WorldWideScience

Sample records for band gap crystals

  1. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  2. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  3. Analysis of photonic band gap in novel piezoelectric photonic crystal

    Science.gov (United States)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  4. Soft phononic crystals with deformation-independent band gaps

    Science.gov (United States)

    Zhang, Pu; Parnell, William J.

    2017-04-01

    Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be that one wishes to deform the medium while retaining the band gap structure. A special class of soft phononic crystals is described here with band gaps that are independent or almost-independent of the imposed mechanical deformation, which enables the design of phononic crystals with robust performance. This remarkable behaviour originates from transformation elasticity theory, which leaves the wave equation and the eigenfrequencies invariant after deformation. The necessary condition to achieve such a property is that the Lagrangian elasticity tensor of the hyperelastic material should be constant, i.e. independent of deformation. It is demonstrated that incompressible neo-Hookean materials exhibit such a unique property. Semilinear materials also possess this property under special loading conditions. Phononic crystals composed of these two materials are studied theoretically and the predictions of invariance, or the manner in which the response deviates from invariance, are confirmed via numerical simulation.

  5. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  6. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  7. Topological Design of Cellular Phononic Band Gap Crystals.

    Science.gov (United States)

    Li, Yang Fan; Huang, Xiaodong; Zhou, Shiwei

    2016-03-10

    This paper systematically investigated the topological design of cellular phononic crystals with a maximized gap size between two adjacent bands. Considering that the obtained structures may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume fraction of solid material so that the resulting structures can be lightweight, as well. In particular, we first conducted the finite element analysis of the phononic band gap crystals and then adapted a very efficient optimization procedure to resolve this problem based on bi-directional evolutionary structure optimization (BESO) algorithm in conjunction with the homogenization method. A number of optimization results for maximizing band gaps with bulk and shear modulus constraints are presented for out-of-plane and in-plane modes. Numerical results showed that the optimized structures are similar to those obtained for composite case, except that additional slim connections are added in the cellular case to support the propagation of shear wave modes and meanwhile to satisfy the prescribed bulk or shear modulus constraints.

  8. Topological Design of Cellular Phononic Band Gap Crystals

    Directory of Open Access Journals (Sweden)

    Yang Fan Li

    2016-03-01

    Full Text Available This paper systematically investigated the topological design of cellular phononic crystals with a maximized gap size between two adjacent bands. Considering that the obtained structures may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume fraction of solid material so that the resulting structures can be lightweight, as well. In particular, we first conducted the finite element analysis of the phononic band gap crystals and then adapted a very efficient optimization procedure to resolve this problem based on bi-directional evolutionary structure optimization (BESO algorithm in conjunction with the homogenization method. A number of optimization results for maximizing band gaps with bulk and shear modulus constraints are presented for out-of-plane and in-plane modes. Numerical results showed that the optimized structures are similar to those obtained for composite case, except that additional slim connections are added in the cellular case to support the propagation of shear wave modes and meanwhile to satisfy the prescribed bulk or shear modulus constraints.

  9. Modeling of Photonic Band Gap Crystals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Kady, Ihab Fathy [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal

  10. Opening complete band gaps in two dimensional locally resonant phononic crystals

    Science.gov (United States)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  11. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    (i) PhC composed of square lattice of elliptical air holes in silicon (Si) (n = 3.42) as shown in figure 1a. (ii) PhC ... consist of silicon and air as they provide adequate dielectric contrast for obtaining photonic band gaps. ... periodic with lattice vectors R. The relative permeability µ is taken as 1 and the relative permittivity is ...

  12. Research on the Band Gap Characteristics of Two-Dimensional Phononic Crystals Microcavity with Local Resonant Structure

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2015-01-01

    Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.

  13. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in ... TIFAC-Center of Relevance & Excellence in Fiber Optics & Optical Communication, Department of Applied Physics, Delhi College of Engineering, Faculty of ...

  14. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang-Yu; Chen, Lien-Wen, E-mail: chenlw@mail.ncku.edu.t [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-02-02

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the {Gamma}-X and {Gamma}-X' directions are also presented. The calculated results are compared with the experimental results.

  15. Band gap of two-dimensional fiber-air photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha

    2016-04-15

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  16. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  17. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Henry Hao-Chuan [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  18. Controlling emission and propagation of light with photonic band gap crystals

    NARCIS (Netherlands)

    Yeganegi Dastgerdi, Elahe

    2014-01-01

    In certain three-dimensional crystals, a frequency range exist for all polarizations for which light is not allowed to propagate in any direction, called the 3D photonic band gap: a frequency range where the density of vacuum fluctuations vanishes in an ideal infinitely large and perfect system. The

  19. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    Science.gov (United States)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  20. Enhancement of Faraday rotation at photonic-band-gap edge in garnet-based magnetophotonic crystals

    International Nuclear Information System (INIS)

    Zhdanov, A.G.; Fedyanin, A.A.; Aktsipetrov, O.A.; Kobayashi, D.; Uchida, H.; Inoue, M.

    2006-01-01

    Spectral dependences of Faraday rotation angle in one-dimensional garnet-based magnetophotonic crystals are considered. The enhancement of Faraday angle is demonstrated at the photonic band gap (PBG) edge both theoretically and experimentally. It is shown to be associated with the optical field localization in the magnetic layers of the structure. The advantages of magnetophotonic crystals in comparison with traditional magnetic microcavities are discussed. The specially designed microcavity structures optimized for the Faraday effect enhancement at the PBG edge are suggested

  1. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    Science.gov (United States)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  2. Acoustic beam splitting in a sonic crystal around a directional band gap

    International Nuclear Information System (INIS)

    Cicek Ahmet; Kaya Olgun Adem; Ulug Bulent

    2013-01-01

    Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle

  3. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    Science.gov (United States)

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  4. Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility.

    Science.gov (United States)

    Zhuo, Zhiwen; Wu, Xiaojun; Yang, Jinlong

    2018-01-18

    Due to their compatibility in the well-developed Si-based semiconductor industry, exploring two-dimensional (2D) silicon crystals with both sizable band gaps and high carrier mobility is important to develop high-performance electronic and optoelectronic devices on the nanoscale. Here, eleven new 2D silicon crystals are reported based on the strategy of mixing 3-fold and 4-fold coordinated silicon atoms in 2D confined phases and first-principles calculations. We establish that these 2D silicon crystals can be obtained by functionalizing silicene with silicon atoms, dimers, or chains, which exhibit lower formation energy than that of silicene. Their dynamic stability and thermal stability are confirmed by phonon calculations and Born-Oppenheimer molecular dynamic simulation at temperatures up to 700 K. Electronic structure calculations reveal that these 2D silicon crystals are semiconductors with sizable and tunable band gaps, ranging from 1.12 to 1.67 eV, and four of them are direct or quasi-direct band gap semiconductors with strong absorption in the visible-light frequency. The calculated Young's stiffness of 2D silicon crystals ranges from 31 to 88 N m -1 , which are comparable to phosphorene, but remarkably smaller than those of MoS 2 monolayer and graphene. Remarkably, C z -P2/c-Si 12 possesses a negative Poisson's ratio with a maximum value of -0.055. In particular, 2D silicon crystals possess ultrahigh carrier mobility of up to 1.7 × 10 5 and 1.3 × 10 4 cm 2 V -1 s -1 at room temperature for electrons and holes, respectively, suitable for high-speed electronic and optoelectronic applications on the nanoscale.

  5. Investigation on the band gap adjustment of the compound phononic crystal using the insertion of elliptical cylinder

    Science.gov (United States)

    Hu, Jiaguang; Tang, Weiya

    2018-01-01

    This computational study focuses on a kind of two-dimensional steel cylinder/gas square lattice phononic crystal with an elliptical cylinder inserted into the primitive cell. The crystal's energy band structure is calculated using plane wave expansion (PWE) method. The irreducible Brillouin zone (IBZ) is found to have undergone significant changes with the insertion of elliptical cylinder: the energy band extrema deviated from their original positions, and the wave vector's scanning range needs to be expanded in order to obtain reliable energy band structure. Since the elliptical cylinder is less symmetrical than the cylinder, low frequency band gap is more readily formed with the insertion. Greater filling ratio yields wider band gap. The band gap can be tuned within a wide frequency range by varying the orientation of the inserted elliptical cylinder. The band gap can form at a relatively low filling ratio by moving the inserted elliptical cylinder along y-axis.

  6. Effect of Temperature on Photonic Band Gaps in Semiconductor-Based One-Dimensional Photonic Crystal

    Directory of Open Access Journals (Sweden)

    J. V. Malik

    2013-01-01

    Full Text Available The effect of the temperature and angle of incidence on the photonic band gap (PBG for semiconductor-based photonic crystals has been investigated. The refractive index of semiconductor layers is taken as a function of temperature and wavelength. Three structures have been analyzed by choosing a semiconductor material for one of the two materials in a bilayer structure. The semiconductor material is taken to be ZnS, Si, and Ge with air in first, second, and third structures respectively. The shifting of band gaps with temperature is more pronounced in the third structure than in the first two structures because the change in the refractive index of Ge layers with temperature is more than the change of refractive index of both ZnS and Si layers with temperature. The propagation characteristics of the proposed structures are analyzed by transfer matrix method.

  7. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals

    Science.gov (United States)

    Aslan, Ozgur Burak; Ruppert, Claudia; Heinz, Tony

    2015-03-01

    Single- and few-layer crystals of exfoliated MoTe2 have been characterized spectroscopically by photoluminescence, Raman scattering, and optical absorption measurements. We find that MoTe2 in the monolayer limit displays strong photoluminescence. On the basis of complementary optical absorption results, we conclude that monolayer MoTe2 is a direct-gap semiconductor with an optical band gap of 1.10 eV. This new monolayer material extends the spectral range of atomically thin direct-gap materials from the visible to the near-infrared. Supported by the NSF through Grant DMR-1124894 for sample preparation and characterization by the O?ce of Naval Research for analysis. C.R. acknowledges support from the Alexander von Humboldt Foundation.

  8. Liquid-crystal photonic-band-gap materials the tunable electromagnetic vacuum

    CERN Document Server

    Busch, K

    1999-01-01

    We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG. $9 In particular, the three- dimensional PBG can be completely opened or closed by applying an electric field which rotates the axis of the nematic molecules relative to the inverse opal backbone. Tunable light localization effects may $9 be realized by controlling the orientational disorder in the nematic. (28 refs).

  9. Effects of symmetry reduction on magnon band gaps in two-dimensional magnonic crystals

    Science.gov (United States)

    Wang, Qi; Zhang, Huaiwu; Tang, Xiaoli; Su, Hua; Bai, Feiming; Jing, Yulan; Zhong, Zhiyong

    2014-02-01

    Effects of symmetry reduction on the magnon band gaps (MBGs) in two-dimensional (2D) magnonic crystals (MCs) were investigated by solving the Landau-Lifshitz equation with the plane wave method. The symmetry reduction is achieved by introducing additional scatterers into each unit cell or by reorienting noncircular scatterers. The numerical results show that the MBGs in a square lattice can be improved by introducing additional scatterers or rotating the square rods. In honeycomb and triangular lattices, the MBGs can be improved only by introducing additional scatterers, however, rotating the square rods is an invalid way to increase the MBGs.

  10. Fabrication of ceramic layer-by-layer infrared wavelength photonic band gap crystals

    Science.gov (United States)

    Kang, Henry Hao-Chuan

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibiting spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in submicron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers. The goal of this dissertation research is to explore techniques for fabricating 3D ceramic layer-by-layer (LBL) photonic crystals operating in the infrared frequency range, and to characterize the infilling materials properties that affect the fabrication process as well as the structural and optical properties of the crystals. While various approaches have been reported in literature for the fabrication of LBL structure, the uniqueness of this work ties with its cost-efficiency and relatively short process span. Besides, very few works have been reported on fabricating ceramic LBL crystals at mid-IR frequency range so far. The fabrication techniques reported here are mainly based on the concepts of microtransfer molding with the use of polydimethyl siloxane (PDMS) as molds/stamps. The infilling materials studied include titanium alkoxide precursors and aqueous suspensions of nanosize titania particles (slurries). Various infilling materials were synthesized to determine viscosities, effects on drying and firing shrinkages, effects on film surface roughness, and their moldability. Crystallization and phase transformation of the materials were also monitored using DTA, TGA and XRD. Mutilayer crystal

  11. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Science.gov (United States)

    Wang, Gang; Liu, Yao-Zong; Wen, Ji-Hong; Yu, Dian-Long

    2006-02-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  12. Study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang Haifeng; Zheng Jianping; Zhu Rongjun

    2012-01-01

    The transfer matrix method was applied to study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals with TE wave arbitrary incident under ideal conditions. TE wave would be divided into left-handed circularly polarized wave and right-handed circularly polarized wave after propagation through one-dimensional ternary magnetized plasma photonic crystals. The calculated transmission coefficients were used to analyze the effects of parameter of plasma, plasma filling factor, incident angle and relative dielectric constant for dielectric layer on the properties of tunable prohibited band gap. The results illustrate that the width of band gaps can not be broadened by increasing plasma collision frequency, the numbers and width of band gaps can be tuned by changing plasma frequency, plasma filling factor and relative dielectric constant for dielectric layer. The band gaps for right-handed circularly polarized wave can be tuned by the plasma gyro frequency, but band gaps for the left-handed circularly polarized wave can't influenced. Low-frequency region of band gaps will be broadened, while high-frequency region of band gaps will be firstly narrow and then broaden with increasing incident angle. (authors)

  13. Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism

    Directory of Open Access Journals (Sweden)

    Feroz A. Mir

    2014-01-01

    Full Text Available Recently, we carried out structural, optical and dielectric studies on micro-crystals of Oxypeucedanin (C16H14O5, isolated from the roots of plant Prangos pabularia (Mir et al. (2014 [3,4]. The obtained trend in frequency exponent (s with frequency (ω indicates that the universal dynamic response is followed by this compound. From optical absorption spectroscopy, the optical band gap (Eg was estimated around 3.76 eV and system is showing indirect allowed transition. Using Eg in certain relation of s, a close value of s (as much close obtained by fitting ac conductivity was obtained. This method was further used for other similar systems and again same trend was obtained. So a general conclusion was made that the high transmitting wide band insulators or semiconductors may follow bipolaron hopping transport mechanism.

  14. Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps

    International Nuclear Information System (INIS)

    Wu Liang; Zhuang Fie; He Sailing

    2003-01-01

    A method is introduced to analyze the degeneracy properties of the band structure of a photonic crystal by making use of supercells. The band structure associated with a supercell of a photonic crystal has degeneracies at the edge of the Brillouin zone if the photonic crystal has some kind of point group symmetry. The E-polarization and H-polarization cases have the same degeneracies for a two-dimensional (2D) photonic crystal. Two theorems on degeneracies in the band structure associated with the supercell are given and proved. These degeneracies can be lifted to create photonic band gaps by changing the translation group symmetry of the photonic crystal (the point group symmetry of the photonic crystal may remain unchanged), which consequently changes the transform matrix between the supercell and the smallest unit cell. The existence of photonic band gaps for many known 2D photonic crystals is explained through the degeneracy analysis. Some structures with large band gaps are also found through the present degeneracy analysis

  15. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  16. Orientation dependence of dispersion and band gap of PIMNT single crystals

    Science.gov (United States)

    He, Chongjun; Chen, Hongbing; Wang, Jiming; Gu, Xiaorong; Wu, Tong; Liu, Youwen

    2018-01-01

    As piezoelectric materials, optical properties of xPb(In1/2Nb1/2)O3-(1-x-y)Pb(Mg1/3Nb2/3)O3-yPbTiO3 single crystals were not perfectly known. Here refractive indices and optical transmission of 0.25Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3- 0.33PbTiO3 (PIMNT) single crystal are investigated after poled along different directions. Cauchy dispersion equations of the refractive indices were obtained by least square fitting, which can be used to calculate the refractive indices in the low absorption wavelength range. After poled along [011] direction, the optical transmission of PIMNT single crystal is more than 65% above 0.5 μm, which is much higher than that of [001] and [111] directions. Energy band gap was obtained from absorption coefficient.

  17. Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies.

    Science.gov (United States)

    King, Tzu-Chyang; Chen, De-Xin; Lin, Wei-Cheng; Wu, Chien-Jang

    2015-10-10

    In this work, the photonic band gap (PBG) structure in a one-dimensional ferroelectric photonic crystal (PC) is theoretically investigated. We consider a PC, air/(AB)N/air, in which layer A is a dielectric of MgO and layer B is taken to be a ferroelectric of Ba0.55Sr0.45TiO3 (BSTO). With an extremely high value in the dielectric constant in BSTO, the calculated photonic band structure at microwave frequencies exhibits some interesting features that are significantly different from those in a usual dielectric-dielectric PC. First, the photonic transmission band consists of multiple and nearly discrete transmission peaks. Second, the calculated bandwidth of the PBG is nearly unchanged as the angle of incidence varies in the TE wave. The bandwidth will slightly reduce for the TM mode. Thus, a wide omnidirectional PBG can be obtained. Additionally, the effect of the thickness of the ferroelectric layer on the PBG is much more pronounced compared to the dielectric layer thickness. That is, the increase of ferroelectric thickness can significantly decrease the PBG bandwidth.

  18. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3-BaTiO3 single crystals

    Science.gov (United States)

    He, Chongjun; Deng, Chenguang; Wang, Jiming; Gu, Xiaorong; Wu, Tong; Zhu, Kongjun; Liu, Youwen

    2016-02-01

    Optical transmittance spectra of lead-free ferroelectric (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-xBT) single crystals poled along different directions have been studied comprehensively. After poled along [001] direction, the transmittance of tetragonal NBT-8%BT crystal is about 70%, which is much higher than that of NBT-2%BT crystal with rhombohedral structure and NBT-5%BT crystal with morphotropic phase boundary (MPB) composition. However, after poled [111] direction, the transmittance of tetragonal NBT-8%BT crystal is the smallest among them. These properties are manifest in view of the crystal structure. Both direct and indirect optical energy band gaps, as well phonon energies were obtained from absorption coefficient spectra by Tauc equations. The band gaps of [001]-poled NBT-xBT crystals increase with BT content, yet the [111]-poled crystals have opposite trends.

  19. Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites

    International Nuclear Information System (INIS)

    Lee, Soonil; Woodford, William H.; Randall, Clive A.

    2008-01-01

    A number of perovskites with A-site alkaline earth chemistries being Ca, Sr, and Ba, and tetravalent cations including Ce, Zr, and Ti are measured for optical band gap and found to vary systematically with tolerance factor and lattice volume within limits defined by the chemistry of the octahedral site. This paper also focuses on the BaTiO 3 system, considering equilibrated nonstoichiometries, and determines the changes in band gap with respect to Ba/Ti ratios. It was found that the optical band gap changes in the solid solution regime and is invariant in the second phase regions, as would be expected. In the cases of Ba/Ti 1.0 stoichiometries, there is a distinct Urbach tail and the trend with lattice volume no longer holds. It is inferred that the V Ti q prime-2V O partial Schottky complex controls the band gap trend with Ba-rich nonstoichiometries

  20. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.

    Science.gov (United States)

    Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa

    2014-05-21

    We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices.

  1. Hypersonic band gap in an AlN-TiN bilayer phononic crystal slab

    Czech Academy of Sciences Publication Activity Database

    Hemon, S.; Akjouj, A.; Soltani, A.; Pennec, Y.; El Hassouani, Y.; Talbi, A.; Mortet, Vincent; Djafari-Rouhani, B.

    2014-01-01

    Roč. 104, č. 6 (2014), , "063101-1"-"063101-5" ISSN 0003-6951 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : band gap * III-V semiconductors * AIN films * photonic bandgap materials * thin film deposition * band structure * surface acoustic waves * bulk materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  2. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  3. Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Martinez-Ricci, Maria L. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, 46022 Valencia (Spain)]. E-mail: jmonsori@fis.upv.es; Silvestre, Enrique [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain); Andres, Pedro [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain)

    2007-04-30

    We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability {mu} or the electric permittivity {epsilon} of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when {mu}=0 or when {epsilon}=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to {mu}=0 occurs only for TE polarized waves, whereas a gap corresponding to {epsilon}=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction.

  4. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    D finite-difference-time-domain method. The simulated spectra are in excellent agreement with the experimental results, which show a propagation loss as low as 2.5±4 dB/mm around 1525 nm and bend losses at 2.9±0.2 dB for TM polarized light. We demonstrate a high coupling for TM polarized light......We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3...

  5. Asymptotic Analysis of High-Contrast Phononic Crystals and a Criterion for the Band-Gap Opening

    OpenAIRE

    Ammari, H.; Kang, H.; Lee, H.

    2006-01-01

    We investigate the band-gap structure of the frequency spectrum for elastic waves in a high-contrast, two-component periodic elastic medium. We consider two-dimensional phononic crystals consisting of a background medium which is perforated by an array of holes periodic along each of the two orthogonal coordinate axes. In this paper we establish a full asymptotic formula for dispersion relations of phononic band structures as the contrast of the shear modulus and that of the density become la...

  6. single crystal growth, x-ray structure analysis, optical band gap

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... Hg...Hgand Cl...Cl interactions are stabilizing the structures in 3D pattern. UV-vis absorption spectra illustrate the change in opticalband gap from 3.01eVto 3.42eV on replacing the metal halide group.Raman and Hyper-Raman tensors calculations were performed based on single crystal X-ray data and the ...

  7. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  8. Recent progress in chiral photonic band-gap liquid crystals for laser applications.

    Science.gov (United States)

    Furumi, Seiichi

    2010-12-01

    This article describes a brief review of recent research advances in chiral liquid crystals (CLCs) for laser applications. The CLC molecules have an intrinsic capability to spontaneously organize supramolecular helical assemblages consisting of liquid crystalline layers through their helical twisting power. Such CLC supramolecular helical structures can be regarded as one-dimensional photonic crystals (PhCs). Owing to their supramolecular helical structures, the CLCs show negative birefringence along the helical axis. Selective reflection of circularly polarized light is the most unique and important optical property in order to generate internal distributed feedback effect for optically-excited laser emission. When a fluorescent dye is embedded in the CLC medium, optical excitation gives rise to stimulated laser emission peak(s) at the band edge(s) and/or within the CLC selective reflection. Furthermore, the optically-excited laser emission peaks can be controlled by external stimuli through the self-organization of CLC molecules. This review introduces the research background of CLCs carried out on the PhC realm, and highlights intriguing precedents of various CLC materials for laser applications. It would be greatly advantageous to fabricate active CLC laser devices by controlling the supramolecular helical structures. Taking account of the peculiar features, we can envisage that a wide variety of supramolecular helical structures of CLC materials will play leading roles in next-generation optoelectronic molecular devices. Copyright © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  9. Tunable omnidirectional photonic band gap of one-dimensional photonic crystals containing Dirac semimetals

    Science.gov (United States)

    Zhao, Yunkun; Zhang, Yuping; Guo, Xiaohan; Liu, Maodong; Chen, Huan; Liu, Shande; Zhang, Huiyun

    2017-12-01

    We have theoretically investigated the tunability of the omnidirectional bandgap (OBG) of a one-dimensional photonic crystal consisting of alternating Dirac semimetals (DSs) and SiO2 dielectrics by adjusting the structural Fermi level. This photonic bandgap (PBG) is strongly dependent on the Fermi level and thickness ratio of the DSs and SiO2 layers. The effects of different parameters such as Fermi level, incident angle, and lattice constant on PBG are analyzed in detail. It is found that the first gap does not change with the change in lattice constant, but it is sensitive to the Fermi level; the width of the omnidirectional PBG increases with the structural Fermi level. The second gap is also sensitive to the Fermi level, the upper and lower frequency limits of this PBG shift to higher frequency, and the width becomes narrower as the Fermi level is increasing, where only one OBG exists in the range of 3.6-4.3 THz for transverse electric polarization. However, as the angle of incidence increases, the photonic bandgap can close for transverse magnetic polarization. All these properties can be applied to tunable optical filters or optical switches.

  10. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are ...

  12. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  13. Crystal orientation dependent optical transmittance and band gap of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–BaTiO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Chongjun, E-mail: hechongjun@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Deng, Chenguang; Wang, Jiming; Gu, Xiaorong; Wu, Tong [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Liu, Youwen, E-mail: ywliu@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-02-15

    Optical transmittance spectra of lead-free ferroelectric (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–xBaTiO{sub 3} (NBT–xBT) single crystals poled along different directions have been studied comprehensively. After poled along [001] direction, the transmittance of tetragonal NBT–8%BT crystal is about 70%, which is much higher than that of NBT–2%BT crystal with rhombohedral structure and NBT–5%BT crystal with morphotropic phase boundary (MPB) composition. However, after poled [111] direction, the transmittance of tetragonal NBT–8%BT crystal is the smallest among them. These properties are manifest in view of the crystal structure. Both direct and indirect optical energy band gaps, as well phonon energies were obtained from absorption coefficient spectra by Tauc equations. The band gaps of [001]-poled NBT–xBT crystals increase with BT content, yet the [111]-poled crystals have opposite trends.

  14. Conoscopic patterns in photonic band gap of cholesteric liquid crystal cells with twist defects

    Science.gov (United States)

    Egorov, R. I.; Kiselev, A. D.

    2010-10-01

    We investigate theoretically the effects of the angle of incidence on light transmission through cholesteric liquid crystals. The systems are two-layer sandwich structures with a twist defect created by rotation of the one layer about the helical axis. The conoscopic images and polarization-resolved patterns are obtained for thick layers by computing the intensity and the polarization parameters as a function of the incidence angles. In addition to the defect angle-induced rotation of the pictures as a whole, the rings associated with the defect mode resonances are found to shrink to a central point and disappear, as the defect twist angle varies from zero to its limiting value π/2 and beyond.

  15. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suobin; Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Li, Yinggang [Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan, 430070 (China); Chen, Weihua [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-06-03

    We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the “analogous rigid mode” of the stub and the anti-symmetric Lamb modes of the plate. The “analogous rigid mode” of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The “analogous rigid mode” of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear. - Highlights: • Expansion of lower-frequency locally resonant BGs using novel composite phononic crystals plates. • The proposed structure expands the relative bandwidth 1.5 times compared to classic doubled-sided stubbed PC plates. • The opening location of the first complete BG decreases 3 times compared to the classic doubled-sided stubbed PC plates. • The concept “analogous rigid mode” is put forward to explain the expansion of lower-frequency BGs.

  16. A study on photonic crystal slab waveguide with absolute photonic band gap

    Directory of Open Access Journals (Sweden)

    Katsumasa Satoh

    2018-02-01

    Full Text Available Most of the conventional photonic crystal (PhC slab waveguides have a photonic bandgap (PBG only for one polarization state of two orthogonal polarization states. In this paper, westudy on an absolute PBG that can realize PBG for both polarizations in the same frequency range anddemonstrate that an absolute PBG can be realized in PhC structures proposed here. In the numericalanalysis and design of PhC structures, we employ the two-dimensional finite element method (FEMbased on the effective index method (EIM. First, we propose two-types of PhC structures with anabsolute PBG and show that a steering type PhC is superior to an air-ring type PhC to obtain a widebandabsolute PBG. It is also shown that the optimized steering type PhC has the absolute PBG whosebandwidth of 164 nm at the center wavelength of 1.55 μm. Furthermore, we design PhC waveguidesbased on the obtained PhC structure having an absolute PBG in order to obtain guided modes for bothpolarization states within the same wavelength range. The transmission properties of the designed PhCwaveguides are also investigated and 60 degree bends which are required in compact photonic circuitsare designed. From these results, the possibility to realize compact polarization multiplexing photonicdevices is shown.

  17. Modelling and design of complete photonic band gaps in two ...

    Indian Academy of Sciences (India)

    Photonic crystal; complete photonic band gap; plane-wave expansion method. PACS Nos 71.20; 42.70.Q. 1. Introduction. Photonic band gap structures/photonic crystals, especially two-dimensional (2D) photonic crystals, which are dielectric structures periodic on length scale, have recently achieved much attention, as they ...

  18. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.

    2016-12-16

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  19. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    International Nuclear Information System (INIS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-01-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  20. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  1. Bi-directional evolutionary optimization for photonic band gap structures

    Science.gov (United States)

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  2. Bi-directional evolutionary optimization for photonic band gap structures

    International Nuclear Information System (INIS)

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-01-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  3. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  4. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  5. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.

    Science.gov (United States)

    Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S; Scheffold, Frank

    2016-02-25

    Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.

  6. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  7. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  8. A PHOTONIC BAND GAP FIBRE

    DEFF Research Database (Denmark)

    1999-01-01

    An optical fibre having a periodicidal cladding structure provididing a photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction...... of additional low index elements, another method is providing elongated elements deformed in relation to a circular cross section. Also described is a cladding structure comprising elongated elements of a material having an index of refraction higher than that of the material adjacent thereto. Using...

  9. Photonic band gap structure simulator

    Science.gov (United States)

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  10. Photonic band gap and defect mode of one-dimensional photonic crystal coated from a mixture of (HMDSO, N2) layers deposited by PECVD

    Science.gov (United States)

    Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2017-04-01

    One dimensional photonic crystal based on a mixture of an organic compound HMDSO and nitrogen N2, is elaborated by radiofrequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) at different radiofrequency powers. The variation of the radiofrequency power for a flow of N2/HMDSO ratio equal to 0.4, leads to obtain two kinds of layers A and B with refractive index nA = 2 and nB = 1.55 corresponding to RF power of 200 W and 20 W, respectively. The analysis of the infrared results shows that these layers have the same chemical composition element with different structure. These layers, which exhibit a good indexes difference (nA - nB) contrast, allowed then the elaboration of a one-photonic crystal from the same initial gas mixture, which is the aim of this work. After the optimization of the layers thickness, we have measured transmission and reflection spectra and we found that the photonic band gap (PBG) appears after 15 periods of alternating A and B deposited layers. The introduction of defect in the structure leads to obtain a localized mode in the center of the PBG corresponding to the telecommunication wave length 1.55 μm. Finally, we have successfully interpreted our experimental results by using a theoretical model based on transfer matrix method.

  11. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...

  12. Low band gap polymers for organic photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...... in photovoltaic applications and give a tabular overview of rarely applied materials....

  13. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  14. Crystal Structure and Band-Gap Engineering of a Semiconducting Coordination Polymer Consisting of Copper(I) Bromide and a Bridging Acceptor Ligand.

    Science.gov (United States)

    Okubo, Takashi; Himoto, Kento; Tanishima, Koki; Fukuda, Sanshiro; Noda, Yusuke; Nakayama, Masanobu; Sugimoto, Kunihisa; Maekawa, Masahiko; Kuroda-Sowa, Takayoshi

    2018-03-05

    A new semiconducting 3D coordination polymer, [Cu 2 Br 2 (ttz)] n (1), with an acceptor bridging ligand, 1,2,4,5-tetrazine (ttz), was synthesized. The complex shows large absorption bands extending to the near-IR region, indicating a small band gap in the coordination polymer. This complex shows higher conductivity than those of [CuBr(pyz)] n (2), including pyrazine (pyz) with a higher lowest unoccupied molecular orbital level. We performed density functional theory band calculations using the VASP program to understand the electronic states and conducting paths of the coordination polymer.

  15. Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods.

    Science.gov (United States)

    Hsu, Sen-ming; Chang, Hung-chun

    2008-12-22

    To effectively investigate the fundamental characteristics of two-dimensional (2D) photonic crystals (PCs) with arbitrary 3D material anisotropy under the out-of-plane wave propagation, we establish a full-vectorial finite element method based eigenvalue algorithm to perform related analysis correctly. The band edge diagrams can be conveniently constructed from the band structures of varied propagation constants obtained from the algorithm, which is helpful for the analysis and design of photonic ban gap (PBG) fibers. Several PCs are analyzed to demonstrate the correctness of this numerical model. Our analysis results for simple PCs are checked with others' ones using different methods, including the transfer matrix method, the finite-difference frequency-domain (FDFD) method, and the plane-wave expansion method. And the validity of those for the most complex PC with arbitrary 3D anisotropy is supported by related liquid-crystal-filled PBG fiber mode analysis, which demonstrates the dependence of transmission properties on the PBGs, employing a full-vectorial finite element beam propagation method (FE-BPM).

  16. Modelling and design of complete photonic band gaps in two ...

    Indian Academy of Sciences (India)

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods ...

  17. Wide band gap semiconductor templates

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  18. Artificial Oxide Heterostructures with Tunable Band Gap

    Science.gov (United States)

    2016-12-20

    tunable band gap and band structures in epitaxial grown CaMnO3. The efforts have been devoted to (1) the thin film growth; (2) the tunable optical...plan to pursue a claim for personal or organizational intellectual property? Changes in research objectives (if any): Change in AFOSR Program Officer

  19. Quantum electrodynamics near a photonic band-gap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  20. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  1. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  2. Mechanism of photonic band gap, optical properties, tuning and applications

    International Nuclear Information System (INIS)

    Tiwari, A.; Johri, M.

    2006-05-01

    Mechanism of occurrence of Photonic Band Gap (PBG) is presented for 3-D structure using close packed face centered cubic lattice. Concepts and our work, specifically optical properties of 3-D photonic crystal, relative width, filling fraction, effective refractive index, alternative mechanism of photonic band gap scattering strength and dielectric contrast, effect of fluctuations and minimum refractive index contrast, are reported. The temperature tuning and anisotropy of nematic and ferroelectric liquid crystal infiltrated opal for different phase transitions are given. Effective dielectric constant with filling fraction using Maxwell Garnet theory (MG), multiple modified Maxwell Garnet (MMMG) and Effective Medium theory (EM) and results are compared with experiment to understand the occurrence of PBG. Our calculations of Lamb shifts including fluctuations are given and compared with those of literature values. We have also done band structure calculations including anisotropy and compared isotropic characteristic of liquid crystal. A possibility of lowest refractive index contrast useful for the fabrication of PBG is given. Our calculations for relative width as a function of refractive index contrast are reported and comparisons with existing theoretical and experimental optimal values are briefed. Applications of photonic crystals are summarized. The investigations conducted on PBG materials and reported here may pave the way for understanding the challenges in the field of PBG. (author)

  3. Theoretical study of relative width of photonic band gap for the 3-D ...

    Indian Academy of Sciences (India)

    ... of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.

  4. Photonic band gap materials: design, synthesis, and applications

    International Nuclear Information System (INIS)

    John, S.

    2000-01-01

    Full text: Unlike semiconductors which facilitate the coherent propagation of electrons, photonic band gap (PBG) materials execute their novel functions through the coherent localization of photons. I review and discuss our recent synthesis of a large scale three-dimensional silicon photonic crystal with a complete photonic band gap near 1.5 microns. When a PBG material is doped with impurity atoms which have an electronic transition that lies within the gap, spontaneous emission of light from the atom is inhibited. Inside the gap, the photon forms a bound state to the atom. Outside the gap, radiative dynamics in the colored vacuum is highly non Markovian. I discuss the influence of these memory effects on laser action. When spontaneous emission is absent, the next order radiative effect (resonance dipole dipole interaction between atoms) must be incorporated leading to anomalous nonlinear optical effects which occur at a much lower threshold than in ordinary vacuum. I describe the collective switching of two-level atoms near a photonic band edge, by external laser field, from a passive state to one exhibiting population inversion. This effect is forbidden in ordinary vacuum. However, in the context of a PBG material, this effect may be utilized for an all-optical transistor. Finally, I discuss the prospects for a phase sensitive, single atom quantum memory device, onto which information may be written by an external laser pulse

  5. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  6. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  7. Engineering the hypersonic phononic band gap of hybrid Bragg stacks.

    Science.gov (United States)

    Schneider, Dirk; Liaqat, Faroha; El Boudouti, El Houssaine; El Hassouani, Youssef; Djafari-Rouhani, Bahram; Tremel, Wolfgang; Butt, Hans-Jürgen; Fytas, George

    2012-06-13

    We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one-dimensional crystals forward to a detailed understanding, a precondition to engineer dispersion relations in such structures.

  8. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    Science.gov (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  9. Correlation functions and susceptibilities of photonics band gap reservoirs

    International Nuclear Information System (INIS)

    Konopka, M.

    1998-01-01

    We investigate quantum statistical properties of photonic band gap reservoirs in terms of correlation functions and susceptibilities in time and spectral domains. Typical features are oscillations of the time-dependent correlation functions and susceptibilities. This is because photonic bad gap reservoirs are intrinsically non-Markovian reservoirs. The results help us to understand better how intrinsic quantum-statistical properties of a reservoir influence dynamics of an atom interacting with this reservoir. Boundary conditions influence time and spectral properties of the electromagnetic field. This well-known fact has a great importance in optics and generally in electromagnetism. Specific examples are resonators used in laser technique and cavity electrodynamics. In quantum optics high-Q micro cavities are used for single-atom experiments when an atom can interact in a coherent way with an electromagnetic field which has its mode structure totally different from those in free space. In particular, interaction of an (effectively) two-level atom with a single-mode cavity field was observed in the region of microwaves (with the wavelength about 1 cm). In 1987 Yablonovitch and John independently proposed that certain periodic dielectric structures can present forbidden frequency gaps (or pseudo gaps in partially disordered structures) for transverse modes. Such periodic structures were named 'photonic band structures' or 'photonic crystals', in analogy with electronic crystals which also have a (forbidden) gap for electronic energy. For true photonic crystals the basic property of blocking electromagnetic wave propagation must be fulfilled for all waves within some frequency range, i.e. for all wavevector and polarization directions

  10. Band structure peculiarities of magnetic photonic crystals

    Science.gov (United States)

    Gevorgyan, A. H.; Golik, S. S.

    2017-10-01

    In this work we studied light diffraction in magneto-photonic crystals (MPC) having large magneto-optical activity and modulation large depth. The case of arbitrary angles between the direction of the external static magnetic field and the normal to the border of the MPC layer is considered. The problem is solved by Ambartsumian's modified layer addition method. It is found that there is a new type of non-reciprocity, namely, the relation R (α) ≠ R (- α) takes place, where R is the reflection coefficient, and α is the incidence angle. It is shown the formation of new photonic band gap (PBG) at oblique incidence of light, which is not selective for the polarization of the incident light, in the case when the external magnetic field is directed along the medium axis. Such a system can be used as: a tunable polarization filter, polarization mirror, circular (elliptical) polarizer, tunable optical diode, etc.

  11. Bands and gaps in Nekrasov partition function

    Science.gov (United States)

    Gorsky, A.; Milekhin, A.; Sopenko, N.

    2018-01-01

    We discuss the effective twisted superpotentials of 2d N = (2, 2) theories arising upon the reduction of 4d N = 2 gauge theories on the Ω-deformed cigar-like geometry. We explain field-theoretic origins of the gaps in the spectrum in the corresponding quantum mechanical (QM) systems. We find local 2d descriptions of the physics near these gaps by resumming the non-perturbative part of the twisted superpotential and discuss arising wall-crossing phenomena. The interpretation of the associated phenomena in the classical Liouville theory and in the scattering of two heavy states in AdS3 gravity is suggested. Some comments concerning a possible interpretation of the band structure in QM in terms of the Schwinger monopole-pair production in 4d are presented.

  12. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  13. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  14. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    gradients. It has previously been shown that a large functionally graded thermoelectric single crystal can be synthesized by the Czochralski method (1). Utilizing element gradients inherent to the Czochralski process we have synthesized a Ge1-xSix:B crystal with a continuously varying x, band gap...

  15. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  16. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    Science.gov (United States)

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  17. Metallic photonic band-gap materials

    International Nuclear Information System (INIS)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-01-01

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the s- and p-polarized waves. The p-polarized waves exhibit behavior similar to the dielectric PBG's. But, the s-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG's, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures

  18. Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN

    Science.gov (United States)

    Amano, Hiroshi

    2013-05-01

    Thin films of III-V compound semiconductors such as GaAs and InP can be grown on native substrates, whereas such growth was difficult for group III nitride semiconductors. Despite this drawback, scientists have gradually become able to use the functions of group III nitride semiconductors by growing their thin films on non-native substrates such as sapphire and Si substrates. With the continuously increasing demand for the conservation and generation of energy, bulk substrates of group III nitride semiconductors are highly expected to maximize their potential. In this report, I review the current status of the growth methods for bulk GaN single crystals used for substrates as well as summarize the characteristics of blue light-emitting diodes (LEDs), heterojunction field-effect transistors (HFETs), and photovoltaic cells on GaN substrates.

  19. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...

  20. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    Czech Academy of Sciences Publication Activity Database

    Yadav, S.K.; Uberuaga, B.P.; Nikl, Martin; Jiang, C.; Stanek, C.R.

    2015-01-01

    Roč. 4, č. 5 (2015), "054012-1"-"054012-9" ISSN 2331-7019 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillator * electronic band gap structure * garnets * band gap engineering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.061, year: 2015

  1. Large sonic band gaps in 12-fold quasicrystals

    Science.gov (United States)

    Lai, Yun; Zhang, Xiangdong; Zhang, Zhao-Qing

    2002-05-01

    The sonic band-gap structures of 12-fold symmetry quasicrystals consisting of rigid cylinders in air are investigated by using the multiple scattering method. Large full gaps are found in this system owing to its high symmetry. At filling fractions between 0.2 and 0.4, this 12-fold square-triangle tiling is much better for the realization of sonic band gaps than the square or triangular lattice. This makes the 12-fold quasicrystal a promising structure for acoustic-wave band-gap materials.

  2. Nonideal anion displacement, band gap variation, and valence band splitting in Cu-In-Se compounds

    International Nuclear Information System (INIS)

    Reena Philip, Rachel; Pradeep, B.

    2005-01-01

    Polycrystalline thin films of ternary chalcopyrite CuInSe 2 and defect compounds CuIn 3 Se 5 and CuIn 5 Se 8 are prepared in vacuum by three-source coevaporation method. Structural and optical characterizations of the films are done using X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), and optical absorbance spectra measurements. With variation in the composition of CuInSe 2 , a change over from p-type to n-type conductivity is observed (as noted by the hot probe method). The deformation parameters and the anion displacements are calculated from the X-ray diffraction data, and the cation-anion bond lengths are deduced. The dependence of band gap variation on nonideal anion displacement in the ternary compounds and the effect of Se-p-Cu-d repulsion on band gap are studied. The threefold optical structure observed in the fundamental absorption region of the absorption spectra is analysed to extract the valence band splitting parameters. Hopfields quasi-cubic model adapted for chalcopyrites with tetragonal deformation is used to determine the crystal field splittings and spin orbit splittings, and the linear hybridization model is used to calculate the percentage of d-orbital and p-orbital contribution to hybridization in the compounds under consideration

  3. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  4. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  5. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  6. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2011-01-01

    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap bo...... bowing in In-containing nitride alloys can be explained by specific properties of InN, which do not follow trends observed in several other binaries....

  7. Theoretical study on the two-band degenerate-gaps superconductors: Application to SrPt3P

    Science.gov (United States)

    Huang, Hai; Hou, Li-Chao; Zhao, Bin-Peng

    2016-09-01

    We study the magnetic properties of two-band degenerate-gaps superconductors with two-band isotropic Ginzburg-Landau theory. The exact solutions of upper critical field and London penetration depth are obtained, and the calculations reproduce the experimental data of the recently observed superconducting crystal SrPt3P in a broad temperature range. It directly underlies that SrPt3P is a multi-band superconductor with equal gaps in two Fermi surface sheets.

  8. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  9. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  10. Effect of ferromagnetic exchange field on band gap and spin ...

    Indian Academy of Sciences (India)

    Partha Goswami

    2018-02-19

    Feb 19, 2018 ... On account of the strong spin–orbit coupling, the system acts as a. QSH insulator for M = 0. As the exchange field (M) increases, the band-gap narrowing takes place followed by its recovery. The essential features of these curves, apart from the particle–hole symmetry, are (i) opening of an orbital gap due to ...

  11. Relativistic band gaps in one-dimensional disordered systems

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs

  12. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    Abstract. We report the use of low dielectric constant materials to form two- dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The se- lected geometries are square and triangular and the materials chosen ...

  13. Band gap bowing in quaternary nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyka, Isabela; Suski, T.; Christensen, Niels Egede

    2011-01-01

    the composition and atomic arrangements are examined using a supercell geometry. An analytical expression for the band gap is derived for the entire range of compositions. The range of (x, y) values for which InxGayAl1−x−yN is lattice matched to GaN, and the ensuing energy gaps, are given. This range of available...

  14. Cation substitution induced blue-shift of optical band gap

    Indian Academy of Sciences (India)

    Cation substitution induced blue-shift of optical band gap in nanocrystalline Zn ( 1 − x ) Ca x O thin films deposited by sol–gel dip coating technique ... thin films giving 13.03% enhancement in theenergy gap value due to the electronic perturbation caused by cation substitution as well as deterioration in crystallinity.

  15. Photonic Band Gap Accelerator Demonstration at Ku-Band.

    CERN Document Server

    Smirnova, Evgenya I; Edwards, Randall L; Kesar, Amit S; Mastovsky, Ivan; Shapiro, Michael A; Temkin, Richard J

    2005-01-01

    We report progress on the design and cold test of a metal Ku-band PBG accelerator structure. The 17.140 GHz 6-cell PBG accelerator structure with reduced long-range wakefields was designed for the experiment. The copper structure was electroformed and cold-tested. Tuning was performed through chemical etching of the rods. Final cold test measurements were found to be in very good agreement with the design. The structure will be installed on the beam line at the accelerator laboratory at Massachusetts Institute of Technology and will be powered with 3 MW of peak power from the Haimson 17.14 GHz klystron. Results of the design, fabrication, cold test and hot test on the Haimson accelerator will be presented.

  16. Limitations to band gap tuning in nitride semiconductor alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2010-01-01

    Relations between the band gaps of nitride alloys and their lattice parameters are presented and limits to tuning of the fundamental gap in nitride semiconductors are set by combining a large number of experimental data with ab initio theoretical calculations. Large band gap bowings obtained...... theoretically for GaxAl1-xN, InxGa1-xN, and InxAl1-xN for uniform as well as clustered arrangements of the cation atoms are considered in the theoretical analysis. It is shown that indium plays a particular role in nitride alloys being responsible for most of the observed effects....

  17. Band gap engineering for graphene by using Na+ ions

    International Nuclear Information System (INIS)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-01-01

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E g ) at DP in a controlled way by depositing positively charged Na + ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na + ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E g . The band gap increases with increasing Na + coverage with a maximum E g ≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na + ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na + ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  18. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  19. Band-gap engineering in fluorographene nanoribbons under uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: bingbing@mail.ustc.edu.cn, E-mail: liqun@ustc.edu.cn; Li, Qunxiang, E-mail: bingbing@mail.ustc.edu.cn, E-mail: liqun@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-01-28

    Based on extensive first-principles calculations, we report the structural and electronic properties of fluorinated graphene, i.e., fluorographene nanoribbons (FGNRs) under uniaxial strain. Our results indicate that the FGNRs are semiconductors with wide direct band gaps regardless of their edge structures. Moreover, the band gap of FGNR can be effectively modulated nonlinearly with the applied uniaxial elastic strain, where the band gap value increases first and then reduces when the applied strain changes from −10.0% to 10.0%. This abnormal behavior mainly originates from the electronic structures of valence and conduction band edges, which is quite different from previously reported linear behavior on graphene nanoribbon. Our results imply the great potential applications of FGNRs in the optical electronics.

  20. Band gap engineering of BC2N for nanoelectronic applications

    Science.gov (United States)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  1. Band gap tuning of amorphous Al oxides by Zr alloying

    Energy Technology Data Exchange (ETDEWEB)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Borca, C. N.; Piamonteze, C. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rechendorff, K.; Nielsen, L. P.; Almtoft, K. P. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Gudla, V. C.; Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs-Lyngby (Denmark)

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.

  2. Grain size dependent optical band gap of CdI2 films

    Indian Academy of Sciences (India)

    Unknown

    direct band gap in conformity with band structure calcula- tions. However, a smaller indirect band gap can also be determined from part of absorption data near the band edge for the purpose of comparison with earlier analyses of absorption data as well as the band structure calcula- tions. The decreasing band gap with film ...

  3. Ultrawide band gap amorphous oxide semiconductor, Ga–Zn–O

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Miyokawa, Norihiko; Sekiya, Takumi; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-09-01

    We fabricated amorphous oxide semiconductor films, a-(Ga{sub 1–x}Zn{sub x})O{sub y}, at room temperature on glass, which have widely tunable band gaps (E{sub g}) ranging from 3.47–4.12 eV. The highest electron Hall mobility ~ 7 cm{sup 2} V{sup −1} s{sup −1} was obtained for E{sub g} = ~ 3.8 eV. Ultraviolet photoemission spectroscopy revealed that the increase in E{sub g} with increasing the Ga content comes mostly from the deepening of the valence band maximum level while the conduction band minimum level remains almost unchanged. These characteristics are explained by their electronic structures. As these films can be fabricated at room temperature on plastic, this achievement extends the applications of flexible electronics to opto-electronic integrated circuits associated with deep ultraviolet region. - Highlights: • Incorporation of H/H{sub 2}O stabilizes the amorphous phase. • Ultrawide band gap (~ 3.8 eV) amorphous oxide semiconductor was fabricated. • The increase in band gap comes mostly from the deepening of the valence band maximum level. • Donor level is more likely aligned to the valence band maximum level.

  4. Sub-band-gap laser micromachining of lithium niobate

    DEFF Research Database (Denmark)

    Christensen, F. K.; Müllenborn, Matthias

    1995-01-01

    Laser processing of insulators and semiconductors is usually realized using photon energies exceeding the band-gap energy. This makes laser processing of insulators difficult since high photon energies typically require either a pulsed laser or a frequency-doubled continuous-wave laser. A new...... method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 106µm3/s. This enables fast micromachining of small piezoelectric...... structures, or simple etching of grooves for precision positioning of optical fibers. ©1995 American Institute of Physics....

  5. The band gap of II-Vi ternary alloys in a tight-binding description

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Daniel; Blanquero, Rafael [Instituto Politecnico Nacional, Mexico, D.F (Mexico); De Coss, Romeo [Instituto Politecnico Nacional, Yucatan (Mexico)

    2001-02-01

    We present tight-binding calculations for the band gap of II-Vi pseudobinary ternary alloys. We use an sp{sup 3} s* tight-binding Hamiltonian which include spin-orbit coupling. The band gap composition dependence is calculated using a extended version of the virtual crystal approximation, which introduce an empirical correction factor that takes into account the non-linear dependence of the band gap with the composition. The results compare quite well with the experimental data, both for the ternary alloys with wide band gap and for the narrow band gap ones. [Spanish] Presentamos el calculo de la banda de energia prohibida de aleaciones ternarias de compuestos II-VI. El calculo, que incluye interaccion espin-orbita, se hace con el metodo de enlace fuerte, utilizando una base ortogonal de cinco orbitales atomicos por atomo (sp{sup 3} s*), en conjunto con la aproximacion del cristal virtual. En la aproximacion del cristal virtual, incluimos un factor de correccion que toma en cuenta la no linealidad de la banda de energia prohibida como funcion de la concentracion. Con esta correccion nuestros resultados reproducen aceptablemente los datos experimentales hallados en la literatura.

  6. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  7. Spin-orbit band gaps and destruction of Dirac cones

    Science.gov (United States)

    Yakovkin, I. N.

    2017-08-01

    The relativistic band structures of the IV group honeycomb monolayers, from graphene to plumbene (C-Si-Ge-Sn-Pb), have been calculated within DFT in Local Density Approximation (LDA). Basing on the obtained results, we suggest that the spin-orbit coupling leads to opening of the band gaps and therefore will unavoidably cause the destruction of the perfect shape of Dirac cones which is responsible for the existence of the massless Fermions. The applicability of ordinary non-relativistic DFT calculations of bands for graphene-like layered structures is discussed in this regard.

  8. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zaltauskas, R.; Zigas, L.; Vinokurova, I.V.; Farberovich, O.V.; Pauliukas, A.; Kvedaravicius, A.

    2006-01-01

    Variation of the forbidden gap of SbSI crystals in the phase transition region is analyzed on the pseudopotential method for antiferroelectric and ferroelectric phase. The band gap at several special points of the Brillouin zone and some characteristic parameters of the band are considered. During the phase transition, the most significant changes are observed with the valence band top at points Q, C, R, H, E and with the conduction band bottom at points H, T and E of the Brillouin zone. At the ferroelectric phase transition, the valence and conduction bands change due to displacement of Sb and S atoms with respect to I and with respect to each other as a result of order-disorder and displacement-type transition. The obtained band gap values agree quite well with the experiment. This is apparently due to application of neutral rather than ionic atomic functions and inclusion of sufficiently many plane waves in the basis set for calculation

  9. Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting

    Science.gov (United States)

    Wu, Fengqin; Han, Dezhuan; Hu, Xinhua; Liu, Xiaohan; Zi, Jian

    2009-05-01

    We show theoretically that a complete band gap for surface plasmon-polaritons (SPPs) can exist in a flat metal surface coated with a two-dimensional periodic array of dielectric cylinders. Based on the SPP band gap, gap-governed SPP waveguides, bends and splitters at telecom wavelengths can be achieved by introducing line defects. Numerical simulations show that the proposed SPP waveguides have a very low loss, while SPP bends and splitters can bend and split guided SPPs efficiently. The proposed SPP waveguides, bends and splitters could thus be exploited to construct compact integrated optical circuits in the emerging field of plasmonics.

  10. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  11. The Wide Band-Gap Semiconductors: A Brief Survey | Ottaviani ...

    African Journals Online (AJOL)

    The wide band-gap semiconductors are promising materials in the fields of power electronics, high-energy radiation detection and optoelectronics. They have attracted much attention thanks to their physical properties, allowing them to get better performances than silicon for some specific uses (high temperature, high ...

  12. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.

    2016-01-01

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths was estima...

  13. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer

    2015-01-01

    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...

  14. Band gap determination of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    Nanocomposites of Ni–Zn with copolymer matrix of aniline and formaldehyde in presence of varying concentrations of zinc ions have been studied at room temperature and normal pressure. The energy band gap of these materials are determined by reflection spectra in the wavelength range 400–850 nm by ...

  15. Effect of ferromagnetic exchange field on band gap and spin ...

    Indian Academy of Sciences (India)

    The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like B i F e O 3 (BFO), are ...

  16. Modelling and design of complete photonic band gaps in two ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 1. Modelling ... Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has ...

  17. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  18. Extremal characterization of band gaps in nonlinear gratings

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.

    In this paper we present an explicit extremal characterization of the edges of the lowest band gap in gratings; we restrict here to the case of TE-modes, but the TM case can be treated similarly. The characterization is valid for linear and Kerr-nonlinear gratings, for smooth as well as for

  19. Three-dimensional photonic band gaps in woven structures

    CERN Document Server

    Tsai Ya Chih; Pendry, J B

    1998-01-01

    In this paper, we studied the photonic properties of dielectric fibres woven into three-dimensional (3D) structures. Such fibres can be fabricated on the micrometre scale, and hence the gaps are in the far-infrared to the infrared regime. The vector-wave transfer matrix method is applied to evaluate the photonic band structures. We have also employed the constant-frequency dispersion surface scheme to investigate the development of a full band gap. Such a 3D absolute gap is observed in a rectangular lattice, but at a fairly large dielectric constant for the fibres. Ways to improve on this have been suggested. Our study indicates that woven structures are promising materials for realizing the 3D photonic insulator in the infrared regime. (author)

  20. Optical band gap of Sn0⋅ 2Bi1⋅ 8Te3 thin films

    Indian Academy of Sciences (India)

    Sn0.2Bi1.8Te3 thin films were grown using the thermal evaporation technique on a (001) face of NaCl crystal as a substrate at room temperature. The optical absorption was measured in the wave number range 500–4000 cm-1. From the optical absorption data the band gap was evaluated and studied as a function of film ...

  1. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework

    Science.gov (United States)

    Su, Ninghai; Jiang, Wei; Wang, Zhengfei; Liu, Feng

    2018-01-01

    Systems with a flat Chern band have been extensively studied for their potential to realize high-temperature fractional quantum Hall states. To experimentally observe the quantum transport properties, a sizable topological gap is highly necessary. Here, taking advantage of the high tunability of two-dimensional (2D) metal-organic frameworks (MOFs), whose crystal structures can be easily tuned using different metal atoms and molecular ligands, we propose a design of a 2D MOF [Tl2(C6H4)3, Tl2Ph3] showing nontrivial topological states with an extremely large gap in both the nearly flat Chern band and the Dirac bands. By coordinating π-conjugated thallium ions and benzene rings, crystalline Tl2Ph3 can be formed with Tl and Ph constructing honeycomb and kagome lattices, respectively. The px,y orbitals of Tl on the honeycomb lattice form ideal pxy four-bands, through which a flat Chern band with a spin-orbit coupling (SOC) gap around 140 meV evolves below the Fermi level. This is the largest SOC gap among all the theoretically proposed organic topological insulators so far.

  2. Quasiparticle self-consistent GW theory of III-V nitride semiconductors: Bands, gap bowing, and effective masses

    DEFF Research Database (Denmark)

    Svane, Axel; Christensen, Niels Egede; Gorczyca, I.

    2010-01-01

    The electronic band structures of InN, GaN, and a hypothetical ordered InGaN2 compound, all in the wurtzite crystal structure, are calculated using the quasiparticle self-consistent GW approximation. This approach leads to band gaps which are significantly improved compared to gaps calculated...... on the basis of the local approximation to density functional theory, although generally overestimated by 0.2–0.3 eV in comparison with experimental gap values. Details of the electronic energies and the effective masses including their pressure dependence are compared with available experimental information....... The band gap of InGaN2 is considerably smaller than what would be expected by linear interpolation implying a significant band gap bowing in InGaN alloys....

  3. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Matsuyama, Kazue; Yadak, Polin; Nahal, Geev; Hashemizad, Seyed; Williamson, Eric; Steinhardt, Paul; Torquato, Salvatore; Chaikin, Paul

    2013-08-26

    We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

  4. Effects of elastic anisotropy in phononic band-gap plates with two-dimensional lattices

    International Nuclear Information System (INIS)

    Hsu, Jin-Chen

    2013-01-01

    This study presents the effects of elastic anisotropy of constituent materials in square-lattice phononic-crystal plates. Using general elastodynamic calculations and the finite element (FE) method, this study analyses phononic-crystal plates constituted by (1) anisotropic scatterers embedded in an epoxy plate and (2) air holes etched on an anisotropic plate. The full band gaps can be modulated, opened and closed by changing the orientation of the square lattice relative to the crystallographic coordinate system of the anisotropic materials, and the elastic anisotropy varies the dispersion curves of the phononic-crystal plate waves with the rotation of the square lattice. Acoustic power transmission calculations show incident plate mode-dependent spectral gaps, the appearances of which in the frequency spectrum can also be modulated and shifted using elastic anisotropy. The effects of elastic anisotropy demonstrated here enable tailoring frequency band gaps and dispersion curves for functional control of acoustic-wave energy flows in phononic-crystal plates. Applications include acoustic waveguiding, confining, self-collimating and perfect acoustic focusing.

  5. Photovoltaic properties of low band gap ferroelectric perovskite oxides

    Science.gov (United States)

    Huang, Xin; Paudel, Tula; Dong, Shuai; Tsymbal, Evgeny

    2015-03-01

    Low band gap ferroelectric perovskite oxides are promising for photovoltaic applications due to their high absorption in the visible optical spectrum and a possibility of having large open circuit voltage. Additionally, an intrinsic electric field present in these materials provides a bias for electron-hole separation without requiring p-n junctions as in conventional solar cells. High quality thin films of these compounds can be grown with atomic layer precision allowing control over surface and defect properties. Initial screening based on the electronic band gap and the energy dependent absorption coefficient calculated within density functional theory shows that hexagonal rare-earth manganites and ferrites are promising as photovoltaic absorbers. As a model, we consider hexagonal TbMnO3. This compound has almost ideal band gap of about 1.4 eV, very high ferroelectric Curie temperature, and can be grown epitaxially. Additionally hexagonal TbMnO3 offers possibility of coherent structure with transparent conductor ZnO. We find that the absorption is sufficiently high and dominated by interband transitions between the Mn d-bands. We will present the theoretically calculated photovoltaic efficiency of hexagonal TbMnO3 and explore other ferroelectric perovskite oxides.

  6. Electronic band transformation from indirect gap to direct gap in Si–H compound

    International Nuclear Information System (INIS)

    Jian-Ning, Ding; Ning-Yi, Yuan; Jun-Xiong, Wang; Biao, Kan; Xiao-Shuang, Chen

    2010-01-01

    The electronic band structures of periodic models for Si–H compounds are investigated by the density functional theory. Our results show that the Si–H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si–Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Band-gap narrowing of TiO2 films induced by N-doping

    International Nuclear Information System (INIS)

    Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y.

    2006-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 o C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from X-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at 1.18 and 2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N-doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  8. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations.

    Science.gov (United States)

    Tang, Liling; Cheng, Li

    2017-11-01

    Band gaps in conventional phononic crystals (PCs) are attractive for applications such as vibration control, wave manipulation, and sound absorption. Their practical implementations, however, are hampered by several factors, among which the large number of cells required and their impractically large size to ensure the stopbands at reasonably low frequencies are on the top of the list. This paper reports a type of beam carved inside with two double-leaf acoustic black hole indentations. By incorporating the local resonance effect and the Bragg scattering effect generated by a strengthening stud connecting the two branches of the indentations, ultrawide band gaps are achieved. Increasing the length of the stud or reducing the residual thickness of the indentation allows the tuning of the band gaps to significantly enlarge the band gaps, which can exceed 90% of the entire frequency range of interest. Experimental results show that with only three cells, the proposed beam allows considerable vibration energy attenuation within an ultra-broad frequency range including the low frequency range, which conventional PCs can hardly reach. Meanwhile, the proposed configuration also enhances the structural integrity, thus pointing at promising applications in vibration control and a high performance wave filter design.

  9. On acoustic band gaps in homogenized piezoelectric phononic materials

    Directory of Open Access Journals (Sweden)

    Rohan E.

    2010-07-01

    Full Text Available We consider a composite medium made of weakly piezoelectric inclusions periodically distributed in the matrix which ismade of a different piezoelectricmaterial. Themediumis subject to a periodic excitation with an incidence wave frequency independent of scale ε of the microscopic heterogeneities. Two-scale method of homogenization is applied to obtain the limit homogenized model which describes acoustic wave propagation in the piezoelectric medium when ε → 0. In analogy with the purely elastic composite, the resulting model allows existence of the acoustic band gaps. These are identified for certain frequency ranges whenever the so-called homogenized mass becomes negative. The homogenized model can be used for band gap prediction and for dispersion analysis for low wave numbers. Modeling such composite materials seems to be perspective in the context of Smart Materials design.

  10. Effect of photonic band gap on entanglement dynamics of qubits

    OpenAIRE

    Wu, Jing-Nuo; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2012-01-01

    We study how the environment of photonic band gap (PBG) materials affects entanglement dynamics of qubits. Entanglement between the single qubit and the PBG environment is investigated through the von Neumann entropy while that for two initially entangled qubits in this PBG reservoir is through concurrence. Dynamics of these measurements are solved in use of the fractional calculus which has been shown appropriate for the systems with non-Markovian dynamics. Entropy dynamics of the single qub...

  11. Band gap engineering of indium zinc oxide by nitrogen incorporation

    International Nuclear Information System (INIS)

    Ortega, J.J.; Aguilar-Frutis, M.A.; Alarcón, G.; Falcony, C.

    2014-01-01

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N 2 /Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N 2 /Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10 −4 Ω cm with a carrier concentration of 5.1 × 10 20 cm −3

  12. Band gaps in grid structure with periodic local resonator subsystems

    Science.gov (United States)

    Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong

    2017-09-01

    The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.

  13. Band gap engineering of indium zinc oxide by nitrogen incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.J., E-mail: jjosila@hotmail.com [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo la Bufa, Fracc. Progreso, C.P. 98060 Zacatecas (Mexico); Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava, Zona Universitaria, C.P. 78270 San Luis Potosí (Mexico); Aguilar-Frutis, M.A.; Alarcón, G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Unidad Legaría, Calz. Legaría No. 694, Col. Irrigación, C.P. 11500 México D.F. (Mexico); Falcony, C. [Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional campus Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México D.F. (Mexico); and others

    2014-09-15

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N{sub 2}/Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N{sub 2}/Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10{sup −4} Ω cm with a carrier concentration of 5.1 × 10{sup 20} cm{sup −3}.

  14. Band gap engineering and optical properties of tungsten trioxide

    Science.gov (United States)

    Ping, Yuan; Li, Yan; Rocca, Dario; Gygi, Francois; Galli, Giulia

    2012-02-01

    Tungsten trioxide (WO3) is a good photoanode material for water oxidation but it is not an efficient absorber of sunlight because of its large band gap (2.6 eV). Recently, stable clathrates of WO3 with interstitial N2 molecules were synthesized [1], which are isostructural to monoclinic WO3 but have a substantially smaller bang gap, 1.8 eV. We have studied the structural, electronic, an vibrational properties of N2-WO3 clathrates using ab-initio calculations and analyzed the physical origin of their gap reduction. We also studied the effect of atomic dopants, in particular rare gases. Substantial band gap reduction has been observed, especially in the case of doping with Xe, due to both electronic and structural effects. Absorption spectra have been computed by solving the Bethe-Salpeter Equation [2] to gain a thourough insight into the optical properties of pure and doped tungsten trioxide. [1] Q. Mi, Y. Ping, Y. Li., B.S. Brunschwig, G. Galli, H B. Gray, N S. Lewis (preprint) [2]D. Rocca, D. Lu and G. Galli, J. Chem. Phys. 133, 164109 (2010)

  15. Band gap engineering via doping: A predictive approach

    Energy Technology Data Exchange (ETDEWEB)

    Andriotis, Antonis N., E-mail: andriot@iesl.forth.gr [Institute of Electronic Structure and Laser, FORTH, P.O. Box 1527, 71110 Heraklio, Crete (Greece); Menon, Madhu, E-mail: super250@uky.edu [Department of Physics and Astronomy and Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-03-28

    We employ an extension of Harrison's theory at the tight binding level of approximation to develop a predictive approach for band gap engineering involving isovalent doping of wide band gap semiconductors. Our results indicate that reasonably accurate predictions can be achieved at qualitative as well as quantitative levels. The predictive results were checked against ab initio ones obtained at the level of DFT/SGGA + U approximation. The minor disagreements between predicted and ab initio results can be attributed to the electronic processes not incorporated in Harrison's theory. These include processes such as the conduction band anticrossing [Shan et al., Phys. Rev. Lett. 82, 1221 (1999); Walukiewicz et al., Phys. Rev. Lett. 85, 1552 (2000)] and valence band anticrossing [Alberi et al., Phys. Rev. B 77, 073202 (2008); Appl. Phys. Lett. 92, 162105 (2008); Appl. Phys. Lett. 91, 051909 (2007); Phys. Rev. B 75, 045203 (2007)], as well as the multiorbital rehybridization. Another cause of disagreement between the results of our predictive approach and the ab initio ones is shown to be the result of the shift of Fermi energy within the impurity band formed at the edge of the valence band maximum due to rehybridization. The validity of our approach is demonstrated with example applications for the systems GaN{sub 1−x}Sb{sub x}, GaP{sub 1−x}Sb{sub x}, AlSb{sub 1−x}P{sub x}, AlP{sub 1−x}Sb{sub x}, and InP{sub 1−x}Sb{sub x}.

  16. Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue

    2011-01-01

    The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO₂.

    Science.gov (United States)

    Waterhouse, G I N; Wahab, A K; Al-Oufi, M; Jovic, V; Anjum, D H; Sun-Waterhouse, D; Llorca, J; Idriss, H

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  18. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  19. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    Science.gov (United States)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  20. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    Science.gov (United States)

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  1. Band gap widening and quantum tunnelling effects of Ag/MgO/p-Si MOS structure

    Science.gov (United States)

    Kamarulzaman, Norlida; Badar, Nurhanna; Fadilah Chayed, Nor; Firdaus Kasim, Muhd

    2016-10-01

    MgO films of various thicknesses were fabricated via the pulsed laser deposition method. The MgO thin films obtained have the advantage of high quality mirror finish, good densification and of uniform thickness. The MgO thin films have thicknesses of between 43 to 103 nm. They are polycrystalline in nature with oriented growth mainly in the direction of the [200] and [220] crystal planes. It is observed that the band gap of the thin films increases as the thickness decreases due to quantum effects, however, turn-on voltage has the opposite effect. The decrease of the turn-on as well as the tunnelling voltage of the thinner films, despite their larger band gap, is a direct experimental evidence of quantum tunnelling effects in the thin films. This proves that quantum tunnelling is more prominent in low dimensional structures.

  2. Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania

    Science.gov (United States)

    Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques

    2018-01-01

    The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.

  3. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-02

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  4. Group IV direct band gap photonics: Methods, Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Richard eGeiger

    2015-07-01

    Full Text Available The concept of direct band gap group IV materials offers a paradigm change for Si-photonics concerning the monolithic implementation of light emitters: The idea is to integrate fully compatible group IV materials with equally favorable optical properties as the chemically incompatible group III-V-based systems. The concept involves either mechanically applied strain on Ge or alloying of Ge with Sn and permits to drastically improve the insufficient radiative efficiency of Ge. The favorable optical properties result from a modified band structure transformed from an indirect to a direct one. The first demonstration of such a direct band gap laser, accomplished in GeSn, exemplifies the capability of this new concept. These systems may permit a qualitative as well as a quantitative expansion of Si-photonics into traditional but also new areas of applications, provided they can be operated energy efficiently, under ambient conditions and integrated with current Si technologies. This review aims to discuss the challenges along this path in terms of fabrication, characterization and fundamental understanding, and will elaborate on evoking opportunities of this new class of group IV-based laser materials.

  5. Electronic structures and band gaps of chains and sheets based on phenylacetylene units

    International Nuclear Information System (INIS)

    Kondo, Masakazu; Nozaki, Daijiro; Tachibana, Masamitsu; Yumura, Takashi; Yoshizawa, Kazunari

    2005-01-01

    We investigate the electronic structures of polymers composed of π-conjugated phenylacetylene (PA) units, m-PA-based and p-PA-based wires, at the extended Hueckel level of theory. It is demonstrated that these conjugated systems should have a variety of electric conductance. All of the one-dimensional (1D) chains and the two-dimensional (2D) sheet based on the m-PA unit are insulators with large band gaps of 2.56 eV because there is no effective orbital interaction with neighboring chains. On the other hand, p-PA-based 1D chains have relatively small band gaps that decrease with an increase in chain width (1.17-1.74 eV) and are semiconductive. The p-PA-based sheet called 'graphyne', a 2D-limit of the p-PA-based 1D chains, shows a small band gap of 0.89 eV. The variety of band electronic structures is discussed in terms of frontier crystal orbitals

  6. Polycrystalline ZrTe{sub 5} Parameterized as a Narrow Band Gap Semiconductor for Thermoelectric Performance.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; Peng, Lintao; Rettie, Alex; Gorai, Prashun; Chung, Duck Young; Kanatzidis, Mercouri G.; Grayson, Matthew A.; Stevanovic, Vladan; Toberer, Eric S.; Snyder, G. Jeffery

    2018-01-24

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm-1 K-1, than previously reported for single crystals. It is found that the polycrystalline ZrTe5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT =0.2 and 0.1 for p and n type, respectively, at 300 K, and zT= 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.

  7. Effect of hydrogenation on the band gap of graphene nano-flakes

    International Nuclear Information System (INIS)

    Tachikawa, Hiroto; Iyama, Tetsuji; Kawabata, Hiroshi

    2014-01-01

    The effects of hydrogenation on the band gap of graphene have been investigated by means of density functional theory method. It is generally considered that the band gap increases with increasing coverage of hydrogen atom on the graphene. However, the present study shows that the band gap decreases first with increasing hydrogen coverage and reaches the lowest value at finite coverage (γ = 0.3). Next, the band gap increases to that of insulator with coverage from 0.3 to 1.0. This specific feature of the band gap is reasonably explained by broken symmetry model and the decrease of pi-conjugation. The electronic states of hydrogenated graphene are discussed. - Highlights: • Density functional theory calculations were carried out for hydrogen on graphene • Effects of hydrogenation on the band gap of graphene were examined. • The band gap showed a minimum at a finite coverage. • Mechanism of specific band gap feature was discussed

  8. Six wave mixing process in photonic band gap

    Science.gov (United States)

    Sun, Yanyong; Rasheed Mahesar, Abdul; Wang, Zhiguo; Chen, Haixia; Zhang, Yunzhe; Gong, Rui; Zhang, Yanpeng

    2017-07-01

    For the first time, we have experimentally and theoretically researched the double dressing effect on the six wave mixing photonic band gap signal (SWM BGS), probe transmission signal (PTS) and fluorescence signal (FLS) in an inverted Y-type four level atomic system. We investigate the characteristics of the SMW BGS, PTS and FLS, which can be controlled by beam, power and detuning. At the same time, the relative phase which is caused by the incident angle of dressing beams plays a vital role in modulating the intensity of the SWM BGS, PTS and FLS. Such a scheme has potential applications in optical diodes, amplifiers and quantum information processing.

  9. Behaviour of hydrogen in wide band gap oxides

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Robertson, J. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2014-05-28

    The defect formation energies and atomic geometries of interstitial hydrogen in its different charge states in a number of wide band gap oxides are calculated by the Heyd, Scuseria, Ernzerhof hybrid functional. As in semiconductors, two behaviours are found, it acts either as an amphoteric defect or as a shallow donor. There are large scale lattice relaxations between the different charge states for the case of the amphoteric defect. Interestingly, we find that the +/− transition level does have a good alignment below the vacuum level, as was found previously for tetrahedral semiconductors.

  10. Behaviour of hydrogen in wide band gap oxides

    Science.gov (United States)

    Li, H.; Robertson, J.

    2014-05-01

    The defect formation energies and atomic geometries of interstitial hydrogen in its different charge states in a number of wide band gap oxides are calculated by the Heyd, Scuseria, Ernzerhof hybrid functional. As in semiconductors, two behaviours are found, it acts either as an amphoteric defect or as a shallow donor. There are large scale lattice relaxations between the different charge states for the case of the amphoteric defect. Interestingly, we find that the +/- transition level does have a good alignment below the vacuum level, as was found previously for tetrahedral semiconductors.

  11. Band gap calculations with Becke-Johnson exchange potential

    International Nuclear Information System (INIS)

    Tran, Fabien; Blaha, Peter; Schwarz, Karlheinz

    2007-01-01

    Recently, a simple analytical form for the exchange potential was proposed by Becke and Johnson. This potential, which depends on the kinetic-energy density, was shown to reproduce very well the shape of the exact exchange potential (obtained with the optimized effective potential method) for atoms. Calculations on solids show that the Becke-Johnson potential leads to a better description of band gaps of semiconductors and insulators with respect to the standard local density and Perdew-Burke-Ernzerhof approximations for the exchange-correlation potential. Comparison is also made with the values obtained with the Engel-Vosko exchange potential which was also developed using the exact exchange potential

  12. The limiting efficiency of band gap graded solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, Nadia H. [Faculty of Engineering, Cairo University, Giza (Egypt); Habib, S.E.D. [Faculty of electronics and communication, Cairo University, Giza (Egypt)

    1998-09-04

    Two fundamental mechanisms limit the maximum attainable efficiency of solar cells, namely the radiative recombination and Auger recombination. We show in this paper that proper band gap grading of the solar cell localizes the Auger recombination around the metallurgical junction. Two beneficial effects result from this Auger recombination localization; first the cell is less sensitive to the surface conditions, and second, the previous estimates for the limiting efficiency of solar cells by Shockley, Tiedje, and Green are revised upwardly. We calculate the optimum bandgap grading profile for several real material systems, including GaInAsP lattice matched to InP, and a-SiGe on a-Si substrate

  13. Influence of humidity on the graphene band gap

    International Nuclear Information System (INIS)

    Zakaryan, H.A.; Aroutiounian, V.M.

    2015-01-01

    Influences of the humidity on graphene properties are studied and comparisons of graphene and polymer humidity sensors are carried out. Graphene sensors have remarkable response compare to nanoporous polymer membranes. The resistance of polymer sensors is 150 GOhm and decreases in 7.5 times at 60 per cent of the relative humidity. For graphene, resistance drops 4 times starting from ~100 kOhm. This is connected with the extension of graphene band gap. The reason of this is adsorbed water, which can create defects in the lattice or can transfer charge which depends on relative position of HOMO/LUMO of water and Dirac point of graphene

  14. Optimization of Beam Properties with Respect to Maximum Band-Gap

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole

    2004-01-01

    We study numerically the frequency band-gap phenomenon for bending waves in an infinite periodic beam. The outcome of the analysis is then subjected to an optimization problem in order to maximize these band-gaps. The band-gap maximization may be performed with respect to material parameters and ...

  15. Geometric phase for a two-level system in photonic band gab crystal

    Science.gov (United States)

    Berrada, K.

    2018-05-01

    In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the same condition. Finally, we explore the relationship between the variation of the GP and population in terms of the physical parameters.

  16. Nonlocal gap soliton in liquid infiltrated photonic crystal fibres

    DEFF Research Database (Denmark)

    Bennet, F.H.; Rosberg, C.R.; Rasmussen, Per Dalgaard

    We report on the observation of nonlocal gap solitons in infiltrated photonic crystal fibres. We employ the thermal defocusing nonlinearity of the liquid to study soliton existence and effect of boundaries of the periodic structure.......We report on the observation of nonlocal gap solitons in infiltrated photonic crystal fibres. We employ the thermal defocusing nonlinearity of the liquid to study soliton existence and effect of boundaries of the periodic structure....

  17. Photonic-band-gap gyrotron amplifier with picosecond pulses.

    Science.gov (United States)

    Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J

    2017-12-04

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  18. Optical processes in different types of photonic band gap structures

    Science.gov (United States)

    Wang, Zhiguo; Gao, Mengqin; Ullah, Zakir; Chen, Haixia; Zhang, Dan; Zhang, Yiqi; Zhang, Yanpeng

    2015-06-01

    For the first time, we investigate the photonic band gap (PBG) structure in the static and moving electromagnetically induced grating (EIG) through scanning the frequency detunings of the probe field, dressing field and coupling field. Especially, the suppression and enhancement of the four wave mixing band gap signal (FWM BGS) and the probe transmission signal (PTS) can be observed when we scan the dressing field frequency detuning in the FWM BGS system. It is worth noting that the PBG structure and FWM BGS appear at the right of the electromagnetically induced transparency (EIT) position in the case of scanning the frequency detuning of the coupling field in the FWM BGS system, while the PBG structure and FWM BGS appears at the left of the EIT position on the condition of scanning the probe field frequency detuning. Moreover, in the moving PBG structure, we can obtain the nonreciprocity of FWM BGS. Furthermore, we can modulate the intensity, width, location of the FWM BGS and PTS through changing the frequency detunings and intensities of the probe field, dressing field and coupling field, sample length and the frequency difference of coupling fields in EIG. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  19. Photonic-band-gap gyrotron amplifier with picosecond pulses

    Science.gov (United States)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.

    2017-12-01

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  20. Wide band gap gallium arsenide nanoparticles fabricated using plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Jain, D., E-mail: dvjainnov@gmail.com [Physics Department, Banasthali Vidyapith, Rajasthan-304022 (India); Mangla, O. [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Physics Department, Hindu College, University of Delhi, Delhi, 110007 (India); Roy, S. [Physics Department, Daulat Ram College, University of Delhi, Delhi, 110007 (India)

    2016-05-23

    In this paper, we have reported the fabrication of gallium arsenide (GaAs) nanoparticles on quartz placed at distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively from top of anode. The fabrication has been carried out by highly energetic and high fluence ions of GaAs produced by hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. GaAs nanoparticles have mean size of about 23 nm, 16 nm and 14 nm for deposition at a distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively. The nanoparticles are crystalline in nature as evident from X-ray diffraction patterns. The band gap of nanoparticles is found to increase from 1.425 eV to 5.37 eV at 4.0 cm distance, which further increases as distance increases. The wide band gap observed for fabricated GaAs nanoparticles suggest the possible applications of nanoparticles in laser systems.

  1. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    Science.gov (United States)

    2015-03-20

    vacancy and added impurities in them are investigated using 96 atom slab of graphene . The relaxed structures and charge distribution plots of graphene 24... graphene gets reconstructed. In order to further improve the band gap opening in the graphene we introduced impurity atoms in the vacancies and...distorted Dirac cones at the Fermi point can be a check mark for presence of equal concentration of p-type and n-type impurities in graphene . The

  2. Two-band modeling of narrow band gap and interband tunneling devices

    OpenAIRE

    Söderström, J. R.; Yu, E. T.; Jackson, M. K.; Rajakarunanayake, Y.; McGill, T. C.

    1990-01-01

    A two-band transfer matrix method has been developed to study tunneling currents in narrow gap and interband tunnel structures. This relatively simple model gives good agreement with recently reported experimental results for InAs/AlSb/InAs/AlSb/InAs double-barrier heterostructures and InAs/AlSb/GaSb/AlSb/InAs resonant interband tunneling devices, and should be useful in the design of new interband tunneling devices.

  3. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    International Nuclear Information System (INIS)

    Bludska, J.; Jakubec, I.; Karamazov, S.; Horak, J.; Uher, C.

    2010-01-01

    Insertion/extraction of lithium ions into/from Bi 2 Se 3 crystals was investigated by means of cyclic voltammetry. The process of insertion is reflected in the appearance of two bands on voltammograms at ∼1.7 and ∼1.5 V, corresponding to the insertion of Li + ions into octahedral and tetrahedral sites of the van der Waals gap of these layered crystals. The process of extraction of Li + ions from the gap results in the appearance of four bands on the voltammograms. The bands 1 and 2 at ∼2.1 and ∼2.3 V correspond to the extraction of a part of Li + guest ions from the octahedral and tetrahedrals sites and this extraction has a character of a reversible intercalation/deintercalation process. A part of Li + ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe 2 .Bi 3 Se 4 - ) type. A further extraction of Li + ions from the van der Waals gap is associated with the presence of bands 3 and 4 placed at ∼2.5 and ∼2.7 V on the voltammograms as their extraction needs higher voltage due to the influence of negative charges localized on these clusters. -- Graphical abstract: Insertion/extraction of lithium ions into/from Bi 2 Se 3 layered crystals was investigated by cyclic voltammetry. The extraction of Li + results in the appearance of four bands on the voltammograms. The first two bands have a character of a reversible process. A part of Li + ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe 2 .Bi 3 Se 4 - ) type. Their extraction needs higher voltage due to the negative charge. Display Omitted

  4. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.; Theodoropoulou, Nikoleta, E-mail: ntheo@txstate.edu [Physics Department, Texas State University, San Marcos, Texas 78666 (United States)

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  5. Band Structures Analysis Method of Two-Dimensional Phononic Crystals Using Wavelet-Based Elements

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2017-10-01

    Full Text Available A wavelet-based finite element method (WFEM is developed to calculate the elastic band structures of two-dimensional phononic crystals (2DPCs, which are composed of square lattices of solid cuboids in a solid matrix. In a unit cell, a new model of band-gap calculation of 2DPCs is constructed using plane elastomechanical elements based on a B-spline wavelet on the interval (BSWI. Substituting the periodic boundary conditions (BCs and interface conditions, a linear eigenvalue problem dependent on the Bloch wave vector is derived. Numerical examples show that the proposed method performs well for band structure problems when compared with those calculated by traditional FEM. This study also illustrates that filling fractions, material parameters, and incline angles of a 2DPC structure can cause band-gap width and location changes.

  6. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    Science.gov (United States)

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361

  7. Towards a complete photonic band gap in the visible

    Science.gov (United States)

    Velikov, K. P.

    2002-03-01

    The first part of the thesis describes the fabrication and the characterization of face-centered-cubic (fcc) photonic crystals (PCs) of dielectric (core-shell) spheres in a low-dielectric host (air). We demonstrate the synthesis and optical characterization of the PC's building blocks: well-defined core-shell colloidal particles and hollow shells of zinc sulfide (ZnS) and silica (SiO2). The synthesis method allows for the production of monodisperse particles with a tunable core-to-shell size ratio and total radius. By use of the controlled drying method, we demonstrate the fabrication of large planar PCs of well-defined thickness from SiO2, ZnS, and ZnS-core-SiO2-shell colloidal particles. We demonstrate, both experimentally and theoretically, that the relative stop gap width in the (111) fcc crystallographic direction in the case of high-index core and low-index shell spheres is larger than in a PC of homogeneous spheres of either material. The second part of the thesis focuses on the preparation and characterization of photonic materials of different degree of order made of metal colloidal particles. We demonstrate the synthesis and characterization of large (R > 100 nm) silver (Ag) particles. The particles are obtained by reducing silver nitrate with ascorbic acid in aqueous solutions in the presence of a protective polymer. The resulting particles are spherical porous aggregates with a low polydispersity (particle level are well described if an effective dielectric constant is used. Depending on the volume fraction and the effective polydispersity, in water these particles form charge-stabilized glasses or crystals. Under illumination with white light, these samples display bright colors. A strong modulation is found in the reflectivity of photonic glasses possessing a short-range order only. The general features in the experimental spectra are found in the theoretical reflectivity spectra for fcc crystals. From our results, it is likely that amorphous metallo

  8. 17 GHz photonic band gap cavity with improved input coupling

    Directory of Open Access Journals (Sweden)

    M. A. Shapiro

    2001-04-01

    Full Text Available We present the theoretical design and cold test of a 17 GHz photonic band gap (PBG cavity with improved coupling from an external rectangular waveguide. The PBG cavity is made of a triangular lattice of metal rods with a defect (missing rod in the center. The TM_{010}-like defect mode was chosen as the operating mode. Experimental results are presented demonstrating that critical coupling into the cavity can be achieved by partial withdrawal or removal of some rods from the lattice, a result that agrees with simulations. A detailed design of the PBG accelerator structure is compared with a conventional (pillbox cavity. One advantage of the PBG cavity is that its resonance frequency is much less perturbed by the input/output coupling structure than in a comparable pillbox cavity. The PBG structure is attractive for future accelerator applications.

  9. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...... with the transformed space technique in order to make the algorithm flexible in terms of non-uniform spatial sampling. Findings - Through the studies of the wave propagation characteristics on PBG structures in stratified medium, it has been found that the proposed method retains excellent accuracy in the occasions...

  10. Investigation of Patch Antenna Based on Photonic Band-Gap Substrate with Heterostructures

    Directory of Open Access Journals (Sweden)

    Zhenghua Li

    2012-01-01

    Full Text Available The characteristics of the patch antenna based on photonic band-gap (PBG substrate with heterostructures were studied numerically by using the method of finite difference time domain (FDTD. The results indicate that, comparing to the conventional patch antennas, the expansion of working frequency band of the new patch antenna can be realized and its radiation efficiency also can be improved notably with the influence of PBG. In addition, for this new kind of patch antenna, its return loss is much less and there are two minimum values for return loss corresponding to the resonant frequency of the two different photonic crystals made of the substrate. Its physical mechanism lies on the PBG which suppresses the surface waves propagating along the surface of the substrate and reflects most of electromagnetic wave energy radiated to the substrate significantly.

  11. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  12. Physical properties of the wide band gap II-IV nitride MgSiN2

    Science.gov (United States)

    Råsander, Mikael; Quirk, James; Moram, Michelle

    The Group II-IV nitride semiconductors are emerging as promising alternatives to III-nitrides in ultraviolet LED applications. These materials have wurtzite-derived orthorhombic crystal structures and can be obtained by substituting pairs of Group III atoms in a III-nitride for a single Group II atom and a single Group IV atom. Here we will focus on MgSiN2, which is the equivalent II-IV nitride to wurtzite AlN. A detailed comparison of the properties obtained by first principles calculations and experiment of these two systems will be performed. It will be shown that MgSiN2 has a large indirect band gap of similar size to the direct band gap of AlN, while having a crystal size which is intermediate between AlN and GaN. MgSiN2 should therefore facilitate better lattice matching during film growth compared to AlN, and therefore constitutes a good candidate material to be used in novel high efficiency UV-LEDs.

  13. High-Power Fiber Lasers Using Photonic Band Gap Materials

    Science.gov (United States)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  14. One-dimensional electromagnetic band gap plasma structure formed by atmospheric pressure plasma inhomogeneities

    Science.gov (United States)

    Babitski, V. S.; Callegari, Th.; Simonchik, L. V.; Sokoloff, J.; Usachonak, M. S.

    2017-08-01

    The ability to use plasma columns of pulse discharges in argon at atmospheric pressure to form a one-dimensional electromagnetic band gap structure (or electromagnetic crystal) in the X-band waveguide is demonstrated. We show that a plasma electromagnetic crystal attenuates a microwave propagation in the stopband more than by 4 orders of magnitude. In order to obtain an effective control of the transmission spectrum comparable with a metallic regular structure, the electron concentration in plasma inhomogeneities should vary within the range from 1014 cm-3 to 1016 cm-3, while gas temperature and mean electron energy must be in the range of 2000 K and 0.5 eV, respectively, to lower electron collision frequency around 1010 s-1. We analyze in detail the time evolution response of the electromagnetic crystal according to the plasma parameters for the duration of the discharge. The interest of using atmospheric pressure discharges is to increase the microwave breakdown threshold in discharge volumes, whereby it becomes possible to perform dynamic control of high power microwaves.

  15. Crystal structure and energy band and optical properties of phosphate Sr3P4O13

    International Nuclear Information System (INIS)

    Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone

  16. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  17. Temperature dependence of the optical energy gap and thermoelectric studies of ? crystals

    Science.gov (United States)

    Gamal, G. A.

    1998-02-01

    A single crystal of 0268-1242/13/2/005/img2 was prepared by a new crystal growth technique. The interband absorption coefficients were measured, near the fundamental absorption edge, as a function of the wavelength of the incident photons at various temperatures. The energy gap 0268-1242/13/2/005/img3 is temperature dependent and the absorption edge shifts to lower energy values with increasing temperature. The energy gap, at room temperature, was found to be 2.24 eV. The dependence of the energy gap on temperature is linear in the temperature range 77 to 300 K with a negative temperature coefficient 0268-1242/13/2/005/img4 equal to 0268-1242/13/2/005/img5. The thermoelectric phenomenon is also investigated. On the basis of a two-band model the results are discussed.

  18. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam

    International Nuclear Information System (INIS)

    Zhang, Shunzu; Gao, Yuanwen

    2017-01-01

    A theoretical model is established to study the size-dependent performance of flexural wave propagation in magneto-elastic phononic crystal (PC) nanobeam with surface effect based on Euler–Bernoulli beam theory and Gurtin–Murdoch theory. Considering the magneto-mechanical coupling constitutive relation of magnetostrictive material, the influence of surface effect on band structure is calculated by the plane wave expansion method for PC nanobeam subjected to pre-stress and magnetic field loadings. Through the example of an epoxy/Terfenol-D PC nanobeam, it can be observed that the characteristics of flexural wave band structures are size-dependent, and remarkably affected by surface effect when the dimension of the PC beam reduces to the nanoscale. The edges and width of the band gap with surface effect are higher than those without surface effect, especially for high frequency region. And surface effect gradually reduces with the increasing of bulk layer-to-surface layer thickness ratio until the band gap descends to a constant for the conventional one in the absence of surface effect. The effects of surface elasticity and piezomagneticity on band gap are more prominent than the residual surface stress. In addition, a distinctly nonlinear variation of band gap appears under the combined effects of pre-stress and magnetic field. Moreover, with the varying of filling fraction, multi-peaks of the width of the band gap are obtained and discussed. These results could be helpful for the intelligent regulation of magneto-elastic PC nanobeam and the design of nanobeam-based devices. (paper)

  19. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam

    Science.gov (United States)

    Zhang, Shunzu; Gao, Yuanwen

    2017-11-01

    A theoretical model is established to study the size-dependent performance of flexural wave propagation in magneto-elastic phononic crystal (PC) nanobeam with surface effect based on Euler-Bernoulli beam theory and Gurtin-Murdoch theory. Considering the magneto-mechanical coupling constitutive relation of magnetostrictive material, the influence of surface effect on band structure is calculated by the plane wave expansion method for PC nanobeam subjected to pre-stress and magnetic field loadings. Through the example of an epoxy/Terfenol-D PC nanobeam, it can be observed that the characteristics of flexural wave band structures are size-dependent, and remarkably affected by surface effect when the dimension of the PC beam reduces to the nanoscale. The edges and width of the band gap with surface effect are higher than those without surface effect, especially for high frequency region. And surface effect gradually reduces with the increasing of bulk layer-to-surface layer thickness ratio until the band gap descends to a constant for the conventional one in the absence of surface effect. The effects of surface elasticity and piezomagneticity on band gap are more prominent than the residual surface stress. In addition, a distinctly nonlinear variation of band gap appears under the combined effects of pre-stress and magnetic field. Moreover, with the varying of filling fraction, multi-peaks of the width of the band gap are obtained and discussed. These results could be helpful for the intelligent regulation of magneto-elastic PC nanobeam and the design of nanobeam-based devices.

  20. A model for the direct-to-indirect band-gap transition in monolayer ...

    Indian Academy of Sciences (India)

    2015-05-28

    , within ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3% can drive it into an indirect band-gap semiconductor with the valence band maximum (VBM) shifting from point to point. An analysis ...

  1. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    1999-01-01

    ...+) PL intensity under below gap excitation. Photoluminescence excitation (PLE) studies revealed that oxygen/carbon introduces a broad below gap PLE band, which provides an efficient pathway for E(3+) excitation...

  2. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  3. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  4. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  5. Photonic band gap materials: Technology, applications and challenges

    International Nuclear Information System (INIS)

    Johri, M.; Ahmed, Y.A.; Bezboruah, T.

    2006-05-01

    Last century has been the age of Artificial Materials. One material that stands out in this regard is the semiconductor. The revolution in electronic industry in the 20th century was made possible by the ability of semiconductors to microscopically manipulate the flow of electrons. Further advancement in the field made scientists suggest that the new millennium will be the age of photonics in which artificial materials will be synthesized to microscopically manipulate the flow of light. One of these will be Photonic Band Gap material (PBG). PBG are periodic dielectric structures that forbid propagation of electromagnetic waves in a certain frequency range. They are able to engineer most fundamental properties of electromagnetic waves such as the laws of refraction, diffraction, and emission of light from atoms. Such PBG material not only opens up variety of possible applications (in lasers, antennas, millimeter wave devices, efficient solar cells photo-catalytic processes, integrated optical communication etc.) but also give rise to new physics (cavity electrodynamics, localization, disorder, photon-number-state squeezing). Unlike electronic micro-cavity, optical waveguides in a PBG microchip can simultaneously conduct hundreds of wavelength channels of information in a three dimensional circuit path. In this article we have discussed some aspects of PBG materials and their unusual properties, which provided a foundation for novel practical applications ranging from clinical medicine to information technology. (author)

  6. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-edge to reveal band-edge electronic structure of bulk and nanoscale hematite. Good agreement is found between the hematite band gap derived from optical spectroscopy and the energy separation of the first inflection points in the x-ray absorption and emission onset regions. By applying this method to two sizes...

  7. gamma-induced modification on optical band gap of CR-39 SSNTD

    International Nuclear Information System (INIS)

    Zaki, M.F.

    2010-01-01

    effect of gamma irradiation on optical absorption of nuclear track detectors like CR-39 was studied at different absorbed doses using ultraviolet-visible (UV-VIS)spectroscopy. the existence of the peaks, their shifting and broadening as a result of gamma irradiation has been discussed. the width of the tail of localized states in the band gap (E u )was evaluated using the Urbach edge method. finally the indirect and direct band gap in pristine and gamma irradiated CR-39 have been determined. the values of indirect band gap have been found to be lower than the corresponding values of direct band gap. a decrease in the optical energy gap with increasing the gamma absorbed dose can be discussed on the basis of gamma-irradiation-induced defects in the CR-39. the correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39.

  8. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  9. Effect of ferromagnetic exchange field on band gap and spin ...

    Indian Academy of Sciences (India)

    Partha Goswami

    2018-02-19

    Feb 19, 2018 ... these systems as a function of magnetisation strength. We also discuss the ..... require the discriminant of the quadratic in the variableε to be zero. This yields .... system for graphene in WSe2 at the Dirac point K. The band identification is as follows: spin-up valence band: '− *', spin-up conduction band: '−' ...

  10. Spectroscopic properties of PEDOTEHIITN, a novel soluble low band-gap conjugated polymer

    NARCIS (Netherlands)

    Cravino, A; Loi, MA; Scharber, MC; Winder, C; Neugebauer, H; Denk, P; Meng, H; CHEN, Y; Wudl, F; Sariciftci, NS

    2003-01-01

    Polymers with narrow band gap are expected to posses appreciably high RT conductivities, luminescence in the NIR and improved solar energy harvesting properties. Here we report the spectroscopic properties of a soluble and environmentally stable copolymer (PEDOTEHIITN) with a band-gap of ca. 1.1 eV.

  11. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...

  12. Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability.

    Science.gov (United States)

    Hu, Shaozheng; Li, Fayun; Fan, Zhiping; Wang, Fei; Zhao, Yanfeng; Lv, Zhenbo

    2015-01-21

    Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability was prepared using dicyandiamide monomer and potassium hydrate as precursors. X-ray diffraction (XRD), N2 adsorption, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.56 eV to -0.31 and +2.21 eV by controlling the K concentration. Besides, the addition of potassium inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area and increased the separation rate for photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after potassium doping. A possible influence mechanism of the potassium concentration on the photocatalytic performance was proposed.

  13. Hybrid Method for Analyzing the Torsional Vibration of One-Dimensional Phononic-Band-Gap Shafts

    Science.gov (United States)

    Li, Lixia; Chen, Tianning; Wu, Jiuhui; Wang, Xiaopeng; Wang, Zhaofeng

    2012-05-01

    A hybrid method combining the transfer-matrix and lumped-mass methods is proposed to study the band gaps of torsional vibration in one-dimensional (1D) phononic band gap (PBG)-like shafts, which periodically arrange local resonant multilayer rings. The present method shows advantages over the transfer-matrix and lumped-mass methods for determining the inertia of rubber rings and fast convergence with less computational requirements. For light local resonators, the torsional band gaps, which were studied in three 1D PBG-like shafts by the hybrid method, agree well with those studied by the finite method. In addition, more precise evaluations of the starting frequency of the band gaps were carried out analytically. The methodology of the approach presented can also be employed to study the band gaps of bending and longitudinal waves.

  14. Band-gap modulation of graphane-like SiC nanoribbons under uniaxial elastic strain

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ben-Ling, E-mail: jsblgao@gmail.com [Department of Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Department of Physics, Nanjing University, Nanjing 210093 (China); Xu, Qing-Qiang [Department of Physics, Xuzhou Normal University, Xuzhou 221009 (China); Ke, San-Huang, E-mail: shke@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Beijing Computational Science Research Center, 3 Heqing Road, Beijing 100084 (China); Xu, Ning [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Hu, Guang; Wang, Yanzong; Liang, Feng; Tang, Yalu [Department of Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Xiong, Shi-Jie [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2014-01-24

    The band-gap modulation of zigzag and armchair graphane-like SiC nanoribbons (GSiCNs) under uniaxial elastic strain is investigated using the density functional theory. The results show that band gap of both structures all decreases when being compressed or tensed. In compression, both zigzag and armchair GSiCNs are semiconductors with a direct band gap. However, in tension, the armchair GSiCNs undergo a direct-to-indirect band-gap transition but the zigzag GSiCNs still have a direct band gap. These results are also proved by HSE06 method. This implies a potential application of the graphane-like SiC nanoribbons in the future pressure sensor and optical electronics nanodevices.

  15. Stop Band Gap in Periodic Layers of Confined Atomic Vapor/Dielectric Medium

    International Nuclear Information System (INIS)

    Li Yuan-Yuan; Li Li; Lu Yi-Xin; Zhang Yan-Peng; Xu Ke-Wei

    2013-01-01

    A stop band gap is predicted in periodic layers of a confined atomic vapor/dielectric medium. Reflection and transmission profile of the layers over the band gap can be dramatically modified by the confined atoms and the number of layer periods. These gap and line features can be ascribed to the enhanced contribution of slow atoms induced by atom-wall collision, transient behavior of atom-light interaction and Fabry—Pérot effects in a thermal confined atomic system

  16. Evanescent waves and deaf bands in sonic crystals

    Science.gov (United States)

    Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.

    2011-12-01

    The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  17. Evanescent waves and deaf bands in sonic crystals

    Directory of Open Access Journals (Sweden)

    V. Romero-García

    2011-12-01

    Full Text Available The properties of sonic crystals (SC are theoretically investigated in this work by solving the inverse problem k(ω using the extended plane wave expansion (EPWE. The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  18. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  19. X-band photonic band-gap accelerator structure breakdown experiment

    Directory of Open Access Journals (Sweden)

    Roark A. Marsh

    2011-02-01

    Full Text Available In order to understand the performance of photonic band-gap (PBG structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz. The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65  MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110  MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100  MV/m and a surface magnetic field of 890  kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14  MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  20. Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shunzu; Shi, Yang [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-26

    Considering the magneto-mechanical coupling of magnetostrictive material, the tunability of in-plane wave propagation in two-dimensional Terfenol-D/epoxy phononic crystal (PC) plate is investigated theoretically by the plane wave expansion method. Two Schemes, i.e. magnetic field is rotated in x–y plane and x–z plane, are studied, respectively. The effects of amplitude and direction of magnetic field, pre-stress and geometric parameters are discussed. For Scheme-I, band gap reaches the maximum at an optimal angle 45° of magnetic field. However, the optimal angle is 0° for Scheme-II, because band gap decreases monotonically until disappears with the increasing angle. For both cases, higher-order band gaps generate and become stronger as magnetic field amplitude increases, while increasing compressive pre-stress has the opposite effect. Meanwhile, filling fraction plays a key role in controlling band gaps. These results provide possibility for intelligent regulation and optimal design of PC plates. - Highlights: • The in-plane wave propagation in phononic crystal thin plate is tuned theoretically. • Magnetostrictive material is introduced in the study. • The effects of magnetic field and pre-stress are considered. • The variations of band gaps with external stimuli are discussed.

  1. Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films

    International Nuclear Information System (INIS)

    Abdel Rafea, M.; Farid, Huda

    2009-01-01

    Se 0.8 S 0.2 chalcogenide glass films have been prepared by thermal vacuum evaporation technique with thickness 583 nm. Annealing process at T ≥ 333 K crystallizes the films and nanostructured films are formed. The crystallite size was increased to 24 nm as the annealing temperature increased to 373 K. Orthorhombic crystalline system was identified for the annealed films. SEM micrographs show that films consist of two parallel surfaces and the thickness was determined by cross section imaging. The optical transmittance is characterized by interference patterns as a result of these two parallel surfaces, besides their average value at longer wavelength decreases as a result of annealing process. The band gap, E g is red shifted due to crystallization by annealing. As the phase of the films changes from amorphous to crystalline in the annealing temperature range 333-363 K, a non sharp change of the band gap (E g ) is observed. This change was explained by Brus's model of the energy gap confinement behavior of the nanostructured films. The optical refractive index increases suddenly when the system starts to be crystallized by annealing

  2. Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts

    Science.gov (United States)

    Li, Lixia; Cai, Anjiang

    2016-07-01

    In this paper, the low-frequency band gap mechanism of torsional vibration is investigated for a kind of light elastic metamaterial (EM) shafts architecture comprised of a radial double-period element periodically as locally resonant oscillators with low frequency property. The dispersion relations are calculated by a method combining the transfer matrix and a lumped-mass method. The theoretical results agree well with finite method simulations, independent of the density of the hard material ring. The effects of the material parameters on the band gaps are further explored numerically. Our results show that in contrast to the traditional EM shaft, the weight of our proposed EM shaft can be reduced by 27% in the same band gap range while the vibration attenuation is kept unchanged, which is very convenient to instruct the potential engineering applications. Finally, the band edge frequencies of the lower band gaps for this light EM shaft are expressed analytically using physical heuristic models.

  3. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  4. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    Science.gov (United States)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  5. Band-gap engineering of functional perovskites through quantum confinement and tunneling

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Pandey, Mohnish; Thygesen, Kristian Sommer

    2015-01-01

    An optimal band gap that allows for a high solar-to-fuel energy conversion efficiency is one of the key factors to achieve sustainability. We investigate computationally the band gaps and optical spectra of functional perovskites composed of layers of the two cubic perovskite semiconductors BaSnO3...... and BaTaO2N. Starting from an indirect gap of around 3.3 eV for BaSnO3 and a direct gap of 1.8 eV for BaTaO2N, different layerings can be used to design a direct gap of the functional perovskite between 2.3 and 1.2 eV. The variations of the band gap can be understood in terms of quantum confinement...

  6. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    - stant and/or magnetic permeability (or in particular impedance) are periodic and the propagation of electromagnetic waves is forbidden at certain frequencies when allowed to pass through these structures. This is similar to the electronic band.

  7. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    OpenAIRE

    H. B. Russell; A. N. Andriotis; M. Menon; J. B. Jasinski; A. Martinez-Garcia; M. K. Sunkara

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1?2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1?x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x?=?0.0092 or higher Sb incorporation into GaSbxP1?x. Furthermore, these calculations indicate band edge straddling of the h...

  8. Effects of Calcination Holding Time on Properties of Wide Band Gap Willemite Semiconductor Nanoparticles by the Polymer Thermal Treatment Method

    Directory of Open Access Journals (Sweden)

    Ibrahim Mustapha Alibe

    2018-04-01

    Full Text Available Willemite is a wide band gap semiconductor used in modern day technology for optoelectronics application. In this study, a new simple technique with less energy consumption is proposed. Willemite nanoparticles (NPs were produced via a water–based solution consisting of a metallic precursor, polyvinylpyrrolidone (PVP, and underwent a calcination process at 900 °C for several holding times between 1–4 h. The FT–IR and Raman spectra indicated the presence of metal oxide bands as well as the effective removal of PVP. The degree of the crystallization and formation of the NPs were determined by XRD. The mean crystallite size of the NPs was between 18.23–27.40 nm. The morphology, particle shape and size distribution were viewed with HR-TEM and FESEM analysis. The willemite NPs aggregate from the smaller to larger particles with an increase in calcination holding time from 1–4 h with the sizes ranging between 19.74–29.71 nm. The energy values obtained from the experimental band gap decreased with increasing the holding time over the range of 5.39 eV at 1 h to at 5.27 at 4 h. These values match well with band gap obtained from the Mott and Davis model for direct transition. The findings in this study are very promising and can justify the use of these novel materials as a potential candidate for green luminescent optoelectronic applications.

  9. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds.

    Science.gov (United States)

    Padilha, J E; Pontes, R B; Schmidt, T M; Miwa, R H; Fazzio, A

    2016-05-23

    We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties.

  10. Complete flexural vibration band gaps in membrane-like lattice structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Qiu Jing; Wang Gang; Zhao Honggang

    2006-01-01

    The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates

  11. Band gaps and cavity modes in dual phononic and photonic strip waveguides

    Directory of Open Access Journals (Sweden)

    Y. Pennec

    2011-12-01

    Full Text Available We discuss theoretically the simultaneous existence of phoxonic, i.e., dual phononic and photonic, band gaps in a periodic silicon strip waveguide. The unit-cell of this one-dimensional waveguide contains a hole in the middle and two symmetric stubs on the sides. Indeed, stubs and holes are respectively favorable for creating a phononic and a photonic band gap. Appropriate geometrical parameters allow us to obtain a complete phononic gap together with a photonic gap of a given polarization and symmetry. The insertion of a cavity inside the perfect structure provides simultaneous confinement of acoustic and optical waves suitable to enhance the phonon-photon interaction.

  12. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    Science.gov (United States)

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  13. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J. [TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Monserrat, Bartomeu [TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gaps of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.

  14. New bismuth borophosphate Bi4BPO10: Synthesis, crystal structure, optical and band structure analysis

    International Nuclear Information System (INIS)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S.; Kuzubov, Aleksandr A.; Zhereb, Vladimir P.; Kirik, Sergei D.

    2015-01-01

    New bismuth borophosphate Bi 4 BPO 10 was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi 2 O 2 ] 2+ -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi 4 BPO 10 . The strips combining stacks are separated by flat triangle [BO 3 ] 3− -anions within stacks. Neighboring stacks are separated by tetrahedral [PO 4 ] 3− -anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi 4 BPO 10 is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi 4 BPO 10 was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi 4 BPO 10 was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi 4 O 3 ] 6+ forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  15. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    Science.gov (United States)

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  16. Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence

    International Nuclear Information System (INIS)

    Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.

  17. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization

    Directory of Open Access Journals (Sweden)

    Maximilian Wormser

    2017-09-01

    Full Text Available We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.

  18. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization.

    Science.gov (United States)

    Wormser, Maximilian; Wein, Fabian; Stingl, Michael; Körner, Carolin

    2017-09-22

    We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.

  19. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  20. THz Photonic Band-Gap Prisms Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Busch, Stefan F.; Xu, Lipeng; Stecher, Matthias

    2012-01-01

    We suggest a novel form of polymeric based 3D photonic crystal prisms for THz frequencies which could be fabricated using a standard fiber drawing technique. The structures are modeled and designed using a finite element analyzing technique. Using this simulation software we theoretically study...

  1. Towards a complete photonic band gap in the visible

    NARCIS (Netherlands)

    Velikov, K.P.

    2002-01-01

    The first part of the thesis describes the fabrication and the characterization of face-centered-cubic (fcc) photonic crystals (PCs) of dielectric (core-shell) spheres in a low-dielectric host (air). We demonstrate the synthesis and optical characterization of the PC's building blocks: well-defined

  2. Modelling and design of complete photonic band gaps in two ...

    Indian Academy of Sciences (India)

    with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to esti- mate the design parameters for maximizing the complete ...

  3. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  4. Soluble low band gap polymers for solar cell applications via oxidative polymerization

    OpenAIRE

    COLLADET, Kristof; Mulhbacher, D.; LUTSEN, Laurence; Schraber, M.; Brabec, C.; CLEIJ, Thomas; GELAN, Jan; VANDERZANDE, Dirk

    2006-01-01

    Mixtures of conjugated polymers and fullerenes command considerable attention for application in organic solar cells. To increase their efficiency, the design of new materials that absorb at longer wavelengths is of substantial interest. We have prepared such low band gap polymers using the donor-acceptor route, which is based on the concept that the interaction between alternating donors and acceptors results in a compressed band gap. Furthermore, for application in photovoltaic devices, suf...

  5. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    Science.gov (United States)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  6. Quasiparticle Band Gaps of Graphene and Graphone on Hexagonal Boron Nitride Substrate

    Science.gov (United States)

    Kharche, Neerav; Nayak, Saroj

    2012-02-01

    Graphene holds great promise for post-silicon electronics; however, it faces two main challenges: opening up a band gap and finding a suitable substrate material. Graphene on hexagonal boron nitride (hBN) substrate provides a potential system to overcome these challenges. While theoretical studies suggested a possibility of a finite band gap of graphene on hBN, recent experimental studies find no band gap. We have studied graphene-hBN system using the first-principles density functional method and the many-body perturbation theory within GW approximation [1]. A Bernal stacked graphene on hBN has a band gap on the order of 0.1 eV, which disappears when graphene is misaligned with respect to hBN. The latter is the likely scenario in realistic devices. In contrast, if graphene supported on hBN is hydrogenated, the resulting system (graphone) exhibits band gaps larger than 2.5 eV. The graphone band gap is due to chemical functionalization and is robust in the presence of misalignment, however, it reduces by about 1 eV due to the polarization effects at the graphone/hBN interface.[4pt] [1] N. Kharche and S. K. Nayak, Nano Lett., DOI: 10.1021/nl202725w, (2011).

  7. Mini-stop bands in single heterojunction photonic crystal waveguides

    KAUST Repository

    Shahid, N.

    2013-01-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications. 2013 Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License.

  8. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Department of Applied Physics, Delhi College of Engineering, Faculty of Technology. (University of Delhi), Bawana Road, ... the inhibition of radiation. Therefore, to take the maximal advantage of the ability. 1155 ..... Council of Technical Education, Government of India for the R&D project 'Propa- gation Characteristics of ...

  9. Tunnelling determined superconducting energy gap of bulk single crystal aluminum

    International Nuclear Information System (INIS)

    Civiak, R.L.

    1974-01-01

    A procedure has been developed for fabricating Giaver tunnel junctions on bulk aluminum. Al-I-Ag junctions were prepared, where I is the naturally formed oxide on the polished, chemically treated aluminum surface. The aluminum energy gap was determined from tunneling conductance curves obtained from samples oriented in three different crystal directions, and as a function of magnetic field in each of these orientations. In contrast to the results of microwave absorption measurements on superconducting aluminum, no magnetic field dependence could be measured for either the average gap or the spread in gap values of the tunneling electrons. This is consistent with commonly accepted tunneling selection rules, and Garfunkel's interpretation of the microwave behavior which depended upon adjusting the energy spectrum of only the electrons traveling parallel to the surface in the presence of a magnetic field. The energy gaps measured for samples oriented in the 100, 110 and 111 directions are 3.52, 3.50 and 3.39 kT/sub c/, respectively. The trend in the anisotropy is the same as in the calculation of Leavens and Carbotte, however, the magnitude of the anisotropy is smaller than in their calculation and that which previous measurements have indicated

  10. Anomalous composition dependence of the band gap pressure coefficients in In-containing nitride semiconductors

    DEFF Research Database (Denmark)

    Gorczyca, I.; Kamińska, A.; Staszczak, G.

    2010-01-01

    The pressure-induced changes in the electronic band structures of In-containing nitride alloys, InxGa1-xN and InxAl1-xN are examined experimentally as well as by ab initio calculations. It is found that the band gap pressure coefficients, dEg/dp, exhibit very large bowing with x, and calculations...

  11. Optical selection rules and scattering processes in rocksalt wide band gap ZnO

    CSIR Research Space (South Africa)

    Kunert, HW

    2014-02-01

    Full Text Available At sufficiently high pressures, wurtzite structure zinc oxide (W-ZnO) can be transformed to the cubic rocksalt (R-ZnO) structure. The R-ZnO exhibits semiconductor behavior with an indirect wide band gap of inline image. The maximum valence band...

  12. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    International Nuclear Information System (INIS)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert

    2017-01-01

    Tin and lead iodide perovskite semiconductors of the composition AMX_3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX_6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  13. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    Science.gov (United States)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  14. Band Structure Engineering in 2D Photonic Crystal Waveguide with Rhombic Cross-Section Elements

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Gharaati

    2014-01-01

    Full Text Available Two-dimensional photonic crystal (2D PhC waveguides with square lattice composed of dielectric rhombic cross-section elements in air background, by using plane wave expansion (PWE method, are investigated. In order to study the change of photonic band gap (PBG by changing of elongation of elements, the band structure of the used structure is plotted. We observe that the size of the PBG changes by variation of elongation of elements, but there is no any change in the magnitude of defect modes. However, the used structure does not have any TE defect modes but it has TM defect mode for any angle of elongation. So, the used structure can be used as optical polarizer.

  15. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-09-09

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  16. Tuning to the band gap by complex defects engineering: insights from hybrid functional calculations in CuInS2

    Science.gov (United States)

    Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui

    2018-01-01

    Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui  +  CuIn is the main complex defect, while InCu  +  2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.

  17. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  18. Multiplication of electronic excitations and prospects for increasing scintillation efficiency in wide-gap crystals

    International Nuclear Information System (INIS)

    Lushchik, Aleksandr; Kirm, Marco; Lushchik, Cheslav; Martinson, Indrek; Nagirnyi, Vitali; Savikhin, Fjodor; Vasil'chenko, Eugeni

    2005-01-01

    A comparative analysis of the electron-hole (e-h) excitation mechanism of impurity luminescence has been performed for wide-gap oxides (WGO) and alkali halides crystals (AHC). A low quantum yield of scintillation in WGO with respect to that in AHC is connected with the high value of the average energy needed for the creation of an e-h pair in WGO. In AHC and many WGO, the width of a valence band Ev is smaller than the energy gap Eg and hot valence holes are not able to create any secondary e-h pairs. The Ev/Eg ratio that describes 'hole losses' in scintillators is 1.5-2.0 times higher in WGO than in CsI. The scenario of the two-step transformation of an e-h pair or an anion exciton into two emitted photons in α-Al 2 O 3 :Mg 2+ ,Ti 4+ has been considered

  19. Band gap reduction in GaNSb alloys due to the anion mismatch

    International Nuclear Information System (INIS)

    Veal, T.D.; Piper, L.F.J.; Jollands, S.; Bennett, B.R.; Jefferson, P.H.; Thomas, P.A.; McConville, C.F.; Murdin, B.N.; Buckle, L.; Smith, G.W.; Ashley, T.

    2005-01-01

    The structural and optoelectronic properties in GaN x Sb 1-x alloys (0≤x x Sb 1-x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content

  20. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    Science.gov (United States)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  1. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    Science.gov (United States)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  2. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  3. Terahertz frequency superconductor-nanocomposite photonic band gap

    Science.gov (United States)

    Elsayed, Hussein A.; Aly, Arafa H.

    2018-02-01

    In the present work, we discuss the transmittance properties of one-dimensional (1D) superconductor nanocomposite photonic crystals (PCs) in THz frequency regions. Our modeling is essentially based on the two-fluid model, Maxwell-Garnett model and the characteristic matrix method. The numerical results investigate the appearance of the so-called cutoff frequency. We have obtained the significant effect of some parameters such as the volume fraction, the permittivity of the host material, the size of the nanoparticles and the permittivity of the superconductor material on the properties of the cutoff frequency. The present results may be useful in the optical communications and photonic applications to act as tunable antenna in THz, reflectors and high-pass filter.

  4. Interface relaxation and band gap shift in epitaxial layers

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  5. Carrier-Induced Band-Gap Variation and Point Defects in Zn3N2 from First Principles

    Science.gov (United States)

    Kumagai, Yu; Harada, Kou; Akamatsu, Hirofumi; Matsuzaki, Kosuke; Oba, Fumiyasu

    2017-07-01

    The zinc nitride Zn3N2 is composed of inexpensive and earth-abundant Zn and N elements and shows high electron mobility exceeding 100 cm2 V-1 s-1 . Although various technological applications of Zn3N2 have been suggested so far, the synthesis of high-quality Zn3N2 samples, especially single crystals, is still challenging, and therefore its basic properties are not yet well understood. Indeed, the reported band gaps of as-grown Zn3N2 widely scatter from 0.85 to 3.2 eV. In this study, we investigate the large gap variation of Zn3N2 in terms of the Burstein-Moss (BM) effect and point-defect energetics using first-principles calculations. First, we discuss the relation between electron carrier concentration and optical gaps based on the electronic structure obtained using the Heyd-Scuseria-Ernzerhof hybrid functional. The calculated fundamental band gap is 0.84 eV in a direct-type band structure. Second, thermodynamic stability of Zn3N2 is assessed using the ideal-gas model in conjunction with the rigid-rotor model for gas phases and first-principles phonon calculations for solid phases. Third, carrier generation and compensation by native point defects and unintentionally introduced oxygen and hydrogen impurities are discussed. The results suggest that a significant BM shift occurs mainly due to oxygen substitutions on nitrogen sites and hydrogen interstitials. However, gaps larger than 2.0 eV would not be due to the BM shift because of the Fermi-level pinning caused by acceptorlike zinc vacancies and hydrogen-on-zinc impurities. Furthermore, we discuss details of peculiar defects such as a nitrogen-on-zinc antisite with azidelike atomic and electronic structures.

  6. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, G.; Gottfried, C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre-RS (Brazil); Silva, A. M. [Universidade Estadual do Piauí, 64260-000 Piripiri-Pi (Brazil); Caetano, E. W. S., E-mail: ewcaetano@gmail.com [Instituto de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza-CE (Brazil); Sales, F. A. M.; Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza-CE (Brazil)

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  7. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  8. A note on anomalous band-gap variations in semiconductors with temperature

    Science.gov (United States)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  9. Understanding band gaps of solids in generalized Kohn–Sham theory

    Science.gov (United States)

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  10. Understanding band gaps of solids in generalized Kohn-Sham theory.

    Science.gov (United States)

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  11. TlHgInS 3 : An Indirect-Band-Gap Semiconductor with X-ray Photoconductivity Response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Malliakas, Christos D.; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-08-11

    The quaternary compound TlHgInS3 crystallizes in a new structure type of space group, C2/c, with cell parameters a = 13.916(3) angstrom, b = 3.9132(8) angstrom, c = 21.403(4) angstrom, beta = 104.16(3)degrees, V = 1130.1(8) angstrom(3), and rho = 7.241 g/cm(3). The structure is a unique three-dimensional framework with parallel tunnels, which is formed by (1)(infinity)[InS33-] infinite chains bridged by linearly coordinated Hg2+ ions. TlHgInS3 is a semiconductor with a band gap of 1.74 eV and a resistivity of similar to 4.32 G Omega cm. TlHgInS3 single crystals exhibit photocurrent response when exposed to Ag X-rays. The mobility-lifetime product (mu tau) of the electrons and holes estimated from the photocurrent measurements are (mu tau)(e) approximate to 3.6 x 10(-4) cm(2)/V and (mu tau)(h) approximate to 2.0 x 10(-4) cm(2)/V. Electronic structure calculations at the density functional theory level indicate an indirect band gap and a relatively small effective mass for both electrons and holes. Based on the photoconductivity data, TlHgInS3 is a potential material for radiation detection applications.

  12. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    Highlights: • Band gap engineering using anion dopants. • Mid band energy level. • Ti 3+ and oxygen vacancies as impurities states. • Valence band tail extension due to doping. • Wider solar light absorption. - Abstract: A simple yet promising strategy to modify TiO 2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO 2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti 3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti 3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO 2 shows better optical properties relative to single N and F doped TiO 2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO 2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO 2 . This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  13. Effect of band gap engineering in anionic-doped TiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee, E-mail: sharifahbee@um.edu.my

    2017-01-01

    Highlights: • Band gap engineering using anion dopants. • Mid band energy level. • Ti{sup 3+} and oxygen vacancies as impurities states. • Valence band tail extension due to doping. • Wider solar light absorption. - Abstract: A simple yet promising strategy to modify TiO{sub 2} band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO{sub 2} was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti{sup 3+} impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti{sup 3+} ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO{sub 2} shows better optical properties relative to single N and F doped TiO{sub 2} with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO{sub 2} uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO{sub 2}. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  14. Advanced electron microscopy of wide band-gap semiconductor materials

    International Nuclear Information System (INIS)

    Fay, M.W.

    2000-10-01

    The microstructure of GaN layers grown by metal organic vapour phase epitaxy on (0001) sapphire substrates using a novel precursor for deposition of AlN buffer layers has been investigated and compared to layers grown using low temperature GaN buffer layers and state-of-the-art material. It has been shown that the quality of layers grown using the novel precursor is comparable to the state-of-the-art material. TEM analysis has been performed of multiple quantum wells of InGaN grown within GaN epitaxial layers by metal organic vapour phase epitaxy. Elementally sensitive TEM techniques have been used to determine the spatial distribution of In and Ga within these structures. Fluctuations in In sensitive images are observed on the nm-scale. Clear evidence of segregation of In during layer growth has been seen. Models of the In segregation are in good agreement with experimental results. Elementally sensitive techniques have been used to investigate the elemental distributions in TiAl and NiAu contacts to GaN. Annealing of TiAl contacts has been seen to result in the formation of a thin interfacial Ti rich phase, and of N depletion at the surface of the GaN layer to the depth of tens of nm. Annealing NiAu contacts at 700 deg. C was seen to result in the formation of Ga-rich interfacial phases, of both crystalline and amorphous structure. ZnS and ZnCdS layers grown on (001) GaP supplied by the University of Hull have been investigated. ZnS layers were found to contain a high density of inclined stacking faults throughout the layer, originating from the interface with the substrate. Energy sensitive techniques have been used to investigate ZnCdS quantum well structures. The use of a ZnCdS superlattice structure around a ZnCdS quantum well to approximate a reduced barrier was seen to result in less thickness variations than when no barrier was used. (author)

  15. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    Energy Technology Data Exchange (ETDEWEB)

    Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasaragod, Kerala - 671 314 (India)

    2016-05-15

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coated copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.

  16. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    Science.gov (United States)

    Prabhash, P. G.; Nair, Swapna S.

    2016-05-01

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coated copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.

  17. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    Directory of Open Access Journals (Sweden)

    P. G. Prabhash

    2016-05-01

    Full Text Available Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coated copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.

  18. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    Science.gov (United States)

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  19. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    Science.gov (United States)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  20. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate....... Determination of band-gaps and the corresponding attenuation levels is an im-portant practical problem. Most existing analytical methods in the field are based on Floquet theory; e.g. this holds for the classical Hill’s method of infinite determinants, and the method of space-harmonics. However, application....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed...

  1. Investigation on the Band Gap and Negative Properties of Concentric Ring Acoustic Metamaterial

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-01-01

    Full Text Available The acoustic characteristics of 2D single-oscillator, dual-oscillator, and triple-oscillator acoustic metamaterials were investigated based on concentric ring structures using the finite element method. For the single-oscillator, dual-oscillator, and triple-oscillator models investigated here, the dipolar resonances of the scatterer always induce negative effective mass density, preventing waves from propagating in the structure, thus forming the band gap. As the number of oscillators increases, relative movements between the oscillators generate coupling effect; this increases the number of dipolar resonance modes, causes negative effective mass density in more frequency ranges, and increases the number of band gaps. It can be seen that the number of oscillators in the cell is closely related to the number of band gaps due to the coupling effect, when the filling rate is of a certain value.

  2. Nature of the fundamental band gap in GaNxP1-x alloys

    International Nuclear Information System (INIS)

    Shan, W.; Walukiewicz, W.; Yu, K. M.; Wu, J.; Ager, J. W. III; Haller, E. E.; Xin, H. P.; Tu, C. W.

    2000-01-01

    The optical properties of GaN x P 1-x alloys (0.007≤x≤0.031) grown by gas-source molecular-beam epitaxy have been studied. An absorption edge appears in GaN x P 1-x at energy below the indirect Γ V -X C transition in GaP, and the absorption edge shifts to lower energy with increasing N concentration. Strong photomodulation signals associated with the absorption edges in GaN x P 1-x indicate that a direct fundamental optical transition is taking place, revealing that the fundamental band gap has changed from indirect to direct. This N-induced transformation from indirect to direct band gap is explained in terms of an interaction between the highly localized nitrogen states and the extended states at the Γ conduction-band minimum. (c) 2000 American Institute of Physics

  3. Birefringence and band structure of CdP{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Beril, S.I.; Stamov, I.G. [Tiraspol State Corporative University, Yablocikin Street 5, 2069 Tiraspol, Republic of Moldova (Moldova, Republic of); Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 5 Academy Street, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2013-08-01

    The spatial dispersion in CdP{sub 2} crystals was investigated. The dispersion is positive (n{sup k||c}>n{sup k||y}) at λ>λ{sub 0} and negative (n{sup k||c}crystals are isotropic for wavelength λ{sub o}=896 nm. Indirect transitions in excitonic region E{sub gx} are nonpolarized due to one pair of bands. Minimal direct energy intervals correspond to transitions Γ{sub 1}→Γ{sub 1} for E{sup ||}c and Γ{sub 2}→Γ{sub 1} for E⊥c. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Γ{sub 1}→Γ{sub 1} and Γ{sub 2}→Γ{sub 1} band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5–10 eV and optical functions (n, k, ε{sub 1}, ε{sub 2,}d{sup 2}ε{sub 1}/dE{sup 2} and d{sup 2}ε{sub 2}/dE{sup 2}) were calculated by using Kramers–Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  4. Band structure of one-dimensional doped photonic crystal with three level atoms using the Fresnel coefficients method

    Science.gov (United States)

    Jafari, A.; Rahmat, A.; Bakkeshizadeh, S.

    2018-01-01

    We consider a one-dimensional photonic crystal (1DPC) composed of double-layered dielectrics. Electric permittivity and magnetic permeability of this crystal depends on the incident electromagnetic wave frequency. We suppose that three level atoms have been added to the second layer of each dielectric and this photonic crystal (PC) has been doped. These atoms can be added to the layer with different rates. In this paper, we have calculated and compared the band structure of the mentioned PC considering the effect of added atoms to the second layer with different rates through the Fresnel coefficients method. We find out that according to the effective medium theory, the electric permittivity of the second layer changes. Also the band structure of PC for both TE and TM polarizations changes, too. The width of bandgaps related to “zero averaged refractive index” and “Bragg” increases. Moreover, new gap branches appear in new frequencies at both TE and TM polarizations. In specific state, two branches of “zero permittivity” gap appear in the PC band structure related to TM polarization. With increasing the amount of the filling rate of total volume with three level atoms, we observe a lot of changes in the PC band structure.

  5. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  6. Lattice reconfiguration and phononic band-gap adaptation via origami folding

    Science.gov (United States)

    Thota, M.; Li, S.; Wang, K. W.

    2017-02-01

    We introduce a framework of utilizing origami folding to redistribute the inclusions of a phononic structure to achieve significant phononic band-gap adaptation. Cylindrical inclusions are attached to the vertices of a Miura-Ori sheet, whose 1 degree-of-freedom rigid folding can enable fundamental reconfigurations in the underlying periodic architecture via switching between different Bravais lattice types. Such a reconfiguration can drastically change the wave propagation behavior in terms of band gap and provide a scalable and practical means for broadband wave tailoring.

  7. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates

    Science.gov (United States)

    Oudich, Mourad; Senesi, Matteo; Assouar, M. Badreddine; Ruzenne, Massimo; Sun, Jia-Hong; Vincent, Brice; Hou, Zhilin; Wu, Tsung-Tsong

    2011-10-01

    We provide experimental evidence of the existence of a locally resonant sonic band gap in a two-dimensional stubbed plate. Structures consisting of a periodic arrangement of silicone rubber stubs deposited on a thin aluminium plate were fabricated and characterized. Brillouin spectroscopy analysis is carried out to determine the elastic constants of the used rubber. The constants are then implemented in an efficient finite-element model that predicts the band structure and transmission to identify the theoretical band gap. We measure a complete sonic band gap for the out-of-plane Lamb wave modes propagating in various samples fabricated with different stub heights. Frequency domain measurements of full wave field and transmission are performed through a scanning laser Doppler vibrometer. A complete band gap from 1.9 to 2.6 kHz is showed using a sample with 6-mm stub diameter, 5-mm thickness, and 1-cm structure periodicity. Very good agreement between numerical and experimental results is obtained.

  8. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    Science.gov (United States)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  9. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    Science.gov (United States)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  10. Determination of density of band-gap states of hydrogenated amorphous silicon suboxide thin films

    International Nuclear Information System (INIS)

    Bacioglu, A.

    2005-01-01

    Variation of density of gap states of PECVD silicon suboxide films with different oxygen concentrations was evaluated through electrical and optical measurements. Optical transmission and constant photocurrent method (CPM) were used to determine absorption coefficient as a function of photon energy. From these measurements the localized density of states between the valance band mobility edge and Fermi level has been determined. To determine the variation of conduction band edge, steady state photoconductivity (SSPC), photoconductivity response time (PCRT) and transient photoconductivity (TPC) measurements were utilized. Results indicate that the conduction and valance band edges, both, widen monotonically with oxygen content

  11. C3H2 : A wide-band-gap semiconductor with strong optical absorption

    Science.gov (United States)

    Lu, Hong-Yan; Cuamba, Armindo S.; Geng, Lei; Hao, Lei; Qi, Yu-Min; Ting, C. S.

    2017-10-01

    Using first-principles calculations, we predict a new type of partially hydrogenated graphene system, C3H2 , which turns out to be a semiconductor with a band gap of 3.56 eV. The bands are rather flat at the band edges and thus lead to a large density of states, which further results in strong optical absorption between the valence band and the conduction band. Particularly, it shows strong optical absorption at about 4.5 eV for the light polarized along the lines connecting the nearest unhydrogenated carbon atoms. Thus, the predicted C3H2 system may have potential applications for a polarizer as well as other high-efficiency optical devices in the near ultraviolet region.

  12. Grain size dependent optical band gap of CdI2 films

    Indian Academy of Sciences (India)

    The thermally evaporated stoichiometric CdI2 films show good -axis alignment normal to substrate plane for film thickness up to 200 nm. The optical absorption data indicate an allowed direct interband transition across a gap of 3.6 eV in confirmation with earlier band structure calculations. However, part of the absorption ...

  13. On the optical band gap in certain ternary phosphate and TeO2 based glasses

    Czech Academy of Sciences Publication Activity Database

    Tichá, H.; Tichý, Ladislav

    2011-01-01

    Roč. 5, č. 12 (2011), s. 1277-1281 ISSN 1842-6573 Institutional research plan: CEZ:AV0Z40500505 Keywords : optical band gap * heavy metal oxide glasses Subject RIV: CA - Inorganic Chemistry Impact factor: 0.304, year: 2011 http://oam-rc.inoe.ro/index.php?option=magazine&op=view&idu=1737&catid=69

  14. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...

  15. Theoretical study of relative width of photonic band gap for the 3-D ...

    Indian Academy of Sciences (India)

    Abstract. Calculations for the relative width ´∆ω ω0µ as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of ...

  16. Systematics in band gaps and optical spectra of 3D transition metal compounds

    International Nuclear Information System (INIS)

    Zaanen, J.; Sawatzky, G.A.

    1990-01-01

    In this paper the authors discuss the systematics in the transition metal d-d Coulomb interactions and the anion to cation charge transfer energies, and relate these to systematics in observed band gaps. In addition, they discuss the nature of the optical thresholds and their dependence on the cation and anion electronegativity

  17. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    Science.gov (United States)

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  18. Grain size dependent optical band gap of CdI2 films

    Indian Academy of Sciences (India)

    Unknown

    The dependence of band gap on film thickness (> 200 nm) can be explained qualitatively in terms of decreasing grain boundary barrier height ... The CdI2 thin films were grown on glass substrates at room temperature by thermal ... reflections were observed for higher film thicknesses than. 160 nm. This indicates a slight ...

  19. Theoretical study of relative width of photonic band gap for the 3-D ...

    Indian Academy of Sciences (India)

    Calculations for the relative width (/0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic ...

  20. Tunable band gaps in graphene/GaN van der Waals heterostructures

    International Nuclear Information System (INIS)

    Huang, Le; Kang, Jun; Li, Yan; Li, Jingbo; Yue, Qu

    2014-01-01

    Van der Waals (vdW) heterostructures consisting of graphene and other two-dimensional materials provide good opportunities for achieving desired electronic and optoelectronic properties. Here, we focus on vdW heterostructures composed of graphene and gallium nitride (GaN). Using density functional theory, we perform a systematic study on the structural and electronic properties of heterostructures consisting of graphene and GaN. Small band gaps are opened up at or near the Γ point of the Brillouin zone for all of the heterostructures. We also investigate the effect of the stacking sequence and electric fields on their electronic properties. Our results show that the tunability of the band gap is sensitive to the stacking sequence in bilayer-graphene-based heterostructures. In particular, in the case of graphene/graphene/GaN, a band gap of up to 334 meV is obtained under a perpendicular electric field. The band gap of bilayer graphene between GaN sheets (GaN/graphene/graphene/GaN) shows similar tunability, and increases to 217 meV with the perpendicular electric field reaching 0.8 V Å  − 1 . (paper)

  1. Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials.

    Science.gov (United States)

    Romera, E; Calixto, M

    2015-05-08

    Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback-Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems.

  2. Graded band-gap engineering for increased efficiency in CZTS solar cells

    Science.gov (United States)

    Ferhati, H.; Djeffal, F.

    2018-02-01

    In this paper, we propose a potential high efficiency Cu2ZnSn(S,Se)4/CdS (CZTS) solar cell design based on graded band-gap engineering that can offer the benefits of improved absorption behavior and reduced recombination effects. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to determinate the optimal band-gap profile of the amended CZTS absorber layer to achieve further efficiency enhancement. It is found that the proposed design exhibits superior performance, where a high efficiency of 16.9% is recorded for the optimized solar cell with a relative improvement of 92%, compared with the reference cell efficiency of 8.8%. Likewise, the optimized CZTS solar cell with a graded band-gap enables achieving a higher open circuit voltage of 889 mV, a short-circuit current of 28.5 mA and a fill factor of 66%. Therefore, the optimized CZTS-based solar cell with graded-band gap paradigm pinpoints a new path toward recording high-efficiency thin-film solar cells through enhancing carrier collection and reducing the recombination rate.

  3. Modulation of band gap by an applied electric field in BN-based heterostructures

    Science.gov (United States)

    Luo, M.; Xu, Y. E.; Zhang, Q. X.

    2018-05-01

    First-principles density functional theory (DFT) calculations are performed on the structural and electronic properties of the SiC/BN van der Waals (vdW) heterostructures under an external electric field (E-field). Our results reveal that the SiC/BN vdW heterostructure has a direct band gap of 2.41 eV in the raw. The results also imply that electrons are likely to transfer from BN to SiC monolayer due to the deeper potential of BN monolayer. It is also observed that, by applying an E-field, ranging from -0.50 to +0.65 V/Å, the band gap decreases from 2.41 eV to zero, which presents a parabola-like relationship around 0.0 V/Å. Through partial density of states (PDOS) plots, it is revealed that, p orbital of Si, C, B, and N atoms are responsible for the significant variations of band gap. These obtained results predict that, the electric field tunable band gap of the SiC/BN vdW heterostructures carries potential applications for nanoelectronics and spintronic device applications.

  4. Effect of Al doping on microstructure and optical band gap of ZnO ...

    Indian Academy of Sciences (India)

    % AZO indicating a blue-shift for 1% AZO film. However, for 2% AZO film, a decrease in band gap compared to pure ZnO is observed indicating a red-shift of fundamental absorption edge. Electrical resistance shows an initial decrease with.

  5. Theoretical study of relative width of photonic band gap for the 3-D ...

    Indian Academy of Sciences (India)

    conventional systems, there is a need to look into the basics of this field as their qualitative comparison may pave the way to facilitate understanding about occurrence of the photonic band gap (PBG). We are motivated to compute the variations of relative width (∆ω/ω0) as a function of refractive index contrast (na/n b.

  6. H-shaped oligothiophenes with low band gaps and amphoteric redox properties

    KAUST Repository

    Luo, Jing

    2010-12-17

    H-shaped bridged oligothiophenes HT-1 and HT-2 were synthesized by two different approaches. Different from normal oligothiophenes, HT-1 and HT-2 showed low band gaps and amphoteric redox behaviors due to intramolecular charge transfer, which is further supported by time-dependent DFT calculations. © 2010 American Chemical Society.

  7. Band gap narrowing and photocatalytic studies of Nd 3+ ion-doped ...

    Indian Academy of Sciences (India)

    of photocatalysts was found to be related to neodymium doping percentage and calcination temperature. Keywords. Band gap narrowing; photocatalytic activity; sol–gel process; tin oxide. 1. Introduction. Dyes are widely used in a variety of industries such as tex- tile, plastic, paper, printing, etc.; consequently they become.

  8. Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire

    NARCIS (Netherlands)

    Rühle, S.|info:eu-repo/dai/nl/31407659X; van Vugt, L.K.|info:eu-repo/dai/nl/338773800; Li, H.-Y.; Keizer, N.A.; Kuipers, L.; Vanmaekelbergh, D.A.M.|info:eu-repo/dai/nl/304829137

    2008-01-01

    The emission spectrum of individual high-quality ZnO nanowires consists of a series of Fabry-Pérot-like eigenmodes that extend far below the band gap of ZnO. Spatially resolved luminescence spectroscopy shows that light is emitted predominantly at both wire ends, with identical spectra reflecting

  9. Optical study of the band structure of wurtzite GaP nanowires

    KAUST Repository

    Assali, S.

    2016-07-25

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading to a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ8C conduction band edge.

  10. A novel benzodipyrrolidone-based low band gap polymer for organic solar cells

    DEFF Research Database (Denmark)

    Yue, Wei; Huang, Xiaodong; Yuan, Jianyu

    2013-01-01

    A low band gap polymer PBDPDP-DTP, with alternating benzodipyrrolidone (BDP) unit and dithienopyrrole, was synthesized and characterized. A PCE of 2.60%and a Voc of up to 0.74 V were realized in PSCs, which demonstrated the strong potential of BDP as the electron deficient unit in the design of d...... of donor–acceptor conjugated polymers for PSCs....

  11. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    Science.gov (United States)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  12. Simple vertex correction improves GW band energies of bulk and two-dimensional crystals

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt; Patrick, Christopher E.; Thygesen, Kristian Sommer

    2017-01-01

    mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures...

  13. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  14. Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation

    Science.gov (United States)

    Jiang, Hong

    2013-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha (TB-mBJ) have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators. In this work, we have investigated the performance of the TB-mBJ potential for the description of electronic band structures in a comprehensive set of semiconductors and insulators. We point out that a perturbative use of the TB-mBJ potential can give overall better results. By investigating a set of IIB-VI and III-V semiconductors, we point out that although the TB-mBJ approach can describe the band gap of these materials quite well, the binding energies of semi-core d-states in these materials deviate strongly from experiment. The difficulty of the TB-mBJ potential to describe the localized states is likely the cause for the fact that the electronic band structures of Cu2O and La2O3 are still poorly described. Based on these observations, we propose to combine the TB-mBJ approach with the Hubbard U correction for localized d/f states, which is able to provide overall good descriptions for both the band gaps and semi-core states binding energies. We further apply the approach to calculate the band gaps of a set of Ti(IV)-oxides, many of which have complicated structures so that the more advanced methods like GW are expensive to treat directly. An overall good agreement with experiment is obtained, which is remarkable considering its little computational efforts compared to GW.

  15. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Mohammadreza J. [Univ. of Texas, Arlington, TX (United States); Ahmadi-Majlan, K. [Univ. of Texas, Arlington, TX (United States); Shen, Xuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Nanjing Univ. (China); Droubay, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowden, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chrysler, M. [Univ. of Texas, Arlington, TX (United States); Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States); Chambers, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngai, Joseph [Univ. of Texas, Arlington, TX (United States)

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to electrically coupling crystalline oxides with semiconductors to realize functional behavior is controlling the manner in which their bands align at interfaces. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO3 and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural, electrical and photoemission characterization of SrZrxTi1-xO33-Ge heterojunctions for x = 0.2 to 0.75 and demonstrate the band offset can be tuned from type-II to type-I. The type-I band offset provides a platform to integrate the dielectric, ferroelectric and ferromagnetic functionalities of oxides with semiconducting devices.

  16. Photonic-band-gap architectures for long-lifetime room-temperature polariton condensation in GaAs quantum wells

    Science.gov (United States)

    Jiang, Jian-Hua; Vasudev, Pranai; John, Sajeev

    2017-10-01

    We describe AlGaAs photonic-crystal architectures that simultaneously realize strong exciton-photon coupling, long polariton lifetime, and room-temperature polariton Bose-Einstein condensation (BEC). Strong light trapping, induced by a 3D photonic band gap (PBG), leads to peak field intensity 20 times as large as that in an AlGaAs Fabry-Pérot microcavity and exciton-photon coupling as large as 20 meV (i.e., vacuum Rabi splitting 40 meV). The strong exciton-photon coupling, small polariton effective mass, and long polariton lifetime lead to possible realizations of equilibrium room-temperature BEC. We also consider the influence of polarization degeneracy and symmetry breaking in the ground state on the BEC-onset temperature and condensate fraction. Woodpile and slanted-pore PBG structures that break X-Y symmetry facilitate larger condensate fractions at moderate temperatures. The effects of electronic and photonic disorder are marginal, thanks to the 3D photonic band gap.

  17. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors

    Science.gov (United States)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  18. Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Pedersen, Thomas Garm

    2013-01-01

    We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive Green's function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies of GALs. We compare the results to those obtained in a simpler gapped graphene...... model. A crucial difference emerges in the behavior of the lowest Landau level, which in a gapped graphene model is independent of magnetic field. In stark contrast to this picture, we find that in GALs the band gap can be completely closed by applying a magnetic field. While our numerical simulations...... can only be performed on structures much smaller than can be experimentally realized, we find that the critical magnetic field for which the gap closes can be directly related to the ratio between the cyclotron radius and the neck width of the GAL. In this way, we obtain a simple scaling law...

  19. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures

    Science.gov (United States)

    Ben Aziza, Zeineb; Pierucci, Debora; Henck, Hugo; Silly, Mathieu G.; David, Christophe; Yoon, Mina; Sirotti, Fausto; Xiao, Kai; Eddrief, Mahmoud; Girard, Jean-Christophe; Ouerghi, Abdelkarim

    2017-07-01

    Two-dimensional (2D) materials have recently been the focus of extensive research. By following a similar trend as graphene, other 2D materials, including transition metal dichalcogenides (M X2 ) and metal mono-chalcogenides (MX), show great potential for ultrathin nanoelectronic and optoelectronic devices. Despite the weak nature of interlayer forces in semiconducting MX materials, their electronic properties are highly dependent on the number of layers. Using scanning tunneling microscopy and spectroscopy, we demonstrate the tunability of the quasiparticle energy gap of few-layered gallium selenide (GaSe) directly grown on a bilayer graphene substrate by molecular beam epitaxy. Our results show that the band gap is about 3.50 ± 0.05 eV for single-tetralayer, 3.00 ±0.05 eV for bi-tetralayer, and 2.30 ±0.05 eV for tri-tetralayer GaSe. This band-gap evolution of GaSe, particularly the shift of the valence band with respect to the Fermi level, was confirmed by angle-resolved photoemission spectroscopy (ARPES) measurements and our theoretical calculations. Moreover, we observed a charge transfer in the GaSe/graphene van der Waals (vdW) heterostructure using ARPES. These findings demonstrate the high impact on the GaSe electronic band structure and electronic properties that can be obtained by the control of 2D materials layer thickness and the graphene induced doping.

  20. Low Band Gap Polymers for Roll-to-Roll Coated Organic Photovoltaics – Design, Synthesis and Characterization

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Jørgensen, Mikkel

    2011-01-01

    In this paper we present the design and synthesis of 25 new low band gap polymers. The polymers were characterized by UV-vis spectroscopy which showed optical band gaps of 2.0–0.9 eV. The polymers which were soluble enough were applied in organic photovoltaics, both small area devices with a spin...

  1. Band-gaps in long Josephson junctions with periodic phase-shifts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Saeed, E-mail: saeedahmad@uom.edu.pk [Department of Mathematics, University of Malakand Chakdara, Dir(L), Pakhtunkhwa (Pakistan); Susanto, Hadi, E-mail: hsusanto@essex.ac.uk [Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ (United Kingdom); Wattis, Jonathan A.D. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2017-04-04

    We investigate analytically and numerically a long Josephson junction on an infinite domain, having arbitrary periodic phase shift of κ, that is, the so-called 0–κ long Josephson junction. The system is described by a one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices. We discuss the existence of periodic solutions of the system and investigate their stability both in the absence and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied bias current beyond which static periodic solutions cease to exist. Due to the periodic discontinuity in the phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias current on the band-gap structure. We present numerical simulations to support our analytical results. - Highlights: • A long Josephson junction on an infinite domain having arbitrary periodic phase shift has been proposed as artificial atom lattices recently. • We compute the band-gaps of the system asymptotically. • We show that the phase-shift and applied bias current can be used to control the band structures.

  2. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Zuo, Lijian; Fu, Weifei

    2012-01-01

    To increase the open circuit voltage (VOC) of polymer solar cells based on diketopyrrolopyrrole (DPP) containing polymers, the weakly electron-withdrawing thiophene-3,4-dicarboxylate unit was introduced into the polymer backbone. Two ester group functionalized DPP containing polymers, PCTDPP...... with a random structure and PDCTDPP with a regular structure, were designed and synthesized by the Stille coupling reaction. The resulting copolymers exhibit broad and strong absorption bands from 350 to 1000 nm with low optical band gaps below 1.40 eV. Through cyclic voltammetry measurements, it is found...

  3. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...... behavior of these structures, and the computed results generally match well with ones published in the literature. It is also found that the FDTD method is a robust, versatile, and powerful numerical technique to perform such numerical studies. The proposed PBG filter structures may be applied in microwave...

  4. Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer

    International Nuclear Information System (INIS)

    Sisodia, Namita

    2015-01-01

    By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of the width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically

  5. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference...... phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...... PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...

  6. Band gap engineering of MoS{sub 2} upon compression

    Energy Technology Data Exchange (ETDEWEB)

    López-Suárez, Miquel, E-mail: miquel.lopez@nipslab.org [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); Neri, Igor [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); INFN Sezione di Perugia, via Pascoli, 06123 Perugia (Italy); Rurali, Riccardo [Institut de Ciència de Materials de Barcelona (ICMAB–CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain)

    2016-04-28

    Molybdenum disulfide (MoS{sub 2}) is a promising candidate for 2D nanoelectronic devices, which shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS{sub 2} upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e., ±0.15). However, compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS{sub 2}, show semi-conductor to metal transition upon compressive strain without bucking.

  7. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  8. Study of sub band gap absorption of Sn doped CdSe thin films

    International Nuclear Information System (INIS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-01-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively

  9. Study of sub band gap absorption of Sn doped CdSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jagdish; Rani, Mamta [Department of Physics, Panjab University, Chandigarh- 160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  10. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  11. Band gap narrowing and doping level of heavily doped Germanium nanocrystals deduced from photoconductivity studies

    Science.gov (United States)

    Lambert, Y.; Gao, Y.; Pi, X. D.; Grandidier, B.; Stiévenard, D.

    2017-09-01

    We investigate the photoconductivity of a n+-ZnO/n-Ge NCs/p+-GaAs junction where the active layer consists of heavily n-doped Ge NCs synthesized in the gas phase. Measurement of a significant current at energies smaller than the band gap of GaAs demonstrates the photogeneration of charge carriers by the Ge NCs. From the correlation of the NC size with the absorption threshold, a narrowing of the direct band gap in the Ge NC thin film is obtained and attributed to the heavy doping of the Ge NCs. A remarkably high electrical activation of 15% is found for the incorporated P impurities in the NCs.

  12. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    Science.gov (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  13. Polarization field gradient effects in inhomogeneous metal-ferroelectric bilayers: Optical response and band gap tunability

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de las Propiedades Opticas de los Materiales (POM), Departamento de Fisica, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia); Vargas-Hernandez, C. [Grupo de las Propiedades Opticas de los Materiales (POM), Departamento de Fisica, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia)

    2012-06-15

    Optical constants, reflectivity response and direct band gap energy (E{sub g}{sup d}) were calculated and simulated by developing an electrodynamic-based model for a three medium system, namely vacuum/ferroelectric film/metallic substrate. Depolarization effects due to the contact between the metallic substrate and the FE film, as well as the spatially dependent profile of the dielectric susceptibility {epsilon}(z) enter into the formalism by adapting the phenomenological Landau-Ginzburg-Devonshire theory (LGD). Absorption coefficient is obtained from the Lambert-Beer-Bouguer (LBB) approximation and the direct band gap energy as a function of the characteristic length is calculated by using the general Tauc power law. Numerical simulations lead to range of values for tunable E{sub g}{sup d} from 2.6 to 2.8 eV for characteristic lengths up to 30% the thickness of the film, in concordance with recent reports.

  14. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; Van Campen, Douglas G.; Mehta, Apurva; Gregoire, John M.

    2016-01-01

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  15. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes.

    Science.gov (United States)

    Han, Wei-Qiang; Yu, Hua-Gen; Zhi, Chunyi; Wang, Jianbin; Liu, Zhenxian; Sekiguchi, Takashi; Bando, Yoshio

    2008-02-01

    We have carried out an isotope study on the band gap and radiative transition spectra of boron nitride nanotubes (BNNTs) using both experimental and theoretical approaches. The direct band gap of BNNTs was determined at 5.38 eV, independent of the nanotube size and isotope substitution, by cathodoluminescences (CL) spectra. At lower energies, several radiative transitions were observed, and an isotope effect was revealed. In particular, we confirmed that the rich CL spectra between 3.0 and 4.2 eV reflect a phonon-electron coupling mechanism, which is characterized by a radiative transition at 4.09 eV. The frequency red shift and peak broadening due to isotopic effect have been observed. Our Fourier transform infrared spectra and density functional theory calculations suggest that those radiative transitions in BNNTs could be generated by a replacement of some nitrogen atoms with oxygen.

  16. Optical Band Gap and Thermal Diffusivity of Polypyrrole-Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite Layer

    Directory of Open Access Journals (Sweden)

    Amir Reza Sadrolhosseini

    2016-01-01

    Full Text Available A polypyrrole-nanoparticles reduced graphene oxide nanocomposite layer was prepared using electrochemical method. The prepared samples were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and UV-visible spectroscopy. The band gap of nanocomposite layers was calculated from UV-visible spectra and the thermal diffusivity of layers was measured using a photoacoustic technique. As experimental results, the optical band gap was in the range between 3.580 eV and 3.853 eV, and thermal diffusivity was increased with increasing the layer thickness from 2.873 cm2/s to 12.446 cm2/s.

  17. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

    Science.gov (United States)

    Wang, Xinquan; Wu, Zhigang

    2017-01-18

    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  18. Band gap tunning in BN-doped graphene systems with high carrier mobility

    KAUST Repository

    Kaloni, T. P.

    2014-02-17

    Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02 eV to 2.43 eV. We demonstrate a low effective mass of the charge carriers.

  19. Effect of solvents on optical band gap of silicon-doped graphene oxide

    Science.gov (United States)

    Tul Ain, Qura; Al-Modlej, Abeer; Alshammari, Abeer; Naeem Anjum, Muhammad

    2018-03-01

    The objective of this study was to determine the influence on the optical band gap when the same amount of silicon-doped graphene oxide was dissolved in three different solvents namely, distilled water, benzene, and dichloroethane. Ultraviolet-visible spectroscopy was used to analyse the optical properties of the solutions. Among all these solutions distilled water containing silicon-doped graphene oxide has the smallest optical band gap of 2.9 eV and is considered a semiconductor. Other solutions are not considered as semiconductors as they have optical band gaps greater than 4 eV. It was observed that there is an increase in the value of optical band gap of distilled water, benzene, and dichloroethane solutions indicating a rise in the insulating behaviour. In this experiment, graphene oxide was synthesised from graphite powder by modified Hummer’s method and was then doped with silicon. Synthesis and doping of graphene oxide were confirmed by various characterization techniques. Fourier transmission infrared spectroscopy was used for identification of surface functional groups. X-ray diffraction was carried out to confirm the formation of crystalline graphene oxide and silicon doped graphene oxide. In x-ray diffraction pattern, shifting of intensity peak from a 2θ value of 26.5° to 10° confirmed the synthesis of graphene oxide and various intensity peaks at different values of 2θ confirmed doping of graphene oxide with silicon. Scanning electron microscopy images indicated that graphene oxide sheets were decorated with spherical silicon nanoparticles. Energy dispersive x-ray spectroscopy showed that silicon doped graphene oxide powder contained 63.36% carbon, 34.05% oxygen, and 2.6% silicon.

  20. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.

    Science.gov (United States)

    Osella, Silvio; Narita, Akimitsu; Schwab, Matthias Georg; Hernandez, Yenny; Feng, Xinliang; Müllen, Klaus; Beljonne, David

    2012-06-26

    Graphene nanoribbons (GNRs) are strips of graphene cut along a specific direction that feature peculiar electronic and optical properties owing to lateral confinement effects. We show here by means of (time-dependent) density functional theory calculations that GNRs with properly designed edge structures fulfill the requirements in terms of electronic level alignment with common acceptors (namely, C(60)), solar light harvesting, and singlet-triplet exchange energy to be used as low band gap semiconductors for organic photovoltaics.

  1. Band-gap control of GaInP using Sb as a surfactant

    International Nuclear Information System (INIS)

    Shurtleff, J.K.; Lee, R.T.; Fetzer, C.M.; Stringfellow, G.B.

    1999-01-01

    The use of surfactants to control specific aspects of the vapor-phase epitaxial growth process is beginning to be studied for both the elemental and III/V semiconductors. To date, most reported surfactant effects for semiconductors relate to the morphology of the growing films. However, semiconductor alloys with CuPt ordering exhibit much more dramatic effects. The change in the CuPt order parameter induced by the surfactant translates into a marked change in the band-gap energy. Previous work concentrated on the effects of the donor tellurium. Te is less than ideal as a surfactant, since the change in band-gap energy is coupled to a large change in the conductivity. This letter presents the results of a study of the effects of an isoelectronic surfactant on the ordering process in GaInP. Sb has been found to act as a surfactant during organometallic vapor-phase epitaxial growth. At an estimated Sb concentration in the solid of 1x10 -4 , order is eliminated, as indicated by the band-gap energy. Surface photoabsorption (SPA) data indicate that the effect is due to a change in the surface reconstruction. Adding Sb leads to attenuation of the peak at 400 nm in the SPA spectrum associated with [bar 110] P dimers. The addition of Sb during the growth cycle has been used to produce a heterostructure with a 135 meV band-gap difference between two layers with the same solid composition. copyright 1999 American Institute of Physics

  2. Thiophene-fused tetracene diimide with low band gap and ambipolar behavior

    KAUST Repository

    Ye, Qun

    2011-11-18

    The first tetracene diimide derivative fused with four thiophene rings, TT-TDI, was synthesized by an FeCl3 mediated oxidative cyclodehydrogenation reaction. TT-TDI exhibited a low band gap of 1.52 eV and amphoteric redox behavior. TT-TDI also showed a liquid crystalline property and ambipolar charge transport in thin film field-effect transistors. © 2011 American Chemical Society.

  3. Mechanical Properties of a Library of Low-Band-Gap Polymers

    DEFF Research Database (Denmark)

    Roth, Bérenger; Savagatrup, Suchol; de los Santos, Nathaniel V.

    2016-01-01

    The mechanical properties of low-band-gap polymers are important for the long-term survivability of roll to-roll processed organic electronic devices. Such devices, e.g., solar cells, displays, and thin-film transistors, must survive the rigors of roll-to-roll coating and also thermal...... the rigidity of the molecular structure, the most deformable films can be surprisingly compliant (modulus >= 150 MPa) and ductile (crack-onset strain...

  4. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  5. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    Science.gov (United States)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  6. Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide

    Directory of Open Access Journals (Sweden)

    Marco Miniaci

    2018-02-01

    Full Text Available The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material. The performance of the designed structure is evaluated by numerical simulations and confirmed by scanning laser Doppler vibrometer (SLDV measurements on an isotropic polyvinyl chloride plate in which a square ring region of cross-like cavities is fabricated. The full wave field reconstruction clearly confirms the ability of even a limited number of unit cell rows of the proposed design to efficiently attenuate Lamb waves. In addition, numerical simulations show that the structure allows to shift the central frequency of the BG through geometrical modifications. The design may be of interest for applications in which large BGs at low frequencies are required.

  7. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    Science.gov (United States)

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  8. Tuning quantum dot luminescence below the bulk band gap using tensile strain.

    Science.gov (United States)

    Simmonds, Paul J; Yerino, Christopher D; Sun, Meng; Liang, Baolai; Huffaker, Diana L; Dorogan, Vitaliy G; Mazur, Yuriy; Salamo, Gregory; Lee, Minjoo Larry

    2013-06-25

    Self-assembled quantum dots (SAQDs) grown under biaxial tension could enable novel devices by taking advantage of the strong band gap reduction induced by tensile strain. Tensile SAQDs with low optical transition energies could find application in the technologically important area of mid-infrared optoelectronics. In the case of Ge, biaxial tension can even cause a highly desirable crossover from an indirect- to a direct-gap band structure. However, the inability to grow tensile SAQDs without dislocations has impeded progress in these directions. In this article, we demonstrate a method to grow dislocation-free, tensile SAQDs by employing the unique strain relief mechanisms of (110)-oriented surfaces. As a model system, we show that tensile GaAs SAQDs form spontaneously, controllably, and without dislocations on InAlAs(110) surfaces. The tensile strain reduces the band gap in GaAs SAQDs by ~40%, leading to robust type-I quantum confinement and photoluminescence at energies lower than that of bulk GaAs. This method can be extended to other zinc blende and diamond cubic materials to form novel optoelectronic devices based on tensile SAQDs.

  9. Tuning the electronic band-gap of fluorinated 3C-silicon carbide nanowires

    Science.gov (United States)

    Miranda Durán, Álvaro; Trejo Baños, Alejandro; Pérez, Luis Antonio; Cruz Irisson, Miguel

    The possibility of control and modulation of the electronic properties of silicon carbide nanowires (SiCNWs) by varying the wire diameter is well known. SiCNWs are particularly interesting and technologically important, due to its electrical and mechanical properties, allowing the development of materials with specific electronic features for the design of stable and robust electronic devices. Tuning the band gap by chemical surface passivation constitutes a way for the modification of the electronic band gap of these nanowires. We present, the structural and electronic properties of fluorinated SiCNWs, grown along the [111] crystallographic direction, which are investigated by first principles. We consider nanowires with six diameters, varying from 0.35 nm to 2.13 nm, and eight random covering schemes including fully hydrogen- and fluorine terminated ones. Gibbs free energy of formation and electronic properties were calculated for the different surface functionalization schemes and diameters considered. The results indicate that the stability and band gap of SiCNWs can be tuned by surface passivation with fluorine atoms This work was supported by CONACYT infrastructure project 252749 and UNAM-DGAPA-PAPIIT IN106714. A.M. would like to thank for financial support from CONACyT-Retención. Computing resources from proyect SC15-1-IR-27 of DGTIC-UNAM are acknowledged.

  10. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti2CrGe: A first principles study

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-11-01

    Full Text Available The Heusler alloy Ti2CrGe is a stable L21 phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti1, Ti2, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part of the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.

  11. Junction-type photonic crystal waveguides for notch- and pass-band filtering

    KAUST Repository

    Shahid, Naeem

    2011-01-01

    Evolution of the mode gap and the associated transmission mini stop-band (MSB) as a function of photonic crystal (PhC) waveguide width is theoretically and experimentally investigated. The change of line-defect width is identified to be the most appropriate way since it offers a wide MSB wavelength tuning range. A high transmission narrow-band filter is experimentally demonstrated in a junction-type waveguide composed of two PhC waveguides with slightly different widths. The full width at half maximum is 5.6 nm; the peak transmission is attenuated by only ∼5 dB and is ∼20 dB above the MSBs. Additionally, temperature tuning of the filter were also performed. The results show red-shift of the transmission peak and the MSB edges with a gradient of dλ/dT = 0.1 nm/°C. It is proposed that the transmission MSBs in such junction-type cascaded PhC waveguides can be used to obtain different types of filters. © 2011 Optical Society of America.

  12. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    Science.gov (United States)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  13. Theoretical investigation of the phonon-assisted tunneling in TFET with an indirect band gap semiconductor

    Science.gov (United States)

    Chen, J.; Gong, J.

    2017-11-01

    There are intense recent interests in quantum tunneling transistor as a way to go beyond the metal-oxide-semiconductor transistors. Phonon-assisted tunneling (PAT) plays the dominating role in tunneling field effect transistors with an indirect band gap semiconductor. In this work, we provide a convenient expression based on Fermi gold rule to study the electron tunneling assisted by phonon from the valence band top to the conduction band bottom. Through the comparison with different phonon modes, the transverse acoustic phonon mode provides the largest contribution to PAT. The results of the transfer matrix model predict slightly higher tunneling current compared to the Wentzel-Kramers-Brillouin approximation which ignores the effect of the reflection wave. However, the current density calculated by using our method shows that there is about an order of the magnitude lager than Kane's model. Additionally, the temperature enhances the phonon-assisted Zener tunneling current densities. Our results shed some light on understanding the PAT in indirect band gap semiconductors.

  14. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  15. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    Science.gov (United States)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  16. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

    Science.gov (United States)

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-01-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices. PMID:25758749

  17. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    International Nuclear Information System (INIS)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; MacDonald, M. J.; Zastrau, U.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Granados, E.; Hastings, J. B.; Glenzer, S. H.

    2016-01-01

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  18. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Lidorikis, Elefterios [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.

  19. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); MacDonald, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); Zastrau, U. [High-Energy Density Science Group, Hamburg (Germany); Gauthier, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gericke, D. O. [Univ. of Warwick (United Kingdom); Vorberger, J. [Helmholtz Association of German Research Centres, Dresden (Germany); Granados, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-25

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  20. Band structure and optical properties of highly anisotropic LiBa2[B10O16(OH)3] decaborate crystal

    International Nuclear Information System (INIS)

    Smok, P.; Kityk, I.V.; Berdowski, J.

    2003-01-01

    The band structure (BS), charge density distribution and linear-optical properties of the anisotropic crystal LiBa 2 [B 10 O 16 (OH) 3 ] (LBBOH) are calculated using a self-consistent norm-conserving pseudopotential method within the framework of the local-density approximation theory. A high anisotropy of the band energy gap (4.22 eV for the E parallel b, 4.46 eV for the E parallel c) and giant birefringence (up to 0.20) are found. Comparison of the theoretically calculated and the experimentally measured polarised spectra of the imaginary part of the dielectric susceptibility ε 2 shows a good agreement. The anisotropy of the charge density distribution, BS dispersion and of the optical spectra originate from anisotropy between the 2p z B-2p z O and 2p y,x B-2p y,y O bonding orbitals. The observed anisotropy in the LBBOH is principally different from that of β-BaB 2 O 4 (BBO) single crystals. In the LBBOH single crystals the anisotropy of optical and charge density distribution is caused by different projection of the orbitals originating from particular borate clusters on the particular crystallographic axes, contrary to the BBO, where the anisotropy is caused prevailingly by a different local site symmetry of oxygen within the borate planes. The observed anisotropy is analysed in terms of the band energy dispersion and space charge density distribution

  1. Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials.

    Science.gov (United States)

    Froufe-Pérez, Luis S; Engel, Michael; Damasceno, Pablo F; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C; Scheffold, Frank

    2016-07-29

    We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

  2. Controllable Synthesis of Band Gap-Tunable and Monolayer Transition Metal Dichalcogenide Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-Han eSu

    2014-07-01

    Full Text Available The electronic and optical properties of transition metal dichalcogenide (TMD materials are directly governed by their energy gap; thus, the band gap engineering has become an important topic recently. Theoretical and some experimental results have indicated that these monolayer TMD alloys exhibit direct-gap properties and remain stable at room temperature, making them attractive for optoelectronic applications. Here we systematically compared the two approaches of forming MoS2xSe2(1-x monolayer alloys: selenization of MoS2 and sulfurization of MoSe2. The optical energy gap of as-grown CVD MoS2 can be continuously modulated from 1.86 eV (667 nm to 1.57 eV (790 nm controllable by the reaction temperature. Spectroscopic and microscopic evidences show that the Mo-S bonds can be replaced by the Mo-Se bonds in a random and homogeneous manner. By contrast, the replacement of Mo-Se by Mo-S does not randomly occur in the MoSe2 lattice, where the reaction preferentially occurs along the crystalline orientation of MoSe2 and thus the MoSe2/MoS2 biphases are easily observed in the alloys, which makes the optical band gap of these alloys distinctly different. Therefore, the selenization of metal disulfide is preferred and the proposed synthetic strategy opens up a simple route to control the atomic structure as well as optical properties of monolayer TMD alloys.

  3. Synthesis of tunable-band-gap "Open-Box" halide perovskites by use of anion exchange and internal dissolution procedures.

    Science.gov (United States)

    Wu, Zhengcui; Wang, Baohua; He, Jian; Chen, Tao

    2016-01-01

    We demonstrate the synthesis of cuboid MAPbBr3 (MA=CH3NH3) microcrystals and subsequent conversion into open-box-like MAPb(Br(1-x)I(x))3 (0⩽x⩽1) microcrystals by anion exchange in MAI solution. During the substitution of Br(-) with I(-), the initial cuboid framework of MAPbBr3 crystals is retained. The preferential internal dissolution of MAPbBr3 due to the surface coverage and protection of MAPb(Br(1-x)I(x))3 induces voids inside the cuboid crystals, finally leading to open-box-like iodide-rich MAPb(Br(1-x)I(x))3. By controlling the degree of anion exchange, the intense light absorption of the product is able to be tuned in specific wavelengths throughout the visible range. This solution-phase anion exchange approach provides a synthetic strategy in designing sophisticated organolead halide perovskites structures as well as tuning the band gaps for further applications across a range of possible domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Modulation of Dirac points and band-gaps in graphene via periodic fullerene adsorption

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2013-05-01

    Full Text Available The structural, energetic and electronic properties of periodic graphene nanobud (PGNB with small-diameter fullerenes (C20, C34, C42, and C60 adsorbed have been investigated by first-principles plane wave method. The bond-to-ring cycloaddition is found to be energetically most stable among various configurations and the minimum energy paths of different-sized fullerenes attaching to graphene indicate that smaller fullerene shows lower energy barriers due to its larger surface curvature. For perfectly ordered adsorption, band structures analyses by both density functional theory (DFT and tight binding (TB methods show that the Dirac cone of graphene can be generally preserved despite the sp2 to sp3 bond hybridization change for selected carbon atoms in graphene sheet. However, the position of the Dirac points inside the Brillouin zone has a shift from the hexagonal corner and can be effectively modulated by changing the fullerenes’ concentration. For practical applications, we show that a considerable band gap (∼0.35 eV can be opened by inducing randomness in the orientation of the fullerene adsorption and an effective order parameter is identified that correlates well with the magnitude of the band gap opening.

  5. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    Science.gov (United States)

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  6. Relationship between quantum speed limit time and memory time in a photonic-band-gap environment.

    Science.gov (United States)

    Wang, J; Wu, Y N; Mo, M L; Zhang, H Z

    2016-12-23

    Non-Markovian effect is found to be able to decrease the quantum speed limit (QSL) time, and hence to enhance the intrinsic speed of quantum evolution. Although a reservoir with larger degree of non-Markovianity may seem like it should cause smaller QSL times, this seemingly intuitive thinking may not always be true. We illustrate this by investigating the QSL time of a qubit that is coupled to a two-band photonic-band-gap (PBG) environment. We show how the QSL time is influenced by the coherent property of the reservoir and the band-gap width. In particular, we find that the decrease of the QSL time is not attributed to the increasing non-Markovianity, while the memory time of the environment can be seen as an essential reflection to the QSL time. So, the QSL time provides a further insight and sharper identification of memory time in a PBG environment. We also discuss a feasible experimental realization of our prediction.

  7. Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.

    Science.gov (United States)

    N Nair, Maya; Palacio, Irene; Celis, Arlensiú; Zobelli, Alberto; Gloter, Alexandre; Kubsky, Stefan; Turmaud, Jean-Philippe; Conrad, Matthew; Berger, Claire; de Heer, Walter; Conrad, Edward H; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-04-12

    The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp 2 hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

  8. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  9. Observation of wakefields in a beam-driven photonic band gap accelerating structure

    Directory of Open Access Journals (Sweden)

    C. Jing

    2009-12-01

    Full Text Available Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG accelerating structure. Major monopole (TM_{01}- and TM_{02}-like and dipole (TM_{11}- and TM_{12}-like modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be ∼10  times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to ∼30  MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.

  10. Instantaneous band gap collapse in VO{sub 2} caused by photocarrier doping

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Marc; Wegkamp, Daniel; Wolf, Martin; Staehler, Julia [Fritz-Haber-Institut der MPG, Berlin (Germany); Xian, Lede; Cudazzo, Pierluigi [Univ. del Pais Vasco, San Sebastian (Spain); European Theoretical Spectroscopy Facility (ETSF) (France); Gatti, Matteo [European Theoretical Spectroscopy Facility (ETSF) (France); Ecole Polytechnique, Palaiseau (France); McGahan, Christina L.; Marvel, Robert E.; Haglund, Richard F. [Vanderbilt Univ., Nashville, Tennessee (United States); Rubio, Angel [Fritz-Haber-Institut der MPG, Berlin (Germany); Univ. del Pais Vasco, San Sebastian (Spain); European Theoretical Spectroscopy Facility (ETSF) (France); MPI for the Structure and Dynamics of Matter, Hamburg (Germany)

    2015-07-01

    We have investigated the controversially discussed mechanism of the insulator-to-metal transition (IMT) in VO{sub 2} by means of femtosecond time-resolved photoelectron spectroscopy (trPES). Our data show that photoexcitation transforms insulating monoclinic VO{sub 2} quasi-instantaneously into a metal without an 80 fs structural bottleneck for the photoinduced electronic phase transition. First-principles many-body perturbation theory calculations reveal an ultrahigh sensitivity of the VO{sub 2} band gap to variations of the dynamically screened Coulomb interaction thus supporting the fully electronically driven isostructural IMT indicated by our trPES results. We conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.

  11. The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films

    Science.gov (United States)

    Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2018-02-01

    Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.

  12. Analytical and Numerical Calculations of Two-Dimensional Dielectric Photonic Band Gap Structures and Cavities for Laser Acceleration

    CERN Document Server

    Samokhvalova, Ksenia R; Liang Qian, Bao

    2005-01-01

    Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.

  13. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    Science.gov (United States)

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  14. Band gap opening in silicene on MgBr2(0001) induced by Li and Na

    KAUST Repository

    Zhu, Jiajie

    2014-11-12

    Silicene consists of a monolayer of Si atoms in a buckled honeycomb structure and is expected to be well compatible with the current Si-based technology. However, the band gap is strongly influenced by the substrate. In this context, the structural and electronic properties of silicene on MgBr2(0001) modified by Li and Na are investigated by first-principles calculations. Charge transfer from silicene (substrate) to substrate (silicene) is found for substitutional doping (intercalation). As compared to a band gap of 0.01 eV on the pristine substrate, strongly enhanced band gaps of 0.65 eV (substitutional doping) and 0.24 eV (intercalation) are achieved. The band gap increases with the dopant concentration.

  15. On the thickness dependence of both the optical band gap and reversible photodarkening in amorphous Ge-Se films.

    Czech Academy of Sciences Publication Activity Database

    Kutálek, P.; Tichý, Ladislav

    2016-01-01

    Roč. 619, 30 November (2016), s. 336-341 ISSN 0040-6090 Institutional support: RVO:61389013 Keywords : amorphous chalcogenides * thin films * optical band gap Subject RIV: CA - Inorganic Chemistry Impact factor: 1.879, year: 2016

  16. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  17. Doping and band gap control at poly(vinylidene fluoride)/graphene interface

    Science.gov (United States)

    Cai, Jia; Wang, Jian-Lu; Gao, Heng; Tian, Bobo; Gong, Shi-Jing; Duan, Chun-Gang; Chu, Jun-Hao

    2018-05-01

    Using the density-functional first-principles calculations, we investigate the electronic structures of poly(vinylidene fluoride) PVDF/graphene composite systems. The n- and p-doping of graphene can be flexibly switched by reversing the ferroelectric polarization of PVDF, without scarifying the intrinsic π-electron band dispersions of graphene that are usually undermined by chemical doping. The doping degree is also dependent on the thickness of PVDF layers, which will get saturated when PVDF is thick enough. In PVDF/bilayer graphene (BLG) heterostructure, the doping degree directly determines the local energy gap of the charged BLG. The sandwich structure of PVDF/BLG/PVDF can further enhance the local energy gap as well as keep the electric neutrality of BLG, which will be of great application potentials in graphene-based nanoelectronics.

  18. Do anionic titanium dioxide nano-clusters reach bulk band gap? A density functional theory study.

    Science.gov (United States)

    Qu, Zheng-Wang; Zhu, Hui

    2010-07-30

    The electronic properties of both neutral and anionic (TiO(2))(n) (n = 1-10) clusters are investigated by extensive density functional theory calculations. The predicted electron detachment energies and excitation gaps of anionic clusters agree well with the original experimental anion photoelectron spectra (APES). It is shown that the old way to analyze APES tends to overestimate vertical excitation gaps (VGA) of large anionic clusters, due to the nature of multiple electronic origins for the higher APES bands. Moreover, the VGA of anionic TiO(2) clusters are evidently smaller than those of neutral clusters, which may also be the case for other metal oxide clusters with high electron affinity. 2010 Wiley Periodicals, Inc.

  19. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    Science.gov (United States)

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  20. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics

    2004-07-01

    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  1. Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures

    International Nuclear Information System (INIS)

    Bakhadyrkhanov, M.K.; Isamov, S.B.; Iliev, K.M. et al.

    2014-01-01

    Photoelectric properties of monocrystalline silicon with multiply charged nanoclusters are studied that generate 'silicon clusters', i.e., nano-sized graded band gap structures. Multiply charged nanoclusters of manganese atoms strongly influence the photoelectric properties of monocrystalline silicon and expand the range of spectral sensitivity up to 8 μm; the photoelectric sensitivity reaches ∼10 9 . Conditions occur for the emergence of photo-emf in such a material in the infrared region when hν< E g . The obtained experimental data expand the functional capabilities for the application of silicon with multiply charged impurity atoms. (authors)

  2. Band gap and density of states of the hydrated C60 fullerene system at finite temperature.

    Science.gov (United States)

    Rivelino, Roberto; de Brito Mota, F

    2007-06-01

    We examine the electronic properties of the hydrated C60 fullerene under ambient conditions using a sequential Monte Carlo/density functional theory scheme. In this procedure, the average electronic properties of the first hydration shell of C60 equilibrate for ca. 40 uncorrelated configurations of the fullerene aqueous solution. We obtain a systematic red-shift of 0.8 eV in the band gap of the hydrated system, which is mainly attributed to the thermal fluctuations of the aqueous environment.

  3. Surface Plasmon-Induced Band Gap in the Photocurrent Response of Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Ribal Georges Sabat

    2010-01-01

    Full Text Available A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene (P3HT and the fullerene [6,6]-phenyl C61-butyric (PCBM was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.

  4. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster

    Science.gov (United States)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2018-05-01

    Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times covering the visible spectrum which extends to the infra-red (IR) range, and exhibits a slight non-linear I-V characteristic depending on the applied bias. These findings envisage that a graphene/Zn12O12 heterostructure can be appropriate for energy harvesting, photodetection, and photochemical devices.

  5. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    OpenAIRE

    Carolin M. Sutter-Fella Yanbo Li Matin Amani Joel W. Ager III Francesca M. Toma; Eli Yablonovitch Ian D. Sharp and Ali Javey

    2016-01-01

    Hybrid organic–inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low cost solution processability. Here we present a two step low pressure vapor assisted solution process to grow high quality homogeneous CH3NH3PbI3–xBrx perovskite films over the full band gap range of 1.6–2.3 eV. Photoluminescence light in versus light out charac...

  6. Robust band gap and half-metallicity in graphene with triangular perforations

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Power, Stephen; Jauho, Antti-Pekka

    2016-01-01

    . The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy...... disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag......, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications....

  7. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  8. Direct space-time observation of pulse tunneling in an electromagnetic band gap

    International Nuclear Information System (INIS)

    Doiron, Serge; Hache, Alain; Winful, Herbert G.

    2007-01-01

    We present space-time-resolved measurements of electromagnetic pulses tunneling through a coaxial electromagnetic band gap structure. The results show that during the tunneling process the field distribution inside the barrier is an exponentially decaying standing wave whose amplitude increases and decreases as it slowly follows the temporal evolution of the input pulse. At no time is a pulse maximum found inside the barrier, and hence the transmitted peak is not the incident peak that has propagated to the exit. The results support the quasistatic interpretation of tunneling dynamics and confirm that the group delay is not the traversal time of the input pulse peak

  9. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copoliymers and Colloidal Nanocrystals (NBIT Phase II)

    Science.gov (United States)

    2011-05-06

    Activities: Hysteric Tunable Photonic Gels and Their Applications Photonic band gap ( PBG ) materials have been of great interest due to their potential...applications in science and technology. Their applications can be further extended when the PBG becomes tunable against various chemical and...electrical stimuli. Recently, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG

  10. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    OpenAIRE

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2015-01-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional, about Fermi energy.

  11. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  12. A new perspective for analyzing complex band structures of phononic crystals

    Science.gov (United States)

    Meng, Lingkai; Shi, Zhifei; Cheng, Zhibao

    2018-03-01

    Rewriting the formulation of the Bloch waves, this paper presents a new perspective for analyzing the complex band structures of the in-plane waves in 2D phononic crystals. Using the proposed formulation, a new finite element based method is developed for analyzing 2D periodic systems. The results of the validation example prove that the proposed method can provide exact solutions for both the real and complex band structures of 2D periodic systems. Furthermore, using the proposed method, the complex band structures of a 2D periodic structure are calculated. The physical meanings of the obtained complex band structures are discussed by performing the wave mode analysis.

  13. Accurate prediction of band gaps and optical properties of HfO2

    International Nuclear Information System (INIS)

    Ondračka, Pavel; Zajíčková, Lenka; Holec, David; Nečas, David

    2016-01-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran–Blaha modified Becke–Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe–Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO 2 was obtained only in the latter case. (paper)

  14. Band gap engineering in finite elongated graphene nanoribbon heterojunctions: Tight-binding model

    Directory of Open Access Journals (Sweden)

    Benjamin O. Tayo

    2015-08-01

    Full Text Available A simple model based on the divide and conquer rule and tight-binding (TB approximation is employed for studying the role of finite size effect on the electronic properties of elongated graphene nanoribbon (GNR heterojunctions. In our model, the GNR heterojunction is divided into three parts: a left (L part, middle (M part, and right (R part. The left part is a GNR of width WL, the middle part is a GNR of width WM, and the right part is a GNR of width WR. We assume that the left and right parts of the GNR heterojunction interact with the middle part only. Under this approximation, the Hamiltonian of the system can be expressed as a block tridiagonal matrix. The matrix elements of the tridiagonal matrix are computed using real space nearest neighbor orthogonal TB approximation. The electronic structure of the GNR heterojunction is analyzed by computing the density of states. We demonstrate that for heterojunctions for which WL = WR, the band gap of the system can be tuned continuously by varying the length of the middle part, thus providing a new approach to band gap engineering in GNRs. Our TB results were compared with calculations employing divide and conquer rule in combination with density functional theory (DFT and were found to agree nicely.

  15. Impact of substrate on performance of band gap engineered graphene field effect transistor

    Science.gov (United States)

    Tiwari, Durgesh Laxman; Sivasankaran, K.

    2018-01-01

    In this paper, we investigate the graphene field effect transistor (G-FET) to enhance the drain current saturation and to minimize the drain conductance (gd) using numerical simulation. This work focus on suppressing the drain conductance using silicon substrate. We studied the impact of different substrate on the performance of band gap engineered G-FET device. We used a non-equilibrium green function with mode space (NEGF_MS) to model the transport behavior of carriers for 10 nm channel length G-FET device. We compared the drain current saturation of G-FET at higher drain voltage regime on silicon, SiC, and the SiO2 substrate. This paper clearly demonstrates the effect of substrate on an electric field near drain region of G-FET device. It is shown that the substrate of G-FET is not only creating a band gap in graphene, which is important for current saturation and gd minimization, but also selection of suitable substrate can suppress generation of carrier concentration near drain region is also important.

  16. Revisiting the coupled-mass system and analogy with a simple band gap structure

    International Nuclear Information System (INIS)

    Levesque, L

    2006-01-01

    A great deal of insight can be gained from the analysis of coupled masses connected to springs in order to understand better the origin of band gaps in physical systems. The approach is based on the application of the superposition principle for finding the general solution in simple mechanical systems involving functions, which vary periodically with time. Graphs show that sums of periodic functions oscillating at different frequencies lead to an exchange of energy from one oscillator to another in a simple mechanical system of three objects connected by identical springs. A system of a large number of masses connected to springs having the same spring constant K is then considered and compared with a system in which the spring constants alternate from K to another value G when connecting one mass to another. Using the results found from the mechanical systems, an analogy of charge oscillations excited on both uniform and corrugated surfaces is presented. The results obtained attempt to expand understanding of the origin of the band gap occurring in some systems involving periodic motions

  17. Calculating the optical properties of defects and surfaces in wide band gap materials

    Science.gov (United States)

    Deák, Peter

    2018-04-01

    The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.

  18. The study of response of wide band gap semiconductor detectors using the Geant4

    Directory of Open Access Journals (Sweden)

    Hussain Riaz

    2014-01-01

    Full Text Available The energy dependence on the intrinsic efficiency, absolute efficiency, full energy peak absolute efficiency and peak-to-total ratio have been studied for various wide band gap semiconductor detectors using the Geant4 based Monte Carlo simulations. The detector thickness of 1-4 mm and the area in 16-100 mm2 range were considered in this work. In excellent agreement with earlier work (Rybka et al., [20], the Geant4 simulated values of detector efficiencies have been found to decrease with incident g-ray energy. Both for the detector thickness and the detector area, the increasing trends have been observed for total efficiency as well as for full-energy peak efficiency in 0.1 MeV-50 MeV range. For Cd1-xZnxTe, the detector response remained insensitive to changes in relative proportions of Zn. For various wide band gap detectors studied in this work, the detection efficiency of TlBr was found highest over the entire range of energy, followed by the HgI2, CdTe, and then by CZT.

  19. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  20. Reflection and transmission of SH waves at a very rough interface and its band gaps

    Science.gov (United States)

    Vinh, Pham Chi; Tuan, Tran Thanh; Tung, Do Xuan; Kieu, Nguyen Thi

    2017-12-01

    This paper deals with the reflection and transmission of SH waves at a very rough interface separating two dissimilar isotropic elastic solids. The interface oscillates between two straight lines. By means of homogenization, the domain containing the very rough interface is replaced by an effective material layer whose elastic constants depend on the thickness variable. The reflection and transmission of SH waves at the very rough interface is then reduced to the ones at a FGM layer. The exact analytical formulas for the reflection and transmission coefficients have been derived. Based on them, the dependence of the reflection and transmission coefficients on the incident angle, the wave frequency, the material constants and the geometry of the rough interface are examined. Remarkably, it has been shown that a very rough interface of comb-type with the comb-tooth width varying periodically can produce band-gaps to SH waves. With this fact, many potential applications can be expected coming from very rough interfaces of comb-type with periodic comb-tooth width. It is also shown that the width and the location of band-gaps depend strongly on the contrast of rigidities of two half-spaces, the amplitude of the variation of the comb-tooth width, the incident angle of SH waves and the number of periods of comb-tooth.

  1. Composition dependence of optical band gap of the Se-Ge-Te far infrared transmitting glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guoxiang, E-mail: guoxiang_8899@163.co [Faculty of Information Science and Engineering, Ningbo University (China) and State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo 315211 (China); Nie Qiuhua; Wang Xunsi; Dai Shixun; Xu Tiefeng; Shen Xiang [Faculty of Information Science and Engineering, Ningbo University (China); State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo 315211 (China); Zhang Xianghua [Laboratoire des Verres et ceramiques, Universite de Rennes I, 35042 Rennes Cedex (France)

    2010-11-01

    A systematic series of Se{sub x}Ge{sub 25-x}Te{sub 75} (x=0, 5, 10, 15, 20 at%) far infrared transmitting glasses were prepared by traditional melt-quenching method. Physical, thermal and optical properties of the glass system were analyzed. The allowed indirect transition of samples was calculated according to the classical Tauc equation. The results show the density increases with the substitution of Ge by Se and a maximum {Tau}{sub g} value of 175 {sup o}C was obtained for the Se{sub 15}Ge{sub 10}Te{sub 75} glass. The energy band gap of Se{sub 15}Ge{sub 10}Te{sub 75} glass is 1.25 eV, possessing the largest metallization criterion value (0.25) and the lowest refractive index (3.16). When the dissolved amount of Se increased from 0 to 15 at%, the values of indirect optical band gap were in the range from 0.573 to 0.679 eV. A wide optical transparent window with a cut-off wavelength beyond 18 {mu}m was shown.

  2. Silver nanoparticles embedded titania nanotube with tunable blue light band gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei-Lin; Yang, Chung-Sung, E-mail: csyang@mail.ncyu.edu.tw

    2016-06-01

    Silver nanoparticles embedded titania nanotube (SET) have been successfully prepared by titania nanotubes and silver nanoparticles via a template-free reaction. Powder X-ray diffraction (P-XRD) spectra and Fourier transform infrared (FT-IR) spectra show that the charge of silver atoms maintains neutral in the formation of silver nanoparticles. The Ag atom of Ag nanoparticles and the oxygen atom of TiO{sub 2} possess a chemical bonding with an ionic character rather than a covalent character. The quantitative microanalysis data collected from X-ray photo-emission (XPS) spectra indicate that the ratio of Ag/Ti in SET is 15.2 ± 2.7%. The cut-off band gap of SET is adjustable from 420 nm (Ag/Ti = 12.5%) to 430 nm (Ag/Ti = 17.8%). - Highlights: • The self-assembly silver nanoparticles are embedded on titania nanotube. • The charge of silver atoms is neutral in the formation of silver nanoparticles. • The quantitative microanalysis data confirm that ratio of Ag/Ti is 15.2 ± 2.7%. • The band gap of SET locates in the desirable blue light region.

  3. Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence.

    Science.gov (United States)

    Carnevale, Santino D; Kent, Thomas F; Phillips, Patrick J; Mills, Michael J; Rajan, Siddharth; Myers, Roberto C

    2012-02-08

    Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% and back to 0% Al, we show the formation of a polarization-induced pn junction even in the absence of any impurity doping. Since electrons and holes are injected from AlN barriers into quantum disk active regions, graded nanowires allow deep ultraviolet LEDs across the AlGaN band-gap range with electroluminescence observed from 3.4 to 5 eV. Polarization-induced p-type conductivity in nanowires is shown to be possible even without supplemental acceptor doping, demonstrating the advantage of polarization engineering in nanowires compared with planar films and providing a strategy for improving conductivity in wide-band-gap semiconductors. As polarization charge is uniform within each unit cell, polarization-induced conductivity without impurity doping provides a solution to the problem of conductivity uniformity in nanowires and nanoelectronics and opens a new field of polarization engineering in nanostructures that may be applied to other polar semiconductors. © 2012 American Chemical Society

  4. Conductance modulation in Weyl semimetals with tilted energy dispersion without a band gap

    Science.gov (United States)

    Yesilyurt, Can; Siu, Zhuo Bin; Tan, Seng Ghee; Liang, Gengchiau; Jalil, Mansoor B. A.

    2017-06-01

    We investigate the tunneling conductance of Weyl semimetal with tilted energy dispersion by considering electron transmission through a p-n-p junction with one-dimensional electric and magnetic barriers. In the presence of both electric and magnetic barriers, we found that a large conductance gap can be produced with the aid of tilted energy dispersion without a band gap. The origin of this effect is the shift of the electron wave-vector at barrier boundaries caused by (i) the pseudo-magnetic field induced by electrical potential, i.e., a newly discovered feature that is only possible in the materials possessing tilted energy dispersion, (ii) the real magnetic field induced by a ferromagnetic layer deposited on the top of the system. We use a realistic barrier structure applicable in current nanotechnology and analyze the temperature dependence of the tunneling conductance. The new approach presented here may resolve a major problem of possible transistor applications in topological semimetals, i.e., the absence of normal backscattering and gapless band structure.

  5. The band structures of three-dimensional nonlinear plasma photonic crystals

    Science.gov (United States)

    Zhang, Hai-Feng

    2018-01-01

    In this paper, the properties of the photonic band gaps (PBGs) for three-dimensional (3D) nonlinear plasma photonic crystals (PPCs) are theoretically investigated by the plane wave expansion method, whose equations for calculations also are deduced. The configuration of 3D nonlinear PPCs is the Kerr nonlinear dielectric spheres (Kerr effect is considered) inserted in the plasma background with simple-cubic lattices. The inserted dielectric spheres are Kerr nonlinear dielectrics whose relative permittivities are the functions of the external light intensity. Three different Kerr nonlinear dielectrics are considered, which can be expressed as the functions of space coordinates. The influences of the parameters for the Kerr nonlinear dielectrics on the PBGs also are discussed. The calculated results demonstrate that the locations, bandwidths and number of PBGs can be manipulated with the different Kerr nonlinear dielectrics. Compared with the conventional 3D dielectric PCs and PPCs with simple-cubic lattices, the more PBGs or larger PBG can be achieved in the 3D nonlinear PPCs. Those results provide a new way to design the novel devices based on the PPCs.

  6. The band structures of three-dimensional nonlinear plasma photonic crystals

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2018-01-01

    Full Text Available In this paper, the properties of the photonic band gaps (PBGs for three-dimensional (3D nonlinear plasma photonic crystals (PPCs are theoretically investigated by the plane wave expansion method, whose equations for calculations also are deduced. The configuration of 3D nonlinear PPCs is the Kerr nonlinear dielectric spheres (Kerr effect is considered inserted in the plasma background with simple-cubic lattices. The inserted dielectric spheres are Kerr nonlinear dielectrics whose relative permittivities are the functions of the external light intensity. Three different Kerr nonlinear dielectrics are considered, which can be expressed as the functions of space coordinates. The influences of the parameters for the Kerr nonlinear dielectrics on the PBGs also are discussed. The calculated results demonstrate that the locations, bandwidths and number of PBGs can be manipulated with the different Kerr nonlinear dielectrics. Compared with the conventional 3D dielectric PCs and PPCs with simple-cubic lattices, the more PBGs or larger PBG can be achieved in the 3D nonlinear PPCs. Those results provide a new way to design the novel devices based on the PPCs.

  7. High power experimental studies of hybrid photonic band gap accelerator structures

    Directory of Open Access Journals (Sweden)

    JieXi Zhang

    2016-08-01

    Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19  MV/m, corresponding to a surface electric field of 78  MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20  MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  8. Laser-induced band-gap collapse in GaAs

    Science.gov (United States)

    Glezer, E. N.; Siegal, Y.; Huang, L.; Mazur, E.

    1995-03-01

    We present experimentally determined values of the dielectric constant of GaAs at photon energies of 2.2 and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m2. The data show that the response of the dielectric constant to the excitation is dominated by changes in the electronic band structure and not by the optical susceptibility of the excited free carriers. The behavior of the dielectric constant indicates a drop in the average bonding-antibonding splitting of GaAs following the laser-pulse excitation. This drop in the average splitting leads to a collapse of the band gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m2 and on a subpicosecond time scale at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening of the ionic potential as well as structural deformation of the lattice caused by the destabilization of the covalent bonds.

  9. Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap

    International Nuclear Information System (INIS)

    Maiberg, Matthias; Hölscher, Torsten; Zahedi-Azad, Setareh; Scheer, Roland

    2015-01-01

    In the third part of this series, we study the influence of trap states in the band gap of semiconductors on the time-resolved luminescence decay (TRL) after a pulsed excitation. The results based on simulations with Synopsys TCAD ® and analytical approximations are given for p-doped Cu(In,Ga)Se 2 as a working example. We show that a single trap can be mostly described by two parameters which are assigned to minority carrier capture and emission. We analyze their influence on the luminescence decay and study the difference between a single trap and an energetic Gaussian trap distribution. It is found that trap states artificially increase the TRL decay and obscure the recombination dynamics. Thus, there is a demand for experimental methods which can reveal the recombination of minority carriers in a TRL experiment without trapping effect. In this regard, a variation of the device temperature, the excitation frequency, the injection level, as well as a bias illumination may be promising approaches. We study these methods, discuss advantages and disadvantages, and show experimental TRL for prove of concept. At the end, we validate our approach of simulating only band-to-band radiative recombination although photoluminescence spectra often exhibit free-to-bound radiative recombination of charge carriers

  10. Engineering an Insulating Ferroelectric Superlattice with a Tunable Band Gap from Metallic Components

    Science.gov (United States)

    Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.

    2017-10-01

    The recent discovery of "polar metals" with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2 /2 superlattice made of two centrosymmetric metallic oxides, La0.75 Sr0.25 MnO3 and LaNiO3 , and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further, we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. As a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.

  11. Magneto-Optical properties of GaP single crystal

    Directory of Open Access Journals (Sweden)

    MS Omar

    2010-03-01

    Full Text Available The temperature dependence of magneto-optical and magneto-photoconductivity measurements were carried out in the range of (200-330 K. A home made optical cryostat was used for the measurements. The measured room temperature value of the energy gap was found to be 2.211 eV. The temperature coefficient of energy gap was found to be -5.48×10-4 eV/K obtained by the optical absorption method and -4.90×10-4 eV/K from the measurements of photoconductivity. The magnetic field coefficient of energy gap was found to be temperature dependent with values of 1.34×10-3 eV/Tesla at 202 K and 2.67×10-3 eV/Tesla at room temperature, when the field used was up to 2.2 Tesla. The reduced effective mass of carriers are also calculated from both techniques and found to be changing from 0.034 m0 to 0.021 m0 when magneto-optical data was used in the calculations and from 0.052 m0 to 0.032 m0 when magneto-photoconductivity data was used as the temperature changed from 220 K to 330 K respectively.

  12. Light propagation in ultra-thin gap in 3D photonic crystals

    Science.gov (United States)

    Kitano, K.; Ishizaki, K.; Gondaira, K.; Tanaka, Y.; Noda, S.

    2017-05-01

    We investigate the propagation of light in an ultra-thin gap in stacked-stripe three-dimensional (3D) photonic crystals operating in the near-infrared wavelength range. We fabricate 3D photonic crystals composed of 32 stacked layers with an artificially introduced gap (∼200 nm) in the center of the structure by using a wafer bonding method. In order to study the characteristics of the gap, we introduce oblique waveguides to connect the gap with the upper and lower sides of the photonic crystal. The observation of light output from waveguides that are distant from the waveguide used for incident light demonstrates for the first time that light propagates along the air gap and is distributed to multiple output waveguides. Moreover, we perform calculations that reveal the formation of a propagation mode resulting from introduction of the ultra-thin gap. We analyze the coupling between the propagation mode and the oblique waveguide mode and discuss the characteristics of light distribution via the gap.

  13. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  14. Forbidden energy band gap in diluted a-Ge1−xSix:N films

    International Nuclear Information System (INIS)

    Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.

    2012-01-01

    By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.

  15. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  16. Cholesteric liquid crystals with a broad light reflection band.

    Science.gov (United States)

    Mitov, Michel

    2012-12-11

    The cholesteric-liquid-crystalline structure, which concerns the organization of chromatin, collagen, chitin, or cellulose, is omnipresent in living matter. In technology, it is found in temperature and pressure sensors, supertwisted nematic liquid crystal displays, optical filters, reflective devices, or cosmetics. A cholesteric liquid crystal reflects light because of its helical structure. The reflection is selective - the bandwidth is limited to a few tens of nanometers and the reflectance is equal to at most 50% for unpolarized incident light, which is a consequence of the polarization-selectivity rule. These limits must be exceeded for innovative applications like polarizer-free reflective displays, broadband polarizers, optical data storage media, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. Novel cholesteric-liquid-crystalline architectures with the related fabrication procedures must therefore be developed. This article reviews solutions found in living matter and laboratories to broaden the bandwidth around a central reflection wavelength, do without the polarization-selectivity rule and go beyond the reflectance limit. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence

    Science.gov (United States)

    Yamada, Takumi; Aharen, Tomoko; Kanemitsu, Yoshihiko

    2018-02-01

    The determination of the band gap and exciton energies of lead halide perovskites is very important from the viewpoint of fundamental physics and photonic device applications. By using photoluminescence excitation (PLE) spectra, we reveal the optical properties of CH3NH3PbCl3 single crystals in the near-band-edge energy regime. The one-photon PLE spectrum exhibits the 1 s exciton peak at 3.11 eV. On the contrary, the two-photon PLE spectrum exhibits no peak structure. This indicates photon recycling of excitonic luminescence. By analyzing the spatial distribution of the excitons and photon recycling, we obtain 3.15 eV for the band gap energy and 41 meV for the exciton binding energy.

  18. High performance of low band gap polymer-based ambipolar transistor using single-layer graphene electrodes.

    Science.gov (United States)

    Choi, Jong Yong; Kang, Woonggi; Kang, Boseok; Cha, Wonsuk; Son, Seon Kyoung; Yoon, Youngwoon; Kim, Hyunjung; Kang, Youngjong; Ko, Min Jae; Son, Hae Jung; Cho, Kilwon; Cho, Jeong Ho; Kim, BongSoo

    2015-03-18

    Bottom-contact bottom-gate organic field-effect transistors (OFETs) are fabricated using a low band gap pDTTDPP-DT polymer as a channel material and single-layer graphene (SLG) or Au source/drain electrodes. The SLG-based ambipolar OFETs significantly outperform the Au-based ambipolar OFETs, and thermal annealing effectively improves the carrier mobilities of the pDTTDPP-DT films. The difference is attributed to the following facts: (i) the thermally annealed pDTTDPP-DT chains on the SLG assume more crystalline features with an edge-on orientation as compared to the polymer chains on the Au, (ii) the morphological features of the thermally annealed pDTTDPP-DT films on the SLG electrodes are closer to the features of those on the gate dielectric layer, and (iii) the SLG electrode provides a flatter, more hydrophobic surface that is favorable for the polymer crystallization than the Au. In addition, the preferred carrier transport in each electrode-based OFET is associated with the HOMO/LUMO alignment relative to the Fermi level of the employed electrode. All of these experimental results consistently explain why the carrier mobilities of the SLG-based OFET are more than 10 times higher than those of the Au-based OTFT. This work demonstrates the strong dependence of ambipolar carrier transport on the source/drain electrode and annealing temperature.

  19. Diversity of band gap and photoluminescence properties of lead halide perovskite: A halogen-dependent spectroscopic study

    Science.gov (United States)

    Yu, Wenlei; Jiang, Yunfeng; Zhu, Xiuwei; Luo, Chunhua; Jiang, Kai; Chen, Liangliang; Zhang, Juan

    2018-05-01

    The effects of halogen substitution on microstructure, optical absorption, and phonon modes for perovskite CH3NH3PbX3 (MAPbX3, X = I/Br/Cl) films grown on FTO substrates have been investigated. The X-ray diffraction analysis exhibited good crystallization, and the strong diffraction peak assigned to (1 0 0) c for X = Br/Cl shifted toward a higher angle compared to (1 1 0) t of MAPbI3. Band-gap tuning from 1.63 to 2.37 to 3.11 eV in the I-Br-Cl series can be found due to the halogen effects. These energy values closely match the positions of peak determined from photoluminescence experiments. The remarkable absorption dip and emission peak appear for the MAPbBr3, suggesting higher crystallinity under the same preparation conditions. The wavenumbers of main IR-vibrations slightly decrease with ionic radius of the halogen increasing (in the order of Cl-Br-I), which related to the increasing polarizability. These results provide important progress towards the understanding of the halide role in the realization of high performance MAPbX3-based solar cells.

  20. Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiannan [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China); School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Ma, Lin [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Wang, Haoying; Zhao, Yanfeng [School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Jian [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Hu, Shaozheng, E-mail: hushaozhenglnpu@163.com [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China)

    2015-03-30

    Graphical abstract: K and Na ions co-doped into g-C{sub 3}N{sub 4} crystal lattice can tune the position of CB and VB potentials, influence the structural and optical properties, and thus improve the photocatalytic degradation and mineralization ability. - Highlights: • K, Na co-doped g-C{sub 3}N{sub 4} was prepared in KCl/NaCl molten salt system. • The structural and optical properties of g-C{sub 3}N{sub 4} were greatly influenced by co-doping. • The position of VB and CB can be tuned by controlling the weight ratio of eutectic salts to melamine. • Co-doped g-C{sub 3}N{sub 4} showed outstanding photodegradation ability, mineralization ability, and catalytic stability. - Abstract: Novel band gap-tunable K–Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N{sub 2} adsorption, Scanning electron microscope (SEM), UV–vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from −1.09 and +1.55 eV to −0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K–Na co-doping.

  1. Optical properties of CuSe thin films - band gap determination

    Directory of Open Access Journals (Sweden)

    Petrović Milica

    2017-01-01

    Full Text Available Copper selenide thin films of three different thicknesses have been prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by UV-VIS-NIR spectroscopy and photoluminescence spectroscopy. Surface morphology was investigated by field-emission scanning electron microscopy. Copper selenide exhibits both direct and indirect transitions. The band gap for direct transition is found to be ~2.7 eV and that for indirect transition it is ~1.70 eV. Photoluminescence spectra of copper selenide thin films have also been analyzed, which show emission peaks at 530, 550, and 760 nm. The latter corresponds to indirect transition in investigated material. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45003

  2. Band gap engineering in BiNbO4 for visible-light photocatalysis

    International Nuclear Information System (INIS)

    Wang, B. C.; Nisar, J.; Pathak, B.; Kang, T. W.; Ahuja, R.

    2012-01-01

    We have investigated the electronic structure of anionic mono- (S, N, and C) and co-doping (N-N, C-N, S-C, and S-N) on BiNbO 4 for the visible-light photocatalysis. The maximum band gap reduction of pure BiNbO 4 is possible with the (C-S) co-doping and minimum with N mono-doping. The calculated binding energies show that the co-doped systems are more stable than their mono-doped counterparts. Our optical absorption curves indicate that the mono- (C) and co-anionic doped (N-N and C-S) BiNbO 4 systems are promising materials for visible light photocatalysis.

  3. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    Science.gov (United States)

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-01

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  4. Transmission and radiation of an accelerating mode in a photonic band-gap fiber

    Directory of Open Access Journals (Sweden)

    C.-K. Ng

    2010-12-01

    Full Text Available A hollow-core photonic band-gap (PBG lattice in a dielectric fiber has been proposed as a high-gradient low-cost particle accelerator operating in the optical regime where the accelerating mode confined to a defect in the PBG fiber can be excited by high-power lasers [X. Lin, Phys. Rev. ST Accel. Beams 4, 051301 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.051301]. Developing efficient methods of coupling laser power into these structures requires a thorough examination of the propagating mode and its near and far-field radiation. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to calculate the radiation of the propagating accelerator mode into free space at the end of the fiber. The far-field radiation will be calculated and the mechanism of coupling power from an experimental laser setup will be discussed.

  5. Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice.

    Science.gov (United States)

    Papagno, Marco; Rusponi, Stefano; Sheverdyaeva, Polina Makarovna; Vlaic, Sergio; Etzkorn, Markus; Pacilé, Daniela; Moras, Paolo; Carbone, Carlo; Brune, Harald

    2012-01-24

    We investigate the effects of Na adsorption on the electronic structure of bare and Ir cluster superlattice-covered epitaxial graphene on Ir(111) using angle-resolved photoemission spectroscopy and scanning tunneling microscopy. At Na saturation coverage, a massive charge migration from sodium atoms to graphene raises the graphene Fermi level by ~1.4 eV relative to its neutrality point. We find that Na is adsorbed on top of the graphene layer, and when coadsorbed onto an Ir cluster superlattice, it results in the opening of a large band gap of Δ(Na/Ir/G) = 740 meV, comparable to the one of Ge and with preserved high group velocity of the charge carriers. © 2011 American Chemical Society

  6. AFM investigation and optical band gap study of chemically deposited PbS thin films

    Science.gov (United States)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  7. Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering.

    Science.gov (United States)

    Yuan, Wei; Zhou, Ning; Shi, Lei; Zhang, Ke-Qin

    2015-07-01

    Because structural color is fadeless and dye-free, structurally colored materials have attracted great attention in a wide variety of research fields. In this work, we report the use of a novel structural coloration strategy applied to the fabrication of colorful colloidal fibers. The nanostructured fibers with tunable structural colors were massively produced by colloidal electrospinning. Experimental results and theoretical modeling reveal that the homogeneous and noniridescent structural colors of the electrospun fibers are caused by two phenomena: reflection due to the band gap of photonic structure and Mie scattering of the colloidal spheres. Our unprecedented findings show promise in paving way for the development of revolutionary dye-free technology for the coloration of various fibers.

  8. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  9. Low-energy electronic excitations and band-gap renormalization in CuO

    Science.gov (United States)

    Rödl, Claudia; Ruotsalainen, Kari O.; Sottile, Francesco; Honkanen, Ari-Pekka; Ablett, James M.; Rueff, Jean-Pascal; Sirotti, Fausto; Verbeni, Roberto; Al-Zein, Ali; Reining, Lucia; Huotari, Simo

    2017-05-01

    Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d -d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material.

  10. Wide-band gap devices in PV systems - opportunities and challenges

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Eni, Emanuel-Petre; Blaabjerg, Frede

    2014-01-01

    have an important role in the cost reduction. To increase the efficiency of PV systems, most of solutions for PV inverters have moved to three-level (3L) structures reaching typical efficiencies of 98% due to low switching losses of 600V Si IGBT or MOSFET and reduced core losses in the filter......The recent developments in wide band-gap devices based GaN and SiC is showing a high impact on the PV-inverter technology, which is strongly influenced by efficiency, power density and cost. Besides the high efficiency of PV inverters, also the mechanical size, the compactness and simple structure......) three-phase PV-inverter topologies in terms of efficiency, thermal loading distribution and costs. Moreover the above mentioned PV-inverters are built and tested in laboratory in order to validate the obtained results....

  11. The Narrowest Band Gap Ever Observed in Molecular Ferroelectrics: Hexane-1,6-diammonium Pentaiodobismuth(III).

    Science.gov (United States)

    Zhang, Han-Yue; Wei, Zhenhong; Li, Peng-Fei; Tang, Yuan-Yuan; Liao, Wei-Qiang; Ye, Heng-Yun; Cai, Hu; Xiong, Ren-Gen

    2018-01-08

    Narrow band gaps and excellent ferroelectricity are intrinsically paradoxical in ferroelectrics as the leakage current caused by an increase in the number of thermally excited carriers will lead to a deterioration of ferroelectricity. A new molecular ferroelectric, hexane-1,6-diammonium pentaiodobismuth (HDA-BiI 5 ), was now developed through band gap engineering of organic-inorganic hybrid materials. It features an intrinsic band gap of 1.89 eV, and thus represents the first molecular ferroelectric with a band gap of less than 2.0 eV. Simultaneously, low-temperature solution processing was successfully applied to fabricate high-quality ferroelectric thin films based on HDA-BiI 5 , for which high-precision controllable domain flips were realized. Owing to its narrow band gap and excellent ferroelectricity, HDA-BiI 5 can be considered as a milestone in the exploitation of molecular ferroelectrics, with promising applications in high-density data storage and photovoltaic conversion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    Science.gov (United States)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  13. Band gap calculations of the semiconductor BNxP1−x using modified Becke–Johnson approximation

    International Nuclear Information System (INIS)

    Benkraouda, M.; Amrane, N.

    2013-01-01

    Highlights: ► The Modified Becke–Johnson scheme gives a very accurate band gap. ► We have shown the invalidity of Vegard’s linear rule for BN x P 1−x . ► The band gap changes with alloy concentration are important in band gap engineering. - Abstract: In this work, the electronic properties of BN, BP and BN x P 1−x compounds have been investigated by means of first-principles density-functional total-energy calculation using the all-electron full potential linear augmented plane-wave method (FP-LAPW). The (FP-LAPW) method was used within the density functional theory (DFT) along with the Engel–Vosko and Becke–Johnson exchange correlation potential. The energy bands along high symmetry directions, the density of states and bowing distributions are calculated. The results have been discussed in terms of previously existing experimental and theoretical data, and comparisons with similar compounds have been made. Analysis of band structure suggests direct and pseudo-direct band gaps for both compounds.

  14. A Novel Microwave Tunable Band-Pass Filter Integrated Power Divider Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Yupeng Liu

    2015-01-01

    Full Text Available This paper proposes a novel microwave continuous adjustable band-pass filter integrated power divider based on nematic liquid crystals (LCs. The proposed power divider uses liquid crystal (LC as the dielectric material. It can realize phase shift by changing the dielectric anisotropy, when biasing the high anisotropy nematic liquid crystal. It is mainly used in microwave frequencies. It has a large number of advantages compared to conventional filter integrated power divider, such as low loss, multifunction integration, continuous adjustable, miniaturization, low processing costs, low operating voltage, high phase shift, and convenient manufacture. Therefore, it has shown great potential for application.

  15. Ultra-small (r1 year) copper oxide quantum dots with wide band gap

    Science.gov (United States)

    Talluri, Bhusankar; Prasad, Edamana; Thomas, Tiju

    2018-01-01

    Practical use of quantum dots (QDs) will rely on processes that enable (i) monodispersity, (ii) scalability, (iii) green approaches to manufacturing them. We demonstrate, a green, rapid, soft chemical, and industrial viable approach for obtaining quasi-spherical, ultra-small (size ∼2.4 ± 0.5 nm), stable (>1 yr), and monodispersed copper oxide QDs (r gap (Eg∼5.3 eV), this substantial band gap increase is currently inexplicable using Brus' equation, and is likely due to surface chemistry of these strongly confined QDs. Capping with triethanolamine (TEA) results in reduction in the average particle diameter from 9 ± 4 nm to 2.4 ± 0.5 nm and an increase of zeta potential (ξ) from +12 ± 2 mV to +31 ± 2 mV. XPS and electron diffraction studies indicate that capped copper oxide QDs which have TEA chemisorbed on its surface are expected to partly stabilize Cu (I) resulting in mixed phase in these QDs. This result is likely to inform efforts that involve achieving monodisperse microstructures and nano-structures, of oxides with a tendency for multivalency.

  16. Fabrication and cold test of photonic band gap resonators and accelerator structures

    Directory of Open Access Journals (Sweden)

    Evgenya I. Smirnova

    2005-09-01

    Full Text Available We present the detailed description of the successful design and cold test of photonic band gap (PBG resonators and traveling-wave accelerator structures. Those tests provided the essential basis for later hot test demonstration of the first PBG accelerator structure at 17.140 GHz [E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett., 95, 074801 (2005.PRLTAO0031-900710.1103/PhysRevLett.95.074801]. The advantage of PBG resonators is that they were built to support only the main, TM_{01}-like, accelerator mode while not confining the higher-order modes (HOM or wakefields. The design of the PBG resonators was based on a triangular lattice of rods, with a missing rod at the center. Following theoretical analysis, the rod radius divided by the rod spacing was held to a value of about 0.15 to avoid supporting HOM. For a single-cell test the PBG structure was fabricated in X-band (11 GHz and brazed. The mode spectrum and Q factor (Q=5 000 agreed well with theory. Excellent HOM suppression was evident from the cold test. A six-cell copper PBG accelerator traveling-wave structure with reduced long-range wakefields was designed and was built by electroforming at Ku-band (17.140 GHz. The structure was tuned by etching the rods. Cold test of the structure yielded excellent agreement with the theoretical design. Successful results of the hot test of the structure demonstrating the acceleration of the electron beam were published in E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett., 95, 074801 (2005.PRLTAO0031-900710.1103/PhysRevLett.95.074801

  17. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  18. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  19. Intermolecular covalent pi-pi bonding interaction indicated by bond distances, energy bands, and magnetism in biphenalenyl biradicaloid molecular crystal.

    Science.gov (United States)

    Huang, Jingsong; Kertesz, Miklos

    2007-02-14

    Density-functional theory (DFT) calculations were performed for energy band structure and geometry optimizations on the stepped pi-chain, the isolated molecule and (di)cations of the chain, and various related molecules of a neutral biphenalenyl biradicaloid (BPBR) organic semiconductor 2. The dependence of the geometries on crystal packing provides indirect evidence for the intermolecular covalent pi-pi bonding interaction through space between neighboring pi-stacked phenalenyl units along the chain. The two phenalenyl electrons on each molecule, occupying the singly occupied molecular orbitals (SOMOs), are participating in the intermolecular covalent pi-pi bonding making them partially localized on the phenalenyl units and less available for intramolecular delocalization. The band structure shows a relatively large bandwidth and small band gap indicative of good pi-pi overlap and delocalization between neighboring pi-stacked phenalenyl units. A new interpretation is presented for the magnetism of the stepped pi-chain of 2 using an alternating Heisenberg chain model, which is consistent with DFT total energy calculations for 2 and prevails against the previous interpretation using a Bleaney-Bowers dimer model. The obtained transfer integrals and the magnetic exchange parameters fit well into the framework of a Hubbard model. All presented analyses on molecular geometries, energy bands, and magnetism provide a coherent picture for 2 pointing toward an alternating chain with significant intermolecular through-space covalent pi-pi bonding interactions in the molecular crystal. Surprisingly, both the intermolecular transfer integrals and exchange parameters are larger than the intramolecular through-bond values indicating the effectiveness of the intermolecular overlap of the phenalenyl SOMO electrons.

  20. High-pressure band-gap engineering in lead-free Cs_2AgBiBr_6 double perovskite

    International Nuclear Information System (INIS)

    Li, Qian; Wang, Yonggang; Yang, Wenge; Pan, Weicheng; Tang, Jiang; Zou, Bo; Quan, Zewei

    2017-01-01

    Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs_2AgBiBr_6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs_2AgBiBr_6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure-property relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Propagation losses in photonic crystal waveguides: Effects of band tail absorption and waveguide dispersion

    DEFF Research Database (Denmark)

    Rigal, F.; Joanesarson, Kristoffer Bitsch; Lyasota, A.

    2017-01-01

    Propagation losses in GaAs-based photonic crystal (PhC) waveguides are evaluated near the semiconductor band-edge by measuring the finesse of corresponding Ln cavities. This approach yields simultaneously the propagation losses and the mode reflectivity at the terminations of the cavities. We...... is important for the monolithic integration of light sources with such optical elements....

  2. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    Czech Academy of Sciences Publication Activity Database

    Bludská, Jana; Jakubec, Ivo; Karamazov, S.; Horák, Jaromír; Uher, C.

    2010-01-01

    Roč. 183, č. 12 (2010), s. 2813-2817 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40320502 Keywords : intercalation * van Der Waals gap * Bi2Se3 crystals Subject RIV: CG - Electrochemistry Impact factor: 2.261, year: 2010

  3. Analysis of Hc2(θ,T) for Mg(B1-xCx)2 single crystals by using the dirty two-gap model

    International Nuclear Information System (INIS)

    Park, Min-Seok; Lee, Hyun-Sook; Kim, Jung-Dae; Kim, Heon-Jung; Jung, Myung-Hwa; Jo, Younghun; Lee, Sung-Ik

    2007-01-01

    To understand the effect of carbon doping on the superconductivity in MgB 2 , we obtained the angle- and temperature-dependent upper critical fields [H c2 (θ) and H c2 (T)] for Mg(B 1-x C x ) 2 single crystals (x = 0.06 and 0.1) from resistivity measurements while varying the temperature, the field, and the direction of the field. The detailed values of the diffusivity for two different directions for each σ-band and π-band were obtained to explain both the temperature- and the angle-dependent H c2 by using the dirty-limit two-gap model. The induced impurity scattering of the σ-band and the π-band for both the ab-plane and the c-direction is studied. (fast track communication)

  4. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2017-01-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....../sensors at functional mid-IR spectral range. The cross-sectional geometry of the MOF is formed by considering a Ch glass to form the overall background cross-section as well as the central fiber core. The core region is surrounded by periodically arranged (hexagonal pattern) smaller holes, which are assumed...

  5. A model for the direct-to-indirect band-gap transition in monolayer ...

    Indian Academy of Sciences (India)

    comprising the valence band in the energy window −7 eV to the Fermi energy as well as two bands comprising the conduction band. The ab-initio band structure is shown in black solid line while the tight-binding band structure is shown in red dashed line in the same figure. The description in this minimal tight-binding ...

  6. High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods

    Directory of Open Access Journals (Sweden)

    Brian J. Munroe

    2013-01-01

    Full Text Available An improved single-cell photonic band-gap (PBG structure with an inner row of elliptical rods (PBG-E was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz, achieving a gradient of 128  MV/m at a breakdown probability of 3.6×10^{-3} per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.

  7. Off-axis photonic bands of hexagonal plasma photonic crystal fiber containing elliptical holes with defect of high index material for nonlinear waves by PWE method

    Science.gov (United States)

    Dixit, Achyutesh; Pandey, Praveen Chandra

    2017-05-01

    A novel model of hexagonal photonic crystal fiber (PCF) composed of fluoride-doped silicate and plasma materials for estimating the off-axis band structure has been presented. The well-known plane wave expansion (PWE) method has been adopted for the analysis of band structure. We have observed the influence of intensity of field on photonic band gap (PBG) by creating different types of defect in the holes of the PCF structure for the design of waveguide and narrow-band filter. A dynamic shift in bands and photonic band gaps (PBGs) has been reported and compared with other designs. The PCF containing the defect of high index material in the presence of plasma has been found to be more suitable to control the propagation of photon for nonlinear waves. The PWE calculations have shown that the four off-axis PBGs for the different contribution of plasma holes could exceed by 1.0 normalized frequency or they could compensate within 0.24 normalized frequencies on introducing alternate distribution of high index material like SF57 in the cladding.

  8. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    DEFF Research Database (Denmark)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...

  9. Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering

    Czech Academy of Sciences Publication Activity Database

    Álvarez, M. P.; del Corro, Elena; Morales-García, A.; Kavan, Ladislav; Kalbáč, Martin; Frank, Otakar

    2015-01-01

    Roč. 15, č. 5 (2015), s. 3139-3146 ISSN 1530-6984 R&D Projects: GA ČR GA14-15357S; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Molybdenum disulfide * band gap engineering * out-of-plane compression Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.779, year: 2015

  10. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    Science.gov (United States)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  11. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    Science.gov (United States)

    Barh, A.; Varshney, R. K.; Pal, B. P.; Sanghera, J.; Shaw, L. B.

    2017-06-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters/sensors at functional mid-IR spectral range. The cross-sectional geometry of the MOF is formed by considering a Ch glass to form the overall background cross-section as well as the central fiber core. The core region is surrounded by periodically arranged (hexagonal pattern) smaller holes, which are assumed to be filled up with another Ch glass. Thermally compatible and fabrication suitable, two Ch glasses are chosen, one (higher RI) as background material and the other (of lower RI) to fill up the holes. Two sets of such pairs of thermally compatible Ch-glasses are considered as fiber structural materials with relative RI contrast of ∼12% and ∼24%. For both such low RI contrast hexagonal structures, PBG appears only for suitable finite values of longitudinal wave vector. The structures are suitable to realize band-gap at mid-IR wavelengths and specifically optimized for operation around the ∼2 μm region. Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors.

  12. New Method for the Development of Plasmonic Metal-Semiconductor Interface Layer: Polymer Composites with Reduced Energy Band Gap

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2017-01-01

    Full Text Available Silver nanoparticles within a host polymer of chitosan were synthesized by using in situ method. Ultraviolet-visible spectroscopy was then carried out for the prepared chitosan : silver triflate (CS : AgTf samples, showing a surface plasmonic resonance (SPR peak at 420 nm. To prepare polymer composites with reduced energy band gap, different amounts of alumina nanoparticles were incorporated into the CS : AgTf solution. In the present work, the results showed that the reduced silver nanoparticles and their adsorption on wide band gap alumina (Al2O3 particles are an excellent approach for the preparation of polymer composites with small optical band gaps. The optical dielectric loss parameter has been used to determine the band gap experimentally. The physics behind the optical dielectric loss were interpreted from the viewpoint of quantum mechanics. From the quantum-mechanics viewpoint, optical dielectric loss was also found to be a complex equation and required lengthy numerical computation. From the TEM investigation, the adsorption of silver nanoparticles on alumina has been observed. The optical micrograph images showed white spots (silver specks with different sizes on the surface of the films. The second semicircle in impedance Cole-Cole plots was found and attributed to the silver particles.

  13. Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations

    Science.gov (United States)

    Gao, Shiyuan; Yang, Li

    2017-10-01

    Doped free carriers can substantially renormalize electronic self-energy and quasiparticle band gaps of two-dimensional (2D) materials. However, it is still challenging to quantitatively calculate this many-electron effect, particularly at the low doping density that is most relevant to realistic experiments and devices. Here we develop a first-principles-based effective-mass model within the G W approximation and show a dramatic band-gap renormalization of a few hundred meV for typical 2D semiconductors. Moreover, we reveal the roles of different many-electron interactions: The Coulomb-hole contribution is dominant for low doping densities while the screened-exchange contribution is dominant for high doping densities. Three prototypical 2D materials are studied by this method: h -BN , Mo S2 , and black phosphorus, covering insulators to semiconductors. Especially, anisotropic black phosphorus exhibits a surprisingly large band-gap renormalization because of its smaller density-of-state that enhances the screened-exchange interactions. Our work demonstrates an efficient way to accurately calculate band-gap renormalization and provides quantitative understanding of doping-dependent many-electron physics of general 2D semiconductors.

  14. Isoreticular MOFs as Efficient Photocatalysts with Tunable Band Gap: An Operando FTIR Study of the Photoinduced Oxidation of Propylene

    NARCIS (Netherlands)

    Gascon, J.; Hernández-Alonso, M.D.; Almeida, A.R.; van Klink, G.P.M.; Kapteijn, F.; Mul, Guido

    2008-01-01

    Photo frame(work): The first spectroscopic evidence of metal-organic frameworks (MOFs) acting as photocatalysts has been obtained. Isoreticular MOFs act as efficient photocatalysts in the photooxidation of propylene. The band gap energy can be tuned by changing the organic linker. Among the MOFs

  15. Wide band gap p-type windows by CBD and SILAR methods

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch.

    2004-01-01

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na 2 S 2 O 3 . The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS 2 (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed

  16. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  17. A Solution to the Band Gap and Related Problems in Density Functional Theory (DFT).

    Science.gov (United States)

    Bagayoko, Diola

    This presentation shows that the attainment of self-consistency, with a single basis set, does not allows one to reach results that possess the physical content of density functional theory (DFT). This fact is amply illustrated in the literature where reported DFT eigenvalues appear not to correspond to actual energy levels in materials under study. Our proof includes an understanding of the second Hohenberg-Kohn (HK) theorem that requires the use of successively larger and embedded basis sets to perform completely self-consistent calculations in order to reach the absolute minima of the occupied energies, i.e., the ground state of the system. Embedding here means that, except for the first one, each basis set is obtained by augmenting the one preceding it with one orbital. We also show that arbitrarily large basis sets, by virtue of the first HK theorem, are over-complete for the description of the ground state: This fact explains the well-known underestimation of energy and band gaps by single basis set calculations for the last 50 years. The non-attainment the ground state et the over-completeness of some large basis set explain the inaccuracy of calculated, optical transition energies, effective masses, dielectric functions and of a host of other computational results. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  18. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    International Nuclear Information System (INIS)

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-01-01

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency

  19. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Directory of Open Access Journals (Sweden)

    Ali Hassan

    2018-03-01

    Full Text Available Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (∼ 6 nm to 10 nm and surface roughness rms value 3 nm for thickness ∼315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD, Energy Dispersive X-ray Spectroscopy (EDS and X-ray Photoelectron Spectroscopy (XPS have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  20. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Science.gov (United States)

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  1. Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps.

    Science.gov (United States)

    Li, Xiuling; Ma, Liang; Wang, Dayong; Zeng, Xiao Cheng; Wu, Xiaojun; Yang, Jinlong

    2016-10-20

    Extended line defects in two-dimensional (2D) materials can play an important role in modulating their electronic properties. During the experimental synthesis of 2D materials, line defects are commonly generated at grain boundaries between domains of different orientations. In this work, twelve types of line-defect structures in single crystalline phosphorene are examined by using first-principles calculations. These line defects are typically formed via migration and aggregation of intrinsic point defects, including the Stone-Wales (SW), single or double vacancy (SV or DV) defects. Our calculated results demonstrate that the migration of point defects in phosphorene is anisotropic, for instance, the lowest migration energy barriers are 1.39 (or 0.40) and 2.58 (or 0.49) eV for SW (or SV) defects in zigzag and armchair directions, respectively. The aggregation of point defects into lines is energetically favorable compared with the separated point defects in phosphorene. In particular, the axis of line defects in phosphorene is direction-selective, depending on the composed point defects. The presence of line defects effectively modulates the electronic properties of phosphorene, rendering the defect-containing phosphorene either metallic or semiconducting with a tunable band gap. Of particular interest is the fact that the SV-based line defect can behave as a metallic wire, suggesting a possibility to fabricate a circuit with subnanometer widths in the semiconducting phosphorene for nanoscale electronic application.

  2. Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides

    Science.gov (United States)

    Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf

    2018-02-01

    While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.

  3. Band gap and polarizability of boro-tellurite glass: Influence of erbium ions

    Science.gov (United States)

    Said Mahraz, Zahra Ashur; Sahar, M. R.; Ghoshal, S. K.

    2014-08-01

    Understanding the influence of rare earth ions in improving the structural and optical properties of inorganic glasses are the key issues. Er3+-doped zinc boro-tellurite glasses with composition 30B2O3-10ZnO-(60-x) TeO2-xEr2O3 are prepared (x = 0, 0.5, 1, 1.5 and 2 mol%) using melt quenching technique. The physical and optical characterizations are measured by density and UV-Vis-IR absorption spectroscopy. The color of the glass changed from light yellow to deep pink due to the introduction of Er3+ ions. The maximum density is found to be ∼4.73 g cm-3 for 1 mol% of Er3+ doping. The variations in the polarizability (6.7-6.8 cm3) and the molar volume (27.987-28.827 cm3 mol-1) with dopant concentration are ascribed to the formation of non-bridging oxygen. This observation is consistent with the alteration of number of bonds per unit volume. The direct and indirect optical band gaps are increased while the phonon cut-off wavelength and Urbach energy decreased with the increase of erbium content. A high density and wide transparency range in VIS-IR area are achieved. Our results on high refractive index (∼2.416) and polarizability suggest that these glasses are potential for photonics, solid state lasers and communications devices.

  4. Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

    CERN Multimedia

    Recknagel, E; Quintel, H

    2002-01-01

    % IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...

  5. Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring

    Science.gov (United States)

    Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie

    2014-05-01

    A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur

  6. Dispersive and resonant properties of finite one-dimensional photonic band gap structures

    Science.gov (United States)

    Bowden, C. M.; Scalora, Michael; Bloemer, Mark J.; Sibilia, Concita; D'Aguanno, Giuseppe; Centini, Marco; Bertolotti, Mario

    2000-06-01

    The report is a review of work one-dimensional photonic band gap (PBG) materials, carried out by the Quantum Optics Group at the US Army Aviation and Missile Command during the past few years. This work has benefited from national and international collaborations between academic, industrial, and governmental research organizations. The research effort has benefited from a multifaceted approach that combined innovative, theoretical methods with fabrication techniques in order to address the physics of structures of finite length, i.e., the description of spatio-temporal linear and nonlinear dynamics and boundary conditions. In this work we will review what we consider three major breakthroughs: (a) the discovery of transparent metals; (b) discovery of critical phase matching conditions in PBG structures for second harmonic and nonlinear frequency conversion; (c) development of a PBG true time delay device. Our report addresses linear and nonlinear wave propagation in PBG materials, one-dimensional structures in particular. Most investigators generally address two and three-dimensional structures. We choose one-dimensional systems because in the past they have proven to be quite challenging and have pointed the way to the new physical phenomena that are the subject of this report. In addition, one-dimensional systems can be used as a blueprint for higher dimensional structures, where the work is necessarily much more computationally intensive, and the physics much less transparent as a result.

  7. Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Larsen-Olsen, Thue Trofod; Andreasen, Birgitta

    2011-01-01

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b′)dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5′-diyl] (P1), poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2......,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C61-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate....... This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each...

  8. Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sumithra, S., E-mail: ssmithra@gmail.com; Victor Jaya, N.

    2016-07-15

    The effect of Co doping on structural, optical and magnetic behavior of pure and Co doped Zinc stannate (ZTO) nanostructures was investigated. Pure and Co (1%, 3% & 5%) doped Zn{sub 2}SnO{sub 4} compounds were prepared through simple precipitation route. Formation of cubic inverse spinel structure and metal oxide vibrations of the samples were investigated using XRD and FTIR. Co doping influences the crystallite size producing micro strain in ZTO lattice. Poly dispersed rod like shape of the particles was examined by FESEM. Elemental composition of prepared samples was identified by EDAX analysis. Optical Absorption spectra shows significant red shift on increasing the dopant concentration which indicates the reduction in optical band gap. Visible luminescence observed from photoluminescence studies confirms the presence of oxygen vacancies and trap sites in the lattice. Magnetization analysis reveals the enhanced ferromagnetic behavior in all Co doped ZTO samples. The amplified ferromagnetic ordering in Co doped ZTO compounds has been explained in terms of defects serving as free spin polarized prophetic carriers.

  9. Towards double-functionalized small diamondoids: selective electronic band-gap tuning

    International Nuclear Information System (INIS)

    Adhikari, Bibek; Fyta, Maria

    2015-01-01

    Diamondoids are nanoscale diamond-like cage structures with hydrogen terminations, which can occur in various sizes and with a diverse type of modifications. In this work, we focus on the structural alterations and the effect of doping and functionalization on the electronic properties of diamondoids, from the smallest adamantane to heptamantane. The results are based on quantum mechanical calculations. We perform a self-consistent study, starting with doping the smallest diamondoid, adamantane. Boron, nitrogen, silicon, oxygen, and phosphorus are chosen as dopants at sites which have been previously optimized and are also consistent with the literature. At a next step, an amine- and a thiol- group are separately used to functionalize the adamantane molecule. We mainly focus on a double functionalization of diamondoids up to heptamantane using both these atomic groups. The effect of isomeration in the case of tetramantane is also studied. We discuss the higher efficiency of a double-functionalization compared to doping or a single-functionalization of diamondoids in tuning the electronic properties, such as the electronic band-gap, of modified small diamondoids in view of their novel nanotechnological applications. (paper)

  10. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    Science.gov (United States)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  11. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    Science.gov (United States)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  12. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  13. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Posilović, K. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstrasse 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2014-10-20

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  14. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    International Nuclear Information System (INIS)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.

    2014-01-01

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm −2  sr −1 are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  15. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects...Approved for public release; distribution is unlimited. i Approved for public release; distribution is unlimited. Table of Contents 1.0 Summary

  16. A crystal plasticity model of a formation of a deformation band structure

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin

    2015-01-01

    Roč. 95, č. 32 (2015), s. 3621-3639 ISSN 1478-6435 Grant - others:GA ČR(CZ) GAP107/12/0121 Institutional support: RVO:67985556 Keywords : deformation substructure * rigid-plastic crystal plasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.632, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/kruzik- 0456300.pdf

  17. Elastic Properties and the Band Gap of AlNxP1-x Semiconductor Alloy: A Comparative Study of Various Ab Initio Approaches

    Directory of Open Access Journals (Sweden)

    M. P. Polak

    2016-01-01

    Full Text Available Structural and elastic properties of AlNxP1-x, a novel semiconductor alloy, are studied from the first principles in both zinc-blende and wurtzite structures. Performances of the finite difference (FD method and the density functional perturbation theory (DFPT are tested and compared. Both of these methods are applied to two different approaches of alloy simulation, a supercell of 16 and 32 atoms (for zinc-blende and wurtzite structures, resp. and the alchemical mixing (AM method, where the pseudopotentials are mixed in an appropriate way to form an alloy. All elastic properties, including the elastic tensors, elastic moduli, Poisson’s ratio, B/G, and relaxation coefficient, as well as lattice parameters are calculated using all said methods. Conclusions about the use of the approaches investigated in this paper and about their performance are drawn. In addition, in both crystal structures, the band gap is studied in the whole composition range using the MBJLDA functional. The band gap bowings are unusually high, which confirms earlier reports.

  18. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense.

    Science.gov (United States)

    Tao, Shu Xia; Cao, Xi; Bobbert, Peter A

    2017-10-30

    The outstanding optoelectronics and photovoltaic properties of metal halide perovskites, including high carrier motilities, low carrier recombination rates, and the tunable spectral absorption range are attributed to the unique electronic properties of these materials. While DFT provides reliable structures and stabilities of perovskites, it performs poorly in electronic structure prediction. The relativistic GW approximation has been demonstrated to be able to capture electronic structure accurately, but at an extremely high computational cost. Here we report efficient and accurate band gap calculations of halide metal perovskites by using the approximate quasiparticle DFT-1/2 method. Using AMX 3 (A = CH 3 NH 3 , CH 2 NHCH 2 , Cs; M = Pb, Sn, X = I, Br, Cl) as demonstration, the influence of the crystal structure (cubic, tetragonal or orthorhombic), variation of ions (different A, M and X) and relativistic effects on the electronic structure are systematically studied and compared with experimental results. Our results show that the DFT-1/2 method yields accurate band gaps with the precision of the GW method with no more computational cost than standard DFT. This opens the possibility of accurate electronic structure prediction of sophisticated halide perovskite structures and new materials design for lead-free materials.

  19. Simple vertex correction improves G W band energies of bulk and two-dimensional crystals

    Science.gov (United States)

    Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.

    2017-11-01

    The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.

  20. Hole geometry effect on stop-band characteristics of photonic crystal in Ti-diffused LiNbO{sub 3} waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quan-Zhou [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); School of Physics and Electronic Engineering, University of Shanxi Datong, Datong 037009 (China); Zhang, Zi-Bo [University of Toulouse 3, Faculty of Engineering, 118 Route de Narbonne, F-31062 Toulouse (France); Xu, Jia-Qi [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Wong, Wing-Han, E-mail: eewhwong@cityu.edu.hk [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Yu, Dao-Yin [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Pun, Edwin Yue-Bun [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); and others

    2017-01-15

    Effects of finite hole depth and non-cylindrical hole shape on stop-band characteristics of photonic crystal formed by air-hole square lattice in Ti-diffused LiNbO{sub 3} strip waveguide were studied theoretically. The study shows that hole depth determines the contrast of stop-band, and the hole radius and conical angle determine the bandgap and location. Cylindrical holes must be sufficiently deep so as to overlap most of waveguide mode and hence obtain a stop-band with high contrast, sharp edge and broad bandgap. Non-cylindrical holes seriously affect the stop-band features. Conical holes cause low contrast and narrow bandgap, and the stop-band shifts with the conical angle. For the cylindrical-conical hybrid holes, the cylindrical portion determines the desired features. Given the difficulty in fabricating high aspect-ratio cylindrical holes, we propose to fabricate the holes at the bottom of a shallow trench, which is introduced into waveguide surface prior to the hole milling. - Highlights: • Cylindrical hole must be deep enough and a shallow waveguide is required. • Increasing hole radius causes blueshift, broadening and edge sharpening of band. • Non-cylindrical hole seriously affects gap, location and contrast of stop-band. • For cylindrical-conical hybrid hole, cylindrical part determines desired features. • A scheme of milling holes at bottom of a trench on waveguide surface is proposed.

  1. Oversized 250 GHz Traveling Wave Tube with a Photonic Band-Gap Structure

    Science.gov (United States)

    Rosenzweig, Guy; Shapiro, Michael A.; Temkin, Richard J.

    2017-10-01

    The challenge in manufacturing traveling wave tubes (TWTs) at high frequencies is that the sizes of the structures scale with, and are much smaller than, the wavelength. We have designed and are building a 250 GHz TWT that uses an oversized structure to overcome fabrication and power handling issues that result from the small dimensions. Using a photonic band-gap (PBG) structure, we succeeded to design the TWT with a beam tunnel diameter of 0.72 mm. The circuit consists of metal plates with the beam tunnel drilled down their center. Twelve posts are protruding on one side of each plate in a triangular array and corresponding sockets are drilled on the other side. The posts of each plate are inserted into the sockets of an adjacent plate, forming a PBG lattice. The vacuum spacing between adjacent plates forms the `PBG cavity''. The full structure is a series of PBG coupled cavities, with microwave power coupling through the beam tunnel. The PBG lattice provides confinement of microwave power in each of the cavities and can be tuned to give the right amount of diffraction per cavity so that no sever is needed to suppress oscillations in the operating mode. CST PIC simulations predict over 38 dB gain with 67 W peak power, using a 30 kV, 310 mA electron beam, 0.6 mm in diameter. Research supported by the AFOSR Program on Plasma and Electro-Energetic Physics and by the NIH National Institute of Biomedical Imaging and Bioengineering.

  2. Nickel(II-oxaloyldihydrazone complexes: Characterization, indirect band gap energy and antimicrobial evaluation

    Directory of Open Access Journals (Sweden)

    Ayman H. Ahmed

    2016-12-01

    Full Text Available A series of oxaloyldihydrazone ligands was prepared essentially by the usual condensation reaction between oxaloyldihydrazide and different aldehydes e.g. salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxyacetophenone and 2-methoxy-benzaldehyde in 1:2 M ratio. The formed compounds were purified to give bis(salicylaldehydeoxaloyldihydrazone (L1, bis(2-hydroxy-1-naphthaldehydeoxaloyldihydrazone (L2, bis(2-hydroxyacetophenoneoxaloyldihydrazone(L3 and bis(2-methoxy-benzaldehydeoxaloyldihydrazone (L4. All the oxaloyldihydrazones (L1–L4 and their relevant solid nickel(II complexes have been prepared and structurally characterized on the basis of the elemental analyses, spectral (UV–vis, IR, mass and 1H NMR, magnetism and thermal (TG measurements. The dihydrazones coordinate to the metal center forming mononuclear complexes with L1, L3 and L4 in addition to binuclear complex with L2. The metal center prefers tetrahedral stereochemistry upon chelation. The optical indirect band gap energy for all compounds underlies the range of semiconductor materials. The prepared ligands and their metal complexes have been assayed for their antimicrobial activity against fungi as well as Gram-positive and Gram-negative bacteria. The resulting data indicate the ability of the investigated compounds to inhibit the growth of some micro-organisms, where L2 showed the highest activity among all the compounds. Minimum inhibitory concentration (MIC of L2 against the growth of five micro-organisms was determined which gives better response against Aspergillus fumigatus and Bacillis subtilis compared with some selected standard drugs.

  3. Effects of High-Pressure High-Temperature Sintering on the Band Gap and Thermoelectric Properties of PbSe

    Science.gov (United States)

    Chen, Bo; Li, Yi; Sun, Zhen-Ya

    2017-11-01

    In this study, PbSe bulk samples were prepared by a high-pressure high-temperature (HPHT) sintering technique, and the phase compositions, band gaps and thermoelectric properties of the samples were systematically investigated. The sintering pressure exerts a significant influence on the preferential orientation, band gap and thermoelectric properties of PbSe. With increasing pressure, the preferential orientation decreases, mainly due to the decreased crystallinity, while the band gap first decreases and then increases. The electrical conductivity and power factor decrease gradually with increasing pressure, mainly attributed to the decreased carrier concentration and mobility. Consequently, the sample prepared by 2 GPa shows the highest thermoelectric figure-of-merit, ZT, of 0.55 at ˜ 475 K. The ZT of the HPHT-sintered PbSe could be further improved by properly doping or optimizing the HPHT parameters. This study further demonstrates that the sintering pressure could be another degree of freedom to manipulate the band structure and thermoelectric properties of materials.

  4. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  5. Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids

    DEFF Research Database (Denmark)

    Pu, Shengli; Wang, Haotian; Wang, Ning

    2013-01-01

    and the light speed in vacuum, respectively). Simultaneously, the normalized delay-bandwidth product is relatively large compared with other works. Reconfiguring the photonic crystal waveguide with magnetic fluids of different concentrations can remarkably tune the slow light parameters and the trade......A kind of two-dimensional photonic crystal line-defect waveguide with 45 -rotated square lattice is proposed to present slow light phenomena. Infiltrating the photonic crystal waveguide with appropriate magnetic fluids can generate very wide flat bands of guided modes, which give rise...... to the excellent slow light properties. The bandwidth centered at λ0=1550 nm of the designed W1 waveguide is considerably large (around 54 nm). The obtained group velocity dispersion β2 within the bandwidth is ultralow (varying from -2118a/2πc2 to 1845a/2πc2, where a and c are the period of the lattice...

  6. A CO monolayer: first-principles design of a new direct band-gap semiconductor with excellent mechanical properties.

    Science.gov (United States)

    Teng, Zi-Wei; Liu, Chun-Sheng; Yan, Xiao-Hong

    2017-05-04

    Group V monolayers, e.g., nitrogene, phosphorene, arsenene, and antimonene have recently emerged as attractive candidates for electronic and optoelectronic applications. However, these pristine monolayers are not able to possess direct band gaps suitable for ultraviolet-blue photoresponse. First-principles calculations show that the Pmma-CO monolayer has a direct band gap of 2.4 eV, and predict that the system has a good stability. Unlike an easy direct-indirect gap transition under small strains in phosphorene, the direct band gap feature of Pmma-CO is maintained under a strain up to 12%. Surprisingly, Pmma-CO shows excellent mechanical stability with an anisotropic in-plane stiffness up to 475.7 N m -1 along the b direction, which is higher than that of graphene. The in-plane hole carrier mobility is predicted to be 746.42 cm 2 V -1 s -1 , similar to that of black phosphorene. When synthesized, the Pmma-CO monolayer may have great potential in the design of new ultraviolet/blue optoelectronic devices.

  7. Dielectric band structure of crystals: General properties, and calculations for silicon

    International Nuclear Information System (INIS)

    Car, R.; Baroni, S.; Tosatti, E.; Leelaprute, S.

    1981-02-01

    We shift the dielectric band structure method, orginially proposed by Baldereschi and Tosatti for the description of microscopic electronic screening in crystals. Some general properties are examined first, including the requirements of causality and stability. The specific test case of silicon is then considered. Dielectric bands are calculated, according to several different prescriptions for the construction of the dielectric matrix. It is shown that the results allow a very direct appraisal of the screening properties of the system, as well as of the quality of the dielectric model adopted. The electronic charge displacement induced by γsub(25') and X 3 phonon-like displacements of the atoms is also calculated and compared with the results of existent full self-consistent calculations. Conclusions are drawn on the relative accuracies of the dielectric band structures. (author)

  8. Modeling energy band gap of doped TiO2 semiconductor using homogeneously hybridized support vector regression with gravitational search algorithm hyper-parameter optimization

    Science.gov (United States)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Aldhafferi, Nahier; Alqahtani, Abdullah

    2017-11-01

    Titanium dioxide (TiO2) semiconductor is characterized with a wide band gap and attracts a significant attention for several applications that include solar cell carrier transportation and photo-catalysis. The tunable band gap of this semiconductor coupled with low cost, chemical stability and non-toxicity make it indispensable for these applications. Structural distortion always accompany TiO2 band gap tuning through doping and this present work utilizes the resulting structural lattice distortion to estimate band gap of doped TiO2 using support vector regression (SVR) coupled with novel gravitational search algorithm (GSA) for hyper-parameters optimization. In order to fully capture the non-linear relationship between lattice distortion and band gap, two SVR models were homogeneously hybridized and were subsequently optimized using GSA. GSA-HSVR (hybridized SVR) performs better than GSA-SVR model with performance improvement of 57.2% on the basis of root means square error reduction of the testing dataset. Effect of Co doping and Nitrogen-Iodine co-doping on band gap of TiO2 semiconductor was modeled and simulated. The obtained band gap estimates show excellent agreement with the values reported from the experiment. By implementing the models, band gap of doped TiO2 can be estimated with high level of precision and absorption ability of the semiconductor can be extended to visible region of the spectrum for improved properties and efficiency.

  9. BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2007-01-01

    The propagation of waves in periodic systems with alternating properties has been of great interest to engineers and physicists. They exhibit unique dynamic characteristics that enable them to act as filters. Waves can propagate within specific bands of frequencies called pass bands, and attenuate...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...... attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...

  10. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam.

    Science.gov (United States)

    Sorokin, Vladislav S; Thomsen, Jon Juel

    2016-02-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation.

  11. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  12. Determination of the band gap of indium-rich InGaN by means of photoacoustic spectroscopy

    Science.gov (United States)

    Oliva, Robert; Zelewski, Szymon J.; Janicki, Łukasz; Gwóźdź, Katarzyna R.; Serafińczuk, Jarosław; Rudziński, Mariusz; Özbay, Ekmel; Kudrawiec, Robert

    2018-03-01

    Photoacoustic (PA) measurements have been performed on a series of In x Ga1‑x N thin films grown with x > 50%. In order to illustrate the usefulness of this technique, these measurements have been compared with the results obtained by the following conventional techniques: photoluminescence, transmittance and contactless electroreflectance. Amongst all these techniques, only PA spectroscopy exhibited signal without the undesired Fabry–Perot interferences arising from the thin film and buffer layer. By accurately assessing the strain state and composition of our samples, we were able to study the compositional dependence of the band gap of our epilayers. Our results show that a bowing parameter of 1.43 eV successfully describes the compositional dependence of the band gap of InGaN.

  13. Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals

    Science.gov (United States)

    Ye, Lihua; Wang, Yan; Feng, Yangyang; Liu, Bo; Gu, Bing; Cui, Yiping; Lu, Yanqing

    2018-03-01

    By changing the doping concentration of the chiral agent to adjust the relative position of the reflection band of cholesteric liquid crystals and the fluorescence emission spectrum of the dye, photonic band-edge and random lasing were observed, respectively. The reflection band of the cholesteric phase liquid crystal can also be controlled by adjusting the temperature: the reflection band is blue-shifted with increasing temperature, and a reversible switch from photonic band-edge to random lasing is obtained. Furthermore, the laser line width can be thermally adjusted from 1.1 nm (at 27 °C) to 4.6 nm (at 32.1 °C). A thermally tunable polarization state of a random laser from dual cells was observed, broadening the field of application liquid crystal random lasers.

  14. Photodoping and enhanced visible light absorption in single-walled carbon nanotubes functionalized with a wide band gap oligomer.

    Science.gov (United States)

    Bunes, Benjamin R; Xu, Miao; Zhang, Yaqiong; Gross, Dustin E; Saha, Avishek; Jacobs, Daniel L; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling

    2015-01-07

    Carbon nanotubes feature excellent electronic properties but narrow absorption bands limit their utility in certain optoelectronic devices, including photovoltaic cells. Here, the addition of a wide-bandgap gap oligomer enhances light absorption in the visible spectrum. Furthermore, the oligomer interacts with the carbon nanotube through a peculiar charge transfer, which provides insight into Type II heterojunctions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole)

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    for the device ITO/PEDOT/1:PCBM (1:2)/Al with an active area of 3 cm(2). The efficiency of the device was 0.62%. This is a high efficiency for a low band gap polymer in a large-area organic solar cell and thus polymer I is a very promising material for organic solar cells. The devices based on 2 were found...

  16. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  17. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages

    Directory of Open Access Journals (Sweden)

    Shuwang Yi

    2018-01-01

    Full Text Available Two large band-gap polymers (PTPACF and PTPA2CF based on polytriphenylamine derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and electrochemical properties were characterized in detail. From the UV-visible absorption spectra, the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic voltammetry (CV measurement displayed the deep highest occupied molecular orbital (HOMO energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities, determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1 for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs were tested under the conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs showed the high open circuit voltages (Vocs with the values approaching 1 V. The PTPACF and PTPA2CF based PSCs gave the power conversion efficiencies (PCEs of 3.24% and 2.40%, respectively. Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors with high Vocs through the feasible side-chain modification.

  18. Interplay between six wave mixing photonic band gap signal and second-order nonlinear signal in electromagnetically induced grating.

    Science.gov (United States)

    Wang, Zhiguo; Gao, Mengqin; Ullah, Zakir; Zhang, Dan; Chen, Haixia; Gao, Hong; Zhang, Yanpeng

    2015-09-21

    For the first time, we experimentally and theoretically research about the second-order nonlinear signal (SNS) including electromagnetically induced absorbing (EIA) and electromagnetically induced gain (EIG), six wave mixing band gap signal (SWM BGS) resulting from photonic band gap structure in an inverted Y-type four level system with the electromagnetically induced grating. The interplay between the SNS and SWM BGS is illustrated clearly for the first time. When we change the frequency detuning to make the SWM BGS and SNS overlap, the SWM BGS is suppressed and the intensity of SNS is strongest near the resonance point. We can control the intensity of the SWM BGS and EIG caused by the classic effect through changing the power of coupling field. And the changes on the EIA generated by the quantum effect are obtained by changing the power of dressing field. Since the SWM BGS is the enhancement of the four wave mixing band gap signal (FWM BGS), when we set FWM BGS as the input and SNS as the modulation role to control the amplification amplitude for the FWM BGS in our scheme, the adjustable optical amplifier can be obtained.

  19. Structural, optical and electrical properties of tin oxide thin films for application as a wide band gap semiconductor

    Science.gov (United States)

    Sethi, Riti; Ahmad, Shabir; Aziz, Anver; Siddiqui, Azher Majid

    2015-08-01

    Tin oxide (SnO) thin films were synthesized using thermal evaporation technique. Ultra pure metallic tin was deposited on glass substrates using thermal evaporator under high vacuum. The thickness of the tin deposited films was kept at 100nm. Subsequently, the as-deposited tin films were annealed under oxygen environment for a period of 3hrs to obtain tin oxide films. To analyse the suitability of the synthesized tin oxide films as a wide band gap semiconductor, various properties were studied. Structural parameters were studied using XRD and SEM-EDX. The optical properties were studied using UV-Vis Spectrophotometry and the electrical parameters were calculated using the Hall-setup. XRD and SEM confirmed the formation of SnO phase. Uniform texture of the film can be seen through the SEM images. Presence of traces of unoxidised Sn has also been confirmed through the XRD spectra. The band gap calculated was around 3.6eV and the optical transparency around 50%. The higher value of band gap and lower value of optical transparency can be attributed to the presence of unoxidised Sn. The values of resistivity and mobility as measured by the Hall setup were 78Ωcm and 2.92cm2/Vs respectively. The reasonable optical and electrical parameters make SnO a suitable candidate for optoelectronic and electronic device applications.

  20. Structural, optical and electrical properties of tin oxide thin films for application as a wide band gap semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Ahmad, Shabir; Aziz, Anver; Siddiqui, Azher Majid, E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2015-08-28

    Tin oxide (SnO) thin films were synthesized using thermal evaporation technique. Ultra pure metallic tin was deposited on glass substrates using thermal evaporator under high vacuum. The thickness of the tin deposited films was kept at 100nm. Subsequently, the as-deposited tin films were annealed under oxygen environment for a period of 3hrs to obtain tin oxide films. To analyse the suitability of the synthesized tin oxide films as a wide band gap semiconductor, various properties were studied. Structural parameters were studied using XRD and SEM-EDX. The optical properties were studied using UV-Vis Spectrophotometry and the electrical parameters were calculated using the Hall-setup. XRD and SEM confirmed the formation of SnO phase. Uniform texture of the film can be seen through the SEM images. Presence of traces of unoxidised Sn has also been confirmed through the XRD spectra. The band gap calculated was around 3.6eV and the optical transparency around 50%. The higher value of band gap and lower value of optical transparency can be attributed to the presence of unoxidised Sn. The values of resistivity and mobility as measured by the Hall setup were 78Ωcm and 2.92cm{sup 2}/Vs respectively. The reasonable optical and electrical parameters make SnO a suitable candidate for optoelectronic and electronic device applications.