WorldWideScience

Sample records for band electronic structure

  1. Electronic band structure

    International Nuclear Information System (INIS)

    Grosso, G.

    1986-01-01

    The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work

  2. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...

  3. Electronic band structures of binary skutterudites

    International Nuclear Information System (INIS)

    Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar

    2015-01-01

    The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures

  4. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  5. Electronic Band Structure of Helical Polyisocyanides.

    Science.gov (United States)

    Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E

    2017-10-19

    Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.

  6. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  7. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  8. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  9. Electronic band structure of lithium, sodium and potassium fluorides

    International Nuclear Information System (INIS)

    Jouanin, C.; Albert, J.P.; Gout, C.

    1975-01-01

    A mixed tight-binding, pseudopotential method is proposed to calculate the energy band structure of large-gap crystals and is tested here on LiF, NaF and KF. Three-centre terms are included in the determination of the valence bands by the tight-binding method and for the conduction bands we use a pseudopotential model proposed by Bassani and Giuliano, modified for the positive ions. By taking into account the polarization corrections, transitions calculated from the energy band structures are compared with experimental data and the agreement is generally good

  10. Rietveld analysis and electronic bands structure on Tc superconductors systems

    International Nuclear Information System (INIS)

    Aldea, N.; Tiusan, C. V.; Sandu, V.

    1999-01-01

    A procedure for simultaneous refinement of structural and micro-structural disorder parameters for polycrystalline YBa 2 Cu 3 O 7-x system is proposed. It is based on Rietveld method combined with Fourier analysis for broadened peaks Another purpose of this paper consists in electronic structure determination studied by using the self-consistent Tight Binding Linear Muffin-Tin Orbital Atomic Spheres Approximation TB-LMTO-ASA methods. The Rietveld method uses an analytical function that describes the profiles, usually pseudo-Voigt (pV) or Pearson VII (PVII). The parameters of the analytical profiles describe its amplitude, position and peak shape. The full width at half maximum (FWHM) is supposed to vary with the diffraction angle in agreement with the Caglioti, Paoletti and Ricci's relationship. The best structural parameters are determined in the least squares sense by the minimisation a classical residual using the Marquardt method. In this case, the peak profiles were modelled by the pseudo-Voigt function corrected by the instrumental asymmetry. The physical information obtained are: scale factor, lattice parameters, atomic position and displacements, atomic occupation numbers, temperature factor (isotropy or anisotropy), preferred orientation parameter, crystalline size and micro-strain along different crystallographic directions, distributions of crystallite size and micro-strain functions. This procedure was implemented on computer code and it has a friendly graphical interface based on pull down menus technique. From the experimental point of view the X-ray diffraction data were collected using a horizontal powder diffractometer in the Bragg-Brentano (BB) geometry with a Ni filtered CuKα, λ = 1.54178 A, at room temperature using a DRON 2 set-up. The diffraction profiles were measured with a proportional gas detector, a single channel pulse-height discrimination and a standard associated counting circuit. The electronic band calculations are based on the TB

  11. Electronic band structure in porous silicon studied by photoluminescence and photoluminescence excitation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Kim, Young-You

    2004-01-01

    In this research, we used photoluminescence (PL) and photoluminescence excitation (PLE) to visualize the electronic band structure in porous silicon (PS). From the combined results of the PLE measurements at various PL emission energies and the PL measurements under excitation at various PLE absorption energies, we infer that three different electronic band structures, originating from different luminescent origins, give rise to the PL spectrum. Through either thermal activation or diffusive transfer, excited carriers are moved to each of the electronic band structures.

  12. Ab-initio electronic band structure calculations for beryllium chalcogenides

    International Nuclear Information System (INIS)

    Kalpana, G.; Pari, G.; Yousuf, Mohammad

    1997-01-01

    The first principle tight-binding linear muffin-tin orbital method within the local density approximation (LDA) has been used to calculate the ground state properties, structural phase transition and pressure dependence of band gap of BeS, BeSe and BeTe. We have calculated the energy-volume relations for these compounds in the B3 and B8 phases. The calculated lattice parameters, bulk modulus and the pressure-volume relation were found to be in good agreement with the recent experimental results. The calculated B3→B8 structural transition pressure for BeS, BeSe and BeTe agree well with the recent experimental results. Our calculations show that these compounds are indirect band gap (Γ-X) semiconductors at ambient conditions. The calculated band gap values are found to be underestimated by 20-30% which is due to the usage of LDA. After the structural transition to the B8 phase, BeS continues to be indirect band gap semiconductors and ultimately above 100 GPa it metallises, BeSe and BeTe are metallic at the B3→B8 structural transition. (author)

  13. Band structure of an electron in a kind of periodic potentials with singularities

    Science.gov (United States)

    Hai, Kuo; Yu, Ning; Jia, Jiangping

    2018-06-01

    Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.

  14. Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7

    Science.gov (United States)

    Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.

    1997-02-01

    The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.

  15. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  16. Determination of conduction and valence band electronic structure ...

    Indian Academy of Sciences (India)

    shifts in the rutile Ti d-band to lower energy with respect to anatase, i.e., ... requires excitation with UV light due to its wide band ... RIXS maps were compared to the theoretical results .... optical methods are insufficient, such as dark samples.

  17. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  18. Effect of pressure on the structural properties and electronic band structure of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, U.; Olguin, D.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Cantarero, A. [Department of Materials Sciences, University of Valencia, 46000 Burjasot (Spain); Hanfland, M. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2007-01-15

    The structural properties of GaSe have been investigated up to 38 GPa by monochromatic X-ray diffraction. The onset of the phase transition from the {epsilon}-GaSe to a disordered NaCl-type structural motif is observed near 21 GPa. Using the experimentally determined lattice parameters of the layered {epsilon}-phase as input, constrained ab-initio total energy calculations were performed in order to optimize the internal structural parameters at different pressures. The results obtained for the nearest-neighbor Ga-Se distance agree with those derived from recent EXAFS measurements. In addition, information is obtained on the changes of Ga-Ga and Se-Se bond lengths which were not accessible to a direct experimental determination yet. Based on the optimized structural parameters, we report calculations of band gap changes of {epsilon}-GaSe under pressure. The optical response and electronic band structure of the metallic high-pressure phase of GaSe are discussed briefly. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor

    Science.gov (United States)

    Nakayama, K.; Miyata, Y.; Phan, G. N.; Sato, T.; Tanabe, Y.; Urata, T.; Tanigaki, K.; Takahashi, T.

    2014-12-01

    We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (Tc˜8 K ), which exhibits a tetragonal-to-orthorhombic structural transition at Ts˜90 K . At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ˜110 K , slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.

  20. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    Science.gov (United States)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  1. Crystal structure, electrical properties and electronic band structure of tantalum ditelluride

    CERN Document Server

    Vernes, A; Bensch, W; Heid, W; Naether, C

    1998-01-01

    Motivated by the unexpectedly strong influence of the Te atoms on the structural and bonding properties of the transition metal tellurides, we have performed a detailed study of TaTe sub 2. Experimentally, this comprises a crystal structure determination as well as electrical resistivity measurements. The former analysis leads to an accurate update of the structural data reported in the 1960s, while the latter provides evidence for the mainly electronic character of scattering processes leading to the electrical conductivity. In addition, the electronic properties of TaTe sub 2 have been calculated using the TB-LMTO method. The partial density of states reflects the close connection of the Ta zigzag chains and the Te-Te network. This finding explains the charge transfer in the system in a rather simple way. The orthogonal-orbital character of the bands proved the existence of pi-bonds. The Fermi-surface study supports the interpretation of the experimental resistivity measurements. (author)

  2. The Electronic Band Structure of Platinum Oxide (PtO) | Omehe ...

    African Journals Online (AJOL)

    We have performed the electronic band structure of the bulk and monolayer of PtO using the full potential linear muffin-tin orbital and the projector augmented wave method with the density functional theory. We applied the LDA and LDA+U scheme to both methods. It was found out that the LDA calculation of bulk PtO ...

  3. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...

  4. Electronic band structure of TiFese2 in ferromagnetic phase

    International Nuclear Information System (INIS)

    Jahangirli, Z.A.; Mimura, K.; Shim, Y.; Mamedov, N.T.; Wakita, K.; Orudzhev, G.S.; Jahangirli, Z.A.

    2011-01-01

    Electronic band structure of crystalline TiFeSe 2 has been calculated using full-potential method of Linear Augmented Plane Wave (LAPW) in density-functional approach with exchange-correlation potential taken in Generalized Gradient Approximation (GGA). The chemical bond in TiFeSe 2 is shown to be metallic because energies of 3d-electrons localized at iron atoms are close to Fermi energy level

  5. Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films

    Energy Technology Data Exchange (ETDEWEB)

    Matetskiy, A.V., E-mail: mateckij@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Bondarenko, L.V.; Tupchaya, A.Y.; Gruznev, D.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Eremeev, S.V. [Institute of Strength Physics and Materials Science, 634021 Tomsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-06-01

    Highlights: • Modification of electronic properties of ultrathin Bi films by adsorbates is demonstrated. • Due to electron doping from Cs adatoms, surface-state bands shift to higher binding energies. • As a result, only electron pockets are left in the Fermi map. • Tin acts as an acceptor dopant for Bi, shifting Fermi level upward. • As a result, only hole pockets are left in the Fermi map. - Abstract: Changes of the electronic band structure of Bi(111) films on Si(111) induced by Cs and Sn adsorption have been studied using angle-resolved photoemission spectroscopy and density functional theory calculations. It has been found that small amounts of Cs when it presents at the surface in a form of the adatom gas leads to shifting of the surface and quantum well states to the higher binding energies due to the electron donation from adsorbate to the Bi film. In contrast, adsorbed Sn dissolves into the Bi film bulk upon heating and acts as an acceptor dopant, that results in shifting of the surface and quantum well states upward to the lower binding energies. These results pave the way to manipulate with the Bi thin film electron band structure allowing to achieve a certain type of conductivity (electron or hole) with a single spin channel at the Fermi level making the adsorbate-modified Bi a reliable base for prospective spintronics applications.

  6. Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes

    International Nuclear Information System (INIS)

    Saxena, Prapti; Sanyal, Sankar P

    2006-01-01

    In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)

  7. Relativistic band-structure calculations for electronic properties of actinide dioxides

    International Nuclear Information System (INIS)

    Maehira, Takahiro; Hotta, Takashi

    2007-01-01

    Energy band structures of actinide dioxides AnO 2 (An=Th, U, Np, and Pu) are investigated by a relativistic linear augmented-plane-wave method with the exchange-correlation potential in a local density approximation (LDA). It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between actinide 5f and oxygen 2p electrons. By focusing on the crystalline electric field states, we point out the problem in the application of the LDA to AnO 2

  8. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    International Nuclear Information System (INIS)

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH 2 and YH 2 were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH 2 cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 2 lattice. These experimental results also suggest that, in contrast to recent calculations, LaH 3 is a small-band-gap semiconductor

  9. Electronic band structure and optical properties of antimony selenide under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  10. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  11. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances

  12. Electronic Band Structure of BaCo_{2}As_{2}: A Fully Doped Ferropnictide Analog with Reduced Electronic Correlations

    Directory of Open Access Journals (Sweden)

    N. Xu

    2013-01-01

    Full Text Available We report an investigation with angle-resolved photoemission spectroscopy of the Fermi surface and electronic band structure of BaCo_{2}As_{2}. Although its quasinesting-free Fermi surface differs drastically from that of its Fe-pnictide cousins, we show that the BaCo_{2}As_{2} system can be used as an approximation to the bare unoccupied band structure of the related BaFe_{2-x}Co_{x}As_{2} and Ba_{1-x}K_{x}Fe_{2}As_{2} compounds. However, our experimental results, in agreement with dynamical-mean-field-theory calculations, indicate that electronic correlations are much less important in BaCo_{2}As_{2} than in the ferropnictides. Our findings suggest that this effect is due to the increased filling of the electronic 3d shell in the presence of significant Hund’s exchange coupling.

  13. Electronic structures and valence band splittings of transition metals doped GaNs

    International Nuclear Information System (INIS)

    Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan

    2007-01-01

    For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials

  14. Ab initio electronic band structure study of III-VI layered semiconductors

    Science.gov (United States)

    Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés

    2013-08-01

    We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.

  15. Electronic structures and band gaps of chains and sheets based on phenylacetylene units

    International Nuclear Information System (INIS)

    Kondo, Masakazu; Nozaki, Daijiro; Tachibana, Masamitsu; Yumura, Takashi; Yoshizawa, Kazunari

    2005-01-01

    We investigate the electronic structures of polymers composed of π-conjugated phenylacetylene (PA) units, m-PA-based and p-PA-based wires, at the extended Hueckel level of theory. It is demonstrated that these conjugated systems should have a variety of electric conductance. All of the one-dimensional (1D) chains and the two-dimensional (2D) sheet based on the m-PA unit are insulators with large band gaps of 2.56 eV because there is no effective orbital interaction with neighboring chains. On the other hand, p-PA-based 1D chains have relatively small band gaps that decrease with an increase in chain width (1.17-1.74 eV) and are semiconductive. The p-PA-based sheet called 'graphyne', a 2D-limit of the p-PA-based 1D chains, shows a small band gap of 0.89 eV. The variety of band electronic structures is discussed in terms of frontier crystal orbitals

  16. Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations

    NARCIS (Netherlands)

    Ettema, A.R.H.F.; Groot, R.A. de; Haas, C.; Turner, T.S.

    1992-01-01

    SnS is a layer compound with a phase transition from a high-temperature β phase to a low-temperature α phase with a lower symmetry. Ab initio band-structure calculations are presented for both phases. The calculations show that the charge distributions in the two phases are very similar. However,

  17. Electronic band structure of Two-Dimensional WS2/Graphene van der Waals Heterostructures

    Science.gov (United States)

    Henck, Hugo; Ben Aziza, Zeineb; Pierucci, Debora; Laourine, Feriel; Reale, Francesco; Palczynski, Pawel; Chaste, Julien; Silly, Mathieu G.; Bertran, François; Le Fèvre, Patrick; Lhuillier, Emmanuel; Wakamura, Taro; Mattevi, Cecilia; Rault, Julien E.; Calandra, Matteo; Ouerghi, Abdelkarim

    2018-04-01

    Combining single-layer two-dimensional semiconducting transition-metal dichalcogenides (TMDs) with a graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single-layer W S2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements, and density functional theory (DFT) calculations. The results show good electronic properties as well as a well-defined band arising from the strong splitting of the single-layer W S2 valence band at the K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single-layer W S2 . Our results provide an important reference for future studies of electronic properties of W S2 and its applications in valleytronic devices.

  18. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  19. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  20. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.

    Science.gov (United States)

    Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien

    2012-01-30

    The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

  1. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  2. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  3. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    International Nuclear Information System (INIS)

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-01-01

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed

  4. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  5. Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations

    Science.gov (United States)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.

    2015-04-01

    High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.

  6. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  7. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  8. Electronic band structure, optical, dynamical and thermodynamic properties of cesium chloride (CsCl from first-principles

    Directory of Open Access Journals (Sweden)

    Bingol Suat

    2015-01-01

    Full Text Available The geometric structural optimization, electronic band structure, total density of states for valence electrons, density of states for phonons, optical, dynamical, and thermodynamical features of cesium chloride have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient approximation. Ground state properties of cesium chloride are studied. The calculated ground state properties are consistent with experimental results. Calculated band structure indicates that the cesium chloride structure has an indirect band gap value of 5.46 eV and is an insulator. From the obtained phonon spectra, the cesium chloride structure is dynamically stable along the various directions in the Brillouin zone. Temperature dependent thermodynamic properties are studied using the harmonic approximation model.

  9. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  10. Electronic structure of the copper oxides: Band picture versus correlated behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W E; Cohen, R E; Singh, D [Naval Research Lab., Washington, DC (USA); Krakauer, H [Coll. of William and Mary, Williamsburg, VA (USA)

    1989-12-01

    In the 2 1/2 years since the discovery of the high temperature superconducting copper oxides, a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper we discuss briefly these complementary viewpoints in relation to certain of the experimental data. Due to our background in the band structure area, we approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation. (orig.).

  11. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Gang [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); Heinke, Lars, E-mail: Lars.Heinke@KIT.edu; Wöll, Christof [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin [Institute of Nanotechnology (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gordan, Ovidiu D.; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  12. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Science.gov (United States)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.

  13. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    International Nuclear Information System (INIS)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-01-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered

  14. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  15. Optical properties and electronic band structure of AgInSe2

    International Nuclear Information System (INIS)

    Ozaki, Shunji; Adachi, Sadao

    2006-01-01

    Optical properties of a chalcopyrite semiconductor AgInSe 2 have been studied by optical absorption, spectroscopic ellipsometry (SE), and thermoreflectance (TR) measurements. The measurements reveal distinct structures at energies of the critical points in the Brillouin zone. By performing the band-structure calculation, these critical points have been successfully assigned to specific points in the Brillouin zone. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. ELECTRONIC-STRUCTURE OF THE MISFIT-LAYER COMPOUND (SNS)(1.17)NBS2 DEDUCED FROM BAND-STRUCTURE CALCULATIONS AND PHOTOELECTRON-SPECTRA

    NARCIS (Netherlands)

    FANG, CM; ETTEMA, ARHF; HAAS, C; WIEGERS, GA; VANLEUKEN, H; DEGROOT, RA

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)(1.17)NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)(1.20)NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  17. Electronic structure of the misfit-layer compound (SnS)1.17NbS2 deduced from band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Ettema, A.R.H.F.; Haas, C.; Wiegers, G.A.; Leuken, H. van; Groot, R.A. de

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)1.17NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)1.20NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  18. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    Science.gov (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  19. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  20. Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon

    Science.gov (United States)

    Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars

    2018-01-01

    The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.

  1. Ballistic-electron-emission spectroscopy of AlxGa1-xAs/GaAs heterostructures: Conduction-band offsets, transport mechanisms, and band-structure effects

    International Nuclear Information System (INIS)

    OShea, J.J.; Brazel, E.G.; Rubin, M.E.; Bhargava, S.; Chin, M.A.; Narayanamurti, V.

    1997-01-01

    We report an extensive investigation of semiconductor band-structure effects in single-barrier Al x Ga 1-x As/GaAs heterostructures using ballistic-electron-emission spectroscopy (BEES). The transport mechanisms in these single-barrier structures were studied systematically as a function of temperature and Al composition over the full compositional range (0≤x≤1). The initial (Γ) BEES thresholds for Al x Ga 1-x As single barriers with 0≤x≤0.42 were extracted using a model which includes the complete transmission probability of the metal-semiconductor interface and the semiconductor heterostructure. Band offsets measured by BEES are in good agreement with previous measurements by other techniques which demonstrates the accuracy of this technique. BEES measurements at 77 K give the same band-offset values as at room temperature. When a reverse bias is applied to the heterostructures, the BEES thresholds shift to lower voltages in good agreement with the expected bias-induced band-bending. In the indirect band-gap regime (x>0.45), spectra show a weak ballistic-electron-emission microscopy current contribution due to intervalley scattering through Al x Ga 1-x As X valley states. Low-temperature spectra show a marked reduction in this intervalley current component, indicating that intervalley phonon scattering at the GaAs/Al x Ga 1-x As interface produces a significant fraction of thisX valley current. A comparison of the BEES thresholds with the expected composition dependence of the Al x Ga 1-x As Γ, L, and X points yields good agreement over the entire composition range. copyright 1997 The American Physical Society

  2. Ab initio electronic band structure calculation of InP in the wurtzite phase

    Science.gov (United States)

    Dacal, Luis C. O.; Cantarero, Andrés

    2011-05-01

    We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a=0.4150 nm, c=0.6912 nm, and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (-1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.

  3. Effect of structural distortion on the electronic band structure of NaOsO3 studied within density functional theory and a three-orbital model

    Science.gov (United States)

    Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash

    2018-04-01

    Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.

  4. Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data

    Science.gov (United States)

    Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.

    2015-12-01

    Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.

  5. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  6. Valence band electronic structure and band alignment of LaAlO{sub 3}/SrTiO{sub 3}(111) heterointerfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, J.; Scheiderer, P.; Zapf, M.; Schuetz, P.; Sing, M.; Claessen, R. [Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), Universitaet Wuerzburg (Germany); Schlueter, C.; Lee, T.L. [Diamond Light Source, Didcot (United Kingdom)

    2015-07-01

    As in the famous LaAlO{sub 3}(LAO)/SrTiO{sub 3}(STO) (001) a two-dimensional electron system (2DES) also forms at the interface between LAO and STO in (111) orientation. A distinct feature of the (111) interface is its peculiar real space topology. Each bilayer represents a buckled honeycomb lattice similar to graphene which is known theoretically to host various topologically non-trivial states. Bilayer STO in proximity to the interface can be regarded as a three-orbital generalization of graphene with enhanced electron correlations making it a promising candidate for the realization of strongly correlated topological phases. We have investigated the electronic structure of the LAO/STO (111) heterostructure in relation to the oxygen vacancy concentration which we can control by synchrotron light irradiation and oxygen dosing. With hard X-ray photoemission we study the core levels, whereas resonant soft X-ray photoemission is used to probe the interfacial valence band (VB) states. Two VB features are found: a peak at the Fermi level associated with the 2DES and in-gap states at higher binding energies attributed to oxygen vacancies. By varying the oxygen vacancy contribution we can tune the emergence of the VB states and engineer the interfacial band alignment.

  7. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  8. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  9. Electron currents associated with an auroral band

    International Nuclear Information System (INIS)

    Spiger, R.J.; Anderson, H.R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed

  10. Electron currents associated with an auroral band

    Science.gov (United States)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  11. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  12. Spin- and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi

    2017-10-01

    We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.

  13. Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure

    Institute of Scientific and Technical Information of China (English)

    Tai Wang; Yong-Quan Guo; Shuai Li

    2017-01-01

    The Eu-doped Cu(In,Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CulnTe2.In this paper,the Eu-doped CulnTe2 (Culn1-xEuxTe2,x =0,0.1,0.2,0.3) are studied systemically based on the empirical electron theory (EET).The studies cover crystal structures,bonding regularities,cohesive energies,energy levels,and valence electron structures.The theoretical values fit the experimental results very well.The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions.The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease.The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms,which shows that the 3d electron numbers of Cu atoms change before and after Eu doping.In single phase CuIn1-xEuxTe2,the number of valence electrons changes regularly with increasing Eu content,and the calculated band gap Eg also increases,which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.

  14. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.

    1998-01-01

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  15. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.

    Science.gov (United States)

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-07-24

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.

  16. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    Science.gov (United States)

    Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.

    2008-03-01

    High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  17. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    International Nuclear Information System (INIS)

    Valbuena, M A; Avila, J; Asensio, M C; Vyalikh, D V; Laubschat, C; Molodtsov, S L; Guyot, H

    2008-01-01

    High resolution angle-resolved photoemission of quasi-2D KMo 6 O 17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (T c = 110 K), and down to 35 K (well below T c ). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities

  18. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    OpenAIRE

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2012-01-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefe...

  19. Multiband model of the valence-band electronic structure in cylindrical GaAs nanowires

    Directory of Open Access Journals (Sweden)

    Čukarić Nemanja A.

    2010-01-01

    Full Text Available We compute the hole states in the GaAs free-standing nanowires, and in the GaAs/(Al,GaAs core-shell nanowires of type I-s, which are grown along the [100] direction. The hole states are extracted from the 4-band Luttinger-Kohn Hamiltonian, which explicitly takes into account mixing between the light and heavy holes. The axial aproximation is adopted, which allowed classification of states according to the total angular monentum (fz when expressed in units of the Planck constant. The envelope functions are expanded in Bessel functions of the first kind. The dispersion relations of the subbands E(kz obtained by the devised method do not resemble parabolas, which is otherwise a feature of the dispersion relations of the conduction subbands. Furthermore, the energy levels of holes whose total orbital momentum is fz=1/2 are shown to cross for a free-standing wire. The low energy fz=1/2 states are found to anticross, but these anticrossings turn into crossings when the ratio of the inner and outer radius of the core-shell wire takes a certain value. The influence of the geometric parameters on the dispersion relations is considered for both free standing and core-shell nanowires.

  20. Electronic band structure, magnetic, transport and thermodynamic properties of In-filled skutterudites InxCo4Sb12

    International Nuclear Information System (INIS)

    Leszczynski, J; Da Ros, V; Lenoir, B; Dauscher, A; Candolfi, C; Masschelein, P; Hejtmanek, J; Kutorasinski, K; Tobola, J; Smith, R I; Stiewe, C; Müller, E

    2013-01-01

    The thermoelectric and thermodynamic properties of polycrystalline In x Co 4 Sb 12 (0.0 ⩽ x ⩽ 0.26) skutterudites were investigated and analysed between 2 and 800 K by means of electrical resistivity, thermopower, thermal conductivity and specific heat measurements. Hall effect, sound velocity and thermal expansion measurements were also made in order to gain insights into the transport and elastic properties of these compounds. The impact of the In filling on the crystal structure as well as the thermal dynamics of the In atoms were tracked down to 4 K using powder neutron diffraction experiments. Analyses of the transport data were compared with the evolution of the electronic band structure with x determined theoretically within the Korringa–Kohn–Rostoker method with the coherent potential approximation. These calculations indicate that In gives rise to a remarkably large p-like density of states located at the conduction band edge. The electrical properties show typical trends of heavily doped semiconductors regardless of the In content. The thermal transport in CoSb 3 is strongly influenced by the presence of In in the voids of the crystal structure resulting in a drop in the lattice thermal conductivity values in the whole temperature range. The low value of the Grüneisen parameter suggests that this decrease mainly originates from enhanced mass-fluctuations and point-defect scattering mechanisms. The highest thermoelectric figure of merit ZT ∼ 1.0 at 750 K was achieved at the maximum In filling fraction, i.e. for x = 0.26. (paper)

  1. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Sanshui; He Sailing

    2002-12-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k{sub z} although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k{sub z} is founded.

  2. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    International Nuclear Information System (INIS)

    Xiao Sanshui; He Sailing

    2002-01-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k z although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k z is founded

  3. Electron band theory 1952-1962

    International Nuclear Information System (INIS)

    Lomer, W.M.

    1980-01-01

    Work undertaken by the Theoretical Physics Division between 1952 and 1965 to obtain an understanding of electrons in metals, with uranium and the actinides and the structurally-important transition metals as the main targets is examined. A main result of that period was a conviction that the majority of the physical properties of all metals, except the 4f rare-earth series and the actinides beyond uranium, were dominated by band effects which could be described well enough for most purposes by simple one-electron calculations with simple self-consistent fields. The period from 1960 on showed increasingly clearly the necessity of incorporating relativistic spin-orbit coupling terms in the heavy metals, and some 'local exchange field' correction to the fields close to nuclei. The problems of the non-local interaction of spins - highly important for alloy theory and for antiferromagnetic instability -required the evolution of computers large enough to produce wave-functions at all wave-vectors for all bands so that the susceptibility at arbitrary wave-vector could be computed. This work has not proved to be very illuminating so far, and much interest again focusses today on heuristic arguments that give qualitative descriptions of band structures, such as canonical d-bands to account for crystal structure. (UK)

  4. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    Science.gov (United States)

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  5. Effects of side-chain and electron exchange correlation on the band structure of perylene diimide liquid crystals: a density functional study.

    Science.gov (United States)

    Arantes, J T; Lima, M P; Fazzio, A; Xiang, H; Wei, Su-Huai; Dalpian, G M

    2009-04-23

    The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

  6. Simultaneous Out-of-band Interference Rejection and Radiation Enhancement in an Electronic Product via an EBG Structure

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2014-01-01

    to achieve simultaneously both the enhancement of the antenna radiation efficiency and the shrinking of its dimensions, while making the device more resilient to out-of-band electromagnetic interference (EMI). The patterning of the ground plane allows, in fact, to effectively suppress higher-order resonances......This work presents an application of a planar electromagnetic band gap (EBG) structure with a perspective product implementation in the back of the mind. The focus is on the integration of such structure under the constraint of space and system coexistence. It is discovered that it is possible...... (alternatively, parallel plate noise) and decrease the radiation efficiency of the structure forbidding higher-order modes to propagate and subsequently be diffracted by the ground plane....

  7. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    Science.gov (United States)

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  8. Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n- (n=1-10) Using Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Zhai, Hua-jin; Wang, Lai S.

    2007-01-01

    TiO2 is a wide-band gap semiconductor and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties

  9. Electronic band structure and optical properties of Srn+1TinO3n+1 Ruddlesden-Popper homologous series

    Czech Academy of Sciences Publication Activity Database

    Reshak, Ali H; Auluck, S.; Kityk, I.

    2008-01-01

    Roč. 47, č. 7 (2008), s. 5516-5520 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z60870520 Keywords : electronic structure * optical properties Subject RIV: BO - Biophysics Impact factor: 1.309, year: 2008

  10. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  11. f-electron systems: pushing band theory

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1991-01-01

    The f-electron orbitrals have always been the ''incomplete atomic shells acting as local moments, and weakly interacting with the remaining electronic structure'' in the minds of most people. So examining them using a band theory where one views them as itinerant was once - and to some extent even today still is - considered with some skepticism. Nonetheless, a very significant community has successfully utilized band theory as a probe of the electronic structure of the appropriate actinides and rare earths. Those people actually using the approach would be the first to declare that it is not the whole solution. Instead, one is pushing and even exceeding its limit of applicability. However, the apropriate procedure is to push the model consistently to its limits, patch where possible, and then look to see where discrepancies remain. I propose to offer a selected review of past developments (emphasizing the career to data of A.J. Freeman in this area), offer a list of interesting puzzles for the future, and then make some guesses as to the techniques one might want to use. (orig.)

  12. First-principle study of the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP

    Science.gov (United States)

    Yang, H. Q.; Song, T. L.; Liang, X. X.; Zhao, G. J.

    2015-01-01

    In this work, the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP are studied by the first principle calculations. The software QUANTUM ESPRESSO and the generalized gradient approximation (GGA) for the exchange correlations have been used in the calculations. We calculate the lattice parameter, band gap and effective mass of the ternary alloy GaxIn1-xP for the Ga composition x varying from 0.0 to 1.0 by the step of 0.125. The effect of the Ga composition on the lattice parameter and the electronic density of states are discussed. The results show that the lattice parameter varies with the composition almost linearly following the Vegard's law. A direct-to-indirect band-gap crossover is found to occur close to x = 0.7. The effective masses are also calculated at Γ(000) high symmetry point along the [100] direction. The results show that the band gap and the electron effective mass vary nonlinearly with composition x.

  13. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    Science.gov (United States)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  14. A theoretical study of pressure-induced phase transitions and electronic band structure of anti-A-sesquioxide type γ-Be3N2

    International Nuclear Information System (INIS)

    Paliwal, Uttam; Joshi, Kunj Bihari

    2011-01-01

    Structural parameters and electronic band structure of anti-A-sesquioxide (aAs) type γ-Be 3 N 2 are presented following the first-principles linear combination of atomic orbitals method within the framework of a posteriori density-functional theory implemented in the CRYSTAL code. Pressure-induced phase transitions among the four polymorphs α, β, cubic-γ and aAs-γ of Be 3 N 2 are examined. Enthalpy-pressure curves do not show the possibility of pressure-induced structural phase transition to the cubic-γ phase. However, α → aAs-γ and β → aAs-γ structural phase transitions are observed at 139 GPa and 93 GPa, respectively. Band structure calculations predict that aAs-γ Be 3 N 2 is an indirect semiconductor with 4.73 eV bandgap at L point. Variation of bandgap with pressure and deformation potentials are studied for the α, β and aAs-γ polymorphs. Pressure-dependent band structure calculations reveal that, within the low-pressure limit, bandgaps of β and aAs-γ increase with pressure unlike α-Be 3 N 2 .

  15. Band offsets and electronic structures of interface between In{sub 0.5}Ga{sub 0.5}As and InP

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Genwang [School of Physical Science and Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052 (China); College of Science, Henan University of Technology, Zhengzhou 450001 (China); Wang, Changhong; Wang, Weichao [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Liang, Erjun, E-mail: ejliang@zzu.edu.cn [School of Physical Science and Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052 (China)

    2016-02-07

    III–V semiconductor interfacing with high-κ gate oxide is crucial for the high mobility metal-oxide-semiconductor field transistor device. With density functional theory calculations, we explored the band offsets and electronic structures of the In{sub 0.5}Ga{sub 0.5}As/InP interfaces with various interfacial bondings. Among six different bonding interfaces, we found that P-In(Ga) bonding interface showed the highest stability. Local density of states calculations was adopted to calculate the band offsets. Except for the metallic interface, we noticed that neither valence band offset nor conduction band offset depended on the interfacial bondings. For the most stable P-In(Ga) interface, we did not observe any gap states. Furthermore, we explored the P-In(Ga) interfaces with interfacial P-As exchange defects, which slightly modified the interface stability and the band offsets but did not produce any gap states. These findings provide solid evidence that InP could serve as a promising interfacial passivation layer between III–V material and high-κ oxide in the application of high mobility devices.

  16. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  17. Tl{sub 4}CdI{sub 6} – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa (Poland)

    2015-08-01

    A novel infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved.

  18. Tl4CdI6 – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    International Nuclear Information System (INIS)

    Piasecki, M.; Brik, M.G.; Kityk, I.V.

    2015-01-01

    A novel infrared optoelectronic material Tl 4 CdI 6 was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl 4 CdI 6 was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved

  19. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    Science.gov (United States)

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2014-12-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefers to replace the tin atom at the Sn1 site rather than the Sn2 site, the resistivity of Co3SnInS2 shows semiconducting-like behavior. In this study we have demonstrated that metallic behavior and a decrease in resistivity for Se-doped Co3SnInS2 occurs without suppression of the Seebeck coefficient. From the DFT calculations, when the selenium content is above 0.5, the total crystallographic energy shows that a higher indium occupancy at Sn2 site is more stable. Therefore, it is suggested that the selenium doping suppress the site preference for indium substitution. This is one of the possible explanations for the metallic conductivity observed in Se-doped Co3SnInS2

  20. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  1. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  2. X-ray characterization, electronic band structure, and thermoelectric properties of the cluster compound Ag.sub.2./sub.Tl.sub.2./sub.Mo.sub.9./sub.Se.sub.11./sub..

    Czech Academy of Sciences Publication Activity Database

    Al Rahal Al Orabi, R.; Gougeon, P.; Gall, Ph.; Fontaine, B.; Gautier, R.; Colin, M.; Candolfi, C.; Dauscher, A.; Hejtmánek, Jiří; Malaman, B.; Lenoir, B.

    2014-01-01

    Roč. 53, č. 21 (2014), 11699-11709 ISSN 0020-1669 Institutional support: RVO:68378271 Keywords : thermoelectric properties * electronic band structure * cluster compound Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.762, year: 2014

  3. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al{sub 2}O{sub 3} heterojunction evaluated from synchrotron based X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. D., E-mail: devsh@rrcat.gov.in; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Ganguli, Tapas [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Nand, Mangla; Jha, S. N. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Shukla, D. K.; Phase, D. M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, Madhya Pradesh 452017 (India)

    2016-04-28

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al{sub 2}O{sub 3} heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al{sub 2}O{sub 3} substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al{sub 2}O{sub 3} substrate. Surface related feature in Ni 2p{sub 3/2} core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al{sub 2}O{sub 3} substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al{sub 2}O{sub 3} layers. A type-I band alignment at NiO and Al{sub 2}O{sub 3} heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  4. Electronic Structure and Band Alignment at the NiO and SrTiO 3 p–n Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kelvin H. L. [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Wu, Rui [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Tang, Fengzai [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Li, Weiwei [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Oropeza, Freddy E. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.; Qiao, Liang [School of Materials, The University of Manchester, Manchester M13 9PL, U.K.; Lazarov, Vlado K. [Department of Physics, University of York, Heslington, York YO10 5DD, U.K.; Du, Yingge [Physical Sciences Division, Physical & amp, Computational; Payne, David J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.; MacManus-Driscoll, Judith L. [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Blamire, Mark G. [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.

    2017-07-25

    Understanding the energetics at the interface including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multi-functionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the hetero-interface of wide bandgap p-type NiO and n-type SrTiO3 (STO). We show that despite a large lattice mismatch (~7%) and dissimilar crystal structure, high-quality NiO and Li doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain matching epitaxy (DME) mechanism. X-ray photoelectron spectroscopy (XPS) studies indicate that NiO/STO heterojunctions form a type II “staggered” band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit a large rectification ratio of 2×103, but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implication for applications in photocatalysis and photodetector as the interface provides favourable energetics for facile separation and transport of photogenerated electrons and holes.

  5. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  6. Structural vs electronic origin of renormalized band widths in TTF-TCNQ: An angular dependent NEXAFS study

    DEFF Research Database (Denmark)

    Sing, M; Meyer, J; Hoinkis, M

    2007-01-01

    in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus, we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within...

  7. Characterization of the Fermi surface of BEDT-TTF4[Hg2Cl6].PhCl by electronic band structure calculations

    International Nuclear Information System (INIS)

    Veiros, L.F.; Canadell, E.

    1994-01-01

    Tight-binding band structure calculations for the room temperature structure of BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl show the existence of closed electron and hole Fermi surfaces, in agreement with the 2D metallic conductivity of this salt. It is shown that these closed Fermi surfaces result from the hybridization of two hidden 1D Fermi surfaces. However, our study also shows that a transition associated with either a usual or a hidden nesting type mechanism is unlikely. This explains why this salt retains its metallic properties without any resistivity anomaly down to 1.3 K. Our study suggests that BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl is somewhat anisotropic 2D semimetal and should exhibit Shubnikov-de Haas oscillations corresponding to a cross-sectional area of approximately 13% of the first Brillouin zone. (orig.)

  8. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  9. Valence band electronic structure of Ho-doped La0.67Ca0.33MnO3 using ultra-violet photoemission spectroscopy

    Science.gov (United States)

    Rout, S. K.; Mukharjee, R. N.; Mishra, D. K.; Roul, B. K.; Sekhar, B. R.; Dalai, M. K.

    2017-05-01

    In this manuscript we report the valence band electronic structure of Ho doped La0.67Ca0.33MnO3 using ultraviolet photoemission spectroscopy. We compared the density of states of La0.67Ca0.33MnO3, La0.67Ca0.3Ho0.03MnO3 and La0.64Ho0.03Ca0.33MnO3 near the Fermi level at various temperatures. Significant amount of changes have been observed at higher temperatures (220 K and 300 K) where the near Fermi level density of states increases with Ho doping into La0.67Ca0.33MnO3 indicating the enhancement of magnitude of change in metallicity (conductivity).

  10. Electronic band structure and charge density wave transition in quasi-2D KMo{sub 6}O{sub 17} purple bronze

    Energy Technology Data Exchange (ETDEWEB)

    Valbuena, M A [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Avila, J; Asensio, M C [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Vyalikh, D V; Laubschat, C; Molodtsov, S L [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Guyot, H [LEPES, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)], E-mail: mvbuena@icmm.csic.es

    2008-03-15

    High resolution angle-resolved photoemission of quasi-2D KMo{sub 6}O{sub 17} purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (T{sub c} = 110 K), and down to 35 K (well below T{sub c}). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  11. Electronic band structure calculations for GaxIn1−xASyP1−y alloys lattice matched to InP

    International Nuclear Information System (INIS)

    Bechiri, A; Benmakhlouf, F; Allouache, H; Bacha, S; Bouarissa, N

    2012-01-01

    A pseudopotential formalism coupled with the virtual crystal approximation are applied to study the effect of compositional disorder upon electronic band structure of cubic Ga x In 1−x As y P 1−y quarternary alloys lattice matched to InP. The effects of compositional variations are properly included in the calculations. Very good agreement is obtained between the calculated values and the available experimental data for the lattice–matched alloy to InP. The absorption at the fundamental optical gaps is found to be direct within a whole range of the y composition whatever the lattice-matching to the substrate of interest. The alloy system Ga x In 1−x As y P 1−y lattice matched to InP is suggested to be suitable for an efficient light emitting device (ELED) material.

  12. Li induced effects in the core level and π-band electronic structure of graphene grown on C-face SiC

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Leif I., E-mail: lij@ifm.liu.se; Xia, Chao; Virojanadara, Chariya [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2015-11-15

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10{sup 14 }cm{sup −2} after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene.

  13. Li induced effects in the core level and π-band electronic structure of graphene grown on C-face SiC

    International Nuclear Information System (INIS)

    Johansson, Leif I.; Xia, Chao; Virojanadara, Chariya

    2015-01-01

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10 14  cm −2 after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene

  14. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  15. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    Science.gov (United States)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  16. Consideration of the band-gap tunability of BaSi2 by alloying with Ca or Sr based on the electronic structure calculations

    International Nuclear Information System (INIS)

    Imai, Yoji; Watanabe, Akio

    2007-01-01

    The electronic structures and total energies of BaSi 2 -SrSi 2 and BaSi 2 -CaSi 2 systems have been calculated using the first-principle pseudopotential method to clarify the band gap tunability of BaSi 2 by alloying with Sr or Ca. From an energetic consideration of the compounds where all the Ba I sites or all the Ba II sites of the BaSi 2 lattice are preferentially replaced by Sr or Ca, it is expected that the Ba I site will be preferentially replaced by Sr rather than the Ba II sites. Compounds where all the Ba II sites are replaced by Sr or all the Ba II or all the Ba I sites are replaced by Ca are energetically unfavorable compared to the undissolved system of BaSi 2 and SrSi 2 or CaSi 2 . The effect of the addition of Sr or Ca into the BaSi 2 lattice on the gap value is different depending on the replaced sites of Ba. The replacement of Ba I site by Sr will broaden the band gap of BaSi 2 , which is consistent with the observed results

  17. Photonic band gap structure simulator

    Science.gov (United States)

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  18. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    - stant and/or magnetic permeability (or in particular impedance) are periodic and the propagation of electromagnetic waves is forbidden at certain frequencies when allowed to pass through these structures. This is similar to the electronic band.

  19. Oxygen effects on the interfacial electronic structure of titanyl phthalocyanine film: p-Type doping, band bending and Fermi level alignment

    International Nuclear Information System (INIS)

    Nishi, Toshio; Kanai, Kaname; Ouchi, Yukio; Willis, Martin R.; Seki, Kazuhiko

    2006-01-01

    The effect of oxygen doping on titanyl phthalocyanine (TiOPc) film was investigated by ultraviolet photoelectron spectroscopy (UPS). The electronic structure of the interface formed between TiOPc films deposited on highly oriented pyrolytic graphite (HOPG) was clearly different between the films prepared in ultrahigh vacuum (UHV) and under O 2 atmosphere (1.3 x 10 -2 Pa). The film deposited in UHV showed downward band bending characteristic of n-type semiconductor, possibly due to residual impurities working as unintentional n-type dopants. On the other hand, the film deposited under O 2 atmosphere showed upward band bending characteristic of p-type semiconductor. Such trends, including the conversion from n- to p-type, are in excellent correspondence with reported field effect transistor characteristics of TiOPc, and clearly demonstrates that bulk TiOPc film was p-doped with oxygen. In order to examine the Fermi level alignment between TiOPc film and the substrate, the energy of the highest occupied molecular orbital (HOMO) of TiOPc relative to the Fermi level of the conductive substrate was determined for various substrates. The alignment between the Fermi level of conductive substrate and Fermi level of TiOPc film at fixed energy in the bandgap was not observed for the TiOPc film prepared in UHV, possibly because of insufficient charge density in the TiOPc film. This situation was drastically changed when the TiOPc film exposed to O 2 , and clear alignment of the Fermi level fixed at 0.6 eV above the HOMO with the Fermi level of the conducting substrate was observed, probably by p-type doping effect of oxygen. These are the first direct and quantitative information about bulk oxygen doping from the viewpoint of the electronic structure. These results suggest that similar band bending with Fermi level alignment may be also achieved for other organic semiconductors under practical device conditions, and also call for caution at the comparison of experimental

  20. Bunch monitor for an S-band electron linear accelerator

    International Nuclear Information System (INIS)

    Otake, Yuji; Nakahara, Kazuo

    1991-01-01

    The measurement of bunch characteristics in an S-band electron linear accelerator is required in order to evaluate the quality of accelerated electron beams. A new-type bunch monitor has been developed which combines micro-stripline technology with an air insulator and wall-current monitoring technology. The obtained time resolution of the monitor was more than 150 ps. This result shows that the monitor can handle the bunch number of an S-band linac. The structure of the monitor is suitable for being installed in the vacuum area, since it is constructed of only metal and ceramic parts. It can therefore easily be employed in an actual machine

  1. Attractive electron correlation in wide band gap semiconductors by electron-photon interaction

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; Yoshino, Katsumi

    2004-01-01

    We theoretically demonstrate attractive electron correlation in wide band gap semiconductors by electron-photon interaction. At low temperature, wavevectors of electromagnetic waves absorbed in wide band gap semiconductors cannot be neglected for wavevectors of electron waves; that is, electromagnetic waves affect the movements of electrons. In particular, attractive interaction occurs between two electrons when one electron changes from a valence band to a conduction band and the other electron changes from a conduction band to a valence band

  2. First–principle calculation of the elastic, band structure, electronic states, and optical properties of Cu–doped ZnS nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Lahiji, Mohammadreza Askaripour, E-mail: m.a.lahijiii@gmail.com [Department of applied mathematics, Astaneh Ashrafieh Branch, Islamic Azad University, Astaneh Ashrafieh (Iran, Islamic Republic of); Ziabari, Ali Abdolahzadeh, E-mail: ali.abd.ziabari@gmail.com [Nano Research Lab, Lahijan Branch, Islamic Azad University, P.O. Box: 1616, Lahijan (Iran, Islamic Republic of)

    2016-11-15

    The structural, elastic, electronic, and optical properties of undoped and Cu–doped ZnS nanostructured layers have been studied in the zincblende (ZB) phase, by first–principle approach. Density functional theory (DFT) has been employed to calculate the fundamental properties of the layers using full–potential linearized augmented plane–wave (FPLAPW) method. Mechanical analysis revealed that the bulk modulus increases with the increase of Cu content. Cu doping was found to reduce the band gap value of the material. In addition, DOS effective mass of the electrons and heavy holes was evaluated. Adding Cu caused the decrement/increment of transmission/reflectance of nanolayers in the UV–vis region. The substitution by Cu increased the intensity of the peaks, and a slight red shift was observed in the absorption peak. Moreover, the static dielectric constant, and static refractive index increased with Cu content. The optical conductivity also followed a similar trend to that of the dielectric constants. Energy loss function of the modeled compounds was also evaluated. All calculated parameters were compared with the available experimental and other theoretical results.

  3. Design of an Electronic Chest-Band

    Science.gov (United States)

    Atakan, R.; Acikgoz Tufan, H.; Baskan, H.; Eryuruk, S. H.; Akalin, N.; Kose, H.; Li, Y.; Kursun Bahadir, S.; Kalaoglu, F.

    2017-10-01

    In this study, an electronic chest strap prototype was designed for measuring fitness level, performance optimization, mobility and fall detection. Knitting technology is used for production by using highly elastic nylon yarn. In order to evaluate comfort performance of the garment, yarn strength and elongation, air permeability, moisture management and FAST tests (Fabric Assurance Fabric Testing) were carried out, respectively. After testing of textile part of the chest band, IMU sensors were integrated onto the garment by means of conductive yarns. Electrical conductivity of the circuit was also assessed at the end. Results indicated that the weight and the thickness of the product are relatively high for sports uses and it has a negative impact on comfort properties. However, it is highly stretchable and moisture management properties are still in acceptable values. From the perspective of possible application areas, developed smart chest band in this research could be used in sports facilities as well as health care applications for elderly and disabled people.

  4. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  5. Band structure studies of actinide systems

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1976-01-01

    The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems

  6. Band structure dynamics in indium wires

    Science.gov (United States)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  7. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.

    Science.gov (United States)

    Zhuang, Jincheng; Liu, Chen; Gao, Qian; Liu, Yani; Feng, Haifeng; Xu, Xun; Wang, Jiaou; Zhao, Jijun; Dou, Shi Xue; Hu, Zhenpeng; Du, Yi

    2018-05-22

    Exploring stable two-dimensional materials with appropriate band gaps and high carrier mobility is highly desirable due to the potential applications in optoelectronic devices. Here, the electronic structures of phosphorene on a Au(111) substrate are investigated by scanning tunneling spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. The substrate-induced phosphorene superstructure gives a superlattice potential, leading to a strong band folding effect of the sp band of Au(111) on the band structure. The band gap could be clearly identified in the ARPES results after examining the folded sp band. The value of the energy gap (∼1.1 eV) and the high charge carrier mobility comparable to that of black phosphorus, which is engineered by the tensile strain, are revealed by the combination of ARPES results and DFT calculations. Furthermore, the phosphorene layer on the Au(111) surface displays high surface inertness, leading to the absence of multilayer phosphorene. All these results suggest that the phosphorene on Au(111) could be a promising candidate, not only for fundamental research but also for nanoelectronic and optoelectronic applications.

  8. The cellular approach to band structure calculations

    International Nuclear Information System (INIS)

    Verwoerd, W.S.

    1982-01-01

    A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular

  9. The complex band structure for armchair graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M − 1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes

  10. The electronic band structures of InNxAs1-x, InNxSb1-x and InAsxSb1-x alloys

    International Nuclear Information System (INIS)

    Mohammad, Rezek; Katircioglu, Senay

    2009-01-01

    The band gap bowings of InN x As 1-x , InN x Sb 1-x , and InAs x Sb 1-x alloys defined by the optimized lattice constants are investigated using empirical tight binding (ETB) method. The present ETB energy parameters which take the nearest neighbor interactions into account with sp 3 d 2 basis are determined to be sufficient to provide a typical feature for the band gap bowings of the alloys. The band gap bowing parameter is found to be relatively large in both InN x As 1-x and InN x Sb 1-x compared to InAs x Sb 1-x alloys. Moreover, the variation of the fundamental band gaps of InN x Sb 1-x alloys is sharper than that of InN x As 1-x alloys for small concentrations of N. Besides, a small amount of nitrogen is determined to be more effective in InN x Sb 1-x than in InN x As 1-x alloys to decrease the corresponding effective masses of the electrons around Γ points

  11. Electronic structure of Ca, Sr, and Ba under pressure.

    Science.gov (United States)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  12. Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases

    Science.gov (United States)

    Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip

    2016-04-01

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  13. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    Science.gov (United States)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  14. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  15. Band structure analysis in SiGe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)

    2012-06-05

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  16. Band structure analysis in SiGe nanowires

    International Nuclear Information System (INIS)

    Amato, Michele; Palummo, Maurizia; Ossicini, Stefano

    2012-01-01

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  17. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...

  18. Band structure in 104Ag

    International Nuclear Information System (INIS)

    Goswami, A.; Saha Sarkar, M.; Datta Pramanik, U.; Banerjee, P.; Basu, P.; Bhattacharya, P.; Bhattacharya, S.; Chatterjee, M.L.; Sen, S.; Dasmahapatra, B.

    1995-01-01

    The level structure of 104 Ag has been studied through the 103 Rh(α,3nγ) reaction at E α =40 and 45 MeV. The principal features of the proposed level scheme are in agreement with those obtained earlier through heavy ion reaction. A two-quasiparticle-plus-rotor model calculation has been performed, and the results are compared with experimental data. (orig.)

  19. A unique distortion in K{sub 1/3}Ba{sub 2/3}AgTe{sub 2}: X-ray diffraction determination and electronic band structure analysis of its incommensurately modulated structure

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, O; Hanko, J; Boucher, F; Petricek, V; Whangbo, M H; Kanatzidis, M G; Evain, M

    2000-04-03

    The incommensurately modulated structure of a square Te-net, namely that of K{sub 1/3}Ba{sub 2/3}AgTe{sub 2}, is determined from single-crystal X-ray diffraction data within a (3+1)D higher dimension formalism. The phase is shown to crystallize in the monoclinic symmetry, P2{sub 1}({alpha}0{gamma}) superspace group with the following lattice parameters: a = 4.6441(10) {angstrom}, b = 4.6292(12) {angstrom}, c = 23.765(9) {angstrom}, and {beta} = 101.28(2){degree} with q = 0.3248(6)a* {minus}0.07(8)c*, that is, in a symmetry different from that reported for the average structure (tetragonal) or that assumed from electron diffraction measurements (orthorhombic). After the introduction of a crenel function for the Te displacive description, the refinement converged to a residual factor R = 0.033 for 2583 observed reflections and 115 parameters (R = 0.024 and 0.101 for 1925 main reflections and 658 first-order satellites, respectively). The [Ag{sub 2}-Te{sub 2}] and the Ba/K layers are found to be only weakly modulated. The modulation of the square Te-net is, however, both substantial and unique. Namely, it results in two different units: a V-shaped Te{sub 3} trimer and a W-shaped Te{sub 5} pentamer. To examine both unit types, which are segregated in domains that aperiodically alternate within the Te layers, first principles electronic band structure calculations were carried out for three model commensurate structures using the tight-binding linear-muffin-tin-orbital method (LMTO). The calculations show that the distorted structures of V-pattern (model 2) and W-pattern (model 3) are more stable than the average structure (model 1) and that the V-pattern distortion provides a slightly larger stabilization than does the W-pattern distortion. The Fermi surface calculated for the average structure shows nesting vectors that are consistent with the occurrence of the V- and W-pattern distortions in the Te layers. However, these vectors do not predict the observed modulation

  20. Electronic structure studies of fullerites and fullerides

    International Nuclear Information System (INIS)

    Merkel, M.; Sohmen, E.; Masaki, A.; Romberg, H.; Alexander, M.; Knupfer, M.; Golden, M.S.; Adelmann, P.; Renker, B.; Fink, J.

    1993-01-01

    The electronic structure of fullerites and fullerides has been investigated by high-resolution photoemission and by high-energy electron energy-loss spectroscopy in transmission. Information on the occupied Π and σ bands, on the unoccupied Π * and σ * bands, and on the joint density of states has been obtained. In particular, we report on the changes of the electronic structure of fullerides as a function of dopant concentration. (orig.)

  1. Band-Structure of Thallium by the LMTO Method

    DEFF Research Database (Denmark)

    Holtham, P. M.; Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    by an energy gap. The 6d and 7s bands were found to be far above the Fermi level and the 5d states were found to be far below it. Fermi surface properties and the electronic specific heat are computed and compared with experiment. The joint density of states has also been computed and is in reasonable...... and p bands for the HCP structure. Energy bands have been evaluated both with and without spin-orbit coupling which is particularly large in thallium. Energy bands close to the Fermi level were found to be mainly 6p like in character. The 6s states lay below the 6p bands and were separated from them......The relativistic band structure of thallium has been calculated using the linear muffin-tin orbital (LMTO) method. The positions and extents of the bands were found to follow the Wigner-Seitz rule approximately, and the origin of the dispersion of the bands was established from the canonical s...

  2. Bulk band structure of Bi2Te3

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Aguilera, Irene; Bianchi, Marco

    2014-01-01

    -electron full-potential linearized augmented-plane-wave (FLAPW) formalism, fully taking into account spin-orbit coupling. Quasiparticle effects produce significant changes in the band structure of Bi2Te3 when compared to LDA. Experimental and calculated results are compared in the spectral regions where...

  3. The role of specific features of the electronic structure in electrical resistivity of band ferromagnets Co2Fe Z ( Z = Al, Si, Ga, Ge, In, Sn, Sb)

    Science.gov (United States)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-05-01

    The electrical resistivity ρ( T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev's Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ( T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ( T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ≪ T C).

  4. Features of the core-valence luminescence and electron energy band structure of A1-xCsxCaCl3 (A = K,Rb) crystals

    International Nuclear Information System (INIS)

    Chornodolskyy, Ya; Stryganyuk, G; Syrotyuk, S; Voloshinovskii, A; Rodnyi, P

    2007-01-01

    From luminescence spectroscopy of CsCaCl 3 , Rb 1-x Cs x CaCl 3 and K 1-x Cs x CaCl 3 crystals, we have found evidence for intrinsic and impurity core-valence luminescence due to the radiative recombination of valence electrons with the holes of intrinsic or impurity 5p Cs + core states. The structural similarity of core-valence luminescence spectra has been revealed for the A 1-x Cs x CaCl 3 (A = K,Rb) crystals investigated. The electron energy structure of the CsCaCl 3 crystal has been calculated using the pseudopotential approach taking into account the gradient corrections for the exchange-correlation energy. The calculated density of the electronic states of CsCaCl 3 has been compared with corresponding parameters obtained from the analysis of core-valence luminescence spectra

  5. Band structures in near spherical 138Ce

    Science.gov (United States)

    Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.

    2009-06-01

    The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.

  6. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....

  7. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  8. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    Al'perovich, G.I.; Gusatinskij, A.N.; Geguzin, I.I.; Blokhin, M.A.; Torbov, V.I.; Chukalin, V.I.; AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem)

    1977-01-01

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  9. Simulation of the Band Structure of Graphene and Carbon Nanotube

    International Nuclear Information System (INIS)

    Mina, Aziz N; Awadallah, Attia A; Ahmed, Riham R; Phillips, Adel H

    2012-01-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model and LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  10. Hubbard-U band-structure methods

    DEFF Research Database (Denmark)

    Albers, R.C.; Christensen, Niels Egede; Svane, Axel

    2009-01-01

    The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...

  11. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  12. Measurement of valence band structure in arbitrary dielectric films

    International Nuclear Information System (INIS)

    Uhm, Han S.; Choi, Eun H.

    2012-01-01

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  13. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); McKechnie, Scott; Azarhoosh, Pooya; Schilfgaarde, Mark van [Department of Physics, Kings College London, London WC2R 2LS (United Kingdom); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-03-14

    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s{sup 2} electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3–5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  14. Band magnetism due to f-electrons

    International Nuclear Information System (INIS)

    Brodsky, M.B.; Trainor, R.J.

    1976-01-01

    Specific heat data illustrate several types of itinerant or band magnetism in actinide intermetallic compounds. The results show ferromagnetic spin fluctuations in UAl 2 with T/sub sf/ equals 25K, itinerant antiferromagnetism in NpSn 3 with T/sub N/ equals 9.5K and itinerant ferromagnetism in NpOs 2 with T/sub C/ equals 7.9K. Specific heat studies of dilute U/sub 1-x/Th/sub x/Al 2 show the theoretically predicted modifications due to impurity scattering in a spin fluctuation system. For NpSn 3 it is possible to show the BCS nature of the transition due to the gap formation

  15. Topological Classification of Crystalline Insulators through Band Structure Combinatorics

    Science.gov (United States)

    Kruthoff, Jorrit; de Boer, Jan; van Wezel, Jasper; Kane, Charles L.; Slager, Robert-Jan

    2017-10-01

    We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries. The results presented match the mathematical structure underlying the topological classification of these crystals in terms of K -theory and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological phases of spinless particles in crystals in class A . Employing this classification, we study transitions between topological phases within class A that are driven by band inversions at high-symmetry points in the first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.

  16. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liang, Le [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240 (China); Sun, Limin, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Hirano, Shinichi [Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearly determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.

  17. Imaging the Nanoscale Band Structure of Topological Sb

    OpenAIRE

    Soumyanarayanan, Anjan; Yee, Michael M.; He, Yang; Lin, Hsin; Gardner, Dillon R.; Bansil, Arun; Lee, Young S.; Hoffman, Jennifer E.

    2013-01-01

    Many promising building blocks of future electronic technology - including non-stoichiometric compounds, strongly correlated oxides, and strained or patterned films - are inhomogeneous on the nanometer length scale. Exploiting the inhomogeneity of such materials to design next-generation nanodevices requires a band structure probe with nanoscale spatial resolution. To address this demand, we report the first simultaneous observation and quantitative reconciliation of two candidate probes - La...

  18. BAND STRUCTURE OF NON-STEIOCHIOMETRIC LARGE-SIZED NANOCRYSTALLITES

    Directory of Open Access Journals (Sweden)

    I.V.Kityk

    2004-01-01

    Full Text Available A band structure of large-sized (from 20 to 35nm non-steichiometric nanocrystallites (NC of the Si2-xCx (1.04 < x < 1.10 has been investigated using different band energy approaches and a modified Car-Parinello molecular dynamics structure optimization of the NC interfaces. The non-steichiometric excess of carbon favors the appearance of a thin prevailingly carbon-contained layer (with thickness of about 1 nm covering the crystallites. As a consequence, one can observe a substantial structure reconstruction of boundary SiC crystalline layers. The numerical modeling has shown that these NC can be considered as SiC reconstructed crystalline films with thickness of about 2 nm covering the SiC crystallites. The observed data are considered within the different one-electron band structure methods. It was shown that the nano-sized carbon sheet plays a key role in a modified band structure. Independent manifestation of the important role played by the reconstructed confined layers is due to the experimentally discovered excitonic-like resonances. Low-temperature absorption measurements confirm the existence of sharp-like absorption resonances originating from the reconstructed layers.

  19. Band structure of CdTe under high pressure

    International Nuclear Information System (INIS)

    Jayam, Sr. Gerardin; Nirmala Louis, C.; Amalraj, A.

    2005-01-01

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (P M = 1.935 Mbar) and the corresponding reduced volume ((V/V 0 ) M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  20. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  1. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  2. Model Development for MODIS Thermal Band Electronic Crosstalk

    Science.gov (United States)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong

    2016-01-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation

  3. Surface band structures on Nb(001)

    International Nuclear Information System (INIS)

    Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.

    1994-01-01

    We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed

  4. Changing optical band structure with single photons

    Science.gov (United States)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  5. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  6. Ab Initio factorized LCAO calculations of the electronic band structure of ZnSe, ZnS, and the (ZnSe)1(ZnS)1 strained-layer superlattice

    International Nuclear Information System (INIS)

    Marshall, T.S.; Wilson, T.M.

    1992-01-01

    The authors report on the results of electronic band structure calculations of bulk ZnSe, bulk ZnS and the (ZnSe) 1 (ZnS) 1 , strained-layer superlattice (SLS) using the ab initio factorized linear combination of atomic orbitals method. The bulk calculations were done using the standard primitive nonrectangular 2-atom zinc blende unit cell, while the SLS calculation was done using a primitive tetragonal 4-atom unit cell modeled from the CuAu I structure. The analytic fit to the SLS crystalline potential was determined by using the nonlinear coefficients from the bulk fits. The CPU time saved by factorizing the energy matrix integrals and using a rectangular unit cell is discussed

  7. Band structural properties of MoS2 (molybdenite)

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1980-01-01

    Semiconductivity and superconductivity in MoS 2 (molybdenite) can be understood in terms of the band structure of MoS 2 . The band structural properties of MoS 2 are presented here. The energy dependence of nsub(eff) and epsilon(infinity)sub(eff) is investigated. Using calculated values of nsub(eff) and epsilon(infinity)sub(eff), the Penn gap has been determined. The value thus obtained is shown to be in good agreement with the reflectivity data and also with the value obtained from the band structure. The Ravindra and Srivastava formula has been shown to give values for the isobaric temperature gradient of Esub(G)[(deltaEsub(G)/deltaT)sub(P)], which are in agreement with the experimental data, and the contribution to (deltaEsub(G)/deltaT)sub(P) due to the electron lattice interaction has been evaluated. In addition, the electronic polarizability has been calculated using a modified Lorentz-Lorenz relation. (author)

  8. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  9. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  10. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  11. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  12. Electronic structure and electron dynamics at Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Max-Born-Institut, Berlin (Germany); Kutschera, M.; Schmidt, R.; Orth, C.; Fauster, T. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Rohlfing, M. [International University Bremen, School of Engineering and Science, P.O. Box 750 561, Bremen (Germany)

    2005-02-01

    The electronic structure and electron dynamics at a Si(100) surface is studied by two-photon photoemission (2PPE). At 90 K the occupied D{sub up} dangling-bond state is located 150{+-}50 meV below the valence-band maximum (VBM) at the center of the surface Brillouin zone anti {gamma} and exhibits an effective hole mass of (0.5{+-}0.15)m{sub e}. The unoccupied D{sub down} band has a local minimum at anti {gamma} at 650{+-}50 meV above the VBM and shows strong dispersion along the dimer rows of the c(4 x 2) reconstructed surface. At 300 K the D{sub down} position shifts comparable to the Si conduction-band minimum by 40 meV to lower energies but the dispersion of the dangling-bond states is independent of temperature. The surface band bending for p-doped silicon is less than 30 meV, while acceptor-type defects cause significant and preparation-dependent band bending on n-doped samples. 2PPE spectra of Si(100) are dominated by interband transitions between the occupied and unoccupied surface states and emission out of transiently and permanently charged surface defects. Including electron-hole interaction in many-body calculations of the quasi-particle band structure leads us to assign a dangling-bond split-off state to a quasi-one-dimensional surface exciton with a binding energy of 130 meV. Electrons resonantly excited to the unoccupied D{sub down} dangling-bond band with an excess energy of about 350 meV need 1.5{+-}0.2 ps to scatter via phonon emission to the band bottom at anti {gamma} and relax within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds. (orig.)

  13. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  14. Electronic transport properties of Ti-impurity band in Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, J; Gonzalez-Diaz, G; Pastor, D; Martil, I [Departamento de Fisica Aplicada III (Electricidad y Electronica), Facultad de Ciencias, Fisicas, Universidad Complutense, E-28040 Madrid (Spain)

    2009-04-21

    In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.

  15. Electronic transport properties of Ti-impurity band in Si

    International Nuclear Information System (INIS)

    Olea, J; Gonzalez-Diaz, G; Pastor, D; Martil, I

    2009-01-01

    In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.

  16. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  17. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  18. The use of Wannier function in the calculations of band structure of covalent crystals

    International Nuclear Information System (INIS)

    Lu Dong; Yang Guang

    1985-10-01

    A variational procedure has been used to build up Wannier functions to study the energy bands of diamond, silicon and α-tin. For the case of silicon the Wannier function, density of charge and band structure are calculated self-consistently and a simple method in a non-self-consistent way has been used to compute the band structure of diamond, silicon and α-tin. The method seems to be effective to describe the electronic properties of covalent crystals. (author)

  19. An L-Band Polarized Electron PWT Photoinjector for the International Linear Collider (ILC)

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan; Smirnov, Alexei Yu

    2005-01-01

    A multi-cell, standing-wave, L-band, p-mode, plane-wave-transformer (PWT) photoinjector with an integrated photocathode in a novel linac structure is proposed by DULY Research Inc. as a polarized electron source. The PWT photoinjector is capable of operation in ultra high vacuum and moderate field gradient. Expected performance of an L-band polarized electron PWT injector operating under the parameters for the International Linear Collider is presented. The projected normalized transverse rms emittance is an order of magnitude lower than that produced with a polarized electron dc gun followed by subharmonic bunchers.

  20. Electronic Structure of Eu6C60

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Xiong; LI Hong-Nian; XU Ya-Bo; WANG Peng; ZHANG Wen-Hua; XU Fa-Qiang

    2009-01-01

    We study the valence band of Eu-intercalated C60 by synchrotron radiation photoelectron spectroscopy to un-derstand the ferromagnetism (FM) and the giant magnetoresistance (GMR) of Eu6C60. The results reveal the semiconducting property and the remarkable 5d6s-π hybridization. Eu-C60 bonding has both ionic and covalent contributions. No more than half the 5d6s electrons transfer from Eu to the LUMO derived band of C60, and the LUMO+1 derived band is not filled. The remaining valence electrons of Eu, together with some π (LUMO, HOMO and HOMO-1) electrons, constitute the covalent bond. The electronic structure implies that the magnetic coupling in Eu6C60 should be through the intra-atomic f-sd exchange and the medium of the π electrons. The possibility of the GMR being tunnelling magnetoresistance is ruled out.

  1. A bird’s eye view on the flat and conic band world of the honeycomb and Kagome lattices: towards an understanding of 2D metal-organic frameworks electronic structure

    Science.gov (United States)

    Barreteau, C.; Ducastelle, F.; Mallah, T.

    2017-11-01

    We present a thorough tight-binding analysis of the band structure of a wide variety of lattices belonging to the class of honeycomb and Kagome systems including several mixed forms combining both lattices. The band structure of these systems are made of a combination of dispersive and flat bands. The dispersive bands possess Dirac cones (linear dispersion) at the six corners (K points) of the Brillouin zone although in peculiar cases Dirac cones at the center of the zone (Γ point) appear. The flat bands can be of different nature. Most of them are tangent to the dispersive bands at the center of the zone but some, for symmetry reasons, do not hybridize with other states. The objective of our work is to provide an analysis of a wide class of so-called ligand-decorated honeycomb Kagome lattices that are observed in a 2D metal-organic framework where the ligand occupy honeycomb sites and the metallic atoms the Kagome sites. We show that the p x -p y graphene model is relevant in these systems and there exists four types of flat bands: Kagome flat (singly degenerate) bands, two kinds of ligand-centered flat bands (A2 like and E like, respectively doubly and singly degenerate) and metal-centered (three fold degenerate) flat bands.

  2. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  3. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, Dalaver H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  4. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  5. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    Science.gov (United States)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  6. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  7. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    is obtained from an ad hoc potential based on a Dirac-Slater atomic calculation for the ground-state configuration and with full Slater exchange in the atomic as well as in the crystal potential. The selection of this best potential is justified by comparing the calculated band structure to Fermi...... of states. The present work includes a crude estimate of this surface density of states, which is derived from the bulk band structure by narrowing the d bands according to an effective number of neighbors per surface atom. Estimates of surface relaxation effects are also included.......The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...

  8. Multiple band structure in 156Er

    International Nuclear Information System (INIS)

    Sunyar, A.W.; Der Mateosian, E.; Kistner, O.C.; Johnson, A.; Lumpkin, A.H.; Thieberger, P.

    1976-01-01

    The 142 Nd( 18 O,4n) 156 Er reaction at 90-95 MeV was used to study 156 Er high-spin states to spin 24. In addition to the background ground-state band, two well developed off-spin side bands, one of each parity, were observed. (Auth.)

  9. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  10. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  11. Electrons and photons in periodic structures

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor

    . In particular, the modulation leads to the emergence of band gaps, which are accompanied by a strongly modified density of states near and within the band gap. The main focus is on two applications of such modified densities of states. Firstly, the intentional introduction of defects in an otherwise perfectly...... periodic modulation of an electron gas leads to the emergence of localized defect states with energies within the band gap, where no propagating modes exist. Secondly, the divergence of the photonic density of states near a photonic band gap leads to strongly modified light-matter interactions, which has...... of the density of states near the band gap edge. Using a perturbative approach, we demonstrate certain limits of the attainable slow down factors due to broadening of electromagnetic modes. We discuss the effect of damping due to a finite conductivity as well as structural disorder, and provide a common...

  12. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    Science.gov (United States)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  13. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  14. Design of an X-band accelerating structure using a newly developed structural optimization procedure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoxia [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fang, Wencheng; Gu, Qiang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.

  15. Theoretical approach to embed nanocrystallites into a bulk crystalline matrix and the embedding influence on the electronic band structure and optical properties of the resulting heterostructures.

    Science.gov (United States)

    Balagan, Semyon Anatolyevich; Nazarov, Vladimir U; Shevlyagin, Alexander Vladimirovich; Goroshko, Dmitrii L; Galkin, N G

    2018-05-03

    We develop an approach and present results of the combined molecular dynamics and density functional theory calculations of the structural and optical properties of the nanometer-sized crystallites embedded in a bulk crystalline matrix. The method is designed and implemented for both compatible and incompatible lattices of the nanocrystallite (NC) and the host matrix, when determining the NC optimal orientation relative to the matrix constitutes a challenging problem. We suggest and substantiate an expression for the cost function of the search algorithm, which is the energy per supercell generalized for varying number of atoms in the latter. The epitaxial relationships at the Si/NC interfaces and the optical properties are obtained and found to be in a reasonable agreement with experimental data. Dielectric functions show significant sensitivity to the NC's orientation relative to the matrix at energies below 0.5 eV. © 2018 IOP Publishing Ltd.

  16. Theoretical approach to embed nanocrystallites into a bulk crystalline matrix and the embedding influence on the electronic band structure and optical properties of the resulting heterostructures

    Science.gov (United States)

    Balagan, Semyon A.; Nazarov, Vladimir U.; Shevlyagin, Alexander V.; Goroshko, Dmitrii L.; Galkin, Nikolay G.

    2018-06-01

    We develop an approach and present results of the combined molecular dynamics and density functional theory calculations of the structural and optical properties of the nanometer-sized crystallites embedded in a bulk crystalline matrix. The method is designed and implemented for both compatible and incompatible lattices of the nanocrystallite (NC) and the host matrix, when determining the NC optimal orientation relative to the matrix constitutes a challenging problem. We suggest and substantiate an expression for the cost function of the search algorithm, which is the energy per supercell generalized for varying number of atoms in the latter. The epitaxial relationships at the Si/NC interfaces and the optical properties are obtained and found to be in a reasonable agreement with experimental data. Dielectric functions show significant sensitivity to the NC’s orientation relative to the matrix at energies below 0.5 eV.

  17. Electronic structure of shandite Co3Sn2S2

    Science.gov (United States)

    Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.

    2008-03-01

    The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.

  18. Electronic structure of silicene

    International Nuclear Information System (INIS)

    Voon, L. C. Lew Yan

    2015-01-01

    In this topical review, we discuss the electronic structure of free-standing silicene by comparing results obtained using different theoretical methods. Silicene is a single atomic layer of silicon similar to graphene. The interest in silicene is the same as for graphene, in being two-dimensional and possessing a Dirac cone. One advantage of silicene is due to its compatibility with current silicon electronics. Both empirical and first-principles techniques have been used to study the electronic properties of silicene. We will provide a brief overview of the parameter space for first-principles calculations. However, since the theory is standard, no extensive discussion will be included. Instead, we will emphasize what empirical methods can provide to such investigations and the current state of these theories. Finally, we will review the properties computed using both types of theories for free-standing silicene, with emphasis on areas where we have contributed. Comparisons to graphene is provided throughout. (topical review)

  19. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  20. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  1. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  2. The Marvels of Electromagnetic Band Gap (EBG) Structures

    Science.gov (United States)

    2003-11-01

    terminology of "Electromagnetic conference papers and journal articles dealing with Band- gaps (EBG)". Recently, many researchers the characterizations...Band Gap (EBG) Structures 9 utilized to reduce the mutual coupling between Structures: An FDTD/Prony Technique elements of antenna arrays. based on the...Band- Gap of several patents. He has had pioneering research contributions in diverse areas of electromagnetics,Snteructure", Dymposiget o l 21 IE 48

  3. Electronic structure and electron momentum density in TiSi

    Energy Technology Data Exchange (ETDEWEB)

    Ghaleb, A.M. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq); Mohammad, F.M. [Department of Physics, College of Science, University of Tikreet, Tikreet (Iraq); Sahariya, Jagrati [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Sharma, Mukesh [Physics Division, Forensic Science Laboratory, Jaipur, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)

    2013-03-01

    We report the electron momentum density in titanium monosilicide using {sup 241}Am Compton spectrometer. Experimental Compton profile has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO). The energy bands, density of states and Fermi surface structures of TiSi are reported using the LCAO and the full potential linearized augmented plane wave methods. Theoretical anisotropies in directional Compton profiles are interpreted in terms of energy bands. To confirm the conducting behavior, we also report the real space analysis of experimental Compton profile of TiSi.

  4. Amniotic band-like structures | Govender | Obstetrics and ...

    African Journals Online (AJOL)

    Intra-amniotic band-like structures are seen fairly commonly on routine obstetric scans, especially during the first and second trimesters of pregnancy. It is important to establish the cause for such findings in order to determine their clinical significance and to assess prognosis. The vast majority of band-like structures are ...

  5. Structural and electronic properties of thallium compounds

    International Nuclear Information System (INIS)

    Paliwal, Neetu; Srivastava, Vipul

    2016-01-01

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a_0), bulk modulus (B_0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  6. Structural and electronic properties of thallium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Neetu, E-mail: neetumanish@gmail.com [Department of Physics, AISECT University Bhopal, 464993 (India); Srivastava, Vipul [Department of Engineering Physics, NRI Institute of Research & Technology, Raisen Road, Bhopal, 462021 (India)

    2016-05-06

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  7. Structure of dipole bands in 106In

    International Nuclear Information System (INIS)

    Deo, A. Y.; Palit, R.; Naik, Z.; Joshi, P. K.; Mazumdar, I.; Sihotra, S.; Mehta, D.; Kumar, S.; Chakrabarti, R.; Kshetri, R.; Jain, H. C.

    2009-01-01

    High spin states in neutron-deficient 106 In were investigated using 78 Se( 32 S,p3n) reaction at 125 MeV. The level scheme is extended up to 7 MeV of excitation energy for the negative parity states constituting four dipole bands, and the positive parity states which mainly exhibit single-particle excitations are extended up to 5 MeV. Projected deformed Hartree-Fock calculations were carried out to understand the configurations of different bands in this nucleus.

  8. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    Science.gov (United States)

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  9. Infrared absorption, multiphonon processes and time reversal effect on Si and Ge band structure

    International Nuclear Information System (INIS)

    Kunert, H.W.; Machatine, A.G.J.; Malherbe, J.B.; Barnas, J.; Hoffmann, A.; Wagner, M.R.

    2008-01-01

    We have examined the effect of Time Reversal Symmetry (TRS) on vibrational modes and on the electronic band structure of Si and Ge. Most of the primary non-interacting modes are not affected by TRS. Only phonons originating from high symmetry lines S and A of the Brillouin Zone (BZ) indicate extra degeneracy. Selection rules for some two and three phonons originating from high symmetry lines are determined. The states of electrons and holes described by electronic band structure due to spin-inclusion are assigned by spinor representations of the double space group. Inclusion of the TRS into the band structure results in extra degeneracy of electrons and holes, and therefore optical selection rules suppose to be modified

  10. Collective states in 230Th: band structure

    Directory of Open Access Journals (Sweden)

    A. I. Levon

    2009-12-01

    Full Text Available Experimental data for the excited states in the deformed nucleus 230Th studied in the (p, t reaction are analyzed. Sequences of the states are selected which can be treated as rotational bands and as multiplets of excitations. Experimental data are compared with the interacting boson model (IBM and the quasiparticle-phonon model (QPM calculations.

  11. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  12. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  13. Valence band electronic structure of Nb{sub 2}Pd{sub 1.2}Se{sub 5} and Nb{sub 2}Pd{sub 0.95}S{sub 5} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2017-03-15

    We present a comparative study of our valence band photoemission results on Nb{sub 2}Pd{sub 1.2}Se{sub 5} and Nb{sub 2}Pd{sub 0.95}S{sub 5} superconductors which are supported by our DFT based electronic structure calculations. We observe that the VB spectra of both the compounds are qualitatively similar, except for some slight differences in the binding energy positions of all the features. This could be due to the unequal electronegativities of Se and S atom. The calculated density of states (DOS) reveals that the VB features are mainly composed of Pd-Se/S hybridized states. The nature of DOS originating from the distinctly coordinated Pd atoms is different. Further, various Pd-4d and Nb-4d states crossing the Fermi level (E{sub f}) signifies the multiband character of these compounds. In addition, we find a temperature dependent pseudogap in Nb{sub 2}Pd{sub 0.95}S{sub 5} which is absent in Nb{sub 2}Pd{sub 1.2}Se{sub 5}.

  14. Band structures in the nematic elastomers phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  15. Band structures in the nematic elastomers phononic crystals

    International Nuclear Information System (INIS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-01-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  16. The electronic structures of solids

    CERN Document Server

    Coles, B R

    2013-01-01

    The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co

  17. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    International Nuclear Information System (INIS)

    Li, Wei; Zhang, Qin; Kirillov, Oleg A.; Levin, Igor; Richter, Curt A.; Gundlach, David J.; Nguyen, N. V.; Bijesh, R.; Datta, S.; Liang, Yiran; Peng, Lian-Mao; Liang, Xuelei

    2014-01-01

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al 2 O 3 /InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al 2 O 3 conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al 2 O 3 valence band to the bottom of the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance

  18. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  19. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  20. Band structure and phonon properties of lithium fluoride at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  1. Band structure and phonon properties of lithium fluoride at high pressure

    International Nuclear Information System (INIS)

    Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.

    2016-01-01

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  2. Analysis on X-band structure breakdown at GLCTA

    International Nuclear Information System (INIS)

    Suehara, T.; Sanuki, T.; Komamiya, S.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Watanabe, K.; Hayakawa, A.; Tsukada, Y.

    2004-01-01

    We have built a new monitoring system for accelerator structure breakdown in the X-band high-gradient test facility at KEK (GLCTA: Global Linear Collider Test Accelerator). An X-band test structure KX01 (made by KEK) has been processed at GLCTA and we have been collecting data for about 3 months using this breakdown monitoring system. We describe overview of the monitoring system and preliminary result of breakdown analysis of the structure. (author)

  3. Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2012-01-01

    InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite InN/G...... wells and barriers one may tune band gaps over a wide spectral range, which provides flexibility in band gap engineering.......InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite In......N/GaN(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...

  4. Shell model description of band structure in 48Cr

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-01-01

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements

  5. Band structure of superlattice with δ-like potential

    International Nuclear Information System (INIS)

    Gashimzade, N.F.; Gashimzade, F.M.; Hajiev, A.T.

    1993-08-01

    Band structure of superlattice with δ-like potential has been calculated taking into account interaction of carriers of different kinds. Superlattices of semiconductors with degenerated valence band and zero-gap semiconductors have been considered. For the latter semimetal-semiconductor transition has been obtained. (author). 8 refs, 1 fig

  6. Band structure of ABC-trilayer graphene superlattice

    International Nuclear Information System (INIS)

    Uddin, Salah; Chan, K. S.

    2014-01-01

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k y direction for k x  = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case

  7. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    Science.gov (United States)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  8. Enhancement of phononic band gaps in ternary/binary structure

    International Nuclear Information System (INIS)

    Aly, Arafa H.; Mehaney, Ahmed

    2012-01-01

    Based on the transfer matrix method (TMM) and Bloch theory, the interaction of elastic waves (normal incidence) with 1D phononic crystal had been studied. The transfer matrix method was obtained for both longitudinal and transverse waves by applying the continuity conditions between the consecutive unit cells. Dispersion relations are calculated and plotted for both binary and ternary structures. Also we have investigated the corresponding effects on the band gaps values for the two types of phononic crystals. Furthermore, it can be observed that the complete band gaps are located in the common frequency stop-band regions. Numerical simulations are performed to investigate the effect of different thickness ratios inside each unit cell on the band gap values, as well as unit cells thickness on the central band gap frequency. These phononic band gap materials can be used as a filter for elastic waves at different frequencies values.

  9. Tunable band structures in digital oxides with layered crystal habits

    Science.gov (United States)

    Shin, Yongjin; Rondinelli, James M.

    2017-11-01

    We use density functional calculations to show that heterovalent cation-order sequences enable control over band-gap variations up to several eV and band-gap closure in the bulk band insulator LaSrAlO4. The band-gap control originates from the internal electric fields induced by the digital chemical order, which induces picoscale band bending; the electric-field magnitude is mainly governed by the inequivalent charged monoxide layers afforded by the layered crystal habit. Charge transfer and ionic relaxations across these layers play secondary roles. This understanding is used to construct and validate a descriptor that captures the layer-charge variation and to predict changes in the electronic gap in layered oxides exhibiting antisite defects and in other chemistries.

  10. Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

    International Nuclear Information System (INIS)

    Izuani Che Rosid, N A; Ahmadi, M T; Ismail, Razali

    2016-01-01

    The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. (paper)

  11. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress

    International Nuclear Information System (INIS)

    Wang Yi-Ze; Li Feng-Ming

    2012-01-01

    The propagation of elastic waves in magnetoelectroelastic grid structures is studied. Band gap properties are presented and the effects of the magnetoelectroelastic coupling and initial stress are considered. Numerical calculations are performed using the plane-wave expansion method. The results show that the band gap width can be tuned by the initial stress. It is hoped that our results will be helpful for designing acoustic filters with magnetoelectroelastic materials and grid structures

  12. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  13. Rotational band structure in 132La

    International Nuclear Information System (INIS)

    Oliveira, J.R.B.; Emediato, L.G.R.; Rizzutto, M.A.; Ribas, R.V.; Seale, W.A.; Rao, M.N.; Medina, N.H.; Botelho, S.; Cybulska, E.W.

    1989-01-01

    '3'2La was studied using on-line gamma-spectroscopy through the reactions '1 24,126 Te( 11,10 B, 3, 4n) 132 La. The excitation function was obtained with 10 B(E lab =41.4; 45.4 and 48 MeV) in order to identify 132 La gamma-transitions. Gamma-gamma coincidences and angular distributions were performed for the 126 Te( 10 B, 4n) 132 La reaction. From the experimental results a rotational band with strongest M1 transitions and less intense 'cross-overs' E2 transitions was constructed. Using the methods of Bengtsson and Frauendorf the alignment (ix) and the Routhian (e') as a function of the angular velocity (ω) were also obtained from the experimental data. It was observed a constant alignment up to ω≅0.4 MeV, and a signature-splitting Δe'=25keV. Preliminary triaxial Cranking-Shell Model calculations indicate that a γ=-8deg deformation is consistent with the signature-splitting value of 25 keV experimentally observed. (Author) [es

  14. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Our study gives insight into possible deformed structures at spherical shell closure. ... Considerable experimental and theoretical efforts ... True deformation effects can be seen only by considering configuration mixing.

  15. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  16. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  17. Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.

    Science.gov (United States)

    Dixit, H; Lamoen, D; Partoens, B

    2013-01-23

    CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.

  18. Experimental Benchmarking of Pu Electronic Structure

    International Nuclear Information System (INIS)

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, N.E. Jr.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-01-01

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  19. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  20. Electronic structure study of wide band gap magnetic semiconductor (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} nanocrystals in paramagnetic and ferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, G. D.; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L. [Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Joshi, Amish G. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Shiv; Ghosh, A. K. [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Chatterjee, Sandip, E-mail: schatterji.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-04-25

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} near Fermi-level. XMCD results indicate that Mn{sup 3+} and Mn{sup 4+} spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below T{sub C}. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  1. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    International Nuclear Information System (INIS)

    Kevin Jerome Sutherland

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ((mu)TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods

  2. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  3. Cherenkov oscillator operating at the second band gap of leakage waveguide structures

    Directory of Open Access Journals (Sweden)

    Kyu-Ha Jang

    2016-10-01

    Full Text Available An electromagnetic wave source operating around second band gaps of metallic grating structures is presented. The considered metallic grating structures are not perfect periodic but inhomogeneously structured within a period to have a second band gap where the wavelength is equal to the period of the structures. The radiation mechanism by an electron beam in the structures is different from the well-known Smith-Purcell radiation occurring in perfect periodic grating structures. That is, the radiating wave has a single frequency and the radiation is unidirectional. When the energy of the electron beam is synchronized at the standing wave point in the dispersion curves, strong interaction happens and coherent radiation perpendicular to the grating surface is generated with relatively lower starting oscillation current.

  4. Band structure and optical properties of opal photonic crystals

    OpenAIRE

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-01-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order...

  5. Solving complex band structure problems with the FEAST eigenvalue algorithm

    Science.gov (United States)

    Laux, S. E.

    2012-08-01

    With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.

  6. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  7. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    Science.gov (United States)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  8. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    Mishra, P; Lohani, H; Sekhar, B R; Kundu, A K; Menon, Krishnakumar S R; Patel, R; Solanki, G K

    2015-01-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4p z orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  9. Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex

    International Nuclear Information System (INIS)

    Yang, G.; Lee, S.; Furdyna, J. K.

    2000-01-01

    This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society

  10. Three new chalcohalides, Ba4Ge2PbS8Br2, Ba4Ge2PbSe8Br2 and Ba4Ge2SnS8Br2: Syntheses, crystal structures, band gaps, and electronic structures

    International Nuclear Information System (INIS)

    Lin, Zuohong; Feng, Kai; Tu, Heng; Kang, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng

    2014-01-01

    Highlights: • Three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized. • The MQ 5 Br octahedra and GeQ 4 tetrahedra form a three-dimensional framework with Ba 2+ in the channels. • Band Gaps and electronic structures of the three compounds were studied. - Abstract: Single crystals of three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized for the first time. These isostructural compounds crystallize in the orthorhombic space group Pnma. In the structure, the tetra-valent Ge atom is tetrahedrally coordinated with four Q (Q = S, Se) atoms, while the bi-valent M atom (M = Pb, Sn) is coordinated with an obviously distorted octahedron of five Q (Q = S, Se) atoms and one Br atom, showing the stereochemical activity of the ns 2 lone pair electron. The MQ 5 Br (M = Sn, Pb; Q = S, Se) distorted octahedra and the GeQ 4 (Q = S, Se) tetrahedra are connected to each other to form a three-dimensional framework with channels occupied by Ba 2+ cations. Based on UV–vis–NIR spectroscopy measurements and the electronic structure calculations, Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have indirect band gaps of 2.054, 1.952, and 2.066 eV respectively, which are mainly determined by the orbitals from the Ge, M and Q atoms (M = Pb, Sn; Q = S, Se)

  11. Effect of correlation on the band structure of α-cerium

    International Nuclear Information System (INIS)

    Rao, R.S.; Singh, R.P.

    1975-01-01

    The electronic band structure of f.c.c. phase of the rare earth metal cerium (α-cerium) has been calculated using a formulation of the crystal potential where correlation also has been included in addition to exchange. The Green's function method of Korringa-Kohn and Rostoker has been used due to obvious advantages in calculation. The calculations indicate that the s-d bands are hybridized with the f-levels but the f-bands are fairly narrow and lie slightly above the Fermi level. The structure of the bands is qualitatively similar to those of calculations by others except for a general shift of the entire set of bands by about 0.1 Ryd. Thd density of states has also been calculated from the bands obtained. The spin susceptibility of α-cerium has also been calculated using the Kohn-Sham method. However, the calculated additional contributions to the band structure values cannot still explain the large experimental values reported in the literature. (author)

  12. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-consistent, relativistic, ferromagnetic band structure of gadolinium

    International Nuclear Information System (INIS)

    Harmon, B.N.; Schirber, J.; Koelling, D.D.

    1977-01-01

    An initial self-consistent calculation of the ground state magnetic band structure of gadolinium is described. A linearized APW method was used which included all single particle relativistic effects except spin-orbit coupling. The spin polarized potential was obtained in the muffin-tin form using the local spin density approximation for exchange and correlation. The most striking and unorthodox aspect of the results is the position of the 4f spin-down ''bands'' which are required to float just on top of the Fermi level in order to obtain convergence. If the 4f states (l = 3 resonance) are removed from the occupied region of the conduction bands the magnetic moment is approximately .75 μ/sub B//atom; however, as the 4f spin-down states are allowed to find their own position they hybridize with the conduction bands at the Fermi level and the moment becomes smaller. Means of improving the calculation are discussed

  14. Structural study and electronic band structure investigations of the solid solution Na xCu1-xIn5S8 and its impact on the Cu(In,Ga)Se2/In2S3 interface of solar cells

    International Nuclear Information System (INIS)

    Lafond, A.; Guillot-Deudon, C.; Harel, S.; Mokrani, A.; Barreau, N.; Gall, S.; Kessler, J.

    2007-01-01

    The present work reports investigations on the new In 2 S 3 containing Cu and/or Na compounds, which are expected to be formed at the Cu(In,Ga)Se 2 /In 2 S 3 interface. The knowledge of these materials properties is very important in order to better understand the operation of the devices based on these junction partners. It has been observed that a solid solution Na x Cu 1-x In 5 S 8 exists from CuIn 5 S 8 (x = 0) to NaIn 5 S 8 (x = 1) with a spinel-like structure. The single crystal structure determination shows that indium, copper and sodium atoms are statistically distributed on the tetrahedral sites. XPS investigations on the CuIn 5 S 8 , Na 0.5 Cu 0.5 In 5 S 8 and NaIn 5 S 8 compounds combined with the band gap changes reported in a previous work show that these variations are mainly due to valence band maximum shift; it is moved downward when x increases from 0 to 1. These observations are confirmed by the electron structure calculations based on the density functional theory, which additionally demonstrate that the pure sodium compound has direct gap whereas the copper-containing compounds have indirect gaps

  15. Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron

    Directory of Open Access Journals (Sweden)

    Hong-Sub Lee

    2015-01-01

    Full Text Available Oxide semiconductors and their application in next-generation devices have received a great deal of attention due to their various optical, electric, and magnetic properties. For various applications, an understanding of these properties and their mechanisms is also very important. Various characteristics of these oxides originate from the band structure. In this study, we introduce a band structure analysis technique using a soft X-ray energy source to study a La0.7Sr0.3MnO3 (LSMO oxide semiconductor. The band structure is formed by a valence band, conduction band, band gap, work function, and electron affinity. These can be determined from secondary electron cut-off, valence band spectrum, O 1s core electron, and O K-edge measurements using synchrotron radiation. A detailed analysis of the band structure of the LSMO perovskite manganite oxide semiconductor thin film was established using these techniques.

  16. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  17. Electronic structure of superlattices

    International Nuclear Information System (INIS)

    Altarelli, M.

    1987-01-01

    Calculations of electronic states in semiconductor superlattices are briefly reviewed, with emphasis on the envelope-function method and on comparison with experiments. The energy levels in presence of external magnetic fields are discussed and compared to magneto-optical experiments. (author) [pt

  18. Novel structural flexibility identification in narrow frequency bands

    International Nuclear Information System (INIS)

    Zhang, J; Moon, F L

    2012-01-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)

  19. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...... in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating...

  20. Observation of dark-current signals from the S-band structures of the SLAC linac

    International Nuclear Information System (INIS)

    Assmann, R.; Decker, F.J.; Seidel, M.; Siemann, R.H.; Whittum, D.

    1997-07-01

    It is well known that the electro-magnetic fields in high-gradient RF structures can cause electron emission from the metallic structure walls. If the emitted electrons are captured and accelerated by the accelerating fields so-called dark-current is induced. Dark-currents have been measured and studied for various RF-structures. In this paper the authors present measurements of RF induced signals for the SLC S-band structures. For nominal gradients of 17 MV/m it is shown that the dark-current can be strong enough to significantly reduce the signal-to-noise ratio of the SLC beam wire scanners. They also show results from RF measurements in the dipole band. The measurements are compared to more direct observations of dark-current and it is tried to connect the results to possible effects on the accelerated particle beam

  1. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  2. Electronics for Piezoelectric Smart Structures

    Science.gov (United States)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  3. Tunable band structures of polycrystalline graphene by external and mismatch strains

    Institute of Scientific and Technical Information of China (English)

    Jiang-Tao Wu; Xing-Hua Shi; Yu-Jie Wei

    2012-01-01

    Lacking a band gap largely limits the application of graphene in electronic devices.Previous study shows that grain boundaries (GBs) in polycrystalline graphene can dramatically alter the electrical properties of graphene.Here,we investigate the band structure of polycrystalline graphene tuned by externally imposed strains and intrinsic mismatch strains at the GB by density functional theory (DFT) calculations.We found that graphene with symmetrical GBs typically has zero band gap even with large uniaxial and biaxial strain.However,some particular asymmetrical GBs can open a band gap in graphene and their band structures can be substantially tuned by external strains.A maximum band gap about 0.19 eV was observed in matched-armchair GB (5,5) | (3,7) with a misorientation of θ =13° when the applied uniaxial strain increases to 9%.Although mismatch strain is inevitable in asymmetrical GBs,it has a small influence on the band gap of polycrystalline graphene.

  4. Mechanisms of fine extinction band development in vein quartz: new insights from correlative light and electron microscopy

    Science.gov (United States)

    Derez, Tine; Van Der Donck, Tom; Plümper, Oliver; Muchez, Philippe; Pennock, Gill; Drury, Martyn R.; Sintubin, Manuel

    2017-07-01

    Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.

  5. Electronic structure and equilibrium properties of hcp titanium

    Indian Academy of Sciences (India)

    The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and ...

  6. The structure of collective bands in 72Ge

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Sahu, R.

    1999-01-01

    In recent years, extensive experimental studies of nuclei in the mass region A=80 have led to exciting discoveries of large ground state deformations, coexistence of shapes, band crossings, rapid variations of structure with changing nucleon numbers etc. A theoretical study of 72 Ge is presented

  7. Doping-dependent quasiparticle band structure in cuprate superconductors

    NARCIS (Netherlands)

    Eder, R; Ohta, Y.; Sawatzky, G.A

    1997-01-01

    We present an exact diagonalization study of the single-particle spectral function in the so-called t-t'-t ''-J model in two dimensions. As a key result, we find that hole doping leads to a major reconstruction of the quasiparticle band structure near (pi,0): whereas for the undoped system the

  8. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lower...

  9. Band-to-Band Tunneling-Dominated Thermo-Enhanced Field Electron Emission from p-Si/ZnO Nanoemitters.

    Science.gov (United States)

    Huang, Zhizhen; Huang, Yifeng; Xu, Ningsheng; Chen, Jun; She, Juncong; Deng, Shaozhi

    2018-06-13

    Thermo-enhancement is an effective way to achieve high performance field electron emitters, and enables the individually tuning on the emission current by temperature and the electron energy by voltage. The field emission current from metal or n-doped semiconductor emitter at a relatively lower temperature (i.e., current saturation was observed in the thermo-enhanced field emission measurements. The emission current density showed about ten-time enhancement (from 1.31 to 12.11 mA/cm 2 at 60.6 MV/m) by increasing the temperature from 323 to 623 K. The distinctive performance did not agree with the interband excitation mechanism but well-fit to the band-to-band tunneling model. The strong thermo-enhancement was proposed to be benefit from the increase of band-to-band tunneling probability at the surface portion of the p-Si/ZnO nanojunction. This work provides promising cathode for portable X-ray tubes/panel, ionization vacuum gauges and low energy electron beam lithography, in where electron-dose control at a fixed energy is needed.

  10. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    International Nuclear Information System (INIS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-01-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M   =  Mo, W; X   =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)

  11. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  12. Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations

    Science.gov (United States)

    Gupta, M.; Singh, D. J.; Gupta, R.

    2005-03-01

    The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.

  13. Calculation of band alignments and quantum confinement effects in zero- and one-dimensional pseudomorphic structures

    International Nuclear Information System (INIS)

    Yang, M.; Sturm, J.C.; Prevost, J.

    1997-01-01

    The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudomorphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been studied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that in the conventional two-dimensional (2D) pseudomorphic growth case. The models are first applied to an ideal spherical and cylindrical Si 1-x Ge x particle in a large Si matrix. In contrast to the 2D case, the band alignments for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band edge of the Si matrix are both significantly lower than those in the Si 1-x Ge x inclusion, respectively. Band lineups and the lowest electron endash heavy-hole transition energies of a pseudomorphic V-groove Si 1-x Ge x quantum wire inside a large Si matrix have been calculated numerically for different size structures. The photoluminescence energies of a large Si 1-x Ge x V-groove structure on Si will be lower than those of conventional 2D strained Si 1-x Ge x for similar Ge contents. copyright 1997 The American Physical Society

  14. Electron band theory predictions and the construction of phase diagrams

    International Nuclear Information System (INIS)

    Watson, R.E.; Bennett, L.H.; Davenport, J.W.; Weinert, M.

    1985-01-01

    The a priori theory of metals is yielding energy results which are relevant to the construction of phase diagrams - to the solution phases as well as to line compounds. There is a wide range in the rigor of the calculations currently being done and this is discussed. Calculations for the structural stabilities (fcc vs bcc vs hcp) of the elemental metals, quantities which are employed in the constructs of the terminal phases, are reviewed and shown to be inconsistent with the values currently employed in such constructs (also see Miodownik elsewhere in this volume). Finally, as an example, the calculated heats of formation are compared with experiment for PtHf, IrTa and OsW, three compounds with the same electron to atom ratio but different bonding properties

  15. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Miller, D.L.

    1979-01-01

    KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron--electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic pseudopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron--electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom

  16. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Miller, D.L.

    1979-01-01

    KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron-electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic psuedopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron-electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical psuedopotentials. Nitrogen impurity levles in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom

  17. Orbital approach to the electronic structure of solids

    CERN Document Server

    Canadell, Enric; Iung, Christophe

    2012-01-01

    This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understandingproperties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to ei

  18. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  19. Photo field emission spectroscopy of the tantalum band structure

    International Nuclear Information System (INIS)

    Kleint, Ch.; Radon, T.

    1978-01-01

    Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)

  20. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  1. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  2. Polarimetric and Structural Properties of a Boreal Forest at P-Band and L-Band

    Science.gov (United States)

    Tebaldini, S.; Rocca, F.

    2010-12-01

    With this paper we investigate the structural and polarimetric of the boreal forest within the Krycklan river catchment, Northern Sweden, basing on multi-polarimetric and multi-baseline SAR surveys at P-Band and L-Band collected in the framework of the ESA campaign BioSAR 2008. The analysis has been carried out by applying the Algebraic Synthesis (AS) technique, recently introduced in literature, which provides a theoretical framework for the decomposition of the backscattered signal into ground-only and volume-only contributions, basing on both baseline and polarization diversity. The availability of multiple baselines allows the formation of a synthetic aperture not only along the azimuth direction but also in elevation. Accordingly, the backscattered echoes can be focused not only in the slant range, azimuth plane, but in the whole 3D space. This is the rationale of the SAR Tomography (T-SAR) concept, which has been widely considered in the literature of the last years. It follows that, as long as the penetration in the scattering volume is guaranteed, the vertical profile of the vegetation layer is retrieved by separating backscatter contributions along the vertical direction, which is the main reason for the exploitation of Tomographic techniques at longer wavelengths. Still, the capabilities of T-SAR are limited to imaging the global vertical structure of the electromagnetic scattering in a certain polarization. It then becomes important to develop methodologies for the investigation of the vertical structure of different Scattering Mechanisms (SMs), such as ground and volume scattering, in such a way as to derive information that can be delivered also outside the field of Radar processing. This is an issue that may become relevant at longer wavelengths, such as P-Band, where the presence of multiple scattering arising from the interaction with terrain could hinder the correct reconstruction of the forest structure. The availability of multiple polarizations

  3. Mid-frequency Band Dynamics of Large Space Structures

    Science.gov (United States)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  4. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  5. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  6. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    Science.gov (United States)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  7. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have ...

  8. Study of band structure of some odd proton Eu isotopes

    International Nuclear Information System (INIS)

    Pandit, Rakesh K.; Rani Devi; Khosa, S.K.

    2016-01-01

    Much work has been done on the odd-Z, odd-A nuclei in the rare earth region because of occurrence of fascinating variety of structures of nuclei in this mass region. The Eu nuclei are in the transitional deformation region and it provides an opportunity to investigate theoretically the deformation changes with mass number and excitation energy besides to study the structure of their excited states. The 153 Eu nucleus has been well studied over the last two decades. The aim of the present work is to study in detail the band structure of some odd-Z nuclei

  9. Band structure of germanium carbides for direct bandgap silicon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, C. A., E-mail: cstephe3@nd.edu; Stillwell, R. A.; Wistey, M. A. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); O' Brien, W. A. [Rigetti Quantum Computing, 775 Heinz Avenue, Berkeley, California 94710 (United States); Penninger, M. W. [Honeywell UOP, Des Plaines, Illinois 60016 (United States); Schneider, W. F. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Gillett-Kunnath, M. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zajicek, J. [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Yu, K. M. [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Kudrawiec, R. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-08-07

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge{sub 1−x}C{sub x} (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge{sub 0.998}C{sub 0.002} shows a bandgap reduction supporting these results. Growth of Ge{sub 0.998}C{sub 0.002} using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III–V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  10. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  11. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    Science.gov (United States)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  12. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  13. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  14. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  15. Importance of complex band structure and resonant states for tunneling

    Czech Academy of Sciences Publication Activity Database

    Dederichs, P. H.; Mavropoulos, Ph.; Wunnicke, O.; Papanikolaou, N.; Bellini, V.; Zeller, R.; Drchal, Václav; Kudrnovský, Josef

    2002-01-01

    Roč. 240, - (2002), s. 108-113 ISSN 0304-8853 R&D Projects: GA AV ČR IAA1010829; GA ČR GA202/00/0122; GA MŠk OC P5.30 Grant - others:TSR(XX) 01398 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * tunneling * band structure * interface effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  16. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    Science.gov (United States)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  17. Border Structure of Intercalary Heterochromatin Bands of Drosophila melanogaster Polytene Chromosomes.

    Science.gov (United States)

    Khoroshko, V A; Zykova, T Yu; Popova, O O; Zhimulev, I F

    2018-03-01

    The precise genomic localization of the borders of 62 intercalary heterochromatin bands in Drosophila polytene chromosomes was determined. A new type of bands containing chromatin of different states was identified. This type is a combination of the gray band and the intercalary heterochromatin band, creating a genetic structure that with a light microscope is identified as a continuous band. The border structure of such bands includes the coding regions of genes with ubiquitous activity.

  18. Giant modulation of the electronic band gap of carbon nanotubes by dielectric screening

    NARCIS (Netherlands)

    Aspitarte, Lee; McCulley, Daniel R.; Bertoni, Andrea; Island, J.O.; Ostermann, Marvin; Rontani, Massimo; Steele, G.A.; Minot, Ethan D.

    2017-01-01

    Carbon nanotubes (CNTs) are a promising material for high-performance electronics beyond silicon. But unlike silicon, the nature of the transport band gap in CNTs is not fully understood. The transport gap in CNTs is predicted to be strongly driven by electron-electron (e-e) interactions and

  19. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Swarts, C.A.

    1979-01-01

    The results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, the pseudopotential method, Hartree-Fock theory as evaluated by Kennedy and Manson, and Amusia's random phase approximation with exchange (RPAE). Extended Huekel theory is applied to GaAs, GaP, and to the nitrogen isoelectronic trap in GaAs and GaP. The computer perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. By means of model calculations for an independent electron metal, exact lineshapes are obtained for the photon absorption, emission and photoemission spectra of deep core states. 97 references

  20. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  1. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  2. Self-consistent field variational cellular method as applied to the band structure calculation of sodium

    International Nuclear Information System (INIS)

    Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.

    1988-01-01

    The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt

  3. Measurement of the band gap by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)

    2016-10-15

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  4. Measurement of the band gap by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Vos, Maarten; King, Sean W.; French, Benjamin L.

    2016-01-01

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  5. Ka-Band Electronically Steered CubeSat Antenna, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Kymeta Government Solutions (KGS) designed, analyzed, built, tested, and delivered a small, lightweight, low-cost, low-power electronically steered Ka-band prototype...

  6. Electronic pairing mechanism due to band modification with increasing pair number

    International Nuclear Information System (INIS)

    Mizia, J.

    1995-01-01

    It is shown that a shift of an electron band with electron occupation number n, which is changing during the transition to the superconducting state, can lower the total energy of the system. In fact it will bring a negative contribution to the pairing potential, which is proportional to the product of the electron band shift with occupation number and the charge transfer during the transition to the superconducting state. The shift of the electron band comes from the change of stresses and the change of correlation effects in the CuO 2 plane with n, that in turn is caused by the changing oxygen concentration. This model explains the phenomenological success of Hirsch's model, which gives no explanation how the band shift in energy can give rise to superconductivity. (orig.)

  7. Theoretical study of electronic absorption spectroscopy of propadienylidene molecule vis-â-vis the observed diffuse interstellar bands

    International Nuclear Information System (INIS)

    Reddy, Samala Nagaprasad; Mahapatra, S.

    2012-01-01

    Highlights: ► Theoretical study of spectroscopy and dynamics of electronically excited l-C 3 H 2 . ► Construction of ab initio electronic potential energy and diabatic coupling surfaces. ► First principles study of nuclear dynamics on excited electronic states. ► Findings reveal l-C 3 H 2 is a potential molecular carrier of diffuse interstellar bands. ► Electronically excited l-C 3 H 2 decays by ultrafast nonradiative internal conversion. -- Abstract: Observation of broad and diffuse interstellar bands (DIBs) at 4881 Å and 5440 Å assigned to the optical absorption spectrum of Y-shaped propadienylidene (H 2 C=C=C:) molecule is theoretically examined in this paper. This molecule apparently absorbs in the same wavelength region as the observed DIBs and was suggested to be a potential carrier of these DIBs. This assignment mostly relied on the experimental data from radioastronomy and laboratory measurements. Motivated by these available experimental data we attempt here a theoretical study and investigate the detailed electronic structure and nuclear dynamics underlying the electronic absorption bands of propadienylidene molecule. Our results show that this molecule indeed absorbs in the wavelength region of the recorded DIBs. Strong nonadiabatic coupling between its energetically low-lying electronic states plays major role, initiates ultrafast internal conversion and contributes to the spectral broadening. Theoretical findings are finally compared with the available experimental and theoretical data and discussed in connection with the recorded DIBs.

  8. Band structure of hydrogenated Si nanosheets and nanotubes

    International Nuclear Information System (INIS)

    Guzman-Verri, G G; Lew Yan Voon, L C

    2011-01-01

    The band structures of fully hydrogenated Si nanosheets and nanotubes are elucidated by the use of an empirical tight-binding model. The hydrogenated Si sheet is a semiconductor with an indirect band gap of about 2.2 eV. The symmetries of the wavefunctions allow us to explain the origin of the gap. We predict that, for certain chiralities, hydrogenated Si nanotubes represent a new type of semiconductor, one with coexisting direct and indirect gaps of exactly the same magnitude. This behavior is different from that governed by the Hamada rule established for non-hydrogenated carbon and silicon nanotubes. A comparison to the results of an ab initio calculation is made.

  9. Tunneling emission of electrons from semiconductors' valence bands in high electric fields

    International Nuclear Information System (INIS)

    Kalganov, V. D.; Mileshkina, N. V.; Ostroumova, E. V.

    2006-01-01

    Tunneling emission currents of electrons from semiconductors to vacuum (needle-shaped GaAs photodetectors) and to a metal (silicon metal-insulator-semiconductor diodes with a tunneling-transparent insulator layer) are studied in high and ultrahigh electric fields. It is shown that, in semiconductors with the n-type conductivity, the major contribution to the emission current is made by the tunneling emission of electrons from the valence band of the semiconductor, rather than from the conduction band

  10. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  11. Formation of Electron Strings in Narrow Band Polar Semiconductors

    Science.gov (United States)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  12. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-01

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  13. Atomic and electronic structures of divacancy in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei Jianwei [School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between {pi}{sup Low-Asterisk} and {pi} subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.

  14. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  15. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.

    1998-01-01

    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  16. Electron scattering from the octupole band in 238U

    International Nuclear Information System (INIS)

    Hirsch, A.; Creswell, C.; Bertozzi, W.; Heisenberg, J.; Hynes, M.V.; Kowalski, S.; Miska, H.; Norum, B.; Rad, F.N.; Sargent, C.P.; Sasanuma, T.; Turchinetz, W.

    1978-01-01

    A simple model for nuclear surface vibrations in permanently deformed nuclei does well in reproducing electron scattering cross sections of rotational levels built on a K/sup π/= 0 - intrinsic octupole vibration in 238 U

  17. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  18. Influence of strain on band structure of semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Raičević Nevena

    2009-01-01

    Full Text Available The influence of the mechanical strain on the electronic structure of the asymmetric (In,GaAs/GaAs quantum well is considered. Both the direct influence of strain on the orbital part of the electronic structure and an indirect influence through the strain dependent Rashba and Dresselhaus Hamiltonians are taken into account. The analyzed quantum well is taken to have a triangular shape, and is oriented along the direction. For this direction, there exists both the intrinsic and strain-induced spin-orbit interaction. For all analyzed types of spin-orbit interaction, subband splittings depend linearly on the in-plane wave vector. On the other hand, the electronic structure for the Rashba type of the strain-induced spin-orbit interaction shows isotropic dependence in the k-space, while the electronic structure due to the Dresselhaus type shows anisotropy. Furthermore, the Rashba strain-induced spin-orbit interaction increases subband splitting, while the effect of the Dresselhaus Hamiltonian on the electronic structure is opposite to the intrinsic spin-orbit interaction for certain polar angles.

  19. Towards double-functionalized small diamondoids: selective electronic band-gap tuning

    International Nuclear Information System (INIS)

    Adhikari, Bibek; Fyta, Maria

    2015-01-01

    Diamondoids are nanoscale diamond-like cage structures with hydrogen terminations, which can occur in various sizes and with a diverse type of modifications. In this work, we focus on the structural alterations and the effect of doping and functionalization on the electronic properties of diamondoids, from the smallest adamantane to heptamantane. The results are based on quantum mechanical calculations. We perform a self-consistent study, starting with doping the smallest diamondoid, adamantane. Boron, nitrogen, silicon, oxygen, and phosphorus are chosen as dopants at sites which have been previously optimized and are also consistent with the literature. At a next step, an amine- and a thiol- group are separately used to functionalize the adamantane molecule. We mainly focus on a double functionalization of diamondoids up to heptamantane using both these atomic groups. The effect of isomeration in the case of tetramantane is also studied. We discuss the higher efficiency of a double-functionalization compared to doping or a single-functionalization of diamondoids in tuning the electronic properties, such as the electronic band-gap, of modified small diamondoids in view of their novel nanotechnological applications. (paper)

  20. Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications

    International Nuclear Information System (INIS)

    Bierwagen, Oliver

    2015-01-01

    The present review takes a semiconductor physics perspective to summarize the state-of-the art of In 2 O 3 in relation to applications. After discussing conventional and novel applications, the crystal structure, synthesis of single-crystalline material, band-structure and optical transparency are briefly introduced before focussing on the charge carrier transport properties. The issues of unintentional n-type conductivity and its likely causes, the surface electron accumulation, and the lack of p-type conductivity will be presented. Intentional doping will be demonstrated to control the electron concentration and resistivity over a wide range, but is also subject to compensation. The control of the surface accumulation in relation to Schottky and ohmic contacts will be demonstrated. In the context of scattering mechanisms, the electron mobility and its limits will be discussed. Finally, the Seebeck coefficient and its significance will be shown, and ferromagnetic doping of In 2 O 3 will be critically discussed. With this overview most if not all ingredients for the use of In 2 O 3 as semiconductor material in novel or improved conventional devices will be given. (invited review)

  1. Effect of initial structure on strengthening and properties of the 35NKhTYu alloy bands

    International Nuclear Information System (INIS)

    Vorontsov, N.M.; Shugaenko, V.K.; Drapiko, P.E.; Chernyakova, L.E.; Patseka, R.F.

    1978-01-01

    Variation in the structure, mechanical strength, plasticity, and elasticity of thin (about 0.15 mm thick) bands of 36NKhTYu alloy after their cold rolling to the reduction degree up to 70% was examined. The influence of the cold plastic deformation on the dislocation structure of the alloy has been determined. By resorting to the method of transmission electron microscopy, the distribution of dislocations depending on the reduction degree has been shown. The character of the influence of the initial structure of bands after their plastic deformation on the process of decomposition of the solid solution and the formation of γ 1 -phase in tempering and a variation in the mechanical properties of 36NKhTYu alloy have been established

  2. Relativistic band-structure calculations for CeTIn sub 5 (T=Ir and Co) and analysis of the energy bands by using tight-binding method

    CERN Document Server

    Maehira, T; Ueda, K; Hasegawa, A

    2003-01-01

    In order to investigate electronic properties of recently discovered heavy fermion superconductors CeTIn sub 5 (T=Ir and Co), we employ the relativistic linear augmented-plane-wave (RLAPW) method to clarify the energy band structures and Fermi surfaces of those materials. The obtained energy bands mainly due to the large hybridization between Ce 4 f and In 5 p states well reproduce the Fermi surfaces consistent with the de Haas-van Alphen experimental results. However, when we attempt to understand magnetism and superconductively in CeTIn sub 5 from the microscopic viewpoint, the energy bands obtained in the RLAPW method are too complicated to analyze the system by further including electron correlations. Thus, it is necessary to prepare a more simplified model, keeping correctly the essential characters of the energy bands obtained in the band-structure calculation. For the purpose, we construct a tight-binding model for CeTIn sub 5 by including f-f and p-p hoppings as well as f-p hybridization, which are ex...

  3. Band structure and dielectric function of TlInTe2

    International Nuclear Information System (INIS)

    Wakita, K.; Shim, Y.; Orudzhev, G.; Mamedov, N.; Hashimzade, F.

    2006-01-01

    The band structure of ternary chain TlInTe 2 was calculated with allowance for non-locality of ionic pseudo-potentials. The dielectric function, as well as the effective masses of holes and electrons, the effective number of valence electrons, and the function of characteristic losses were determined. The results of comparison between the calculated dielectric function and the one obtained ellipsometrically in the spectral range from 0.85 to 6 eV are quite favorable. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Electronic structure characterization and bandgap engineering of solar hydrogen materials

    International Nuclear Information System (INIS)

    Guo, Jinghua

    2007-01-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe 2 O 3 and ZnO

  5. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Ge {111} and {211} Surface Layers.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael Hsuan-Yi

    2018-05-21

    To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The quasiparticle band structure of zincblende and rocksalt ZnO.

    Science.gov (United States)

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2010-03-31

    We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.

  7. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  8. Band resolution of optical spectra of solvated electrons in water, alcohols, and tetrahydrofuran

    International Nuclear Information System (INIS)

    Jou, F.-Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in water, alcohols, and tetrahydrofuran are empirically resolved into two Gaussian bands and a continuum tail. The first Gaussian band covers most of the low energy side of the spectrum. The second Gaussian band lies at an energy slightly above that of the absorption maximum of the total spectrum. With the exception of tert-butyl alcohol, in water and alcohols the following were observed: (a) the first Gaussian bands have the same half-width, but the oscillator strength in water is about double that in an alcohol; (b) the second Gaussian bands have similar half-widths and oscillator strengths; (c) the continuum tails have similar half-widths, yet that in water possesses only about one third as much oscillator strength as the one in alcohol. In tert-butyl alcohol and tetrahydrofuran the first Gaussian band and the continuum tail each carry nearly half of the total oscillator strength. (author)

  9. Electronic structure of semiconductor quantum films

    International Nuclear Information System (INIS)

    Zhang, S.B.; Yeh, C.; Zunger, A.

    1993-01-01

    The electronic structure of thin (≤30 A) free-standing ideal films of Si(001), Si(110), and GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation based on the simple effective-mass model, we find the following. (i) The band gaps of (001) quantum films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to sine-type envelope functions which vanish at the film boundaries, some states have cosine envelope functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band maximum a state whose energy does not vary with the film thickness. Such zero confinement states have constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of forbidden direct transitions can be enhanced by several orders of magnitude. These findings, obtained in direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this approach the film's wave functions are expanded in terms of pairs of bulk wave functions exhibiting a destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk band structure evaluated at special k points which satisfy the boundary conditions. We find that the TC representation reproduces accurately the above-mentioned results of direct diagonalization of the film's Hamiltonian. This provides a simple alternative to the effective-mass model and relates the properties of quantum structures to those of the bulk material

  10. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters

    International Nuclear Information System (INIS)

    Vazhappilly, Tijo; Hembree, Robert H.; Micha, David A.

    2016-01-01

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes

  11. Correct Brillouin zone and electronic structure of BiPd

    Science.gov (United States)

    Yaresko, Alexander; Schnyder, Andreas P.; Benia, Hadj M.; Yim, Chi-Ming; Levy, Giorgio; Damascelli, Andrea; Ast, Christian R.; Peets, Darren C.; Wahl, Peter

    2018-02-01

    A promising route to the realization of Majorana fermions is in noncentrosymmetric superconductors, in which spin-orbit coupling lifts the spin degeneracy of both bulk and surface bands. A detailed assessment of the electronic structure is critical to evaluate their suitability for this through establishing the topological properties of the electronic structure. This requires correct identification of the time-reversal-invariant momenta. One such material is BiPd, a recently rediscovered noncentrosymmetric superconductor which can be grown in large, high-quality single crystals and has been studied by several groups using angular resolved photoemission to establish its surface electronic structure. Many of the published electronic structure studies on this material are based on a reciprocal unit cell which is not the actual Brillouin zone of the material. We show here the consequences of this for the electronic structures and show how the inferred topological nature of the material is affected.

  12. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  13. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  14. Fermi Surface and Band Structure of (Ca,La)FeAs2 Superconductor from Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Liu Xu; Liu De-Fa; Zhao Lin; Guo Qi; Mu Qing-Ge; Chen Dong-Yun; Shen Bing; Yi He-Mian; Huang Jian-Wei; He Jun-Feng; Peng Ying-Ying; Liu Yan; He Shao-Long; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Ren Zhi-An; Zhou Xing-Jiang; Chen Chuang-Tian; Xu Zu-Yan

    2013-01-01

    The (Ca,R)FeAs 2 (R=La, Pr, etc.) superconductors with a signature of superconductivity transition above 40 K possess a new kind of block layers that consist of zig-zag As chains. We report the electronic structure of the new (Ca,La)FeAs 2 superconductor investigated by both band structure calculations and high resolution angle-resolved photoemission spectroscopy measurements. Band structure calculations indicate that there are four hole-like bands around the zone center Γ(0,0) and two electron-like bands near the zone corner M(π, π) in CaFeAs 2 . In our angle-resolved photoemission measurements on (Ca 0.9 La 0.1 )FeAs 2 , we have observed three hole-like bands around the Γ point and one electron-like Fermi surface near the M(π, π) point. These results provide important information to compare and contrast with the electronic structure of other iron-based compounds in understanding the superconductivity mechanism in the iron-based superconductors. (express letter)

  15. Experimental Studies of W-Band Accelerator Structures at High Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Marc E

    2001-02-09

    A high-gradient electron accelerator is desired for high-energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, a higher gradient than any collider. Planar accelerator devices naturally have an rf quadrupole component of the accelerating field. Presented for the first time are the measurements of this effect.

  16. Energetic band structure of Zn3P2 crystals

    Science.gov (United States)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-01-01

    Optical functions n, k, ε1, ε2 and d2ε2/dE2 have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction ΔSO is lower than the splitting caused by the crystal field ΔCR in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn3P2 crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn3P2 are presented.

  17. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise

    Science.gov (United States)

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-01-01

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502

  18. Electronic structure of Ag8GeS6

    Directory of Open Access Journals (Sweden)

    D.I. Bletskan

    2017-04-01

    Full Text Available For the first time, the energy band structure, total and partial densities of states of Ag8GeS6 crystal were calculated using the ab initio density functional method in LDA and LDA+U approximations. Argyrodite is direct-gap semiconductor with the calculated band gap width Egd = 1.46 eV in the LDA+U approximation. The valence band of argyrodite contains four energy separated groups of occupied subzones. The unique feature of electron-energy structure of Ag8GeS6 crystal is the energy overlapping between the occupied d-states of Ag atoms and the delocalized valence p-states of S atoms in relatively close proximity to the valence band top.

  19. Band structure features of nonlinear optical yttrium aluminium borate crystal

    Czech Academy of Sciences Publication Activity Database

    Reshak, Ali H; Auluck, S.; Majchrowski, A.; Kityk, I. V.

    2008-01-01

    Roč. 10, č. 10 (2008), s. 1445-1448 ISSN 1293-2558 Institutional research plan: CEZ:AV0Z60870520 Keywords : Electronic structure * DFF * FPLAPW * LDA Subject RIV: BO - Biophysics Impact factor: 1.742, year: 2008

  20. Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers

    Science.gov (United States)

    Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.

    2018-04-01

    In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.

  1. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  2. Band structure in Platinum nuclei (A ∼ 182)

    International Nuclear Information System (INIS)

    Popescu, D.G.

    1991-01-01

    In this thesis, the author studies the band structure in Platinum nuclei and has divided his work in 5 parts: in the first, the author makes a general presentation of nucleus physics with a high angular momentum and introduces to the deformed nucleus notion -axial, triaxial or mixing of different deformations. The notion of form co-existence will be used to interpret the experimental results. In the second part, the author describes the detection means which have been used to make measurements. An abstract of theoretical notions, usefull for the understanding of fusion-evaporation reaction is presented. The author explains the details, performances and different modes of using of 'Chateau de cristal' and others used spectrometers. In the third part, the author presents all experimental data. He has effected γ coincidence measurements for Pt, Au and Ir nuclei. In the fourth part, for a classical analysis or an interpretation in the frame of cranking model the author presents theoretical models which are adapted at the study of high spin states and band structures

  3. Photonic band structure calculations using nonlinear eigenvalue techniques

    International Nuclear Information System (INIS)

    Spence, Alastair; Poulton, Chris

    2005-01-01

    This paper considers the numerical computation of the photonic band structure of periodic materials such as photonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods for nonlinear eigenvalue problems are usually based on Newton's method or are extensions of techniques for the standard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifurcation problems, where bordered matrices are used to compute critical points in singular systems. This new approach has several advantages over the current methods. First, in our numerical calculations the new variation is more robust than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted as a set of paths in the (ω,k) plane

  4. Quasiparticle band structure for the Hubbard systems: Application to α-CeAl2

    International Nuclear Information System (INIS)

    Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.

    1990-01-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy U. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of α-CeAl 2 because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method

  5. Helical quantum states in HgTe quantum dots with inverted band structures.

    Science.gov (United States)

    Chang, Kai; Lou, Wen-Kai

    2011-05-20

    We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.

  6. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi' an 710300 (China); Wang, Ye Feng [School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Wei, Dong; Chen, Yu; Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Cui, Bin [School of Chemistry and Materials Science, Northwestern University, Xi' an 710620 (China)

    2016-06-20

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn{sup 2+} is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the “loss-in-potential,” inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  7. Kinks in the σ band of graphene induced by electron-phonon coupling.

    Science.gov (United States)

    Mazzola, Federico; Wells, Justin W; Yakimova, Rositza; Ulstrup, Søren; Miwa, Jill A; Balog, Richard; Bianchi, Marco; Leandersson, Mats; Adell, Johan; Hofmann, Philip; Balasubramanian, T

    2013-11-22

    Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the σ band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the σ band of graphene that has a binding energy of more than ≈3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of σ states. The existence of the effect suggests a very weak coupling of holes in the σ band not only to the π electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of λ≈1.

  8. Study of electronic and structural properties of CaS

    International Nuclear Information System (INIS)

    Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.

    2003-01-01

    The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal

  9. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    in electromagnetic and microwave applications once the Maxwell's equations are appropriately modeled. Originality/value - The method validates its values and properties through extensive studies on regular and defective 1D PBG structures in stratified medium, and it can be further extended to solving more......Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...

  10. Structural and electronic properties of L-amino acids

    Science.gov (United States)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  11. K-band single-chip electron spin resonance detector.

    Science.gov (United States)

    Anders, Jens; Angerhofer, Alexander; Boero, Giovanni

    2012-04-01

    We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Study of band structure in 78,80Sr using Triaxial Projected Shell Model

    International Nuclear Information System (INIS)

    Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.

    2017-01-01

    The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally

  13. Electronic structure properties of UO2 as a Mott insulator

    Science.gov (United States)

    Sheykhi, Samira; Payami, Mahmoud

    2018-06-01

    In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.

  14. Electron confinement in thin metal films. Structure, morphology and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dil, J.H.

    2006-05-15

    This thesis investigates the interplay between reduced dimensionality, electronic structure, and interface effects in ultrathin metal layers (Pb, In, Al) on a variety of substrates (Si, Cu, graphite). These layers can be grown with such a perfection that electron confinement in the direction normal to the film leads to the occurrence of quantum well states in their valence bands. These quantum well states are studied in detail, and their behaviour with film thickness, on different substrates, and other parameters of growth are used here to characterise a variety of physical properties of such nanoscale systems. The sections of the thesis deal with a determination of quantum well state energies for a large data set on different systems, the interplay between film morphology and electronic structure, and the influence of substrate electronic structure on their band shape; finally, new ground is broken by demonstrating electron localization and correlation effects, and the possibility to measure the influence of electron-phonon coupling in bulk bands. (orig.)

  15. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    Science.gov (United States)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  16. Electronic structure of A15 compounds

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1980-01-01

    For the past twenty-five years compounds with the A15 crystal structure have dominated the class of high temperature superconductors. The crystal structure of an A15 compound A 3 B is cubic (space group O/sub h/ 3 ). However, the site symmetry (D/sub 2d/) of the A atoms is much lower than cubic, an unusual occurrence in cubic binary compounds. Variations on this theme have supplied the basis of many theoretical models of the anomalous temperature (T) dependence of normal state properties and the low temperature cubic reversible tetragonal structural transformations which accompany high values of T/sub c/ in A15 compounds. In this paper results of self-consistent pseudopotential band structure calculations are used to assess some important aspects of the unique and unusual behavior in A15 compounds: (1) the role of the B atom in determining the overall electronic structure will be shown to be important; (2) the effect of the low site symmetry of the A atom on the charge density and potential will be assessed; and (3) the bonding will be shown to be metallic-covalent with no significant A-B charge transfer

  17. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    trace concentration (of the order of one part per million). However, owing to the heavy burden of the quantum-mechanical electronic structure calculations, which grow very rapidly with the number of electrons, the present day simulations do not easily exceed a few hundred atoms nowadays. This induces effective defect concentrations of the order of one percent which are very far from the diluted defects observed in the experiments. The extrapolation of high concentrations to low concentrations is difficult because defects in semiconductors often bear a net electric charge which induces long-range interactions between the spuriously interacting charged defects. The first part of my work presents the techniques available in this area, improvements in the techniques and some understanding of these spurious interactions. The second topic addressed in this memoir focuses on improving the electronic structure of defects in semiconductors and insulators. Defects in these materials introduce discrete electronic levels within the band gap of the pristine bulk material. These electronic levels correspond to the electrons involved in the defect states. Their wave function is more or less localized around the defect region and the filling of the state may also vary with the thermodynamic conditions (Fermi level). These levels inside the band gap govern the modification of the properties of electronic and optical transport. Unfortunately the standard ab initio approaches, in the context of Density Functional Theory (DFT), are unable to get the correct band gaps of semiconductors and insulators. This is why many defect properties cannot be predicted with certainty within these approaches. This second part demonstrates how the introduction of the many-body perturbation theory in the so-called GW approximation solves the problem of band gaps and thus allows one to obtain more reliable defect properties. Of course, the field of ab initio electronic structure for defects is far from being

  18. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  19. Characterization of band structure for transverse acoustic phonons in Fibonacci superlattices by a bandedge formalism

    International Nuclear Information System (INIS)

    Hsueh, W J; Chen, R F; Tang, K Y

    2008-01-01

    We present a divergence-free method to determine the characteristics of band structures and projected band structures of transverse acoustic phonons in Fibonacci superlattices. A set of bandedge equations is formulated to solve the band structures for the phonon instead of using the traditional dispersion relation. Numerical calculations show band structures calculated by the present method for the Fibonacci superlattice without numerical instability, which may occur in traditional methods. Based on the present formalism, the band structure for the acoustic phonons has been characterized by closure points and the projected bandgaps of the forbidden bands. The projected bandgaps are determined by the projected band structure, which is characterized by the cross points of the projected bandedges. We observed that the band structure and projected band structure and their characteristics were quite different for different generation orders and the basic layers for the Fibonacci superlattice. In this study, concise rules to determine these characteristics of the band structure and the projected band structure, including the number and the location of closure points of forbidden bands and those of projected bandgaps, in Fibonacci superlattices with arbitrary generation order and basic layers are proposed.

  20. Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.

    Science.gov (United States)

    Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen

    2018-01-31

    Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.

  1. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  2. Advanced electron microscopy of wide band-gap semiconductor materials

    International Nuclear Information System (INIS)

    Fay, M.W.

    2000-10-01

    The microstructure of GaN layers grown by metal organic vapour phase epitaxy on (0001) sapphire substrates using a novel precursor for deposition of AlN buffer layers has been investigated and compared to layers grown using low temperature GaN buffer layers and state-of-the-art material. It has been shown that the quality of layers grown using the novel precursor is comparable to the state-of-the-art material. TEM analysis has been performed of multiple quantum wells of InGaN grown within GaN epitaxial layers by metal organic vapour phase epitaxy. Elementally sensitive TEM techniques have been used to determine the spatial distribution of In and Ga within these structures. Fluctuations in In sensitive images are observed on the nm-scale. Clear evidence of segregation of In during layer growth has been seen. Models of the In segregation are in good agreement with experimental results. Elementally sensitive techniques have been used to investigate the elemental distributions in TiAl and NiAu contacts to GaN. Annealing of TiAl contacts has been seen to result in the formation of a thin interfacial Ti rich phase, and of N depletion at the surface of the GaN layer to the depth of tens of nm. Annealing NiAu contacts at 700 deg. C was seen to result in the formation of Ga-rich interfacial phases, of both crystalline and amorphous structure. ZnS and ZnCdS layers grown on (001) GaP supplied by the University of Hull have been investigated. ZnS layers were found to contain a high density of inclined stacking faults throughout the layer, originating from the interface with the substrate. Energy sensitive techniques have been used to investigate ZnCdS quantum well structures. The use of a ZnCdS superlattice structure around a ZnCdS quantum well to approximate a reduced barrier was seen to result in less thickness variations than when no barrier was used. (author)

  3. A Compact UWB Band-Pass Filter Using Embedded Circular Slot Structures for Improved Upper Stop-band Performance

    DEFF Research Database (Denmark)

    Shen, Ming; Ren, Jian; Mikkelsen, Jan Hvolgaard

    2016-01-01

    structures into the ring resonator. This is different from conventional designs using cascaded bandstop/low-pass filters for stop-band response suppression, which usually leads to big circuit sizes. And hence the proposed approach can reduce the circuit size significantly. A prototype filter with a compact...... size (13.6 mm×6.75 mm) has been implemented for experimental validation. The measured results show a −3 dB frequency band from 3.4 GHz to 11.7 GHz and > 20 dB upper stop-band suppression from 12.5 GHz to 20GHz....

  4. BAND ALIGNMENT OF ULTRATHIN GIZO/SiO2/Si HETEROSTRUCTURE DETERMINED BY ELECTRON SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Hee Jae Kang2

    2011-11-01

    Full Text Available Amorphous GaInZnO (GIZO thin films are grown on SiO2/Si substrate by the RF magnetron sputtering method. By thecombination of measured band gaps from reflection energy loss spectroscopy (REELS spectra and valence band fromX-ray photo-electron spectroscopy (XPS spectra, we have demonstrated the energy band alignment of GIZO thin films.The band gap values are 3.2 eV, 3.2 eV, 3.4eV and 3.6eV for the concentration ratios of Ga: In: Zn in GIZO thin filmsare 1:1:1, 2:2:1, 3:2:1 and 4:2:1, respectively. These are attributed to the larger band gap energy of Ga2O3 comparedwith In2O3 and ZnO. The valence band offsets (ΔEv decrease from 2.18 to 1.68 eV with increasing amount of Ga inGIZO thin films for GIZO1 to GIZO4, respectively. These experimental values of band gap and valence band offsetwill provide the further understanding in the fundamental properties of GIZO/SiO2/Si heterostructure, which will beuseful in the design, modeling and analysis of the performance devices applications.

  5. Intrinsic properties of high-spin band structures in triaxial nuclei

    Science.gov (United States)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  6. Quantitative vs. qualitative approaches to the electronic structure of solids

    International Nuclear Information System (INIS)

    Oliva, J.M.; Llunell, Miquel; Alemany, Pere; Canadell, Enric

    2003-01-01

    The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three different types of problems: (a) the distribution of boron and carbon atoms in MB 2 C 2 (M=Ca, La, etc.) phases, (b) the band structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and electronic structure of the ternary nitride Ca 2 AuN

  7. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  8. Kinks in the σ Band of Graphene Induced by Electron-Phonon Coupling

    DEFF Research Database (Denmark)

    Mazzola, Federico; Wells, Justin; Yakimova, Rosita

    2013-01-01

    Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the band...... of graphene that has a binding energy of more than 3:5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of states. The existence of the effect suggests a very weak coupling...

  9. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Frois, B.

    1987-01-01

    The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles

  10. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    Science.gov (United States)

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  11. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  12. Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging

    Science.gov (United States)

    Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team

    The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.

  13. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.

    Science.gov (United States)

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2015-06-18

    We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.

  14. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  15. The effect of spin-orbit coupling in band structure of few-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi, E-mail: sahdan89@yahoo.co.id; Darma, Yudi, E-mail: sahdan89@yahoo.co.id [Department of Physics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  16. Enhanced modeling of band nonparabolicity with application to a mid-IR quantum cascade laser structure

    International Nuclear Information System (INIS)

    Vukovic, N; Radovanovic, J; Milanovic, V

    2014-01-01

    We analyze the influence of conduction-band nonparabolicity on bound electronic states in the active region of a quantum cascade laser (QCL). Our model assumes expansion of the conduction-band dispersion relation up to a fourth order in wavevector and use of a suitable second boundary condition at the interface of two III-V semiconductor layers. Numerical results, obtained by the transfer matrix method, are presented for two mid-infrared GaAs/Al 0.33 Ga 0.67 As QCL active regions, and they are in very good agreement with experimental data found in the literature. Comparison with a different nonparabolicity model is presented for the example of a GaAs/Al 0.38 Ga 0.62 As-based mid-IR QCL. Calculations have also been carried out for one THz QCL structure to illustrate the possible application of the model in the terahertz part of the spectrum. (paper)

  17. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  18. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  19. High gradient test of the C-band choke-mode type accelerating structure

    International Nuclear Information System (INIS)

    Inagaki, T.; Shintake, T.; Baba, H.; Togawa, K.; Onoe, K.; Marechal, X.; Takashima, T.; Takahashi, S.; Matsumoto, H.

    2004-01-01

    The C-band (5712 MHz) choke-mode type accelerating structure will be used for SPring-8 Compact SASE-FEL Source (SCSS). To make the accelerator length short, we designed the field gradient as high as 40 MV/m. Since it is higher gradient than other traditional electron accelerators, we have to carefully check its performance (RF breakdown, dark current emission, etc.) in the high gradient test stand. The first experiment will be scheduled in this summer. In this paper, we will describe the preparation progress for the test. (author)

  20. Electronic structure calculations on nitride semiconductors and their alloys

    International Nuclear Information System (INIS)

    Dugdale, D.

    2000-09-01

    Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotential method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations. The empirical pseudopotential method is also used in this work. Pseudopotentials for each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k.p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular. valence band offsets for nitride heterojunctions are calculated, and a strong forward- backward asymmetry in the band offset is found, in good agreement with other results in the literature. (author)

  1. Electron Band Alignment at Interfaces of Semiconductors with Insulating Oxides: An Internal Photoemission Study

    Directory of Open Access Journals (Sweden)

    Valeri V. Afanas'ev

    2014-01-01

    Full Text Available Evolution of the electron energy band alignment at interfaces between different semiconductors and wide-gap oxide insulators is examined using the internal photoemission spectroscopy, which is based on observations of optically-induced electron (or hole transitions across the semiconductor/insulator barrier. Interfaces of various semiconductors ranging from the conventional silicon to the high-mobility Ge-based (Ge, Si1-xGex, Ge1-xSnx and AIIIBV group (GaAs, InxGa1-xAs, InAs, GaP, InP, GaSb, InSb materials were studied revealing several general trends in the evolution of band offsets. It is found that in the oxides of metals with cation radii larger than ≈0.7 Å, the oxide valence band top remains nearly at the same energy (±0.2 eV irrespective of the cation sort. Using this result, it becomes possible to predict the interface band alignment between oxides and semiconductors as well as between dissimilar insulating oxides on the basis of the oxide bandgap width which are also affected by crystallization. By contrast, oxides of light elements, for example, Be, Mg, Al, Si, and Sc exhibit significant shifts of the valence band top. General trends in band lineup variations caused by a change in the composition of semiconductor photoemission material are also revealed.

  2. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  3. Modifying the Electronic Properties of Nano-Structures Using Strain

    International Nuclear Information System (INIS)

    Lamba, V K; Engles, D

    2012-01-01

    We used density-functional theory based Non equilibrium green function simulations to study the effects of strain and quantum confinement on the electronic properties of Germanium and Silicon NWs along the [110] direction, such as the energy gap and the effective masses of the electron and hole. The diameters of the NWs being studied in a range of 3-20 Å. On basis of our calculation we conclude that the Ge [110] NWs possess a direct band gap, while Si [110] NWs possess indirect band gap at nanoscale. The band gap is almost a linear function of strain when the diameter of Ge NWs D 15 Å; and for Si it is linear in behaviour. On doping silicon wire we found that the bandgap shows parabolic behaviour for change in strain. We also concluded that the band gap and the effective masses of charge carries (i.e. electron and hole) changes by applying the strain to the NWs. Our results suggested that strain can be used to tune the band structures of NWs, which may help in de sign of future nanoelectronic devices.

  4. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  5. Electronic structure of C r2AlC as observed by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Ito, Takahiro; Pinek, Damir; Fujita, Taishi; Nakatake, Masashi; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Ouisse, Thierry

    2017-11-01

    We investigate the electronic band structure and Fermi surfaces (FSs) of C r2AlC single crystals with angle-resolved photoemission spectroscopy. We evidence hole bands centered around the M points and electron bands centered around the Γ point in reciprocal space. Electron and hole bands exhibit an open, tubular structure along the c axis, confirming the quasi-two-dimensional character of this highly anisotropic, nanolamellar compound. Dependence of the photoionization cross sections on beam light polarization and orientation allows us to assess the orbital character of each observed band locally. Despite some differences, density functional theory calculations show a good agreement with experiment.

  6. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  7. Electronic, structural, and optical properties of crystalline yttria

    International Nuclear Information System (INIS)

    Xu, Y.; Gu, Z.; Ching, W.Y.

    1997-01-01

    The electronic structure of crystalline Y 2 O 3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B ' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Γ is obtained which increases with pressure at a rate of dE g /dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y 2 O 3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of var-epsilon(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Γ between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. copyright 1997 The American Physical Society

  8. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    Science.gov (United States)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  9. Compton profiles and band structure calculations of CdS and CdTe

    International Nuclear Information System (INIS)

    Heda, N.L.; Mathur, S.; Ahuja, B.L.; Sharma, B.K.

    2007-01-01

    In this paper we present the isotropic Compton profiles of zinc-blende CdS and CdTe measured at an intermediate resolution of 0.39 a.u. using our 20 Ci 137 Cs Compton spectrometer. The electronic band structure calculations for both the zinc-blende structure compounds and also wurtzite CdS have been undertaken using various schemes of ab-initio linear combination of atomic orbitals calculations implemented in CRYSTAL03 code. The band structure and Mulliken's populations are reported using density functional scheme. In case of wurtzite CdS, our theoretical anisotropies in directional Compton profiles are compared with available experimental data. In case of both the zinc-blende compounds, the isotropic experimental profiles are found to be in better agreement with the present Hartree-Fock calculations. A study of the equal-valence-electron-density experimental profiles of zinc-blende CdS and CdTe shows that the CdS is more ionic than CdTe. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL

    Directory of Open Access Journals (Sweden)

    I. I. Vrubel

    2016-05-01

    Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.

  11. Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere

    International Nuclear Information System (INIS)

    Shaw, R.R.

    1975-01-01

    Naturally occurring noise bands near the electron plasma frequency are frequently detected by the University of Iowa plasma wave experiment on the IMP 6 satellite in the region from just inside the plasmapause to radial distances of about 10 earth radii in the outer magnetosphere. The electric field strength of these noise bands is usually small with electric field spectral densities near 10 -15 volts 2 meter -2 Hz -1 . A wave magnetic field has been detected only in a few unusually intense cases, and in these cases the magnetic field energy density is several orders of magnitude smaller than the electric field energy density. The bands are observed at all magnetic latitudes covered by the IMP 6 orbit (parallelγ/sub m/parallel less than or equal to 45 0 ) and appear to be a permanent feature of the outer magnetosphere. They are found at all local times and occur least frequently in the quadrant from 18 to 24 hours. The bands appear to consist of two distinct spectral types, diffuse and narrow. In both types the center frequency of the noise band is bounded by consecutive harmonics of the electron gyrofrequency, and the bands occur most often between harmonics that are near the local electron plasma frequency. These bands appear to merge continuously into two types of plasma wave emissions that are found in dissimilar regions of the magnetosphere (upper hybrid resonance noise, also called Region 3 noise, inside the plasmasphere and (n + 1/2)f/sub g/ harmonics in the outer magnetosphere). It is suggested that this smooth merging is caused by changes in the plasma wave dispersion relation that occur as the spacecraft moves from the cold plasma within the plasmasphere into the warm non-Maxwellian plasma found in the outer magnetosphere

  12. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  13. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  14. Electronic structure of ordered and disordered Fe sub 3 Pt

    CERN Document Server

    Major, Z; Jarlborg, T; Bruno, E; Ginatempo, B; Staunton, J B; Poulter, J

    2003-01-01

    The electronic structure of invar alloys (i.e. materials in which the near absence of thermal expansion is observed) has been the focus of much study, owing both to the technological applications of these materials and interest in the fundamental mechanism that is responsible for the effect. Here, calculations of the magnetic Compton profiles are presented for ordered and disordered Fe sub 3 Pt alloys. Using linear muffin-tin orbital and KKR methods, the latter incorporating the coherent potential approximation to describe the substitutional disorder, the electronic band structure and measurable quantities such as the Fermi surface topology are presented.

  15. Electronic structure of a graphene superlattice with massive Dirac fermions

    International Nuclear Information System (INIS)

    Lima, Jonas R. F.

    2015-01-01

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g  ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems

  16. Determination of the band alignment of a-IGZO/a-IGMO heterojunction for high-electron mobility transistor application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Yu; Qian, Ling-Xuan; Liu, Xing-Zhao [School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu (China)

    2017-10-15

    In the past decade, amorphous InGaZnO thin film transistors (a-IGZO TFTs) have become a very promising candidate for application in flat panel displays (FPDs). However, it is difficult to break through the mobility bottleneck of a-IGZO TFTs to obtain mobilities higher than 100 cm{sup 2} V{sup -1} s{sup -1}, thus limiting their use in more advanced applications. Construction of a high-electron mobility transistor (HEMT) based on a heterojunction structure could provide a solution for this problem. In this work, the band alignment of a-IGZO and amorphous InGaMgO (a-IGMO) heterojunction has been investigated using X-ray photoelectron spectroscopy (XPS) and transmission spectra measurements. The valence band (ΔE{sub V}) and conduction band offsets (ΔE{sub C}) were determined as 0.09 and 0.83 eV, respectively. The ΔE{sub C} was large enough to construct a potential well that could favor the appearance of a two-dimensional electron gas (2DEG). Hence, the achievement of an HEMT based on a-IGZO/a-IGMO heterojunction can be expected. Moreover, band bending contributed greatly to such a large ΔE{sub C}, and thus to the formation of electrical confinement structure. Our findings suggest that a-IGZO/a-IGMO heterojunction is a potential candidate for constructing a HEMT and thus breaking through the mobility bottleneck of a-IGZO-based TFTs for the applications in next-generation electronic products. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Determination of the band alignment of a-IGZO/a-IGMO heterojunction for high-electron mobility transistor application

    International Nuclear Information System (INIS)

    Zhang, Yi-Yu; Qian, Ling-Xuan; Liu, Xing-Zhao

    2017-01-01

    In the past decade, amorphous InGaZnO thin film transistors (a-IGZO TFTs) have become a very promising candidate for application in flat panel displays (FPDs). However, it is difficult to break through the mobility bottleneck of a-IGZO TFTs to obtain mobilities higher than 100 cm"2 V"-"1 s"-"1, thus limiting their use in more advanced applications. Construction of a high-electron mobility transistor (HEMT) based on a heterojunction structure could provide a solution for this problem. In this work, the band alignment of a-IGZO and amorphous InGaMgO (a-IGMO) heterojunction has been investigated using X-ray photoelectron spectroscopy (XPS) and transmission spectra measurements. The valence band (ΔE_V) and conduction band offsets (ΔE_C) were determined as 0.09 and 0.83 eV, respectively. The ΔE_C was large enough to construct a potential well that could favor the appearance of a two-dimensional electron gas (2DEG). Hence, the achievement of an HEMT based on a-IGZO/a-IGMO heterojunction can be expected. Moreover, band bending contributed greatly to such a large ΔE_C, and thus to the formation of electrical confinement structure. Our findings suggest that a-IGZO/a-IGMO heterojunction is a potential candidate for constructing a HEMT and thus breaking through the mobility bottleneck of a-IGZO-based TFTs for the applications in next-generation electronic products. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Electronic properties in a quantum well structure of Weyl semimetal

    International Nuclear Information System (INIS)

    You, Wen-Long; Zhou, Jiao-Jiao; Wang, Xue-Feng; Oleś, Andrzej M.

    2016-01-01

    We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.

  19. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  20. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  1. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  2. Indication for a K/sup π/ = 0- octupole band in 150Nd from electron scattering

    International Nuclear Information System (INIS)

    Creswell, C.; Hirsch, A.; Bertozzi, W.; Heisenberg, J.; Kowalski, S.; Sargent, C.P.; Turchinetz, W.; Dieperink, A.

    1978-01-01

    Recent electron scattering results on the 0.850 MeV level of 150 Nd, when analyzed in terms of the interacting boson model, are inconsistent with the interpretation of this level as a pure J/sup π/(K) = 2 + (0) state. Very recent (n,n'γ) work has shown this level to be a 1 - , 2 + doublet. Assuming this level to be the band head of a ''K/sup π/ = 0 - '' octupole band, a simple model is used to predict electron scattering form factors for the 0.850 MeV state and a 3 - octupole level observed at 0.931 MeV. Comparison is made between these predicted form factors and recent electron scattering data

  3. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  4. Electronic structure of the copper oxides

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Singh, D.; Krakauer, H.

    1989-01-01

    Since the discovery of the high temperature superconducting copper oxides a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper the authors discuss these complementary viewpoints in relation to some of the experimental data. Due to their background in the band structure area, they approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation

  5. Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects

    International Nuclear Information System (INIS)

    Becker, C; Lockau, D; Sontheimer, T; Rech, B; Schubert-Bischoff, P; Rudigier-Voigt, E; Bockmeyer, M; Schmidt, F

    2012-01-01

    Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm 2 exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. (paper)

  6. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    Science.gov (United States)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  7. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  8. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    Science.gov (United States)

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  9. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  10. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  11. Probing the graphite band structure with resonant soft-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  12. Electronic structure and electron-phonon coupling in layered copper oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Krakauer, H.

    1991-01-01

    Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)

  13. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  14. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  15. Optical model with multiple band couplings using soft rotator structure

    Science.gov (United States)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  16. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F. [Département Matériaux-Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11E, 35042 Rennes Cedex (France)

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  17. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Marti, A.; Lopez, N.; Antolin, E.; Canovas, E.; Stanley, C.; Farmer, C.; Cuadra, L.; Luque, A.

    2006-01-01

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation

  18. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Marti, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)]. E-mail: amarti@etsit.upm.es; Lopez, N. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Antolin, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Canovas, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Stanley, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Farmer, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cuadra, L. [Departamento de Teoria de la Senal y Comunicaciones- Escuela Politecnica Superior, Universidad de Alcala, Ctra. Madrid-Barcelona, km. 33600, 28805-Alcala de Henares (Madrid) (Spain); Luque, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)

    2006-07-26

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation.

  19. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    Science.gov (United States)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  20. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Directory of Open Access Journals (Sweden)

    K. Piskorski

    2018-05-01

    Full Text Available We report on the advantages of using Graphene-Insulator-Semiconductor (GIS instead of Metal-Insulator-Semiconductor (MIS structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I. Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  1. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Science.gov (United States)

    Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.

    2018-05-01

    We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  2. Manipulation of Optoelectronic Properties and Band Structure Engineering of Ultrathin Te Nanowires by Chemical Adsorption.

    Science.gov (United States)

    Roy, Ahin; Amin, Kazi Rafsanjani; Tripathi, Shalini; Biswas, Sangram; Singh, Abhishek K; Bid, Aveek; Ravishankar, N

    2017-06-14

    Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO 2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO 2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO 2 supports the appearance of a metallic state in NO 2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO 2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.

  3. SGFM applied to the calculation of surface band structure of V

    International Nuclear Information System (INIS)

    Baquero, R.; Velasco, V.R.; Garcia Moliner, F.

    1986-07-01

    The surface Green function matching (SGFM) method has been developed recently to deal with a great variety of problems in a unified way. The method was first developed for continuum systems. The recent advances for discrete structures can deal with surfaces, interfaces, quantum wells, superlattices, intercalated layered compounds, and other systems. Several applications of this formalism are being carried out. In the present note we will describe how the formalism applies to the calculation of the electronic surface band structure of vanadium which is a quite interesting transition metal with very active magnetic properties at the surface, in particular at the (100) surface. It is straightforward, on the basis of the calculation presented here, to obtain the magnetic moment on the surface, for example, through the method followed by G. Allan or the surface paramagnon density which should be particularly enhanced at this surface as compared to the bulk

  4. Absolute band structure determination on naturally occurring rutile with complex chemistry: Implications for mineral photocatalysis on both Earth and Mars

    Science.gov (United States)

    Li, Yan; Xu, Xiaoming; Li, Yanzhang; Ding, Cong; Wu, Jing; Lu, Anhuai; Ding, Hongrui; Qin, Shan; Wang, Changqiu

    2018-05-01

    Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d

  5. A first-principles study of the electronic structure of the sulvanite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Osorio-Guillen, J.M., E-mail: jorge.osorio@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia); Espinosa-Garcia, W.F. [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia)

    2012-03-15

    We have investigated by means of first-principles total energy calculations the electronic structure of the sulvanite compounds: Cu{sub 3}VS{sub 4}, Cu{sub 3}NbS{sub 4} and Cu{sub 3}TaS{sub 4}; the later is a possible candidate as a p-type transparent conductor with potential applications in solar cells and electrochromic devices. The calculated electronic structure shows that these compounds are indirect band gap semiconductors, with the valence band maximum located at the R-point and the conduction band minimum located at the X-point. The character of the valence band maximum is dominated by Cu d-states and the character of the conduction band minimum is due to the d-states of the group five elements. From the calculated charge density and electron localisation function we can conclude that the sulvanite compounds are polar covalent semiconductors.

  6. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions.

  7. Systematic design of phononic band-gap materials and structures by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    Phononic band-gap materials prevent elastic waves in certain frequency ranges from propagating, and they may therefore be used to generate frequency filters, as beam splitters, as sound or vibration protection devices, or as waveguides. In this work we show how topology optimization can be used...... to design and optimize periodic materials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely periodic band-gap materials by maximizing the relative size of the band gaps. Then, finite structures subjected to periodic loading are optimized in order to either minimize the structural...

  8. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    International Nuclear Information System (INIS)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-01-01

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  9. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Brönnimann, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Cardelli, F. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Ficcadenti, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Gallo, A. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Kalt, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lollo, V. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Palumbo, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Piersanti, L., E-mail: luca.piersanti@lnf.infn.it [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Schilcher, T. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2016-11-21

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  10. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  11. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  12. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  13. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  14. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    Science.gov (United States)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  15. A five-picosecond electron pulse from ANL (Argonne National Laboratory) L-Band Linac

    International Nuclear Information System (INIS)

    Cox, G.L.; Jonah, C.D.; Ficht, D.T.; Mavrogenes, G.S.; Sauer, M.C. Jr.

    1989-01-01

    The pulse-compression system of the Argonne National Laboratory Chemistry Division L-Band Linac, presented at the 1986 Linear Accelerator Conference at Stanford, California, has been completed. A five-picosecond-wide electron pulse containing 6 x 10 -9 coulomb charge has been achieved. Acceleration parameters and the pulse-width measurement technique are discussed, and future plans for the utilization of this pulse in radiation chemistry studies are presented. 5 refs., 4 figs

  16. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    Science.gov (United States)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  17. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Swarts, C.A.

    1979-01-01

    Chapter I: Here the results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are (I) the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, (II) the pseudopotential method, (III) Hartree-Fock theory as evaluated by Kennedy and Manson, and (IV) Amusia's Random Phase Approximation with Exchange (RPAE). It is shown that the local density theories, although simple, generally fail to produce reliable cross section; the more complicated Hartree-Fock method is no more reliable; the a priori RPAE method is most reliable, but tedious; and the phenomenological pseudopotential method offers a good combination of reliability and simplicity. The muffin-tin approximation, widely used in molecular and condensed matter physics, is examined and found to be adequate. Chapter II: Extended Hueckel theory is applied to GaAs, GaP and to the nitrogen isoelectronic trap in GaAs and GaP. The computed perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. Chapter III: By means of model calculations for an independent electron metal, we obtain exact lineshapes for the photon absorption, emission and photoemission spectra of deep core states. We find in each case an X-ray edge anomaly as pedicted by Nozieres and De Dominicis. Sumrules are used as a general check on the calculations and to explain the deviations of the exact theory from the exciton theory away from threshold

  18. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  19. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  20. Band Alignment Determination of Two-Dimensional Heterojunctions and Their Electronic Applications

    KAUST Repository

    Chiu, Ming-Hui

    2018-05-09

    Two-dimensional (2D) layered materials such as MoS2 have been recognized as high on-off ratio semiconductors which are promising candidates for electronic and optoelectronic devices. In addition to the use of individual 2D materials, the accelerated field of 2D heterostructures enables even greater functionalities. Device designs differ, and they are strongly controlled by the electronic band alignment. For example, photovoltaic cells require type II heterostructures for light harvesting, and light-emitting diodes benefit from multiple quantum wells with the type I band alignment for high emission efficiency. The vertical tunneling field-effect transistor for next-generation electronics depends on nearly broken-gap band alignment for boosting its performance. To tailor these 2D layered materials toward possible future applications, the understanding of 2D heterostructure band alignment becomes critically important. In the first part of this thesis, we discuss the band alignment of 2D heterostructures. To do so, we firstly study the interlayer coupling between two dissimilar 2D materials. We conclude that a post-anneal process could enhance the interlayer coupling of as-transferred 2D heterostructures, and heterostructural stacking imposes similar symmetry changes as homostructural stacking. Later, we precisely determine the quasi particle bandgap and band alignment of the MoS2/WSe2 heterostructure by using scan tunneling microscopy/spectroscopy (STM/S) and micron-beam X-ray photoelectron spectroscopy (μ-XPS) techniques. Lastly, we prove that the band alignment of 2D heterojunctions can be accurately predicted by Anderson’s model, which has previously failed to predict conventional bulk heterostructures. In the second part of this thesis, we develop a new Chemical Vapor Deposition (CVD) method capable of precisely controlling the growth area of p- and n-type transition metal dichalcogenides (TMDCs) and further form lateral or vertical 2D heterostructures. This

  1. Study of multi-quasiparticle band structures in 197Tl using α beam

    International Nuclear Information System (INIS)

    Mukherjee, G.; Nandi, S.; Pai, H.

    2016-01-01

    Study of the multi-quasiparticle (qp) states and the band structures built on them in the neutron deficient Tl nuclei in A ∼ 190 mass region provides useful information on particle-hole interaction in the heavy nuclei. In order to investigate the multi-qp band structures we have studied the excited states in 197 Tl by gamma ray spectroscopy

  2. Gamma decay and band structures in 46Ti

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Radford, D.C.; Poletti, A.R.

    1978-03-01

    The states of 46 Ti have been studied using the 43 Ca(α,nγ) reaction. The level and decay scheme of 46 Ti was deduced from γ-γ coincidence, γ-ray energy and intensity measurements. Spins are suggested on the basis of the γ-ray angular distribution, supported by relative excitation functions. The ground state band has been extended to spin 10 + , and about 20 new states are observed. Some of these can be grouped into rotational-like bands based on the 3 - state at 3.059 MeV and other excited states

  3. Statistical analysis of the electronic crosstalk correction in Terra MODIS Band 27

    Science.gov (United States)

    Madhavan, Sriharsha; Sun, Junqiang; Xiong, Xiaoxiong; Wenny, Brian N.; Wu, Aisheng

    2014-10-01

    The first MODerate-resolution Imaging Spectroradiometer (MODIS), also known as the Proto-Flight model (PFM), is on-board the Terra spacecraft and has completed 14 years of on orbit flight as of December 18, 2013. MODIS remotely senses the Earth in 36 spectral bands, with a wavelength range from 0.4 μm to 14.4 μm. The 36 bands can be subdivided into two groups based on their spectral responsivity as Reflective Solar Bands (RSBs) and Thermal Emissive Bands (TEBs). Band 27 centered at 6.77 μm is a TEB used to study the global water vapor distribution. It was found recently that this band has been severely affected by electronic crosstalk. The electronic crosstalk magnitude, its on-orbit change and calibration impact have been well characterized in our previous studies through the use of regularly scheduled lunar observations. Further, the crosstalk correction was implemented in Earth view (EV) images and quantified the improvements of the same. However, improvements remained desirable on several fronts. Firstly, the effectiveness of the correction needed to be analyzed spatially and radiometrically over a number of scenes. Also, the temporal aspect of the correction had to be investigated in a rigorous manner. In order to address these issues, a one-orbit analysis was performed on the Level 1A (L1A) scene granules over a ten year period from 2003 through 2012. Results have been quantified statistically and show a significant reduction of image striping, as well as removal of leaked signal features from the neighboring bands. Statistical analysis was performed by analyzing histograms of the one-orbit granules at a scene and detector level before and after correction. The comprehensive analysis and results reported in this paper will be very helpful to the scientific community in understanding the impacts of crosstalk correction on various scenes and could potentially be applied for future improvements of band 27 calibration and, therefore, its retrieval for the

  4. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    Science.gov (United States)

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  5. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  6. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    Science.gov (United States)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; do N. Varella, M. T.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Limão-Vieira, P.; Brunger, M. J.

    2016-03-01

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ˜80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  7. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N; Bettega, M. H. F.; Lima, M. A. P.; García, G.

    2016-01-01

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C 5 H 4 O 2 ). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C 5 H 4 O 2 . The measurements were carried out at energies in the range 20–40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6–50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  8. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Neves, R. F. C. [Instituto Federal do Sul de Minas Gerais, Câmpus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900 (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900 (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580 (Brazil); Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, São Paulo 13083-859 (Brazil); Varella, M. T. do N [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, Curitiba, Paraná 81531-990 (Brazil); Lima, M. A. P., E-mail: maplima@ifi.unicamp.br [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, São Paulo 13083-859 (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2016-03-28

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C{sub 5}H{sub 4}O{sub 2}). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 5}H{sub 4}O{sub 2}. The measurements were carried out at energies in the range 20–40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6–50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  9. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  10. Electronic structure of nitrides PuN and UN

    Science.gov (United States)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-11-01

    The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin-orbit coupling and the strong correlations of 5 f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5 f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.

  11. Optical verification of the valence band structure of cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Es, van C.M.; Blom, F.A.P.; Jongeneelen, J.W.F.

    1980-01-01

    Optical absorption measurements were performed on thin single crystalline samples of Cd3As2 at temperatures of 300 K and 10 K. At low temperature the interband absorption coefficient shows clearly two steps due to direct transitions from the heavy hole and light hole valence bands to the conduction

  12. Structure research of L-band travelling-wave buncher

    International Nuclear Information System (INIS)

    Zhou Wenzhen; Zhang Xiangyang; Ding Shuling

    1996-01-01

    The authors introduce design and tuning of two kinds of the buncher of the L-band high current injector of China Institute of Atomic Energy. Characteristics of the few cavities buncher is shown and the effects of the two modes of the buncher in high current injector are given

  13. Collective motions and band structures in A = 60 to 80, even--even nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Robinson, R.L.; Ramayya, A.V.

    1978-01-01

    Evidence for and the theoretical understanding of the richness of the collective band structures as illustrated by at least seven bands seen in levels of 68 Ge, 74 Se are reviewed. The experimental data on even-even nuclei in the A = 60 to 80 region have now revealed a wide variety of collective bands with different structures. The even parity yrast cascades alone are seen to involve multiple collective structures. In addition to the ground-state bands, strong evidence is presented for both neutron and proton rotation-aligned bands built on the same orbital, (g 9 / 2 ) 2 , in one nucleus. Several other nuclei also show the crossing of RAL bands around the 8 + level in this region. Evidence continues to be strong experimentally and supported theoretically that there is some type of shape transition and shape coexistence occurring now both in the Ge and Se isotopes around N = 40. Negative parity bands with odd and even spins with very collective nature are seen in several nuclei to high spin. These bands seem best understood in the RAL model. Very collective bands with ΔI = 1, extending from 2 + to 9 + are seen with no rotation-alignment. The purity of these bands and their persistence to such high spin establish them as an independent collective mode which is best described as a gamma-type vibration band in a deformed nucleus. In addition to all of the above bands, new bands are seen in 76 Kr and 74 Se. The nature of these bands is not presently known. 56 references

  14. Momentum-Space Imaging of the Dirac Band Structure in Molecular Graphene via Quasiparticle Interference

    Science.gov (United States)

    Stephenson, Anna; Gomes, Kenjiro K.; Ko, Wonhee; Mar, Warren; Manoharan, Hari C.

    2014-03-01

    Molecular graphene is a nanoscale artificial lattice composed of carbon monoxide molecules arranged one by one, realizing a dream of exploring exotic quantum materials by design. This assembly is done by atomic manipulation with a scanning tunneling microscope (STM) on a Cu(111) surface. To directly probe the transformation of normal surface state electrons into massless Dirac fermions, we map the momentum space dispersion through the Fourier analysis of quasiparticle scattering maps acquired at different energies with the STM. The Fourier analysis not only bridges the real-space and momentum-space data but also reveals the chiral nature of those quasiparticles, through a set of selection rules of allowed scattering involving the pseudospin and valley degrees of freedom. The graphene-like band structure can be reshaped with simple alterations to the lattice, such as the addition of a strain. We analyze the effect on the momentum space band structure of multiple types of strain on our system. Supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515.

  15. Handbook of the band structure of elemental solids from Z = 1 to Z = 112

    CERN Document Server

    Papaconstantopoulos, Dimitris A

    2015-01-01

    This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...

  16. Electronic structure of filled tetrahedral semiconductors

    NARCIS (Netherlands)

    Wood, D.M.; Zunger, Alex; Groot, R. de

    1985-01-01

    We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors

  17. Differential cross sections for electron impact excitation of the electronic bands of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2015-03-14

    We report results from a joint theoretical and experimental investigation into electron scattering from the important organic species phenol (C{sub 6}H{sub 5}OH). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 6}H{sub 5}OH. The measurements were carried out at energies in the range 15–40 eV, and for scattered-electron angles between 10{sup ∘} and 90{sup ∘}. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potentials calculations, with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were conducted at the static exchange plus polarisation (SEP)-level using a minimum orbital basis for single configuration interaction (MOBSCI) approach. Agreement between the measured and calculated DCSs was typically fair, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOBSCI.

  18. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  19. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  20. Electronic structure of ZrX2 (X = Se, Te)

    Science.gov (United States)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  1. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  2. Strontium titanate thin film deposition - structural and electronical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)

    2012-07-01

    Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.

  3. Electronic structure and tautomerism of thioamides

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); McGlynn, Sean P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2016-05-15

    Highlights: • Electronic structure of thioamide group and its relation to Lewis basicity. • Tautomerism of the (thio)amide groups. • Substituent effects on the electronic structure of (thio)amide group. - Abstract: The electronic structures of several thioamides have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of thioamide derivatives are discussed. The predominant tautomers in the gas phase are of keto–(thio)keto form. The addition of cyclohexanone moiety to the thioamide group enhances the Lewis base character of the sulfur atom. The addition of phenyl group to the (thio)amide group significantly affects its electronic structure.

  4. Electronic shell structure and chemisorption on gold nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer

    2011-01-01

    to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All types of cluster geometry exhibit jelliumlike electronic shell structure. We calculate adsorption...... energies of several atoms on the cuboctahedral clusters. Adsorption energies are found to vary abruptly at magic numbers. Using a Newns-Anderson model we find that the effect of magic numbers on adsorption energy can be understood from the location of adsorbate-induced states with respect to the cluster...

  5. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas

    2013-09-10

    A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

  6. Electronic structure of EuN: Growth, spectroscopy, and theory

    DEFF Research Database (Denmark)

    Richter, J. H.; Ruck, B.J.; Simpson, M.

    2011-01-01

    and the lowest-lying 8S multiplet. The Hubbard-I model is also in good agreement with purely atomic multiplet calculations for the Eu M-edge XAS. LSDA+U and DMFT calculations find a metallic ground state, while QSGW results predict a direct band gap at X for EuN of about 0.9 eV that matches closely an absorption...... and QSGW models capture the density of conduction band states better than does LSDA+U. Only the Hubbard-I model contains a correct description of the Eu 4f atomic multiplets and locates their energies relative to the band states, and we see some evidence in XAS for hybridization between the conduction band...... edge seen in optical transmittance at 0.9 eV, and a smaller indirect gap. Overall, the combination of theoretical methods and spectroscopies provides insights into the complex nature of the electronic structure of this material. The results imply that EuN is a narrow-band-gap semiconductor that lies...

  7. Observation of total electron content and irregularities in electron density using GHz band radiowaves emitted from satellite

    International Nuclear Information System (INIS)

    Ogawa, Tadahiko; Fujita, Masaharu; Awaka, Jun.

    1978-01-01

    The experiments to investigate the influence of troposphere on millimeter and sub-millimeter wave propagation were carried out, using the engineering test satellite -- 2 (ETS-2) which became the Japanese first stationary satellite and carries the transmitter emitting beacon waves of 1.7, 11.5 and 34.5 GHz coherent each other. By these experiments, it was found that the waves of 1.7 and 11.5 GHz were affected by the ionosphere. The measurement of total electron content using GHz band waves was the first trial in the world, and is capable of grasping its change with higher accuracy than conventional methods. Scintillation of 1.7 GHz is mainly the phenomenon during night, and it was revealed that it has a peak at 22.30 local time and occurred through the radiowave scattering owing to the irregularities of the ionosphere. It is also suggested that some plasma instability is generated in the place where electron density gradient in the ionosphere is large, and the irregularities of fine scale are produced, assuming from GHz band scintillations at the time of magnetic storm. The relations among wave number spectrum, scintillation frequency spectrum and S4 index (statistical quantity to give estimate for scintillation amplitude) can be derived by the weak scattering theory (Simple scattering theory). As seen above, the diagnosis of plasma disturbances in the ionosphere is feasible by the simultaneous observations of total electron content and scintillation. (Wakatsuki, Y.)

  8. Fine structure of the amide i band in acetanilide

    Science.gov (United States)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  9. Band-gap creation by icosahedral symmetry in nearly-free-electron materials

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1993-01-01

    A series of numerical electronic density-of-states calculations is performed for rational approximants to a model one-electron potential based on icosahedrally arranged plane-wave components. It is found that high-order approximants can have band gaps even if the low-order approximants do not; furthermore, the magnitude of the gap increases with the order of the approximant. The results are interpreted via a two- and three-wave analysis of the energy eigenvalues at the pseudo-Jones-zone faces and edges. It is also found that the mechanism of band-gap reduction in the rational approximants is the presence of a small density of gap states. An analytic calculation shows that these gap states result from a splitting of threefold and pseudothreefold states at the valence-band edge when the icosahedral symmetry is broken. The splitting is proportional to the error with which the ratio between the approximant indices approximates τ, the golden mean. Finally, an application to the AlCuLi system is presented

  10. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  11. Band structure in 83Rb from lifetime measurements

    International Nuclear Information System (INIS)

    Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Bhattacharya, S.; Saha-Sarkar, M.; Goswami, A.; Muralithar, S.; Singh, R.P.; Kumar, R.; Bhowmik, R.K.

    2006-01-01

    Excited states of 83 Rb, populated in the 76 Ge( 11 B,-bar 4nγ) reaction at a beam energy of 50 MeV, have been studied. The unfavoured signature partner (α=-1/2) of the πg 9/2 yrast band is proposed up to an excitation energy of 6669.4 keV and spin (31/2 + ). Lifetimes have been estimated for three states belonging to the favoured α=+1/2 band. The B(E2) values deduced from these lifetimes indicate a moderate quadrupole deformation of β 2 =0.20. Theoretical calculations within the framework of the particle-rotor-model suggest that low energy states before the onset of the νg 9/2 alignment at a rotational frequency of ∼0.5 MeV are prolate while those above this frequency have an oblate shape. The excited ΔI=1 band has been extended up to 5422.7 keV and spin 25/2 - . The B(M1) rates derived from the measured lifetimes decrease with spin. The results are in general agreement with an earlier TAC calculation, suggesting the interpretation of these states as arising from magnetic rotation

  12. Band structure in {sup 83}Rb from lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, Kolkata 700064 (India)]. E-mail: polash.banerjee@saha.ac.in; Ray, I. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha-Sarkar, M. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Muralithar, S. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Singh, R.P. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Kumar, R. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Bhowmik, R.K. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India)

    2006-03-20

    Excited states of {sup 83}Rb, populated in the {sup 76}Ge({sup 11}B,-bar 4n{gamma}) reaction at a beam energy of 50 MeV, have been studied. The unfavoured signature partner ({alpha}=-1/2) of the {pi}g{sub 9/2} yrast band is proposed up to an excitation energy of 6669.4 keV and spin (31/2{sup +}). Lifetimes have been estimated for three states belonging to the favoured {alpha}=+1/2 band. The B(E2) values deduced from these lifetimes indicate a moderate quadrupole deformation of {beta}{sub 2}=0.20. Theoretical calculations within the framework of the particle-rotor-model suggest that low energy states before the onset of the {nu}g{sub 9/2} alignment at a rotational frequency of {approx}0.5 MeV are prolate while those above this frequency have an oblate shape. The excited {delta}I=1 band has been extended up to 5422.7 keV and spin 25/2{sup -}. The B(M1) rates derived from the measured lifetimes decrease with spin. The results are in general agreement with an earlier TAC calculation, suggesting the interpretation of these states as arising from magnetic rotation.

  13. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Wolynec, E.

    1985-01-01

    A review of the historical development and the theory necessary to the interpretation of the experimental results is made. Some measurement techniques, experimental results and the technique of analysis of these data are presented. Future perspectives, due to the appearence of continous electron current accelerators, in this field of study are discussed. (L.C.) [pt

  14. Electron gun controlled smart structure

    Science.gov (United States)

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  15. Empirical optimization of DFT  +  U and HSE for the band structure of ZnO

    Science.gov (United States)

    Bashyal, Keshab; Pyles, Christopher K.; Afroosheh, Sajjad; Lamichhane, Aneer; Zayak, Alexey T.

    2018-02-01

    ZnO is a well-known wide band gap semiconductor with promising potential for applications in optoelectronics, transparent electronics, and spintronics. Computational simulations based on the density functional theory (DFT) play an important role in the research of ZnO, but the standard functionals, like Perdew-Burke-Erzenhof, result in largely underestimated values of the band gap and the binding energies of the Zn3d electrons. Methods like DFT  +  U and hybrid functionals are meant to remedy the weaknesses of plain DFT. However, both methods are not parameter-free. Direct comparison with experimental data is the best way to optimize the computational parameters. X-ray photoemission spectroscopy (XPS) is commonly considered as a benchmark for the computed electronic densities of states. In this work, both DFT  +  U and HSE methods were parametrized to fit almost exactly the binding energies of electrons in ZnO obtained by XPS. The optimized parameterizations of DFT  +  U and HSE lead to significantly worse results in reproducing the ion-clamped static dielectric tensor, compared to standard high-level calculations, including GW, which in turn yield a perfect match for the dielectric tensor. The failure of our XPS-based optimization reveals the fact that XPS does not report the ground state electronic structure for ZnO and should not be used for benchmarking ground state electronic structure calculations.

  16. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    Science.gov (United States)

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  17. Optical band gap of ZnO thin films deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Nadeem, M. Y.; Ali, S. L.; Wasiq, M. F.; Rana, A. M.

    2006-01-01

    Optical band gap of ZnO thin films deposited by electron beam evaporation at evaporation rates ranging 5 As/sup -1/ to 15 As /sup -1/ and thickness ranging 1000A to 3000A is presented. Deposited films were annealed at 573K for one and half hour. The variations in the optical band gap were observed and showed decreasing behavior from 3.15 eV, 3.05 eV, from 3.18 eV to 3.10 eV and from 3.19 eV to 3.18 eV for films with respective thickness 1000A, 2000 A, 3000 A on increasing the evaporation rate from 5 As/sup-1/ to As/sup -1/ by keeping thickness constant. (author)

  18. Crystal structure and band gap determination of HfO2 thin films

    NARCIS (Netherlands)

    Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.L.

    2007-01-01

    Valence electron energy loss spectroscopy (VEELS) and high resolution transmission electron microscopy (HRTEM) are performed on three different HfO2 thin films grown on Si (001) by chemical vapor deposition (CVD) or atomic layer deposition (ALD). For each sample the band gap (Eg) is determined by

  19. Multi-band tight-binding calculation of electronic transport in Fe/trans-polyacetylene/Fe tunnel junctions

    International Nuclear Information System (INIS)

    Abedi Ravan, B

    2012-01-01

    In this paper, the electronic transport characteristics of Fe/trans-polyacetylene/Fe magnetic tunnel junctions (MTJs) are investigated using multi-band tight-binding calculations within the framework of nonequilibrium Green function theory. A CH 2 radical is added to different positions on the polymer chain and its effects on the tunnelling magnetoresistance of the MTJ are studied. The ferromagnetic electrodes are assumed to be single-band and their tight-binding parameters are chosen in such a way as to simulate the ab initio density functional calculations of the band structure of bcc-Fe along its [001] crystallographic direction. In building the Hamiltonian of the trans-polyacetylene (t-PA) chain, we have assumed an s orbital on the H atoms and one s and three p(p x ,p y ,p z ) orbitals on the C atoms, and the dimerization effects are taken into account. It is found that moving the radical out of the centre of the polymer chain enhances the tunnelling magnetoresistance of the MTJ.

  20. Probing the electronic structure of liquid water with many-body perturbation theory

    Science.gov (United States)

    Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia

    2014-03-01

    We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.

  1. Electronic structure analysis of GaN films grown on r- and a-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna TC, Shibin; Aggarwal, Neha [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Vihari, Saket [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-10-05

    Graphical abstract: Substrate orientation induced changes in surface chemistry, band bending, hybridization states, electronic properties and surface morphology of epitaxially grown GaN were investigated via photoemission spectroscopic and Atomic Force Microscopic measurements. - Highlights: • Electronic structure and surface properties of GaN film grown on r/a-plane sapphire. • Downward band bending (0.5 eV) and high surface oxide is observed for GaN/a-sapphire. • Electron affinity and ionization energy is found to be higher for GaN/a-sapphire. - Abstract: The electronic structure and surface properties of epitaxial GaN films grown on r- and a-plane sapphire substrates were probed via spectroscopic and microscopic measurements. X-ray photoemission spectroscopic (XPS) measurements were performed to analyse the surface chemistry, band bending and valence band hybridization states. It was observed that GaN/a-sapphire display a downward band bending of 0.5 eV and possess higher amount of surface oxide compared to GaN/r-sapphire. The valence band (VB) investigation revealed that the hybridization corresponds to the interactions of Ga 4s and Ga 4p orbitals with N 2p orbital, and result in N2p–Ga4p, N2p–Ga4s{sup ∗}, mixed and N2p–Ga4s states. The energy band structure and electronic properties were measured via ultraviolet photoemission spectroscopic (UPS) experiments. The band structure analysis and electronic properties calculations divulged that the electron affinity and ionization energy of GaN/a-sapphire were 0.3 eV higher than GaN/r-sapphire film. Atomic Force Microscopic (AFM) measurements revealed faceted morphology of GaN/r-sapphire while a smooth pitted surface was observed for GaN/a-sapphire film, which is closely related to surface oxide coverage.

  2. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    International Nuclear Information System (INIS)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, Wenqing

    2013-01-01

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV

  3. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  4. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  5. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  6. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  7. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.

    2015-01-01

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO 3 or H 3 PO 3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  8. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  9. Momentum space analysis of the electronic structure of biphenyl

    International Nuclear Information System (INIS)

    Morini, F; Shojaei, S H Reza; Deleuze, M S

    2014-01-01

    The results of a yet to come experimental study of the electronic structure of biphenyl employing electron momentum spectroscopy (EMS) have been theoretically predicted, taking into account complications such as structural mobility in the electronic ground state, electronic correlation and relaxation, and a dispersion of the inner-valence ionization intensity to electronically excited (shake-up) configurations in the cation. The main purpose of this work is to explore the current limits of EMS in unraveling details of the molecular structure, namely the torsional characteristics of large and floppy aromatic molecules. At the benchmark ADC(3)/cc-pVDZ level of theory, the influence of the twist angle between the two phenyl rings is found to be extremely limited, except for individual orbital momentum profiles corresponding to ionization lines at electron binding energies ranging from 15 to 18 eV. When taking band overlap effects into account, this influence is deceptively far too limited to allow for any experimental determination of the torsional characteristics of biphenyl by means of EMS. (paper)

  10. STRUCTURAL STABILITY AND ELECTRONIC STRUCTURE OF ...

    African Journals Online (AJOL)

    2012-12-31

    Dec 31, 2012 ... may be applications at high temperature strength and corrosion ... B2 structure, like that found in cesium-chloride (CsCl) and chemical formula RM, where R denotes a rare - earth element and M denotes a late transition metal ...

  11. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    Science.gov (United States)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  12. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    Science.gov (United States)

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  13. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system

    Science.gov (United States)

    Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik

    2017-12-01

    A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.

  15. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    Science.gov (United States)

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  16. High gradient test of X-band accelerating structure at GLCTA

    International Nuclear Information System (INIS)

    Watanabe, K.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Kudo, N.; Sanuki, T.; Seuhara, T.

    2004-01-01

    GLCTA (Global Linear Collider Test Accelerator) is the high power test facility for X-band acceleration. We have installed an X-band 60cm structure in April 2004 and have been processing it for more than 3 months. Now it is under test on long-term operation. We report here the installation process and high power test result to date. (author)

  17. Structure of the lowest excited 0/sup +/ rotational band of /sup 16/O

    Energy Technology Data Exchange (ETDEWEB)

    Ikebata, Yasuhiko; Suekane, Shota

    1983-10-01

    The structure of the lowest excited 0/sup +/ rotational band is investigated by using the extended Nilsson model wave functions with angular momentum projection and the B1 interaction, two-body LS-force of the Skyrme type and the Coulomb interaction. The results obtained show good agreement with energy interval in this band.

  18. Electronic structure and tautomerism of aryl ketones

    International Nuclear Information System (INIS)

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  19. Phenomenology of the electron structure function

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    2001-01-01

    The advantages of introducing the electron structure function (ESF) in electron induced processes are demonstrated. Contrary to the photon structure function it is directly measured in such processes. At present energies, a simultaneous analysis of both the electron and the photon structure functions gives an important test of the experimentally applied methods. Estimates of the ESF at LEP momenta are given. At very high momenta contributions from W and Z bosons together with γ-Z interference can be observed. Predictions for the next generation of experiments are given. (orig.)

  20. Electronic structure and tautomerism of aryl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.