation of TPA molecules upon adsorption produces both surface bridging hydroxyl (ObH) and bidentate terephthalate species with a saturation coverage of nearly 0.5 monolayers (ML). In contrast to the TiO2(110)-(1 × 1) surface, the band gap states (BGSs) on the bare (1 × 2) surface exhibit an asymmetric spectral feature, which is originated from integrated contributions of the Ti2O3 termination and the defects in the near-surface region. The Ti2O3 originated BGSs are found to be highly sensitive to the TPA adsorption, a phenomenon well reproduced by the density functional theory (DFT) calculations. Theoretical simulations of the adsorption process also suggest that the redistribution of the electronic density on the (1 × 2) reconstructed surface accompanying the hydroxyl formation promotes the disappearance of the Ti2O3-row derived BGS.

  13. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 )4 -NH3 ]CuCl4

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qian; Li, Shourui; Wang, Kai; Quan, Zewei; Meng, Yue; Zou, Bo

    2017-01-10

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH3-(CH2)4-NH3]CuCl4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl42–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the spring cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.

  14. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    Science.gov (United States)

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  15. Effect of Ar+ ion post-irradiation on crystal structure, magnetic behavior and optical band gap of Co-implanted ZnO wafers

    Science.gov (United States)

    Xu, N. N.; Li, G. P.; Lin, Q. L.; Liu, H.; Bao, L. M.

    2016-12-01

    Single crystals wurtzite ZnO with (001) orientation were implanted with Co+ ions at room temperature (RT). To tune their magnetic behavior as well as the band gap of the implanted wafers, Ar+ ion post-irradiation (PI) was performed using the calculated energy and ion dose. The formed Co clusters present in the high dose Co-implanted ZnO wafer were observed to be absent after the PI, which is quite different from the low dose doped one. It is found that all the implanted samples showed a giant magnetic moment and a narrowing optical band gap, and that the post-irradiated ones exhibited an even further redshifted absorption edge and ferromagnetic behavior but with saturation magnetization (MS) drastically decreased.

  16. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs.

    Science.gov (United States)

    Pennec, Y; Djafari Rouhani, B; El Boudouti, E H; Li, C; El Hassouani, Y; Vasseur, J O; Papanikolaou, N; Benchabane, S; Laude, V; Martinez, A

    2010-06-21

    We discuss the simultaneous existence of phononic and photonic band gaps in a periodic array of holes drilled in a Si membrane. We investigate in detail both the centered square lattice and the boron nitride (BN) lattice with two atoms per unit cell which include the simple square, triangular and honeycomb lattices as particular cases. We show that complete phononic and photonic band gaps can be obtained from the honeycomb lattice as well as BN lattices close to honeycomb. Otherwise, all investigated structures present the possibility of a complete phononic gap together with a photonic band gap of a given symmetry, odd or even, depending on the geometrical parameters.

  17. Localization and characterization of the metallic band gaps in a ternary metallo-dielectric photonic crystal

    Science.gov (United States)

    Alejo-Molina, Adalberto; Romero-Antequera, David L.; Sánchez-Mondragón, José J.

    2014-02-01

    In this work, we demonstrate the existence of structural metallic band gaps in a ternary material, dielectric-dielectric-metal, and we show analytical equations for their computation. We show the existence of metallic band gaps not only in the lowest band but also for high frequencies. These gaps are structural ones but different and additional to the dielectric ones in the dielectric photonic crystal substrate. Therefore, as the desire properties of both, the dielectric and metallic photonic crystals, are present the applications for this particular structure are straightforward.

  18. Crystal and electronic structures and high-pressure behavior of AgSO4, a unique narrow band gap antiferromagnetic semiconductor: LDA(+U) picture.

    Science.gov (United States)

    Derzsi, Mariana; Stasiewicz, Juliusz; Grochala, Wojciech

    2011-09-01

    We demonstrate that DFT calculations performed with the local density approximation (LDA) allow for significantly better reproduction of lattice constants, the unit cell volume and the density of Ag(II)SO(4) than those done with generalized gradient approximation (GGA). The LDA+U scheme, which accounts for electronic correlation effects, enables the accurate prediction of the magnetic superexchange constant of this strongly correlated material and its band gap at the Fermi level. The character of the band gap places the compound on the borderline between a Mott insulator and a charge transfer insulator. The size of the band gap (0.82 eV) indicates that AgSO(4) is a ferrimagnetic semiconductor, and possibly an attractive material for spintronics. A bulk modulus of 27.0 GPa and a compressibility of 0.037 GPa(-1) were determined for AgSO(4) from the third-order Birch-Murnaghan isothermal equation of state up to 20 GPa. Several polymorphic types compete with the ambient pressure P-1 phase as the external pressure is increased. The P-1 phase is predicted to resist pressure-induced metallization up to at least 20 GPa.

  19. Grain size dependent optical band gap of CdI2 films

    Indian Academy of Sciences (India)

    Pankaj Tyagi; A G Vedeshwar

    2001-06-01

    The thermally evaporated stoichiometric CdI2 films show good -axis alignment normal to substrate plane for film thickness up to 200 nm. The optical absorption data indicate an allowed direct interband transition across a gap of 3.6 eV in confirmation with earlier band structure calculations. However, part of the absorption data near band edge can be fitted to an indirect band gap of 3 eV. The dependence of band gap on film thickness (> 200 nm) can be explained qualitatively in terms of decreasing grain boundary barrier height with grain size.

  20. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.; Beyer, A.; Kunert, B.; Springer, P.; Baranovskii, S. D.; Koch, S. W.; Volz, K.; Stolz, W. [Materials Science Center and Faculty of Physics, Philipps-University Marburg, Marburg (Germany)

    2015-08-14

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  1. Band gap scaling laws in group IV nanotubes

    Science.gov (United States)

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-01

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by ‑1/r 2 + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  2. Group IV direct band gap photonics: Methods, Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Richard eGeiger

    2015-07-01

    Full Text Available The concept of direct band gap group IV materials offers a paradigm change for Si-photonics concerning the monolithic implementation of light emitters: The idea is to integrate fully compatible group IV materials with equally favorable optical properties as the chemically incompatible group III-V-based systems. The concept involves either mechanically applied strain on Ge or alloying of Ge with Sn and permits to drastically improve the insufficient radiative efficiency of Ge. The favorable optical properties result from a modified band structure transformed from an indirect to a direct one. The first demonstration of such a direct band gap laser, accomplished in GeSn, exemplifies the capability of this new concept. These systems may permit a qualitative as well as a quantitative expansion of Si-photonics into traditional but also new areas of applications, provided they can be operated energy efficiently, under ambient conditions and integrated with current Si technologies. This review aims to discuss the challenges along this path in terms of fabrication, characterization and fundamental understanding, and will elaborate on evoking opportunities of this new class of group IV-based laser materials.

  3. Group IV direct band gap photonics: Methods, Challenges and Opportunities

    Science.gov (United States)

    Geiger, Richard; Zabel, Thomas; Sigg, Hans

    2015-07-01

    The concept of direct band gap group IV materials offers a paradigm change for Si-photonics concerning the monolithic implementation of light emitters: The idea is to integrate fully compatible group IV materials with equally favorable optical properties as the chemically incompatible group III-V-based systems. The concept involves either mechanically applied strain on Ge or alloying of Ge with Sn and permits to drastically improve the insufficient radiative efficiency of Ge. The favorable optical properties result from a modified band structure transformed from an indirect to a direct one. The first demonstration of such a direct band gap laser, accomplished in GeSn, exemplifies the capability of this new concept. These systems may permit a qualitative as well as a quantitative expansion of Si-photonics into traditional but also new areas of applications, provided they can be operated energy efficiently, under ambient conditions and integrated with current Si technologies. This review aims to discuss the challenges along this path in terms of fabrication, characterization and fundamental understanding, and will elaborate on evoking opportunities of this new class of group IV-based laser materials.

  4. Narrow band gap conjugated polymers for emergent optoelectronic technologies

    Science.gov (United States)

    Azoulay, Jason D.; Zhang, Benjamin A.; London, Alexander E.

    2015-09-01

    Conjugated organic molecules effectively produce and harvest visible light and find utility in a variety of emergent optoelectronic technologies. There is currently interest in expanding the scope of these materials to extend functionality into the infrared (IR) spectral regions and endow functionality relevant in emergent technologies. Developing an understanding of the interplay between chemical and electronic structure in these systems will require control of the frontier orbital energetics (separation, position, and alignment), ground state electronic configurations, interchain arrangements, solid-state properties, and many other molecular features with synthetic precision that has yet to be demonstrated. Bridgehead imine substituted 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) structural units, in combination with strong acceptors with progressively delocalized π-systems, afford modular donor-acceptor copolymers with broad and long wavelength absorption that spans technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 μm.1 Here we demonstrate that electronic and structural manipulation play a major role in influencing the energetics of these systems and ultimately controlling the band gap of the materials. These results bear implication in the development of very narrow band gap systems where precise control will be necessary for achieving desired properties such as interactions with longer wavelength light.

  5. Photonic band gap spectra in Octonacci metamaterial quasicrystals

    Science.gov (United States)

    Brandão, E. R.; Vasconcelos, M. S.; Albuquerque, E. L.; Fulco, U. L.

    2017-02-01

    In this work we study theoretically the photonic band gap spectra for a one-dimensional quasicrystal made up of SiO2 (layer A) and a metamaterial (layer B) organized following the Octonacci sequence, where its nth-stage Sn is given by the inflation rule Sn =Sn - 1Sn - 2Sn - 1 for n ≥ 3 , with initial conditions S1 = A and S2 = B . The metamaterial is characterized by a frequency dependent electric permittivity ε(ω) and magnetic permeability μ(ω) . The polariton dispersion relation is obtained analytically by employing a theoretical calculation based on a transfer-matrix approach. A quantitative analysis of the spectra is then discussed, stressing the distribution of the allowed photonic band widths for high generations of the Octonacci structure, which depict a self-similar scaling property behavior, with a power law depending on the common in-plane wavevector kx .

  6. Understanding Band Gaps of Solids in Generalized Kohn-Sham Theory

    CERN Document Server

    Perdew, John P; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei

    2016-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. But the gap in the band-structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density functional theory. Here we give a simple proof of a new theorem: In generalized KS theory (GKS), the band gap equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from meta-generalized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential, It also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules provides a numerical illustration.

  7. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    Science.gov (United States)

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  8. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  9. Estimation of the band gap of InPO4

    Science.gov (United States)

    Wager, J. F.; Wilmsen, C. W.; Kazmerski, L. L.

    1983-04-01

    The band gap of a thin layer of InPO4 was estimated to be 4.5 eV using a novel approach employing ultraviolet photoelectron spectroscopy and electron energy loss spectroscopy. The technique measures the conduction-band minimum and valence-band maximum referenced to the In 4d core line energy. Since this technique is highly surface sensitive, it can be used to measure the band gap of a thin layer. This parameter is difficult to measure in such layers using conventional techniques.

  10. CZTS stoichiometry effects on the band gap energy

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, Claudia, E-mail: claudia.malerba-1@ing.unitn.it [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Biccari, Francesco [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Azanza Ricardo, Cristy Leonor [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); Valentini, Matteo [Sapienza – University of Rome, Department of Physics, p.le A. Moro 5, 00185 Roma (Italy); ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Chierchia, Rosa [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Müller, Melanie [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); Max Planck Institute for Solid State Research, Heisenberg str. 1, 70569 Stuttgart (Germany); Santoni, Antonino [ENEA, Frascati Research Center, via E. Fermi 45, 00044 Frascati (Italy); Esposito, Emilia [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy); Mangiapane, Pietro [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Scardi, Paolo [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); Mittiga, Alberto [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy)

    2014-01-05

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu{sub 2}ZnSnS{sub 4} (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased.

  11. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2006-12-01

    The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.

  12. Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

    OpenAIRE

    Rechtsman, Mikael; Szameit, Alexander; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Segev, Mordechai

    2010-01-01

    We present, theoretically and experimentally, amorphous photonic lattices exhibiting a band-gap yet completely lacking Bragg diffraction: 2D waveguides distributed randomly according to a liquid-like model responsible for the absence of Bragg peaks as opposed to ordered lattices containing disorder, which always exhibit Bragg peaks. In amorphous lattices the bands are comprised of localized states, but we find that defect states residing in the gap are more localized than the Anderson localiz...

  13. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  14. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    Science.gov (United States)

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  15. Band gap bowing in quaternary nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyka, Isabela; Suski, T.; Christensen, Niels Egede;

    2011-01-01

    the composition and atomic arrangements are examined using a supercell geometry. An analytical expression for the band gap is derived for the entire range of compositions. The range of (x, y) values for which InxGayAl1−x−yN is lattice matched to GaN, and the ensuing energy gaps, are given. This range of available...

  16. Residual stress dependant anisotropic band gap of various (hkl) oriented BaI2 films

    Science.gov (United States)

    Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G.

    2013-11-01

    The thermally evaporated layer structured BaI2 grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different six (hkl) orientations show stress free anisotropic band gaps (2.48-3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (-0.071 eV/GPa) found to be significantly higher than that calculated (-0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass me*=0.66m0 and the hole effective mass mh*=0.53m0 have been determined from the calculated band structure.

  17. Band Gap Engineering and Layer-by-Layer Band Gap Mapping of Selenium-doped Molybdenum Disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yongji [Rice University; Liu, Zheng [Rice University; Lupini, Andrew R [ORNL; Lin, Junhao [ORNL; Pantelides, Sokrates T [ORNL; Pennycook, Stephen J [ORNL; Zhou, Wu [ORNL; Ajayan, Pullikel M [Rice University

    2014-01-01

    Ternary two-dimensional dichalcogenide alloys exhibit compositionally modulated electronic structure and hence, control of dopant concentration within each layer of these layered compounds provides a powerful way to modify their properties. The challenge then becomes quantifying and locating the dopant atoms within each layer in order to better understand and fine-tune the desired properties. Here we report the synthesis of selenium substitutionally doped molybdenum disulfide atomic layers, with a broad range of selenium concentrations, resulting in band gap modulations of over 0.2 eV. Atomic scale chemical analysis using Z-contrast imaging provides direct maps of the dopant atom distribution in individual MoS2 layers and hence a measure of the local band gaps. Furthermore, in a bilayer structure, the dopant distribution of each layer is imaged independently. We demonstrate that each layer in the bilayer contains similar doping levels, randomly distributed, providing new insights into the growth mechanism and alloying behavior in two-dimensional dichalcogenide atomic layers. The results show that growth of uniform, ternary, two-dimensional dichalcogenide alloy films with tunable electronic properties is feasible.

  18. Energy bands and gaps near an impurity

    Science.gov (United States)

    Mihóková, E.; Schulman, L. S.

    2016-10-01

    It has been suggested that in the neighborhood of a certain kind of defect in a crystal there is a bend in the electronic band. We confirm that this is indeed possible using the Kronig-Penney model. Our calculations also have implications for photonic crystals.

  19. Quasiparticle Band Structure of BaS

    Institute of Scientific and Technical Information of China (English)

    LU Tie-Yu; CHEN De-Yan; HUANG Mei-Chun

    2006-01-01

    @@ We calculate the band structure of BaS using the local density approximation and the GW approximation (GWA),i.e. in combination of the Green function G and the screened Coulomb interaction W. The Ba 4d states are treated as valence states. We find that BaS is a direct band-gap semiconductor. The result shows that the GWA band gap (Eg-Gw = 3.921 eV) agrees excellently with the experimental result (Eg-EXPT = 3.88 eV or 3.9eV).

  20. Molecular doping and band-gap opening of bilayer graphene.

    Science.gov (United States)

    Samuels, Alexander J; Carey, J David

    2013-03-26

    The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asymmetric charge distribution between the top and bottom layers and in the formation of an energy gap. The resultant band gap scales linearly with induced carrier density though a slight asymmetry is found between n-type dopants, where the band gap varies as 47 meV/10(13) cm(-2), and p-type dopants where it varies as 40 meV/10(13) cm(-2). Decamethylcobaltocene (DMC, n-type) and 3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane (F2-HCNQ, p-type) are found to be the best molecules at inducing the largest electronic band gaps up to 0.15 eV. Optical adsorption transitions in the 2.8-4 μm region of the spectrum can result between states that are not Pauli blocked. Comparison is made between the band gaps calculated from adsorbate-induced electric fields and from average displacement fields found in dual gate bilayer graphene devices. A key advantage of using molecular adsorption with π electron containing molecules is that the high binding energy can induce a permanent band gap and open up possible uses of bilayer graphene in mid-infrared photonic or electronic device applications.

  1. Band gap opening in graphene: a short theoretical study

    Science.gov (United States)

    Sahu, Sivabrata; Rout, G. C.

    2017-03-01

    Graphene, being a gapless semiconductor, cannot be used in pristine form for nano-electronic applications. Therefore, it is essential to generate a finite gap in the energy dispersion at Dirac point. We present here the tight-binding model Hamiltonian taking into account of various interactions for tuning band gap in graphene. The model Hamiltonian describes the hopping of the π-electrons up to third nearest-neighbours, substrate effects, Coulomb interaction at two sub-lattices, electron-phonon interaction in graphene-on-substrates and high phonon frequency vibrations, besides the bi-layer graphene. We have solved the Hamiltonian using Zubarev's double time single particle Green's function technique. The quasi-particle energies, electron band dispersions, the expression for effective band gap and the density of states (DOS) are calculated numerically. The results are discussed by varying different model parameters of the system. It is observed that the electron DOS and band dispersion exhibit linear energy dependence near Dirac point for nearest-neighbour hopping integral. However, the second and third nearest-neighbour hoppings provide asymmetry in DOS. The band dispersions exhibit wider band gaps with stronger substrate effect. The modified gap in graphene-on-substrate attains its maximum value for Coulomb interaction energy U_{C} = 1.7 t1 . The critical Coulomb interaction is enhanced to U_{C} = 2.5 t1 to produce maximum band gap in the presence of electron-phonon interaction and phonon vibration. The bi-layer graphene exhibits Mexican hat type band gap near Dirac point for transverse gating potential. The other conclusions for the present work are described in the text.

  2. Optimization of band gaps of 2D photonic crystals by the rapid generic algorithm

    Institute of Scientific and Technical Information of China (English)

    SUN Yun-tao

    2011-01-01

    @@ Based on the rapid genetic algorithm (RGA), the band gap structures of square lattices with square scatters are optimized.In the optimizing process, gene codes are used to express square scatters and the fitting function adopts the relative values of the largest absolute photonic band gaps (PBGs).By changing the value of filling factor, three cell forms with large photonic band gaps are obtained.In addition, the comparison between the rapid genetic algorithm and the general genetic algorithm (GGA) is analyzed.

  3. Nonideal anion displacement, band gap variation, and valence band splitting in Cu-In-Se compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reena Philip, Rachel [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi-682022 Kerala (India)]. E-mail: reenatara@cusat.ac.in; Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi-682022 Kerala (India)

    2005-01-24

    Polycrystalline thin films of ternary chalcopyrite CuInSe{sub 2} and defect compounds CuIn{sub 3}Se{sub 5} and CuIn{sub 5}Se{sub 8} are prepared in vacuum by three-source coevaporation method. Structural and optical characterizations of the films are done using X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), and optical absorbance spectra measurements. With variation in the composition of CuInSe{sub 2}, a change over from p-type to n-type conductivity is observed (as noted by the hot probe method). The deformation parameters and the anion displacements are calculated from the X-ray diffraction data, and the cation-anion bond lengths are deduced. The dependence of band gap variation on nonideal anion displacement in the ternary compounds and the effect of Se-p-Cu-d repulsion on band gap are studied. The threefold optical structure observed in the fundamental absorption region of the absorption spectra is analysed to extract the valence band splitting parameters. Hopfields quasi-cubic model adapted for chalcopyrites with tetragonal deformation is used to determine the crystal field splittings and spin orbit splittings, and the linear hybridization model is used to calculate the percentage of d-orbital and p-orbital contribution to hybridization in the compounds under consideration.

  4. Multiband Terahertz Photonic Band Gaps of Subwavelength Planar Fractals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-Zhong; TIAN Yan; SUN Hong-Qi; ZHANG Cun-Lin; YANG Guo-Zhen

    2006-01-01

    Optical transmission properties of subwavelength planar fractals in terahertz (THz) frequency regime are studied by means of time-domain spectroscopy. The transmission spectra with multiple pass bands and stop bands are observed. The tunable photonic band gaps are realized by changing the angle between the principle axis of planar fractal and the polarization of THz wave. The possible application of the subwavelength optical component is discussed. We attribute the detected transmittance from subwavelength fractals to localized resonances.

  5. Band gaps and cavity modes in dual phononic and photonic strip waveguides

    Directory of Open Access Journals (Sweden)

    Y. Pennec

    2011-12-01

    Full Text Available We discuss theoretically the simultaneous existence of phoxonic, i.e., dual phononic and photonic, band gaps in a periodic silicon strip waveguide. The unit-cell of this one-dimensional waveguide contains a hole in the middle and two symmetric stubs on the sides. Indeed, stubs and holes are respectively favorable for creating a phononic and a photonic band gap. Appropriate geometrical parameters allow us to obtain a complete phononic gap together with a photonic gap of a given polarization and symmetry. The insertion of a cavity inside the perfect structure provides simultaneous confinement of acoustic and optical waves suitable to enhance the phonon-photon interaction.

  6. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  7. Superconducting gap structure of FeSe.

    Science.gov (United States)

    Jiao, Lin; Huang, Chien-Lung; Rößler, Sahana; Koz, Cevriye; Rößler, Ulrich K; Schwarz, Ulrich; Wirth, Steffen

    2017-03-07

    The microscopic mechanism governing the zero-resistance flow of current in some iron-based, high-temperature superconducting materials is not well understood up to now. A central issue concerning the investigation of these materials is their superconducting gap symmetry and structure. Here we present a combined study of low-temperature specific heat and scanning tunnelling microscopy measurements on single crystalline FeSe. The results reveal the existence of at least two superconducting gaps which can be represented by a phenomenological two-band model. The analysis of the specific heat suggests significant anisotropy in the gap magnitude with deep gap minima. The tunneling spectra display an overall "U"-shaped gap close to the Fermi level away as well as on top of twin boundaries. These results are compatible with the anisotropic nodeless models describing superconductivity in FeSe.

  8. Band gap engineering of N-alloyed Ga2O3 thin films

    Directory of Open Access Journals (Sweden)

    Dongyu Song

    2016-06-01

    Full Text Available The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH3 and Ar gas for 60 minutes. Then they were annealed in NH3 ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinic and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.

  9. Study on the vibration band gap and vibration attenuation property of phononic crystals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phononic crystals (PCs) are functional materials with periodic structures and elas- tic wave (vibration) band gaps, where propagation of vibrations with frequencies within band gaps is forbidden. PCs with finite periods can restrain the propagation of vibrations with frequencies in band gaps and thus has vibration attenuation property. Worldwide, many institutions and researchers are engaged in the re- search of PCs, however, studies on the vibration attenuation property of PCs are still limited. In this paper, we report our study of band gaps and vibration attenua- tion properties of 1) a simplified PC—periodic mass-spring structures, 2) longitu- dinal vibration of one-dimensional (1D-), 2D-, 3D-PCs, and 3) the flexural vibration of 1D- and 2D-PCs. These studies provide a foundation for the applications of PCs in vibration attenuation.

  10. Study on the vibration band gap and vibration attenuation property of phononic crystals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phononic crystals (PCs) are functional materials with periodic structures and elastic wave (vibration) band gaps, where propagation of vibrations with frequencies within band gaps is forbidden. PCs with finite periods can restrain the propagation of vibrations with frequencies in band gaps and thus has vibration attenuation property. Worldwide, many institutions and researchers are engaged in the research of PCs, however, studies on the vibration attenuation property of PCs are still limited. In this paper, we report our study of band gaps and vibration attenuation properties of 1) a simplified PC-periodic mass-spring structures, 2) longitudinal vibration of one-dimensional (1D-), 2D-, 3D-PCs, and 3) the flexural vibration of 1D- and 2D-PCs. These studies provide a foundation for the applications of PCs in vibration attenuation.

  11. Isotropic properties of the photonic band gap in quasicrystals with low-index contrast

    CERN Document Server

    Rose, Priya; Abbate, G; Andreone, A

    2011-01-01

    We report on the formation and development of the photonic band gap in two-dimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low index contrast. Finite size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties compared with a conventional hexagonal crystal. Band gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0 \\degree to 30\\degree were used in order to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities.

  12. Loss properties of all-solid photonic band gap fibers with an array of rings

    Institute of Scientific and Technical Information of China (English)

    GENG You-fu; LI Xue-jin; TAN Xiao-ling; YAO Jian-quan

    2010-01-01

    @@ The confinement loss and bend loss properties of all-solid photonic band gap fibers with an array of rings doped with highindex material are investigated.The calculated results show that for a specific structure,the confinement loss and the critical bend radius are reduced simultaneously in some band gaps by increasing the inner diameter of ring,which provides a useful guide and a theoretical basis for designing large mode area fibers with low loss.

  13. Quantum electrodynamics near a photonic band-gap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  14. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

    Science.gov (United States)

    Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.

    2016-10-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

  15. Modeling of Photonic Band Gap Crystals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Kady, Ihab Fathy [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal

  16. The Miscibility of PCBM in Low Band-Gap Conjugated Polymers in Organic Photovoltaics

    Science.gov (United States)

    Chen, Huipeng; You, Wei; Peet, Jeff; Azoulay, Jason; Bazan, Guillermo; Dadmun, Mark

    2012-02-01

    Understanding the morphology of the photoactive layer in organic photovoltaics (OPVs) is essential to optimizing conjugated polymer-based solar cells to meet the targeted efficiency of 10%. The miscibility and interdiffusion of components are among the key elements that impact the development of morphology and structure in OPV active layers. This study uses neutron reflectivity to correlate the structure of low band gap polymers to their miscibility with PCBM. Several low band gap polymers that exhibit power conversion efficiencies exceeding 7%, including PBnDT-DTffBT were examined. The intermixing of low band-gap polymer and PCBM bilayers was monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of PCBM within the low band gap polymer layer. These results indicate that the miscibility of PCBM ranges from 3% to 26% with the low band-gap polymers studied. The correlation between low band gap polymer structure and miscibility of PCBM will also be discussed.

  17. Kohn-Sham potential with discontinuity for band gap materials

    Science.gov (United States)

    Kuisma, M.; Ojanen, J.; Enkovaara, J.; Rantala, T. T.

    2010-09-01

    We model a Kohn-Sham potential with the discontinuity at integer particle numbers starting from the approximation by (GLLB) Gritsenko [Phys. Rev. A 51, 1944 (1995)10.1103/PhysRevA.51.1944]. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those obtained by accurate many-body perturbation-theory-based optimized potential methods. In addition, the resulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-correlation hole is modeled using a generalized gradient approximation (GGA) energy density and the response of the hole-to-density variations is evaluated by using the common-denominator approximation and homogeneous electron-gas-based assumptions. In our modification, we have chosen the PBEsol potential as the GGA to model the exchange hole and add a consistent correlation potential. The method is implemented in the GPAW code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which is as fast as GGA to calculate.

  18. Anomalous composition dependence of the band gap pressure coefficients in In-containing nitride semiconductors

    DEFF Research Database (Denmark)

    Gorczyca, I.; Kamińska, A.; Staszczak, G.;

    2010-01-01

    The pressure-induced changes in the electronic band structures of In-containing nitride alloys, InxGa1-xN and InxAl1-xN are examined experimentally as well as by ab initio calculations. It is found that the band gap pressure coefficients, dEg/dp, exhibit very large bowing with x, and calculations...

  19. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  20. Band gap of two-dimensional fiber-air photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha

    2016-04-15

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  1. Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method

    Science.gov (United States)

    Wu, Zhi-Jing; Li, Feng-Ming; Zhang, Chuanzeng

    2015-04-01

    The spectral element method (SEM) is extended to investigate the vibration band-gap properties of three-dimensional (3D) Kagome lattices. The dynamic stiffness matrix of the 3D element which contains bending, tensional and torsional components is derived. The spectral equations of motion of the whole 3D Kagome lattice are then established. Comparing with frequency-domain solutions calculated by the finite element method (FEM), the accuracy and the feasibility of the SEM solutions are verified. It can be shown that the SEM is suitable for analyzing the vibration band-gap properties. Due to the band-gap characteristics, the periodic 3D Kagome lattice has the performance of vibration isolation. The influences of the structural and material parameters on the vibration band-gaps are discussed and a new type of 3D Kagome lattice is designed to obtain the improved vibration isolation capability.

  2. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Shao Li-Hui; Liu Yao-Zong; Wen Ji-Hong

    2006-01-01

    Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.

  3. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    Science.gov (United States)

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  4. Uniaxially stressed germanium with fundamental direct band gap

    OpenAIRE

    Geiger, R.; Zabel, T.; Marin, E; Gassenq, A.; Hartmann, J.-M.; Widiez, J.; Escalante, J.; Guilloy, K.; Pauc, N.; Rouchon, D.; Diaz, G. Osvaldo; Tardif, S; Rieutord, F.; Duchemin, I.; Niquet, Y. -M.

    2015-01-01

    We demonstrate the crossover from indirect- to direct band gap in tensile-strained germanium by temperature-dependent photoluminescence. The samples are strained microbridges that enhance a biaxial strain of 0.16% up to 3.6% uniaxial tensile strain. Cooling the bridges to 20 K increases the uniaxial strain up to a maximum of 5.4%. Temperature-dependent photoluminescence reveals the crossover to a fundamental direct band gap to occur between 4.0% and 4.5%. Our data are in good agreement with n...

  5. Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

    CERN Document Server

    Rechtsman, Mikael; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Segev, Mordechai

    2010-01-01

    We present, theoretically and experimentally, amorphous photonic lattices exhibiting a band-gap yet completely lacking Bragg diffraction: 2D waveguides distributed randomly according to a liquid-like model responsible for the absence of Bragg peaks as opposed to ordered lattices containing disorder, which always exhibit Bragg peaks. In amorphous lattices the bands are comprised of localized states, but we find that defect states residing in the gap are more localized than the Anderson localization length. Finally, we show how the concept of effective mass carries over to amorphous lattices.

  6. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...... efficiencies from 0.4 to 2 %. Then large area roll-to-roll coated modules were processed and these showed efficiencies up to 0.6 %. It is clear that further study is necessary before this type of polymer is competitive with P3HT in large area modules....

  7. II-VI wide band gap semiconductors under hydrostatic pressure

    Science.gov (United States)

    Baquero, R.; Decoss, R.; Olguin, D.

    1993-08-01

    We set an analytical expression for the gap as a function of hydrostatic deformation, E(sub g)(epsilon), by diagonalizing in Gamma the corresponding empirical tight-binding Hamiltonian (ETBH). In the ETBH we use the well known d(exp -2) Harrison scaling law (HSL) to adjust the TB parameter (TBP) to the changes in interatomic distances. We do not consider cation-anion charge transfer. We calculate E(sub g)(epsilon) for wide band gap II-VI semiconductors with zincblende crystal structure for deformations under pressure up to -5 percent. Results are in good agreement with experiment for the compounds of lower ionicity but deviate as the ionicity of the compound increases. This is due to the neglect of charge transfer which should be included self-consistently. Within the approximation we always find a positive second derivative of E(sub g)(epsilon) with respect to epsilon, independent of the material. Furthermore, the inclusion of deviations from HSL appear to be unimportant to this problem.

  8. Variable band-gap semiconductors as the basis of new solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [Centro de Investigacion y de Estudios Avanzados del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, DF (Mexico)

    2009-09-15

    Some basic concepts related to variable band-gap absorbing semiconductors in solar cell structures, such as the associated quasi-electric field, will be discussed. The effects of this quasi-electric field upon the minority carrier drift-diffusion length and the back surface recombination velocity may induce a larger generated carrier collection at the junction with the corresponding increase of the illumination current density. It will also be shown that an additional improvement of the open-circuit voltage is possible when the band-gap is reduced within the space charge region so that the dark saturation current density is reduced there. Our estimation is that in the case of a solar cell where the band-gap is changed about 0.5 eV within the space charge region, an increase of the open-circuit voltage around 115 mV will be observed with respect to the single minimum band-gap absorbing material case. A similar band-gap variation in the bulk of the material will cause an increase of the minority carrier drift-diffusion length by a factor of 10 with respect to the single band-gap material. Therefore, based on these physical concepts, two possible structures with variable band-gap layers are proposed in order to have higher efficiencies than for cells without any band-gap grading. It will be shown that these concepts can be applied to II-VI, III-V chalcopyrite and even amorphous semiconductor solar cells. (author)

  9. Robust room temperature ferromagnetism and band gap tuning in nonmagnetic Mg doped ZnO films

    Science.gov (United States)

    Quan, Zhiyong; Liu, Xia; Qi, Yan; Song, Zhilin; Qi, Shifei; Zhou, Guowei; Xu, Xiaohong

    2017-03-01

    Mg doped ZnO films with hexagonal wurtzite structure were deposited on c-cut sapphire Al2O3 substrates by pulsed laser deposition. Both room temperature ferromagnetism and band gap of the films simultaneously tuned by the concentration of oxygen vacancies were performed. Our results further reveal that the singly occupied oxygen vacancies should be responsible for the room temperature ferromagnetism and band gap narrowing. Singly occupied oxygen vacancies having the localized magnetic moments form bound magnetic polarons, which results in a long-range ferromagnetic ordering due to Mg doping. Moreover, band gap narrowing of the films is probably due to the formation of impurity band in the vicinity of valence band, originating from singly occupied oxygen vacancies. These results may build a bridge to understand the relationship between the magnetic and optical properties in oxide semiconductor, and are promising to integrate multiple functions in one system.

  10. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang-Yu; Chen, Lien-Wen, E-mail: chenlw@mail.ncku.edu.t [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-02-02

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the {Gamma}-X and {Gamma}-X' directions are also presented. The calculated results are compared with the experimental results.

  11. k.p theory of freestanding narrow band gap semiconductor nanowires

    Science.gov (United States)

    Luo, Ning; Liao, Gaohua; Xu, H. Q.

    2016-12-01

    We report on a theoretical study of the electronic structures of freestanding nanowires made from narrow band gap semiconductors GaSb, InSb and InAs. The nanowires are described by the eight-band k.p Hamiltonians and the band structures are computed by means of the finite element method in a mixture basis consisting of linear triangular elements inside the nanowires and constrained Hermite triangular elements near the boundaries. The nanowires with two crystallographic orientations, namely the [001] and [111] orientations, and with different cross-sectional shapes are considered. For each orientation, the nanowires of the three narrow band gap semiconductors are found to show qualitatively similar characteristics in the band structures. However, the nanowires oriented along the two different crystallographic directions are found to show different characteristics in the valence bands. In particular, it is found that all the conduction bands show simple, good parabolic dispersions in both the [001]- and [111]-oriented nanowires, while the top valence bands show double-maximum structures in the [001]-oriented nanowires, but single-maximum structures in the [111]-oriented nanowires. The wave functions and spinor distributions of the band states in these nanowires are also calculated. It is found that significant mixtures of electron and hole states appear in the bands of these narrow band gap semiconductor nanowires. The wave functions exhibit very different distribution patterns in the nanowires oriented along the [001] direction and the nanowires oriented along the [111] direction. It is also shown that single-band effective mass theory could not reproduce all the band state wave functions presented in this work.

  12. Low frequency band gaps below 10 Hz in radial flexible elastic metamaterial plate

    Science.gov (United States)

    Gao, Nansha; Hou, Hong; Wu, Jiu Hui; Cheng, Baozhu

    2016-11-01

    This paper presents the low frequency acoustic properties of a new proposed elastic metamaterial, which is arranged in the axial coordinate. The band structures, transmission spectra, and eigenmode displacement fields of this metamaterial are different from previous elastic metamaterial structures. Numerical calculation results show that the first order band gap of the radial flexible elastic metamaterial plate is below 10 Hz. A multiple-vibration coupling mechanism is proposed to explain the low frequency band gaps. By changing the geometrical dimensions h 1, h 2, b 1, and b 1 of the centre part, the location and width of the low frequency band gaps can be varied easily. The effects of density and Young’s modulus are also discussed in detail. In summary, the radial flexible elastic metamaterial plate can restrain low frequency vibration, owing to which it can potentially be used to protect infrasound, generate filters, and design acoustic devices.

  13. Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity

    Science.gov (United States)

    Safavi-Naeini, Amir H.; Hill, Jeff T.; Meenehan, Seán; Chan, Jasper; Gröblacher, Simon; Painter, Oskar

    2014-04-01

    We present the fabrication and characterization of an artificial crystal structure formed from a thin film of silicon that has a full phononic band gap for microwave X-band phonons and a two-dimensional pseudo-band gap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the band gap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large coupling (g0/2π≈220 kHz) between the fundamental optical cavity resonance at ωo/2π =195 THz and colocalized mechanical resonances at frequency ωm/2π ≈9.3 GHz.

  14. Pressure dependence of the band-gap energy in BiTeI

    OpenAIRE

    Güler-Kılıç, Sümeyra; Kılıç, Çetin

    2016-01-01

    The evolution of the electronic structure of BiTeI, a layered semiconductor with a van der Waals gap, under compression is studied by employing semilocal and dispersion-corrected density-functional calculations. Comparative analysis of the results of these calculations shows that the band-gap energy of BiTeI decreases till it attains a minimum value of zero at a critical pressure, after which it increases again. The critical pressure corresponding to the closure of the band gap is calculated,...

  15. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  16. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.

    Science.gov (United States)

    Kwon, S Joon; Jeong, Hae-Min; Jung, Kinam; Ko, Doo-Hyun; Ko, Hyungduk; Han, Il-Ki; Kim, Gyu Tae; Park, Jae-Gwan

    2015-05-26

    Single-crystalline alloy II-VI semiconductor nanostructures have been used as functional materials to propel photonic and optoelectronic device performance in a broad range of the visible spectrum. Their functionality depends on the stable modulation of the direct band gap (Eg), which can be finely tuned by controlling the properties of alloy composition, crystallinity, and morphology. We report on the structural correlation of the optical band gap anomaly of quaternary alloy CdxZn1-xSySe1-y single-crystalline nanostructures that exhibit different morphologies, such as nanowires (NWs), nanobelts (NBs), and nanosheets (NSs), and cover a wide range of the visible spectrum (Eg = 1.96-2.88 eV). Using pulsed laser deposition, the nanostructures evolve from NWs via NBs to NSs with decreasing growth temperature. The effects of the growth temperature are also reflected in the systematic variation of the composition. The alloy nanostructures firmly maintain single crystallinity of the hexagonal wurtzite and the nanoscale morphology, with no distortion of lattice parameters, satisfying the virtual crystal model. For the optical properties, however, we observed distinct structure-dependent band gap anomalies: the disappearance of bowing for NWs and maximum and slightly reduced bowing for NBs and NSs, respectively. We tried to uncover the underlying mechanism that bridges the structural properties and the optical anomaly using an empirical pseudopotential model calculation of electronic band structures. From the calculations, we found that the optical bowings in NBs and NSs were due to residual strain, by which they are also distinguishable from each other: large for NBs and small for NSs. To explain the origin of the residual strain, we suggest a semiempirical model that considers intrinsic atomic disorder, resulting from the bond length mismatch, combined with the strain relaxation factor as a function of the width-to-thickness ratio of the NBs or NSs. The model agreed well

  17. Pressure dependence of the band-gap energy in BiTeI

    Science.gov (United States)

    Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2016-10-01

    The evolution of the electronic structure of BiTeI, a layered semiconductor with a van der Waals gap, under compression is studied by employing semilocal and dispersion-corrected density-functional calculations. Comparative analysis of the results of these calculations shows that the band-gap energy of BiTeI decreases till it attains a minimum value of zero at a critical pressure, after which it increases again. The critical pressure corresponding to the closure of the band gap is calculated, at which BiTeI becomes a topological insulator. Comparison of the critical pressure to the pressure at which BiTeI undergoes a structural phase transition indicates that the closure of the band gap would not be hindered by a structural transformation. Moreover, the band-gap pressure coefficients of BiTeI are computed, and an expression of the critical pressure is devised in terms of these coefficients. Our findings indicate that the semilocal and dispersion-corrected approaches are in conflict about the compressibility of BiTeI, which result in overestimation and underestimation, respectively. Nevertheless, the effect of pressure on the atomic structure of BiTeI is found to be manifested primarily as the reduction of the width of the van der Waals gap according to both approaches, which also yield consistent predictions concerning the interlayer metallic bonding in BiTeI under compression. It is consequently shown that the calculated band-gap energies follow qualitatively and quantitatively the same trend within the two approximations employed here, and the transition to the zero-gap state occurs at the same critical width of the van der Waals gap.

  18. Optical band gap tuning of Sb-Se thin films for xerographic based applications

    Science.gov (United States)

    Kaur, Ramandeep; Singh, Palwinder; Singh, Kulwinder; Kumar, Akshay; Thakur, Anup

    2016-10-01

    In the present paper we have studied the effect of Sb addition on the optical band gap tuning of thermally evaporated SbxSe100-x (x = 0, 5, 20, 50 and 60) thin films. The structural investigations revealed that all thin films were amorphous in nature. Transmission spectrum was taken in the range 400-2500 nm shows that all films are highly transparent in the near infrared region. The fundamental absorption edge shifts towards longer wavelength with Sb incorporation. The optical band gap decreases with addition of antimony in a-Se thin films. A good correlation has been drawn between experimentally estimated and theoretically calculated optical band gap. The decrease in optical band gap of thin films has been explained using chemical bond approach and density of states model. Decrease in optical band gap with Sb addition increases the concentration of electron deep traps which increases the X-ray sensitivity of Sb-Se thin films. Thus by tuning the optical band gap of Sb-Se alloy, it could be utilized for xerographic based applications.

  19. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  20. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer

    2015-01-01

    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...

  1. Crystal structure, stability, and optoelectronic properties of the organic-inorganic wide-band-gap perovskite CH3NH3BaI3 : Candidate for transparent conductor applications

    Science.gov (United States)

    Kumar, Akash; Balasubramaniam, K. R.; Kangsabanik, Jiban; Vikram, Alam, Aftab

    2016-11-01

    Structural stability, electronic structure, and optical properties of CH3NH3BaI3 hybrid perovskite are examined from theory as well as experiment. Solution-processed thin films of CH3NH3BaI3 exhibited a high transparency in the wavelength range of 400-825 nm (1.5-3.1 eV for which the photon current density is highest in the solar spectrum) which essentially justifies a high band gap of 4 eV obtained by theoretical estimation. Also, the x-ray diffraction patterns of the thin films match well with the {00 l } peaks of the simulated pattern obtained from the relaxed unit cell of CH3NH3BaI3 , crystallizing in the I 4 /m c m space group, with lattice parameters, a =9.30 Å, c =13.94 Å. Atom projected density of state and band structure calculations reveal the conduction and valence band edges to be comprised primarily of barium d orbitals and iodine p orbitals, respectively. The larger band gap of CH3NH3BaI3 compared to CH3NH3PbI3 can be attributed to the lower electronegativity coupled with the lack of d orbitals in the valence band of Ba2 +. A more detailed analysis reveals the excellent chemical and mechanical stability of CH3NH3BaI3 against humidity, unlike its lead halide counterpart, which degrades under such conditions. We propose La to be a suitable dopant to make this compound a promising candidate for transparent conductor applications, especially for all perovskite solar cells. This claim is supported by our calculated results on charge concentration, effective mass, and vacancy formation energies.

  2. Low Loss Plastic Terahertz Photonic Band-Gap Fibres

    Institute of Scientific and Technical Information of China (English)

    GENG You-Fu; TAN Xiao-Ling; ZHONG Kai; WANG Peng; YAO Jian-Quan

    2008-01-01

    We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal air holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed.The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.

  3. Tuning characteristic of band gap and waveguide in a multi-stub locally resonant phononic crystal plate

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2015-10-01

    Full Text Available In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers’ stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  4. Interference effects in photoacoustic and reflectance spectroscopies on TiO2/Si structures and TiO2 band gap.

    Science.gov (United States)

    Conde-Gallardo, A; Cruz-Orea, A; Tomas, S A

    2004-08-01

    Experimental results of photoacoustic (PAS) and reflectance (RS) spectroscopies of titanium dioxide thin films (TiO2), deposited on Si substrates, are compared in a wide optical range including transparent and absorbent regions of TiO2. Due to the fact that the light modulation frequency f used in the photoacoustic experiments was so low that the thermal diffusion length of the TiO2 (mu = 100 microm) is always larger than the thickness of the studied films, the PAS turns out to be complementary to RS over the entire range. The presence of multiple reflection interference effects makes difficult a direct evaluation of the TiO2 band gap from the PAS signal. However, by employing k(lambda) values, obtained from transmission experiments on equivalent TiO2 films deposited on transparent fused quartz substrates, the PAS spectra for the films deposited on silicon are reconstructed by using those theoretical models that consider multiple reflections. The reasonable agreement of the simulated and experimental PAS spectra allows one to obtain reliable Eg values for the TiO2 films deposited on opaque silicon substrates.

  5. Substrate-induced band gap opening in epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S.Y.; Gweon, G.-H.; Fedorov, A.V.; First, P.N.; de Heer,W.A.; Lee, D.-H.; Guinea, F.; Castro Neto, A.H.; Lanzara, A.

    2007-09-08

    Graphene has shown great application potential as the hostmaterial for next-generation electronic devices. However, despite itsintriguing properties, one of the biggest hurdles for graphene to beuseful as an electronic material is the lack of an energy gap in itselectronic spectra. This, for example, prevents the use of graphene inmaking transistors. Although several proposals have been made to open agap in graphene's electronic spectra, they all require complexengineering of the graphene layer. Here, we show that when graphene isepitaxially grown on SiC substrate, a gap of ~;0.26 eV is produced. Thisgap decreases as the sample thickness increases and eventually approacheszero when the number of layers exceeds four. We propose that the originof this gap is the breaking of sublattice symmetry owing to thegraphene-substrate interaction. We believe that our results highlight apromising direction for band gap engineering of graphene.

  6. Band structure engineering in organic semiconductors

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  7. The calculation of band gap energy in zinc oxide films

    Science.gov (United States)

    Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said

    2015-01-01

    We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.

  8. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    Science.gov (United States)

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  9. Effect of a Two-Dimensional Periodic Dielectric Background on Complete Photonic Band Gap in Complex Square Lattices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHI Jun-Jie

    2008-01-01

    A two-dimensional photonic crystal model with a periodic square dielectric background is proposed.The photonic band modulation effects due to the two-dimensional periodic background are investigated jn detail.It is found that periodic modulation of the dielectric background greatly alters photonic band structures,especially for the Epolarization modes.The number,width and position of the photonic band gaps sensitively depend on the dielectric constants of the two-dimensional periodic background.Complete band gaps are found,and the dependence of the widths of these gaps on the structural and material parameters of the two alternating rods/holes is studied.

  10. Absolute band gaps of a two-dimensional triangular-lattice dielectric photonic crystal with different shapes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Absolute band gaps of a two-dimensional triangular-lattice photonic crystal are calculated with the finite-difference time-domain method in this paper.Through calculating the photonic band structures of the triangular-lattice photonic crystal consisting of Ge rods immersed in air with different shapes,it is found that a large absolute band gap of 0.098 (2c/a) can be obtained for the structures with hollow triangular Ge rods immersed in air,corresponding to 19.8% of the middle frequency.The influence of the different factors on the width of the absolute band gaps is also discussed.

  11. Robust band gap and half-metallicity in graphene with triangular perforations

    Science.gov (United States)

    Gregersen, Søren Schou; Power, Stephen R.; Jauho, Antti-Pekka

    2016-06-01

    Ideal graphene antidot lattices are predicted to show promising band gap behavior (i.e., EG≃500 meV) under carefully specified conditions. However, for the structures studied so far this behavior is critically dependent on superlattice geometry and is not robust against experimentally realistic disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag-edged antidots give rise to large band gaps compared to armchair-edged antidots, irrespective of the rules which govern the existence of gaps in armchair-edged antidot lattices. In addition the zigzag-edged antidots appear more robust than armchair-edged antidots in the presence of geometrical disorder. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy, reducing the band gaps compared to the unpolarized case. This behavior is also found to be robust in the presence of disorder. Our results highlight the possibilities of using triangular perforations in graphene to open electronic band gaps in systems with experimentally realistic levels of disorder, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications.

  12. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.

    Science.gov (United States)

    Ansari, Sajid Ali; Khan, Mohammad Mansoob; Kalathil, Shafeer; Nisar, Ambreen; Lee, Jintae; Cho, Moo Hwan

    2013-10-07

    Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the oxygen vacancy and band gap narrowing of m-ZnO. m-ZnO enhanced the visible light catalytic activity for the degradation of different classes of dyes and 4-nitrophenol compared to p-ZnO, which confirmed the band gap narrowing because of oxygen defects. This study shed light on the modification of metal oxide nanostructures by EAB with a controlled band structure.

  13. Direct band gap silicon crystals predicted by an inverse design method

    Science.gov (United States)

    Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo

    2015-03-01

    Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).

  14. Experimental Work With Photonic Band Gap Fiber: Building A Laser Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, Melissa; Ischebeck, Rasmus; Nobel, Robert; Siemann, Robert; /SLAC

    2006-09-29

    In the laser acceleration project E-163 at the Stanford Linear Accelerator Center, work is being done toward building a traveling wave accelerator that uses as its accelerating structure a length of photonic band gap fiber. The small scale of the optical fiber allows radiation at optical wavelengths to be used to provide the necessary accelerating energy. Optical wavelength driving energy in a small structure yields higher accelerating fields. The existence of a speed-of-light accelerating mode in a photonic band gap fiber has been calculated previously [1]. This paper presents an overview of several of the experimental challenges posed in the development of the proposed photonic band gap fiber accelerator system.

  15. Band gap determination of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    G P Joshi; N S Saxena; R Mangal; A Mishra; T P Sharma

    2003-06-01

    Nanocomposites of Ni–Zn with copolymer matrix of aniline and formaldehyde in presence of varying concentrations of zinc ions have been studied at room temperature and normal pressure. The energy band gap of these materials are determined by reflection spectra in the wavelength range 400–850 nm by spectrophotometer at room temperature. From the analysis of reflection spectra, nanocomposites of copolymer of aniline and formaldehyde with Ni$_{1–x}$Zn$_x$Fe2O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) have been found to have direct band gaps ranging from 1.50–1.66 eV.

  16. On acoustic band gaps in homogenized piezoelectric phononic materials

    Directory of Open Access Journals (Sweden)

    Rohan E.

    2010-07-01

    Full Text Available We consider a composite medium made of weakly piezoelectric inclusions periodically distributed in the matrix which ismade of a different piezoelectricmaterial. Themediumis subject to a periodic excitation with an incidence wave frequency independent of scale ε of the microscopic heterogeneities. Two-scale method of homogenization is applied to obtain the limit homogenized model which describes acoustic wave propagation in the piezoelectric medium when ε → 0. In analogy with the purely elastic composite, the resulting model allows existence of the acoustic band gaps. These are identified for certain frequency ranges whenever the so-called homogenized mass becomes negative. The homogenized model can be used for band gap prediction and for dispersion analysis for low wave numbers. Modeling such composite materials seems to be perspective in the context of Smart Materials design.

  17. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, A., E-mail: annette.pietzsch@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Nisar, J. [Pakistan Atomic Energy Commission (PAEC), P.O. Box 2151, Islamabad (Pakistan); Jämstorp, E. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gråsjö, J. [Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala (Sweden); Århammar, C. [Coromant R& D, S-126 80 Stockholm (Sweden); Ahuja, R.; Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-07-15

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed.

  18. Evidence for a modified-stannite crystal structure in wide band gap Cu-poor CuIn1-xGaxSe2: Impact on the optical properties

    Science.gov (United States)

    Souilah, M.; Lafond, A.; Barreau, N.; Guillot-Deudon, C.; Kessler, J.

    2008-06-01

    The crystal structure of high Ga-content CuIn1-xGaxSe2 (CIGSe) compounds has been further investigated with the help of single crystal x-ray diffraction technique. It is known that CIGSe compounds adopt the chalcopyrite crystal structure. In the case of Cu-poor, Ga-rich CIGSe, the present study shows that an alternative structure should be considered. This structure is derived from that of stannite in which there is a Ga /In segregation on two different atomic planes. The diffuse reflectance measurements of the Cu-poor compound reveal a slightly different band gap and a smoother transition compared with those of the stoichiometric compound.

  19. Microscopic theory of photonic band gaps in optical lattices

    CERN Document Server

    Samoylova, M; Bachelard, R; Courteille, Ph W

    2013-01-01

    We propose a microscopic model to describe the scattering of light by atoms in optical lattices. The model is shown to efficiently capture Bragg scattering, spontaneous emission and photonic band gaps. A connection to the transfer matrix formalism is established in the limit of a one-dimensional optical lattice, and we find the two theories to yield results in good agreement. The advantage of the microscopic model is, however, that it suits better for studies of finite-size and disorder effects.

  20. One-dimensional photonic band gaps in optical lattices

    CERN Document Server

    Samoylova, Marina; Holynski, Michael; Courteille, Philippe Wilhelm; Bachelard, Romain

    2013-01-01

    The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement.

  1. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    Science.gov (United States)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  2. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  3. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

    Science.gov (United States)

    Diaz-Valencia, B. F.; Calero, J. M.

    2017-02-01

    In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

  4. Germanium under high tensile stress: nonlinear dependence of direct band gap vs. strain

    OpenAIRE

    Guilloy, K.; Pauc, N.; Gassenq, A.; Niquet, Y. M.; Escalante, J. M.; Duchemin, I.; Tardif, S; Dias, G. Osvaldo; Rouchon, D.; Widiez, J.; Hartmann, J.M.; Geiger, R.; Zabel, T.; Sigg, H; Faist, J.

    2016-01-01

    Germanium is a strong candidate as a laser source for silicon photonics. It is widely accepted that the band structure of germanium can be altered by tensile strain so as to reduce the energy difference between its direct and indirect band gaps. However, the conventional deformation potential model most widely adopted to describe this transformation happens to have been investigated only up to 1 % uniaxially loaded strains. In this work, we use a micro-bridge geometry to uniaxially stress ger...

  5. Band gap engineering of zinc selenide thin films through alloying with cadmium telluride.

    Science.gov (United States)

    Al-Kuhaili, M F; Kayani, A; Durrani, S M A; Bakhtiari, I A; Haider, M B

    2013-06-12

    This work investigates band gap engineering of zinc selenide (ZnSe) thin films. This was achieved by mixing ZnSe with cadmium telluride (CdTe). The mass ratio (x) of CdTe in the starting material was varied in the range x = 0-0.333. The films were prepared using thermal evaporation. The chemical composition of the films was investigated through energy dispersive spectroscopy and Rutherford backscattering spectrometry. Structural analysis was carried out using X-ray diffraction and atomic force microscopy. Normal incidence transmittance and reflectance were measured over the wavelength range 300-1300 nm. The absorption coefficients and band gaps were determined from these spectrophotometric measurements. The band gap monotonically decreased from 2.58 eV (for x = 0) to 1.75 eV (for x = 0.333). Photocurrent measurements indicated that the maximum current density was obtained for films with x = 0.286. A figure of merit, based on crystallinity, band gap, and photocurrent, was defined. The optimum characteristics were obtained for the films with x = 0.231, for which the band gap was 2.14 eV.

  6. Band-gaps electromagnéticos con celdas unidad de tres dieléctricos

    OpenAIRE

    Gómez Gómez, Álvaro; Herrán Planchuelo, Jaime; Cordobés Gallo, David; Vegas García, Ángel; Saiz Ipiña, Juan Antonio; Solano Vérez, Miguel Ángel; Lakhtakia, Akhlesh

    2004-01-01

    Electromagnetic band-gap structures (EBG) with Kronig-Penney morphology implemented inside rectangular waveguides are theoretically and experimentally examined using a unit cell with three dielectrics. Filtering properties of these structures are analysed, invoking the Floquet theorem for ideal structures (infinite in the propagation direction), and by means of the scattering matrix technique for real structures (i.e., of finite length). Measurements of the transmis...

  7. Lattice reconfiguration and phononic band-gap adaptation via origami folding

    Science.gov (United States)

    Thota, M.; Li, S.; Wang, K. W.

    2017-02-01

    We introduce a framework of utilizing origami folding to redistribute the inclusions of a phononic structure to achieve significant phononic band-gap adaptation. Cylindrical inclusions are attached to the vertices of a Miura-Ori sheet, whose 1 degree-of-freedom rigid folding can enable fundamental reconfigurations in the underlying periodic architecture via switching between different Bravais lattice types. Such a reconfiguration can drastically change the wave propagation behavior in terms of band gap and provide a scalable and practical means for broadband wave tailoring.

  8. Complex band structure and superlattice electronic states

    Science.gov (United States)

    Schulman, J. N.; McGill, T. C.

    1981-04-01

    The complex band structures of the bulk materials which constitute the alternating layer (001) semiconductor-semiconductor superlattice are investigated. The complex bands near the center of the Brillouin zone in the [001] direction are studied in detail. The decay lengths of superlattice states whose energies lie in the bulk band gaps of one of the semiconductors are determined from the dispersion curves of these bands for imaginary k-->. This method is applied using a tight-binding band-structure calculation to two superlattices: the AlAs-GaAs superlattice and the CdTe-HgTe superlattice. The decay lengths of AlAs-GaAs superlattice conduction-band minimum states are found to be substantially shorter than those for the CdTe-HgTe superlattice. These differences in the decay of the states in the two superlattices result in differences in the variation of the conduction-band effective masses with the thickness of the AlAs and CdTe layers. The conduction-band effective masses increase more rapidly with AlAs thickness in the AlAs-GaAs superlattice than with CdTe thickness in the CdTe-HgTe superlattice.

  9. Wavelet-based method for computing elastic band gaps of one-dimensional phononic crystals

    Institute of Scientific and Technical Information of China (English)

    YAN; ZhiZhong; WANG; YueSheng

    2007-01-01

    A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-di- mensional phononic crystals computed with the wavelet method and the well- known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible for efficient band gap computation of more complex phononic structures.

  10. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    Energy Technology Data Exchange (ETDEWEB)

    Yin, J.; Huang, J.; Zhang, S., E-mail: zhangs@dlut.edu.cn; Zhang, H.W.; Chen, B.S.

    2014-06-27

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model.

  11. Experimental investigation of hollow-core photonic crystal fibers with five photonic band-gaps

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-hui; HOU Lan-tian; WEI Dong-bin; WANG Hai-yun; ZHOU Gui-yao

    2008-01-01

    The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450-1100 nm have been obtained.And the green light transmission in the HC-PCFs'has been observed remarkably.

  12. Band gap bowing in NixMg1-xO

    Science.gov (United States)

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-08-01

    Epitaxial transparent oxide NixMg1-xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1-xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1-xO solid solution system.

  13. Dipole-induced band-gap reduction in an inorganic cage.

    Science.gov (United States)

    Lv, Yaokang; Cheng, Jun; Steiner, Alexander; Gan, Lihua; Wright, Dominic S

    2014-02-10

    Metal-doped polyoxotitanium cages are a developing class of inorganic compounds which can be regarded as nano- and sub-nano sized molecular relatives of metal-doped titania nanoparticles. These species can serve as models for the ways in which dopant metal ions can be incorporated into metal-doped titania (TiO2 ), a technologically important class of photocatalytic materials with broad applications in devices and pollution control. In this study a series of cobalt(II)-containing cages in the size range ca. 0.7-1.3 nm have been synthesized and structurally characterized, allowing a coherent study of the factors affecting the band gaps in well-defined metal-doped model systems. Band structure calculations are consistent with experimental UV/Vis measurements of the Tix Oy absorption edges in these species and reveal that molecular dipole moment can have a profound effect on the band gap. The observation of a dipole-induced band-gap decrease mechanism provides a potentially general design strategy for the formation of low band-gap inorganic cages.

  14. 一维掺杂光子晶体结构参数对带隙结构影响%Effect of Structure Parameter of One Dimensional Doped Photonic Crystal on Photonic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    郭立帅

    2012-01-01

    The properties of band - gap of one - dimensional doped photonic crystal are studied by using numerical- ly method based on the transfer matrix method. The result shows that a narrow conduction band appears in the cen- tre of forbidden band in one - dimensional doped photonic crystal. The depth of conduction band appears in the centre of forbidden band has a maximum, which was caused by the number of layers of the second half of impurity where the first one was fixed. It shows that the forbidden band center's conduction band depth was still biggest by means of changing basic level thickness.%基于传输矩阵法,数值研究了掺杂一维光子晶体带隙特征。研究表明:一维掺杂光晶体禁带中心位置出现一个极窄的导带,当杂质前半部分层数给定时,后半部分总存在一个层数,使得禁带中心导带的深度达到最大,在此基础上通过改变基本层厚度发现,禁带中心的导带深度仍然最大,我们可以通过改变基本层厚度厚度,让特定波长的光顺利通过。

  15. Effect of hydrogenation on the band gap of graphene nano-flakes

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp; Iyama, Tetsuji; Kawabata, Hiroshi

    2014-03-03

    The effects of hydrogenation on the band gap of graphene have been investigated by means of density functional theory method. It is generally considered that the band gap increases with increasing coverage of hydrogen atom on the graphene. However, the present study shows that the band gap decreases first with increasing hydrogen coverage and reaches the lowest value at finite coverage (γ = 0.3). Next, the band gap increases to that of insulator with coverage from 0.3 to 1.0. This specific feature of the band gap is reasonably explained by broken symmetry model and the decrease of pi-conjugation. The electronic states of hydrogenated graphene are discussed. - Highlights: • Density functional theory calculations were carried out for hydrogen on graphene • Effects of hydrogenation on the band gap of graphene were examined. • The band gap showed a minimum at a finite coverage. • Mechanism of specific band gap feature was discussed.

  16. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    Science.gov (United States)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  17. Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals.

    Science.gov (United States)

    Mittal, Mona; Jana, Atanu; Sarkar, Sagar; Mahadevan, Priya; Sapra, Sameer

    2016-08-18

    A few approaches have been employed to tune the band gap of colloidal organic-inorganic trihalide perovskites (OTPs) nanocrystals by changing the halide anion. However, to date, there is no report of electronic structure tuning of perovskite NCs upon changing the organic cation. We report here, for the first time, the room temperature colloidal synthesis of (EA)x(MA)1-xPbBr3 nanocrystals (NCs) (where, x varies between 0 and 1) to tune the band gap of hybrid organic-inorganic lead perovskite NCs from 2.38 to 2.94 eV by varying the ratio of ethylammonium (EA) and methylammonium (MA) cations. The tuning of band gap is confirmed by electronic structure calculations within density functional theory, which explains the increase in the band gap upon going toward larger "A" site cations in APbBr3 NCs. The photoluminescence quantum yield (PLQY) of these NCs lies between 5% to 85% and the average lifetime falls in the range 1.4 to 215 ns. A mixture of MA cations and its higher analog EA cations provide a versatile tool to tune the structural as well as optoelectronic properties of perovskite NCs.

  18. Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps

    Science.gov (United States)

    Zhang, Miao; Gao, Guoying; Kutana, Alex; Wang, Yanchao; Zou, Xiaolong; Tse, John S.; Yakobson, Boris I.; Li, Hongdong; Liu, Hanyu; Ma, Yanming

    2015-07-01

    The search for new candidate semiconductors with direct band gaps of ~1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer Bx/2Nx/2C1-x stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of Bx/2Nx/2C1-x phases possess direct band gaps within the optical range, thereby they can potentially be used in high-efficiency conversion of solar energy to electric power, as well as in p-n junction photovoltaic modules. The present results also show that the band gaps of Bx/2Nx/2C1-x can be widely tuned within the optical range by changing the concentration of carbon, thus allowing the fast development of band gap engineered materials in optoelectronics. These new findings may enable new approaches to the design of microelectronic devices.The search for new candidate semiconductors with direct band gaps of ~1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer Bx/2Nx/2C1-x stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of Bx/2Nx/2C1-x phases possess direct band gaps within the optical range, thereby they can

  19. The band gap and band offset in ultrathin oxide-semiconductor heterostructures

    Science.gov (United States)

    Schmeißer, D.; Henkel, K.; Bergholz, M.; Tallarida, M.

    2010-03-01

    In ultrathin high- k oxide layers knowledge of the band line up and band gap is essential for modeling the transport properties and to learn about a device's long term stability and reliability. However, such data are hard to determine in such ultrathin layers and usually are extrapolated from values for bulk samples or are taken from the literature. In our in situ approach we use electron energy loss spectroscopy, valence band photoelectron spectroscopy, X-ray absorption spectroscopy, and resonant inelastic X-ray scattering to obtain the loss function and the valence and conduction band densities of states. From such data we derive the values of the band offsets and of the band gap. We discuss the ability of this combination of different techniques for the analysis of such complex ultrathin dielectric systems and discuss in detail the properties of the native oxide in SiO 2/Si(001) and SiO 2/3C-SiC(001).

  20. Band gap tuning of nickelates for photovoltaic applications

    Science.gov (United States)

    Chang, Lei; Wang, Le; You, Lu; Zhou, Yang; Fang, Liang; Wang, Shiwei; Wang, Junling

    2016-11-01

    Hybrid perovskites have achieved tremendous success as a light absorber in solar cells during the past few years. However, the stability issue casts shadow on their practical applications. Perovskite oxides may offer an alternative. In this study, the metal-insulator transition in perovskite neodymium nickelates (NdNiO3) is systematically tuned by adjusting the oxygen partial pressure during film growth. Room temperature insulating films with different band gaps are obtained. Testing photovoltaic cells have been prepared by combining the nickelates with Nb-doped SrTiO3, and photovoltaic performance has been optimized. Our study offers a new route for designing novel photovoltaic materials.

  1. Widely tunable band gaps of graphdiyne: an ab initio study.

    Science.gov (United States)

    Koo, Jahyun; Park, Minwoo; Hwang, Seunghyun; Huang, Bing; Jang, Byungryul; Kwon, Yongkyung; Lee, Hoonkyung

    2014-05-21

    Functionalization of graphdiyne, a two-dimensional atomic layer of sp-sp(2) hybrid carbon networks, was investigated through first-principles calculations. Hydrogen or halogen atoms preferentially adsorb on sp-bonded carbon atoms rather than on sp(2)-bonded carbon atoms, forming sp(2)- or sp(3)-hybridization. The energy band gap of graphdiyne is increased from ~0.5 eV to ~5.2 eV through the hydrogenation or halogenation. Unlike graphene, segregation of adsorbing atoms is energetically unfavourable. Our results show that hydrogenation or halogenation can be utilized for modifying the electronic properties of graphdiyne for applications to nano-electronics and -photonics.

  2. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR method

    Directory of Open Access Journals (Sweden)

    Mikalai V. Malashchonak

    2015-11-01

    Full Text Available The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3 and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR method have been studied as a function of the CdS deposition cycle number (N. The incident photon-to-current conversion efficiency (IPCE passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (EU, spectral width of the CdS longitudinal optical (LO phonon band and the relative intensity of the surface optical (SO phonon band in the Raman spectra. Maximal values of EU (100–120 meV correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles, indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  3. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    Science.gov (United States)

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  4. Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [CINVESTAV del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D. F. (Mexico)

    2009-01-15

    A simple model for the generation of carriers by photons incident on a (linearly) decreasing band-gap material, such as has been described in recent CIGS solar cells, is developed. The model can be generalized for different cases such as increasing band-gap grading or for having a more complex band-gap profile. The model developed for direct band semiconductors such as CIGS or AlGaAs allows us to define an effective absorption coefficient, so that the ideal photocurrent density can be calculated in a similar manner as for solar cells with non-graded band-gap materials. We show that this model gives completely different results as those expected from intuitive approaches for calculating this ideal photocurrent density. We also show that grading of the band-gap of the absorbing material in solar cells makes the photocurrent less sensitive to the total band-gap change, in such a way that the design of the band-gap variation can be more flexible in order to have other advantages such as higher built-in voltage or higher back surface field in the device structure. (author)

  5. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    Science.gov (United States)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  6. Graded band gap GaInNAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Langer, F.; Perl, S.; Kamp, M. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex, Material Systems, University of Würzburg, Am Hubland, Würzburg D97074 (Germany); Höfling, S. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex, Material Systems, University of Würzburg, Am Hubland, Würzburg D97074 (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-06-08

    Dilute nitride GaInN(Sb)As with a band gap (E{sub g}) of 1.0 eV is a promising material for the integration in next generation multijunction solar cells. We have investigated the effect of a compositionally graded GaInNAs absorber layer on the spectral response of a GaInNAs sub cell. We produced band gap gradings (ΔE{sub g}) of up to 39 meV across a 1 μm thick GaInNAs layer. Thereby, the external quantum efficiency—compared to reference cells—was increased due to the improved extraction of photo-generated carriers from 34.0% to 36.7% for the wavelength range from 900 nm to 1150 nm. However, this device figure improvement is accompanied by a small decrease in the open circuit voltage of about 20 mV and the shift of the absorption edge to shorter wavelengths.

  7. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  8. Low-frequency band gaps in chains with attached non-linear oscillators

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2007-01-01

    in structures with periodic or random inclusions are located mainly in the high frequency range, as the wavelength has to be comparable with the distance between the alternating parts. Band gaps may also exist in structures with locally attached oscillators. In the linear case the gap is located around......The aim of this article is to investigate the wave propagation in one-dimensional chains with attached non-linear local oscillators by using analytical and numerical models. The focus is on the influence of non-linearities on the filtering properties of the chain in the low frequency range...

  9. The Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials

    CERN Document Server

    Froufe-Pérez, Luis S; Damasceno, Pablo F; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C; Scheffold, Frank

    2016-01-01

    We study photonic band gap formation in two-dimensional high refractive index disordered ma- terials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

  10. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.

    Science.gov (United States)

    Wen, Feng; David, Sylvain; Checoury, Xavier; El Kurdi, Moustafa; Boucaud, Philippe

    2008-08-04

    Photonic crystals exhibiting a photonic band gap in both TE and TM polarizations are particularly interesting for a better control of light confinement. The simultaneous achievement of large band gaps in both polarizations requires to reduce the symmetry properties of the photonic crystal lattice. In this letter, we propose two different designs of two-dimensional photonic crystals patterned in high refractive index thin silicon slabs. These slabs are known to limit the opening of photonic band gaps for both polarizations. The proposed designs exhibit large complete photonic band gaps: the first photonic crystal structure is based on the honey-comb lattice with two different hole radii and the second structure is based on a "tri-ellipse" pattern in a triangular lattice. Photonic band gap calculations show that these structures offer large complete photonic band gaps deltaomega/omega larger than 10% between first and second photonic bands. This figure of merit is obtained with single-mode slab waveguides and is not restricted to modes below light cone.

  11. Stable Band-Gaps in Phononic Crystals by Harnessing Hyperelastic Transformation Media

    CERN Document Server

    Liu, Yan; Feng, Xi-Qiao

    2016-01-01

    The band structure in phononic crystals (PCs) is usually affected by the deformations of their soft components. In this work, hyperelastic transformation media is proposed to be integrated in the PCs'design, to achieve stable elastic band-gaps which is independent with finite mechanical deformations. For a one-dimensional (1D) PC, we demonstrate the semi-linear soft component can keep all elastic wave bands unchanged with the external deformation field. While for neo-Hookean soft component, only S-wave bands can be precisely retained. The change of the P-wave bands can be predicted by using a lumped mass method. Numerical simulations are performed to validate our theory predictions and the robustness of the proposed PCs.

  12. 加载电磁带隙结构的平切圆锥等角螺旋天线%Conformal equiangular spiral antenna on circularly truncated cone with electromagnetic band-gap structure

    Institute of Scientific and Technical Information of China (English)

    刘宁川; 李浩; 李家胤

    2011-01-01

    The paper proposes a conformal equiangular spiral antenna on the circularly truncated cone with electromagnetic band-gap structure(EAS-EBG antenna), which shows wideband characteristics with respect to the gain. Firstly, a conformal equiangular spiral antenna on the circularly truncated cone(EAS antenna) is modeled and analyzed by using the professional software HFSS. Next, the EAS-EBG antenna is studied, which inserts a small area of electromagnetic band-gap(EBG) structure into the circularly truncated cone to remain conformal and increase gain. The simulation shows that the antenna gain increases about 1 to 3 dB within the frequency range from 5 to 12 GHz and the axial ratio remains almost unchanged.%加载电磁带隙的平切圆锥等角螺旋(EAS-EBG)天线可以在很宽的频带范围内提高辐射增益.建立了平切等角螺旋锥体(EAS)天线的基本模型,并用HFSS对其进行了仿真.研究了一种加载电磁带隙结构的平切圆锥等角螺旋锥体天线.该天线是在保持原平切等角螺旋锥体天线外形不变的情况下,加载了小型化的电磁带隙结构,以提高增益并保持共形化.仿真结果表明:加载电磁带隙结构的模型增益在5~12 GHz带宽下可以提高1~3 dB,并且轴比特性基本不变.

  13. Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice

    Institute of Scientific and Technical Information of China (English)

    Yize Wang; Fengming Li; Yuesheng Wang; Kikuo Kishimoto; Wenhu Huang

    2009-01-01

    In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The gener-alized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet the-orem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the plane-wave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectric-ity with the larger lattice constant ratios and the filling frac-tions.

  14. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we...... report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  15. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys.

    Science.gov (United States)

    Chen, Yanfeng; Xi, Jinyang; Dumcenco, Dumitru O; Liu, Zheng; Suenaga, Kazu; Wang, Dong; Shuai, Zhigang; Huang, Ying-Sheng; Xie, Liming

    2013-05-28

    Band gap engineering of atomically thin two-dimensional (2D) materials is the key to their applications in nanoelectronics, optoelectronics, and photonics. Here, for the first time, we demonstrate that in the 2D system, by alloying two materials with different band gaps (MoS2 and WS2), tunable band gap can be obtained in the 2D alloys (Mo(1-x)W(x)S(2) monolayers, x = 0-1). Atomic-resolution scanning transmission electron microscopy has revealed random arrangement of Mo and W atoms in the Mo(1-x)W(x)S(2) monolayer alloys. Photoluminescence characterization has shown tunable band gap emission continuously tuned from 1.82 eV (reached at x = 0.20) to 1.99 eV (reached at x = 1). Further, density functional theory calculations have been carried out to understand the composition-dependent electronic structures of Mo(1-x)W(x)S(2) monolayer alloys.

  16. Band gap engineering in penta-graphene by substitutional doping: first-principles calculations

    Science.gov (United States)

    Berdiyorov, G. R.; Dixit, G.; Madjet, M. E.

    2016-11-01

    Using density functional theory, we study the structure, electronic properties and partial charges of a new carbon allotrope—penta-graphene (PG)—substitutionally doped by Si, B and N. We found that the electronic bandgap of PG can be tuned down to 0.2 eV due to carbon substitutions. However, the value of the band gap depends on the type and location of the dopants. For example, the strongest reduction of the band gap is obtained for Si substitutions on the top (bottom) plane of PG, whereas the substitution in the middle plane of PG has a smaller effect on the band gap of the material. Surface termination with fluorine and hydroxyl groups results in an increase of the band gap together with considerable changes in electronic and atomic partial charge distribution in the system. Our findings, which are robust against the use of different exchange-correlation functionals, indicate the possibility of tuning the bandgap of the material to make it suitable for optoelectronic and photovoltaic applications.

  17. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.

    Science.gov (United States)

    Zhang, Shengli; Yan, Zhong; Li, Yafei; Chen, Zhongfang; Zeng, Haibo

    2015-03-01

    The typical two-dimensional (2D) semiconductors MoS2, MoSe2, WS2, WSe2 and black phosphorus have garnered tremendous interest for their unique electronic, optical, and chemical properties. However, all 2D semiconductors reported thus far feature band gaps that are smaller than 2.0 eV, which has greatly restricted their applications, especially in optoelectronic devices with photoresponse in the blue and UV range. Novel 2D mono-elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first-principles calculations. Interestingly, although As and Sb are typically semimetals in the bulk, they are transformed into indirect semiconductors with band gaps of 2.49 and 2.28 eV when thinned to one atomic layer. Significantly, under small biaxial strain, these materials were transformed from indirect into direct band-gap semiconductors. Such dramatic changes in the electronic structure could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.

  18. Steric engineering of metal-halide perovskites with tunable optical band gaps.

    Science.gov (United States)

    Filip, Marina R; Eperon, Giles E; Snaith, Henry J; Giustino, Feliciano

    2014-12-15

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  19. Effects of Controlling the AZO Thin Film's Optical Band Gap on AZO/MEH-PPV Devices with Buffer Layer

    Directory of Open Access Journals (Sweden)

    Jaehyoung Park

    2012-01-01

    Full Text Available Organic/inorganic hybrid solar cells were fabricated incorporating aluminum-doped zinc oxide (AZO thin films of varying optical band gap in AZO/poly(2-methoxy-5-(2′-ethyl-hexyloxy-p-phenylene vinylene structures. The band gaps were controlled by varying the flow rates of Ar and O2 used to deposit the AZO. Devices with CdS buffer layer were also fabricated for improved efficiency. The effects of AZO optical band gap were assessed by testing the I–V characteristics of devices with structures of glass/ITO/AZO/MEH-PPV/Ag under AM1.5 illumination (100 mW/cm2. Efficiency was improved about 30 times by decreasing the AZO optical band gap, except in devices deposited without oxygen. A power conversion efficiency of 0.102% was obtained with the incorporation of a CdS buffer layer.

  20. Band gap opening in silicene on MgBr2(0001) induced by Li and Na

    KAUST Repository

    Zhu, Jiajie

    2014-11-12

    Silicene consists of a monolayer of Si atoms in a buckled honeycomb structure and is expected to be well compatible with the current Si-based technology. However, the band gap is strongly influenced by the substrate. In this context, the structural and electronic properties of silicene on MgBr2(0001) modified by Li and Na are investigated by first-principles calculations. Charge transfer from silicene (substrate) to substrate (silicene) is found for substitutional doping (intercalation). As compared to a band gap of 0.01 eV on the pristine substrate, strongly enhanced band gaps of 0.65 eV (substitutional doping) and 0.24 eV (intercalation) are achieved. The band gap increases with the dopant concentration.

  1. A model for the direct-to-indirect band-gap transition in monolayer MoSe2 under strain

    Indian Academy of Sciences (India)

    Ruma Das; Priya Mahadevan

    2015-06-01

    A monolayer of MoSe2 is found to be a direct band-gap semiconductor. We show, within ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3% can drive it into an indirect band-gap semiconductor with the valence band maximum (VBM) shifting from point to point. An analysis of the charge density reveals that while Mo–Mo interactions contribute to the VBM at 0% strain, Mo–Se interactions contribute to the highest occupied band at point. A scaling of the hopping interaction strengths within an appropriate tight binding model can capture the transition.

  2. Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Martinez-Ricci, Maria L. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, 46022 Valencia (Spain)]. E-mail: jmonsori@fis.upv.es; Silvestre, Enrique [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain); Andres, Pedro [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain)

    2007-04-30

    We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability {mu} or the electric permittivity {epsilon} of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when {mu}=0 or when {epsilon}=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to {mu}=0 occurs only for TE polarized waves, whereas a gap corresponding to {epsilon}=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction.

  3. Photonic band gap of a graphene-embedded quarter-wave stack

    CERN Document Server

    Fan, Yuancheng; Li, Hongqiang; Chen, Hong; Soukoulis, Costas M

    2013-01-01

    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone, that nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap-edges, of even-multiple characteristic frequency of the quarter-wave stack. The novel conductive sheets induced photonic gaps provide a new platform for the enhancement of light-matter interactions.

  4. Photonic bands, gap maps, and intrinsic losses in three-component 2D photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Hongjun Shen; Huiping Tian; Yuefeng Ji

    2009-01-01

    We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two-dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We ex-amine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.

  5. Band gap modulation of transition-metal dichalcogenide MX2 nanosheets by in-plane strain

    Science.gov (United States)

    Su, Xiangying; Ju, Weiwei; Zhang, Ruizhi; Guo, Chongfeng; Yong, Yongliang; Cui, Hongling; Li, Xiaohong

    2016-10-01

    The electronic properties of quasi-two-dimensional honeycomb structures of MX2 nanosheets (M=Mo, W and X=S, Se) subjected to in-plane biaxial strain have been investigated using first-principles calculations. We demonstrate that the band gap of MX2 nanosheets can be widely tuned by applying tensile or compressive strain, and these ultrathin materials undergo a universal reversible semiconductor-metal transition at a critical strain. Compared to WX2, MoX2 need a smaller critical tensile strain for the band gap close, and MSe2 need a smaller critical compressive strain than MS2. Taking bilayer MoS2 as an example, the variation of the band structures was studied and the semiconductor-metal transition involves a slightly different physical mechanism between tensile and compressive strain. The ability to tune the band gap of MX2 nanosheets in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of application.

  6. Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites

    CERN Document Server

    Li Xiao Ling; Hu He Fei; Zhong Shao; Liu You Yan

    2003-01-01

    Effects of orientations of square rods on the acoustic band gaps in two-dimensional periodic arrays of rigid solid rods embedded in air are studied. The acoustic band gaps will be opened and enlarged greatly by increasing the rotation angle. For any filling fraction F, the maximum acoustic band gaps appear at the same rotation angle theta = 45 deg. for the cases of F<=0.50, otherwise they will appear at different limit values theta sub c and the largest band gap is achieved at a filling fraction of about F=0.85. This gap-tuning effect will be stronger with increase in filling fraction. This tuning mechanism of band gap suggests a new way to design band gaps of two-dimensional phononic crystals. (rapid communication)

  7. Vibration band gaps for elastic metamaterial rods using wave finite element method

    Science.gov (United States)

    Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.

    2016-10-01

    Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are

  8. The complex band structure for armchair graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N= 3M-1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nmaoribbons, and is also classified into three classes.

  9. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    Science.gov (United States)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  10. Modulation of the Band Gaps of Phononic Crystals with Thermal Effects

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2015-11-01

    Band gaps of elastic waves, both in-plane and shear waves, propagating through one-dimensional perfect/defect phononic crystals (PnCs) that involve thermal effects are studied in this paper. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficients and dispersion relation are presented. Elastic waves localization is obtained by immersing a defect layer through a perfect structure. Compared with the periodic structure, we observed that defected PnCs introduced localized modes or peaks within the phononic band gaps. Hence, Numerical simulations are performed to investigate the influences of the defect layer thickness and type on the number and intensity of the localized modes. Moreover, we have observed that temperature changes have prominent effects on the localized modes and band gaps width, especially at plane wave propagation. Such effects could change thermal properties of the PnCs structure such as thermal conductivity and could control the thermal emission contributed by phonons in many engineering structures.

  11. Strong interaction of a transmon qubit with 1D band-gap medium

    Science.gov (United States)

    Liu, Yanbing; Sadri, Darius; Houck, Andrew; Bronn, Nicholas; Chow, Jerry; Gambetta, Jay

    2015-03-01

    The spontaneous emission of an atom will be enhanced or suppressed in a structured vacuum, commonly known as Purcell effect. Moreover, in a frequency gap medium, an atom-photon bound state is predicted to exist in the band gap, causing the localization of light. Here using the technology of circuit quantum electrodynamics, we experimentally explore this mechanism by fabricating a microwave step-impedance filter strongly coupled to a transmon qubit. Standard transmission and spectroscopy measurements support the existence of atom-photon bound states in the system. Correlation measurement shows that the atom-photon interaction induces strong correlation of the transmitted light through the system. Thanks support from IARPA

  12. Band gap tunability of magneto-elastic phononic crystal

    Science.gov (United States)

    Bou Matar, O.; Robillard, J. F.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Deymier, P. A.; Pernod, P.; Preobrazhensky, V.

    2012-03-01

    The possibility of control and tuning of the band structures of phononic crystals offered by the introduction of an active magnetoelastic material and the application of an external magnetic field is studied. Two means to obtain large elastic properties variations in magnetoelastic material are considered: Giant magnetostriction and spin reorientation transition effects. A plane wave expansion method is used to calculate the band structures. The magnetoelastic coupling is taken into account through the consideration of an equivalent piezomagnetic material model with elastic, piezomagnetic, and magnetic permeability tensors varying as a function of the amplitude and orientation of the applied magnetic field. Results of contactless tunability of the absolute bandgap are presented for a two-dimensional phononic crystal constituted of Terfenol-D square rod embedded in an epoxy matrix.

  13. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Yu Dian-Long

    2006-01-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sanchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  14. Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass.

    Science.gov (United States)

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased.

  15. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    Directory of Open Access Journals (Sweden)

    Mohd Sabri Mohd Ghazali

    2012-06-01

    Full Text Available This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS glass combined with zinc oxide (ZnO that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased.

  16. Quantum information processing in localized modes of light within a photonic band-gap material

    CERN Document Server

    Vats, N; John, S; Vats, Nipun; Rudolph, Terry; John, Sajeev

    1999-01-01

    The single photon occupation of a localized field mode within an engineered network of defects in a photonic band-gap (PBG) material is proposed as a unit of quantum information (qubit). Qubit operations are mediated by optically-excited atoms interacting with these localized states of light as the atoms traverse the connected void network of the PBG structure. We describe conditions under which this system can have independent qubits with controllable interactions and very low decoherence, as required for quantum computation.

  17. Designer disordered complex media : hyperuniform photonic and phononic band gap materials.

    OpenAIRE

    Amoah, T. K.

    2016-01-01

    In this thesis we investigate designer disordered complex media for photonics and phononics applications. Initially we focus on the photonic properties and we analyse hyperuniform disordered structures (HUDS) using numerical simulations. Photonic HUDS are a new class of photonic solids, which display large, isotropic photonic band gaps (PBG) comparable in size to the ones found in photonic crystals (PC). We review their complex interference properties, including the origin of PBGs and potent...

  18. Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes

    OpenAIRE

    2012-01-01

    Room temperature direct band gap emission is observed for Si-substrate-based Ge p-i-n heterojunction photodiode structures operated under forward bias. Comparisons of electroluminescence with photoluminescence spectra allow separating emission from intrinsic Ge (0.8 eV) and highly doped Ge (0.73 eV). Electroluminescence stems from carrier injection into the intrinsic layer, whereas photoluminescence originates from the highly n-doped top layer because the exciting visible laser wavelength is ...

  19. Engineering of the band gap and optical properties of thin films of yttrium hydride

    Energy Technology Data Exchange (ETDEWEB)

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul, E-mail: smagulk@ife.no [Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2014-07-21

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  20. Lewis acid adducts of narrow band gap conjugated polymers.

    Science.gov (United States)

    Welch, Gregory C; Bazan, Guillermo C

    2011-03-30

    We report on the interaction of Lewis acids with narrow band gap conjugated copolymers containing donor and acceptor units. Examination of the widely used poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-b:3,4-b']dithiophene)-2,6-(diyl-alt-benzo[2,1,3]thiadiazole)-4,7-diyl] (1) shows weaker binding with B(C(6)F(5))(3) when compared with a small molecule that contains a cyclopenta-[2,1-b:3,4-b']dithiophene (CDT) unit flanked by two benzo[2,1,3]thiadiazole (BT) fragments. Studies on model compounds representative of 1, together with a comparison between B(C(6)F(5))(3) and BBr(3), indicate that the propensity for Lewis acid coordination is decreased because of steric encumbrance surrounding the BT nitrogen sites. These observations led to the design of chromophores that incorporate an acceptor unit with a more basic nitrogen site, namely pyridal[2,1,3]thiadiazole (PT). That this strategy leads to a stronger B-N interaction was demonstrated through the examination of the reaction of B(C(6)F(5))(3) with two small molecules bis(4,4-bis(hexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-4,7-pyridal[2,1,3]thiadiazole (8) and bis{2-thienyl-(4,4-bis(hexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)}-4,7-pyridal[2,1,3]thiadiazole (9) and two polymer systems (poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-b:3,4-b']dithiophene)-2,6-diyl-alt-([1,2,5]thiadiazolo[3,4-c]pyridine)-4,7-diyl] (10) and poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-b:3,4-b']dithiophene)-2,6-diyl-alt-(4',7'-bis(2-thienyl)-[1,2,5]thiadiazolo[3,4-c]pyridine)-5,5-diyl] (11). From a materials perspective, it is worth pointing out that through the binding of B(C(6)F(5))(3), new NIR-absorbing polymers can be generated with band gaps from 1.31 to 0.89 eV. A combination of studies involving ultraviolet photoemission spectroscopy and density functional theory shows that the narrowing of the band gap upon borane coordination to the pyridal nitrogen on PT is a result of lowering the energies of both the highest occupied molecular

  1. Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    CERN Document Server

    Zhukovsky, Sergei V; Babicheva, Viktoriia E; Lavrinenko, Andrei V; Sipe, J E

    2013-01-01

    We theoretically study the propagation of large-wavevector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer ("substructure") are modulated ("superstructured") on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection are shown to form within the volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance peaks of the Fabry-P\\'erot nature are shown to be present within the stop bands. More complicated superstructure geometries are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar s...

  2. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    Science.gov (United States)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27–61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72–93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  3. CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)

    2012-09-20

    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.

  4. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    Science.gov (United States)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  5. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering.

    Science.gov (United States)

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-01

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  6. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering

    Science.gov (United States)

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-01

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  7. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    Energy Technology Data Exchange (ETDEWEB)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim [FEMTO-ST Institute, Université de Franche-Comté, UBFC, CNRS, ENSMM, UTBM, 15B Av. des Montboucons, F-25030 Besançon (France)

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.

  8. Research on the elastic wave band gaps of curved beam of phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shaogang, Liu; Shidan, Li; Haisheng, Shu, E-mail: shuhaisheng@hrbeu.edu.cn; Weiyuan, Wang; Dongyan, Shi; Liqiang, Dong; Hang, Lin; Wei, Liu

    2015-01-15

    Based on wave equations of Timoshenko curved beam, the theoretical derivation and numerical calculation of the behavior of in-plane and out-of-plane wave propagating in curved beam of phononic crystals (CBPC) are carried out using transfer matrix method combined with the Bloch theorem. Finite CBPC is also simulated by FEM method. It is shown that both in-plane and out-of-plane elastic waves band gaps exist in CBPC. Compared with equivalent straight beam of phononic crystals (SBPC), CBPC has some unique characteristics, such as the first complete in-plane band gap, special in-plane coupling band gap, and out-of-plane coupling band gap. In those band gaps, CBPC has a better property of vibration reduction than the equivalent SBPC in some ways. Furthermore, effects of curvature of CBPC on the in-plane and out-of-plane band gaps are discussed.

  9. Design Analysis of An Electromagnetic Band Gap Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2011-01-01

    Full Text Available Problem statement: Wideband compact antenna is highly demandable due to the dynamic development in the wireless technology. Approach: A simple, compact EBG microstrip antenna is proposed in this study that covers a wideband of 250 GHz and the design is conformal with the 2.45 GHz ISM band (WLAN, IEEE 802.11b and g/Bluetooth/RFID applications. Results: A 6×6 array of square unit cell formed the EBG structure which is incorporated with the radiating patch to enhance the antenna performances. This design achieved an impedance bandwidth of 10.14% (2.34-2.59 GHz at -10 dB return loss and VSWR ≤ 2. Simulated radiation pattern is almost omnideirectional. Conclusion/Recommendations: The simulated results prove the compatibility of the EBG antenna with the 2.45 GHz ISM band applications. Further enhancement of the antenna performance with improved design is under consideration.

  10. Reduction of Refractive Index Contrast Threshold for Photonic Band-Gap in Square Lattices

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Feng; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2005-01-01

    @@ The threshold of refractive index contrast (RIC) to open a photonic band gap can be reduced by symmetry breaking. For the case of square lattice composed by dielectric cylinders, the absolute band gap is demonstrated by inserting small rods in the centre of the lattices, and the threshold RIC is reduced to 3.8. As for the square lattices composed by air holes in dielectric, the minimal RIC required for an absolute band gap decreases to 2.20.

  11. Synthesis of narrow band gap (V{sub 2}O{sub 5}){sub x}-(TiO{sub 2}){sub 1-x} nano-structured layers via micro arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bayati, M.R., E-mail: bayati@iust.ac.ir [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Moshfegh, A.Z. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)

    2010-02-15

    V{sub 2}O{sub 5}-TiO{sub 2} layers with a sheet-like morphology were synthesized by micro arc oxidation process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Phase structure and chemical composition of the layers were also studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. It was revealed that the composite layers had a sheet-like structure average thickness of which was about 100 nm depending on the applied voltage. The layers consisted of anatase, rutile, and vanadium pentoxide phases fractions of which varied with the applied voltage. The optical properties of the layers were also examined employing a UV-vis spectrophotometer. It was found that the absorption edge of the grown composite layers shifted toward the visible wavelengths when compared to MAO-synthesized pure titania layers. The band gap energy of the composite layers was calculated as 2.58 eV. Furthermore, photo-catalytic performance of the layers was examined by measuring the decomposition rate of methylene blue under ultraviolet and visible irradiations. The results demonstrated that about 90% and 68% of methylene blue solution was decomposed after 120 min ultraviolet and visible irradiations over the composite layers, respectively.

  12. Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field.

    Science.gov (United States)

    Tang, Qing; Bao, Jie; Li, Yafei; Zhou, Zhen; Chen, Zhongfang

    2014-08-07

    Density functional theory computations with dispersion corrections (DFT-D) were performed to investigate the dihalogen interactions and their effect on the electronic band structures of halogenated (fluorinated and chlorinated) BN bilayers and aligned halogen-passivated zigzag BN nanoribbons (BNNRs). Our results reveal the presence of considerable homo-halogen (FF and ClCl) interactions in bilayer fluoro (chloro)-BN sheets and the aligned F (Cl)-ZBNNRs, as well as substantial hetero-halogen (FCl) interactions in hybrid fluoro-BN/chloro-BN bilayer and F-Cl-ZBNNRs. The existence of interfacial dihalogen interactions leads to significant band-gap modifications for the studied BN nanosystems. Compared with the individual fluoro (chloro)-BN monolayers or pristine BNNRs, the gap reduction in bilayer fluoro-BN (B-FF-N array), hybrid fluoro-BN/chloro-BN bilayer (N-FCl-N array), aligned Cl-ZBNNRs (B-ClCl-N alignment), and hybrid F-Cl-ZBNNRs (B-FCl-N alignment) is mainly due to interfacial polarizations, while the gap narrowing in bilayer chloro-BN (N-ClCl-N array) is ascribed to the interfacial nearly-free-electron states. Moreover, the binding strengths and electronic properties of the interactive BN nanosheets and nanoribbons can be controlled by applying an external electric field, and extensive modulation from large-gap to medium-gap semiconductors, or even metals can be realized by adjusting the direction and strength of the applied electric field. This interesting strategy for band gap control based on weak interactions offers unique opportunities for developing BN nanoscale electronic devices.

  13. Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes

    Directory of Open Access Journals (Sweden)

    E. Kasper

    2012-01-01

    Full Text Available Room temperature direct band gap emission is observed for Si-substrate-based Ge p-i-n heterojunction photodiode structures operated under forward bias. Comparisons of electroluminescence with photoluminescence spectra allow separating emission from intrinsic Ge (0.8 eV and highly doped Ge (0.73 eV. Electroluminescence stems from carrier injection into the intrinsic layer, whereas photoluminescence originates from the highly n-doped top layer because the exciting visible laser wavelength is strongly absorbed in Ge. High doping levels led to an apparent band gap narrowing from carrier-impurity interaction. The emission shifts to higher wavelengths with increasing current level which is explained by device heating. The heterostructure layer sequence and the light emitting device are similar to earlier presented photodetectors. This is an important aspect for monolithic integration of silicon microelectronics and silicon photonics.

  14. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

    Science.gov (United States)

    Wang, Xinquan; Wu, Zhigang

    2017-01-18

    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  15. Crystal thickness and sphere dispersion dependence of the photonic band gap of silica colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    Yongjun He(何拥军); Zhongchao Wei(韦中超); Yongchun Zhong(钟永春); Jianwei Diao(刁建伟); Hezhou Wang(汪河洲)

    2004-01-01

    Experimental results demonstrate that the band gap of colloidal suspension crystal changes with both the thickness of crystal and the dispersity of micro-spheres.As the thickness decreases,a red shift of band gap is observed,and there is a maximum of red shift.The values of the maximum red shifts are dependent on the standard deviations of micro-spheres.The experimental results are consistent with theoretical calculation.As the colloidal suspension crystal is assembled from micro-spheres with a standard deviation of 8.4% in a thick cell,an incident angles independent broadband is observed,which is explained as an amorphous structure.Two amorphous models are discussed.

  16. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Henry Hao-Chuan [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  17. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.

    Science.gov (United States)

    Liang, Yunye; Wang, Vei; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-11-14

    The electronic properties of silicene zigzag nanoribbons with the presence of perpendicular fields are studied by using first-principles calculations and the generalized nearest neighboring approximation method. In contrast to the planar graphene, in silicene the Si atoms are not coplanar. As a result, by applying perpendicular fields to the two-dimensional silicene sheet, the on-site energy can be modulated and the band gap at the Dirac point is open. The buckled structure also creates a height difference between the two edges of the silicene zigzag nanoribbons. We find that the external fields can modulate the energies of spin-polarized edge states and their corresponding band gaps. Due to the polarization in the plane, the modulation effect is width dependent and becomes much more significant for narrow ribbons.

  18. Negative capacitance switching via VO2 band gap engineering driven by electric field

    Science.gov (United States)

    He, Xinfeng; Xu, Jing; Xu, Xiaofeng; Gu, Congcong; Chen, Fei; Wu, Binhe; Wang, Chunrui; Xing, Huaizhong; Chen, Xiaoshuang; Chu, Junhao

    2015-03-01

    We report the negative capacitance behavior of an energy band gap modulation quantum well with a sandwich VO2 layer structure. The phase transition is probed by measuring its capacitance. With the help of theoretical calculations, it shows that the negative capacitance changes of the quantum well device come from VO2 band gap by continuously tuning the temperature or voltage. Experiments reveal that as the current remains small enough, joule heating can be ignored, and the insulator-metal transition of VO2 can be induced by the electric field. Our results open up possibilities for functional devices with phase transitions induced by external electric fields other than the heating or electricity-heat transition.

  19. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    Power semiconductor technology has dominated the evolution of switched mode power supplies (SMPS). Advances in silicon (Si) technology, as the introduction of metal oxide field effect transistor (MOSFET), isolated gate bipolar transistors (IGBT), superjunction vertical structures and Schottky...... compared to Si semiconductors. Moreover, both semiconductor materials are particularly interesting for high temperature operation. These characteristics makes integration of SiC and GaN devices as the next logical step to further increase efficiency and power density in SMPS. This work is part of the Ph......D project “Single phase PFC converter using wide band-gap devices” and focuses on attainable advantages by introducing wide band-gap semiconductors, and more particularly GaN devices in power factor correction circuits (PFC). First, an overview of current state-of-the-art semiconductor technology in the 600...

  20. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    KAUST Repository

    Yiu, Alan T.

    2012-02-01

    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.

  1. Differences of Band Gap Characteristics of Square and Triangular Lattice Photonic Crystals in Terahertz Range

    Institute of Scientific and Technical Information of China (English)

    Jie Zha; Zhi-Yong Zhong; Huai-Wu Zhang; Qi-Ye Wen; Yuan-Xun Li

    2009-01-01

    Band gap characteristics of the photonic crystals in terahertz range with square lattice and triangular lattice of GaAs cylinders are comparatively studied by means of plane wave method (PWM). The influence of the radius on the band gap width is analyzed and the critical values where the band gap appears are put forward. The results show that themaximum band gap width of photonic crystal with triangular lattice of GaAs cylinders is much wider than that of photonic crystal with square lattice. The research provides a theoretic basis for the development of terahertz (THz) devices.

  2. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  3. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    2010-01-01

    We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer was expl......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...

  4. Band-inverted gaps in InAs/GaSb and GaSb/InAs core-shell nanowires

    Science.gov (United States)

    Luo, Ning; Huang, Guang-Yao; Liao, Gaohua; Ye, Lin-Hui; Xu, H. Q.

    2016-12-01

    The [111]-oriented InAs/GaSb and GaSb/InAs core-shell nanowires have been studied by the 8 × 8 Luttinger-Kohn Hamiltonian to search for non-vanishing fundamental gaps between inverted electron and hole bands. We focus on the variations of the band-inverted fundamental gap, the hybridization gap, and the effective gap with the core radius and shell thickness of the nanowires. The evolutions of all the energy gaps with the structural parameters are shown to be dominantly governed by the effect of quantum confinement. With a fixed core radius, a band-inverted fundamental gap exists only at intermediate shell thicknesses. The maximum band-inverted gap found is ~4.4 meV for GaSb/InAs and ~3.5 meV for InAs/GaSb core-shell nanowires, and for the GaSb/InAs core-shell nanowires the gap persists over a wider range of geometrical parameters. The intrinsic reason for these differences between the two types of nanowires is that in the shell the electron-like states of InAs is more delocalized than the hole-like state of GaSb, while in the core the hole-like state of GaSb is more delocalized than the electron-like state of InAs, and both favor a stronger electron-hole hybridization.

  5. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    Science.gov (United States)

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  6. Reflectivity calculated for a 3D silicon photonic band gap crystal with finite support

    CERN Document Server

    Devashish, D; van der Vegt, J J W; Vos, Willem L

    2016-01-01

    We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic band gap, with the aim to interpret recent experiments. We employ the finite element method to study crystals with the cubic diamond-like inverse woodpile structure. The high-index backbone has a dielectric function similar to silicon. We study crystals with a range of thicknesses up to ten unit cells ($L \\leq 10 c$). The crystals are surrounded by vacuum, and have a finite support as in experiments. The polarization-resolved reflectivity spectra reveal Fabry-P{\\'e}rot fringes related to standing waves in the finite crystal, as well as broad stop bands with nearly $100~\\%$ reflectivity, even for thin crystals. From the strong reflectivity peaks, it is inferred that the maximum reflectivity observed in experiments is not limited by finite size. The frequency ranges of the stop bands are in excellent agreement with stop gaps in the photonic band structure, that pertain to infinite and perfect crystals. ...

  7. The structure and band gap design of high Si doping level Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} (x=1/2)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiyan [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Mei, Dajiang, E-mail: meidajiang718@pku.edu.cn [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Du, Xin [Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lin, Zheshuai [Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Chinese Academy of Sciences, Beijing 100190 (China); Zhong, Junbo [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wu, Yuandong, E-mail: wuyuandong2013@outlook.com [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Xu, Jingli [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-06-15

    Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} solutions with high Si doping level (x=1/2) are considered and new compound AgGaSiSe{sub 4} has been synthesized. It crystallizes in space group Aea2 and possesses very long axis of a=63.06(1)Å. The three-dimensional framework in AgGaSiSe{sub 4} is composed of AgSe{sub 3} trigonal planar units, AgSe{sub 4} tetrahedra and MSe{sub 4}(M=Si, Ga) tetrahedra. AgGaSiSe{sub 4} is a congruently melting compound with the melt temperature of 759 °C. The diffuse reflectance measurements reveal the band gap of 2.63 eV in AgGaSiSe{sub 4} and the value is 0.33 eV larger than that of Ag{sub 3}Ga{sub 3}SiSe{sub 8} (2.30 eV). - Graphical abstract: The Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} with high Si doping level (x=1/2) has been studied and the new compound AgGaSiSe{sub 4} was synthesized for the first time. AgGaSiSe{sub 4} crystallizes in a new structure type in space group Aea2 and adopts a three-dimensional framework consisting of AgSe{sub 3} trigonal planar units, AgSe{sub 4} tetrahedra and MSe{sub 4} (M=Si, Ge) tetrahedra. Display Omitted - Highlights: • Study of Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} with high Si doping level (x=1/2). • Successful synthesis of new compound named AgGaSiSe{sub 4}. • AgGaSiSe{sub 4} crystallizes in space group Aea2 and adopts a three-dimensional framework. • The energy band gap of AgGaSiSe{sub 4} is enlarged compared with Ag{sub 3}Ga{sub 3}SiSe{sub 8}.

  8. Tunable band structure and effective mass of disordered chalcopyrite

    Science.gov (United States)

    Wang, Ze-Lian; Xie, Wen-Hui; Zhao, Yong-Hong

    2017-02-01

    The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1- x Ag x Ga X 2 ( X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1- x Ag x Ga Se 2, and from 2.33 to 2.64 eV for Cu1- x Ag x Ga S 2. The band gap minima and maxima occur at around x = 0:5 and x = 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1- x Ag x Ga X 2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGa X 2.

  9. Mechanical Properties of a Library of Low-Band-Gap Polymers

    DEFF Research Database (Denmark)

    Roth, Bérenger; Savagatrup, Suchol; de los Santos, Nathaniel V.

    2016-01-01

    The mechanical properties of low-band-gap polymers are important for the long-term survivability of roll to-roll processed organic electronic devices. Such devices, e.g., solar cells, displays, and thin-film transistors, must survive the rigors of roll-to-roll coating and also thermal and mechani......The mechanical properties of low-band-gap polymers are important for the long-term survivability of roll to-roll processed organic electronic devices. Such devices, e.g., solar cells, displays, and thin-film transistors, must survive the rigors of roll-to-roll coating and also thermal...... and mechanical forces in the outdoor environment and in stretchable and ultraflexible form factors. This paper measures the stiffness (tensile modulus), ductility (crack-onset strain), or both of a combinatorial library of 51 low-band-gap polymers. The purpose of this study is to systematically screen a library...... of an isolated molecule only partially determines the mechanical properties another important codeterminant is the packing structure some general trends can be identified. (1) Fused rings tend to increase the modulus and decrease the ductility. (2) Branched side chains have the opposite effect. Despite...

  10. Band gap energy and optical transitions in polyenes formed by thermal decomposition of polyvinyl alcohol

    Science.gov (United States)

    Kulak, A. I.; Bondarava, G. V.; Shchurevich, O. A.

    2013-07-01

    The band gap of the ensemble of oligoene clusters formed by thermocatalytic decomposition of polyvinyl alcohol is parametrized using optical absorption spectra. A band gap energy of E gm =1.53 ± 0.02 eV at the end of an infinite polyene chain is found by extrapolating the energies of π → π* transitions in clusters with a number of double bonds varying from 4 to 12. This value is close to the band gap of trans-polyacetylene and the lower bound for the Tauc energy E gT =1.50 eV, which characterizes the minimum interband transition energy. E gT is essentially independent of the concentration of oligoene clusters, which is determined by the concentration of the AlCl3 thermal decomposition catalyst. The Urbach energy determined from the long wavelength edge of the spectrum falls from 2.21 to 0.66 eV as the AlCl3 concentration is raised from 11.1 to 41.7 mmol per mol of polyvinyl alcohol structural units.

  11. Tuning the electronic band-gap of fluorinated 3C-silicon carbide nanowires

    Science.gov (United States)

    Miranda Durán, Álvaro; Trejo Baños, Alejandro; Pérez, Luis Antonio; Cruz Irisson, Miguel

    The possibility of control and modulation of the electronic properties of silicon carbide nanowires (SiCNWs) by varying the wire diameter is well known. SiCNWs are particularly interesting and technologically important, due to its electrical and mechanical properties, allowing the development of materials with specific electronic features for the design of stable and robust electronic devices. Tuning the band gap by chemical surface passivation constitutes a way for the modification of the electronic band gap of these nanowires. We present, the structural and electronic properties of fluorinated SiCNWs, grown along the [111] crystallographic direction, which are investigated by first principles. We consider nanowires with six diameters, varying from 0.35 nm to 2.13 nm, and eight random covering schemes including fully hydrogen- and fluorine terminated ones. Gibbs free energy of formation and electronic properties were calculated for the different surface functionalization schemes and diameters considered. The results indicate that the stability and band gap of SiCNWs can be tuned by surface passivation with fluorine atoms This work was supported by CONACYT infrastructure project 252749 and UNAM-DGAPA-PAPIIT IN106714. A.M. would like to thank for financial support from CONACyT-Retención. Computing resources from proyect SC15-1-IR-27 of DGTIC-UNAM are acknowledged.

  12. Band-gaps in long Josephson junctions with periodic phase-shifts

    Science.gov (United States)

    Ahmad, Saeed; Susanto, Hadi; Wattis, Jonathan A. D.

    2017-04-01

    We investigate analytically and numerically a long Josephson junction on an infinite domain, having arbitrary periodic phase shift of κ, that is, the so-called 0-κ long Josephson junction. The system is described by a one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices. We discuss the existence of periodic solutions of the system and investigate their stability both in the absence and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied bias current beyond which static periodic solutions cease to exist. Due to the periodic discontinuity in the phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias current on the band-gap structure. We present numerical simulations to support our analytical results.

  13. {ital In Situ} Band Gap Engineering of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. [Department of Physics, University of California at Berkeley, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rubio, A. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid (Spain)

    1997-09-01

    Bond rotation defects close the gap in large-gap nanotubes, open the gap in small-gap nanotubes, and increase the density of states in metallic nanotubes. Not only are these defects likely to be present in as-grown nanotubes, but they could be introduced locally into intact nanotubes, thereby opening a new road towards device applications. {copyright} {ital 1997} {ital The American Physical Society}

  14. SINGLE CRYSTAL GROWTH, X-RAY STRUCTURE ANALYSIS, OPTICAL BAND GAP, RAMAN SPECTRA, STRAIN TENSOR AND PHOTOLUMINSCENCE PROPERTIES IN [HgCl4]- [R]+ AND [ZnCl4]- [R]+ (R = 2-AMINO-5-CHLOROPYRIDINE HYBRID MATERIALS

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2015-09-01

    Full Text Available The single crystal growth  of tetrachloromercurate (II [HM-1] and tetrachlorozincate (II [HM-2] with 2-amino-5-chloropyridine has been performed by slow cooling (SC crystal growth technique of solution growth methodin which needle shaped transparent single crystals (0.5 x 0.2 x 0.2mm were obtained. The crystal structures of these hybrid materials have been studied by X-ray diffraction, experimental and computational methods. [HgCl4]2- anions have a distorted tetrahedral geometry and the tetrahedra hybrid structure exhibit interwoven inorganic-organic layers mingled through N-Hδ+...Clδ- hydrogen bonding interactions. The mercurophilic interactions [Hg...Hg = 3.984(5Å] and halogen interactions [Cl...Cl = 3.406(2Å] form 2D parallelogram pattern of secondary interactions in [HM-1] whereas for [HM-2] crystal structure is stabilized by Cl...Cl = 3.357(2Å interactions. UV-vis absorption spectra depict the change in optical band gap from 3.01 eV to 3.42 eV on replacing the metal halide group, could be due to increase in optical absorption as a function of wavelength. The Raman and Hyper-Raman tensors calculations were performed based on single crystal X-ray data and the Lagrangian strain tensor calculations show the degree of lattice distortion = 1.794 between [HM-1] and [HM-2] which are useful tools for the optical response properties of inorganic-organic hybrid derivatives. The photoluminescence emission spectra peaks were observed in the wavelength range of 371 to 598 nm for material [HM-1] and  in the wavelength range of 384 to 600 nm for material [HM-2] and lie in the visible range for both materials.

  15. Giant Enhancement of Second Harmonic Generation at Photonic Band Gap Edges

    Institute of Scientific and Technical Information of China (English)

    MA Dong-Li; REN Ming-Liang; DOU Jun-Hong; LI Zhi-Yuan

    2010-01-01

    @@ Second harmonic generation(SHG)in one-dimensional nonlinear photonic crystals made from periodically alternating ferroelectric and dielectric layers is investigated by means of the transfer matrix method.When tunedat the photonic band gap(PBG)edges,the fundamental wave and second harmonic wave slow down,and the filed enhancement takes place within the nonlinear photonic crystal.The phase mismatching can be compensated for to some extent and the second harmonic process will be enhanced.Numerical results show that the enhancement of SHG in the PBG structure can be up to four orders of magnitude compared with the traditional quasi-phase-matching structure.

  16. A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer.

    Science.gov (United States)

    Büchner, Christin; Wang, Zhu-Jun; Burson, Kristen M; Willinger, Marc-Georg; Heyde, Markus; Schlögl, Robert; Freund, Hans-Joachim

    2016-08-23

    An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly.

  17. Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi Aghaei, Sadegh; Calizo, Irene, E-mail: icalizo@fiu.edu [Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)

    2015-09-14

    The popularity of graphene owing to its unique and exotic properties has triggered a great deal of interest in other two-dimensional nanomaterials. Among them silicene shows considerable promise for electronic devices with a carrier mobility comparable to graphene, flexible buckled structure, and expected compatibility with silicon electronics. Using first-principle calculations based on density functional theory, the electronic properties of armchair silicene nanoribbons perforated with periodic nanoholes (ASiNRPNHs) are investigated. Two different configurations of mono-hydrogenated (:H) and di-hydrogenated (:2H) silicene edges are considered. Pristine armchair silicene nanoribbons (ASiNRs) can be categorized into three branches with width W = 3P − 1, 3P, and 3P + 1, P is an integer. The order of their energy gaps change from “E{sub G} (3P − 1) < E{sub G} (3P) < E{sub G} (3P + 1)” for W-ASiNRs:H to “E{sub G} (3P + 1) < E{sub G} (3P − 1) < E{sub G} (3P)” for W-ASiNRs:2H. We found the band gaps of W-ASiNRs:H and (W + 2)-ASiNRs:2H are slightly different, giving larger band gaps for wider ASiNRs:2H. ASiNRPNHs' band gaps changed based on the nanoribbon's width, nanohole's repeat periodicity and position relative to the nanoribbon's edge compared to pristine ASiNRs because of changes in quantum confinement strength. ASiNRPNHs:2H are more stable than ASiNRPNHs:H and their band gaps are noticeably greater than ASiNRPNHs:H. We found that the value of energy band gap for 12-ASiNRPNHs:2H with repeat periodicity of 2 is 0.923 eV. This value is about 2.2 times greater than pristine ASiNR:2H and double that of the 12-ASiNRPNHs:H with repeat periodicity of 2.

  18. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian;

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  19. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  20. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.

    Science.gov (United States)

    Vatanabe, Sandro L; Paulino, Glaucio H; Silva, Emílio C N

    2014-08-01

    Phononic crystals (PCs) can exhibit phononic band gaps within which sound and vibrations at certain frequencies do not propagate. In fact, PCs with large band gaps are of great interest for many applications, such as transducers, elastic/acoustic filters, noise control, and vibration shields. Previous work in the field concentrated on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Because the main property of PCs is the presence of band gaps, one possible way to design microstructures that have a desired band gap is through topology optimization. Thus in this work, the main objective is to maximize the width of absolute elastic wave band gaps in piezocomposite materials designed by means of topology optimization. For band gap calculation, the finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional piezocomposite unit cells. Higher order frequency branches are investigated. The results demonstrate that tunable phononic band gaps in piezocomposite materials can be designed by means of the present methodology.

  1. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J. [Department of Physics, University of Puerto Rico, San Juan, PR 00936-8377 (Puerto Rico); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714 (China); Peng, X.Y.; Dasari, K.; Palai, R. [Department of Physics, University of Puerto Rico, San Juan, PR 00936-8377 (Puerto Rico); Feng, P., E-mail: p.feng@upr.edu [Department of Physics, University of Puerto Rico, San Juan, PR 00936-8377 (Puerto Rico)

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of band gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.

  2. Photonic band-gap formation by optical-phase-mask lithography.

    Science.gov (United States)

    Chan, Timothy Y M; Toader, Ovidiu; John, Sajeev

    2006-04-01

    We demonstrate an approach for fabricating photonic crystals with large three-dimensional photonic band gaps (PBG's) using single-exposure, single-beam, optical interference lithography based on diffraction of light through an optical phase mask. The optical phase mask (OPM) consists of two orthogonally oriented binary gratings joined by a thin, solid layer of homogeneous material. Illuminating the phase mask with a normally incident beam produces a five-beam diffraction pattern which can be used to expose a suitable photoresist and produce a photonic crystal template. Optical-phase-mask Lithography (OPML) is a major simplification from the previously considered multibeam holographic lithography of photonic crystals. The diffracted five-beam intensity pattern exhibits isointensity surfaces corresponding to a diamondlike (face-centered-cubic) structure, with high intensity contrast. When the isointensity surfaces in the interference patterns define a silicon-air boundary in the resulting photonic crystal, with dielectric contrast 11.9 to 1, the optimized PBG is approximately 24% of the gap center frequency. The ideal index contrast for the OPM is in the range of 1.7-2.3. Below this range, the intensity contrast of the diffraction pattern becomes too weak. Above this range, the diffraction pattern may become too sensitive to structural imperfections of the OPM. When combined with recently demonstrated polymer-to-silicon replication methods, OPML provides a highly efficient approach, of unprecedented simplicity, for the mass production of large-scale three-dimensional photonic band-gap materials.

  3. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.

    Science.gov (United States)

    Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa

    2014-05-21

    We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices.

  4. Multi-wavelength photonic band gaps based on quasi-periodically poled lithium niobate ordered in Fibonacci sequences

    Institute of Scientific and Technical Information of China (English)

    Zhuoer Zhou; Jianhong Shi; Xianfeng Chen

    2009-01-01

    We demonstrate a quasi-periodic structure exhibiting multiple photonic band gaps (PBGs) based on submicron-period poled lithium niobate (LN).The structure consists of two building blocks,each containing a pair of antiparallel poled domains,arranged as a Fibonacci sequence.The gap wavelengths are analyzed with the Fibonacci sequence parameters such as the quasiperiodic indices and the average lattice parameter.The transmission properties are investigated by a traditional 4x4 matrix method.It has also been proved that the gap depth can be tuned by the lengths of poled domains.

  5. Coupled flexural-torsional vibration band gap in periodic beam including warping effect

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Yu; Yu Dian-Long; Han Xiao-Yun; Cai Li

    2009-01-01

    The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory.The band structures of the periodic beam,both including warping effect and ignoring warping effect,are obtained.The frequency response function of the finite periodic beams is simulated with finite element method,which shows large vibration attenuation in the frequency range of the gap as expected.The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored.The result including warping effect agrees quite well with the simulated result.

  6. Band gap engineering of ZnO by doping with Mg

    Science.gov (United States)

    Rana, N.; Chand, Subhash; Gathania, Arvind K.

    2015-08-01

    Mg-doped zinc oxide (MgxZn1-xO (0 ≤ x ≤ 0.20)) samples were synthesized by polymeric precursor method. The structural and optical properties were investigated by x-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy. XRD patterns reveal that synthesized samples have a wurtzite structure. Lattice parameters, the degree of distortion of the samples were calculated from the XRD. SEM images show that the synthesized samples contain the elongated spherical shaped grains. The Raman scattering investigation and FTIR spectra authenticate the presence of Mg in the system and also show phase segregation at the higher Mg doping concentration. Optical band gap energy is determined from the Tauc relation. It is interesting to know that optical band energy exhibits blue shift with the increase of Mg doping concentration up to 16 mole %.

  7. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu3N

    Science.gov (United States)

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.; Thompson, Paul; Muryn, Christopher A.; Weerakkody, A. D.; Mitrovic, I. Z.; Hall, S.; Treharne, Rob; Dhanak, Vin R.; Scanlon, David O.; Zakutayev, Andriy; Veal, Tim D.

    2017-03-01

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO3 semiconductor Cu3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300 K . A direct gap of 1.68 eV is associated with the absorption onset at 300 K , which strengthens continuously and reaches a magnitude of 3.5 ×105cm-1 at 2.7 eV , suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24 meV between 4.2 and 300 K , giving an atypically small band-gap temperature coefficient d Eg/d T of -0.082 meV /K . Additionally, the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50 K . To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10-6K-1 below 80 K ), while estimating the Debye temperature, lattice heat capacity, and Grüneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. As band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.

  8. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    Science.gov (United States)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  9. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  10. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    Science.gov (United States)

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  11. Millimeter-wave waveguiding using photonic band structures

    Science.gov (United States)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    Current trends in device miniaturization and integration, especially in the development of microwave monolithic integrated circuits, calls for flexible, arbitrarily shaped and curved interconnects. Standard dielectric waveguides and microstrip lines are subject to prohibitive losses and their functionality is limited because of their unflexible structures. The problem is addressed by confining the wave- guiding path in a substrate with a Photonic Band Gap structure in a manner that will result in the guided mode being localized within the band gap. Two devices implementing Photonic Band Structures for millimeter waves confinement are presented. The first waveguide is a linear defect in triangular lattice created in a silicon slab (TE mode). The structure consists of parallel air holes of circular cross sections. The silicon was laser drilled to create the 2D crystal. The second device consists of alumina rods arranged in a triangular lattice, surrounded by air and sandwiched between two parallel metal plates (TM mode). Electromagnetic wave (W-band) confinement was obtained in both devices for straight and bent waveguides. Three branch waveguides (intersecting line defects) was studied as well. Measurements confirmed the lowloss waveguide confinement property of the utilizing Photonic Band Gap structure. This structure can find applications in power combiner/splitter and other millimeter wave devices.

  12. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Malashchonak, M.V., E-mail: che.malasche@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Gaiduk, P.I. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-08-31

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m{sup 2}g{sup −1}) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y{sub max} = 90%; 0.1 M Na{sub 2}S + 0.1 M Na{sub 2}SO{sub 3}), but also in the sub-band-gap (SBG) range (Y{sub max} = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E{sub U}) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E{sub U} = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E{sub U} = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E{sub U} = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles.

  13. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bar, M.; Nishiwaki, S.; Weinhardt, L.; Pookpanratana, S.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Shafarman, W.; Heske, C.

    2008-06-24

    The surface composition of Cu(In,Ga)(S,Se)2 (?CIGSSe?) thin films intrinsically deviates from the corresponding bulk composition, which also modifies the electronic structure and thus the optical properties.We have used a combination of photon and electron spectroscopies with different information depths to gain depth-resolved information on the band gap energy (Eg) in CIG(S)Se thin films. We find an increasing Eg with decreasing information depth, indicating the formation of a surface region with significantly higher Eg. This Eg-widened surface region extends further into the bulk of the sulfur-free CIGSe thin film compared to the CIGSSe thin film.

  14. Direct space-time observation of pulse tunneling in an electromagnetic band gap

    Science.gov (United States)

    Doiron, Serge; Haché, Alain; Winful, Herbert G.

    2007-08-01

    We present space-time-resolved measurements of electromagnetic pulses tunneling through a coaxial electromagnetic band gap structure. The results show that during the tunneling process the field distribution inside the barrier is an exponentially decaying standing wave whose amplitude increases and decreases as it slowly follows the temporal evolution of the input pulse. At no time is a pulse maximum found inside the barrier, and hence the transmitted peak is not the incident peak that has propagated to the exit. The results support the quasistatic interpretation of tunneling dynamics and confirm that the group delay is not the traversal time of the input pulse peak.

  15. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films

    Science.gov (United States)

    Bär, M.; Nishiwaki, S.; Weinhardt, L.; Pookpanratana, S.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Shafarman, W. N.; Heske, C.

    2008-12-01

    The surface composition of Cu(In,Ga)(S,Se)2 ("CIGSSe") thin films intrinsically deviates from the corresponding bulk composition, which also modifies the electronic structure and thus the optical properties. We used a combination of photon and electron spectroscopies with different information depths to gain depth-resolved information on the band gap energy (Eg) in CIG(S)Se thin films. We find an increasing Eg with decreasing information depth, indicating the formation of a surface region with significantly higher Eg. This Eg-widened surface region extends further into the bulk of the sulfur-free CIGSe thin film compared to the CIGSSe thin film.

  16. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics

    2004-07-01

    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  17. Controllable Synthesis of Band Gap-Tunable and Monolayer Transition Metal Dichalcogenide Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-Han eSu

    2014-07-01

    Full Text Available The electronic and optical properties of transition metal dichalcogenide (TMD materials are directly governed by their energy gap; thus, the band gap engineering has become an important topic recently. Theoretical and some experimental results have indicated that these monolayer TMD alloys exhibit direct-gap properties and remain stable at room temperature, making them attractive for optoelectronic applications. Here we systematically compared the two approaches of forming MoS2xSe2(1-x monolayer alloys: selenization of MoS2 and sulfurization of MoSe2. The optical energy gap of as-grown CVD MoS2 can be continuously modulated from 1.86 eV (667 nm to 1.57 eV (790 nm controllable by the reaction temperature. Spectroscopic and microscopic evidences show that the Mo-S bonds can be replaced by the Mo-Se bonds in a random and homogeneous manner. By contrast, the replacement of Mo-Se by Mo-S does not randomly occur in the MoSe2 lattice, where the reaction preferentially occurs along the crystalline orientation of MoSe2 and thus the MoSe2/MoS2 biphases are easily observed in the alloys, which makes the optical band gap of these alloys distinctly different. Therefore, the selenization of metal disulfide is preferred and the proposed synthetic strategy opens up a simple route to control the atomic structure as well as optical properties of monolayer TMD alloys.

  18. The optical band gap investigation of PVP-capped ZnO nanoparticles synthesized by sol-gel method

    Science.gov (United States)

    Yuliah, Yayah; Bahtiar, Ayi; Fitrilawati, Siregar, Rustam E.

    2016-02-01

    ZnO Nanoparticles (NPs) has unique natures on their crystal structure, direct band gap and high exciton binding energy, consequently applied in optoelectronic devices such as solar cells, optical wave guide and light emitting diodes (LED). However the drawback was ZnO NPs tend to agglomerate and turn to nano-structured materials with poor properties. Effort to avoid agglomerations generally resolved by surface modification of ZnO NPs to obtain well-dispersed suspension. However changes in the surface of ZnO NPs may change the electronic structure and density of states of ZnO NPs, in turn may change the optical band gap. Thus, the objective of current research is investigation of optical band gap of ZnO NPs due to surface modification by capping agent of poly-4-vinylpyrrolidone (PVP) molecules. Uncapped and PVP-capped ZnO nanoparticles were prepared by sol-gel method. The characteristics of surface modifications were investigated by UV-Vis and Photo Luminescence spectroscopy and Transmission Electron Microscope (TEM). The results shows the surface modification has change the band gap of ZnO NPs obtained at second precipitated stage. In contrast, the change of the optical band gap did not observe due to the surface modification of ZnO NPs obtained at the first stage. It was concluded that PVP capping on ZnO NPs did not affect on the band gap when the capping was performed on first stage. It is emphasized that this statement also supported by TEM images observations.

  19. Strain Engineering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates

    Science.gov (United States)

    Leubner, Philipp; Lunczer, Lukas; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.

    2016-08-01

    The HgTe quantum well (QW) is a well-characterized two-dimensional topological insulator (2D TI). Its band gap is relatively small (typically on the order of 10 meV), which restricts the observation of purely topological conductance to low temperatures. Here, we utilize the strain dependence of the band structure of HgTe QWs to address this limitation. We use CdTe-Cd 0.5Zn0.5Te strained-layer superlattices on GaAs as virtual substrates with adjustable lattice constant to control the strain of the QW. We present magnetotransport measurements, which demonstrate a transition from a semimetallic to a 2D-TI regime in wide QWs, when the strain is changed from tensile to compressive. Most notably, we demonstrate a much enhanced energy gap of 55 meV in heavily compressively strained QWs. This value exceeds the highest possible gap on common II-VI substrates by a factor of 2-3, and extends the regime where the topological conductance prevails to much higher temperatures.

  20. Elastic wave band gaps tuned by configuring radii of rods in two-dimensional phononic crystals with a hybrid square-like lattice

    Science.gov (United States)

    Liu, Rongqiang; Zhao, Haojiang; Zhang, Yingying; Guo, Honghwei; Deng, Zongquan

    2015-12-01

    The plane wave expansion (PWE) method is used to calculate the band gaps of two-dimensional (2D) phononic crystals (PCs) with a hybrid square-like (HSL) lattice. Band structures of both XY-mode and Z-mode are calculated. Numerical results show that the band gaps between any two bands could be maximized by altering the radius ratio of the inclusions at different positions. By comparing with square lattice and bathroom lattice, the HSL lattice is more efficient in creating larger gaps.

  1. Band gap bowing and electron localization of (GaxIn1-x)N

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byounghak; Wang, Lin-Wang

    2006-05-09

    The band gap bowing and the electron localization ofGaxIn1-xN are calculated using both the local density approximation (LDA)and screened-exchange local density functional (sX-LDA) methods. Thecalculated sX-LDA band gaps are in good agreement with the experimentallyobserved values, with errors of -0.26 and 0.09 eV for bulk GaN and InN,respectively. The LDA band gap errors are 1.33 and 0.81 eV for GaN andInN, in order. In contrast to the gap itself, the band gap bowingparameter is found to be very similar in sX-LDA and LDA. We identify thelocalization of hole states in GaxIn1-xN alloys along In-N-In chains. Thepredicted localizationis stronger in sX-LDA.

  2. Reversible tuning of ZnO optical band gap by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Szetsen, E-mail: slee@cycu.edu.tw [Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China); Peng, Jr-Wei [Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China); Ho, Ching-Yuan [Department of Mechanical Engineering, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ZnO optical band gap blue-shifts with hydrogen plasma treatment. Black-Right-Pointing-Pointer The ZnO optical band gap red-shifts with oxygen plasma treatment. Black-Right-Pointing-Pointer The ZnO optical band gap can be reversibly fine-tuned. - Abstract: Zinc oxide (ZnO) films synthesized by reacting zinc nitrate with hexamethylenetetramine were treated with hydrogen and oxygen plasmas. From UV-visible absorption and optical emission inspection, we have found that the optical band gap of ZnO films blue-shifted with hydrogen plasma treatment, but red-shifted with oxygen plasma treatment. By alternating the treatment sequence of hydrogen and oxygen plasmas, the ZnO optical band gap can be reversibly fine-tuned with the tunable range up to 80 meV. Scanning electron microscopy characterization indicates that the variation of the optical band gap is attributed to the competition between amorphous and crystalline forms of ZnO. The mechanism of reversible optical band gap tuning is discussed.

  3. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  4. Structural Dynamics of Tropical Moist Forest Gaps.

    Directory of Open Access Journals (Sweden)

    Maria O Hunter

    Full Text Available Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down differ from traditional field measurements (bottom up, and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012 at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8% as compared to Ducke Reserve (2.0%. On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1. Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively. At Tapajos, height loss had a much stronger signal

  5. Structural Dynamics of Tropical Moist Forest Gaps.

    Science.gov (United States)

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  6. Band-gap engineering of functional perovskites through quantum confinement and tunneling

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Pandey, Mohnish; Thygesen, Kristian Sommer

    2015-01-01

    An optimal band gap that allows for a high solar-to-fuel energy conversion efficiency is one of the key factors to achieve sustainability. We investigate computationally the band gaps and optical spectra of functional perovskites composed of layers of the two cubic perovskite semiconductors BaSnO3...... and BaTaO2N. Starting from an indirect gap of around 3.3 eV for BaSnO3 and a direct gap of 1.8 eV for BaTaO2N, different layerings can be used to design a direct gap of the functional perovskite between 2.3 and 1.2 eV. The variations of the band gap can be understood in terms of quantum confinement...

  7. Carrier concentration dependence of band gap shift in n-type ZnO:Al films

    Science.gov (United States)

    Lu, J. G.; Fujita, S.; Kawaharamura, T.; Nishinaka, H.; Kamada, Y.; Ohshima, T.; Ye, Z. Z.; Zeng, Y. J.; Zhang, Y. Z.; Zhu, L. P.; He, H. P.; Zhao, B. H.

    2007-04-01

    Al-doped ZnO (AZO) thin films have been prepared by mist chemical vapor deposition and magnetron sputtering. The band gap shift as a function of carrier concentration in n-type zinc oxide (ZnO) was systematically studied considering the available theoretical models. The shift in energy gap, evaluated from optical absorption spectra, did not depend on sample preparations; it was mainly related to the carrier concentrations and so intrinsic to AZO. The optical gap increased with the electron concentration approximately as ne2/3 for ne≤4.2×1019 cm-3, which could be fully interpreted by a modified Burstein-Moss (BM) shift with the nonparabolicity of the conduction band. A sudden decrease in energy gap occurred at 5.4-8.4×1019 cm-3, consistent with the Mott criterion for a semiconductor-metal transition. Above the critical values, the band gap increased again at a different rate, which was presumably due to the competing BM band-filling and band gap renormalization effects, the former inducing a band gap widening and the latter an offsetting narrowing. The band gap narrowing (ΔEBGN) derived from the band gap renormalization effect did not show a good ne1/3 dependence predicated by a weakly interacting electron-gas model, but it was in excellent agreement with a perturbation theory considering different many-body effects. Based on this theory a simple expression, ΔEBGN=Ane1/3+Bne1/4+Cne1/2, was deduced for n-type ZnO, as well as p-type ZnO, with detailed values of A, B, and C coefficients. An empirical relation once proposed for heavily doped Si could also be used to describe well this gap narrowing in AZO.

  8. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  9. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  10. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    Science.gov (United States)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  11. Band gap narrowing of TiO2 by compensated codoping for enhanced photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    Jindou Huang; Shuhao Wen; Jianyong Liu; Guozhong He

    2012-01-01

    In this study,we have performed first-principles screened exchanged hybrid density function theory with the HSE06 function calculations of the C-Mo,C-W,N-Nb and N-Ta codoped anatase TiO2 systems to investigate the effect of codoping on the electronic structure of TiO2.The calculated results demonstrate that (W(s)+C(s)) codoped TiO2 narrows the band gap significantly,and have little influence on the position of conduction band edges,therefore,enhances the efficiency of the photocatalytic hydrogen generation from water and the photodegradation of organic pollutants.Moreover,the proper oxygen pressure and temperature are two key factors during synthesis which should be carefully under control so that the desired (W(s)+C(s)) codoped TiO2 can be obtained.

  12. Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism

    Directory of Open Access Journals (Sweden)

    Feroz A. Mir

    2014-01-01

    Full Text Available Recently, we carried out structural, optical and dielectric studies on micro-crystals of Oxypeucedanin (C16H14O5, isolated from the roots of plant Prangos pabularia (Mir et al. (2014 [3,4]. The obtained trend in frequency exponent (s with frequency (ω indicates that the universal dynamic response is followed by this compound. From optical absorption spectroscopy, the optical band gap (Eg was estimated around 3.76 eV and system is showing indirect allowed transition. Using Eg in certain relation of s, a close value of s (as much close obtained by fitting ac conductivity was obtained. This method was further used for other similar systems and again same trend was obtained. So a general conclusion was made that the high transmitting wide band insulators or semiconductors may follow bipolaron hopping transport mechanism.

  13. Temperature Dependent Switching Behavior of BFN Thin Films: a Wide Band Gap Semiconductor

    Directory of Open Access Journals (Sweden)

    Devang D. Shah

    2011-01-01

    Full Text Available The thin film of complex perovskite Ba(Fe0.5Nb0.5O3 (BFN was prepared through Pulsed Laser Deposition (PLD technique. XRD and AFM studies show single cubic phase with well developed nano size grains of BFN compound. Swift Heavy Ion (SHI irradiation on BFN of O+7 ions up to 1 × 1013 ions per cc fluence does not show any crystal or morphological structural changes in the film, signifying materials stability up to the above ion dose. BFN compound exhibit its band gap in wide band semiconductor region (3.53 eV. A characteristic negative temperature coefficient of resistance (NTCR to positive temperature coefficient of resistance (PTCR transition of large magnitude at ~ 350 °C makes BFN a promising candidate for electrical/magnetic switching device.

  14. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Orlov, Alexey A.; Babicheva, Viktoriia E.;

    2014-01-01

    We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured......) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop......, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind...

  15. Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

    CERN Document Server

    Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume

    2009-01-01

    In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...

  16. Study of Optical Band Gap of CuO Using Fermi's Golden Rule

    Science.gov (United States)

    Nemade, K. R.; Waghuley, S. A.

    2012-05-01

    Quantum size effect where the electronic and optical properties of solids are altered due to changes in the band structures, enhanced the surface/volume ratio in nano dimensions forces more than 33% of the atoms to be on the surface (for 10nm dot 35), which drastically altering the physical properties such as having lower melting temperature and lower sintering temperature, and higher diffusion force at elevated temperatures. Consequently, its Fermi's golden rule analysis becomes crucial. Cupric oxide (CuO) is an important transition metal oxide with the basis of several high temperature superconductors and giant magnetoresistance materials. In present investigation, optical Band Gap from UV data using Fermi's golden rule for single step chemically synthesized CuO was computed.

  17. Synthesis and Characterization of Small Band-gap Conjugated Polymers - Poly(pyrrolyl methines)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A kind of small band-gap conjugated polymers-poly (pyrrolyl methines) and their precursors-(poly pyrrolyl methanes) have been synthesized by a simple method and characterized by 1HNMR, FT-IR, TGA and UV-Vis. These polymers can be dissolved in high polar solvents such as DMSO, DMF or NMP. The results reveals that the band-gap of the synthesized conjugated polymers are in the range of 0.96~1.14 eV and they all belong to the small band-gap polymers. The conductivity of doped products with iodine is in the range of semiconductor.

  18. Band-gap narrowing in heavily doped silicon at 20 and 300 K studied by photoluminescence

    Science.gov (United States)

    Wagner, Joachim

    1985-07-01

    The band-gap shrinkage in heavily doped n- and p-type silicon is studied by photoluminescence both at low temperatures (20 K) and at room temperature (300 K). A line-shape analysis was performed to determine the indirect band-gap energy from the emission spectra. Within the experimental accuracy the same band-gap shift is observed at room temperature as at low temperature. The present results are compared with experimental data from other optical studies and with theoretical calculations.

  19. Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2008-01-01

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.

  20. Large Frequency Range of Photonic Band Gaps on Porous Silicon Heterostructures for Infrared Applications

    CERN Document Server

    Manzanares-Martinez, J; Archuleta-Garcia, R; Moctezuma-Enriquez, D

    2010-01-01

    In this work we show theoretically that it is possible to design a large band gap in the infrared range using a one-dimensional Photonic Crystal heterostructure made of porous silicon. Stacking together multiple photonic crystal substructures of the same contrast index, but of different lattice periods, it is possible to broad the narrow forbidden band gap that can be reached by the low contrast index of the porous silicon multilayers. The main idea in this work is that we can construct a Giant Photonic Band Gap -as large as desired- by combining a tandem of photonic crystals substructures by using a simple analytical rule to determine the period of each substructure.

  1. Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core

    Science.gov (United States)

    Mukherjee, Sushovan; Scarpa, Fabrizio; Gopalakrishnan, S.

    2016-05-01

    We present a novel design of a honeycomb lattice geometry that uses a seamless combination of conventional and auxetic cores, i.e. elements showing positive and negative Poisson’s ratio. The design is aimed at tuning and improving the band structure of periodic cellular structures. The proposed cellular configurations show a significantly wide band gap at much lower frequencies compared to their pure counterparts, while still retaining their major dynamic features. Different topologies involving both auxetic inclusions in a conventional lattice and conversely hexagonal cellular inclusions in auxetic butterfly lattices are presented. For all these cases the impact of the varying degree of auxeticity on the band structure is evaluated. The proposed cellular designs may offer significant advantages in tuning high-frequency bandgap behaviour, which is relevant to phononics applications. The configurations shown in this paper may be made iso-volumetric and iso-weight to a given regular hexagonal topology, making possible to adapt the hybrid lattices to existing sandwich structures with fixed dimensions and weights. This work also features a comparative study of the wave speeds corresponding to different configurations vis-a vis those of a regular honeycomb to highlight the superior behaviour of the combined hybrid lattice.

  2. Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2014-05-01

    Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.

  3. Structural Dynamics of Tropical Moist Forest Gaps

    OpenAIRE

    Hunter, Maria O.; Michael Keller; Douglas Morton; Bruce Cook; Michael Lefsky; Mark Ducey; Scott Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered...

  4. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    Science.gov (United States)

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  5. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  6. Accurate prediction of band gaps and optical properties of HfO2

    Science.gov (United States)

    Ondračka, Pavel; Holec, David; Nečas, David; Zajíčková, Lenka

    2016-10-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe-Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO2 was obtained only in the latter case.

  7. Unfolding the band structure of GaAsBi

    Science.gov (United States)

    Maspero, R.; Sweeney, S. J.; Florescu, Marian

    2017-02-01

    Typical supercell approaches used to investigate the electronic properties of GaAs(1-x)Bi(x) produce highly accurate, but folded, band structures. Using a highly optimized algorithm, we unfold the band structure to an approximate E≤ft(\\mathbf{k}\\right) relation associated with an effective Brillouin zone. The dispersion relations we generate correlate strongly with experimental results, confirming that a regime of band gap energy greater than the spin-orbit-splitting energy is reached at around 10% bismuth fraction. We also demonstrate the effectiveness of the unfolding algorithm throughout the Brillouin zone (BZ), which is key to enabling transition rate calculations, such as Auger recombination rates. Finally, we show the effect of disorder on the effective masses and identify approximate values for the effective mass of the conduction band and valence bands for bismuth concentrations from 0-12%.

  8. Calculation of effective band gap narrowing in heavily-doped and compensated silicon

    Science.gov (United States)

    Polsky, B. S.; Rimshans, J. S.

    1991-06-01

    The effective band gap narrowing in heavily-doped and compensated silicon for different values of impurity concentration is calculated within the semiclassical approximation. The calculated and known measured data are compared.

  9. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  10. Tunable Photonic Band Gaps In Photonic Crystal Fibers Filled With a Cholesteric Liquid Crystal

    Institute of Scientific and Technical Information of China (English)

    Thomas; Tanggaard; Larsen; David; Sparre; Hermann; Anders; Bjarklev

    2003-01-01

    A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.

  11. Manipulating full photonic band gaps in two dimensional birefringent photonic crystals.

    Science.gov (United States)

    Proietti Zaccaria, Remo; Verma, Prabhat; Kawaguchi, Satoshi; Shoji, Satoru; Kawata, Satoshi

    2008-09-15

    The probability to realize a full photonic band gap in two-dimensional birefringent photonic crystals can be readily manipulated by introducing symmetry reduction or air holes in the crystal elements. The results lie in either creation of new band gaps or enlargement of existing band gaps. In particular, a combination of the two processes produces an effect much stronger than a simple summation of their individual contributions. Materials with both relatively low refractive index (rutile) and high refractive index (tellurium) were considered. The combined effect of introduction of symmetry reduction and air holes resulted in a maximum enlargement of the band gaps by 8.4% and 20.2%, respectively, for the two materials.

  12. Band gap narrowing models tested on low recombination phosphorus laser doped silicon

    Science.gov (United States)

    Dahlinger, Morris; Carstens, Kai

    2016-10-01

    This manuscript discusses bandgap narrowing models for highly phosphorus doped silicon. We simulate the recombination current pre-factor J0,phos in PC1Dmod 6.2 of measured doping profiles and apply the theoretical band gap narrowing model of Schenk [J. Appl. Phys. 84, 3684 (1998)] and an empirical band gap narrowing model of Yan and Cuevas [J. Appl. Phys. 114, 044508 (2013)]. The recombination current pre-factor of unpassivated and passivated samples measured by the photo conductance measurement and simulated J0,phos agrees well, when the band gap narrowing model of Yan and Cuevas is applied. With the band gap narrowing model of Schenk, the simulation cannot reproduce the measured J0,phos. Furthermore, the recombination current pre-factor of our phosphorus laser doped silicon samples are comparable with furnace diffused samples. There is no indication of recombination active defects, thus no laser induced defects in the diffused volume.

  13. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  14. Band-gap narrowing in heavily doped silicon: A comparison of optical and electrical data

    Science.gov (United States)

    Wagner, Joachim; del Alamo, Jesús A.

    1988-01-01

    The band-gap narrowing in heavily doped silicon has been studied by optical techniques—namely, photoluminescence and photoluminescence excitation spectroscopy—and by electrical measurements on bipolar transistors. The optical experiments give a consistent set of data for the band-gap narrowing in n- and p-type material at low temperatures as well as at room temperature. A good agreement is found between the optical and electrical data removing the discrepancies existing so far in the literature.

  15. Wide band gap tunability in complex transition metal oxides by site-specific substitution

    OpenAIRE

    Choi, Woo Seok; Chisholm, Matthew F.; Singh, David J.; Choi, Taekjib; Jellison Jr, Gerald E.; Lee, Ho Nyung

    2012-01-01

    Fabricating complex transition metal oxides with a tuneable band gap without compromising their intriguing physical properties is a longstanding challenge. Here we examine the layered ferroelectric bismuth titanate and demonstrate that, by site-specific substitution with the Mott insulator lanthanum cobaltite, its band gap can be narrowed as much as one electron volt, while remaining strongly ferroelectric. We find that when a specific site in the host material is preferentially substituted, ...

  16. Crossing points in the electronic band structure of vanadium oxide

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2010-03-01

    Full Text Available The electronic band structures of several models of vanadium oxide are calculated. In the models 1-3, every vanadium atom is connected to 4 oxygen atoms and every oxygen atom is connected to 4 vanadium atoms. In model 1, a=b=c 2.3574 Å; in model 2, a= 4.7148 Å, b= 2.3574 Å and c= 2.3574 Å; and in model 3, a= 4.7148 Å, b= 2.3574 Å and c= 4.7148 Å. In the models 4-6, every vanadium atom is connected to 4 oxygen atoms and every oxygen atom is connected to 2 vanadium atoms. In model 4, a=b= 4.551 Å and c= 2.851 Å; in model 5, a=b=c= 3.468 Å; and in model 6, a=b=c= 3.171 Å. We have searched for a crossing point in the band structure of all the models. In model 1 there is a point at which five bands appear to meet but the gap is 7.3 meV. In model 2 there is a crossing point between G and F points and there is a point between F and Q with the gap ≈ 3.6608 meV. In model 3, the gap is very small, ~ 10-5 eV. In model 4, the gap is 5.25 meV. In model 5, the gap between Z and G points is 2.035 meV, and in model 6 the gap at Z point is 4.3175 meV. The crossing point in model 2 looks like one line is bent so that the supersymmetry is broken. When pseudopotentials are replaced by a full band calculation, the crossing point changes into a gap of 2.72 x 10-4 eV.

  17. Optimization of Band Gap and Thickness for the Development of Efficient n-i-p+ Solar Cell

    Directory of Open Access Journals (Sweden)

    A. Belfar

    2015-06-01

    Full Text Available By using an electrical-optical AMPS-1D program (One Dimensional Analysis of Microelectronic and Photonic structures, a n-i-p type solar cell, based on hydrogenated amorphous silicon (a-Si : H and hydrogenated nanocrystalline silicon oxide (nc-SiOx : H has been investigated and simulated. The numerical analysis describes the modeling of the external cell performances, like, the short-circuit current (JSC, the open circuit voltage (VOC, the fill factor (FF and efficiency (Eff with the oxygen content in the p-nc-SiOx : H window layer by varying its mobility band gap (Eg associated simultaneously to the effect of the absorber layer (i-a-Si : H thickness. Also, the i-a-Si : H absorber layer band gap was optimized. The simulation result shows that the VOC depend strongly on the band offset (ΔEV in valence band of p-side. But, VOC does not depend on the thickness of the intrinsic layer. However, VOC increases when the energy band gap of the intrinsic layer is higher. It is demonstrated that the highest efficiency of 10.44 % (JSC = 11.67 mA/cm2; FF = 0.829; VOC = 1070 mV has been obtained when values of p-nc-SiOx : H window layer band gap, i-a-Si : H absorber layer band gap and i-a-Si : H absorber layer thickness are 2.10 eV, 1.86 eV, and 550 nm, respectively.

  18. 基于高阻抗表面PBG结构微带天线的设计与分析%Design and Analysis of Microstrip Antenna Based on Photonic Band-gap Structure with High Impedance Surface

    Institute of Scientific and Technical Information of China (English)

    汪仲清; 彭丽丹; 李宝; 徐荣森

    2013-01-01

    以高介电常数介质为基底,利用辐射贴片开槽和微带馈电技术,设计了一款尺寸仅为16 mm×12.45 mm的小型微带天线.通过在此天线微带贴片周围加载高阻抗表面型光子晶体,有效抑制了表面波,改善了以高介电常数介质为基底的贴片天线的性能,实现了一款多频小型化PBG天线.HFSS仿真结果表明,加载高阻抗表面结构后的微带天线出现了三个谐振频点,分别为2.74、2.86和3.80 GHz,其对应的增益分别达到6.02、8.38和5.69 dB.所设计的光子晶体天线物理尺寸较小,方向性良好且具有多频特性,因此可为实际通信天线的应用提供参考.%Based on dielectric substrate with high dielectric constant,a miniaturized microstrip antenna with the size of only 16 mm× 12.45 mm was designed with the techniques of grooving the patch and microstrip feed.By loading the high impedance surface around the patch,the surface wave was suppressed effectively and the antenna performance was improved,then a multi-frequency and miniaturized antenna based on photonic band-gap (PBG) was realized.Simulation results obtained by HFSS show that,the microstrip antenna based on high impedance surface structure has three resonant frequencies:2.74 GHz,2.86 GHz and 3.80 GHz,and the corresponding gains are 6.02 dB,8.83 dB and 5.69 dB,respectively.The antenna based on PBG owns the characteristics of smaller size,good radiation performance and multi-frequency,which can provide reference for practical communication applications.

  19. Influence of process parameters on band gap of AI-doped ZnO film

    Institute of Scientific and Technical Information of China (English)

    Diqiu HUANG; Xiangbin ZENG; Yajuan ZHENG; Xiaojin WANG; Yanyan YANG

    2013-01-01

    This paper presents the influence of process parameters, such as argon (Ar) flow rate, sputtering power and substrate temperature on the band gap of Al-doped ZnO film, Al-doped ZnO thin films were fabricated by radio frequency (RF) magnetron sputtering technology and deposited on polyimide and glass substrates. Under different Ar flow rates varied from 30 to 70 sccm, the band gap of thin films were changed from 3.56 to 3.67 eV. As sputtering power ranged from 125 to 200 W, the band gap was varied from 3.28 to 3.82 eV; the band gap was between 3.41 and 3.88 eV as substrate temperature increases from 150℃ to 300℃. Furthermore, the correlation between carrier concentration and band gap was investigated by HALL. These results demonstrate that the band gap of the Al-doped ZnO thin film can be adjusted by changing the Ar flow rate, sputtering power and substrate temperature, which can improve the performance of semiconductor devices related to Al-doped ZnO thin film.

  20. Origins of electronic band gap reduction in Cr/N codoped TiO2.

    Science.gov (United States)

    Parks Cheney, C; Vilmercati, P; Martin, E W; Chiodi, M; Gavioli, L; Regmi, M; Eres, G; Callcott, T A; Weitering, H H; Mannella, N

    2014-01-24

    Recent studies indicated that noncompensated cation-anion codoping of wide-band-gap oxide semiconductors such as anatase TiO2 significantly reduces the optical band gap and thus strongly enhances the absorption of visible light [W. Zhu et al., Phys. Rev. Lett. 103, 226401 (2009)]. We used soft x-ray spectroscopy to fully determine the location and nature of the impurity levels responsible for the extraordinarily large (∼1 eV) band gap reduction of noncompensated codoped rutile TiO2. It is shown that Cr/N codoping strongly enhances the substitutional N content, compared to single element doping. The band gap reduction is due to the formation of Cr 3d3 levels in the lower half of the gap while the conduction band minimum is comprised of localized Cr 3d and delocalized N 2p states. Band gap reduction and carrier delocalization are critical elements for efficient light-to-current conversion in oxide semiconductors. These findings thus raise the prospect of using codoped oxide semiconductors with specifically engineered electronic properties in a variety of photovoltaic and photocatalytic applications.

  1. Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders

    Institute of Scientific and Technical Information of China (English)

    T.; Kim

    2009-01-01

    Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap performance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cylinder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental measurements on square arrays of hollow Al cylinders in air and semi-hollow Al cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.

  2. Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field

    Science.gov (United States)

    Huang, Zongyu; Qi, Xiang; Yang, Hong; He, Chaoyu; Wei, Xiaolin; Peng, Xiangyang; Zhong, Jianxin

    2015-05-01

    Based on first-principles calculations in the framework of van der Waals density functional theory, we investigate the structural, electronic properties and band-gap tuning of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. We find that, different from the suspended monolayer MoS2 with a direct band-gap, h-BN/MoS2/h-BN has an indirect band-gap. Particular attention has been focused on the engineering of the band-gap of the h-BN/MoS2/h-BN heterostructure via application of an external electric field. With the increase of electric field, the band-gap of the h-BN/MoS2/h-BN heterostructure undergoes an indirect-to-direct band-gap transition. Once the electric field intensity is larger than 0.1 V Å-1, the gap value of direct band-gap shrinks almost linearly with the field-strength, which indicates that the h-BN/MoS2/h-BN heterostructure is a viable candidate for optoelectronic applications.

  3. Temperature dependence of active photonic band gap in bragg-spaced quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei, E-mail: huzhiqianghzq@163.com [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)

    2011-02-01

    A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.

  4. Band-structure engineering in conjugated 2D polymers.

    Science.gov (United States)

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  5. Synthesis, characterization and study of band gap variations of vanadium doped indium oxide nanoparticles

    Science.gov (United States)

    Parhoodeh, Saeed; Kowsari, Mohammad

    2016-10-01

    In this study, effects of vanadium doping in crystal lattice structure of indium oxide (In2O3) were investigated. Indium oxide nanoparticles with different amounts of dopant concentrations were fabricated by a facile and cost effective method. X-ray diffraction (XRD) analysis revealed the formation of cubic phase for doped and undoped samples. It was observed that the lattice parameters of doped samples were decreased respect to the pure indium oxide, but the crystallite sizes and the particles' sizes of doped samples were increased in result of substitution of vanadium in crystal lattice of In2O3. The scanning electron microscope (SEM) images of samples showed that all samples have spherical shapes, and their distribution sizes are between 10 and 70 nm. It was found that the average sizes of nanoparticles were increased linearly with the amounts of dopant concentration. A red shift was founded in the band gap of vanadium doped samples respect to pure In2O3. The maximum of the band gap shift was observed for samples with 0.025 M concentration of dopant. Based on impedance spectroscopy data, it was found that impedances of samples are increased by increasing of dopant concentration for all frequencies which were tested in this study.

  6. Band gap engineering in finite elongated graphene nanoribbon heterojunctions: Tight-binding model

    Directory of Open Access Journals (Sweden)

    Benjamin O. Tayo

    2015-08-01

    Full Text Available A simple model based on the divide and conquer rule and tight-binding (TB approximation is employed for studying the role of finite size effect on the electronic properties of elongated graphene nanoribbon (GNR heterojunctions. In our model, the GNR heterojunction is divided into three parts: a left (L part, middle (M part, and right (R part. The left part is a GNR of width WL, the middle part is a GNR of width WM, and the right part is a GNR of width WR. We assume that the left and right parts of the GNR heterojunction interact with the middle part only. Under this approximation, the Hamiltonian of the system can be expressed as a block tridiagonal matrix. The matrix elements of the tridiagonal matrix are computed using real space nearest neighbor orthogonal TB approximation. The electronic structure of the GNR heterojunction is analyzed by computing the density of states. We demonstrate that for heterojunctions for which WL = WR, the band gap of the system can be tuned continuously by varying the length of the middle part, thus providing a new approach to band gap engineering in GNRs. Our TB results were compared with calculations employing divide and conquer rule in combination with density functional theory (DFT and were found to agree nicely.

  7. Photonic band gaps in quasiperiodic photonic crystals with negative refractive index

    Science.gov (United States)

    Vasconcelos, M. S.; Mauriz, P. W.; de Medeiros, F. F.; Albuquerque, E. L.

    2007-10-01

    We investigate the photonic band gaps in quasiperiodic photonic crystals made up of both positive (SiO2) and negative refractive index materials using a theoretical model based on a transfer matrix treatment. The quasiperiodic structures are characterized by the nature of their Fourier spectrum, which can be dense pure point (Fibonacci sequences) or singular continuous (Thue-Morse and double-period sequences). These substitutional sequences are described in terms of a series of generations that obey peculiar recursion relations. We discussed the photonic band gap spectra for both the ideal cases, where the negative refractive index material can be approximated as a constant in the frequency range considered, as well as the more realistic case, taking into account the frequency-dependent electric permittivity γ and magnetic permeability μ . We also present a quantitative analysis of the results, pointing out the distribution of the allowed photonic bandwidths for high generations, which gives a good insight about their localization and power laws.

  8. Synthesis, characterization and study of band gap variations of vanadium doped indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parhoodeh, Saeed, E-mail: saeed.parhoodeh@gmail.com [Physics Department, Shiraz branch, Islamic Azad University, Shiraz (Iran, Islamic Republic of); Kowsari, Mohammad [Department of Electronics, Sepidan branch, Islamic Azad University, Sepidan (Iran, Islamic Republic of)

    2016-10-01

    In this study, effects of vanadium doping in crystal lattice structure of indium oxide (In{sub 2}O{sub 3}) were investigated. Indium oxide nanoparticles with different amounts of dopant concentrations were fabricated by a facile and cost effective method. X-ray diffraction (XRD) analysis revealed the formation of cubic phase for doped and undoped samples. It was observed that the lattice parameters of doped samples were decreased respect to the pure indium oxide, but the crystallite sizes and the particles’ sizes of doped samples were increased in result of substitution of vanadium in crystal lattice of In{sub 2}O{sub 3}. The scanning electron microscope (SEM) images of samples showed that all samples have spherical shapes, and their distribution sizes are between 10 and 70 nm. It was found that the average sizes of nanoparticles were increased linearly with the amounts of dopant concentration. A red shift was founded in the band gap of vanadium doped samples respect to pure In{sub 2}O{sub 3}. The maximum of the band gap shift was observed for samples with 0.025 M concentration of dopant. Based on impedance spectroscopy data, it was found that impedances of samples are increased by increasing of dopant concentration for all frequencies which were tested in this study.

  9. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1−x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3−δ}]{sub x} ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenliang; Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn; Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Deng, Hongmei [Instrumental Analysis and Research Center, Institute of Materials, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2014-09-15

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1−x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3−δ}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ≥ 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x = 0.1–0.3 have quite narrow E{sub g} of below 1.5 eV, much smaller than the 3.2 eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  10. Incomplete photonic band gap as inferred from the speckle pattern of scattered light waves.

    Science.gov (United States)

    Apalkov, V M; Raikh, M E; Shapiro, B

    2004-06-25

    Motivated by recent experiments on intensity correlations of the waves transmitted through disordered media, we demonstrate that the speckle pattern from disordered photonic crystal with incomplete band gap represents a sensitive tool for determination of the stop-band width. We establish the quantitative relation between this width and the angular anisotropy of the intensity correlation function.

  11. Silica photonic crystals with quasi-full band gap in the visible region prepared in ethanol

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Xidong; ZHAO Xiaofeng; LI Wenchao; TANG Qing

    2003-01-01

    Monodisperse silica spheres of 252 nm with a standard deviation of 5.7% are prepared by Stber method. By comparison of both of media, ethanol instead of water is used to assemble opal, and the artificial opal has been prepared by the sedimentation in ethanol of silica spheres. The structure of the opal prepared has been examined and discussed. The results show that the artificial opal has a structure similar to the face-centered cubic (fcc) type packed system with silica spheres. Transmission measurements of the artificial opal have been conducted, which shows that the artificial opal is quasi-full band gap silica photonic crystals in the visible region.

  12. The improvement of hole transport property and optical band gap for amorphous Cu{sub 2}O films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qin; Li, Jin; Bi, Xiaofang

    2015-10-25

    This work presents an interesting observation that the suppression of crystallization for p-type Cu{sub 2}O facilitates the transition of transport behaviors from variable-range-hopping (VRH) to Arrhenius-like mechanism and further lead to a great reduction of thermal activation energy. Raman spectroscopy analysis shows a distortion of symmetrical O–Cu–O crosslink structure in the amorphous Cu{sub 2}O. The disruption of symmetry is revealed to increase dispersion of upper valence band and reduce Fermi as well, which results in possible intrusion of the Fermi level into a band tail state adjacent to the upper valence band level. Meanwhile, the amorphous Cu{sub 2}O film shows an optical band gap of 2.7 eV, much larger than 2.0 eV for the crystalline counterparts. The blue shift is consistent with the variation of energy band structure with the film changing from crystalline to amorphous state, suggesting that the O-mediated d–d interaction can be weakened with the nonsymmetrical structure in amorphous phase. - Graphical abstract: Suppression of crystallization for p-type Cu{sub 2}O is observed to facilitate the transition of transport behaviors from variable-range-hopping to the Arrhenius-like behavior based on the band tail transport mode. The amorphous Cu{sub 2}O film also shows a blue shift as compared to its crystalline counterpart. The effect of amorphous structure on the performances is discussed in combination with Raman spectroscopy and band structure calculation. - Highlights: • Amorphous Cu{sub 2}O films show Arrhenius-like p-type conductivity. • Raman spectroscopy is analyzed on the change of crystallization. • Physical origin of the transport behavior is clarified with electronic structure. • Optical band gap can be widened by suppressing crystallization of Cu{sub 2}O.

  13. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Science.gov (United States)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-12-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals.

  14. Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers.

    Science.gov (United States)

    Hensley, Christopher J; Ouzounov, Dimitre G; Gaeta, Alexander L; Venkataraman, Natesan; Gallagher, Michael T; Koch, Karl W

    2007-03-19

    We measure the effective nonlinearity of various hollow-core photonic band-gap fibers. Our findings indicate that differences of tens of nanometers in the fiber structure result in significant changes to the power propagating in the silica glass and thus in the effective nonlinearity of the fiber. These results show that it is possible to engineer the nonlinear response of these fibers via small changes to the glass structure.

  15. Synergistic effects on band gap-narrowing in titania by codoping from first-principles calculations

    OpenAIRE

    2010-01-01

    The large intrinsic band gap in TiO2 has hindered severely its potential application for visible-light irradiation. In this study, we have used a passivated approach to modify the band edges of anatase-TiO2 by codoping of X (N, C) with transition metals (TM=W, Re, Os) to extend the absorption edge to longer visible-light wavelengths. It was found that all the codoped systems can narrow the band gap significantly; in particular, (N+W)-codoped systems could serve as remarkably better photocatal...

  16. Band Gap and Waveguide States in Two-Dimensional Disorder Phononic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Chun; LIU Zheng-You; LIANG Hong-Yu; XIAO Qing-Wu

    2006-01-01

    @@ The influences of the configurational disorders on phononic band gaps and on waveguide modes are investigated for the two-dimensional phononic crystals consisting of water cylinders periodically arrayed in mercury. Two types of conflgurational disorders, relevant to the cylinder position and cylinder size respectively, are taken into account. It is found that the phononic band gap and the guide band are sensitive to the disorders, and generally become narrower with the increasing disorders. It is also found that the waveguide side walls without disorder can significantly prevent the guide modes in the waveguide from influence by the disorders in the crystals to a large amount.

  17. Band-gap narrowing in the space-charge region of heavily doped silicon diodes

    Science.gov (United States)

    Lowney, Jeremiah R.

    1985-02-01

    The densities of states of the valence and conduction bands have been calculated in the space-charge region of a heavily doped linearly graded p- n junction silicon diode. Both the donor and acceptor densities were chosen to be equal to 6.2 × 10 18 cm -3. The results showed the emergence of band tails which penetrated deeply into the energy gap and accounted for the band-gap narrowing observed in such a diode by analysis of capacitance vs voltage measurements of the built-in voltage.

  18. Modifying the band gap and optical properties of Germanium nanowires by surface termination

    Science.gov (United States)

    Legesse, Merid; Fagas, Giorgos; Nolan, Michael

    2017-02-01

    Semiconductor nanowires, based on silicon (Si) or germanium (Ge) are leading candidates for many ICT applications, including next generation transistors, optoelectronics, gas and biosensing and photovoltaics. Key to these applications is the possibility to tune the band gap by changing the diameter of the nanowire. Ge nanowires of different diameter have been studied with H termination, but, using ideas from chemistry, changing the surface terminating group can be used to modulate the band gap. In this paper we apply the generalised gradient approximation of density functional theory (GGA-DFT) and hybrid DFT to study the effect of diameter and surface termination using -H, -NH2 and -OH groups on the band gap of (001), (110) and (111) oriented germanium nanowires. We show that the surface terminating group allows both the magnitude and the nature of the band gap to be changed. We further show that the absorption edge shifts to longer wavelength with the -NH2 and -OH terminations compared to the -H termination and we trace the origin of this effect to valence band modifications upon modifying the nanowire with -NH2 or -OH. These results show that it is possible to tune the band gap of small diameter Ge nanowires over a range of ca. 1.1 eV by simple surface chemistry.

  19. Electronic structure of NiO: Correlation and band effects

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z. (Stanford Electronics Laboratory, Stanford University, Stanford, California (USA)); List, R.S. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA)); Dessau, D.S.; Wells, B.O. (Stanford Electronics Laboratory, Stanford University, Stanford, California (USA)); Jepsen, O. (Max-Planck-Institute for Solid State Research, D-7000 Stuttgart 80 (Federal Republic of Germany)); Arko, A.J.; Barttlet, R. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA)); Shih, C.K. (Department of Physics, University of Texas, Austin, Texas (USA)); Parmigiani, F. (IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California (USA)); Huang, J.C.; Lindberg, P.A.P. (Stanford Electronics Laboratory, Stanford University, Stanford, California (USA))

    1991-08-15

    We have performed angle-resolved-photoemission experiments and local-density-functional (LDA) band calculations on NiO to study correlation and band effects of this conceptually important compound. Our experimental result suggests a dual nature of the electronic structure of NiO. On the one hand, the LDA band calculation has some relevance to the electronic structure of NiO, and the inclusion of the antiferromagnetic order is essential. For the lower O 2{ital p} bands, the LDA calculation agrees almost perfectly with experimental energy positions and dispersion relations. On the other hand, discrepancies between the experiment and the LDA calculation do exist, especially for the Ni 3{ital d} bands and the O 2{ital p} bands that are heavily mixed with the Ni 3{ital d} bands. It appears that the main discrepancies between the experimental results and the LDA calculation are concentrated in the regions of the insulating gap and the valence-band satellite. In addition to these results, we also report the interesting angle and photon-energy dependence of the satellite emission. The above results show that the angle-resolved-photoemission studies can provide much additional information about the electronic structure of correlated materials like NiO.

  20. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    Science.gov (United States)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  1. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

    Science.gov (United States)

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang

    2016-08-09

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

  2. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites

    Science.gov (United States)

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang

    2016-01-01

    The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  3. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang

    2016-07-21

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

  4. Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Pandey, Mohnish; Jacobsen, Karsten W; Thygesen, Kristian S

    2016-11-03

    Organic-inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant.

  5. Multi-cavity coupling acoustic metamaterials with low-frequency broad band gaps based on negative mass density

    Science.gov (United States)

    Yang, Chuanhui; Wu, Jiu Hui; Cao, Songhua; Jing, Li

    2016-08-01

    This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0-1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.

  6. Crystal growth and characterization of the narrow-band-gap semiconductors OsPn₂ (Pn = P, As, Sb).

    Science.gov (United States)

    Bugaris, Daniel E; Malliakas, Christos D; Shoemaker, Daniel P; Do, Dat T; Chung, Duck Young; Mahanti, Subhendra D; Kanatzidis, Mercouri G

    2014-09-15

    Using metal fluxes, crystals of the binary osmium dipnictides OsPn2 (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn6 octahedra, as well as [Pn2(4-)] anions. Raman spectroscopy shows the presence of P-P single bonds, consistent with the presence of [Pn2(-4)] anions and formally Os(4+) cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2 and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn2 dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a Pn-Pn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.

  7. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pistor, P., E-mail: paul.pistor@physik.uni-halle.de [Martin-Luther-Universität Halle, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Greiner, D.; Kaufmann, C. A.; Brunken, S.; Gorgoi, M.; Steigert, A.; Calvet, W.; Lauermann, I.; Klenk, R.; Unold, T.; Lux-Steiner, M.-C. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2014-08-11

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se{sub 2} absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se{sub 2} absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.

  8. Complex band structure of topological insulator Bi2Se3

    Science.gov (United States)

    Betancourt, J.; Li, S.; Dang, X.; Burton, J. D.; Tsymbal, E. Y.; Velev, J. P.

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations.

  9. Band gap design of graphene photocathode%石墨烯光阴极带隙设计

    Institute of Scientific and Technical Information of China (English)

    李世龙; 石峰; 张太民; 刘照路; 张番; 李丹; 任兆玉

    2015-01-01

    In order to achieve graphene photocathode photoelectric conversion function, hexagonal boron nitride was doped in graphene in the form of hybrid superlattices nanoribbons. As can be seen from the band structure which was obtained by applying first-principles methods, the band gap of the superlattices was effectively regulated in a wide range (0-2.5 eV) by this means. The mechanism of band gap regulation was analyzed by the energy band structure and the charge density distribution. Furthermore, the present results were coincidence with the conclusion of Kronig-Penney model. With the increase of the h-BN proportion, the band gap engineering of graphene materials in this way, the band gap increases both zigzag edges superlattices nanoribbons and armchair edges superlattices nanoribbons. Besides, the band gap is almost independent of the width of nanoribbons, thus the size of the material can be more miniaturized. Moreover, the graphene photocathode with the gradient band gap characteristic can be made based on this approach, it can respond to different spectral ranges.%为了使石墨烯光阴极实现光电转化功能,以超晶格形式掺杂六角氮化硼到石墨烯中,形成杂化纳米带.通过基于第一性原理的计算,从能带结构可以看出,这种方法可以在一个很大的范围内(0~2.5 eV)调控带隙大小.结合能带结构和电荷密度分布分析了带隙调控的机理,此外,运用K-P模型理论分析也得到了一致的结果.以这种方式调控石墨烯材料的带隙,锯齿型边缘和扶手椅型边缘的六角氮化硼/石墨烯(h-BN/graphene)超晶格纳米带,其带隙大小均随着其中h-BN所占比例的增加而变大,而且其带隙大小几乎不受纳米带宽度的影响,这样一来材料的尺寸可以做到更加微型化.再者,基于此方法可以制成渐变带隙结构,进而实现同一光阴极对不同范围光谱的响应.

  10. EFFECT OF THE DEFECT STATES DENSITY ON OPTICAL BAND GAP OF CdIn2O4 THIN FILM

    Institute of Scientific and Technical Information of China (English)

    H.S. San; Z.G. Wu; B. Li; B.X. Feng

    2005-01-01

    Transparent conducting oxides CdIn2O4 thin films were prepared by radio-frequency reactive sputtering from a Cd-In alloy target in Ar+O2 atmosphere. By transmission spectrum and Hall measurement for different samples prepared at different substrate temperatures, it could be found that the carrier concentration would increase with the decrease of substrate temperature, but absorption edge showed an abrupt variation from a blue shift to a red shift.Theoretically, the paper formulated the effect of high-density point defects on band structures; it embodied the formation of band tailing, Burstein-Moss shift and band-gap narrowing. The density of holes will influence the magnitude of optical band gap and transmittance of light. Since extrapolation method does not fit degenerate semiconductor materials, a more accurate method of obtaining optical band gap is curve fitting. In addition, ionized impurities scattering is the main damping mechanism of the free electrons in CdIn2O4 films, the density of ionized impurities induced by altering substrate temperature will affect the carriers mobility.

  11. Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    CERN Document Server

    Woldering, Léon A; Vos, Willem L

    2014-01-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to $5 \\times 5 \\times 5$ unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 $\\lambda^{3}$ (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that o...

  12. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    Energy Technology Data Exchange (ETDEWEB)

    AbuEl-Rub, Khaled M. [Department of Applied Physical Sciences, Jordan University of Science and Technology Irbid, 21141 (Jordan)

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, and are in good agreement with experimental data.

  13. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands Kṡp study

    Science.gov (United States)

    AbuEl-Rub, Khaled M.

    2012-09-01

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 Å InAs/24 Å GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, and are in good agreement with experimental data.

  14. CdS nanofilms: Effect of film thickness on morphology and optical band gap

    Science.gov (United States)

    Kumar, Suresh; Kumar, Santosh; Sharma, Pankaj; Sharma, Vineet; Katyal, S. C.

    2012-12-01

    CdS nanofilms of varying thickness (t) deposited by chemical bath deposition technique have been studied for structural changes using x-ray diffractometer (XRD) and transmission electron microscope (TEM). XRD analysis shows polycrystalline nature in deposited films with preferred orientation along (002) reflection plane also confirmed by selected area diffraction pattern of TEM. Uniform and smooth surface morphology observed using field emission scanning electron microscope. The surface topography has been studied using atomic force microscope. The optical constants have been calculated from the analysis of %T and %R spectra in the wavelength range 300 nm-900 nm. CdS nanofilms show a direct transition with red shift. The optical band gap decreases while the refractive index increases with increase in thickness of nanofilms.

  15. Ionization of Rydberg H atoms at band-gap metal surfaces via surface and image states

    CERN Document Server

    So, E; Softley, T P

    2015-01-01

    Wavepacket propagation calculations are reported for the interaction of a Rydberg hydrogen atom ($n=2-8)$ with Cu(111) and Cu(100) surfaces (represented by a Chulkov potential), in comparison with a Jellium surface. Both copper surfaces have a projected band gap at the surface in the energy range degenerate with some or all of the Rydberg energies. The charge transfer of the Rydberg electron to the surface is found to be enhanced for $n$ values at which there is a near-degeneracy between the Rydberg energy level and an image state or a surface state of the surface. The enhancement is facilitated by the strong overlap of the surface image-state orbital lying outside the surface and the orbital of the incoming Rydberg atom. These calculations point to the possibility of using Rydberg-surface collisions as a probe of surface electronic structure.

  16. Photonic band-gap engineering in UV fiber gratings by the arc discharge technique.

    Science.gov (United States)

    Cusano, Andrea; Iadicicco, Agostino; Paladino, Domenico; Campopiano, Stefania; Cutolo, Antonello

    2008-09-29

    Localized heat treatments combined with local non-adiabatic tapering is proposed as suitable tool for the engineering of photonic band-gaps in UV-written fiber Bragg gratings (FBGs). In particular, here, we propose the use of the electric arc discharge to achieve localized defects along the FBG structure, however differently from previously reported works, we demonstrate how this post processing tool properly modified can be exploited to achieve the full control of the spectral characteristics of the final device. Also, we show how the suitable choice of the grating features and the correct selection of the defect geometry can be efficiently used to achieve interesting features for both communication and sensing applications.

  17. A Study of Properties of the Photonic Band Gap of Unmagnetized Plasma Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LIU Song; ZHONG Shuangying; LIU Sanqiu

    2009-01-01

    In this study,the propagation of electromagnetic waves in one-dimensional plasma photonic crystals(PPCs),namely,superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material,is simulated numerically using the finite-difference time-domain(FDTD) algorithm.A perfectly matched layer (PML) absorbing technique is used in this simulation.The reflection and transmission coefficients of electromagnetic(EM)waves through PPCs are calculated.The characteristics of the photonic band gap(PBG)are discussed in terms of plasma density,dielectric constant ratios,number of periods,and introduced layer defect.These may provide some useful information for designing plasma photonic crystal devices.

  18. Room-temperature direct band-gap electroluminescence from germanium (111)-fin light-emitting diodes

    Science.gov (United States)

    Tani, Kazuki; Saito, Shin-ichi; Oda, Katsuya; Miura, Makoto; Wakayama, Yuki; Okumura, Tadashi; Mine, Toshiyuki; Ido, Tatemi

    2017-03-01

    Germanium (Ge) (111) fins of 320 nm in height were successfully fabricated using a combination of flattening sidewalls of a silicon (Si) fin structure by anisotropic wet etching with tetramethylammonium hydroxide, formation of thin Ge fins by selective Si oxidation in SiGe layers, and enlargement of Ge fins by Ge homogeneous epitaxial growth. The excellent electrical characteristics of Ge(111) fin light-emitting diodes, such as an ideality factor of 1.1 and low dark current density of 7.1 × 10‑5 A cm‑2 at reverse bias of ‑2 V, indicate their good crystalline quality. A tensile strain of 0.2% in the Ge fins, which originated from the mismatch of the thermal expansion coefficients between Ge and the covering SiO2 layers, was expected from the room-temperature photoluminescence spectra, and room-temperature electroluminescence corresponding to the direct band-gap transition was observed from the Ge fins.

  19. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    Energy Technology Data Exchange (ETDEWEB)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  20. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials

    Science.gov (United States)

    Sangiorgi, Nicola; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Sanson, Alessandra

    2017-02-01

    The optical band gap energy and the electronic processes involved are important parameters of a semiconductor material and it is therefore important to determine their correct values. Among the possible methods, the spectrophotometric is one of the most common. Several methods can be applied to determine the optical band gap energy and still now a defined consensus on the most suitable one has not been established. A highly diffused and accurate optical method is based on Tauc relationship, however to apply this equation is necessary to know the nature of the electronic transitions involved commonly related to the coefficient n. For this purpose, a spectrophotometric technique was used and we developed a graphical method for electronic transitions and band gap energy determination for samples in powder form. In particular, the n coefficient of Tauc equation was determined thorough mathematical elaboration of experimental results on TiO2 (anatase), ZnO, and SnO2. The results were used to calculate the band gap energy values and then compared with the information obtained by Ultraviolet Photoelectron Spectroscopy (UPS). This approach provides a quick and accurate method for band gap determination through n coefficient calculation. Moreover, this simple but reliable method can be used to evaluate the nature of electronic transition that occurs in a semiconductor material in powder form.

  1. The band gap of II-Vi ternary alloys in a tight-binding description

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Daniel; Blanquero, Rafael [Instituto Politecnico Nacional, Mexico, D.F (Mexico); De Coss, Romeo [Instituto Politecnico Nacional, Yucatan (Mexico)

    2001-02-01

    We present tight-binding calculations for the band gap of II-Vi pseudobinary ternary alloys. We use an sp{sup 3} s* tight-binding Hamiltonian which include spin-orbit coupling. The band gap composition dependence is calculated using a extended version of the virtual crystal approximation, which introduce an empirical correction factor that takes into account the non-linear dependence of the band gap with the composition. The results compare quite well with the experimental data, both for the ternary alloys with wide band gap and for the narrow band gap ones. [Spanish] Presentamos el calculo de la banda de energia prohibida de aleaciones ternarias de compuestos II-VI. El calculo, que incluye interaccion espin-orbita, se hace con el metodo de enlace fuerte, utilizando una base ortogonal de cinco orbitales atomicos por atomo (sp{sup 3} s*), en conjunto con la aproximacion del cristal virtual. En la aproximacion del cristal virtual, incluimos un factor de correccion que toma en cuenta la no linealidad de la banda de energia prohibida como funcion de la concentracion. Con esta correccion nuestros resultados reproducen aceptablemente los datos experimentales hallados en la literatura.

  2. Band gap and transmission properties of one dimensional photonic crystals with NIM-PIM alternant structure%一维正负折射率光子晶体结构禁带及传播特性

    Institute of Scientific and Technical Information of China (English)

    刘名扬; 贺珍妮; 张向东

    2013-01-01

    Transfer matrix method is used to analyze the transmission spectra of one dimensional photon-ic crystals with negative refractive index material and positive refractive index material alternant struc-ture .The bang gaps and dispersive relation of one dimensional photonic crystal are analyzed .The gener-al Bragg gaps and the resonant gap of low frequency exist in the photonic crystal .We also research local-ization of electromagnetic waves in one-dimension random system containing the left-handed material .%采用传递矩阵的方法研究了由正折射率材料和负折射率材料交替排列组成的一维光子晶体结构的透射谱,并对其能带结构和色散关系进行分析,这种正负折射率光子晶体不仅存在一般的布拉格禁带,还存在低频共振禁带。本文也对含左手材料的一维无序结构的局域化进行了分析研究。

  3. Analysis of the Electromagnetic Band-gap Structure for Simultaneous Switching Noise Suppression and Transmission Characteristic in High-speed Printed Circuit Board%高速印刷电路板中电磁带隙结构的同步开关噪声抑制和传输特性分析

    Institute of Scientific and Technical Information of China (English)

    蒋冬初; 李玉山; 路建民; 丁同浩

    2013-01-01

    The characteristics of the Electromagnetic Band-Gap (EBG) structure composed of regular hexagonal patches is analyzed in the frequency domain and time domain. Respective influences of the side length of patches, space between patches and the radius of vias on the band-gap and transmission characteristics are investigated from the theory of the equivalent circuit. Mathematical expressions which estimate accurately the upper and lower cutoff frequency and bandwidth of the band gap for different side lengths of patches are obtained and verified. Studies show that space between patches changes the bandwidth, but has no influence on the characteristics of the left part of the band gap. When the radius of vias is reduced, the band-gap shifts left and becomes narrow. Finally, The time-domain characteristic of the signal transmission line using EBG structure as a return path is also analyzed. Experiments show that the smaller the period of structure, the worse the signal quality.%  该文从频域和时域两方面对一种正六边形贴片的电磁带隙(EBG)结构进行了特性分析和研究。利用等效电路理论分析和研究了贴片边长、贴片间距和过孔半径对该结构的带隙和传输特性的各自不同的影响,得到并验证了准确估算不同贴片边长带隙的上、下限频率和带宽的数学表达式。研究表明可以通过贴片间距来改变带宽,但不影响带隙左侧特性,过孔半径的缩小会导致带隙左移并变窄。最终分析了以 EBG 结构为返回路径的信号线的时域特性,实验证明 EBG 结构的周期越小,信号的传输质量越差。

  4. Microscopic theoretical model study of band gap opening in AA-stacked bi-layer graphene

    Science.gov (United States)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-05-01

    We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green's function for electron operator corresponding to A and B sub lattices by Zubarev's Green's function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the different physical parameters.

  5. Effective band structure of random alloys.

    Science.gov (United States)

    Popescu, Voicu; Zunger, Alex

    2010-06-11

    Random substitutional A(x)B(1-x) alloys lack formal translational symmetry and thus cannot be described by the language of band-structure dispersion E(k(→)). Yet, many alloy experiments are interpreted phenomenologically precisely by constructs derived from wave vector k(→), e.g., effective masses or van Hove singularities. Here we use large supercells with randomly distributed A and B atoms, whereby many different local environments are allowed to coexist, and transform the eigenstates into an effective band structure (EBS) in the primitive cell using a spectral decomposition. The resulting EBS reveals the extent to which band characteristics are preserved or lost at different compositions, band indices, and k(→) points, showing in (In,Ga)N the rapid disintegration of the valence band Bloch character and in Ga(N,P) the appearance of a pinned impurity band.

  6. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.; Theodoropoulou, Nikoleta, E-mail: ntheo@txstate.edu [Physics Department, Texas State University, San Marcos, Texas 78666 (United States)

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  7. Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Yuan Jin-Hui; Sang Xin-Zhu; Yu Chong-Xiu; Xin Xiang-Jun; Zhang Jin-Long; Zhou Gui-Yao; Li Shu-Guang; Hou Lan-Tian

    2011-01-01

    With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti-resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near-infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics can be well predicted.

  8. Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal

    Science.gov (United States)

    Woldering, Léon A.; Mosk, Allard P.; Vos, Willem L.

    2014-09-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamondlike crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centered on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell band structure calculations with up to 5×5×5 unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centered on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3 (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only donorlike resonances appear for smaller defect radius, whereas no acceptorlike resonances appear for greater defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of energy are found in sharp edges situated at the point defect, similar to how electrons collect at such features. This is different from what is observed for cavities in noninverted woodpile structures. Since inverse woodpile crystals can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.

  9. Band gap engineering in polymers through chemical doping and applied mechanical strain

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-08-01

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  10. Quantum speedup of an atom coupled to a photonic-band-gap reservoir

    Science.gov (United States)

    Wu, Yu-Nan; Wang, Jing; Zhang, Han-Zhuang

    2017-01-01

    For a model of an atom embedded in a photonic-band-gap reservoir, it was found that the speedup of quantum evolution is subject to the atomic frequency changes. In this work, we propose different points of view on speeding up the evolution. We show that the atomic embedded position, the width of the band gap and the defect mode also play an important role in accelerating the evolution. By changing the embedded position of the atom and the coupling strength with the defect mode, the speedup region lies even outside the band-gap region, where the non-Markovian effect is weak. The mechanism for the speedup is due to the interplay of atomic excited population and the non-Markovianity. The feasible experimental system composed of quantum dots in the photonic crystal is discussed. These results provide new degree of freedoms to depress the quantum speed limit time in photonic crystals.

  11. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    Directory of Open Access Journals (Sweden)

    P. G. Prabhash

    2016-05-01

    Full Text Available Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coated copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.

  12. Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap

    Institute of Scientific and Technical Information of China (English)

    Guo Ji-Yong; Chen Hong; Li Hong-Qiang; Zhang Ye-Wen

    2008-01-01

    We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε0, or μ-negative materials (MNMs) with ε>0 and μ<0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.

  13. Band gap of β-PtO2 from first-principles

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2012-06-01

    Full Text Available We studied the band gap of β-PtO2 using first-principles calculations based on density functional theory (DFT. The results are obtained within the framework of the generalized gradient approximation (GGA, GGA+U, GW, and the hybrid functional methods. For the different types of calculations, the calculated band gap increases from ∼0.46 eV to 1.80 eV. In particular, the band gap by GW (conventional and self-consistent calculation shows a tendency of converging to ∼1.25 ± 0.05 eV. The effect of on-site Coulomb interaction on the bonding characteristics is also analyzed.

  14. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  15. All-optical ultrafast switching of Si woodpile photonic band gap crystals

    CERN Document Server

    Euser, T G; Fleming, J G; Gralak, B; Polman, Albert; Vos, W L; Euser, Tijmen G.; Molenaar, Adriaan J.; Gralak, Boris; Polman, Albert; Vos, Willem L.

    2006-01-01

    We present ultrafast all-optical switching measurements of Si woodpile photonic band gap crystals at telecom frequencies. The crystals are homogeneously excited by a two-photon process. We probe the switching by measuring reflectivity over broad frequency ranges as a function of time. At short delay times, we observe that the photonic gap becomes narrower than in the unswitched case. After 1 ps, the complete gap has shifted to higher frequencies. This intricate behavior is the result of competing refractive index changes due to the electronic Kerr effect and to optically excited free carriers. The frequency shift of the band gap as a function of pump intensity agrees well with Fourier modal method calculations with no freely adjustable parameters.

  16. Defect guidance in kagome-clad fibers: the role of photonic band gaps and self-similarity of the lattice

    Science.gov (United States)

    Perez, H.; Zheltikov, A. M.

    2017-01-01

    We examine the influence of the structural self-similarity of the kagome lattice on the defect modes and waveguiding properties of hollow-core kagome-cladding fibers. We show that the guidance of such fibers is influenced by photonic band gaps (PBGs) which appear for a subset of the kagome lattice. Using these insights, we provide design considerations to further decrease loss in kagome-clad fibers.

  17. THz Photonic Band-Gap Prisms Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Busch, Stefan F.; Xu, Lipeng; Stecher, Matthias;

    2012-01-01

    We suggest a novel form of polymeric based 3D photonic crystal prisms for THz frequencies which could be fabricated using a standard fiber drawing technique. The structures are modeled and designed using a finite element analyzing technique. Using this simulation software we theoretically study...

  18. Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders

    Institute of Scientific and Technical Information of China (English)

    LU TianJian; GAO GuoQin; MA ShouLin; JIN Feng; T.Kim

    2009-01-01

    Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap per-formance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cyl-inder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental meas-urements on square arrays of hollow AI cylinders in air and semi-hollow AI cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.

  19. An efficient method of DFT/LDA band-gap correction

    Science.gov (United States)

    Scharoch, Pawel; Winiarski, Maciej

    2013-12-01

    It has been shown that the underestimated by DFT/LDA(GGA) band-gap can be efficiently corrected by an averaging procedure of transition energies over a region close to the direct band-gap transition, which we call the Δ(EIG) method (the differences in the Kohn-Sham eigenvalues). For small excitations the averaging appears to be equivalent to the Δ(SCF) approach (differences in the self-consistent energies), which is a consequence of Janak’s theorem and has been confirmed numerically. The Gaussian distribution in k-space for electronic excitation has been used (occupation numbers in the Δ(SCF) or eigenenergy sampling in the Δ(EIG)). A systematic behavior of the k-space localization parameter σk correcting the band-gap has been observed in numerical experiments. On that basis some sampling schemes for band-gap correction have been proposed and tested in the prediction of the band-gap behavior in InxGa(1-x)N semiconducting alloy, and a very good agreement with independent calculations has been obtained. In the context of the work the issue of electron localization in the r-space has been discussed which, as it has been predicted by Mori-Sánchez et al. [P. Mori-Sánchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 100 (2008) 146401], should reduce the effect of the convex behavior of the LDA/GGA functionals and improve the band-gap prediction within DFT/LDA(GGA). A scheme for electron localization in r-space has been suggested.

  20. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.

    Science.gov (United States)

    Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang

    2015-04-14

    In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.

  1. 旋转方形散射体对三角晶格磁振子晶体带结构的优化∗%Spin-wave band gaps created by rotating square ro ds in triangular lattice magnonic crystals

    Institute of Scientific and Technical Information of China (English)

    胡晓颖; 郭晓霞; 胡文弢; 呼和满都拉; 郑晓霞; 荆丽丽

    2015-01-01

    用改进的平面波展开法数值计算了正方形散射体三角排列的二维磁振子晶体当散射体旋转时的带结构。结果显示,同样的填充率下,旋转正方柱散射体可以在新的频率范围内打开更多的带隙,或者使低频带隙加宽。说明旋转散射体可以有效地优化带隙。%Recently, magnonic crystals which are the magnetic counterparts of photonic crystals or phononic crystals are becoming a hot area of research. In this paper, band structure of two-dimensional magnotic crystal composed of square rods triangularly arranged are calculated by using the plane-wave expansion method. Spin-wave band structures of two-dimensional magnonic crystal composed of Fe triangularly arranged Fe in an EuO matrix. The results show that when the filling ratio f =0.4, only two absolute band gaps can be found in the case of θ =0◦. The first gap appears between the first band and the second band, the second gap between the sixth band and the seventh band. However, the number of band gaps can be improved by rotating the square rods through θ =25◦, there are eight absolute band gaps that can be found. The first gap appears between the first band and the second band, the fifth gap between the sixth band and the seventh band. The new band gaps can be found, the second gap appears between the third band and the fourth band, the third gap between the fourth band and the fifth band, the fourth gap between the fifth band and the sixth band, the sixth gap between the seventh band and the eighth band, the seventh gap between the eighth band and the ninth band, the eighth gap between the ninth band and the tenth band. These results show that it is possible to create spin-wave gaps by rotating square rods in a two-dimensional magnotic crystal. The numerical results of the normalized gap width ∆Ω/Ωg of the first gap between the first band and the second band always changes with filling fraction f and rotational angles θ. When f

  2. Band gap and conductivity variations of ZnO thin films by doping with Aluminium

    Science.gov (United States)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). Aluminium was doped for different doping concentrations from 3 at.% to 12 at.% in steps of 3 at.%. Conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. It was observed that as the doping concentration of Aluminium increases, the band gap of the samples decreases and concequently conductivity of the samples increases.

  3. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    OpenAIRE

    2015-01-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase....

  4. Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting.

    Science.gov (United States)

    Wang, Tuo; Gong, Jinlong

    2015-09-07

    Solar water splitting provides a clean and renewable approach to produce hydrogen energy. In recent years, single-crystal semiconductors such as Si and InP with narrow band gaps have demonstrated excellent performance to drive the half reactions of water splitting through visible light due to their suitable band gaps and low bulk recombination. This Minireview describes recent research advances that successfully overcome the primary obstacles in using these semiconductors as photoelectrodes, including photocorrosion, sluggish reaction kinetics, low photovoltage, and unfavorable planar substrate surface. Surface modification strategies, such as surface protection, cocatalyst loading, surface energetics tuning, and surface texturization are highlighted as the solutions.

  5. Optical band gap of Sn0.2Bi1.8Te3 thin films

    Indian Academy of Sciences (India)

    P H Soni; M V Hathi; C F Desai

    2003-12-01

    Sn0.2Bi1.8Te3 thin films were grown using the thermal evaporation technique on a (001) face of NaCl crystal as a substrate at room temperature. The optical absorption was measured in the wave number range 500–4000 cm-1. From the optical absorption data the band gap was evaluated and studied as a function of film thickness and deposition temperature. The data indicate absorption through direct interband transition with a band gap of around 0.216 eV. The detailed results are reported here.

  6. Enhanced third-harmonic generation in photonic crystals at band-gap pumping

    Science.gov (United States)

    Yurchenko, Stanislav O.; Zaytsev, Kirill I.; Gorbunov, Evgeny A.; Yakovlev, Egor V.; Zotov, Arsen K.; Masalov, Vladimir M.; Emelchenko, Gennadi A.; Gorelik, Vladimir S.

    2017-02-01

    More than one order enhancement of third-harmonic generation is observed experimentally at band-gap pumping of globular photonic crystals. Due to a lateral modulation of the dielectric permittivity in two- and three-dimensional photonic crystals, sharp peaks of light intensity (light localization) arise in the media at the band-gap pumping. The light localization enhances significantly the nonlinear light conversion, in particular, third-harmonic generation, in the near-surface volume of photonic crystal. The observed way to enhance the nonlinear conversion can be useful for creation of novel compact elements of nonlinear and laser optics.

  7. Complete Band-Gap in Two-Dimensional Quasiperiod Photonic Crystals with Hollow Cylinders

    Institute of Scientific and Technical Information of China (English)

    FENG Zhi-Fang; FENG Shuai; REN Kun; LI Zhi-Yuan; CHENG Bing-Ying; ZHANG Dao-Zhong

    2005-01-01

    @@ The transmission properties of quasiperiodic photonic crystals (QPCs) based on the random square-triangle tilingsystem are investigated by the multiple scattering method. The hollow cylinders are introduced in our calculation. It is found that QPCs with hollow cylinders also possess a complete band gap common to s- and p-polarized waves when the inner radius of hollow cylinders is larger than a certain value. The QPCs possessing the complete band gap can be applied to the fields of light emitting, wave-guides, optical filters, high-Q resonators and antennas.

  8. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite.

    Science.gov (United States)

    D'Innocenzo, Valerio; Srimath Kandada, Ajay Ram; De Bastiani, Michele; Gandini, Marina; Petrozza, Annamaria

    2014-12-24

    We report about the relationship between the morphology and luminescence properties of methylammonium lead trihalide perovskite thin films. By tuning the average crystallite dimension in the film from tens of nanometers to a few micrometers, we are able to tune the optical band gap of the material along with its photoluminescence lifetime. We demonstrate that larger crystallites present smaller band gap and longer lifetime, which correlates to a smaller radiative bimolecular recombination coefficient. We also show that they present a higher optical gain, becoming preferred candidates for the realization of CW lasing devices.

  9. Empirical determination of the energy band gap narrowing in highly doped n+ silicon

    Science.gov (United States)

    Yan, Di; Cuevas, Andres

    2013-07-01

    Highly doped regions in silicon devices should be analyzed using Fermi-Dirac statistics, taking into account energy band gap narrowing (BGN). An empirical expression for the BGN as a function of dopant concentration is derived here by matching the modeled and measured thermal recombination current densities J0 of a broad range of n+ dopant concentration profiles prepared by phosphorus diffusion. The analysis is repeated with Boltzmann statistics in order to determine a second empirical expression for the apparent energy band gap narrowing, which is found to be in good agreement with previous work.

  10. Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals

    CERN Document Server

    Huisman, Simon R; Woldering, Léon A; Leistikow, Merel D; Mosk, Allard P; Vos, Willem L

    2010-01-01

    We have studied the reflectivity of CMOS-compatible three-dimensional silicon inverse woodpile photonic crystals at near-infrared frequencies. Polarization-resolved reflectivity spectra were obtained from two orthogonal crystal surfaces corresponding to 1.88 pi sr solid angle. The spectra reveal broad peaks with high reflectivity up to 67 % that are independent of the spatial position on the crystals. The spectrally overlapping reflectivity peaks for all directions and polarizations form the signature of a broad photonic band gap with a relative bandwidth up to 16 %. This signature is supported with stopgaps in plane wave bandstructure calculations and with the frequency region of the expected band gap.

  11. Semiconducting graphene nanoribbon retains band gap on amorphous or crystalline SiO_2

    OpenAIRE

    Hossain, M. Zubaer

    2011-01-01

    Electronic properties of a semiconducting armchair graphene nanoribbon on SiO_2 are examined using first-principles calculations and taking into account the van der Waals interaction. Unlike semiconducting carbon nanotubes, which exhibit variations in band gap on SiO_2, the nanoribbon is found to retain its band gap on SiO_2, regardless of the separation distance or the dielectric’s surface type—crystalline or amorphous. The interfacial interaction leads to electron-transfer from the nanor...

  12. Temperature dependence of band gaps in semiconductors: electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Reinhard K.; Cardona, M.; Lauck, R. [MPI for Solid State Research, Stuttgart (Germany); Bhosale, J.; Ramdas, A.K. [Physics Dept., Purdue University, West Lafayette, IN (United States); Burger, A. [Fisk University, Dept. of Life and Physical Sciences, Nashville, TN (United States); Munoz, A. [MALTA Consolider Team, Dept. de Fisica Fundamental II, Universidad de La Laguna, Tenerife (Spain); Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Romero, A.H. [CINVESTAV, Dept. de Materiales, Unidad Queretaro, Mexico (Mexico); MPI fuer Mikrostrukturphysik, Halle an der Saale (Germany)

    2013-07-01

    We investigate the temperature dependence of the energy gap of several semiconductors with chalcopyrite structure and re-examine literature data and analyze own high-resolution reflectivity spectra in view of our new ab initio calculations of their phonon properties. This analysis leads us to distinguish between materials with d-electrons in the valence band (e.g. CuGaS{sub 2}, AgGaS{sub 2}) and those without d-electrons (e.g. ZnSnAs{sub 2}). The former exhibit a rather peculiar non-monotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We demonstrate it can well be fitted by including two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low-T and a decrease at higher T's. We find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron constituents.

  13. Zero- n bar band gap in two-dimensional metamaterial photonic crystals

    Science.gov (United States)

    Mejía-Salazar, J. R.; Porras-Montenegro, N.

    2015-04-01

    We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.

  14. The scaling of the effective band gaps in indium-arsenide quantum dots and wires.

    Science.gov (United States)

    Wang, Fudong; Yu, Heng; Jeong, Sohee; Pietryga, Jeffrey M; Hollingsworth, Jennifer A; Gibbons, Patrick C; Buhro, William E

    2008-09-23

    Colloidal InAs quantum wires having diameters in the range of 5-57 nm and narrow diameter distributions are grown from Bi nanoparticles by the solution-liquid-solid (SLS) mechanism. The diameter dependence of the effective band gaps (DeltaE(g)s) in the wires is determined from photoluminescence spectra and compared to the experimental results for InAs quantum dots and rods and to the predictions of various theoretical models. The DeltaE(g) values for InAs quantum dots and wires are found to scale linearly with inverse diameter (d(-1)), whereas the simplest confinement models predict that DeltaE(g) should scale with inverse-square diameter (d(-2)). The difference in the observed and predicted scaling dimension is attributed to conduction-band nonparabolicity induced by strong valence-band-conduction-band coupling in the narrow-gap InAs semiconductor.

  15. Local density of optical states in the band gap of a finite photonic crysta

    CERN Document Server

    Yeganegi, Elahe; Mosk, Allard P; Vos, Willem L

    2014-01-01

    We study the local density of states (LDOS) in a finite photonic crystal, in particular in the frequency range of the band gap. We propose a new point of view on the band gap, which we consider to be the result of vacuum fluctuations in free space that tunnel in the forbidden range in the crystal. As a result, we arrive at a model for the LDOS that is in two major items modified compared to the well-known expression for infinite crystals. Firstly, we modify the Dirac delta functions to become Lorentzians with a width set by the crystal size. Secondly, building on characterization of the fields versus frequency and position we calculated the fields in the band gap. We start from the fields at the band edges, interpolated in space and position, and incorporating the exponential damping in the band gap. We compare our proposed model to exact calculations in one dimension using the transfer matrix method and find very good agreement. Notably, we find that in finite crystals, the LDOS depends on frequency, on posi...

  16. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers.

    Science.gov (United States)

    Mubeen, Syed; Hernandez-Sosa, Gerardo; Moses, Daniel; Lee, Joun; Moskovits, Martin

    2011-12-14

    A fruitful paradigm in the development of low-cost and efficient photovoltaics is to dope or otherwise photosensitize wide band gap semiconductors in order to improve their light harvesting ability for light with sub-band-gap photon energies.(1-8) Here, we report significant photosensitization of TiO2 due to the direct injection by quantum tunneling of hot electrons produced in the decay of localized surface-plasmon polaritons excited in gold nanoparticles (AuNPs) embedded in the semiconductor (TiO2). Surface plasmon decay produces electron-hole pairs in the gold.(9-15) We propose that a significant fraction of these electrons tunnel into the semiconductor's conduction band resulting in a significant electron current in the TiO2 even when the device is illuminated with light with photon energies well below the semiconductor's band gap. Devices fabricated with (nonpercolating) multilayers of AuNPs in a TiO2 film produced over 1000-fold increase in photoconductance when illuminated at 600 nm over what TiO2 films devoid of AuNPs produced. The overall current resulting from illumination with visible light is ∼50% of the device current measured with UV (ℏω>Eg band gap) illumination. The above observations suggest that plasmonic nanostructures (which can be fabricated with absorption properties that cover the full solar spectrum) can function as a viable alternative to organic photosensitizers for photovoltaic and photodetection applications.

  17. Hybrid antenna arrays with non-uniform Electromagnetic Band Gap lattices for wireless communication networks

    Science.gov (United States)

    Mourtzios, Ch.; Siakavara, K.

    2015-08-01

    A method to design hybrid antenna configurations with very low profile, suitable for smart and Multiple Input-Multiple Output antenna systems is proposed. The antennas are incorporated with novel Electromagnetic Band Gap (EBG) surfaces with non-similar cells. These non-uniform EBG surfaces have been properly designed to cause focusing, of the incident waves, thus enhancing the characteristics of operation of antenna elements positioned in close proximity to the surface and also to increase the isolation between them. Theoretical analysis of the reflection mechanism of this type of lattices as well as the prediction of the resulting performance of the antenna is presented. All these considerations are validated with implementation and simulation of the hybrid structures inside the Universal Mobile Telecommunications System frequency band. The results show that increment of the gain and isolation between the antenna elements can be obtained. Moreover, results for the correlation coefficient between the elements, for Gaussian distribution of the incoming waves have been received and the tolerance of the antennas to the variation of the polarization characteristics of the incoming waves has been investigated. A Genetic Algorithm has been constructed and applied to find the proper geometry of the hybrid antennas in order the correlation coefficient to be minimized and get almost independent from the polarization of incident waves.

  18. Band structures of TiO2 doped with N, C and B

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result.Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.

  19. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  20. Relationship between band gap and bond length alternation in organic conjugated polymers

    Science.gov (United States)

    Bredas, J. L.

    1985-04-01

    A description is given of calculations of the evolution of the band gap as a function of geometry in conjugated polymers based on aromatic rings; polyparaphenylene, polypyrrole, polythiophene. The results demonstrate that the gap decreases as a function of increasing quinoid character of the backbone and is thus not minimal in the case of zero bond length alternation, in contrast to the situation found in polyacetylene-like compounds. The consequences of these results are stressed for the understanding of the effects of doping and for the design of new organic polymers with small gaps.